Afficher la notice

dc.contributor.advisorMorse, David
dc.contributor.authorDagenais Bellefeuille, Steve DB.
dc.date.accessioned2016-10-13T13:21:12Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2016-10-13T13:21:12Z
dc.date.issued2016-04-20
dc.date.submitted2015-12
dc.identifier.urihttp://hdl.handle.net/1866/15897
dc.subjectAcclimatationfr
dc.subjectAmidonfr
dc.subjectBoucles de rétrocontrôle transcription-traductionfr
dc.subjectCarbonefr
dc.subjectCorpsfr
dc.subjectCorps lipidiquesfr
dc.subjectDinoflagelléfr
dc.subjectFloraisons d'alguesfr
dc.subjectHorloge circadiennefr
dc.subjectLingulodinium polyedrumfr
dc.subjectPhotosynthèsefr
dc.subjectRythmes journaliersfr
dc.subjectNitratefr
dc.subjectTranscriptomefr
dc.subjectTransporteurs de nitrate de haute affinitéfr
dc.subjectStress d'azotefr
dc.subjectAcclimationfr
dc.subjectCarbonfr
dc.subjectCircadian clockfr
dc.subjectDaily rhythmsfr
dc.subjectDinoflagellatesfr
dc.subjectHarmful algal bloomsfr
dc.subjectHigh-affinity nitrate transportersfr
dc.subjectLipid bodiesfr
dc.subjectNitrate uptakefr
dc.subjectNitrogen stressfr
dc.subjectPhotosynthesisfr
dc.subjectStarchfr
dc.subjectTranscription-translation feedback loopsfr
dc.subject.otherBiology - Molecular / Biologie - Biologie moléculaire (UMI : 0307)fr
dc.titleNitrate metabolism in the dinoflagellate Lingulodinium polyedrumfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineSciences biologiquesfr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractLes dinoflagellés sont des eucaryotes unicellulaires retrouvés dans la plupart des écosystèmes aquatiques du globe. Ces organismes amènent une contribution substantielle à la production primaire des océans, soit en tant que membre du phytoplancton, soit en tant que symbiontes des anthozoaires formant les récifs coralliens. Malheureusement, ce rôle écologique majeur est souvent négligé face à la capacité de certaines espèces de dinoflagellés à former des fleurs d'eau, parfois d'étendue et de durée spectaculaires. Ces floraisons d'algues, communément appelées "marées rouges", peuvent avoir de graves conséquences sur les écosystèmes côtiers, sur les industries de la pêche et du tourisme, ainsi que sur la santé humaine. Un des facteurs souvent corrélé avec la formation des fleurs d'eau est une augmentation dans la concentration de nutriments, notamment l’azote et le phosphore. Le nitrate est un des composants principaux retrouvés dans les eaux de ruissellement agricoles, mais également la forme d'azote bioaccessible la plus abondante dans les écosystèmes marins. Ainsi, l'agriculture humaine a contribué à magnifier significativement les problèmes associés aux marées rouges au niveau mondial. Cependant, la pollution ne peut pas expliquer à elle seule la formation et la persistance des fleurs d'eau, qui impliquent plusieurs facteurs biotiques et abiotiques. Il est particulièrement difficile d'évaluer l'importance relative qu'ont les ajouts de nitrate par rapport à ces autres facteurs, parce que le métabolisme du nitrate chez les dinoflagellés est largement méconnu. Le but principal de cette thèse vise à remédier à cette lacune. J'ai choisi Lingulodinium polyedrum comme modèle pour l'étude du métabolisme du nitrate, parce que ce dinoflagellé est facilement cultivable en laboratoire et qu'une étude transcriptomique a récemment fourni une liste de gènes pratiquement complète pour cette espèce. Il est également intéressant que certaines composantes moléculaires de la voie du nitrate chez cet organisme soient sous contrôle circadien. Ainsi, dans ce projet, j'ai utilisé des analyses physiologiques, biochimiques, transcriptomiques et bioinformatiques pour enrichir nos connaissances sur le métabolisme du nitrate des dinoflagellés et nous permettre de mieux apprécier le rôle de l'horloge circadienne dans la régulation de cette importante voie métabolique primaire. Je me suis tout d'abord penché sur les cas particuliers où des floraisons de dinoflagellés sont observées dans des conditions de carence en azote. Cette idée peut sembler contreintuitive, parce que l'ajout de nitrate plutôt que son épuisement dans le milieu est généralement associé aux floraisons d'algues. Cependant, j’ai découvert que lorsque du nitrate était ajouté à des cultures initialement carencées ou enrichies en azote, celles qui s'étaient acclimatées au stress d'azote arrivaient à survivre près de deux mois à haute densité cellulaire, alors que les cellules qui n'étaient pas acclimatées mourraient après deux semaines. En condition de carence d'azote sévère, les cellules arrivaient à survivre un peu plus de deux semaines et ce, en arrêtant leur cycle cellulaire et en diminuant leur activité photosynthétique. L’incapacité pour ces cellules carencées à synthétiser de nouveaux acides aminés dans un contexte où la photosynthèse était toujours active a mené à l’accumulation de carbone réduit sous forme de granules d’amidon et corps lipidiques. Curieusement, ces deux réserves de carbone se trouvaient à des pôles opposés de la cellule, suggérant un rôle fonctionnel à cette polarisation. La deuxième contribution de ma thèse fut d’identifier et de caractériser les premiers transporteurs de nitrate chez les dinoflagellés. J'ai découvert que Lingulodinium ne possédait que très peu de transporteurs comparativement à ce qui est observé chez les plantes et j'ai suggéré que seuls les membres de la famille des transporteurs de nitrate de haute affinité 2 (NRT2) étaient réellement impliqués dans le transport du nitrate. Le principal transporteur chez Lingulodinium était exprimé constitutivement, suggérant que l’acquisition du nitrate chez ce dinoflagellé se fondait majoritairement sur un système constitutif plutôt qu’inductible. Enfin, j'ai démontré que l'acquisition du nitrate chez Lingulodinium était régulée par la lumière et non par l'horloge circadienne, tel qu'il avait été proposé dans une étude antérieure. Finalement, j’ai utilisé une approche RNA-seq pour vérifier si certains transcrits de composantes impliquées dans le métabolisme du nitrate de Lingulodinium étaient sous contrôle circadien. Non seulement ai-je découvert qu’il n’y avait aucune variation journalière dans les niveaux des transcrits impliqués dans le métabolisme du nitrate, j’ai aussi constaté qu’il n’y avait aucune variation journalière pour n’importe quel ARN du transcriptome de Lingulodinium. Cette découverte a démontré que l’horloge de ce dinoflagellé n'avait pas besoin de transcription rythmique pour générer des rythmes physiologiques comme observé chez les autres eukaryotes.fr
dcterms.abstractDinoflagellates are unicellular eukaryotes found in most aquatic ecosystems of the world. They are major contributors to carbon fixation in the oceans, either as free-living phytoplankton or as symbionts to corals. Dinoflagellates are also infamous because some species can form spectacular blooms called red tides, which can cause serious damage to ecosystems, human health, fisheries and tourism. One of the factors often correlated with algal blooms are increases in nutrients, particularly nitrogen and phosphorus. Nitrate is one of the main components of agricultural runoffs, but also the most abundant bioavailable form of nitrogen in marine environments. Thus, agricultural activities have globally contributed to the magnification of the problems associated with red tides. However, bloom formation and persistence cannot be ascribed to human pollution alone, because other biotic and abiotic factors are at play. Particularly, it is difficult to assess the relative importance of nitrate addition over these other factors, because nitrate metabolism in dinoflagellate is mostly unknown. Filling part of this gap was the main goal of this thesis. I selected Lingulodinium polyedrum as a model for studying nitrate metabolism, because this dinoflagellate can easily be cultured in the lab and a recent transcriptomic survey has provided an almost complete gene catalogue for this species. It is also interesting that some molecular components of the nitrate pathway in this organism have been reported to be under circadian control. Thus, in this project, I used physiological, biochemical, transcriptomic and bioinformatic approaches to enrich our understanding of dinoflagellate nitrate metabolism and to increase our appreciation of the role of the circadian clock in regulating this important primary metabolic pathway. I first studied the particular case of dinoflagellate blooms that occur and persist in conditions of nitrogen depletion. This idea may seems counterintuitive, because nitrogen addition rather than depletion, is generally associated with algal blooms. However, I discovered that when nitrate was added to nitrogen-deficient or nitrogen-sufficient cultures, those that had been acclimated to nitrogen stress were able to survive for about two months at high cell densities, while non-acclimated cells died after two weeks. In conditions of severe nitrogen limitation, cells could survive a little bit more than two weeks by arresting cell division and reducing photosynthetic rates. The incapacity to synthesize new amino acids for these deprived cells in a context of on-going photosynthesis led to the accumulation of reduced carbon in the form of starch granules and lipid bodies. Interestingly, both of these carbon storage compounds were polarized in Lingulodinium cells, suggesting a functional role. The second contribution of my thesis was to identify and characterize the first nitrate transporters in dinoflagellates. I found that in contrast to plants, Lingulodinium had a reduced suite of nitrate transporters and only members of the high-affinity nitrate transporter 2 (NRT2) family were predicted to be functionally relevant in the transport of nitrate. The main transporter was constitutively expressed, which suggested that nitrate uptake in Lingulodinium was mostly a constitutive process rather than an inducible one. I also discovered that nitrate uptake in this organism was light-dependent and not a circadian-regulated process, as previously suggested. Finally, I used RNA-seq to verify if any transcripts involved in the nitrate metabolism of Lingulodinium were under circadian control. Not only did I discovered that there were no daily variations in the level of transcripts involved in nitrate metabolism, but also that there were no changes for any transcripts present in the whole transcriptome of Lingulodinium. This discovery showed that the circadian timer in this species did not require rhythmic transcription to generate biological rhythms, as observed in other eukaryotes.fr
dcterms.languageengfr


Fichier·s constituant ce document

Vignette

Ce document figure dans la ou les collections suivantes

Afficher la notice

Ce document diffusé sur Papyrus est la propriété exclusive des titulaires des droits d'auteur et est protégé par la Loi sur le droit d'auteur (L.R.C. (1985), ch. C-42). Il peut être utilisé dans le cadre d'une utilisation équitable et non commerciale, à des fins d'étude privée ou de recherche, de critique ou de compte-rendu comme le prévoit la Loi. Pour toute autre utilisation, une autorisation écrite des titulaires des droits d'auteur sera nécessaire.