Show item record

dc.contributor.advisorPellerin, Christian
dc.contributor.authorLaventure, Audrey
dc.date.accessioned2017-08-24T12:39:46Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2017-08-24T12:39:46Z
dc.date.issued2017-07-12
dc.date.submitted2017-03
dc.identifier.urihttp://hdl.handle.net/1866/19033
dc.subjectVerre moléculairefr
dc.subjectTransition vitreusefr
dc.subjectCapacité à former un verrefr
dc.subjectCristallisationfr
dc.subjectLiaison hydrogènefr
dc.subjectSpectroscopie infrarougefr
dc.subjectChimiométriefr
dc.subjectDépôt physique en phase vapeurfr
dc.subjectAzobenzènefr
dc.subjectMolecular glassfr
dc.subjectGlass transitionfr
dc.subjectGlass-forming abilityfr
dc.subjectCrystallizationfr
dc.subjectHydrogen bondingfr
dc.subjectInfrared spectroscopyfr
dc.subjectChemometricsfr
dc.subjectPhysical vapor depositionfr
dc.subjectAzobenzenefr
dc.subject.otherChemistry - Physical / Chimie - Physique (UMI : 0494)fr
dc.titleCaractérisation de matériaux moléculaires amorphes pour optimiser leur préparation et leurs applicationsfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineChimiefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractLes matériaux moléculaires amorphes, aussi appelés verres moléculaires, sont constitués de molécules organiques de petite taille capables de s’organiser de façon désordonnée. En plus de présenter certaines des propriétés analogues à celles des polymères, ils offrent des avantages supplémentaires, puisqu’ils sont des espèces isomoléculaires dont la synthèse, la purification et la mise en œuvre sont facilitées par leur viscosité relativement faible. Toutefois, la préparation souvent exigeante de ces matériaux et leur durée de vie utile limitée par leur tendance à relaxer vers l’état cristallin demeurent des obstacles à leur utilisation pour certaines applications, e.g. opto-électronique, nanolithographie, pharmaceutique. Le développement de stratégies visant à faciliter la préparation de la phase vitreuse et éviter sa cristallisation est donc essentiel à la conception de matériaux moléculaires amorphes fonctionnels. L’objectif principal de cette thèse est d’établir des relations entre la structure moléculaire des verres moléculaires et leurs propriétés. Pour y arriver, différentes librairies de composés modèles, des dérivés analogues de triazine ayant démontré une excellente capacité à former une phase vitreuse, sont utilisées pour i) déterminer l’influence de la nature et de la position des groupements sur la triazine; ii) explorer l’influence des liaisons hydrogène sur les propriétés des verres lorsque leur structure comporte des groupements fonctionnels reconnus pour faciliter la cristallisation et lorsque leurs conditions de préparation se rapprochent de celles employées en industrie et iii) exploiter la phase amorphe afin d’étudier la photosensibilité des azobenzènes (azo) en vue d’optimiser leur utilisation dans des applications. Tout d’abord, l’influence des différents groupes substituants sur la triazine (groupements de tête, auxiliaires et liants) sur la capacité des composés à former une phase vitreuse (GFA), sur sa stabilité cinétique (GS) et sur sa température de transition vitreuse (Tg) est étudiée. Un système de classification des composés développé à partir de mesures de calorimétrie différentielle à balayage (DSC) et des mesures de spectroscopie infrarouge (IR) à température variable combinées à des analyses chimiométriques facilitent la rationalisation des rôles joués par chaque groupe. L’impact des liaisons hydrogène (H), de la barrière énergétique de rotation et de l’encombrement stérique des groupements est ainsi déterminé, permettant de conclure que le groupe de tête est le plus influent et que la présence de liaisons H n’est pas essentielle au GFA mais qu’elle est importante pour obtenir une Tg élevée. Ensuite, l’influence des liaisons H sur les propriétés des verres se rapprochant de ceux exploités dans l’industrie est explorée. Des mesures de spectroscopie IR à température variable, de DSC et de résolution de structures cristallines ont permis de conclure que les liaisons H réussissent à nuire à la cristallisation des composés et ce, même s’ils sont simultanément fonctionnalisés avec des motifs qui favorisent la cristallisation (empilements π-π entre dérivés stilbènes fluorés et non fluorés). De plus, trois composés analogues fonctionnalisés avec un groupement de tête possédant une capacité décroissante à établir des liaisons H (donneur, accepteur, aucune) ont été déposés en phase vapeur (PVD), une technique employée entre autres dans l’industrie opto-électronique pour évaluer leur capacité à former des verres ultrastables. Les films ainsi préparés présentent tous des propriétés similaires à celles des verres ultrastables précédemment étudiés, telles qu’une plus grande densité et anisotropie, et sont tous plus stables que ceux préparés par refroidissement à partir de l’état liquide. Toutefois, le verre formé du composé avec un groupement de tête donneur de liaisons H est moins stable que les autres d’au moins un ordre de grandeur, suggérant que les liaisons H limitent le niveau de stabilité atteignable par PVD. Finalement, un verre à base de triazine fonctionnalisé avec un groupement azo est employé pour étudier d’un point de vue moléculaire les perturbations provoquées par la photoisomérisation de l’azo. Grâce à une nouvelle méthode de spectroscopie IR, il est possible d’observer un gradient d’environnement moléculaire le long de la molécule lors de la photoisomérisation, permettant de soutenir certaines hypothèses relatives au déplacement macroscopique de la matière qui en résulte. Les mélanges de verres à base de triazine servent aussi de plateforme idéale pour découpler l’influence de la Tg et du contenu en azo sur la photo-orientation de l’azo, mais aussi sur la cinétique d’écriture et l’efficacité des réseaux de diffraction (SRG). Ce travail permet ainsi de déterminer une zone optimale de Tg pour l’inscription de SRG. Ces nouvelles connaissances mèneront à la conception plus rationnelle de nouveaux verres moléculaires, pouvant s’étendre à d’autres matériaux amorphes.fr
dcterms.abstractAmorphous molecular materials, also known as molecular glasses, are small organic molecules capable of being organized in a disordered manner. In addition to sharing some of the useful properties of polymers, they offer additional advantages because they are isomolecular species for which synthesis, purification and processing are facilitated by a relatively low viscosity. However, the usually demanding preparation conditions of these materials and their limited functional lifetime due to their tendency to relax to the crystalline state remain obstacles to their use for certain applications, e.g. opto-electronics, nanolithography, pharmaceuticals. The development of strategies to facilitate the preparation of the vitreous phase and avoid its crystallization is therefore essential for the design of functional amorphous molecular materials. The main objective of this thesis is to establish relationships between the molecular structure of molecular glasses and their properties. To achieve it, various libraries of model compounds, analogues of triazine derivatives that have demonstrated excellent glass-forming ability, are used to i) determine the influence of the nature and the position of the groups on the triazine; ii) explore the influence of hydrogen (H) bonds on the properties of glasses when their structure includes functional groups known to facilitate crystallization and when their preparation conditions are similar to those used in industry; and iii) exploit the amorphous phase in order to study the photoresponsiveness of azobenzenes (azo) in order to optimize their use in different applications. The influence of the various substituent groups on the triazine (headgroup, ancillary and linkers) on the glass-forming ability (GFA), the kinetic glass stability (GS) and the glass transition temperature (Tg) of the compounds is first studied. A classification system based on differential scanning calorimetry (DSC) and variable temperature infrared spectroscopy (IR) measurements combined to chemometrics analyses facilitate the rationalization of the roles played by each group. The impact of the H-bonds, the energy of the rotation barrier, and the steric hindrance of the groups is determined, leading to the conclusion that the headgroup is the most influential group and that the presence of H-bonds is not essential to the GFA, but important to obtain a high Tg. The influence of the H-bonds on the properties of glasses approaching those exploited in industry is then explored. Variable temperature IR spectroscopy measurements, DSC studies, and single crystal structure resolution have led to the conclusion that H-bonds impede the crystallization of the compounds even though they are simultaneously functionalized with moieties that promote crystallization (π-π stacking between fluorinated and non-fluorinated stilbene groups). In addition, three similar compounds functionalized with a headgroup presenting a decreasing capability to establish H-bonds (donor, acceptor, none) were vapor-deposited (PVD), a technique used, among others, in the opto-electronic industry, to evaluate their capability to form ultrastable glasses. These PVD glasses all show properties that are similar to those previously reported for ultrastable glasses, including higher density and anisotropy, and are all more kinetically stable than glasses prepared by cooling from the viscous state. However, the PVD glasses prepared with a H-bond donor headgroup are less stable than the others by at least an order of magnitude, suggesting that H-bonds limit the level of kinetic stability achievable by PVD. Finally, a triazine molecular glass functionalized with an azo group is used to study, from a molecular point of view, the perturbations caused by the photoisomerization of the azo. A new IR spectroscopy method was developed to observe a molecular environment gradient along the molecule during photoisomerization, making it possible to support certain hypotheses concerning the resulting macroscopic transport of the material. Triazine-based molecular glass blends are also used as an ideal platform for decoupling the influence of Tg and azo content on the azo photo-orientation, but also on the inscription kinetics and the diffraction efficiency of surface relief gratings (SRGs). This work enables the determination of an optimal Tg range for the inscription of SRGs. Altogether, these new insights will lead to a more rational design of new molecular glasses, which can extend to other amorphous molecular materials.fr
dcterms.languagefrafr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.