Show item record

dc.contributor.advisorDesjardins, Michel
dc.contributor.authorBoulais, Jonathan
dc.date.accessioned2011-07-13T15:18:19Z
dc.date.availableNO_RESTRICTIONen
dc.date.available2011-07-13T15:18:19Z
dc.date.issued2011-06-02
dc.date.submitted2010-12
dc.identifier.urihttp://hdl.handle.net/1866/5168
dc.subjectProtéomiqueen
dc.subjectProteomicsen
dc.subjectÉvolutionen
dc.subjectEvolutionen
dc.subjectBiologie des systèmesen
dc.subjectSystems biologyen
dc.subjectPhagotrophieen
dc.subjectPhagotrophyen
dc.subjectImmunité innéeen
dc.subjectInnate immunityen
dc.subjectImmunité acquiseen
dc.subjectAdaptive immunityen
dc.subjectPhosphoprotéomiqueen
dc.subjectPhosphoproteomicsen
dc.subjectGénomique comparativeen
dc.subjectComparative genomicsen
dc.subjectPhagocytoseen
dc.subjectPhagocytosisen
dc.subjectExocysten
dc.subjectExocysten
dc.subject.otherHealth Sciences - Immunology / Sciences de la santé - Immunologie (UMI : 0982)en
dc.titleL'évolution du phagosomeen
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplinePathologie et biologie cellulairesen
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralen
etd.degree.namePh. D.en
dcterms.abstractLa phagocytose est un processus cellulaire par lequel de larges particules sont internalisées dans une vésicule, le phagosome. Lorsque formé, le phagosome acquiert ses propriétés fonctionnelles à travers un processus complexe de maturation nommé la biogénèse du phagolysosome. Cette voie implique une série d’interactions rapides avec les organelles de l’appareil endocytaire permettant la transformation graduelle du phagosome nouvellement formé en phagolysosome à partir duquel la dégradation protéolytique s’effectue. Chez l’amibe Dictyostelium discoideum, la phagocytose est employée pour ingérer les bactéries de son environnement afin de se nourrir alors que les organismes multicellulaires utilisent la phagocytose dans un but immunitaire, où des cellules spécialisées nommées phagocytes internalisent, tuent et dégradent les pathogènes envahissant de l’organisme et constitue la base de l’immunité innée. Chez les vertébrés à mâchoire cependant, la transformation des mécanismes moléculaires du phagosome en une organelle perfectionnée pour l’apprêtement et la présentation de peptides antigéniques place cette organelle au centre de l’immunité innée et de l’immunité acquise. Malgré le rôle crucial auquel participe cette organelle dans la réponse immunitaire, il existe peu de détails sur la composition protéique et l’organisation fonctionnelles du phagosome. Afin d’approfondir notre compréhension des divers aspects qui relient l’immunité innée et l’immunité acquise, il devient essentiel d’élargir nos connaissances sur les fonctions moléculaire qui sont recrutées au phagosome. Le profilage par protéomique à haut débit de phagosomes isolés fut extrêmement utile dans la détermination de la composition moléculaire de cette organelle. Des études provenant de notre laboratoire ont révélé les premières listes protéiques identifiées à partir de phagosomes murins sans toutefois déterminer le ou les rôle(s) de ces protéines lors du processus de la phagocytose (Brunet et al, 2003; Garin et al, 2001). Au cours de la première étude de cette thèse (Stuart et al, 2007), nous avons entrepris la caractérisation fonctionnelle du protéome entier du phagosome de la drosophile en combinant diverses techniques d’analyses à haut débit (protéomique, réseaux d’intéractions protéique et ARN interférent). En utilisant cette stratégie, nous avons identifié 617 protéines phagosomales par spectrométrie de masse à partir desquelles nous avons accru cette liste en construisant des réseaux d’interactions protéine-protéine. La contribution de chaque protéine à l’internalisation de bactéries fut ensuite testée et validée par ARN interférent à haut débit et nous a amené à identifier un nouveau régulateur de la phagocytose, le complexe de l’exocyst. En appliquant ce modèle combinatoire de biologie systémique, nous démontrons la puissance et l’efficacité de cette approche dans l’étude de processus cellulaire complexe tout en créant un cadre à partir duquel il est possible d’approfondir nos connaissances sur les différents mécanismes de la phagocytose. Lors du 2e article de cette thèse (Boulais et al, 2010), nous avons entrepris la caractérisation moléculaire des étapes évolutives ayant contribué au remodelage des propriétés fonctionnelles de la phagocytose au cours de l’évolution. Pour ce faire, nous avons isolé des phagosomes à partir de trois organismes distants (l’amibe Dictyostelium discoideum, la mouche à fruit Drosophila melanogaster et la souris Mus musculus) qui utilisent la phagocytose à des fins différentes. En appliquant une approche protéomique à grande échelle pour identifier et comparer le protéome et phosphoprotéome des phagosomes de ces trois espèces, nous avons identifié un cœur protéique commun à partir duquel les fonctions immunitaires du phagosome se seraient développées. Au cours de ce développement fonctionnel, nos données indiquent que le protéome du phagosome fut largement remodelé lors de deux périodes de duplication de gènes coïncidant avec l’émergence de l’immunité innée et acquise. De plus, notre étude a aussi caractérisée en détail l’acquisition de nouvelles protéines ainsi que le remodelage significatif du phosphoprotéome du phagosome au niveau des constituants du cœur protéique ancien de cette organelle. Nous présentons donc la première étude approfondie des changements qui ont engendré la transformation d’un compartiment phagotrophe à une organelle entièrement apte pour la présentation antigénique.en
dcterms.abstractPhagocytosis is a cellular process by which large particulate material are internalized in a newly formed vesicule, the phagosome. Once formed, the phagosome acquires its functional properties through a complex maturation process called phagolysosome biogenesis. This pathway involves a series of rapid interactions with organelles of the endocytic apparatus, enabling the gradual transformation of newly formed phagosomes into phagolysosomes in which proteolytic degradation occurs. The amoeba Dictyostelium discoideum uses phagocytosis as a predation mechanism for feeding, whereas multicellular organisms utilize this process as an immune mechanism where specialized cells named phagocytes internalize, kill and degrade phatogens found through the host, forming the basis of innate immunity. In jawed verterbrates however, the phagosome links innate and adaptive immunity by processing and presenting antigenic peptides. Despite its crucial role in immunity, little is known about the composition and the functional organization of the phagosome. It is therefore essential to characterize in details the functional properties that are recruited to the phagosome. High-throughput proteomics analysis of isolated phagosomes has been tremendously helpful for the molecular comprehension of this organelle. Studies of our lab notably have revealed the first proteomics identification of mouse phagosomes without determining the roles of these proteins through the complex process of phagocytosis (Brunet et al, 2003; Garin et al, 2001). In the first study of this thesis (Stuart et al, 2007), we characterized the functions of the entire drosophila phagosome proteome by combining high-throughput proteomics, interactive networks and RNAi. By applying this strategy, we’ve identified 617 phagosomal proteins by mass spectrometry from which we’ve expanded this list by building the phagosome interactome. The contribution of each protein to bacterial internalization was tested and validated by RNAi and led to the identification of a new regulator of phagocytosis, the exocyst complex. In generating this 'systems-based model', we show the power of applying this approach to the study of complex cellular processes and organelles and expect that this detailed model of the phagosome will provide a new framework for studying host-pathogen interactions and innate immunity. In the second study of this thesis (Boulais et al, 2010), we characterized some of the key steps that contributed to the remodeling of phagosomes functional properties during evolution. To do so, we isolated this organelle from three distant organisms: the amoeba Dictyostelium discoideum, the fruit fly Drosophila melanogaster, and mouse (Mus musculus) that use phagocytosis for different purposes. By performing and comparing proteomics and phosphoproteomics analyses of isolated phagosomes from the three species, we identified an ancient core of phagosomal proteins around which the immune function of this organelle have likely organized. Our data indicate that a larger proportion of the phagosome proteome, has been acquired through gene duplication at periods coinciding with the emergence of innate and adaptive immunity. Our study also characterizes in detail the acquisition of novel proteins and the significant remodeling of the phagosome phosphoproteome that contributed to modify the core constituents of this organelle in evolution. Our work thus provides the first thorough analysis of the changes that enabled the transformation of the phagosome from a phagotrophic compartment into an organelle fully competent for antigen presentation.en
dcterms.languagefraen


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.