Searching for novel gene functions in yeast : identification of thousands of novel molecular interactions by protein-fragment complementation assay followed by automated gene function prediction and high-throughput lipidomics
Thesis or Dissertation
2014-09 (degree granted: 2015-02-19)
Author(s)
Advisor(s)
Level
DoctoralDiscipline
BiochimieKeywords
- Interaction protéine-protéine
- Protéine membranaire
- Métabolisme des lipides
- Apprentissage automatique
- Prédiction de la fonction d’un gène
- Visualisation analytique
- Criblage à haut débit
- Protein-protein interactions
- Protein-fragment complementation assays
- High-throughput screen
- Membrane proteins
- Lipid metabolism
- Lipidomics
- Machine learning
- Gene function prediction
- Visual analytics
- Chemistry - Biochemistry / Chimie - Biochimie (UMI : 0487)
Abstract(s)
La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes. Understanding complex biological processes requires sophisticated experimental and computational approaches. The advances in functional genomics strategies provide powerful tools for collecting diverse types of information on interconnectivity of genes, proteins and small molecules for studying organizational principles of cellular networks. Integration of that knowledge into a systems biology framework enables prediction of novel functions of uncharacterized genes. For performing such predictions on a genome-wide scale in the yeast Saccharomyces cerevisiae, we have developed a novel strategy that combines high-throughput interactomics screen for protein-protein interactions, in silico gene function prediction, and validation of predictions with high-throughput lipidomics. We started by performing a large-scale screen for protein-protein interactions using a protein-fragment complementation assay. The method allowed to monitor interactions in vivo between proteins expressed from their natural promoters. Furthermore, the method did not suffer from bias against membrane interactions comparing to established genome-wide techniques for detecting protein interactions. As a result, we detected many novel interactions and increased coverage of an interactome of lipid homeostasis that has not been yet comprehensively explored. Next, we applied a machine learning algorithm to identify eight previously uncharacterized genes with a potential role in lipid metabolism. Finally, we investigated whether these genes and a set of distinct transcriptional regulators, not implicated previously with lipids, have a role in lipid homeostasis. For that purpose, we analyzed lipidome of deletion mutants of the selected genes. In order to probe a large number of strains, we have developed a high-throughput platform for high-content lipidomic screening of yeast mutant libraries that consists of high-resolution Orbitrap mass spectrometry and a dedicated data processing framework to support lipid phenotyping across hundreds of Saccharomyces cerevisiae mutants. Lipidomics experiments confirmed functional predictions by demonstrating differences of the lipid metabolic phenotypes of deletion mutants lacking YBR141C and YJR015W genes predicted to be involved in lipid metabolism. An altered lipid phenotype was also observed for a deletion mutant of the transcription factor KAR4 that has not been linked previously with lipid metabolism. These results demonstrate that a workflow that integrates the acquisition of novel molecular interactions, computational gene function prediction and novel high-throughput shotgun lipidomics platform is a valuable contribution to an arsenal of methods for systems biology. The developments of functional genomic methods and lipidomics technologies provide means to study biological networks of higher eukaryotes, including mammals. Therefore, the presented workflow has a potential to find its applications in more complex organisms.
Collections
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.