Show item record

dc.contributor.advisorJaumard, Brigitte
dc.contributor.advisorToulouse, Michel
dc.contributor.authorDo Trung, Kien
dc.date.accessioned2014-10-07T18:03:41Z
dc.date.availableNO_RESTRICTIONfr
dc.date.available2014-10-07T18:03:41Z
dc.date.issued2014-09-29
dc.date.submitted2014-07
dc.identifier.urihttp://hdl.handle.net/1866/11185
dc.subjectMulti-domainefr
dc.subjectRéseaux optiques de protectionfr
dc.subjectSystème distribuéfr
dc.subjectSystème parallèlefr
dc.subjectDéfauts multiplesfr
dc.subjectP-cyclesfr
dc.subjectMulti-Domainfr
dc.subjectProtection optical networksfr
dc.subjectDistributed schemefr
dc.subjectParallel scheme/systemfr
dc.subjectMultiple failurefr
dc.subjectP-cyclesfr
dc.subject.otherApplied Sciences - Computer Science / Sciences appliqués et technologie - Informatique (UMI : 0984)fr
dc.titleDomain/Multi-Domain Protection and Provisioning in Optical Networksfr
dc.typeThèse ou mémoire / Thesis or Dissertation
etd.degree.disciplineInformatiquefr
etd.degree.grantorUniversité de Montréalfr
etd.degree.levelDoctorat / Doctoralfr
etd.degree.namePh. D.fr
dcterms.abstractL’évolution récente des commutateurs de sélection de longueurs d’onde (WSS -Wavelength Selective Switch) favorise le développement du multiplexeur optique d’insertionextraction reconfigurable (ROADM - Reconfigurable Optical Add/Drop Multiplexers) à plusieurs degrés sans orientation ni coloration, considéré comme un équipement fort prometteur pour les réseaux maillés du futur relativement au multiplexage en longueur d’onde (WDM -Wavelength Division Multiplexing ). Cependant, leur propriété de commutation asymétrique complique la question de l’acheminement et de l’attribution des longueur d’ondes (RWA - Routing andWavelength Assignment). Or la plupart des algorithmes de RWA existants ne tiennent pas compte de cette propriété d’asymétrie. L’interruption des services causée par des défauts d’équipements sur les chemins optiques (résultat provenant de la résolution du problème RWA) a pour conséquence la perte d’une grande quantité de données. Les recherches deviennent ainsi incontournables afin d’assurer la survie fonctionnelle des réseaux optiques, à savoir, le maintien des services, en particulier en cas de pannes d’équipement. La plupart des publications antérieures portaient particulièrement sur l’utilisation d’un système de protection permettant de garantir le reroutage du trafic en cas d’un défaut d’un lien. Cependant, la conception de la protection contre le défaut d’un lien ne s’avère pas toujours suffisante en termes de survie des réseaux WDM à partir de nombreux cas des autres types de pannes devenant courant de nos jours, tels que les bris d’équipements, les pannes de deux ou trois liens, etc. En outre, il y a des défis considérables pour protéger les grands réseaux optiques multidomaines composés de réseaux associés à un domaine simple, interconnectés par des liens interdomaines, où les détails topologiques internes d’un domaine ne sont généralement pas partagés à l’extérieur. La présente thèse a pour objectif de proposer des modèles d’optimisation de grande taille et des solutions aux problèmes mentionnés ci-dessus. Ces modèles-ci permettent de générer des solutions optimales ou quasi-optimales avec des écarts d’optimalité mathématiquement prouvée. Pour ce faire, nous avons recours à la technique de génération de colonnes afin de résoudre les problèmes inhérents à la programmation linéaire de grande envergure. Concernant la question de l’approvisionnement dans les réseaux optiques, nous proposons un nouveau modèle de programmation linéaire en nombres entiers (ILP - Integer Linear Programming) au problème RWA afin de maximiser le nombre de requêtes acceptées (GoS - Grade of Service). Le modèle résultant constitue celui de l’optimisation d’un ILP de grande taille, ce qui permet d’obtenir la solution exacte des instances RWA assez grandes, en supposant que tous les noeuds soient asymétriques et accompagnés d’une matrice de connectivité de commutation donnée. Ensuite, nous modifions le modèle et proposons une solution au problème RWA afin de trouver la meilleure matrice de commutation pour un nombre donné de ports et de connexions de commutation, tout en satisfaisant/maximisant la qualité d’écoulement du trafic GoS. Relativement à la protection des réseaux d’un domaine simple, nous proposons des solutions favorisant la protection contre les pannes multiples. En effet, nous développons la protection d’un réseau d’un domaine simple contre des pannes multiples, en utilisant les p-cycles de protection avec un chemin indépendant des pannes (FIPP - Failure Independent Path Protecting) et de la protection avec un chemin dépendant des pannes (FDPP - Failure Dependent Path-Protecting). Nous proposons ensuite une nouvelle formulation en termes de modèles de flots pour les p-cycles FDPP soumis à des pannes multiples. Le nouveau modèle soulève un problème de taille, qui a un nombre exponentiel de contraintes en raison de certaines contraintes d’élimination de sous-tour. Par conséquent, afin de résoudre efficacement ce problème, on examine : (i) une décomposition hiérarchique du problème auxiliaire dans le modèle de décomposition, (ii) des heuristiques pour gérer efficacement le grand nombre de contraintes. À propos de la protection dans les réseaux multidomaines, nous proposons des systèmes de protection contre les pannes d’un lien. Tout d’abord, un modèle d’optimisation est proposé pour un système de protection centralisée, en supposant que la gestion du réseau soit au courant de tous les détails des topologies physiques des domaines. Nous proposons ensuite un modèle distribué de l’optimisation de la protection dans les réseaux optiques multidomaines, une formulation beaucoup plus réaliste car elle est basée sur l’hypothèse d’une gestion de réseau distribué. Ensuite, nous ajoutons une bande pasiv sante partagée afin de réduire le coût de la protection. Plus précisément, la bande passante de chaque lien intra-domaine est partagée entre les p-cycles FIPP et les p-cycles dans une première étude, puis entre les chemins pour lien/chemin de protection dans une deuxième étude. Enfin, nous recommandons des stratégies parallèles aux solutions de grands réseaux optiques multidomaines. Les résultats de l’étude permettent d’élaborer une conception efficace d’un système de protection pour un très large réseau multidomaine (45 domaines), le plus large examiné dans la littérature, avec un système à la fois centralisé et distribué.fr
dcterms.abstractRecent developments in the wavelength selective switch (WSS) technology enable multi-degree reconfigurable optical add/drop multiplexers (ROADM) architectures with colorless and directionless switching, which is regarded as a very promising enabler for future reconfigurable wavelength division multiplexing (WDM) mesh networks. However, its asymmetric switching property complicates the optimal routing and wavelength assignment (RWA) problem, which is NP-hard. Most of the existing RWA algorithms do not consider such property. Disruption of services through equipment failures on the lightpaths (output of RWA problem) is consequential as it involves the lost of large amounts of data. Therefore, substantial research efforts are needed to ensure the functional survivability of optical networks, i.e., the continuation of services even when equipment failures occur. Most previous publications have focused on using a protection scheme to guarantee the traffic connections in the event of single link failures. However, protection design against single link failures turns out not to be always sufficient to keep the WDM networks away from many downtime cases as other kinds of failures, such as node failures, dual link failures, triple link failures, etc., become common nowadays. Furthermore, there are challenges to protect large multi-domain optical networks which are composed of several singledomain networks, interconnected by inter-domain links, where the internal topological details of a domain are usually not shared externally. The objective of this thesis is to propose scalable models and solution methods for the above problems. The models enable to approach large problem instances while producing optimal or near optimal solutions with mathematically proven optimality gaps. For this, we rely on the column generation technique which is suitable to solve large scale linear programming problems. For the provisioning problem in optical networks, we propose a new ILP (Integer Linear Programming) model for RWA problem with the objective of maximizing the Grade of Service (GoS). The resulting model is a large scale optimization ILP model, which allows the exact solution of quite large RWA instances, assuming all nodes are asymmetric and with a given switching connectivity matrix. Next, we modify the model and propose a solution for the RWA problem with the objective of finding the best switching connectivity matrix for a given number of ports and a given number of switching connections, while satisfying/maximizing the GoS. For protection in single domain networks, we propose solutions for the protection against multiple failures. Indeed, we extent the protection of a single domain network against multiple failures, using FIPP and FDPP p-cycles. We propose a new generic flow formulation for FDPP p-cycles subject to multiple failures. Our new model ends up with a complex pricing problem, which has an exponential number of constraints due to some subtour elimination constraints. Consequently, in order to efficiently solve the pricing problem, we consider: (i) a hierarchical decomposition of the original pricing problem; (ii) heuristics in order to go around the large number of constraints in the pricing problem. For protection in multi-domain networks, we propose protection schemes against single link failures. Firstly, we propose an optimization model for a centralized protection scheme, assuming that the network management is aware of all the details of the physical topologies of the domains. We then propose a distributed optimization model for protection in multi-domain optical networks, a much more realistic formulation as it is based on the assumption of a distributed network management. Then, we add bandwidth sharing in order to reduce the cost of protection. Bandwidth of each intra-domain link is shared among FIPP p-cycles and p-cycles in a first study, and then among paths for link/path protection in a second study. Finally, we propose parallel strategies in order to obtain solutions for very large multi-domain optical networks. The result of this last study allows the efficent design of a protection scheme for a very large multi-domain network (45 domains), the largest one by far considered in the literature, both with a centralized and distributed scheme.fr
dcterms.languageengfr


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show item record

This document disseminated on Papyrus is the exclusive property of the copyright holders and is protected by the Copyright Act (R.S.C. 1985, c. C-42). It may be used for fair dealing and non-commercial purposes, for private study or research, criticism and review as provided by law. For any other use, written authorization from the copyright holders is required.