AI-based modeling of brain and behavior : combining neuroimaging, imitation learning and video games
Thesis or Dissertation
Abstract(s)
Les récentes avancées dans le domaine de l'intelligence artificielle ont ouvert la voie au développement de nouveaux modèles d'activité cérébrale. Les réseaux neuronaux artificiels (RNA) formés à des tâches complexes, telles que la reconnaissance d'images, peuvent être utilisés pour prédire la dynamique cérébrale en réponse à une série de stimuli avec une précision sans précédent, un processus appelé encodage cérébral. Les jeux vidéo ont fait l'objet d'études approfondies dans le domaine de l'intelligence artificielle, mais n'ont pratiquement pas été utilisés pour l'encodage cérébral. Les jeux vidéo offrent un cadre prometteur pour comprendre l'activité cérébrale dans un environnement riche, engageant et actif, contrairement aux tâches essentiellement passives qui dominent actuellement le domaine, telles que la visualisation d'images. Un défi majeur soulevé par les jeux vidéo complexes est que le comportement individuel est très variable d'un sujet à l'autre, et nous avons émis l'hypothèse que les RNAs doivent prendre en compte le comportement spécifique du sujet afin de capturer correctement les dynamiques cérébrales. Dans cette étude, nous avons cherché à utiliser des RNAs pour modéliser l'imagerie par résonance magnétique fonctionnelle (IRMf) et les données comportementales des participants, que nous avons collectées pendant que les sujets jouaient au jeu vidéo Shinobi III. En utilisant l'apprentissage par imitation, nous avons entraîné un RNA à jouer au jeu vidéo en reproduisant fidèlement le style de jeu unique de chaque participant. Nous avons constaté que les couches cachées de notre modèle d'apprentissage par imitation parvenaient à encoder des représentations neuronales pertinentes pour la tâche et à prédire la dynamique cérébrale individuelle avec une plus grande précision que divers modèles de contrôle, y compris des modèles entraînés sur les actions d'autres sujets. Les corrélations les plus fortes entre les activations des couches cachées et les signaux cérébraux ont été observées dans des zones cérébrales biologiquement plausibles, à savoir les réseaux somatosensoriels, attentionnels et visuels. Nos résultats soulignent le potentiel de la combinaison de l'apprentissage par imitation, de l'imagerie cérébrale et des jeux vidéo pour découvrir des relations spécifiques entre le cerveau et le comportement. Recent advances in the field of Artificial Intelligence have paved the way for the development of novel models of brain activity. Artificial Neural networks (ANN) trained on complex tasks, such as image recognition and language processing, can be used to predict brain dynamics in response to wide range of stimuli with unprecedented accuracy, a process called brain encoding. Videogames have been extensively studied in the AI field, but have hardly been used yet for brain encoding. Videogames provide a promising framework to understand brain activity in rich, engaging and active environments, in contrast to mostly passive tasks currently dominating the field, such as image viewing. A major challenge raised by complex videogames is that individual behavior is highly variable across subjects, and we hypothesized that ANNs need to account for subject-specific behavior in order to properly capture brain dynamics. In this study, we aimed to use ANNs to model functional magnetic resonance imaging (fMRI) and behavioral gameplay data, which we collected while subjects played the Shinobi III videogame. Using imitation learning, we trained an ANN to play the game closely replicating the unique gameplay style of individual participants. We found that hidden layers of our imitation learning model successfully encode task-relevant neural representations and predict individual brain dynamics with higher accuracy than various control models, including models trained on other subjects' actions. The highest correlations between layer activations and brain signals were observed in biologically plausible brain areas, i.e. somatosensory, attentional and visual networks. Our results highlight the potential of combining imitation learning, brain imaging, and videogames to uncover subject-specific relationships between brain and behavior.
This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.