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Résumé : 

L'interface cerveau-ordinateur (ICO) décode les signaux électriques du cerveau 

requise par l’électroencéphalographie et transforme ces signaux en commande pour 

contrôler un appareil ou un logiciel. Un nombre limité de tâches mentales ont été 

détectés et classifier par différents groupes de recherche. D’autres types de 

contrôle, par exemple l’exécution d'un mouvement du pied, réel ou imaginaire, peut 

modifier les ondes cérébrales du cortex moteur. Nous avons utilisé un ICO pour 

déterminer si nous pouvions faire une classification entre la navigation de type 

marche avant et arrière, en temps réel et en temps différé, en utilisant différentes 

méthodes. Dix personnes en bonne santé ont participé à l’expérience sur les ICO 

dans un tunnel virtuel. L’expérience fut a était divisé en deux séances (48 min 

chaque). Chaque séance comprenait 320 essais. On a demandé au sujets d’imaginer 

un déplacement avant ou arrière dans le tunnel virtuel de façon aléatoire d’après 

une commande écrite sur l'écran. Les essais ont été menés avec feedback. Trois 

électrodes ont été montées sur le scalp, vis-à-vis du cortex moteur. Durant la 1re 

séance, la classification des deux taches (navigation avant et arrière) a été réalisée 

par les méthodes de puissance de bande, de représentation temporel-fréquence, 

des modèles autorégressifs et des rapports d’asymétrie du rythme β avec 

classificateurs d’analyse discriminante linéaire et SVM. Les seuils ont été calculés en 

temps différé pour former des signaux de contrôle qui ont été utilisés en temps réel 

durant la 2e séance afin d’initier, par les ondes cérébrales de l'utilisateur, le 

déplacement du tunnel virtuel dans le sens demandé. Après 96 min d'entrainement, 

la méthode « online biofeedback » de la puissance de bande a atteint une précision 

de classification moyenne de 76 %, et la classification en temps différé avec les 

rapports d’asymétrie et puissance de bande, a atteint une précision de classification 

d’environ 80 %. 

. 

Mots-clés: Interface cerveau-ordinateur(ICO), synchronisation lié à l'événement, Moteur 

imaginaire, électroencéphalogramme (EEG), Réalité Virtuelle, Navigation, classification de EEG. 
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Abstract: 

A Brain-Computer Interface (BCI) decodes the brain signals representing a desire to 

do something, and transforms those signals into a control command. However, only 

a limited number of mental tasks have been previously detected and classified. 

Performing a real or imaginary navigation movement can similarly change the 

brainwaves over the motor cortex. We used an ERS-BCI to see if we can classify 

between movements in forward and backward direction offline and then online 

using different methods. Ten healthy people participated in BCI experiments 

comprised two-sessions (48 min each) in a virtual environment tunnel. Each session 

consisted of 320 trials where subjects were asked to imagine themselves moving in 

the tunnel in a forward or backward motion after a randomly presented (forward 

versus backward) command on the screen.  Three EEG electrodes were mounted 

bilaterally on the scalp over the motor cortex. Trials were conducted with feedback. 

In session 1, Band Power method, Time-frequency representation, Autoregressive 

models and asymmetry ratio were used in the β rhythm range with a Linear-

Discriminant-analysis classifier and a Support Vector Machine classifier to 

discriminate between the two mental tasks. Thresholds for both tasks were 

computed offline and then used to form control signals that were used online in 

session 2 to trigger the virtual tunnel to move in the direction requested by the 

user's brain signals. After 96 min of training, the online band-power biofeedback 

training achieved an average classification precision of 76 %, whereas the offline 

classification with asymmetrical ratio and band-power achieved an average 

classification precision of 80%.  

 

Keywords: Brain-Computer Interface, Event-Related Synchronization, Motor Imagery, 

electroencephalogram(EEG), Virtual Reality, Navigation, EEG classification 
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Chapter 1  

Introduction 
1.1. Background 

Can computers really read our minds? Can we ever truly forget our past? Can we 

control anything in the real world with only our thoughts? Brain-computer 

interaction has been a hot research concept since the beginning of the computer 

era. Since the first experiments of Electroencephalography (EEG), i.e. Brain waves 

recording on humans by Hans Berger in 1929, the idea that brain activity could be 

used as a communication channel has rapidly gained popularity [24]. 

However, it is only in 1964 that the first prototype of a Brain-Computer Interface 

(BCI) came out, in the laboratory of Dr.Grey Walter when he connected the EEG  

system of a patient to a slide projector so that the slide projector advanced 

whenever the patient’s brain activity indicated that he wanted to do so [8]. 

A BCI is a communication system that bypasses the body’s neuromuscular pathways, 

measures brain activity associated with the user’s intent and translates it into 

corresponding control signals to an electronic device, only by means of voluntary 

variations of his brain activity. Such a system appears as a particularly promising 

communication channel for persons suffering from severe paralysis, like those with 

the “locked-in” syndrome and, as such, is locked into their own body without any 

residual muscle control [24]. Therefore, a BCI appears as their only way of 

communication, where their speech brain activity has been translated to a computer 

speller [100], [24], as well as their intention of moving their wheelchairs has been 

translated into real movements of those wheelchairs [24]. 

Studies to date show that humans can learn to use electroencephalographic activity 

(EEG) to control the movements of a cursor or other device in one or two 

dimensions[27],[52],[96],[101],[30]. Both actual movement and activity movement 

imagery are accompanied by changes in the amplitudes of certain EEG rhythms, 

specifically 8–12 Hz mu rhythms and 18–30 Hz beta rhythms [35]. These changes are 

focused over sensorimotor cortex in a manner consistent with the homuncular 

organization of this cortical region [24]. 
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It was also found that while observing movements performed by others, the 

observers’ cortical motor areas and spinal circuits were activated, reflecting the 

specific temporal and muscular pattern of the actual movement [10]. The BCIs of 

Wolpaw’s group in Albany and the Graz group are both based on motor imagery and 

classification of sensorimotor EEG rhythms , where they discovered that motor 

imagery (imagining a movement) can modify the neuronal activity in the primary 

sensory-motor areas in a very similar way as observable with a real executed 

movement [18],[59]. 

 In the 1980s, Wolpaw et al. started on EEG-based cursor control in normal adults 

using band power centered at 9 Hz. They used an Auto-regressive model to compute 

power in a specific frequency band, where the sum power was used in a linear 

function to control the cursor's direction of movement [24]. However, and for the 

same goal, Yuanqing Li et al. in 2010 have controlled a 2-D cursor using a hybrid BCI, 

where they used both beta rhythm and P300 signals [101](The P300 is the positive 

component of the evoked potential that may develop about 300 ms after an item is 

flashed [5]). 

Nowadays, the world of BCI is expanding very rapidly. One new field involves BCIs to 

control virtual reality (VR), including BCIs for games [37],[51],[84],[23],[29]. Virtual 

environments (VE) can provide an excellent testing ground for procedures that could 

be adapted to real world scenarios, especially for patients with disabilities. If people 

can learn to control their movements or perform specific tasks in a VE, this could 

justify the much greater expense of building physical devices such as a wheelchair or 

robot arm that is controlled by a BCI. One of the main goals of implementing BCI in 

VR is to understand how humans process dynamic visual scenes and how well they 

can interact with these natural environments. A better understanding of the normal 

brain will help us decipher the important mechanisms for certain activities such as 

way finding and reaching gestures that are critical in real life situations. Such basic 

understanding will also lead to a better understand of how neurodegenerative 

disorders such as how Alzheimer can influence daily living activities and help us find 

the right interventions to alleviate the impact of such disorders on quality of life of 

the patients. 
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The first efforts to combine VR and BCI technologies were In year 2000 and 2003 by 

Bayliss and Ballard who introduced a VR smart home in which users could control 

different things using a P300 BCI [6],[7]. 

Then in 2003, researchers showed that immersive feedback based on a computer 

game can help people learn to control a BCI based on imaginary movement more 

quickly than mundane feedback [42]. In year 2010, researchers used a steady-state 

visual evoked potential (SSVEP)-based BCI to navigate an avatar in virtual reality to 

two waypoints along a given path in two runs, by alternately focusing attention on 

one of three visual stimuli that were flickering at 12, 15 and 20 Hz [40]. Successful 

classifications of the following classes triggered the associated commands: turn 45° 

left, turn 45° right and walk one step ahead (Steady-state evoked potentials occur 

when sensory stimuli are delivered in frequencies high enough that the relevant 

neuronal structures do not return to their resting states). In [41] the same technique 

was used to control a character in an immersive 3-D gaming environment 

In 2005 researchers in [54] used BCI for walking in a virtual street, in 2007 to visit 

and navigate in a virtual reality representation of the Austrian National library [76], 

and exploring a smart virtual apartment using a motor imagery-based BCI in 2009. 

In [53] Researchers used the BCI to navigate in virtual reality with only beta waves, 

where a 35 year old tetraplegic male subject learned to control a BCI, where the mid-

central focused beta oscillations with a dominant frequency of approximately 17 Hz 

allowed the BCI to control VE .  Only one single EEG channel was recorded bipolarly 

at Cz (foot representation area). One single logarithmic band power feature was 

estimated from the ongoing EEG. A simple threshold (TH) was used to distinguish 

between foot movement imagination (IC) and rest (INC). This study, which was based 

only on beta waves, has classified two different mental states: one directional 

movement (forward) and a rest state but not for backward movement. 

Brosseau-Lachine et al in [11] and [12] psychophysically studied Infants and made 

electrophysiological recordings of brain cells in cats’ response to radial optic flow 

fields, and found superior sensitivity for expansion versus contraction direction of 

motion in both studies. This is further supported by an imaging study with adults 

where the researchers have found a bias for expanding motion stimuli [77]. This 

dissociation may suggest that sensitivity to direction corresponding with forward 
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locomotion (expansion) develops at a faster rate than the opposite direction 

encountered when moving backwards (contraction). 

Researchers in [77] found with PET scan that several loci of activation were observed 

for contraction and expansion condition in the same areas of the human brain, but 

the increase in rCBF in contraction was much lower than in the expansion condition 

in the right brain. So, we wanted to see in the present study if we could classify 

those two-directional movements in virtual reality from only 1, 2 or 3 EEG channels. 

Therefore, the main goal of the present project was to enhance navigation in virtual 

reality with the brainwaves by using beta ERS obtained from a small number of 

channels.  Further, we wanted to see if we could classify two-directional movements 

(forward or backwards) in virtual reality from these channels so in the future a 

subject could efficiently navigate by altering the brain waves, freeing the limbs for 

other activities. 

 

1.2. Hypothesis and originality 

 

1) It is possible to distinguish and predict single-trial forward and backward 

movement commands with the methods proposed. 

2) Backward commands will require more signal-training to achieve the same 

strength. 

3) Motor imagery of forward-backward movement can activate the motor 

cortex similarly to real optic flow. 

 

1.3. Objectives 

 

1.3.1. General objective 

The aim of the research is to navigate backward and forward in a virtual reality 

tunnel using biofeedback from the brainwaves. 

 

1.3.2. Specific objectives 

1. Design and investigate a short-training motor imagery BCI for navigation in 

virtual reality with: 



5 
 

 

 3 EEG channels (the later investigation and analysis would reveal if we can 

rely on 1 or 2 electrodes to use in the BCI). 

2. Session1: Acquire EEG during an optic flow moving both forward and backward 

within a tunnel, and during imaging navigation in the virtual reality 

 Use features extracted with different feature extraction methods and 

classification methods using MATLAB on session 1 data 

3. Session 2: perform a short band-power training for navigation direction in the 

tunnel with Biograph (the EEG acquisition and biofeedback software) 

 Perform offline classification of session 2 data in MATLAB using the session 1 

data as training data 

4. Compare MATLAB and Biograph efficiencies 

 

After EEG acquisition, pre-processing and processing methods (IIR filtering ,Time-

Frequency Representation and Band Power feature extractions) will be conducted 

via Biograph, then we want to import EEG data to MATLAB, where we will apply 

signal processing methods ( Auto-regression analysis , Band-Power, and power 

spectral density asymmetrical ratio), and then feed all these features to LDA 

classifier (Linear Discriminant Analysis) and SVM (Support Vector Machine) in order 

to classify these signals in an attempt to identify both movements; where we can 

later threshold the signals to control navigation direction in virtual reality. 

 

1.4. Thesis Outline 

 

Chapter 2 of this thesis will go through the main principals and methods of recording 

brain waves, as well as locations of recordings on the scalp in relation with the brain 

anatomy and physiological functions. Chapter 3 will introduce Brain computer 

Interfaces (BCI) and explain the fundamental approaches of BCI design and control, 

then the fourth chapter will go through some of the main signal processing 

techniques used in pre-processing, feature extraction and selection, and 

classification of signals [5], where these techniques are implemented in some BCI 

applications illustrated in the fifth chapter of the thesis, followed by chapter 6 which 

presents some BCI applications in Virtual Reality. Finally, chapter 7 presents the 
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experiments conducted for this research as well as the results, where the discussions 

and conclusion will be presented in chapter 8 of the thesis. 
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Chapter 2 

Electroencephalography (EEG) 

2.1. History 

 

Richard Caton, In 1887, had recorded the first brain very-low-Amplitude electrical 

activity from the cerebral cortex of an experimental animal. In 1924 in Austria, the 

first human EEG recordings using metal strips pasted to the scalps of the subjects as 

electrodes were carried out by Hans Berger. He used a sensitive galvanometer as the 

recording instrument to record the μV brain signals, and was able to study the 

different waves of this electrical activity, which he gave the name 

“electroencephalogram"[43]. 

Berger also reported that these brain waves were sort of periodic. He compared the 

slow brain waves during sleep to the brain waves during a mental activity or during a 

walk, and suggested, quite correctly, that EEG changed in a consistent and 

recognizable fashion when the general status and health conditions of the subject 

changed. However, despite the insights provided by these studies, Berger’s original 

paper, published in 1929, did not generate much attention. It was not until 1934 that 

Adrian and Matthews confirmed Berger’s discoveries. They studied the “alpha 

rhythm”, 8-12 Hz from the occipital lobe and discovered that this rhythm 

disappeared when a subject displayed any type of attention or alertness or focused 

on objects in the visual field. Moruzzi and Magoun  in 1949, demonstrated the 

existence of pathways widely distributed through the central reticular core of the 

brainstem that were capable of exerting a diffuse activating influence on the 

cerebral cortex. This “reticular activating system” has been called the brain’s 

response selector because it alerts the cortex to focus on certain pieces of incoming 

information while ignoring others. It is for this reason that a sleeping mother will 

immediately be awakened by her crying baby or the smell of smoke and yet ignores 

the traffic outside her window or the television playing in the next room [43].  
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2.2. Brain anatomy and function 

 

The average adult human brain weighs around 1.4 kg. The brain is surrounded by 

cerebrospinal fluid that suspends it within the skull and protects it by acting as a 

motion dampener [79]. In relation to the stages of brain development, Carlson 

categorizes its components into three groups; the Forebrain, Midbrain and 

Hindbrain. Anatomically the brain can be divided into the three largest structures: 

The brain stem (hindbrain), the cerebrum and the cerebellum (forebrain). The 

functions of these structures are summarized as follows[79]: 

• The brainstem controls the reflexes and autonomic nerve functions (respiration, 

heart rate, blood pressure). 

• The cerebrum consists of the cortex, large fiber tracts (corpus callosum) and some 

deeper structures (basal ganglia, amygdala, hippocampus). It integrates information 

from all of the sense organs, initiates motor functions, controls emotions and holds 

memory and higher thought processes. 

• The cerebellum 

integrates information 

from the vestibular system 

that indicates position and 

movement and uses this 

information to coordinate 

limb movements and 

maintain balance. 

• The hypothalamus and 

pituitary gland control  

visceral functions, body  

temperature and behavioral responses such as feeding, drinking, sexual response, 

aggression and pleasure. 

• The thalamus or specifically the thalamic sensory nuclei input is crucial to the 

generation and modulation of rhythmic cortical activity. 

The cerebrum can be spatially sub-divided. Firstly into two hemispheres, left and 

right, connected to each other via the corpus callosum. The right one senses 

Figure 2-1: Human Brain Parts 

Figure 2-1 Human brain Lobes [79] 
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information from the left side of the body and controls movement on the left side. 

Similarly the left hemisphere is connected to the right side of the body. Each 

hemisphere can be divided into four lobes. They are [79]: 

1. Frontal Lobes -involved with decision-making, problem solving, and planning 

2. Occipital Lobes-involved with vision and color recognition 

3. Parietal Lobes - receives and processes sensory information 

4. Temporal Lobes - involved with emotional responses, memory, and speech 

 

The cerebral cortex is the most relevant structure in relation to EEG measurement. It 

is responsible for higher order cognitive tasks such as problem solving, language 

comprehension and processing of complex visual information. Due to its surface 

position, the electrical activity of the cerebral cortex has the greatest influence on 

EEG recordings [79]. 

The functional activity of the brain is highly localized. This facilitates the cerebral 

cortex to be divided into several areas responsible for different brain functions.  

 

 

 

Figure 2-2: Human Brain functions 
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Table 2-1: main cortical areas functions [79] 

Cortex area Function 

Auditory complex processing of auditory information, detection of sound, 

Speech production and articulation 

Prefrontal Problem solving, emotion, complex thought 

Pre-motor Planning and Coordination of complex movement 

Motor Initiation of voluntary movement 

somatosensory Receives tactile information from the body 

Gustatory area Processing of taste information 

Wernicke’s Language comprehension 

Visual  Complex processing of visual information 

 

Since the architecture of the brain is non-uniform and the cortex is functionally 

organized, the EEG can vary depending on the location of the recording electrodes.  

Most of the cortical cells are arranged in the form of columns, in which the neurons 

are distributed with the main axes of the dendrite trees parallel to each other and 

perpendicular to the cortical surface. This radial orientation is an important 

condition for the appearance of powerful dipoles.  

It can be observed that the cortex, and within any given column, consist of different 

layers. These layers are places of specialized cell structures and within places of 

different functions and different behaviors in electrical response. An area of very 

high activity is, for example, layer IV, which neurons function to distribute 

information locally to neurons located in the more superficial (or deeper) layers. 

Neurons in the superficial layers receive information from other regions of the 

cortex. Neurons in layers II, III, V, and VI serve to output the information from the 

cortex to deeper structures of the brain. The anatomy of the brain is complex due its 

intricate structure and function. This amazing organ acts as a control center by 

receiving, interpreting, and directing sensory information throughout the body [43].  
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2.3. Neurons and brainwaves 

 

  The brain's electrical charge is 

maintained by 1014 pyramidal neurons 

and 1020 synapses. Neurons are 

electrically charged (or "polarized") by 

membrane transport proteins that 

pump ions across their membranes. 

Neurons are constantly exchanging ions 

with the extracellular milieu, for example to 

maintain resting potential and to propagate action potentials. Ions of similar charge 

repel each other, and when many ions are pushed out of many neurons at the same 

time, they can push their neighbours, who push their neighbours, and so on, in a 

wave. This process is known as volume conduction. When the wave of ions reaches 

the electrodes on the scalp, they can push or pull electrons on the metal on the 

electrodes. Since metal conducts the push and pull of electrons easily, the difference 

in push or pull voltages between any two electrodes can be measured by a 

voltmeter. Recording these voltages over time gives us the EEG [89]. Pyramidal 

neurons have a pyramid-like soma and large apical dendrites, oriented perpendicular 

to the surface of the cortex. Activation of an excitatory synapse at a pyramidal cell 

leads to an excitatory Postsynaptic potential, i.e. a net inflow of positively charged 

ions [82]. Consequently, increased extracellular negativity can be observed in the 

region of the synapse. The extracellular negativity leads to extracellular positivity at 

sites distant from the synapse and causes extracellular currents flowing towards the 

region of the synapse. The temporal and spatial summation of such extracellular 

currents, at hundreds of thousands of neurons with parallel oriented dendrites, leads 

to the changes in potential that are visible in the EEG. The polarity of the EEG signals 

depends on the type of synapses being activated and on the position of the 

synapses. However, due to volume conduction in the cerebrospinal fluid, skull, and 

scalp, signals from a local ensemble of neurons also spread to distant electrodes. 

EEG activity shows oscillations at a variety of frequencies. Several of these 

oscillations have characteristic frequency ranges, spatial distributions and are 

Figure 2-3: the Neuron [4] 
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associated with different states of brain [82]. Most of the patterns observed in 

human EEG could be classified into one of the following bands: 

 

Table 2-2: EEG frequency bands [79], [43], [89], [75], [35], [24] 

Band  Range 

(Hz) 

Normal amplitude 

(µV) 

Appearance 

Delta 0.1-4 < 100 infants and during sleep in adults 

Theta 4 -7 < 100 Drowsiness 

Alpha 8-12 20-60 Physical relaxation at occipital and parietal 

area, can be temporarily blocked by 

mental activities or light influx 

µ 8-13 <50 Movement or intent to move, mirror 

neurons: central area 

SMR 12-15 20-60 synchronized brain activity, Immobility, 

decreases in motor task: central area 

Low 

Beta 

16-20 < 20  Muscle contractions in isotonic 

movements , bursts when strengthening of 

sensory feedback in static motor control: 

central regions, mental activity: frontal 

region 

Mid 

Beta 

20-24 < 20 Intense mental activity and tension: frontal 

and central area 

High 

Beta 

25-30 < 20 anxious thinking and active concentration: 

frontal and central area 

Gamma > 30 < 2  Conscious Perception  

 

2.4. EEG recordings and techniques 

 

EEG is the measurement of potential changes over time between a signal electrode 

and a reference electrode, where electrodes measures a field averaged over a 

volume large enough to contain perhaps 107–109 neurons [43]. 
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Any EEG system consists of electrodes, amplifiers (with appropriate filters), and a 

recording system. Commonly used scale electrodes consist of Ag-AgCl disks, 1 to 3 

mm in diameter, with long flexible leads that can be plugged into an amplifier. 

Although a low-impedance contact is desirable at the electrode-skin interface (<10 

kΩ), this objective is confounded by hair and the difficulty of mechanically stabilizing 

the electrode [43]. Conductive electrode paste helps obtain low impedance and 

keeps the electrodes in place. Often contact cement is used to fix small patches of 

gauze over the electrodes for mechanical stability, and leads are usually taped to the 

subject to provide some strain relief.  

Considerable amplification (gain = 106) is required to bring signal strength up to an 

acceptable level for input to recording devices [43]. Because of the length of 

electrode leads and the electrically noisy environment where recordings commonly 

take place, differential amplifiers with inherently high input impedance and high 

common-mode rejection ratios are essential for high-quality EEG recordings. 

EEG is converted into a digital representation by an analog-to-digital (A/D) converter. 

The A/D converter is interfaced to a computer system so that each sample can be 

saved in the computer’s memory. The resolution of the A/D converter is determined 

by the smallest amplitude that can be sampled. This is determined by dividing the 

voltage range of the A/D converter by 2 raised to the power of the number of bits of 

the A/D converter. For example, an A/D converter with a range of ±5 V and 12-bit 

resolution can resolve sample amplitudes as small as ±2.4 mV. Appropriate matching 

of amplification and A/D converter sensitivity permits resolution of the smallest 

signal while preventing clipping of the largest signal amplitudes [43]. 

A set of such samples, acquired at a sufficient sampling rate (at least 2 × the highest 

frequency component of interest in the sampled signal), is sufficient to represent all 

the information in the waveform. To ensure that the signal is band-limited, a low-

pass filter with a cutoff frequency equal to the highest frequency of interest is used. 

Since physically realizable filters do not have ideal characteristics, the sampling rate 

is usually set to 2×the cutoff frequency of the filter or more. Furthermore, once 

converted to digital format, digital filtering techniques can be used [43]. 
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2.4.1. Electrodes & electrode placement 

An electrode is a small conductive plate that picks up the electrical activity of the 

medium that it is in contact with. In the case of EEG, electrodes provide the interface 

between the skin and the recording apparatus by transforming the ionic current on 

the skin to the electrical current in the electrode. Conductive electrolyte media 

ensures a good electrical contact by lowering the contact impedance at the 

electrode-skin interface [79]. 

The following types of electrodes are available: 

• Reusable Cup electrodes (gold, silver, stainless steel or tin) 

 

Figure 2-4: EEG electrodes and sensor [104] 

 

• Electrodes Cap 

• Needle electrodes 

 

 

 

 

 

 

 

 

For large multi-channel montages comprising of up to 256 or 512 active electrodes, 

electrode caps are preferred to facilitate quicker set-up of high density recordings. 

Commonly, Ag-AgCl cup or disc electrodes of approximately 1cm diameter are used 

for low density or variable placement recordings [79].  

Figure 2-5: Cup electrodes [104] Figure 2-6: Electrodes Cap [79] 
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Electrodes are placed on the scalp in specific positions, known as the 10-20 electrode 

positioning system.  

 

 
Figure 2-7(a): 10-20 International System [79] 

 

In 1949, the International Federation of Societies for Electroencephalography and 

Clinical Neurophysiology (IFSECN) adopted a system proposed by Jasper which has 

now been adopted worldwide and is referred to as the 10-20 electrode placement 

International standard. This system, consisting of 21 electrodes, standardized 

physical placement and nomenclature of electrodes on the scalp. This allowed 

researchers to compare their findings in a more consistent manner. In the system, 

the head is divided into proportional distances from prominent skull  landmarks 

(nasion, inion, mastoid and preauricular points ). The ‘10-20’ label in the system title 

designates the proportional distances in percents between the nasion and inion in 

the anterior-posterior plane and between the mastoids in the dorsal-ventral plane. 

Electrode placements are labeled according to adjacent brain regions: F (frontal), C 

(central), P(parietal), T (temporal), O (occipital). The letters are accompanied by odd 

numbers for electrodes on the ventral (left) side and even numbers for those on the 

dorsal (right) side. The letter ‘z’ instead of a number denotes the midline electrodes. 

Left and right side is considered by convention from the point of view of the subject.  

For example, if a researcher wants to study the brain signals related to visual 

perception, he will have to use electrodes O1, O2 and Oz. O1 is the electrode over 

the occipital area and on the right hemisphere, right next to the Inion. Electrode O2 
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is located over the occipital area but on the left hemisphere, left to inion, However 

electrode Oz is over occipital area but in the middle, right above the inion. Based on 

the principles of the 10–20 system, a 10–10 system and a 10-5 system have been 

introduced as extensions to further promote standardization in high resolution 

EEG studies. This high density EEG electrode placement can help pinpoint more 

accurately the brain region contributing to the recording at a given electrode. This is 

known as source localization [79]. 

 

 
Figure 2-7(b): Selection of 10–10 electrode positions in a realistic display, lateral, frontal and posterior views. 

The head and brain contours based on typical models. Black circles indicate positions of the original 10–20 
system, grey circles indicate additional positions in the 10–10 extension [79] 

 

2.4.2. Mono-polar and bipolar recordings 

EEG is a measurement of potential changes over time in a basic electric circuit 

conducting between signal (active) electrode and reference electrode. For getting a 

differential voltage, an extra third electrode called the ground electrode, is needed 

by the amplifiers to subtract the active and reference channels from it. 

Reference electrode(s) must be placed on the parts of the body where the electrical 

potential remains fairly constant, so the most preferred reference is linked ears due 

to the relative electrical inactivity, ease of use and symmetry which prevents a 

hemispheric bias being introduced. This way of montage is called mono-polar. 

Another type of electrodes montage is bipolar recording. They are differential 

measurements that are made between successive pairs of electrodes. Closely linked 

bipolar recordings are superior to mono-polar recordings because they are less 

affected by some artifacts, particularly ECG, due to the differential cancelling out of 

signals similarly picked up at the pair of electrodes, so each electrode is referenced 
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to a neighbor electrode or to common reference electrode. However, in terms of 

placement and spatial resolution, the mono-polar is more favorable [79],[89]. 

 

2.6. EEG signals used to drive BCIs 

 

The EEG recorded brain waves originate from a multitude of different neural 

communities from various regions of the brain. These neural communities produce 

electrical contributions or components that can differ by a number of characteristics 

such as topographic location, firing rate (frequency), amplitude, latency etc.  

Here are the main EEG patterns used to drive BCIs: 

 

Table 2-3: EEG signals to drive BCIs [5], [35] 

Signal Short Description 

ERD/ERS A voluntary movement results in a circumscribed Event Related De-

synchronization (ERD) in the µ and lower beta bands. It begins in the 

contra-lateral rolandic region about 2 s prior to the onset of a 

movement and becomes bilaterally symmetrical immediately before 

execution of movement. The power in the brain rhythms increases with 

an Event-Related Synchronization (ERS). It is dominant ipsilaterally 

during and contra-laterally after the movement over sensorimotor area 

and reaches a maximum around 600 ms after movement offset. 

MRP MRPs are low-frequency potentials that start about 1–1.5 s before a 

movement. They have bilateral distribution and present maximum 

amplitude at the vertex. Close to the movement, they become contra-

laterally preponderant 

SCPs Slow Cortical Potentials are slow, non-movement potential changes 

generated by the subject. They reflect changes in cortical polarization of 

the EEG lasting from 300 ms up to several seconds. Functionally, SCP 

reflects a threshold regularization mechanism for local excitatory 

mobilization 

VEP Visual Evoked Potentials (VEP) are generated in response to a flashing 
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visual stimulus. These potentials are more prominent in the occipital 

area. 

SSVEP Steady State Visual Evoked Potentials (SSVEP) are generated in response 

to a flashing visual stimulus with a repetition frequency greater than 6 

Hz. These potentials are at the same frequency of the stimulus and they 

are more prominent in the occipital area. 

SSAEP Steady State Auditory Event Potentials (SSAEP) are sustained responses 

to continuous trains of click stimuli, tone pulses or amplitude-

modulated tones, with a repetition or modulation rate between 20 and 

100 Hz. The resulting brain response can be localized in the primary 

auditory cortex and are frequency-matched and phase-locked to the 

modulation. 

P300 Infrequent or particularly significant auditory, visual, or somatosensory 

stimuli, when interspersed with frequent or routine stimuli, typically 

evoke in the EEG over the parietal cortex a positive peak at about 300 

ms after the stimulus is received. This peak is called P300 

Response 

to mental 

tasks 

BCI systems based on non-movement mental tasks assume that 

different mental tasks (e.g., solving a multiplication problem, imagining 

a 3D object, and mental counting) lead to distinct, task-specific 

distributions of EEG frequency patterns over the scalp 
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Chapter 3  

Brain Computer Interfaces (BCIs)  

3.1. Introduction  

 

A brain-computer interface (BCI) is an artificial communication system that passes 

the brain’s normal output pathways of peripheral nerves and muscles, measures 

brain activity associated with the user's voluntary intend  and desire, and 

characterizes these intentions with signal Digital Signal Processing (DSP) algorithms, 

in order to translate those intentions into a control signal that commands a device to 

act accordingly with those intentions only and without presence of any muscle 

activity[8]. 
BCIs use EEG system where the computer processes the EEG signals and use them to 

accomplish tasks such as communication and environmental control. Due to EEG 

complexity and noisiness, which in turn complicates processing those signals, these 

factors make using those signals for performing a simple task, such as moving a 

cursor left or right a very hard and challenging work, which makes BCIs slow in 

comparison with normal human actions. 

EEG signals are too complex to be analyzed in terms of underlying neural events. EEG 

signals are in micro-volts and may be affected by muscular artifacts as eye and jaw 

movements. Also, a potential change at the scalp could be caused by the same 

polarity produced near the surface of the cortex, but it may also be caused by a 

potential change of the opposite polarity occurring at cell bodies deeper in the 

cortex. Excitation in one place cannot be distinguished from inhibition in another 

place and thus individual thoughts cannot be divined [6]. 

Individual thoughts cannot be picked up and are probably not even correlated with 

the ongoing EEG activity. It is possible for an individual to be trained to produce a 

reliable signal or an individual may have a reliable response to a specific stimulus in a 

specific context. BCIs make use of such signals and if reactions to computer 

generated stimuli may be detected, then they can be used in order to control a light 
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switch or a television set. If individuals may be trained to produce reliable signals 

that may be separated from ongoing EEG activity, then these signals may be used.[6] 

On the other hand, recent advances in computers and signal processing have opened 

up a new generation of research on real-time EEG signal analysis and BCIs. With a 

small comparison between the first BCI presented by Dr. Grey Walter in 1964, and 

the new state-of-the-art BCIs presented by Wolpaw in 2010, we can see how 

computers have become fast enough to handle the real-time old constraints of BCI 

signal processing. 

 

 

3.2. BCI design approaches: Pattern Recognition Vs Operant 

conditioning 

 

In Pattern recognition approach (PR), the BCI recognizes the characteristic EEG in 

response to performing a cognitive mental task like motor imagery, visual, arithmetic 

and baseline tasks [79]. It is mainly used in SSEVP-BCI. 

However, Operant conditioning approach (OC) requires the user to perform lengthy 

training sessions in a biofeedback environment to master the skill of being able to 

self-regulate one’s EEG, and is mainly used for ERD-BCI [79],[86]. 

 

3.3. BCI control approaches: Synchronous Vs Asynchronous 

 

Synchronous BCI approach implies that the user can interact with the targeted 

application only during specific time periods triggered by external audio/visual 

stimuli and imposed by the computer system, whereas in Asynchronous BCI, the user 

willingly decides when to perform a mental task and at any time [24]. 

However, designing an asynchronous BCI is much harder than designing a 

synchronous BCI. In the latter, the system is programmed to know when the mental 

states should be recognized and analyzes EEG only in predefined time windows, 

however, with a self-paced BCI; the system has to analyze EEG continuously in order 

to determine whether the user is trying to interact with the system by performing a 
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mental task. So it requires computations much more than synchronous BCI does 

which leads to less accuracy due to the high amount of data being processed. This in 

turn limits the speed of command generation for such an approach [24].  

 

3.4. BCI framework 

 

 
Figure 3-1: BCI framework [24]  

The design of a BCI system consists of six main stages: the acquisition of EEG signals, 

pre-processing the signals, feature extraction and selection, classification and 

translation into a command or a control signal, and finally to feedback the subject 

with a desired action [5],[24].  

A BCI system commences with acquisition of brain signals, which is done via an EEG 

system with one up-to 256 electrodes. Each mental activity generates specific EEG 

signals related to this task topographically and rhythmically, so numbers and 

locations of electrodes (according to the 10-20 system) are related to the task the 

designer wants to achieve with a BCI. 

The signals are then amplified, filtered, epoched (in order to center and maximize 

the information of the data in the specific related rhythm), A/D converted and 

passed through an artifact removal algorithms (de-noised) in what is known as pre-

processing stage [79]. The main goal of this stage is to improve the signal-to-noise 

ratio (SNR) by cleaning the EEG signals and removing all irrelevant information, such 

as the electrical activity of the eyes (EOG: ElectroOcculoGram), the muscles (EMG: 

Electromyogram) and the power line network, which have an amplitude much larger 
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than the one of EEG signals. Thus the pre-processing stage reduces the amount of 

data for the next stages. This reduction is essential, because EEG signals ports a large 

amount of data which make it harder to work with, so focusing on a smaller amount 

of data that has the relevant information, would facilitate the design [79].  

After cleaning the signals from irrelevant information, the relevant information, 

which is known in the world of BCI as features, needs to be extracted [5]. The feature 

extraction represents the resultant signals as feature values that are related to the 

underlying neurological mechanism generated by the user's brain for control. These 

features can be for example the magnitude at a specific frequency range. Features 

are extracted with DSP algorithms and assembled into a feature vector. Hence, 

feature extraction is the stage where DSP algorithms are applied in order to convert 

one or several signals into a feature vector [5],[24]. 

This stage may results in too many irrelevant overlapping feature vectors which 

increase the computational complexity, so feature selection with DSP algorithms 

may be applied for optimization [32]. 

In the next stage, the classification stage, classification algorithms are applied to 

categorize different brain patterns and features from the feature vectors [5],[24], 

where each classified features will be translated into a distinct control signal related 

to the underlying brain pattern. In this final stage, control signals instruct the device 

to act and feedback the user. Each control signal represents a specific brain pattern 

related to the user's intention, so the device will act accordingly with the identified 

user’s intention. The BCI performance is determined in terms of classification 

accuracy [8], computational efficiency and complexity [79]. 

Consequently, designing a BCI is a complex and challenging task which requires 

multidisciplinary expertise such as programming, signal processing, neurosciences 

and psychology [8]. To complete a BCI design, two phases are essential: 1) an offline 

training phase which calibrates the system. An experimental paradigm [14] is 

implemented to guide the user on how to generate the characteristics EEGs. It is 

mainly characterized by its duration, repetitiveness, pause between trials and 

complexity of the mental task. The training paradigm is generally done without the 

feedback stage, even thought that there is some evidence that a continuous or 
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discrete visual representation of the feedback signal, such as a 3D video game or 

virtual reality environment, may facilitate learning to use a BCI [42]. 

2) an online phase which uses parameters from phase 1 in the BCI to distinguish 

mental states and feedback the user accordingly. 
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Chapter 4 

BCI signal processing 
 

4.1. Pre-processing Methods 

 

4.1.1. Temporal filters 

Low-pass or band-pass filters are generally used in order to restrict the analysis to 

frequency bands known as representing neurophysiological signals [24]. For 

Instance, BCI based on sensorimotor rhythms generally band-pass filter the data in 

the 8-30Hz frequency band, as this band contains both the μ and ß rhythms. This 

temporal filter can also remove various undesired effects such as slow variations of 

the EEG signal (which can be due, for instance, to electrode polarization) or power-

line interference (60 Hz in Quebec). Hence, such a filtering is generally achieved 

using Discrete Fourier Transform (DFT) or using Finite Impulse Response (FIR) or 

Infinite Impulse Response (IIR) filters (Butterworth, Tchebychev or elliptic IIR filters) 

[24]. 

 

4.1.2. Spatial filters 

Spatial filters are used to isolate the relevant spatial information embedded in the 

signals. This is achieved by selecting the electrodes for which we know they are 

measuring the relevant brain signals, and ignoring other electrodes [24]. The most 

popular spatial filter is the Common Average Reference (CAR) which is obtained as 

follows: 

଍෢܄ = ܑ܄ −
૚
ܒ܄෍܍ۼ

܍ۼ

ୀ૙࢐

										(૚) 

Where ܄଍෢ and Vi are the ith electrode potential, after and before filtering 

respectively, and Ne is the number of electrodes used [24]. Thus, with the CAR filter, 

each electrode is re-referenced according the average potential over all electrodes. 
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4.1.3. Independent Component Analysis (ICA) 

ICA is a method for separating a multivariate signal into additive subcomponents 

supposing the mutual statistical independence of the non-Gaussian source signals 

[24]. It is a special case of blind source separation. 

When the independence assumption is correct, blind ICA separation of a mixed 

signal gives very good results. It is also used for signals that are not supposed to be 

generated by a mixing for analysis purposes. A simple application of ICA is the 

"cocktail party problem", where the underlying speech signals are separated from a 

sample data consisting of people talking simultaneously in a room. 

Blind signal separation, also known as blind source separation, is the separation of a 

set of signals from a set of mixed signals, without the aid of information (or with very 

little information) about the source signals or the mixing process [20], [55]. 

Blind signal separation relies on the assumption that the source signals do not 

correlate with each other. For example, the signals may be mutually statistically 

independent or de-correlated. Blind signal separation thus separates a set of signals 

into a set of other signals, such that the regularity of each resulting signal is 

maximized, and the regularity between the signals is minimized (i.e. statistical 

independence is maximized). 

 

4.1.4. Common Spatial Patterns (CSP) 

This method is based on the decomposition of the EEG signals into spatial patterns  

selected in order to maximize the differences between the classes involved once the 

data have been projected onto these patterns [91],[24],[55]. Determining these 

patterns is performed using a joint diagonalization of the covariance matrices of the 

EEG signals from each class. With the projection matrix W, the original EEG can be 

transformed into uncorrelated components: 

Z=WX          (2) 

Z can be seen as EEG source components, and the original EEG X can be 

reconstructed by  

X=W-1Z          (3) 
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Where W-1is the inverse matrix of W. the columns of W-1are spatial patterns, which 

can be considered as EEG source distribution vectors. The first and last columns are 

the most important patterns that explain the largest variance of one task and the 

smallest variance of the other [91]. 

 

4.2. Feature extraction 

 

4.2.1. Temporal Methods 

 

4.2.1.1. Signal amplitude [24] 

The simplest (but still efficient) temporal information that could be extracted is the 

time course of the EEG signal amplitude. Thus, the raw amplitudes of the signals 

from the different electrodes, possibly preprocessed, are simply concatenated into a 

feature vector before being passed as input to a classification algorithm. In such a 

case, the amount of data used is generally reduced by preprocessing methods such 

as spatial filtering or sub sampling. This kind of feature extraction is one of the most 

used for the classification of P300. 

 

4.2.1.2. Band power features [35],[41] 

For EEG data, Band-pass filtering of each trial, squaring of samples and averaging of 

N trials results in a time course of instantaneous band power [41]. It is also possible 

to log-transform this value in order to have features with a distribution close to the 

normal distribution. The power is calculated as: 

଎෡۾ =
૚
(ܒ,ܑ)܎૛࢞෍ۼ

ۼ

ୀ૚࢏

										 (૝) 

where P(j) = averaged power estimation of band-pass filtered data (averaged over all 

trials), xf(i,j)=j-th sample of the i-th trial of the band-pass filtered data[25]. 

Then, The ERD is quantified as the percentage change of the power (A(j)) at each 

sample point or an average of some samples relative to the average power in a 

reference interval: 
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(࢐)%ࡰࡾࡱ =
(ܒ)ۯ − ܀

܀  (૞)										૚૙૙%	ࢄ	

܀ =
૚
۹ ෍ ܒ࡭

૙శ۹ܖ

૙࢔ୀ࢐

										(૟) 

where R = average power in reference interval, averaged over k samples, 

and A(j) = power at the j-th sample [25]. 

 

 
Figure 4-1: ERD calculation method [35] 
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4.2.1.3. Autoregressive (AR) Parametric model 

Autoregressive (AR) methods assume that EEG signal y(t), measured at time t, can be 

modeled as a formula, or a polynomial model that is optimally fitted into a time 

series, and that attempt to predict an output of a system based on the previous 

outputs, to which we can add a noise term et (generally a Gaussian white noise): 

y (t)=-a1y(t-1)- …- an(t-na)+ e(t)         (7) 

Where a1,a2…..an are the autoregressive parameters which are generally used as 

features for BCI to distinguish one time-series from another, and n is the model 

order [79], e(t) is a purely random (white noise) process with zero mean and 

variance  σ2
n . n(t) is uncorrelated with the signal, and the cross-covariance E{Xt* Nt-k} 

is zero for every k. In [79] the author mentioned that Mc Ewen et al.  showed that 

80-90% of EEG segments of duration 4-5 seconds can be modeled as being Gaussian. 

The AR model can be rephrased in the frequency domain as a white noise source 

driving a spectral shaping network A−1 (z)[79]. 

 

Figure 4-2 AR Model [79] 

Several extensions to the AR have been proposed [24]: 

1. AAR (Adaptive Auto-Regression) 

2. ARX (Auto-Regression with exogenous input)  

3. ARMA (Auto-Regression with Moving Average) 

4. ARMAX (Auto-Regression with Moving Average and exogenous input) 

Using an AR Moving Average (ARMA) as the Exogenous input has proved to better 

model the underlying event-related potential amidst the background EEG offering 

improved classification rates [79]. It makes the distinction between the ERP and 

background neuronal activity contributing to the single trial EEG recording, but 

requires more computational time and processing capabilities due to its iteration 

functionality. ARX, an extension of AR modeling, involves the introduction of an 
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exogenous input assumed to be a contributory signal to the overall signal being 

modeled. Its pole-zero filtered contribution and the AR noise estimate combine to 

form the forward prediction estimate of the overall recorded EEG signal. The ARX 

filter coefficients are used as input features to characterize the single-trial EEG. The 

ARX method of modeling both the signal ERP and the noise (background EEG) is 

more physiologically reasonable than modeling the noise alone as ongoing EEG 

contributions from neighboring neural populations contribute mostly to the 

background noise [19]. Ensemble averaging over a large number of trials exposes the 

underlying ERP that is hidden amidst background EEG by averaging out this random 

neuronal noise. 

The EEG can be expressed by means of the following equation (assuming a linear 

relationship): 

(࢚)࢟ = (࢚)࢙ + (࢚)࢔	 + 0				(࢚)ࢇ	 ≤ ݐ		 ≤ ܶ										(8)		 

where: (࢚)࢟is the scalp recorded EEG response prior to the onset of movement, (࢚)࢙ 

is the useful signal corresponding to the ERP attained by ensemble averaging across 

preceding trials [19], (࢚)࢔	is the background EEG and (࢚)ࢇ is the component 

generated by a combination of all possible artifacts. T is the duration of each fixed 

length trial epoch. Alternatively, the ARX model can be extended for artifact filtering 

by introducing additional noise modeling stages to filter the acquired signal y(t) , 

resulting in increased exogenous inputs. 

 

Figure 4-3 ARX Model [79] 

The basic ARX model, in terms of the shift operator q, and assuming a sampling 

interval of one unit, is as follows 

(࢚)࢟(ࢗ)࡭ = (࢚)࢙(ࢗ)࡮ +  (ૢ)									(࢚)࢔	

The prediction is written as 
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(࢚)࢟ ࢚)࢟૚ࢇ−	= − ૚) −⋯− ࢚)࢔ࢇ − (ࢇ࢔ ࢚)࢙૚࢈	+ − (࢑ +⋯+ ࢚)࢙	࢈࢔૚࢈ − −࢑ (࢈࢔ +            (૚૙)							(࢚)ࢋ

Where na and nb are the model orders and k is the delay. Coefficients of the AR and 

ARX models are usually used as features in the classification. This feature extraction 

technique is impractical for a large number of electrodes due to the resultant large 

feature vector dimensionality and resulting computational demands. Different 

model orders are tested to select the optimum model order that represents the 

input data. This selection is based on the standard prediction error method over the 

state-space model.  State-space models are common representations of dynamical 

models, and they describe the same type of linear difference relationship between 

the inputs and the outputs as in the AR and ARX model [50].These models use state 

variables to describe the system by a set of first-order differential or difference 

equations, rather than by one or more nth-order differential or difference equations. 

They can be reconstructed from the measured input-output data, but are not 

themselves measured during an experiment [50] 

(࢚)࢞ = (࢚)࢞࡭ + (࢚)࢛࡮ +  												(࢚)ࢋࡷ

(࢚)࢟ = (࢚)࢞࡯ + (࢚)࢛ࡰ +  (11)						(࢚)	ࢋ

A, B, C, D, and K are state-space matrices. u(t) is the input, y(t) is the output, e(t) is 

the disturbance and x(t) is the vector of orders states. All the entries of A, B, C, and K 

are free estimation parameters. The elements of the D matrix, however, are fixed to 

zero. That is, there is no feed-through. For ARX model order selection, the Akaike 

Information Criterion (AIC) was applied for this study [50]. In this method, the input 

was assumed to have Gaussian statistics, thus the AIC for an AR process is as follows 

࢜ = (ࢋ)ࢍ࢕࢒ + ૛࢖
࢔
					(૚૛)            

Where ࢜ is the loss function, ࢋ is the modeling error, ࢖ is the AR model order, and ࢔ 

is the number of data samples. 
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4.2.2. Time-Frequency Representations (TFR) with Short-time Fourier 

transform (STFT) 

Short-Time Fourier Transform simply consists in first multiplying the input signal by a 

given windowing function w which is non-zero only over a short time period, and 

then in computing the Fourier transform of this windowed signal [24]. In discrete 

time, the STFT X(n,w) of a signal x(n) is as follows: 

(࢝,࢔)ࢄ = ෍ ࢔࢝࢐ିࢋ(࢔)࢝(࢔)࢞
ାஶ

ୀିஶ࢔

										(૚૜) 

The Time-Frequency (TF) representation is obtained by computing this Fourier 

transform along a sliding window, i.e., for different segments with a given level of 

overlapping. This results in a 2D colored Spectrogram map of µV2 amplitudes within 

frequency bands and in respect to the time [24]. 

 
Figure 4-4 TFR spectrogram at channels C3 and C4 with motor imagery of right hand movement [12] 

It should be noted that a shorter time window improves time resolution, a longer 

one resolves frequency better but diminishes time resolution. 

On the other hand, determination of the number of points on frequency axis 

(Frequency bins) determines the resolution. A larger number of frequency bins 

increases spectrogram detail but also increases computation time. 

The STFT method has been successfully used in several BCI studies, and its main 

advantage is the use of an analysis window with a variant size, which leads to a 

different frequency-temporal resolution in all frequency bands. For instance, it 

would be more interesting to have a high temporal resolution for high frequencies 

which describe a fine scale [24]. 

 

 

 



32 
 

 

4.2.3. Frequential methods 

4.2.3.1. Power Spectral Density features  

Power Spectral Density (PSD) features, sometimes simply called spectrum, inform on 

the distribution of the power of a signal between the different frequencies [24]. PSD 

features can be computed by either non-parametric or parametric methods. Non-

parametric methods compute PSD directly from the signal itself. Examples are Welch 

method and Periodogram.  For instance Periodogram computes PSD by squaring the 

Fourier transform ܺ[ܭ] of a signal.  

Fast Fourier transform (FFT) is an extremely fast computing algorithm for discrete 

Fourier transform (DFT). Let x[n] be our trial. The N-point DFT of x[n] is given by 

[ܓ]܆ = ෍ ۼܟ[ܖ]ܠ
,ܓܖ ܓ = ૙, ૚, … . . , (૚૝)										ۼ

ࡺ

ୀ૙࢔

 

Where ωN = e−2πi/N is an Nth root of unity. Since the PSD is the FFT squared, so, for 

example, the PSD for delta band (0-3 Hz) is defined as: 

۲܁۾ = ෌ ૝ࡺ/૛[ࡷ]ࢄ
ୀ૙࢑           (15) 

Where ܰ is the frequency resolution. PSD features can be also obtained by 

computing the Fourier transform of the autocorrelation function of the signal. On 

the other hand, parametric methods model the data as the output of a linear system 

that hypothetically generates the data, driven by white noise, and then attempt to 

estimate the parameters of that linear system. AR models are a very common 

method for the evaluation of the spectra of short data segments due to the 

improved resolution, and they represent sharp peaks in the frequency domain. 

The most commonly used linear system model is the all-pole model, a filter with all 

of its zeroes at the origin in the z-plane, thus it can represent sharp peaks in the 

frequency domain. The output of such a filter for white noise input is an 

autoregressive (AR) process. For this reason, these methods are sometimes referred 

to as AR methods of spectral estimation. For the model identification, the parametric 

modelling parameters have to be identified. 
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Parametric methods can yield higher resolutions than nonparametric methods in 

cases when the signal length is short, where all AR methods yield a PSD estimate 

given by: 

ࡰࡿࡼ = ૚
ܛ۴

۾

૚ି෍ ൫ࢇෝ܍(ܓ)࢖షܒ૛ܛ۴/܎ܓ࣊൯
૛࢖

స૚࢑

          (16) 

The most used methods to model the data or estimate the power spectrum are Yule-

Walker and Burg method. In this thesis we used Burg method to only model the 

input data. By minimizing (least squares) the forward and backward prediction errors 

while constraining the AR parameters to satisfy the Levinson-Durbin recursion, it 

estimates the reflection coefficients. The primary advantages of the Burg method are 

two: 

[1]. High frequency resolution, [2]. Stable AR model   

However, the accuracy of the Burg method is lower for high-order models, long data 

records, and high signal-to-noise ratios (which can cause line splitting, or the 

generation of extraneous peaks in the spectrum estimate). It is superior to the YW 

method for short data records, and also removes the tradeoff between utilizing the 

biased and unbiased autocorrelation estimates, as the weighting factors divide out. 

PSD features are probably the most used features for BCI, and have proved to be 

efficient for recognizing a large number of neuro-physiological signals [24]. 

4.2.3.2. Power Asymmetrical ratio  

This method is especially useful in tasks that involve inter-hemispheric difference. 

EEG traces are recorded simultaneously from two or more inter-hemispheric 

electrodes (ex. C3-C4). The power asymmetrical ratio is defined as: 

ܴܽ = ୖି୐
ୖା୐

          (17) 

Where R is the PSD or power of a specific band in the right electrode and L is the PSD 

or power of a specific band in the left electrode. Asymmetry ratios are formed for all 

the frequency bands and all of the possible right to left combinations of electrodes. 
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4.3. Feature selection and dimension reduction 

Genetic algorithms (GA) approach is used. A GA can be described as a stochastic 

search and optimization technique based on evolutionary computation [5], [24]. 

They can be divided into three main groups: Embedded algorithms, where the 

selection is embedded within the induction algorithm; Filter algorithms, where 

features are selected before passing them to the classification stage; and wrapper 

algorithms, which perform feature selection in unison with the classification 

algorithm.  PCA can be used for dimensionality reduction in a dataset while retaining 

those characteristics of the dataset that contribute most to its variance, by keeping 

lower-order principal components which contain the ‘most important’ aspects of the 

data and ignoring higher-order ones [24].  

 

4.4. Feature Classification Methods 

4.4.1. Linear Discriminant Analysis (LDA)  

The aim of LDA is to find a linear combination of features which characterizes or 

separates two or more classes with k, n-space hyperplanes [24], [5]. For a two-class 

problem, the class of a feature vector depends on which side of the hyperplane the 

vector is. 

LDA assumes a normal distribution of the data, with equal covariance matrices for 

both classes. The separating hyperplane is obtained by seeking the projection that 

maximizes the distance between the two classes’ means and minimizes the interclass 

variance [24]. LDA finds a linear transformation of two weights, X and Y, that yields a 

new set of transformed values that provides accurate discrimination: 

Transformed Target = X*X1 + Y*X2         (18) 

Finding the weights implies calculating the scatter matrices and means of the each 

dataset, finding the transpose of the addition of the two scatter matrices and 

multiplying the result by the difference of the means. The scatter matrix is  

ܵ =෍(ݔ௝ − ௝ݔ)(ݔ̅ − ்(ݔ̅
௡

௝ୀଵ

										(19) 
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Where ܶ denotes matrix transpose, ݔ௝ is the jth column of X. For validation, usually a 

10-k-fold cross-validation is used. This algorithm breaks data into 10 sets of size 

n/10, trains on 9 datasets and tests on 1, repeats 10 times and finally takes a mean 

accuracy. The advantage of this method over repeated random sub-sampling is that 

all observations are used for both training and validation, and each observation is 

used for validation exactly once. LDA requires less training and computation 

compared with neural network based classifiers but as a trade-off requires more 

discriminatory feature vectors to distinguish successfully between the classes. 

 

4.4.2. Support Vector Machines (SVM) 

SVM are supervised learning methods that analyze data and recognize patterns by 

constructing a hyperplane or set of hyperplanes in a high- or infinite-dimensional 

space, where a good separation is achieved by the hyperplane that has the largest 

distance to the nearest training data point of any class (so-called functional margin), 

since in general the larger the margin the lower the generalization error of the 

classifier [20],[100],[24].  SVM are known to have good generalization properties, to 

be insensitive to overtraining and to the curse-of-dimensionality but with a low 

speed of execution [24]. 

If the problem is not originally linearly separable, the kernel trick is used to turn it 

into a linearly separable one, by increasing the number of dimensions. Thus a 

general hypersurface in a small dimension space is turned into a hyperplane in a 

space with much larger dimensions. When training an SVM the practitioner needs to 

define what kernel to use, and setting the parameters of the SVM and the kernel. 

 

 
Figure 4-5 classification basics [102]  

The support vectors are the data points that are closest to the separating 

hyperplane; these points are on the boundary of the slab. The above figure 
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illustrates these definitions, with + indicating data points of type 1, and – indicating 

data points of type –1. 

The data for training is a set of points (vectors) xi along with their categories yi. For 

some dimension d, the xi ∊ Rd, and the yi = ±1. The equation of a hyperplane is 

wT.x + b = 0, where w ∊ Rd, wT.x is the inner (dot) product of w and x, and b is real 

[102]. The support vectors are the xi on the boundary, those for which yi(wT,.xi + b) = 

1. The data might not allow for a separating hyperplane. So, SVM can use a soft 

margin that separates many, but not all data points. There are two standard 

formulations of soft margins. Both involve adding slack variables si and a penalty 

parameter C (box constraint). The norm problem is: 

         (20) 

To solve this problem, the Lagrange multipliers are used in a function, where the C 

factor keeps the allowable values of the Lagrange multipliers in a bounded region 

(Box). To achieve better classification performance, one strategy is to try a geometric 

sequence of the box constraint parameter [102].  

 

4.4.3. MultiLayer Perceptron Neural Networks 

MLP is a feed-forward artificial neural network 

that maps sets of input data onto a set of 

appropriate output [24]. It consists of multiple 

layers of nodes in a directed graph, with each 

layer fully connected to the next one whereas 

the 

neurons of the output layer determine the 

class of the input feature vector. Except for 

the input nodes, each node is a neuron. Careful architecture selection and 

regularization is required because MLP are approximators, so are highly sensitive to 

non-stationary data such as EEG [24]. Neural networks try to learn the decision 

boundary which minimizes the empirical error, while SVMs try to learn the decision 

boundary which gives the best generalization. 

Figure 4-6: Multi Perceptron Neuron Network[24] 
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Chapter 5 

BCI applications 
 

5.1. The Brain Response Interface 

 

After giving visual or audio stimuli to a subject, we can see a response to this 

stimulus in is different classes of his brain signals. Once the class of the stimuli 

signals have been identified, the system can associate a specific command to this 

identified mental state and send this command to a given application or device. 

It is also particularly essential to provide a visual/audio feedback to the subject, 

concerning the mental state that has been recognized by the system. Indeed, this 

feedback enables the user to know whether he has correctly performed the mental 

task which enables him to learn how to control his brain activity [24].  

 

5.2. P300 Speller and Character Recognition 

 

The P300 potential is a response to 

an infrequent stimulus. Each 

stimulus event corresponds to a 

symbol/picture with a particular 

meaning for the interface (e.g. 

letters, high level commands). The 

stimulus must be perceptible on the 

user field of view without gazing the 

specific stimulus. It usually appears in 

EEG signals around 300 ms after the in 

frequent stimulus occurs [5].TheP300 

speller BCI system is able to detect 

which character in the spelling matrix is 

Figure 5-2(a): P300 Speller Paradigm [100] 

Figure 5-2(b): P300 wave [100] 
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the target that the user is focusing on, and then show the detection result (target 

character) on the screen, thereby enabling locked-in people to communicate with 

others [100]. The task of target character detection in a P300 speller BCI was 

generally treated as a two-class classification problem: P300 and non-P300 

classification. For this BCI with six electrodes placed on Fz, Fcz, Cz, Pz, P7 and P8, the 

data collection task is done by a software written in C#. In P300-BCI, characters are 

based on their individual P300 EEG responses.  

 

 
Figure 5-2 (c): Setup of EEG operated spelling device and a skull cap 

Source: www.intendix.com   

Therefore, the characters of the English alphabet (A, B,… , Z) were arranged in a 6 x 6 

matrix on a computer screen. Then each character was highlighted for 4 seconds in a 

random order and the subject had the task to concentrate on the specific character 

he/she wanted to spell. After the attention-catching intensification, a 2.5 s 

preparation gap is given before a data collection procedure. During this procedure, 

the subject is asked to focus on the target character, and then the system will initiate 

a 10-round intensification process, where within each round, 12 randomly-ordered 

visual stimuli will be presented.Each stimulus is the intensification of either one row 

or one column, and will be presented for 100 ms, and after a 75 ms inter-stimuli 

interval, the next stimulus will be presented. After presentation of 12 stimuli, a 
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round is ended, and after a pause of 0.5 s, the next round begins. Therefore, a 10-

round intensification process will take 27.75 s. The highlight of the desired letter 

being a rare and expected event, this triggers a P300 in the user’s EEG signals. 

Detecting the absence or presence of the P300 makes it possible to find which are 

the line and column that contain the desired letter, and as such to find this letter.  

This way, several user intentions correspond to a unique brain pattern (P300 peak 

signal), representing a high volume of information, where DFT is used as processing 

tool and then the SVM classifier is used to classify different character recognitions 

[100]. 

 

5.3. µ and Beta ERS/ERD Cursor Control  

 

ERD is the event-related, short-lasting and localized amplitude attenuation of EEG 

rhythms within the alpha or beta band, while event-related synchronization (ERS) 

describes the event-related, short-lasting and localized enhancement of these 

rhythms [35],[5],[24]. Sensory stimulation, motor behavior, and mental imagery can 

change the functional connectivity within the cortex and results in ERS/ERD due to 

modulating influences of neurochemical brain systems, changes in the strength of 

synaptic interactions, changes of intrinsic membrane properties of the local neurons, 

or the dynamics of brain oscillations associated with sensory and cognitive 

processing and motor behavior [35], [41]. 

Event Related Potentials are series of transient post-synaptic responses of main 

pyramidal neurons triggered by a specific stimulus, ERD/ ERS reflect changes in one 

or more parameters that control oscillations in neuronal networks like the strength, 

modulations, synaptic processes dynamics and extent of the interconnections 

between the network elements, most often formed by feedback loops. 

Neuronal networks can display different states of synchrony, with oscillations at 

different frequencies. The frequency of brain oscillations is negatively correlated 

with their amplitude. The mu rhythm (8 and 13 Hz) has larger amplitude than the 

central beta rhythm (around 20 Hz). Because the amplitude of oscillations is 

proportional to the number of synchronously active neural elements, slowly 

oscillating cell assemblies comprise more neurons than fast oscillating cells. When 
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the neuronal populations display oscillations, and in a rest state for example, this 

recruits neurons in larger cortical areas in the case of low frequencies, and to be 

more spatially restricted in the case of higher frequencies, as for beta/gamma 

rhythms. However, in more complex states such as attention, the cortex appears to 

be functionally organized as a mosaic of neuronal assemblies characterized by 

relatively high frequency synchronous oscillations that may display a large variability 

in dominant frequencies. Thus, ERD/ ERS reflect changes in the activity of local 

interactions between main neurons and inter-neurons that control the frequency 

components of the ongoing EEG. 

The degree of desynchronization is closely linked to semantic memory processes. For 

example, during semantic encoding of words, good memory performers showed a 

significantly larger ERD in the lower alpha band as compared to bad performers 

Voluntary movement results in a circumscribed desynchronization in the upper alpha 

and lower beta bands, localized close to sensorimotor areas. This desynchronization 

starts about 2 s prior to movement-onset over the contralateral Rolandic region and 

becomes bilaterally symmetrical immediately before execution of movement. 

One interesting oscillating brain signal, with a relatively good signal-to-noise ratio in 

the human scalp EEG, is the post-movement beta ERS. These induced beta 

oscillations are found in the first second after termination of a voluntary movement. 

This low amplitude activity, with a focus around the corresponding sensorimotor 

representation area, results in embedded beta oscillations with a good signal-to-

noise ratio. 

Therefore, ERD can be interpreted as an electrophysiological correlate of activated 

cortical areas involved in processing of sensory or cognitive information or 

production of motor behavior [41]. An increased and/or more widespread ERD could 

be the result of the involvement of a larger neural network or more cell assemblies 

in information processing. Factors contributing to such an enhancement of the ERD 

are increased task complexity and/or more effort and attention. 

In all types of ERD-BCI, motor imagery of a movement is used rather than a 

movement itself. Motor imagery can modify the neuronal activity in the primary 

sensorimotor areas in a very similar way as observable with a real executed 

movement, and may be seen as mental rehearsal of a motor act without any overt 



41 
 

 

motor output. It is broadly accepted that mental imagination of movements involves 

similar brain regions/functions which are involved in programming and preparing 

such movements. According to this view, the main difference between performance 

and imagery is that in the latter case execution would be blocked at some cortico-

spinal level [130],[68]. 

During movement preparation and execution, µ and beta ERD at a specific cortical 

location may be accompanied by a 10-Hz ERS over areas not engaged in the task and 

represent idling or inhibitory cortical activity movement task. For example a central 

ERD is accompanied by an occipital ERS and an occipital ERD is found in parallel with 

a central ERS central beta, which reflects the concept termed ‘‘focal ERD/ surround 

ERS’’, that emphasizes the idea of deactivation or inhibition of surrounding cortical 

areas, which are outside the focus of attention (‘‘surround ERS’’). This inhibition 

results in a divergent behavior of µ and beta activities, i.e., in an enhanced 

synchronization of the hand area mu rhythm. 

This effect of selective attention to one motor subnetwork (e.g., foot area) may be 

accentuated when other motor subnetworks (e.g., hand area) are ‘‘inhibited.’’ This is 

in agreement with more recent studies showing that especially the frequency band 

11–13 Hz displays ERS in the hand area, when the subject is engaged in another 

motor task ERD followed by a rebound in the form of an ERS. 

One part of ERD-BCI is based on the recording and classification of transient EEG 

changes during different types of motor imagery such as, e.g., imagination of left-

hand, right-hand, or foot movement, where a discrimination of two brain states 

(e.g., left- versus right-hand movement imagination) can be reached within only a 

few days of training [20].  

 The most significant ERD/ERS for left and right hand motor imageries appears 

at the contra-lateral channels, C4 for left hand and C3 for right hand [20]. 

 Represent as ERD, the most modulated channel for foot imagery, is Cz, and is 

weaker than that of hands [20],[128]. 

 10-Hz ERS during foot motor imagery was only significant on C3. 

 Tongue imagery expresses strong Cz-ERS. 

Researchers in [14] have built their ERD-BCI with its two channels over Cz (foot 

representation area) and C3 (right hand representation area), to control a cursor on 
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a computer screen. Subjects were instructed to imagine a right-hand movement or a 

foot movement after a cue stimulus depending on the direction of an arrow. 

 

 
Figure 5-3: ERD-BCI paradigm [14] 

Each subject spent 20–30 min on a two-session BCI investigation. The first session 

consisted of 40 trials conducted without feedback. One trial lasted 8 s and the time 

between two trials was randomized in a range of 0.5–2.5 s to avoid adaptation, and 

started with the display of a fixation cross in the center of a screen. After 2 s, a 

warning stimulus was given in the form of a “beep.” After 3 s, an arrow (cue 

stimulus) pointing to the left or right was shown for 1.25 s. The subjects were 

instructed to imagine a right-hand movement or both-feet movement until the end 

of the trial, depending on the direction of the arrow. Signals were then analyzed 

using two methods: Auto-regression analysis and Band Power estimation. An LDA 

classifier was then used for the classification of the subject specific parameters. The 

classification result was used to give a continuously updated feedback stimulus in 

form of a horizontal bar that appeared in the center of the screen. If the person 

imagined both-feet movement, the bar—varying in length—extended to the left 

If the subject imagined a right-hand movement, the bar extended to the right. 

During this 40 trials- second session, the subjects’ task was to extend the bar toward 

the left or right edge of the screen. 

It is interesting that in about 20% of the sessions, the two brain states were 

distinguished with an accuracy of greater than 80% after only 20–30 min of training, 

and, 70% of the sessions were classified with an accuracy of 60%–80%. 
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5.4. Multi command Steady State Visual Evoked Potential BCIs 

 

SSVEP is a natural periodic response of the visual cortex to a periodic visual stimulus 

pattern generated when the gaze of the subject is focused on a two-color flickering 

visual pattern at frequencies higher than 6 Hz [5]. The BCI presented allows a BCI 

user to navigate a small car (or any other object) on the computer screen in real 

time, in any of the four directions and to stop it if necessary. 

This BCI uses 6 channels (CPZ, PZ, POZ, P1, P2 and FZ) to detect SSVEPs of four small  

checkerboards flickering at 

different but fixed frequencies 

move along with a navigated 

car, where two sets of 

flickering frequencies were 

used: (i) Low-frequency range 

{UP: 5 Hz, LEFT: 6 Hz, DOWN: 

7 Hz, RIGHT: 8 Hz} and (ii) 

Medium-frequency range {UP: 

12 Hz, LEFT: 13.3Hz, 

DOWN:15Hz, RIGHT: 17Hz}. 

The subject was able to control the direction of movement of the car by focusing 

her/his attention on a specific checkerboard, where EEG frequencies identical to the 

frequencies of the desired direction were detected, and classified with an Adaptive 

Network Based Fuzzy Inference System. 

The performance for the medium-frequency range flicker (100% success) was slightly 

higher when compared to the low frequency range (92.3% success) flicker responses, 

in terms of controllability of the car and execution time delay. 

 

 

 

 

 

Figure 5-4: Multi-Command SSVEP-BCI [5] 
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5.5. Functional Electric Stimulation controlled by thoughts 

 

The BCI used in [74] is an ERD-

BCI based on motor imagery, 

where an imagined movement 

of the left hand, right hand, 

feet or tongue is associated to 

specific commands, same 

concept illustrated in 5.2. but 

the control signal here is 

extracted to control the 

Functional Electric Stimulation 

(FES). In this application, a  

subject, with a complete 

paralysis of his left hand, is 

equipped with an FES system. Such a system uses electrodes, placed on the forearm 

of the subject, in order to send him an electrical current which forces his muscles to 

tense, a task that the subject is not able to perform voluntarily. So, with a self-paced 

ERD-BCI, the subject had to use foot motor imagery in order to activate the FES 

system for tensing or relaxing his muscles, i.e., for closing or opening his hand, thus , 

the BCI has to output four signals to be used as trigger signals for switching between 

the different grasp phases (phase 0 – no stimulation phase 

phase 1 - opening hand, phase 2 - grasping, phase 3 - releasing, phase 4 = phase 0).  

This two-channel  BCI uses Band Power (BP) Method in the lower beta frequency 

band 15-19 Hz of the signals from location Cz and C3. At the end of the training, the 

patient had learned to voluntarily induce beta bursts and was able to control the 

opening and closing of an electromechanical hand orthotics, and was able, for the 

first time after the accident, to drink from a glass without any help and without the 

use of a straw. 

 

 

Figure 5-5: FES controlled by thoughts [74] 
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Chapter 6  

Virtual reality applications based on BCI 

6.1. The Virtual Reality application: “Use the force!” 
 

This application performed by researchers in [29] was inspired by Star Wars. 

Participants were asked to control the takeoff of a virtual spaceship by using real or 

imagined foot movements. This one-channel asynchronous BCI uses Band Power (BP) 

method in the beta frequency band 16-24 Hz of the signals from location Cz. The 

threshold was computed according to a baseline (rest) reference, and the Control 

Signal (CS) was computed as in the formula: 

Th= m+3.stdev          (21) 

Where Th is the threshold, m is the baseline mean of power and stdev is the 

Standard Deviation. 

Whenever a beta ERS occurs, which means imaginary foot movement and CS is 

higher than Th, the virtual spaceship is lifted up [29]. 

 

 
Figure 6-1: The application "use the force" [29] 
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6.2. Walking through a Virtual City by Thought 

 

The goal of the study in [54] was to move forward/backward within a virtual street 

by imaging right hand/ foot movement, recorded with a 3 bipolar channels BCI at C3, 

Cz and C4, where the logarithmic band power in the alpha and beta bands of the 

ongoing EEG were computed and classified by a linear discriminant analysis (LDA). 

So if the categorization was “right hand movement” the subject stopped and if it was 

“foot movement” the subject began walking with constant speed. The given task of 

the subject was to walk to the end of the street inside this virtual city, but walking 

was only allowed if the cue was indicating the “foot” class (arrow pointing 

downwards and double beep, respectively). Any time the computer identified the 

subject’s brain pattern as a foot movement a forward motion happened, but if the 

subjects were thinking on a “foot” movement during the wrong cue class (“right 

hand”) a backward movement happened as a consequence. 

These results suggest that improving the visual display in a BCI could improve a 

person’s control over his/her brain activity. 

 

 
Figure 6-2: Walking through a virtual city by thoughts [54] 
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6.3. Self-paced exploration of the Austrian National Library through 

thought 

 

This application [76] was also a 3 bipolar channels BCI at C3, Cz and C4, where the 

logarithmic band power in the alpha and beta bands of the ongoing EEG were 

computed and classified by a linear discriminant analysis (LDA). It is quite similar to 

the application discussed in 6.2. with the same imaginary patterns,  but with two 

differences. The first one was that the virtual environment here was a model of the 

Austrian National Library that was modeled in Maya and 3D Studio with 120.000 

faces and 60.000 vertices together with 30MB of texture to create such a photo-

realistic model of the 80 meter long and 14 meter wide main hall . 

 

 
Figure 6-3: Exploration of the national Austrian Library through Thoughts [24] 

In all experiments, the subjects were sitting in a comfortable chair in the middle of 

the virtual environment system DAVE, and were asked to move through motor 

imagery towards the end of the main hall of the Austrian National Library along a 

predefined pathway where the starting point was at the entrance door and the 

subject had to stop at five specific points  

The second difference was that at each time the LDA output was exceeding a 

selected threshold ,the BCI replied the DAVE request with a move command (speed 

= 1.5 m/s and rotation = 0.9°/s).  

The initiation to move forwards was given by the experimenter (verbal cue, 

synchronous event), but the time necessary to move to the next specific stopping 

point depended only on the performance of the subject (asynchronous task). The 

duration of the pause time was given by the experimenter, but the activity within the 

pause was controlled by the subject.  
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One disadvantage of the experimental strategy applied was that the subjects had to 

perform the motor imagery over 10.5 and 25.6 seconds, which is a very long period.  

 

6.4. Virtual Smart Home Controlled By Thoughts 

 

In [39], a P300-BCI with 8 channels located over the parietal and occipital areas was 

presented. This BCI was connected to a virtual reality (VR) system in order to control 

a smart home application. During the experiment the subjects have to do different 

tasks, like to switch on and off the light, to open and close the doors and windows, 

to control the TV set, to use the phone, to play music, to operate a video camera at 

the entrance, to walk around in the house and to move him/herself to a specific 

location in the smart home. Therefore 7 control masks for the BCI system were 

created: alight mask, a music mask, a phone mask, a temperature mask, a TV mask, a 

move mask and a go to mask. 

12 subjects were trained firstly on selecting specific commands from the P300 

matrices. Each person had to select 7icons of each of the 7 control masks for training 

the computer system on its individual EEG data. Therefore the icons were 

highlighted in a random order and the subject had the task to concentrate on the 

specific icon he/she wanted to choose. All experiments were undertaken in a so 

called “single character speller” mode where only one icon is highlighted at one 

specific time point. In order to increase the recognition accuracy it is necessary to 

highlight each icon several times. For the training every icon flashes 15 times.  

The best result was achieved for subject 6 with 100 %accuracy for 8 and 4 flashes.  

 
Figure 6-4: Virtual Smart Home Controlled By Thoughts [39] 
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Figure 6-5: Virtual Smart Home Controlled By Thoughts [21] 

6.5. Controlling an avatar to explore a virtual apartment using an 

SSVEP-BCI 

 

In this SSEVP-BCI presented in [40] with 2 

channels over O1 and O2.The participants 

were instructed to navigate an avatar to 

two waypoints along a given path in two 

runs, by alternately focusing attention on 

one of three visual stimuli that were 

flickering at the different frequencies 12, 

15 and 20 Hz, where control signals were produced proportional to power increase 

in these frequencies. Successful classifications of the according classes produced 

those control signals which to achieve the associated commands (i) turn 45° left (ii) 

turn 45° right and (iii) walk one step ahead. 

The main performance measure was the time to finish. All subjects were able to 

control the self paced VR scenarios using an SSVEP-BCI [40],[37]. 

 

6.6. BCI-based VR applications for disabled subjects 

 

This application presented in [53] was similar to what has been presented in 6.1. but 

also with differences. The differences were that the subject was a tetraplegic patient 

who mastered control of his wheelchair’s simulated movements along a virtual 

Figure 6-6: Controlling an avatar to explore a 
virtual apartment using an SSVEP-BCI [40] 
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street populated with 15 virtual character avatars, with the ERD-BCI at the mid-

central area with a dominant frequency of 17 Hz. 

Earlier, during an intensive training period of approximately four months, the 

participant learned to control the ERD-BCI. The tetraplegic participant was placed 

with his wheelchair in the middle of a multi-projection based stereo VR system 

(“CAVE”), During the wheelchair simulation, the subject moved from avatar to avatar 

while progressing toward the end of the virtual street(65 length units with shops 

on both sides), using only imagined movements of his feet. He could move forward 

along the virtual street with a speed of 1.25 unit/second, only when the system 

detected foot motor imagery (MI). Experimenters requested that the subject stop as 

close to an avatar as possible. Each avatar was surrounded by an invisible 

communication sphere (0.5 – 2.5 units) and the subject had to stop within this 

sphere. The size of the sphere approximated the distance for a conversation in the 

real world. The avatar started talking to the subject if he was standing still for one 

second within this sphere. After finishing a randomly chosen short statement (like: 

“Hi”, “My name is Maggie”, “It was good to meet you”…), the avatar walked away. 

Communication was only possible within the sphere; if the subject stopped too early 

or stopped too close to the avatar, nothing happened [37]. 

After a while, of his own free will, the participant could imagine another foot 

movement and start to move again toward the next avatar, until he finally reached 

the end of the street. Over two days, the tetraplegic participant performed 10 runs 

of this experiment and could stop by 90 percent of the 15 avatars. 
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Figure 6-7: BCI-based VR applications for disabled subjects [37] 

The subject mentioned that "It has never happened before, in the sense of success 

and interaction. I thought that I was on the street and I had the chance to walk up to 

the people. I just imagined the movement and walked up to them"[37]. 

The subject stated that he felt surprised as one avatar walked through him; he 

wanted to get out of the way, to go backwards. This suggests that the subject felt 

very absorbed in the virtual reality environment [37]. 

Using a VE can give such persons access to experiences that may be long forgotten 

(or which they have never had). The fact that the subject could still perform feet 

motor imagery, years after an injury that rendered him unable to use his feet, is a 

testament to the plasticity of the human brain [24]. Another advantage here is that 

VEs can be used to create virtual prototypes of new navigation or control methods, 

and give potential users experience of them in a safe environment before they are 

ever physically built [51],[24]. 
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Chapter 7  

The Experiment 

7.1. Introduction 

 

Virtual Reality has become an essential tool in daily life. It has been integrated to 

medicine, education, manufacturing technology, psychophysics, psychology, 

engineering and research. This integration had induced a very high interest of BCI 

interaction with virtual environments. Using immersing Virtual Environments has 

become a much demanded solution for many problems in the field of visual 

Psychophysics. For example, to analyze the visual and motor response resulting from 

an optic flow, to analyze these responses with EEG recordings in the lab is a hard 

challenge, because large artifacts resulting from walking and moving would noise the 

EEG and make the analysis a very hard process to achieve. However, using an 

immersive VE by creating realistic visual scenes is a very powerful alternative 

platform. This is the main reason to use a BCI in VE. Brain-computer interaction with 

virtual worlds Interactions can be decomposed into elementary tasks such as 

navigation using ERD-BCI, selection and manipulation of virtual objects using SSVEP-

BCI or P300-BCI and performing other visual tasks while using a hybrid ERD&SSVEP-

BCI [2],[3],[139],[157],[80]. The feedback was found to be very important in a BCI 

design as it provides the user with information about the efficiency of his/her 

strategy and enables learning. The following sections will explain the system we 

have designed for our study, the equipment used, as well as the methodology and 

paradigm used in the present experiments. 

 

7.2. Overall system flowchart 

We can see in the figure below our system flowchart where everything in blue was 

performed online starting with presenting the stimuli to the subject, send it 

wirelessly to the PC and process it with Biograph and then feedback the subject via 
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connection.dll, the interface code between Biograph and the virtual reality  

application , and everything in red was performed offline. 

 
Figure 7-1: Overall system Flowchart 

7.3. Equipment 

 

7.3.1. Computer Specification 

The Master computer was a HP xw4600 with Intel® Core™ 2 Duo 8400 processor, 3 

GB DDR3 memory, 2.66 GHz with 1333 MHz Front Side Bus memory, 4 MB L2 cache 

memory, 300 GB hard disk space and CD/DVD writer. A17 inch display was used in 

the system. This computer was used to control the four virtual reality computers, as 

well as a platform to run the EEG acquisition software used in this project. 

Since this computer is the master computer to control Virtual Reality computers, so 

in order to leave space for other research to be conducted in the virtual 

environment, we have chosen the offline analysis performed on a second computer. 

It's an LG with Intel® dual-Core™ E6500 processor, 4 GB DDR3 memory, 2.93 GHz, 

931 GB hard disk space, CD/DVD writer and a 21 inch display.  

 

7.3.2. Wireless EEG Equipment 

The Flex Comp Infiniti™ encoder is a 10 channel, multi-modality device for real-time 

computerized biofeedback and data acquisition. It has 10 protected pin sensor 

inputs with two channels sampled at 2048 s/s and three channels sampled at 256 
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s/s. The Flex Comp Infiniti™ encoder is able to render a wide range of objective 

physiological signs used in clinical observation and biofeedback, including: 

o Electromyography (EMG) 

o Electrocardiography (ECG) 

o Electroencephalography 

(EEG) 

o Skin Conductance 

o Skin Temperature 

The sensors passed signals to the host computer via the microprocessor-controlled 

Flex Comp Infiniti™ encoder unit. The encoder samples the incoming signals, 

digitizes, encodes, transmits the sampled data, passes the data to the Tele-Infiniti CF 

(a telemetry option) and sends data via Bluetooth to a Bluetooth USB adapter [90]. 

Thought Technology products monitor and record physiological and mechanical 

signals, analyze information, and provide auditory and visual feedback [90]. 

Components and accessories from Thought Technology used in this study were the 

Flex Comp Infiniti™ encoder, Tele-Infiniti CF, EEG Cables Bipolar, Biograph Infinity, 

Channel Editor and Screen Editor, 10-20 Conductive Gel and Nu-prep EEG skin 

prepping gel. Electrodes were connected through extender cables. Blue, yellow and 

black colors mark the positive, negative and the neutral electrodes. The encoder is 

battery run and the technical specification of Flex Comp Encoder is provided in the 

annex. Many of the BCI researchers used up to 128 electrodes to collect EEG. As we 

were looking to get only the motor imagery, using two electrodes mounted 

bilaterally over the motor cortex was suitable enough for our experiments. 

 

7.3.3. Virtual Reality ICUBE 

The EON ICUBE™ is a PC based multi-sided immersive environment in which  

 
Figure 7-3 ICUBE [103] 

Figure 7-2: The FlexComp Infiniti™ encoder [90]  
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participants are completely surrounded by virtual imagery and 3D sound. Stimuli 

were generated on four HP Z800 workstations and were rear-projected onto four Da-

Lite Fast-Fold  10’ wide x 7.5’  wall-screen (one frontal , two lateral and one ground), 

from a distance of 4.10 m. The image was projected on the screens using four 

InFocus LP725 projector scanning at 75 Hz with a resolution of 3,072x768 ,2500 ANSI 

Lumens brightness and 2400:1 Contrast ratio. Stereoscopic active lightweight shutter 

glasses and position trackers are also installed, and the result is complete immersion 

of the user in a virtual world where objects float in space with high quality graphics. 

12 infrared cameras (Optitrack) with trackers are implemented to monitor the user's 

position and orientation at 12hz sampling rate and are used to calculate a 

stereoscopic perspective view while allowing the user to freely move into and 

around the objects floating in space.  

For the synchronization between the four computers, the master computer on the 

same network was used. 

7.3.4. Virtual Reality Tunnel 

 
Figure 7-4: Virtual Reality Tunnel [76] 

As a virtual environment, we had chosen the 3D Tunnel, static and moving in the 

Anterior-Posterior direction, within a Peripheral visual field condition (PF). The 

virtual tunnel respected all the aspects of a real physical tunnel (i.e., stereoscopy and 

size increase with proximity). 

 

 
Figure 7-5: Peripheral visual field condition [76] 
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To program the tunnel, C++, OpenGL and VR Juggler were used. In order to create 

stereoscopic environment, we have presented two offset images separately to the 

left and right eye of the viewer in conjunction with shutter glasses which were 

controlled by an infrared transmitter that sends a timing signal that allows the liquid 

crystal layer of the glasses to alternately darken over one eye, and then the other, in 

synchronization with the refresh rate of the screen, being otherwise transparent. 

Meanwhile, the display alternately displays different perspectives for each eye [78]. 

These two-dimensional images are then combined in the brain to give the perception 

of 3-D depth. The tunnel was 3 m in diameter and 91 m long. Its front extremity was 

closed with a wall (subtending 2°) to reduce aliasing. Its back extremity was virtually 

located 7 m behind the subject [76]. A red fixation point (subtending 0.2°) was 

placed at the end of the tunnel at equal distance of the lateral wall. Stimuli were 

either static or dynamic moving at speed of 1.1 m/s. This velocity was perceived 

corresponding to normal gait. The equation of motion of the tunnel is 

x(t)=A/2 Sin (Vt+ ℓ)          (20) 

where A refers to the amplitude (in meters), V refers to the frequency (in hertz), and 

ℓ refers to the phase. In peripheral visual field conditions, proximal parts of the 

tunnel remained, while central parts were truncated and replaced by a black uniform 

field. The texture was a pattern of alternating black and white squares. The 

association of shape (cylinder), texture, and perspective provided a radial flow to the 

central visual field and a lamellar flow to the peripheral visual field. This optic flow 

structure is the one for which the visual system is very sensitive and consequently 

quite responsive with respect to the control of stance [76]. The squares were all the 

same size in the virtual world (corresponding to real-world conditions) but appeared 

smaller at distance due to perspective. Consequently, sensitivity of the visual system 

for spatial frequencies and cortical magnification were essentially accounted for by 

this naturalistic stimulation [76]. 

 

7.3.5. Biograph Software 

Biograph Infinity 5.0 software from Thought Technology was used in this research. 

This software controls different activity like extracting EEG signals through 
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electrodes, digitizing and sending signals to the PC, filtering and processing data, 

separating signal into different frequency bands, Biofeedback …etc. Time 

synchronization of the start of stimulus slideshow and data collection also is 

achieved using features of the software. It can export time series data in plain text 

format for further analysis. It has a built-in notch filter which removes line noise 

from electricity systems [38]. The software has battery indicators to prevent loss of 

performance due to low battery voltage. 

Biograph Infinity provides different data collection and analysis screens, but we 

created our own virtual channels and screens for the purpose of this research, using 

the Screen Editor, Script Editor and Channel Editor installed with Biograph. 

 

 
Figure 7-6: Channel Editor installed with Biograph 

 

7.3.6. MATLAB 

MATLAB (matrix laboratory) is a numerical computing environment and fourth-

generation programming language. Developed by MathWorks, MATLAB allows 

matrix manipulations, plotting of functions and data, implementation of algorithms, 

creation of user interfaces, and interfacing with programs written in other 
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languages, including C++, Java, and FORTRAN, using different libraries called 

toolboxes [105].  

 

7.4. Methodology and protocol 

 
Table 7-1: Methodology and protocol 

1 Session = 4 Runs  

1 Run = 80 trials 

1 Run=12 min 10 min pause 

 

 

In the standard paradigm for the discrimination of two mental states, the 

experimental task was to imagine either forward or backward movement depending 

on a written command. 10 naïve subjects (mean age 25.6 ± 3.92), 9 males and 1 

female participated in this experiment. They all signed a consent where they were 

explained the confidentiality and reliability of their data. They also received a 

compensation of 25 $ each session, total 50 $ for both. 

The experiment included two sessions for each subject; data of session number one 

were labeled training data, and were used for offline analysis, while session number 

two data were labeled test data.  Session two was performed in 2 days, where half of 

the trials were performed in day one and the second half was performed in day two. 

This split was to avoid fatigue and to allow learning. Session 2 data were considered 

as test data for online experiment based on the results from the first session. Each 

session contained 4 runs, and each run was 80 trials, which resulted in 320 trials in 

total, 160 trials for moving backward and 160 trials for moving forward. The number 

of trials was based on the Graz BCI paradigm, and to obtain enough trials for the 

averaging step. To be able to extract a good event-related potential, averaging the 

signals across the trials is one of the most common method, however a minimum 

number of 100 trials is required to be able to extract the time-locked event. The 

training trials were labeled -1.1 for forward and 1.1 for backward movement. The 

goal was to correctly label the test data by using a classifier developed from training 

data that maximizes the performance measure for the true test labels. For this 
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research we used 3 bipolar EEG Ag/Cl cup electrodes attached to the scalp bilaterally 

over the motor cortex in positions C3, Cz,C4 and bipolar at Pz, according to the 10-20 

system. In order to place the electrodes, we first located the Inion. 

On the posterior base of the skull, where the spine meets the skull, there is a small 

protrusion called the “inion”. It can be found by running the finger up the spine 

towards the skull, this is the location of Oz. Then we located the nasion which is the 

depression on the bridge of the nose, just below the brow and directly between both 

eyes. The line between these two points runs along the inter hemispheric fissure of 

the brain, so we marked a spot located at 50% of the distance between the nasion 

and the inion [90]. 

 
Figure 7-7: localizing EEG electrodes placements on the scalp [104] 

Then we located the mandibular notch, where we placed a finger against the tragus, 

just anterior to the ear, and asked the subject to open their mouth. Our finger 

should find its way into a cavity, resting superior to the mandibular notch. The line 

that connects the left and right mandibular notches runs along the central sulcus of 

the brain (the space that separates the frontal and parietal lobes). So we marked a 

spot located at 50% of the distance between the left and right mandibular notches. It 

should intersect directly with the mark made between the front and back of the 

head. The intersection of these two lines is electrode location CZ. 

 
Figure 7-8: localizingCz electrode placement on the scalp [104] 
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Along the line between the mandibular notches, 20% of the total distance towards 

the left is location C3, and 20% towards the right is location C4. 

 

 
Figure 7-9: localizing C3, C4 electrode placement on the scalp [104] 

Then we separated the hair around the electrode site and a preparing gel in order to 

clean and remove sweat and dust. 

 

 
Figure 7-10: Scalp preparation for EEG electrodes placements [104] 

After that we added Ten20 paste onto the cup electrode, just enough to form a ball 

on the cup. 

 
Figure 7-11: Attaching EEG electrode to the scalp [104] 

Then we repeated the above preparation and placement steps on the ear lobes [90]: 
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Figure 7-12: Attaching reference electrodes to the ear lobe [104] 

 

Then we have asked the subject to stand 

in the ICUBE virtual environment device 

50 cm away from the front screen, with 

the 3 EEG channels attached to his scalp 

over the motor cortex in positions C3, Cz 

and C4, where then we started the built 

up environment in ICUBE. The 

experiment paradigm starts at this point.  

 

 

 

 

 

 

 

 

Figure 7-13 A subject in the tunnel 
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Figure 7-14: One trial Paradigm of the BCI in our research 

The timing of the experiment was based on the standard Graz-BCI paradigm, where 

each trial was 9 sec long and started with 3 seconds of a static tunnel, in order to 

acquire a baseline EEG. Then for 2 sec the presentation of a written command " 

Move forward " or " Move Backward " randomly presented at the center of the 

screen, followed by 0.5 second of a static tunnel and then 3.5 seconds of dynamic 

tunnel (moving at the same requested direction). Depending on the direction 

requested, the subject was instructed to imagine moving in the tunnel, e.g., forward 

movement or backward movement, and to stop the imagination once the tunnel 

starts to move. In session 1, we used a dynamic tunnel to facilitate the task of motor 

imagery. However, in session 2, the dynamic tunnel represented a feedback for the 

subject because it moved in the same requested direction. The whole session 

duration was around one hour and a half including preparation and rest times. For 

start synchronization between the recordings and the paradigm start, a keyboard 

push-button prompt to start on the screen was used right before starting the 

paradigm of the experiment. However for the end synchrony, the recordings were 

set to be terminated after 48 minutes from the beginning of the recording. 

Motor behavior and imagery (moving in virtual tunnel) can change the functional 

connectivity within the cortex and results in ERD/ERS of mu and central Beta 

rhythms , and motor imagery can modify the neuronal activity in the primary 
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sensory-motor areas in a very similar way as observable with a real executed 

movement [20],[68]. 

Signals were acquired with the thought technology Wireless EEG system, transmitted 

to the master workstation where Biograph was installed.  

We designed a special platform for this experiment with the channel editor and the 

screen editor that comes with Biograph. Besides the two virtual channels for the EEG 

acquisition, we used many other virtual channels. Here are some of these virtual 

channels: 

 

1- IIR Filter : 

We used IIR filters algorithm (explained in 4.1.2 of this thesis) as butterworth 

bandpass filters of the 18th order and sampling rate of 256 Hz, in order to filter the 

raw signal between 8-30 Hz [144],[14] and then this signal was band-pass filtered 

again to get the four main frequency bands: 

1) Alpha band and µ rhythm between 8-12 Hz 

2) SMR band between 12-15 Hz 

3) Low and central beta band between 16-24 Hz 

4) High beta band between 25-30 Hz  

We chose the butterworth filter amongst other types of IIR filters in order to reduce 

the ripple effect of the signal, and the frequency bands were chosen according to the 

international classification of EEG signals as shown in 2.3. 

2-Frequency band Total amplitude: 

These algorithms determine the total amplitude value within a given band (PSD), and 

they take band power (which is the squared magnitudes of FFT) as an input. A 1-sec 

hanning window was chosen to give a frequency resolution of 1 Hertz/bin. 

3-Time-Frequency Analysis: 

Joint Time-Frequency Analysis provides the ability to analyze a signal in the time and 

frequency domains simultaneously, thus showing how the frequency spectrum of a 

signal changes over time with a coloured spectrogram. The algorithm was explained 

in 4.3.3.1. of this thesis. Performing a Short-time Fourier Transform (STFT) or time-

frequency analysis was an obvious extension of this approach that permits an insight 

into the ERD /ERS by analysing the power variation with respect to time. The 
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difficulty with identifying time-frequency features is the inherent trade-off between 

the time and frequency resolution [79]. 

It is impossible to achieve a high degree of resolution in both the time and frequency 

domain of the short EEG segments and thus the domain of the feature that 

maximally identifies with the left or right trial must be prioritised. Due to the short 

epochs utilised in this system, the resolution in either domain was severely 

compromised. The STFT was estimated at a high spectrogram resolution of 1 second 

hanning windows in time with a 50% overlap, and 64 frequency bins. These settings 

were chosen to obtain a balanced time/frequency resolution and a lowest 

detectable frequency of 1 Hz. 

 

4-Arithmetic Operations: 

Multiplication for example was used to have the EEG samples squared, this 

operation along with the mean and standard deviation of the second 3, these were 

used later to be considered as coefficients of the formula used to compute the 

threshold over a band-power according to 4.2.1.1. and 6.1. as will be explained later.  

Subtraction was also used for the asymmetric ratio method. 

These were the main virtual channels we have used to build our own platform for 

EEG analysis.  The main screen instruments used in the designed platform were: 

 

1- The bar graph : 

The Bar Graph instrument offers the option of single or dual 

threshold-triggered feedback. Whenever a signal passes the 

threshold, a Boolean signal output 1 is triggered. 

 

2-The Line graph: 

We have used the line graph for displaying the filtered signals over 

time during the session recording or replaying. 
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3-Time frequency instrument: 

The time frequency instrument displays 

a colored spectrogram of the frequency 

domain in respect to the time. 

 

5- The Connection Instrument: 

The Connection Instrument allows connecting and controlling an 

external software program (for example, a virtual reality application) 

by sending it signals from the BioGraph Infiniti system. The external 

application can be on the same computer as BioGraph or on a different computer 

that is in the same network as the BioGraph computer. 

 

An interface file in xml format lists signals and associated commands, which were in 

this project: Move forward, Move backward. We modified The DLL file of our 

application used in this study, the virtual reality tunnel, in order to make the tunnel 

move forward or backward according to the Boolean signal it receives whenever the 

signal passes a threshold in Biograph. The xml file used for our application is 

provided in the annex.  

After recording a session number 1 for a subject, and after applying the manual 

artifact removal algorithm within Biograph, clean data were exported to another 

computer for offline analysis. 

Any recorded session in Biograph can be replayed using the “Replay Session" button 

in the software. Session data can be also exported into a text file via the button " 

Export Data ", where we can choose the type of data we want to export, as well as 

choosing the sampling rate, time period and duration and event markers if any were 

used, where alpha- numeric keys can be programmed to indicate an event when 

pressed when the session is being recorded. 

 

For this application, we exported band-power signals at a sample rate of 256 Hz, and 

we exported the rest of the data at 8 Hz sampling rate.  
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The virtual tunnel application generated also a XML file which contains the event 

markers at second 3 of every trial, move backward and move forward. 

These event markers correspond to the state of the tunnel presented In the ICUBE 

every time it's presented. These XML files along with the text files were imported to 

MATLAB for offline analysis. 

 

7.5. Signal Pre-Processing 

Most signal Pre-Processing parts was achieved within Biograph. As mentioned in 

7.4., the bandpass IIR filters were used to filter the signal between 8-30 Hz and then 

were used to band-pass the signal in order to obtain 4 frequency bands:  

 8-12 Hz 

 12-15 Hz 

 16-24 Hz  

 25-30 Hz. 

Artifact rejection was performed by Biograph during session recording and via an 

Artifact Auto-rejection mode. This algorithm removed automatically the parts of the 

recorded signal where the amplitude exceeds the normal EEG amplitude, which is in 

this case 20 µv. We also performed manual Artifact removal while replaying the 

session, where the parts of the signal with artifacts were removed. A notch filter 

provided by Biograph was also used to remove power line interference. 

All of these algorithms results in clean signals ready to be exported to another 

application for offline analysis as mentioned before. 

The last pre-processing part was to de-trend the signals [79]. The event-related 

potentials are relatively small compared to the total EEG spectrum, so in order to get 

a clean signal ready for processing, a baseline was averaged over a 1 sec window, 2 

seconds prior to moving onset, and then mean baseline was subtracted the from 

every single trial. For each subject, an event-related potential template was 

generated, specific to each channel, feature and event, by ensemble averaging 

across the trials. The signal is now ready for processing and feature extraction. 
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7.6. Feature extraction and selection: 

 

Most parts of the feature extraction phase were performed online within Biograph, 

where those features were used later for offline analysis. Only two were extracted 

offline. The features extracted are: 

a. Time-Frequency Representation Spectrogram (online) 

b. Frequency band Power (online) and ERD/ERS (offline) 

c. Power Spectral Density and Asymmetrical ratio (online) 

d. Auto-regression model (offline) 

After importing the online features into MATLAB, data of every feature in every 

frequency band and for every task were averaged across all trials. We had 160 trials 

of motor imagery for moving forward in the tunnel and 160 trials of motor imagery 

for moving backward in the tunnel, and with an event marker for every position, 

labeled -1.1 for forward movement and 1.1 for backward. This resulted in a matrix of 

rows and columns, where each column represented a feature in a specific frequency 

band, and rows represented the features values at a specific time-point. Since we 

had 3 extracted features (BP, PSD, and PSD As.R), 4 frequency bands and 3 channels, 

this resulted in 32 columns of features. However, and since there were 48 minutes of 

recorded EEG (excluding breaks) from session 1 for each subject, this resulted in 

23040 time-points if the sampling rate was 8hz, and 737280 time-points if the 

sampling rate was 256 Hz. This part of data was then used with the event markers to 

calculate the average signal across trials for every position, features and frequency 

band.  

 

7.6.1. Time-Frequency Representation Spectrograms 

The TFR (Time-Frequency Representation) was mainly used online so we can usually 

define the most active frequencies and their strengths during the mental task 

achieved by the participant in every single trial. Since the TFR spectrogram was 

computed online, we have replayed the session number one for every subject while 

looking at event markers in the text file provided, thus we were able to study the 

power spectrum in respect to time. TFR analysis was designed to handle the trade-
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off between time and frequency by many methods. Biograph provided four of these 

methods: STFT, wigner-ville distribution, Gabor, Matching Pursuit. Each method 

offered its own benefits and trade-offs.  

The STFT was the simplest and quickest of the four methods, but provided the 

poorest offline simultaneous time-frequency resolution of the four methods. 

However, the Matching pursuit, which adapted to the signal characteristics and 

localizes individual components, provided the best time-frequency resolution of all 

methods, but was more processing-intensive. 

Since we had 48 minutes of EEG recordings, so a low intensively processing method 

was required, and here we chose the STFT method.  

So, after an online visualization of the most active frequency bands during both 

tasks, we were ready to use the second method of signal processing for our BCI. 

 

7.6.2. Band Power and ERD/ERS calculation 

After extracting the band-power values calculated online for every channel and 

every frequency band, and after cleaning and averaging the data offline, we 

calculated the ERD/ERS time-course [35],[41]. This method is explained in 4.2.2. of 

this thesis. In order to calculate the ERD/ERS time course, we first calculated the 

average power in a reference interval [35] between second 2 and 3. Then we 

calculated the relative power change for the power of the movement versus the 

reference interval. These calculations resulted in signals templates with the ERD/ERS 

for each of the two tasks performed. We then selected the best two ERS/ERD that 

distinguished between the two tasks. This selection was based on the percentage 

change method, where we calculated the percentage change between the averaged 

backward/forward signals relative to forward, and on the feature points between 

second 4 and 6.5. The purpose was to find the maximum percentage change 

between the peaks of two templates’ features of the averaged signals.  

The best ERD/ERS of each task were later set up in Biograph as signal thresholds for 

session 2. This means that whenever the subject’s EEG power signal passes threshold 

1, the tunnel was triggered to move in forward direction, and whenever the EEG 

power signal passes threshold 2, the tunnel was triggered to move backward. This 

method was the only method tested online. 
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7.6.3. Power Asymmetrical ratio 

Because the data have been filtered into 4 frequency bands, four Power Spectral 

Densities for each channel were calculated and then four power asymmetry ratios 

were calculated online within Biograph between electrodes C3-C4. All of the PSD 

features and the Asymmetrical Ratio features were later used for offline analysis. 

 

7.6.4. Auto-regression models 

We applied in this study two Auto-Regression methods to model the features 

calculated online (BP, PSD and PSD Asymmetrical Ratio), where the model 

coefficients were used later as features, and then fed into the classifiers. After 

importing the features to MATLAB, we modeled every single feature, in every 

frequency band and every channel; we modeled these with two different Auto-

regression algorithms: AR burg method and ARX least squares method. To model 

these features, we tested and varied the model order (na as AR model order and 

na=nb as ARX model orders) from 2 to 10 and a step value of 1, for the PSD and PSD 

asymmetrical ratio. The model orders for the BP features were varied from 2 to 30, 

with a step value of 1 between 2 and 8, and a step value of 2 between 8 and 30. 

These cut-offs were chosen based on the state-space model selection function that 

we had run over all of the previously extracted features [50].  

One other parameter had to be set for the ARX; we set the exogenous input to be 

the template of averaged backward trials when modeling backward trials and the 

template of averaged forward trials when modeling forward trials, because 

averaging across trials assist in extracting the event-related potential hidden within 

the noise. We tested the auto-regression methods to investigate how well these 

estimated parameters could serve in distinguishing between forward and backward 

single trials, based on the number of model coefficients used. These methods are 

explained in 4.2.2.2 of this thesis. In this section, we saw that a large amount of 

features were extracted. These features are:  

 

1. BP x 4 frequency bands x 3 channels (fs=256 Hz) 

2. BP-ARX x 4 frequency bands x 3 channels x 18 model orders (fs=256 Hz) 

3. BP-AR x 4 frequency bands x 3 channels x 18 model orders (fs=256 Hz) 
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4. PSD x 4 frequency bands x 3 channels (fs=8 Hz) 

5. PSD-ARX x 4 frequency bands x 3 channels x 9 model orders (fs=8 Hz) 

6. PSD-AR x 4 frequency bands x 3 channels x 9 model orders (fs=8 Hz) 

7. As.R x 4 frequency bands x 2 channels (fs=8 Hz) 

8. As.R-AR x 4 frequency bands x 2 channels x 9 model orders (fs=8 Hz) 

9. As.R-ARX x 4 frequency bands x 2 channels x 9 model orders (fs=8 Hz) 

 

So, in total, 824 features were extracted and presented to the classifiers, 380 at a 

sampling frequency of 8 Hz, and 444 at a sampling frequency of 256 Hz. The offline 

nature of this stage allowed us to run the tests on all of these features, so we can 

later select the features that achieved the best classification performance, which will 

be explained in the coming section. It is important to select the specific feature at 

the specific frequency band and channel which holds the most significant 

information that distinguish between the two tasks of the experiment, otherwise too 

many information will increase computation and results in poor classification due to 

the additional noise and redundant information.  

 

7.7. Classification  

 

This phase tested our previous offline calculations presented in 7.6. The LDA 

classifier and linear SVM were used to classify each feature of every single frequency 

band and every channel. LDA was used because it requires less training and 

computation compared with neural network based classifiers, where SVM was used 

because of the good generalization properties and its insensitivity to the curse of 

dimensionality. For the classification of band-power, we used the Diagonal LDA, 

where its only difference from the fisher LDA is that it computes the diagonal 

covariance matrix estimates. Later, we compared SVM and LDA performance in 

order to select the best classifier for this study. In linear SVM, we tested different 

values for the C factor in an exhausted search for the optimum C factor, where we 

varied the values exponently between 1.e-7 and 1.e2 with a step value of e-1. The 

features were divided into 4 epochs, in order to investigate the optimum time (and 

thus feature points) that the imagery signal achieved the best classification accuracy 



71 
 

 

[92], thus decreasing the computation time. Various epochs were experimented 

based on a 0.5s increase. These epochs were: 

1) Epoch 1: 4 – 5s 

2) Epoch 2: 4 – 5.5s 

3) Epoch 3: 4 – 6s 

4) Epoch 4: 4 – 6.5s 

However, we ran the search for the optimum C factor on the data of a randomly 

selected 50 % of the subjects, which means 5 subjects out of the 10 subjects we 

tested, and found C=1.e-2 to give optimum results, so we assumed a generalization of 

this value for all subjects’ data of this study. Consequently, we ran 36256 (824 

features x 4 epochs x LDA + 824 features x 4 epochs x  SVM 10 C factors) 

classification test for the session 1 data of 50 % of the subjects, and 6592 (824 

features x 2 classifiers x 4 epochs) classification test for the session 1 data of the 

other 50 % subjects. All of these classifications were performed with 10-cross-

validation and the positive rate calculation to test the classifications’ performance. 

We wrote some MATLAB functions to perform theses analysis. The analysis time for 

this exhaustive search of the best feature that can distinguish between 

forward/backward tasks was around 30 hours for session 1 data of every subject of 

the first 50 % and 6 hours for each of the rest participants. We then selected the 

classifiers and features with the highest classification performance amongst all 

subjects, and re-ran the classification using the best features over pair of electrodes 

and then over three electrodes. We then selected the classifier that achieved the 

best classification performance and used this classifier on session 2 data and on run 

4, where we used session 1 data to train the classifiers and the data of the session 2 

run as test data, in order to simulate the online performance of the classifiers by 

labeling the test data, and thus giving the guess of the user’s intention to navigate 

backward or forward in the virtual tunnel. The following section presents some of 

the results we obtained using all methods illustrated in 7.6. 
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7.8. Results and discussions 

 

7.8.1. Online TFR  

 

 
Figure 7-15 Online TFR over C3 and C4 

 

Figure 7-15 displays four online TFRs from the experiment with subject 3. These TFRs 

were taken between second 5 and second 6, which means that the first half second 

of the TFR represents half a second before motor imagery termination, where the 

second half second of the TFR represents half a second after the motor imagery 

termination. The first column displays TFR for electrode C3 and the second column 

displays the TFR for electrode C4. The first row refers to the TFR when the subject 

was instructed to imagine a forward movement, where the second row refers to the 

TFR when the subject was instructed to imagine a backward movement. During the 

forward movement, we can clearly see the α-ERD, but once the motor imagery was 

terminated, a large and a remarkably strong β ERS appeared over C3 and lasted for 

few milliseconds. On the other hand, the α-ERD appeared also during the backward 

movement over C3, however, and right after terminating the backward motor 

imagery, a small and strong β ERS appeared over C4 and lasted for few milliseconds. 

This suggested that we had a lateralization of signals for motor imagery forward and 

backward movements, where the right motor cortex showed higher activity for 
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backward movement versus the left motor cortex, which in turn showed also a 

higher activity for the forward movement.  

 

7.8.2. Online Band-Power ERD/ERS Biofeedback  

After the offline calculation of the ERD/ERS time-course on 12 band-powers (4 

frequency bands x 3 channels), we found that there was no difference between the 

two tasks in the alpha and SMR frequency bands and for all channels.  

We also found that motor imagery of forward and backward movement didn’t 

change power at Cz, neither within the alpha band at C3, which corresponded to 

results found by researchers in [16]. The next result presents the β-ERS at channels 

C4 and C3 respectively, and at the frequency band 25-30 Hz.  

 

 
Figure 7-16 β-ERS at channels C4 and C3 respectively, and at the frequency band 25-30 Hz for subject 3 

 

This upper figure shows a remarkable backward ERS that starts right after the 

termination of the movement imagery and peaked with a 200 % and after about 200 

msec. The template illustrates no overlap with the forward signal which appears to 

be equal to baseline, with a correlation of 0.31. This supports the results researchers 

in [77] had found, that the right motor cortex and during the motor imagery of 

moving backward, showed a remarkably higher activation than the motor imagery of 

moving forward. The lower figure shows exactly the inverse results. At the left motor 

cortex, the motor imagery of forward movement, resulted in an activation of the left 

brain motor cortex area, with a remarkable ERS that started 200 ms after the 
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movement offset, and peaked with a 600 % after about 300 msec. which means after 

500 msec. of the termination of the motor imagery. This template illustrates no 

overlap with the forward signal which appears to be equal to baseline, with a 

correlation of 0.28. Thus, motor imagery of moving backward would relatively highly 

activate the motor cortex of the right brain hemisphere, while motor imagery of 

moving forward would activate the motor cortex of the left brain hemisphere. This 

result supports our hypothesis 3, that motor imagery of forward-backward 

movement can activate the motor cortex the same way a strong optic flow does. The 

two ERS values were later set up in Biograph as signal thresholds to form a control 

signal for an online Biofeedback test in session 2. The first ERS value was for 

transition from idling to "move forward" state, while the second one was for 

transition from idling to "move backward" state. So, the backward threshold was set 

on the BP of the frequency band 25-30 Hz over channel C4 according to the following 

equation: 

Thb= MEAN+6xSTDEV          (21) 

Where Th is the threshold, b refers to backward, MEAN is the power calculated in a 

reference interval and STDEV is the standard deviation. The STDEV coefficient was 

calculated according to the ERS time-course, and was selected based on a value that 

would yield a maximal separation between the standard deviations from the mean 

baseline of the two tasks, and was set to 3 standard deviations each, i.e. 3 negative 

standard deviations from the mean for the task that had the higher curve and 3 

positive standard deviations from the mean for the task that had the lower curve.  

For subject 7, we calculated two negative standard deviations from the mean of the 

averaged backward signal over C4, and calculated its ERS time-course, and found 

that it was close to 3 standard deviations from the mean baseline. We then repeated 

that for the forward and found that it was 2 standard deviations from the mean 

baseline. So we selected the value 6 based on 2 STDEVbackward + 1 STDEVsafety for backward 

+ 3 STDEVforward. 

This formula means that whenever the power over the motor cortex of the right 

hemisphere exceeds and passes a threshold of 6 standard deviations from the 

baseline, i.e. activation over C4 resulting from the motor imagery of backward 
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movement, this would trigger the virtual reality tunnel with a Boolean that induces 

the tunnel to move in the backward direction. Similarly, the same setting was used 

as a threshold over the motor cortex of the left brain hemisphere, which means that 

whenever the power over the motor cortex of the left hemisphere passes a 

threshold of 6 standard deviations from the baseline, i.e. activation over C3 resulting 

from the motor imagery of forward movement, this would trigger the virtual reality 

tunnel with a Boolean that induces the tunnel to move in the forward direction. If 

the instruction was to move in either direction or the subject failed to generate the 

correct pattern, where the signal of the opposite instruction exceeds its threshold, 

the tunnel was triggered to move accordingly. We tested this method online on 

subject 3. The session 2 consisted of four runs, where the same paradigm was used 

but with two differences. The first difference was that in session 2, the subject was 

instructed to stop the motor imagery right after the command “ Move Forward “ or “ 

Move Backward “ offset, i.e. at second 5 of the trial, instead of stopping the motor 

imagery once the tunnel moves. This modification was performed based on the ERS 

results. Since the ERS peaked at 200-500 ms of the motor imagery offset for both 

tasks, this modification of terminating the motor imagery at second 5 would let the 

beta power to rebound and then peak at second 5.5. The Interface between 

Biograph and our virtual tunnel was programmed that whenever the signal passed 

the threshold at second 5.5 and only at this point, the Boolean was sent to trigger 

the tunnel to move in either direction. The second difference was that the signal was 

acquired at a sampling rate of 8 Hz and was smoothed out by averaging 3 

consecutive samples (with a moving average) in order to produce a smooth Control 

Signal (CS). Session 2 was performed in 2 different days, of the same week. The 

following table shows the results for subject 3, where accuracy equals the success 

rate, which is the proportion of correct hits of a task amongst the total number of 

events of the same task.  

Table 7.2 results of the ERS Biofeedback for subject 3 

Subject 3 Run 1 Run 2 Run 3 Run 4 Run 4 Av. Accuracy 
Backward 27.5 62.5 87.5 87.5 83.75 
Forward 72.5 47.5 47.5 80 

  

The following chart plots the Biofeedback results for subject 3: 
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Figure 7-17 Beta-ERS (over C3 and C4) method accuracy results for subject3 

 

At run1 of session 2 as depicted by figure 7.5, we can see a remarkable bias toward 

the forward imagery movement versus the backward imagery movement, where the 

subject was able to control the forward movement with a success of 72.5 %, versus a 

success of 27.5 % to control the backward movement. At run2, the subject tried to 

put much more effort to control the backward movement with a success rate of 62.5 

%, but failed to sustain the same strength to control the forward movement with a 

success rate that dropped to 47.5 %, and this could be seen as a learning curve to 

control the forward-backward movement. Subject 3 continued the learning curve at 

another day, and continued to develop his mental strategy and learn to control the 

backward movement, where he achieved a success rate of 87.5 % for backward 

control, but he was still working with a total bias to the backward control versus 

forward control which achieved a success rate of 47.5 %. Finally, and after 96 

minutes of training, subject 3 succeeded the learning strategy and succeeded in 

sustaining a success rate of 87.5 % for the backward control, and in the same time, 

regained the strength and mental strategy required for forward control. This learning 

curve supported our hypothesis 2. This online biofeedback was totally performed 

using ERS band-power over the high β frequency band (25-30 Hz). Amongst the 10 

subjects we tested, 7 showed the same ERS pattern at the high β frequency band, 

and 3 subjects showed the same pattern but with a central β-ERS (16-24 Hz). These 

were subject 2, 6 and 9. All patterns had also different ERS values for both forward 

and backward motor imagery. The results of the online β-ERS Biofeedback for the 

ten subjects tested are listed in the table below: 
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Table 7.3 the results of the online beta-ERS biofeedback across all subjects 

subject Run1 Run2 Run3 Run4 Av.Run4 
Backward Forward Backward Forward Backward Forward Backward Forward   

1 27.5 60 52.5 47.5 42.5 77.5 70 72.5 71.25 

2 47.5 77.5 65.5 62.5 77.5 72.5 87.5 82.5 85 

3 27.5 72.5 62.5 47.5 87.5 47.5 87.5 80 83.75 

4 12.5 77.5 57.5 57.5 42.5 57.5 47.5 62.5 55 

5 25 85 47.5 52.5 77.5 85 72.5 92.5 82.5 

6 22.5 82.5 47.5 52.5 67.5 77.5 77.5 87.5 82.5 

7 75 80 67.5 85 62.5 92.5 50 77.5 63.75 

8 22.5 62.5 52.5 62.5 47.5 87.5 77.5 92.5 85 

9 30 77.5 67.5 47.5 77.5 82.5 72.5 82.5 77.5 

10 37.5 72.5 52.5 42.5 62.5 87.5 72.5 82.5 77.5 

AV 32.75 74.75 57.3 55.75 64.5 76.75 71.5 81.25 76.37 
STDEV 17.53 8.11 7.91 12.25 16.02 14.24 13.44 9.07 10.1 

 

The purple highlighted subjects are the subjects that showed a central β-ERS, where 

the yellow highlighted figures are the highest success rates achieved in this 

experiment. From the last column of this table, which is plotted below, we can see 

that 50 % of the subjects were able to achieve accuracy of more than 80 % and after 

a total of 96 minutes of training, 48 without feedback and 48 with feedback. 
 

 
Figure 7-18 Run 4 average accuracy for all subjects 

 

To study the average performance of the subjects during the four runs of the 

biofeedback, we plotted the average success rates of every task at each run and 

across all subjects.  
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Figure 7-19 Beta-ERS method accuracy across all subjects 

 

The template shows an expected bias toward forward control versus backward 

control in run1. We have also applied the T-test to interpret the results, where we 

applied the intra-subjects T-test on the pair of the two tasks in every single run. The 

subjects had significantly more trouble to control the tunnel movement using motor 

imagery to the back more than the forward motor imagery (rb1-f1=0.191, t=-7.434, 

dof=9, p<0.001) because walking forward is an easy automated task for the brain, 

however, moving backward would require more strength and concentration, and 

would require also learning to develop a special mental strategy in order to alter the 

brain waves to produce the correct control signal. So the success rate for the 

backward control was 32.75 % ± 17.53 versus 74.75 % ± 8.11 for forward control. 

Most of the subjects in run 2 put much effort into the backward-control strategy 

learning versus the forward control, where the bias was inverted toward the 

backward control, which its success rates were improved, accompanying a drop in 

the success rate of the forward control, in average success rate of 57.3 % ± 7.91 for 

backward control versus 55.75 % ± 12.25 for forward control (rb2-f2=414, t=0.426, 

p<1). The next day and in run3, the backward control continued to improve gradually 

in a so-like linear learning curve, where the forward control was regained (rb3-f3=-

0.181, t=-1.663, p<0.2). We think that was because this run was performed in a 

different day, and so the brain was back to achieve a high success rate for its 

automated task, the forward control, but sustained the learning and mental strategy 

he developed for the backward control, and continued to develop it more, to achieve 
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a higher success rate of 64.5 % ±16.02, where the forward control was regained with 

a success rate of 76.75 % ± 14.24. In run 4, the subjects’ brains continued to develop 

the mental strategy for the backward control, where a remarkable improvement 

took place to increase the success rate with only 71.5 % ± 13.44, where the forward 

control stabilized with slight improvement (rb4-f4=603, t=-2.864, p<0.02). So we can 

say that the biofeedback induced a learning curve to control the backward 

navigation in virtual reality (rb1-b4=-0.184, tb1-b4=-5.109, p<0.05), in contrast to the 

forward navigation in virtual reality (tf1-f4=-1.816,p> 0.1), where in this biofeedback, 

the learning curve started with a bias toward the naturally automated forward 

control versus backward control, then the backward control improved gradually with 

a so-like linear learning curve, however the forward control was lost in run 2, but 

regained then stabilized at run 3 and 4. We have applied ANOVA to the results for 

statistical comparisons. As a consequence of the numerous planned comparisons 

required in the first phase of this study, the Greenhouse-Geisser as well the Huynh-

Feldt corrections were applied to interaction tests in order to control for random 

outcomes in this context. The ANOVA revealed a significant intra-subject main effect 

of ‘Task’ (F=26.085, dof=1, p<0.01), a significant effect of ‘Runs’ (F=17.204, dof=3,  

p<0.001) and a significant ‘Runs’ × ‘Task’ interaction (F=14.085, dof=3, p<0.01), and 

also revealed a significant inter-subject main effect(F=978.355, dof=1, p<0.001). 

 

7.8.3. Offline analysis for feature selection 

This section presents all experimental classification results over session 1 data that 

we obtained in this study. These results will be briefly presented, due to the high 

amount number of classification tests we ran, but they will be discussed in detail.  

All features that achieved a classification accuracy of less than 60 % were considered 

bad classification features. This value was selected as 10 % above chance. We started 

to run classification over all features extracted from each electrode separately, in 

order to find and select the feature that would yield to the best classification 

accuracy from one single EEG channel, so we could later use it for classification of 

the session 2 data, and thus, the BCI would use only one EEG channel. However, all 

features within α and SMR band and all PSD features fall in this range, when the 

classification accuracies fall between 30 and 55 %. Some of the tables showing these 
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results are provided in the annex. This depicted that using a single EEG channel for 

this study would yield to poor classification results. Then we ran classifications over 

pairs of channels and then over the features from all 3 channels together. Again, all 

features within α and SMR band yielded poor classification results, and this depicted 

that the ERD-classifier couldn’t be used for the purpose of our research. However, 

when running classifications over the power spectral density asymmetrical ratio 

features between C3 and C4 (extracted from Biograph), the classifier showed a good 

classification performance over the higher β band for subjects who showed a strong 

ERS within this band, and also showed good classification results over the central β 

band for subjects who showed a strong activity within this band. To investigate the 

best classification in terms of epochs, the graph below shows the results obtained 

across all subjects, when we ran the classification of power spectral density 

asymmetrical ratio between C3-C4 within the β band. 

 

 
Figure 7-20 Classification of power spectral density asymmetrical ratio between C3-C4 within the β band varied 

with epochs and averaged across 10 subjects 

 

All classifications showed that the epoch that achieved the highest classification 

accuracy was epoch 3, i.e. the classifier gave poorer results when classifying the ERD, 

and better results when classifying the ERS. However, the classifiers’ performance 

was attenuated at epoch 4; we think that this was due to the visual effect the 

dynamic tunnel added to the event-related potential. 

To investigate the best classification results in terms of the C factor, the following 

table shows the results obtained across all subjects, when we ran the SVM 
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classification of power spectral density asymmetrical ratio between C3-C4 within the 

β band, and varied the C factor between different values.  

 

Table 7.4 PSD classification with SVM when varying C factor 

 

 

 

 

 

 

 

 

It’s obvious that the highest accuracy was achieved using the value 1.e-02 for the C 

factor. All results that will be presented next are presented within epoch 3 and with 

a C factor of 1.e-02. Figure 7-21 displays the cut-offs and range to select to model the 

PSD As.R and BP features, where the best range for the band-power features was 2-

25, and 2-9 for the asymmetrical ratio features. So, we chose a bit wider range to 

accommodate ranges from all features. 

 

 
Figure 7-21 state-space model order selection for β-PSD As.R on the left and β-BP on the right 

The table below shows the classification accuracy for the power spectral density 
asymmetrical ratio over C3-C4 over β band for subject 3, varied with model orders.  

 

C factor SVM 

1.00E-07 58.75 

1.00E-06 61.98 

1.00E-05 64.23 

1.00E-04 66.02 

1.00E-03 68.5 

1.00E-02 70.21 

1.00E-01 68.25 

1.00E+00 69.875 

1.00E+01 59.44 

1.00E+02 57.67 
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Table 7.5 Classification results for PSD asymmetrical ratio over beta band varying with model order for subject 
3 

Classification results for β-PDS –ASR  
Model 
order 

Feature AR ARX 
LDA SVM LDA SVM LDA SVM 

2 76.11 70.21 73.45 69.24 74.77 71.2 
3 74.68 71.02 71.08 68.02 68.19 67.34 
4 76.02 69.875 69.24 62.875 57.36 62.5 
5 75.28 69.34 65.89 58.45 56.875 61.07 
6 73.25 70.5 67.875 66.25 55.05 72.45 
7 76.09 68.25 69.02 66.25 63.41 66.14 
8 75.44 69.73 65.5 63.73 62.12 65.25 
9 73.375 70.14 59.36 68.12 60.75 64.24 
10 76 68.66 59.36 66.83 57.21 61.18 

 

We can see from the table that the LDA classifier gave a higher value 6 % accuracy 

than the SVM, but the classification drops remarkably when the features were 

modeled in both AR and ARX methods, which tells that these models were modeling 

noise but not the actual feature. Even though, model order 2 gave the best results 

amongst other orders. Thus, using the PSD asymmetrical ratio as a feature gave 

better results than using their model coefficients as features. The classification 

accuracy for most subjects is close to this indicating that the AR method is poor at 

predicting upcoming forward and backward movements. A pure guess would offer 

the same chances of accurate classification. From the previous results, we can also 

see that we can’t rely on one single EEG channel to predict the upcoming forward-

backward movement, and that we need at least two EEG channels to achieve an 

average accuracy of over than 75 %. The next table compares between the session 1 

offline classification accuracy over the PSD asymmetrical ratio and the session 2 

online Band-Power Biofeedback for all subjects.  

 

Table 7.6 comparisons between session 1 offline classification over beta band and the session 2 online 
biofeedback for all subjects 

 

 

 

 

 

 

Subject LDA SVM 
AR- 
LDA 

AR-
SVM 

ARX-
LDA 

ARX-
SVM BP 

1 74.50 68.57 72.79 69.44 73.38 73.71 71.25 
2 76.84 71.85 77.63 70.84 75.29 67.84 85.00 
3 80.44 78.88 78.88 75.82 78.88 76.50 83.75 
4 73.38 67.75 74.91 66.50 73.38 72.13 55.00 
5 69.79 65.35 64.50 65.00 68.88 66.69 82.50 
6 69.50 67.16 68.25 69.91 71.47 68.38 82.50 
7 79.82 71.07 73.38 60.75 77.52 70.69 63.75 
8 77.54 72.47 74.50 75.57 75.60 77.57 85.00 
9 81.54 71.69 75.29 71.69 76.50 70.07 77.50 

10 77.79 67.32 74.35 66.85 76.85 68.44 77.50 
AV 76.11 70.21 73.45 69.24 74.77 71.20 76.38 

STDEV 4.23 3.89 4.24 4.66 3.02 3.72 10.13 



83 
 

 

So, using 2 channels BCI, only 20% of the subjects achieved a classification accuracy 

of 80-82 %, and 60 % achieved classification accuracy of 70-80 %. However, for the 

Band-Power online Biofeedback, 50 % of the subjects achieved classification 

accuracy of 80-85 %. We can also see that the average classification accuracy for 

both methods were almost the same. The next table displays the classification 

accuracy for the Band-Power 25-30 Hz over C3,C4 and Cz, where the second and the 

fifth column shows the results when the features where classified with LDA and SVM 

respectively, and the other columns shows the results when the Band-Power 

models’ coefficients were classified using the same two classifiers and when varying 

the model order from 2 to 30. 

 
Table 7.7 classification of beta band-power from 3 EEG channels varied with model order for subject 3 

 

 

 

 

 

 

 

 

 

 

 

The table displays that Band-Power auto-regression modeling gave almost the same 

results the Band-Power features gave, however, only the AR model of order 12 when 

classified with SVM, showed slightly higher classification accuracy. So, in order to 

compare the performance of classification between all methods and averaged across 

all subjects, the next graph displays a sort-of equal classification accuracy (~ 76%) 

over the β-ERS for the online Biofeedback using 2 EEG channels (session 2), the 

Power Spectral Density Asymmetrical ratio with LDA classifier using 2 EEG channels 

(session 1) and the Band-Power when classified with SVM using 3 EEG channels 

(session 1), where the modeled features were modeled with the best model orders. 

 

Model 
Order 

LDA SVM 
LDA AR ARX SVM AR ARX 

2 69.38 66.56 65.63 65 67.81 65.31 
3 70.62 68.13 69.06 68.44 67.19 67.81 
4 71.56 60.62 59.69 65.63 67.81 71.56 
5 71.25 70.94 66.56 64.69 64.69 66.25 
6 71.88 66.56 67.81 65 69.38 71.25 
7 71.88 68.13 66.25 70.62 69.69 70.31 
8 71.25 68.13 72.5 70 73.75 67.5 

10 71.25 69.38 69.38 73.12 74.69 69.69 
12 70.94 67.5 68.75 73.75 75.94 68.44 
14 70.62 68.75 69.38 74.69 70.94 64.69 
16 70.94 70.31 69.06 70.31 69.38 67.5 
18 71.88 69.38 69.69 71.25 69.69 66.87 
20 71.25 67.19 69.38 68.13 71.25 68.13 
22 70 69.38 69.06 72.5 67.5 69.38 
24 70.31 67.81 70 69.38 69.06 69.06 
26 70.62 68.13 69.06 71.25 70.31 69.69 
28 71.25 68.75 69.69 67.19 68.75 67.19 
30 70.62 67.19 70 67.81 69.38 69.38 
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Figure 7-22 classification accuracy over β-ERS for the online Biofeedback using 2 EEG channels (session 2), the 
Power Spectral Density Asymmetrical ratio with LDA classifier using 2 EEG channels (session 1) and the Band-

Power modeled with ARburg when classified with SVM using 3 EEG channels (session 1) 

After the classification of the session 1 data, we selected the features that yielded 

the best classification accuracy, which were in our case: 

 1-β-Power spectral density asymmetrical ratio between C3 and C4 with LDA 

classifier 

2-β-Band-Power modeled with ARburg over C3, C4 and CZ with SVM classifier 

These data were used as training data to train the classifiers, and used the session 2 

data to test the classifiers, in a so-like simulation of the classifier performance when 

implemented online. The results are displayed in the table below.  

 

Table 7.8 Session 2 classification results for PSD asymmetrical ratio between C3-C4 classified with LDA, Band-
Power from C3-C4-CZ modeled with ARburg and classified with SVM, and Band-Power online biofeedback for all 

subjects 

PSD As.R BP Biofeedback 
subject session 1 session 2 session 1 session 2 

1 74.5 78.3 75.98 79.34 71.25 
2 76.84 83.25 77.36 83.43 85 
3 80.44 78.74 79.29 84.67 83.75 
4 73.38 78.5 78.44 79.06 55 
5 69.79 75.5 74.825 82.81 82.5 
6 69.5 73.84 67.09 75.31 82.5 
7 79.82 79.44 75.56 79.86 63.75 
8 77.54 80.22 82.12 84.06 85 
9 81.54 80.63 76.76 74.68 77.5 

10 77.79 81.02 76.34 75.93 77.5 
AV 76.11 78.94 76.3765 79.915 76.38 

STDEV 4.23 2.71 3.89 3.74 10.13 

 

It is remarkable that with the AR-modeled Band-Power features, the average 

accuracy over all subjects was close to 80 %, with an increase of approximately 4 % 

from the online Biofeedback. 
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Chapter 8 

Conclusions & future Works 

8.1. ERS-BCI 

 

This thesis described the results of an evaluation of an asynchronous BCI application 

conducted with 10 subjects. We studied performances of human learning and 

machine learning BCI in a two-session paradigm that lasted 48 minutes each, using 3 

EEG channels and trying to find the minimum number of electrodes that could 

achieve the highest performance. Subjects interacted with strong Virtual Reality 

stimuli and were asked to control their forward-backward navigation in a virtual 

tunnel by using imagined forward-backward movements. Results of this project, as 

well as previous psychophysical results showed that the motor cortex was activated 

bilaterally when backward-forward movements were imagined, and thus a single 

EEG channel couldn’t be used to control a virtual reality application with these 

imagined movements. This result was remarkable within the TFR extracted online. 

The TFR was able to show the ERS activity for both tasks, and this was due to the 

lateralization of the tasks over the two sides of the motor cortex. The high frequency 

resolution of the TFR helped in the determination of the subject-specific band where 

the ERS occurred right after termination of the motor imagery. On the other hand, 

when using two EEG channels and applying the human learning and biofeedback 

training, the ERD couldn’t be used to train the subjects, so the training was used over 

the β-ERS band-power features. All of the subjects were able to control their 

navigational direction within the tunnel, but with an averaged accuracy of 76 %. The 

subjects found the backward control a harder task to achieve (the average accuracy 

for backward control was 50-70% versus ~64-84% for forward control). They all 

started the feedback sessions with a bias toward the forward control, which 

depicted that using backward imagined movement was not an easy task to control, 

and thus was not a feasible task to use in a motor imagery BCI. In session 2 training, 

some of the participants asked for a reference on their performance, like a feedback 

of the strength of their signals, so they would be able to know how to improve their 
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mental strategies, consequently we think that the lack of a continuous feedback 

contributed to the bad performance of some participants. It was well proven that 

the continuous feedback facilitates the learning stage to operate a BCI, so if we had 

used a continuous feedback on form of signal strength, maybe this could have 

helped in improving performance of the subjects. Most of the subjects found session 

one boring, yet they all found session two more attractive and challenging since it 

was themselves who were controlling the tunnel. At the first two runs, and when 

participants couldn’t achieve a good performance, they were tired due to 24 minutes 

of mental activity, and they were frustrated of not being able to control the tunnel, 

and, that’s why splitting up session 2 to be performed in two days helped the 

participants to relax, get their strength back, and overcome the frustration. So, 

maybe by using continuous feedback in session one and shortening this session, the 

participants would have found it less boring, they would have been more motivated 

and their performance would have been improved with less time. During the 

experiments, the participants commented on the fact that being in the stand-up 

position in the tunnel gave a realistic feeling of moving within the dynamic tunnel, 

and provided them with a more realistic motor imagery, even though it was tiring. 

The selected stimuli were strong enough to help the participants generate the 

correct motor imagery task. In regards to machine learning, the band-power features 

modeled with AR and classified with SVM, as well as the well-known and widely used 

power spectral asymmetrical ration with LDA classifier gave slight better results than 

human learning methods, with an average classification accuracy of almost 80 %. 

Using auto-regression modeling over the band power features helped in decreasing 

the number of features over one channel, but increased the required number of 

channels, where good classification accuracy was obtained only when using band-

power features from three channels, however these methods decreased the 

computation time. The use of the AR modeling method to extract the ERS from the 

background EEG was shown to be a good method and boosted the SNR of the event-

related potential’s ERS, but showed very poor results when used to extract the ERD. 

However, this technique didn’t improve classification accuracy when applied over 

the PSD asymmetrical ratio features comparing to the features themselves, and also 

showed poor results when used over PSD features in order to extract both ERD and 
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ERS. This was because the PSD features were originally extracted features, holding 

both the event-related potentials amidst and mixed with the background EEG noise, 

and that the ERS template generated by the PSD, was too vague to be detected and 

extracted by the AR. On the other hand, the ARX failed also to extract the event 

related potentials when modeling the PSD for the same previous reason, but 

provided better results when modeling the band-power features. In this project, the 

exogenous input used was the ensemble averaged templates of the backward-

forward trials, so the factor that raised sensitivity to the exogenous input in this 

project was the subject-specific template. The complexity of the task, the imagined 

forward-backward movement, generated ERD templates that were similar for both 

tasks, which made this complexity a contributor factor to the poor results the AR and 

ARX provided when modeling certain features. However, the ERS templates were 

quite different, especially bilaterally, even though the results didn’t vary remarkably 

with order higher than 8. Results suggested that a further investigation and 

understanding of the creation of the exogenous input is needed to improve the ARX 

performance. Finally, the SVM and LDA both proved to be very good classifiers for 

the forward-backward motor imagery features, however, using SVM was much more 

complicated due to the parameters that need to be set up and selected to get the 

best classification results. Using only LDA would have saved a lot of time since the 

results were similar. In this project, we only used linear classifiers, since they are the 

simplest to use. Perhaps polynomial and Gaussian classifiers would have provided 

better results, but would have required more analysis time to set their parameters 

and search for the optimum parameter that would yield to best classification 

performance. The classifiers weren’t implemented online, even though the interface 

codes were already provided by Thought Technology, this was due to the 

investigation nature of this study. Since motor imagery of backward movement 

required higher strength to achieve and control, another strategy to improve the BCI 

control is to assign an easier imagery task to control the backward navigation in the 

tunnel. Biofeedback training with two electrodes and machine learning with three 

electrodes provided almost same performance, however, using more than three EEG 

channels may have had improved the classification performance, but is still a trade 

off to use fewer channels. Finally, the online merge of human learning and machine 
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learning techniques would improve the performance and capabilities to control the 

BCIs. 

 

8.2. Future work 

 

We think that BCI era has started to merge into our daily lives and that the advances 

in BCI research are evolving.  

There are currently new findings in cognitive neurophysiology, psychophysics, neural 

engineering and brain connectors mapping that are leading into a better 

understanding of the functionality of the human brain which leads to a better EEG 

source activity control, which would help us in any future work in the BCI domain 

especially in the overall design level. As future work, we are looking into designing 

EEG caps and electrodes with new ergonomic designs so where they will be much 

easier to wear with fewer electrodes and the electrodes will require less contact gel. 

Another part of the BCI we are looking to develop is the signal processing part, 

where we are looking to develop new algorithms of artifact removal in a way that 

will make the signal cleaner and more efficient to be treated. New parameters and 

algorithms will be developed for the feature extraction and selection phase, like the 

pattern recognition algorithms, which will lead into new state of the art BCI that uses 

new concepts, rather than ERS or SSVEP. Furthermore, of the most important 

algorithms we are looking to develop are the machine learning and classification 

methods, in a way that would help us to recognize multi-tasks signals, rather than 

the binary tasks recognition used in this project. The BCI would then be used in a 

very wide application field, if several mental tasks were recognized. On the other 

hand, when we were performing the test over subjects, all subjects claimed that they 

felt more comfortable operating the BCI when they were provided with a feedback 

in form of controlling their navigation direction in the tunnel in session 2, where in 

session 1 they had the feelings that they were just “passive operators”. After the 

second run of session2, some of our subjects asked if they could have their 

performance displayed on the screen, so they would know how well they were doing 

and should they improve their mental strategy to control the tunnel. Most of the 

subjects were also wondering if there were easier protocols to follow for someone to 
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learn operating a BCI. So, as a future work, we are looking to develop new paradigms 

and protocols that would facilitate operating the BCI with less training, as well as 

finding ways to provide the subjects a feedback of their signals’ strength in form of 

bars that would be displayed over the screen, and maybe the 3D technique would be 

used for more attractive and realistic interaction. The development of displaying a 

feedback of the operator’s control signals, as well as the feedback in form of the 

controlled task, may lead in the future to use audio/visual and somato-sensory 

feedback, which may also, facilitates training and usability. 

 Error detection and response verification will take also a big part in our future work, 

in order to reduce the response time of the signal so it can be more close to real 

time. Immersive virtual environments are becoming a crucial demand in the BCI 

world, so by developing new scenes and environments, we will be able to conduct 

new treatment and rehabilitation methods for many psychological and pathological 

disorders, and may be by integrating the BCI to control not only virtual 

environments, but also to control robots and rehabilitation gadgets. 

Since BCI is a multidisciplinary field, nowadays, a new Master Degree academic 

program is taking place in the universities: Brain Computer Interface Engineering.  

The next few years should see the deployment of variety of these devices and their 

ongoing development to help improve the lives of so many people [56].  
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Appendix C: Additional results in the BCI 
study 

 

 
 

Session1 β -PSD ASSYMMETRICAL RATIO C3-C4 β- BAND-POWER OVER Cz BP 
AR ARX AR ARX 

Subject LDA SVM LDA SVM LDA SVM LDA SVM LDA SVM LDA SVM 
1 74.50 68.57 72.79 69.44 73.38 73.71 53.38 49.25 57.50 58.13 60.75 62.38 71.25 
2 76.84 71.85 77.63 70.84 75.29 67.84 59.50 50.00 60.95 60.38 61.25 62.38 85.00 
3 80.44 78.88 78.88 75.82 78.88 76.50 50.00 48.50 46.25 50.88 57.13 58.38 83.75 
4 73.38 67.75 74.91 66.50 73.38 72.13 57.63 50.00 58.63 62.63 60.50 46.75 55.00 
5 69.79 65.35 64.50 65.00 68.88 66.69 58.50 56.25 53.38 63.07 58.77 59.50 82.50 
6 69.50 67.16 68.25 69.91 71.47 68.38 51.00 50.63 63.75 63.00 63.63 63.63 82.50 
7 79.82 71.07 73.38 60.75 77.52 70.69 53.13 54.25 55.63 58.44 53.69 54.68 63.75 
8 77.54 72.47 74.50 75.57 75.60 77.57 55.63 50.33 50.07 56.41 58.13 59.98 85.00 
9 81.54 71.69 75.29 71.69 76.50 70.07 57.00 47.50 54.50 60.50 52.50 64.82 77.50 

10 77.79 67.32 74.35 66.85 76.85 68.44 59.50 50.00 48.82 57.52 58.38 63.57 77.50 
AV 76.11 70.21 73.45 69.24 74.77 71.20 55.53 50.67 54.95 59.10 58.47 59.61 76.38 

STDEV 4.23 3.89 4.24 4.66 3.02 3.72 3.47 2.63 5.51 3.74 3.40 5.43 10.13 

 

 

 

 

 




