Show item record

dc.contributor.advisorWilkinson, Kevin James
dc.contributor.authorProulx, Kim
dc.date.accessioned2015-03-18T20:04:52Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2015-03-18T20:04:52Z
dc.date.issued2015-02-18
dc.date.submitted2014-10
dc.identifier.urihttp://hdl.handle.net/1866/11591
dc.subjectNanoparticulesfr
dc.subjectChromatographie hydrodynamiquefr
dc.subjectEaux uséesfr
dc.subjectDiffusion de la lumièrefr
dc.subjectSpectrométrie de masse par torche au plasma en mode particule uniquefr
dc.subjectArgentfr
dc.subjectNanoparticlesfr
dc.subjectSilverfr
dc.subjectHydrodynamic chromatographyfr
dc.subjectWastewatersfr
dc.subjectLight scatteringfr
dc.subjectInductively coupled plasma mass spectrometry in its single particle modefr
dc.subject.otherChemistry - Analytical / Chimie analytique (UMI : 0486)fr
dc.titleSéparation, détection et caractérisation de nanoparticules manufacturées dans des eaux naturelles et usées avec la chromatographie hydrodynamique et de multiples détecteursfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineChimiefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelMaîtrise / Master'sfr
etd.degree.nameM. Sc.fr
dcterms.abstractL’utilisation accrue des nanomatériaux manufacturés (NM) fait en sorte que les différents acteurs de réglementation se questionnent de plus en plus par rapport à leur destin et leurs impacts sur les écosystèmes et la santé humaine suite à leur rejet dans l’environnement. Le développement de techniques analytiques permettant de détecter et de caractériser les NM en matrice environnementale est impératif étant donné la nécessité d’évaluer le risque relié à ces polluants émergents. Une des approches de plus en plus favorisée est d’utiliser une technique chromatographique et un ou plusieurs détecteurs sensibles dans les buts de réduire les effets de matrice, d’identifier des nanoparticules (NP) selon leurs temps de rétention et de les quantifier à des concentrations représentatives de la réalité environnementale. Une technique analytique utilisant la chromatographie hydrodynamique (HDC) et des détecteurs en ligne ou hors ligne (détecteurs de diffusion statique ou dynamique de la lumière, spectromètre de masse par torche à plasma en mode particule unique (SP-ICPMS), l’ultracentrifugation analytique) a donc été développée. Le couplage de la colonne HDC avec ces détecteurs a permis de caractériser des NP standards et l’optimisation des conditions de séparation de ces nanoparticules de polystyrène, d’or et d’argent a permis de confirmer que les NP y sont bel et bien séparées seulement selon leur taille, tel que la théorie le prédit. De plus, l’utilisation de la colonne HDC couplée au SP-ICPMS a permis de séparer un mélange de nanoparticules d’argent (nAg) et de les détecter à des concentrations représentatives de celles rencontrées dans l’environnement, soit de l’ordre du μg L-1 au ng L-1. Par exemple, dans un échantillon d’eau usée (effluent), un mélange de nAg de 80 et de 40 nm a été séparé et les nAg ont été détectées à l’aide du SP-ICPMS connecté à la colonne HDC (temps de rétention de 25.2 et 25.6 minutes et diamètres déterminés de 71.4 nm et 52.0 nm). Finalement, pour plusieurs échantillons environnementaux auxquels aucun ajout de nanoparticules n’a été fait, les analyses HDC-SP-ICPMS effectuées ont permis de déterminer qu’ils ne contenaient initialement pas de nAg.fr
dcterms.abstractDue to the widespread use of engineered nanoparticles (ENP), regulatory agencies are very concerned about their fate and their impacts on the environment and on human health. The development of analytical techniques, which will allow the detection, characterization and quantification of ENP in environmental matrices, is therefore critical in order to properly evaluate the exposure associated with these emerging pollutants. One promising approach to detect and quantify the nanoparticles is to couple a chromatographic technique to a sensitive detector in order to: (i) reduce matrix effects; (ii) identify nanoparticles from their retention times and (iii) quantify the ENP at environmentally relevant concentrations. Consequently, the coupling of hydrodynamic chromatography (HDC) was performed with both on-line and off-line detectors (light scattering detectors, inductively coupled plasma mass spectrometer in its single particle mode (SP-ICPMS) and an analytical ultracentrifuge). HDC was first used for the characterization of ENP standards. Separation conditions were optimized for standard nanoparticle suspensions of polystyrene, gold and silver, which allowed us to confirm that the separation was occurring, based on hydrodynamic size, as predicted by theory. By coupling the HDC column to the ICPMS detector in its ‘‘single particle’’ mode, it was possible to separate an ENP mixture and to detect the nanoparticles at environmental concentrations, i.e., in the μg L-1 to ng L-1 range. For example, in a wastewater sample (effluent wastewater), a mixture of two silver nanoparticles (nAg) of 40 and 80 nm were separated and the nAg were detected by SP-ICPMS at retention times of 25.2 and 25.6 minutes. Diameters of 71.4 nm and 52.0 nm were found. HDC-SP-ICPMS analysis carried out on different non-spiked wastewater samples allowed us to conclude that nAg was below the detection limit of 0.1 µg L-1.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.