Abstract(s)
Nous étudions différentes situations de distribution de la matière d’une bulle de masse négative. En effet, pour les bulles statiques et à symétrie sphérique, nous commençons par l’hypothèse qui dit que cette bulle, étant une solution des équations d’Einstein, est une déformation au niveau d’un champ scalaire. Nous montrons que cette idée est à rejeter et à remplacer par celle qui dit que la bulle est formée d’un fluide parfait. Nous réussissons à démontrer que ceci est la bonne distribution de matière dans une géométrie Schwarzschild-de Sitter, qu’elle satisfait toutes les conditions et que nous sommes capables de résoudre numériquement ses paramètres de pression et de densité.
We study different situations of matter distribution of a negative mass bubble. For the case of static and spherically symmetric bubbles, we start with the hypothesis saying that this kind of bubble, being a solution of Einstein equations, is a deformation of scalar field. We show that this idea must be rejected and replaced by another saying that the bubble is formed by a perfect fluid. We succeed to demonstrate that this is the proper matter distribution within Schwarzschild-De Sitter geometry, that it satisfies all conditions and that we’re capable of resolving numerically its parameters of pressure and density.