
Université de Montréal

Reliable Solid Modelling Using Subdivision Surfaces

par
Peihui Shao

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté à la Faculté des arts et des sciences
en vue de l’obtention du grade de Maître ès sciences (M.Sc.)

en informatique

février, 2013

c© Peihui Shao, 2013.

Université de Montréal
Faculté des arts et des sciences

Ce mémoire de maîtrise intitulé:

Reliable Solid Modelling Using Subdivision Surfaces

présenté par:

Peihui Shao

a été évalué par un jury composé des personnes suivantes:

Pierre Poulin
président-rapporteur

Neil Stewart
directeur de recherche

Jean Meunier
membre du jury

RÉSUMÉ

Les surfaces de subdivision fournissent une méthode alternative prometteuse

dans la modélisation géométrique, et ont des avantages sur la représentation clas-

sique de trimmed-NURBS, en particulier dans la modélisation de surfaces lisses par

morceaux. Dans ce mémoire, nous considérons le problème des opérations géomé-

triques sur les surfaces de subdivision, avec l’exigence stricte de forme topologique

correcte. Puisque ce problème peut être mal conditionné, nous proposons une ap-

proche pour la gestion de l’incertitude qui existe dans le calcul géométrique.

Nous exigeons l’exactitude des informations topologiques lorsque l’on considère

la nature de robustesse du problème des opérations géométriques sur les modèles

de solides, et il devient clair que le problème peut être mal conditionné en présence

de l’incertitude qui est omniprésente dans les données. Nous proposons donc une

approche interactive de gestion de l’incertitude des opérations géométriques, dans

le cadre d’un calcul basé sur la norme IEEE arithmétique et la modélisation en sur-

faces de subdivision. Un algorithme pour le problème planar-cut est alors présenté

qui a comme but de satisfaire à l’exigence topologique mentionnée ci-dessus.

Mots clés : incertitude, robustesse, calcul géométrique, arithmétique en préci-

sion finie, arithmétique des intervalles, surfaces de subdivision.

ABSTRACT

Subdivision surfaces are a promising alternative method for geometric mod-

elling, and have some important advantages over the classical representation of

trimmed-NURBS, especially in modelling piecewise smooth surfaces. In this the-

sis, we consider the problem of geometric operations on subdivision surfaces with

the strict requirement of correct topological form, and since this problem may

be ill-conditioned, we propose an approach for managing uncertainty that exists

inherently in geometric computation.

We take into account the requirement of the correctness of topological infor-

mation when considering the nature of robustness for the problem of geometric

operations on solid models, and it becomes clear that the problem may be ill-

conditioned in the presence of uncertainty that is ubiquitous in the data. Start-

ing from this point, we propose an interactive approach of managing uncertainty

of geometric operations, in the context of computation using the standard IEEE

arithmetic and modelling using a subdivision-surface representation. An algorithm

for the planar-cut problem is then presented, which has as its goal the satisfaction

of the topological requirement mentioned above.

Keywords: uncertainty, robustness, geometric computation, finite-precision

arithmetic, interval arithmetic, subdivision surfaces.

CONTENTS

RÉSUMÉ . v

ABSTRACT . vii

CONTENTS . ix

LIST OF FIGURES . xiii

ACKNOWLEDGMENTS . xv

CHAPTER 1: INTRODUCTION . 1

CHAPTER 2: ERROR ANALYSIS FOR GEOMETRIC COMPU-

TATIONS . 5

2.1 Error analysis . 6

2.1.1 Sources of errors . 6

2.1.2 The IEEE floating-point number system 7

2.1.3 Backward error analysis . 8

2.1.4 Condition number of a problem 9

2.2 Robustness in geometric computations 10

2.2.1 Inconsistency in the representation 10

2.2.2 Metrics for the measurement of error 12

2.2.3 Conditioning of geometric problems 13

2.3 Proof of robustness for geometric algorithms 16

CHAPTER 3: REPRESENTATIONS ANDOPERATIONS IN SOLID

MODELLING SYSTEMS 19

3.1 Solid modelling . 19

3.1.1 Introduction . 19

3.1.2 Mathematics for solid representation 20

x

3.1.3 Constructive solid geometry 21

3.1.4 Boundary representation . 22

3.2 Mesh representation . 23

3.2.1 Definition and types of meshes 23

3.2.2 Polygonal meshes . 24

3.3 Trimmed-NURBS representation 24

3.3.1 Definition . 25

3.3.2 The trimming operation . 26

3.4 Subdivision surfaces . 27

3.4.1 Introduction . 27

3.4.2 Classification . 27

3.4.3 The Catmull-Clark scheme 29

3.4.4 The Loop scheme . 30

3.4.5 Piecewise smooth subdivision surfaces 30

3.5 SGC cellular representation . 32

CHAPTER 4: BOOLEANOPERATIONS ON SUBDIVISION SUR-

FACES . 35

4.1 Evaluation of Loop surfaces . 35

4.1.1 Stam’s method . 36

4.1.2 The Wu-Peters method . 37

4.2 Boolean operations on subdivision surfaces 41

4.2.1 The surface-based approach 41

4.2.2 The voxel-based approach 45

CHAPTER 5: THE REFORMULATION OF BOOLEAN OPERA-

TIONS . 47

5.1 The necessity of reformulation . 48

5.2 Binding of cells . 49

5.3 Verification of Bézier complexes . 51

5.4 Resolution of ambiguities . 51

xi

5.5 Outline of a general solution . 56

CHAPTER 6: MANAGINGUNCERTAINTY OF GEOMETRIC COM-

PUTATION WITH BACKWARD ANALYSIS . . . 59

6.1 Introduction . 60

6.2 Uncertainty and condition numbers 63

6.3 Planar cut of a locally-planar mesh 65

6.4 The uncertainty-management process 71

6.4.1 Red-Green Loop triangulation 71

6.4.2 Triangles generating simple intersections 76

6.4.3 Detection of loops within a surface patch 79

6.4.4 Multiple intersections on surface-patch boundary 81

6.4.5 Algorithm giving patches with simple intersections 82

6.4.6 Tracing the graph defining the topology of S ∩ Pc 84

6.5 Discussion and future work . 84

6.5.1 The prototype implementation 85

6.5.2 Future work . 85

CHAPTER 7: DISCUSSION AND CONCLUSION 89

7.1 Forward analysis . 89

7.2 Summary and further work . 90

BIBLIOGRAPHY . 93

LIST OF FIGURES

2.1 Left: two adjoining trimmed-NURBS patches. Right: their

topological data [ASZ07]. 12

2.2 Wedge to be subtracted from a block. 14

2.3 Artifact produced using IEEE double precision. 14

2.4 A well-conditioned problem. 15

2.5 An ill-conditioned problem. 15

3.1 Left: an invalid solid model (non-regular). Right: a valid solid

model. 20

3.2 Examples of non-manifolds. 21

3.3 Left: a CSG model. Right: a B-rep model. 22

3.4 The triangular mesh representing a cone. 25

3.5 A classification of subdivision schemes. 28

3.6 Catmull-Clark stencils for the interior region (left: stencil for

a face vertex; middle: stencil for an edge vertex; right: stencil

for an existing vertex). 29

3.7 Catmull-Clark stencils for boundary vertices (top and bottom:

stencils for odd and even vertices, resp.). 30

3.8 Loop stencils for the interior region (left and right: stencils

for regular and extraordinary existing vertices, resp.; middle:

stencil for an edge vertex). 31

3.9 Loop stencils for the boundary vertices (top and bottom: sten-

cils for odd and even vertices, resp.). 31

3.10 Five charts for piecewise smooth surfaces. 32

3.11 The wedge S1 from Example 2.2.2, page 13, described in SGCs. 33

4.1 A regular Loop patch defined by its 12 control points. 36

4.2 A Loop patch with valence n and its neighbourhood. 38

4.3 Triangle-triangle intersection. 44

xiv

4.4 Intersection based on 2D parameter space subdivision. 46

5.1 Left: a VE binding. Right: an EE binding is composed of two

VE bindings followed by a refinement. 50

5.2 Boolean union of a spring clip and a block. 52

5.3 Automatic removal of ambiguities using “snapping”. 52

5.4 Two solids S0 and S1. 54

5.5 Manual resolution of ambiguities to meet the user intent. . . 54

6.1 Intersection of a plane and a locally-planar mesh. 63

6.2 Bevel specified by a Boolean difference. 64

6.3 Left: cross-sections of S and Int(S). Right: cross-section of

boundary B (thick line). 67

6.4 Cross-section of B: risk of change of topological form. 68

6.5 Labels on triangles in C. 69

6.6 Mesh made conformal by green subdivision. 72

6.7 Adjacent triangles subdivided at different levels. 73

6.8 Result of Red-Green Loop triangulation. 75

6.9 An example of C (triangles shown in red and green). 77

6.10 Possibility of a loop intersection with Pc. 77

6.11 No ambiguity in the topological form. 78

ACKNOWLEDGMENTS

I would like to thank, first of all, my director of research Neil Stewart. Without

his valuable guidance, his encouragement and our regular discussions through all

my research, this work would have been impossible.

I also wish to thank Pierre Poulin and Jean Meunier for accepting to read this

thesis and be the jury members. I would like to thank other people in the lab

LIGUM, Derek Nowrouzezahrai, Mohamed Yessine Yengui, Gilles-Philippe Paillé,

Dorian Gomez, Jonathan Dupuy, for our discussions and for their help with many

technical details.

Finally, I owe my special acknowledgment to my wife, Yulin, for her encourage-

ment and company in my life, and to my parents, for their support and encourage-

ment these past years.

CHAPTER 1

INTRODUCTION

With the advent of modern computers, numerical analysis has become an important

discipline of applied mathematics. Nowadays, in almost all fields of science and

engineering numerical computations are extensively used and have propelled the

development of these fields. Due to the application of finite-precision arithmetics

and uncertainty of data, which is almost inevitable in practice, however, we have to

know how reliable these computations are, before we can trust them as acceptable

solutions to our real-life problems. Unreliable computations may lead to disastrous

accidents, such as the famous Patriot missile failure during the Gulf War that

turned out to be caused by an inaccurate calculation of time.

In the field of geometric computing, numerical analysis plays the same role and

leads to similar difficulties. The most widely used representation for solid modelling

in the CAD/CAM area nowadays is trimmed-NURBS (Non-Uniform Rational B-

Splines), which permits manipulation of both analytical and free-form solids with

great flexibility and efficiency, making it the industry standard for representing

solids. This representation, however, suffers greatly from its inherent limitations

in describing complex free-forms—possible gaps and overlaps may exist between

NURBS patches. This is a serious problem to the interoperability of different

CAD/CAM systems, incurring very high monetary cost to industry: manual work

that is needed to repair the artifacts is reported to cost the U.S. automotive industry

over $600 million per year [BM99].
1 Other methods of representation, such as subdivision-surface [AS10, Sch96]

and multiresolution [KCVS98, Zor06] models are now finding more frequent use in

graphics applications, including game and film animations [DKT98]. While it is

likely that the trimmed-NURBS approach will remain standard in computer-aided

1The following two paragraphs are taken almost verbatim from a draft document [Ste11] by
N. F. Stewart.

2 CHAPTER 1. INTRODUCTION

design for some time, due to the large amount of legacy code that exists for this

kind of representation [Spa99, ISO97], it seems worthwhile to consider what might

be achieved in terms of formal guarantees of reliability using subdivision-surface

models. Since the costs of unreliable models are so high in the context of computer-

aided design, a shift away from trimmed-NURBS representations may eventually

occur.

The problem of numerical reliability is often studied in the context of regularized

Boolean operations on objects [ASZ07, Req80], because these operations are im-

portant and typical of the most complicated operations that must be implemented.

It is also true, however, that the problem of computing a regularized Boolean op-

eration is inherently ill-conditioned [ASZ07]. The appropriate response in such a

situation (consider, for example, the classical problem of polynomial approximation

[FM67, Sec. 19]) is to appropriately reformulate the problem. In this thesis, we

take this as the starting point. We seek to reformulate the ill-conditioned problem

of computing a regularized Boolean operation, in the context of subdivision-surface

models, in such a way that the reformulated operation corresponds to the needs of

the user, and in such a way that a reliability proof is possible.

Note that we do not propose new algorithms for Boolean operations on solids

here; rather, we will show how to assemble certain known methods in a way that

permits us to define operations for which rigorous theorems can be proved. Also,

rather than studying general Boolean operations, we study the special case of the

planar-cut problem.

The outline of this work is as follows: first, a summary about errors and uncer-

tainty in numerical analysis and especially in geometric computations is presented

in Chapter 2. Some examples are also given to illustrate important concepts and

methods in error analysis. In Chapter 3 we give an introduction to popular rep-

resentations (meshes, trimmed-NURBS, and subdivision surfaces) and operations

in solid modelling systems. Since error analysis in Boolean operations on subdi-

vision surfaces is our ultimate objective, two approaches to implementation are

presented and compared in Chapter 4. We will use the surface-based one in our

CHAPTER 1. INTRODUCTION 3

work. In Chapter 5 we conclude that the problem of Boolean operations on solids

is ill-conditioned and propose to reformulate the problem of Boolean operations

so that we can deal with ill-condition appropriately. An algorithm based on cell

bindings is then described. We also propose to eliminate self-intersections in the

computed solid by converting it into a Bézier complex and applying conditions that

exclude self-intersections of composite Bézier curves and patches. In Chapter 6 an

interactive approach for the robust implementation of the planar-cut problem with

a subdivision-surface representation, is proposed, in the context of computation

using the standard IEEE arithmetic and when the correct topologial form of the

result is required in the problem definition. As this approach is performed with the

backward error analysis, we complement it with the approach that deals with the

same problem, but uses the forward error analysis. This is presented in the final

chapter. We also give a summary of the thesis, and possible ways to improve the

work in the future.

CHAPTER 2

ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS

In numerical analysis, errors are unavoidable in all kinds of practical algorithms

and sometimes render the results completely meaningless. In the development of

algorithms, dealing with rounding errors is only one of the problems of numerical

analysis. In [Tre92], the definition of numerical analysis is given as “the study of

algorithms for the problems of continuous mathematics”, which emphasizes that

one major task of numerical analysis is to reduce the impacts of possible errors to

the final outputs.

Possible sources of errors in numerical analysis are rounding, truncation, and

data uncertainty [Hig02]. The use of finite-precision arithmetic is directly respon-

sible for the rounding errors, while the alternatives such as exact arithmetic and

interval arithmetic, may not suffer from this type of errors, but they are far from

capable of playing the role of finite-precision arithmetic in practice [Hof01]. The

problem of robustness in geometric computations, however, involves not only the

errors mentioned above, but also certain intrinsic properties of geometric mod-

elling, as will be discussed in this chapter. Overviews of robustness in geometric

computations can be found in [ASZ07, Pat02, Hof01].

In this chapter, we present a brief overview of error analysis theory, introducing

some concepts such as condition number and backward error analysis. We then

talk about errors in geometric computations, with a practical example to illustrate

inconsistency in geometric representations. Finally, a framework that can be used

to prove the robustness of geometric algorithms with backward error analysis is

described.

6 CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS

2.1 Error analysis

2.1.1 Sources of errors

First, errors of the sort found in the field of numerical analysis can be generally

found in geometric computations. But we should also be concerned about other

types of errors that are due to the natural properties of geometric modelling, and

that are often considered difficult in analysis and treatment.

In the field of numerical analysis, there are mainly three kinds of errors: round-

ing, data uncertainty, and truncation [Hig02]:

• Rounding errors (or round-off errors) are unavoidable due to use of finite-

precision arithmetic; they are differences between the calculated values and

the true mathematic values. This type of error can be exemplified by the

difference between the true value of the irrational golden ratio ϕ = 1+
√

5
2

and its approximate value 1.6180 using a floating-point number rounded to

four decimal places. This is a representation error, which can be amplified

during subsequent calculations, even to such an extent that the final result

is rendered meaningless.

• Truncation errors arise from some numerical algorithms (for example, Euler’s

method for solving ordinary differential equations) that take a finite number

of terms from the infinite Taylor series. This type of error is inevitable even

with infinite-precision arithmetic, because truncation of Taylor series to a

finite number of terms for these numerical algorithms is a necessary step. In-

creasing the number of terms renders the computation slower, while omitting

more terms reduces the accuracy of the result. Thus the optimization of such

algorithms is a compromise between accuracy and computation speed [BS92].

• Data uncertainty may arise from measurement uncertainty, from rounding

errors in storing the data, or from errors propagated from previous compu-

tations.

CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS 7

Most standard textbooks on numerical analysis, for example [Hig02, BF10],

generally emphasize finite precision computation and rounding errors, sometimes

neglecting other types of errors, such as truncation errors and measuring errors.

This may give the impression that the study of reliable numerical methods mainly

deals with the study of rounding errors. This is however far from true [Tre92].

In the field of geometric computation, another common source of errors is ap-

proximations used in geometric algorithms [Jia08, Section 2.1]. The idea of ap-

proximation is seen in various scientific domains, and in free-form modelling it

is especially necessary due to the need for efficient computation and rendering of

complex analytical surfaces and curves. Low-degree curves are often used to ap-

proximate high-degree curves: for example, when computing the intersection of two

Bézier/B-spline surfaces, a low-degree approximation can dramatically reduce the

computational work that is difficult or even impossible to complete. Polygonal rep-

resentations that are used as approximations of the NURBS or subdivision-surface

objects are often preferred over the original free-form representations, when we

have to perform some tasks that do not need precise representations.

It is often needed to make decisions about position relations between geometric

elements that are adjacent in space, for example, the decisions we have to make

on the two objects S0 and S1 in Example 2.2.2 of page 14, which will be discussed

later. This is, however, another source of errors in geometric computations.

2.1.2 The IEEE floating-point number system

The newest IEEE standard for Floating-Point Arithmetic (IEEE 754-2008) [IEE08]

is now the most widely accepted standard for floating-point computation. It defines

basic formats for 32, 64, or 128 bit encoding, arithmetic formats, and interchange

formats. It describes five rounding algorithms. This standard also specifies excep-

tions and the default handling actions.

Despite the fact that floating-point arithmetic has drawbacks due to its impre-

ciseness, it has numerous advantages and is a fundamental “language” in engineer-

ing and scientific computation. The IEEE standard for floating-point arithmetic is

8 CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS

well-supported by various general-purpose and specialized programming languages,

and has been adopted and optimized in current computer hardware and software

[For92].

2.1.3 Backward error analysis

Suppose that a numerical algorithm is modelled by a function y = f(x), with input

data x and output data y. The quantity y1
′ is the computed value of f(x1), and

y1 is the true value of f(x1), that is, y1
′ ≈ y1 = f(x1). We have two basic forms of

error analysis for this algorithm [Hig02, DB07]:

Forward error analysis:

With it, one tries to bound the forward error, which is the absolute error in

the output |y1
′ − y1|, or the relative error |y1′−y1

y1
|.

Backward error analysis:

With it, one tries to find the backward error, by perturbing the input data by

a small value |∆x1| such that the computed output y1 is exact f(x1 + ∆x1),

and bounding this small value |∆x1|. We may find many such ∆x1; in this

case, we seek to find a minimum value for |∆x1|, possibly divided by |x1|, as
the backward error.

Backward error analysis is the preferred error-analysis method, whose main

advantage is that once the backward analysis has been performed, it makes no

reference to the exact solution and reduces the bounding of the forward error to

a perturbation analysis, subject to the input having been perturbed by rounding

and truncation errors [Hig02].

Example 2.1.1. (Backward analysis of a linear system)

Here an example is given to illustrate the idea of backward error analysis. Con-

sider a linear system Ax = b; the problem is given by the input matrix A and the

input vector b. Through a certain algorithm, we have obtained a numerical solution

y which can be viewed as an approximation of the exact solution x. Suppose that y

CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS 9

is the exact solution to some perturbed problem (A + ∆A)y = b + ∆b, and denote

that δ = ‖∆A‖/‖A‖ + ‖∆b‖/‖b‖, where ‖ · ‖ denotes the norm of the vector or

matrix. We then bound the backward error of this algorithm as the minimum of δ.

2.1.4 Condition number of a problem

To measure how sensitive the output is to small changes in the input, we call a

problem ill-conditioned when “small” changes in the input can cause “large” changes

in the output; otherwise we call it well-conditioned. The definitions of “large” and

“small” can only give us a coarse impression of how well the problem is formed,

i.e., how stable the output is when subjected to a perturbation in the input. In

fact, this property of the problem can be measured more precisely by the condition

number [Hig02].

The condition number of a problem relates its forward error and backward error,

according to a simple inequality:

ef / λ× eb (2.1)

where ef , eb, and λ denote the forward error, the backward error, and the condition

number, respectively.

From this relation it is easy to see that a solution to an ill-conditioned problem

can produce a much larger error in comparison with the perturbations in the input.

In this case, we actually have no choice except to reformulate the problem, with the

hope to convert it into a well-conditioned one, since as seen from this inequality, we

will get a large error anyway when the condition number is large, due to uncertainty

in the input data. Only for a well-conditioned problem can we expect an algorithm

that can solve the problem accurately.

Example 2.1.2. (Condition number of a matrix)

In Example 2.1.1, suppose further that A is a square nonsingular matrix and

b 6= 0. A perturbation analysis gives the following result (neglecting second-order

10 CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS

terms):
‖x− y‖
‖x‖ / ‖A‖ · ‖A−1‖

{‖∆A‖
‖A‖ +

‖∆b‖
‖b‖

}
(2.2)

where ‖ ·‖ denotes a matrix norm subordinate to the vector norm when we measure

the error of the solution y. The condition number λ for this problem is expressed

as λ = ‖A‖ · ‖A−1‖, which is often called the condition number of a matrix. We

also have the forward error ef = ‖x−y‖
‖x‖ , and the backward error eb = ‖∆A‖

‖A‖ + ‖∆b‖
‖b‖ .

This inequality takes the same form as (2.1) and shows the relation between the

forward error, the backward error, and the condition number in a linear system.

The Hilbert matrix Hn of order n is a square matrix with entries of the form

Hij =
1

i+ j − 1
, 1 ≤ i, j ≤ n.

It is considered as a canonical example of ill-conditioned matrices, with the condi-

tion number under the L2 norm being as large as 4.753 × 108 when order n = 7

[DB07].

2.2 Robustness in geometric computations

As discussed in the previous section, numerical geometric computations not only

fail due to common errors that are often seen in numerical analysis, but also suffer

from robustness problems that stem from certain natural properties of geometric

modelling, for example, inconsistency in the representations of models and approxi-

mations used in geometric operations. In this section, we will detail the uncertainty

in geometric representations, discuss the problem of metrics for the measurement

of error in geometric modelling, and give a framework to analyze the possible errors

in geometric computations.

2.2.1 Inconsistency in the representation

As we will talk about in Sections 3.1.3 and 3.1.4, there exist two main representa-

tion schemes for solids: CSG (Constructive Solid Geometry) and B-rep (Boundary

CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS 11

Representation). CSG describes a solid implicitly using a set of primitives and some

basic operations, i.e., rigid body motion and the regularized Boolean operations.

It guarantees that the resulting solids are water-tight if its primitives are valid r-

sets. This scheme is conceptually easy, defining objects in a constructive manner,

however, the kernels of modern solid modellers actually use a B-rep representation

scheme, which is more flexible and supports a much richer set of operations. B-

rep is also more convenient for graphical display. In this work, our discussion is

focused on B-rep, which is the representation scheme that most modern geometric

modellers adopt in their kernels.

Inconsistency within the B-rep may exist between its topological data and ge-

ometric data, and its geometric data may have redundancy for supporting vari-

ous manipulations and interrogations conveniently, which almost certainly leads to

data conflicts. Due to the use of finite-precision numbers, i.e., floating-point repre-

sentation, and the use of numerical approximations (for example, to approximate

high-degree intersection curves with low-degree polynomials) [HS05], the represen-

tations are fundamentally inconsistent, especially in the case of solids composed

of free-form surfaces. This is a main bottleneck for the downstream applications

when the inconsistent data is imported to other systems [Far99].

Example 2.2.1. (Intersection between two trimmed-NURBS patches)

One example from [ASZ07] for inconsistency in the representation of models

can be illustrated by Figure 2.1 [ASZ07, p. 13]. Topologically, the two trimmed-

NURBS patches are a 2-chain sharing an edge, as shown on the right of Figure

2.1. Geometrically, these two patches are supposed to join along the intersection

of two faces F and F ′, restricted to two parametric domains D and D′, and their

actual boundaries are stored as numerical data by their pre-images, i.e., the two p-

curves p and p′. There exist also two other parts of the representation: the boundary

curve between F and F ′, denoted b(t), t ∈ [0, 1], and a corner vertex v for each 0-

cell in the symbolic data. In practice it is very likely that these representations have

conflicts, i.e. the images of the p-curves p and p′ do not coincide with the boundary

curve b, and the corner vertex v may not fall precisely on b. The representation of

12 CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS

trimmed-NURBS will be discussed in more detail in Section 3.3.

Figure 2.1: Left: two adjoining trimmed-NURBS patches. Right: their topological
data [ASZ07].

2.2.2 Metrics for the measurement of error

To judge the quality of a computed result, or to measure the distance between a

computed solution and a true solution, metrics for the measurement of error are

needed [HS05]. The reason why the metrics for error measurement in solid mod-

elling need special discussion is that, the outputs are generally geometric models,

and the difference between the true model and the computed model needs to be

quantified.

For some applications in solid modelling, a metric should require that two ob-

jects considered to be close, for example, a computed object and the one described

in the problem, should have the same topological form. This requirement can

have different interpretations: a stringent metric can require an ambient isotopy

[APS00] between two close geometric objects. This metric, however, does not take

into account narrow cracks or thin protrusions. Metrics that take into account

these possible features are discussed in detail in [BS92].

CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS 13

2.2.3 Conditioning of geometric problems

The conditioning theory is important in that when we encounter ill-condition of a

problem, we would not expect to find an accurate algorithm for this problem. This

can be easily illustrated by a geometric example about Boolean operations between

two solids in the following.

Example 2.2.2. (Conditioning of geometric problems)

Consider the problem illustrated in Figure 2.2, which is also mentioned in

[HS05]. Note that this example corresponds to a practical real-life requirement of

feature-modelling systems. In the figure, a bevel is defined as the regularized Boolean

difference between the block S0 and the wedge S1. The result from this Boolean op-

eration, S0 −∗ S1 will, however, contain undesirable artifacts unless some extra

information is given. Here, even the exact calculation of S0 −∗ S1 would be insuf-

ficient for extracting the exact topological form of the result because of uncertainty

in the data. A typical example, obtained by actual floating-point computation, is

shown in Figure 2.3, where a spurious artifact appears in the exact solution of

the set-difference problem. The left of Figure 2.3 shows the result of the Boolean

difference operation. The right is produced by double-precision computation and

displayed using the OpenGL library, and double precision here is sufficient to show

the form of the exact set S0−∗S1. The corresponding point A, and the correspond-

ing edges a, b, c, and e, are marked in this figure, while the dotted line d on the

right is a hidden line in the solid obtained.

This example demonstrates that uncertainty in the geometric data is almost

inevitable with finite-precision arithmetic, and that some applications such as

Boolean operations are especially vulnerable when exposed to such uncertain data,

because they are ill-conditioned when no extra information is provided about the

topology, i.e., even a small error in the input can lead to a large error in the result.

For example, a very small perturbation in the wedge position (Figure 2.2) can incur

a result that is completely different with regard to the topology, e.g., a solid having

thin cracks or protrusions. Figure 2.3 shows such a solid: two faces of the wedges

14 CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS

Figure 2.2: Wedge to be subtracted from a block.

Figure 2.3: Artifact produced using IEEE double precision.

CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS 15

do not coincide with the corresponding faces of the block, and the result has two

protruded parts that touch at the edge e of the block, forming a hole (drawn in

black). Note that the thickness of the two protrusions has been exaggerated on the

left of Figure 2.3 so that they are visible.

Figure 2.4: A well-conditioned problem.

Figure 2.5: An ill-conditioned problem.

The general situation can be illustrated in the following way: in Figure 2.4

[ASZ07, p. 19], a small perturbation does not give us a big perturbation in the

result for well-conditioned problems, while in Figure 2.5 [ASZ07, p. 20], a small

perturbation is enlarged in the result for ill-conditioned problems. (In these two

figures, P denotes the class of problems, and S the class of solutions. Filled circles

in P denote the given problems, and unfilled circles in P denote problems that are

16 CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS

presented to the method. The presented problems are always slightly perturbed

due to uncertainty in the data. Filled circles in S denote true solutions to the given

problems or to the presented problems, and unfilled circles in S denote computed

solutions for the presented problems.) Now, we can see that a stable method does

not necessarily produce a small error. We have to take the condition of the problem

into account.

By now, we can conclude that for a numerical problem in geometric modelling,

error in the result has two sources: it may come from the ill-condition of the

problem itself, or it may be due to robustness issues of the method that is used to

solve the problem. If we can prove that the perturbation resulting from the method

is always no larger than the perturbation in the uncertain data, then if the method

is stable it provides us the results that are as good as the data warrant.

2.3 Proof of robustness for geometric algorithms

Boolean operations, as a fundamental set of operations in solid modelling, have been

supported by most modern modelling systems. They are however ill-conditioned

and error-prone, subject to inconsistency in the representations. Detecting and

removing irregularities such as cracks and protrusions is a tedious and costly task,

and as we have seen, impossible to do without external guidance. Many algorithms

that are often called model healers have been proposed to repair model artifacts due

to imperfect calculations of boundary intersections, for example, the artifacts in

Figure 2.3. They can be roughly categorized into surface-based and volume-based

algorithms. The first class of algorithms works on the input surfaces, trying to

detect and resolve existing artifacts with the models. The second class of algorithms

first converts the input into a volumetric representation, tries to detect and repair

the artifacts on it, and converts it back into the surface representation by extracting

the boundary surfaces. In this work, we will use a surface-based approach. More

importantly, however, we aim to provide rigorous guarantees on the precision of

the computed result.

CHAPTER 2. ERROR ANALYSIS FOR GEOMETRIC COMPUTATIONS 17

The paper [ASZ07] can serve as a framework to prove the robustness of geomet-

ric algorithms, but the required error analyses are generally difficult, mainly due to

the limitations of the representation of trimmed-NURBS. It is for this reason that

we mainly consider subdivision-surface models for our research. The representation

of subdivision surfaces will be discussed in more detail in Section 3.4.

CHAPTER 3

REPRESENTATIONS AND OPERATIONS IN SOLID MODELLING

SYSTEMS

The notion of solid modelling first emerged in the 1970’s, and was largely promoted

by the seminal research at the University of Rochester [VR93]. Solid modelling

is distinguished from other areas of geometric modelling and computer graphics

mainly by its emphasis on physical fidelity [FHK02, Ch. 20]. Today, solid mod-

elling has rapidly become a central area of research and development that involves

a growing number of applications. It forms a foundation of CAD, and is indis-

pensable in other modern industries, such as computer vision, medical modelling,

architecture, and entertainment.

A brief introduction to solid modelling is first given in this chapter. The math-

ematical foundations for solids and the principal computer representation schemes

(CSG and B-rep) are presented in this part. Then, three popular representation

methods—meshes, trimmed-NURBS, and subdivision surfaces, all belonging to the

B-rep scheme—are discussed, along with their respective power and limitations in

application. Finally, the SGC (Selective Geometric Complexes) representation that

is used in our work to enable bindings of topological cells is discussed.

3.1 Solid modelling

3.1.1 Introduction

A solid model represents a digital model of a three dimensional object that can exist

physically. Solid modelling is a sub-discipline of computer graphics that concerns

the creation, exchange, manipulation, and animation of solid models. The major

difference between solid modelling and geometric modelling is that the shapes can

be only three dimensional solids in solid modelling, but can be of any dimension

in geometric modelling (although mostly of two or three dimensions). Solid mod-

20 CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ...

elling has various applications in many industries, such as entertainment, medical

imaging, and engineering, where models can be created using general purpose or

specialized CAD systems.

For a summary of representation schemes and common operations in solid mod-

elling, one can refer to [RR99, Man87] and [FHK02, Chapter 20].

3.1.2 Mathematics for solid representation

The standard mathematical representation of physically rigid solids is the r-set

proposed in [Req80]. An r-set is bounded, regular, and semi-algebraic. For this

definition, boundedness indicates that the set has finite contents, i.e., it can be

bounded by a finite-size ball. Regularity means that the set is equal to the closure

of its interior parts. A set is semi-algebraic when it can be expressed as a finite

sequence of Boolean set operations (union, intersection, difference, etc.) of sets of

the form {(x, y, z) | f(x, y, z) ≤ 0}, where f is a polynomial function. See Figure

3.1 for a non-regular model and a valid solid model.

Figure 3.1: Left: an invalid solid model (non-regular). Right: a valid solid model.

An r-set can be manifold or non-manifold. A manifold can be viewed as a

topological space that is locally Euclidean, i.e., any small enough neighbourhood

near a point resembles the open unit ball, or the half unit ball in a specific dimension

D. The open unit ball is the open interval (−1, 1), if D = 1, or an open disk, if

D = 2, etc. In solid modelling, a manifold has a dimension D = 3, and its

manifold boundary has dimension D = 2. A non-manifold model in solid modelling

CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ... 21

represents a solid that is “unmanufacturable”, for example an object having two

parts that touch only at a vertex or along an edge, as shown in Figure 3.2. Some

solid modellers are limited to create and manipulate only manifolds. Use of such

modellers must avoid certain operations that produce non-manifolds [RR99].

Figure 3.2: Examples of non-manifolds.

3.1.3 Constructive solid geometry

CSG (Constructive Solid Geometry) and B-rep (Boundary Representation) have

been the principal representation schemes for solids. In Figure 3.3 [Str06, p. 6], a

solid is represented using these two representation schemes, in which “−” denotes

the Boolean difference, and “+” denotes the Boolean union. CSG represents solids

as a hierarchy of Boolean operations that work on primitives, which are the sim-

plest solid objects used to build more complex objects. Primitives can typically

be parameterized, i.e., they can be described by a set of parameters (for example,

a cuboid can be described by its central coordinates and its dimensions). The

allowable operations on primitives are rigid motions (rotations and translations),

positive scalings, and regularized Boolean operations which include union, intersec-

tion, and difference. A regularized Boolean operation is performed by imposing the

topological interior operation and the topological closure operation on the result

obtained from the corresponding classic Boolean operation. (Regularization is usu-

ally denoted by “*”, see page 13) The reason that a regularized version of Boolean

22 CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ...

operations is used in solid modelling, is to guarantee that the result remains valid

as an r-set.

The main advantage of CSG is that it assures that the resulting solids are valid

as r-sets, if all the primitives are valid. This is guaranteed by the nature of the

affine transformation and regularized Boolean operations that are allowed with

CSG. This property of CSG is very important for its applications in solid model

computation and manufacturing. It is not true, however, that the resulting solids

are manifolds when all the primitives are manifolds (see Figure 3.2 for examples).

Figure 3.3: Left: a CSG model. Right: a B-rep model.

3.1.4 Boundary representation

B-rep is another popular representation scheme in solid modelling. It represents

a solid model by its connected boundary elements—faces, edges, and vertices. In

comparison with CSG, B-rep is more flexible, and supports a much richer set of

operations, such as sweeping, blending, drafting, shelling, tweaking, and chamfer,

which enables it to have extensive uses in different geometric applications. In fact,

B-rep is what most solid modellers adopt as their internal representation method.

For efficiency and convenience in different geometric queries and operations, the

data of B-rep models generally have two parts: topological data and geometrical

CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ... 23

data. Topological data describe the topological connectivity of faces, edges, and

vertices, while geometrical data define the geometrical positions of them. The

fact that the data have its geometrical form and topological form, however, can

potentially cause conflicts in data, as discussed in the last chapter.

The conversion from CSG to B-rep is usually possible [GO97], but its reverse

conversion is ambiguous and more complicated in implementation [SV91]. Modern

solid modelling systems generally use B-rep in their kernels, but may use multiple

schemes to provide better support for model representation and manipulation.

Apart from these two schemes, there are other alternatives to represent solid

models, one of which is called the spatial decomposition scheme [Sam90]. With this

scheme, a solid is described by a list of the non-overlapping spatial cells occupied.

The type of cells can be simply cubical, tetrahedra, or analytical shapes bounded

by curved surfaces. The arrangement of cells may be regular, using an octree, or

irregular, using for example a BSP (Boundary Space Partition) tree. We will use

such a representation, namely the SGC (Selective Geometric Complexes), as part

of the solution to our problem.

In the following, three popular representation methods in solid modelling are

introduced. Each has its own advantages and drawbacks in different geometric

applications. Mesh representation is conceptually simple and highly desirable for

applications such as real-time displaying and manipulation; trimmed-NURBS is

the de facto standard in CAD industry, and has been investigated for decades; the

representation of subdivision surfaces is promising in that it can overcome some

fundamental limitations of the trimmed-NURBS, for example, the difficult problem

of the trimming operation.

3.2 Mesh representation

3.2.1 Definition and types of meshes

According to Bern and Plassmann [BP00], a mesh is a “discretization of a geo-

metric domain into small simple shapes, such as triangles or quadrilaterals in two

24 CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ...

dimensions and tetrahedra or hexahedra in three dimensions”. Meshes can be clas-

sified in different ways, one way is to classify them by the dimensions—two or

three. Another way is to classify them by the organization of elements: structured,

unstructured and hybrid. Detailed information about mesh classification and the

corresponding generation methods can be found in [BP00, Owe98].

3.2.2 Polygonal meshes

A polygonal mesh is composed of vertices, edges, and faces that define the shape of

a geometric model, representing the boundary surfaces in the case of a solid model.

The faces are usually triangles, quadrilaterals, or other simple convex polygons,

of which triangles are the most widely adopted. For a comprehensive summary of

polygonal meshes and the related operations, such as smoothing, decimating and

remeshing, one can refer to [BPK+07]. Figure 3.4 shows a simple triangular mesh.

The representation of polygonal meshes is extensively used in computer graph-

ics and solid modelling for its simplicity in rendering and representation, and for

its power in approximating complex analytical solid models, e.g., NURBS and sub-

division surfaces. Today’s graphics hardware is most efficient in manipulating and

rendering graphics primitives, such as points, lines, and triangles, and complex

convex or concave shapes are usually decomposed into graphics primitives before

rendering. More complicated cases involve free-form objects, which can not be out-

put to the screen directly and are usually converted to an approximate polygonal

representation before rendering.

3.3 Trimmed-NURBS representation

Trimmed-NURBS (Non-Uniform Rational B-Splines) have been commonly used in

the CAD/CAM/CAE industry and form part of international and industrial stan-

dards, such as STEP [ISO97] and ACIS [Spa99]. They are also supported in various

graphics programming interfaces, such as OpenGL, Direct3D, and Pixar’s Render-

man. NURBS are now the de facto industry standard for the representation and

CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ... 25

Figure 3.4: The triangular mesh representing a cone.

manipulation of geometric models. NURBS can be used to generate and represent

both analytic shapes, such as quadric shapes, and free-form objects, such as car

bodies.

3.3.1 Definition

NURBS surfaces can be viewed as generalizations of uniform nonrational B-spline

surfaces and rational and nonrational Bézier curves and surfaces. The mathemati-

cal form of a NURBS surface of degree (p, q) in the directions u and v, respectively,

can be defined as [PT95]

S(u, v) =
n∑
i=0

m∑
j=0

Ri,j(u, v)Pi,j 0 ≤ u, v ≤ 1 (3.1)

where n = p + 1, m = q + 1, and Ri,j(u, v) are piecewise rational basis functions

defined by

Ri,j(u, v) =
Ni,p(u)Nj,q(v)wi,j∑n

k=0

∑m
l=0Nk,p(u)Nl,q(v)wk,l

. (3.2)

26 CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ...

The {Pi,j} form a bidirectional control net, where Pi,j ∈ R3, the {wi,j} are the

weights, and the {Ni,p(u)} and {Nj,q(v)} are the nonrational B-spline basis func-

tions defined on knot vectors.

3.3.2 The trimming operation

The main problem for modelling with trimmed-NURBS is with the trimming oper-

ation (see Figure 2.1, left), which is both expensive and error-prone. The trimming

operation is a restriction of S(u, v) to a parametric subdomain that is typically

not rectangular, thus allowing for topologically arbitrary patches [CM99]. This

restriction is specified by the trimming curves and some criteria under which the

unwanted region of the original tensor-product NURBS surface patch is removed.

The unavoidable gaps stem from the difficulty of representing intersection curves

precisely in analytical form: for example, the degree of the intersection curve of

two bicubic surfaces can be up to 324 [SAG84] and its algebraic genus can be as

high as 433 [KS88]. For this reason, in practice the intersection curves can only be

represented approximately.

The possible gaps between adjacent trimmed-NURBS patches can be a serious

problem in the domain of solid modelling, especially to the interoperability of

different CAD/CAM systems, and manual efforts are sometimes necessary to detect

and close gaps. As mentioned in the introduction, this process is very expensive,

and was reported to cost the US automotive industry over $600 million per year in

lost productivity [BM99].

Various solutions that aim to address the gap problem have been proposed, but

a general method that is capable of solving this problem adequately has failed to

emerge. Subdivision surfaces, as will be introduced in the next section, overcome

the topological limitations that exist with the trimmed-NURBS representation.

CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ... 27

3.4 Subdivision surfaces

3.4.1 Introduction

Subdivision surfaces [AS10, CC78, Loo87, DS78, BK04, Sch96] have found more

and more applications in arbitrary-topology surface modelling, computer animation

and engineering design. Subdivision surfaces are a promising alternative method

for geometric modelling, relative to the classical trimmed-NURBS representation.

The main advantage of subdivision surfaces is that a smooth surface can be

obtained from an arbitrary coarse initial mesh, through recursive refinement. Sub-

division surfaces are conceptually simple, filling a gap between polyhedral surface

modelling and spline surface modelling. Subdivision surfaces are also closely related

to them in that the control meshes are polyhedra defined by polygonal patches and

that the refinement schemes employed in the subdivision procedures are analogous

to those for spline surfaces and curves. There are a lot of refinement schemes

available in the literature, of which the Catmull-Clark [CC78], Loop [Loo87], and

Doo-Sabin [DS78] schemes are the basic ones.

In the following, the classification of various subdivision schemes is discussed.

An introduction is given on two classic subdivision schemes—the Catmull-Clark

scheme and the Loop scheme. Also, an important class—piecewise smooth subdi-

vision surfaces [HDD+94, BLZ00], which is useful for modelling sharp features and

enables us to model smooth surfaces with boundaries—is presented.

3.4.2 Classification

Various subdivision schemes can be classified according to different criteria. First,

these schemes can be classified into two categories: interpolating and approximat-

ing. With interpolating schemes, the positions of initial vertices and generated ver-

tices remain throughout the process of subdivision; with approximating schemes,

these positions are adjusted during the process of subdivision. Approximating

schemes generally have greater smoothness, and converge to the limit surface more

quickly. Popular subdivision schemes, such as Loop, Catmull-Clark, and Doo-Sabin

28 CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ...

schemes, are approximating schemes.

Next, according to the type of meshes that are used for subdivision, we can

classify these schemes into one category associated with triangular meshes and

another with quadrilateral meshes. For example, the Loop scheme is generally used

with triangular meshes, while the Catmull-Clark, Doo-Sabin, and Kobbelt [Kob96]

schemes are used with quadrilateral meshes. However, this is not an absolute

criterion: the Loop scheme can be applied to polygonal meshes when a triangulation

step is performed in pretreatment; the Catmull-Clark scheme can also be used with

triangular meshes (it converts a triangular mesh into a quadrilateral mesh in its

first round of subdivision).

Finally, subdivision schemes can be classified by different types of spline func-

tions that these schemes generate [AS10]. See Figure 3.5 [AS10, p. 33] for this

classification of subdivision schemes.

Figure 3.5: A classification of subdivision schemes.

Other criteria can be used to categorize subdivision schemes. For example, the

CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ... 29

type of generated meshes, the smoothness of the limit surface, whether the method

is dual or primal [AS10, p. 38], etc.

3.4.3 The Catmull-Clark scheme

The Catmull-Clark subdivision scheme was proposed in [CC78], as a generalization

of the tensor product of bicubic B-splines. For meshes with arbitrary topology, it

generates continuous C2 limit surfaces everywhere except at extraordinary vertices

(valence n 6= 4), where they are C1 continuous.

The stencils of the Catmull-Clark scheme are described in Figure 3.6 for the

interior region and Figure 3.7 for the boundary. These stencils define how the

value at a vertex should be computed, given values at neighbouring vertices. The

coefficients are set as [CC78]:

αn =
n− 3

n
, βn =

2

n2
, γn =

1

n2
.

Figure 3.6: Catmull-Clark stencils for the interior region (left: stencil for a face
vertex; middle: stencil for an edge vertex; right: stencil for an existing vertex).

The limit surface of Catmull-Clark subdivision surfaces can be evaluated di-

rectly, i.e., without recursion, using the method of [Sta98b].

30 CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ...

Figure 3.7: Catmull-Clark stencils for boundary vertices (top and bottom: stencils
for odd and even vertices, resp.).

3.4.4 The Loop scheme

The Loop scheme [Loo87] is based on a quartic box-spline [dBHR93] of six-direction

vectors that generates C2 continuous limit surfaces everywhere except at extraor-

dinary vertices (valence n 6= 6), where they are C1 continuous. This scheme is

applicable for triangular meshes, but can be also applied to polygonal meshes after

the polygons are triangulated into triangles.

The stencils of the Loop scheme are described in Figure 3.8 for the interior

region and Figure 3.9 for the boundary. The coefficient cn is set as [Loo87]:

cn =
1

n

(
5

8
−
(

3

8
+

1

4
cos

2π

n

)2
)
.

In [HDD+94], an extension to the classical Loop scheme was proposed and

special rules are included to support sharp features (creases, corners, and darts).

This will be discussed in Section 3.4.5.

3.4.5 Piecewise smooth subdivision surfaces

The idea of piecewise smooth subdivision surfaces stems from the need to model

more general types of surfaces, other than closed surfaces generated by most sub-

division schemes, i.e., surfaces that have boundaries and surfaces with features

(creases, corners, or darts [AS10, Ch. 7]) in interior regions.

CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ... 31

Figure 3.8: Loop stencils for the interior region (left and right: stencils for regular
and extraordinary existing vertices, resp.; middle: stencil for an edge vertex).

Figure 3.9: Loop stencils for the boundary vertices (top and bottom: stencils for
odd and even vertices, resp.).

32 CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ...

The piecewise smooth surfaces, as proposed by Hoppe et al. [HDD+94], are

a generalization of the Loop scheme [Loo87], aiming to model sharp features as

well as boundary curves, by locally modifying the original Loop subdivision rules.

The work of [BLZ00] further improves the subdivision rules of the Loop scheme

Figure 3.10: Five charts for piecewise smooth surfaces.

and Catmull-Clark scheme, allowing modelling of concave corners, and generating

surface patches with prescribed normals. They also modify the boundary rules of

Hoppe et al. [HDD+94] such that the shape of the generated boundary does not

depend on the interior control points. See Figure 3.10 [BLZ00, Figure 1] for the

five local charts for piecewise smooth surfaces: an open planar disk D denotes the

interior region, a half-disk H with closed boundary means the boundary region of a

piecewise smooth surface, and the additional three charts Q1, Q3, and Q0 represent

convex, concave and dart corners, respectively.

3.5 SGC cellular representation

The SGC (Selective Geometric Complex) [RO89] provides a common framework

for representing non-regular sets of various dimensions, possibly having internal

structures and cracks. SGCs are composed of cells of different dimensions that

are mutually disjoint, open connected sub-manifolds. Thus, each vertex, edge

and face of a 3D solid is a cell. We associate with each cell an extendible set

of attributes, with which we are able to select and mark sets of cells that respond

CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ... 33

to certain criteria, for example a set of cells can be selected to represent a result of

a regularized Boolean union of two other sets.

Manipulation of SGCs can be achieved through a sequence of three primitive

processes: subdivision, selection, and simplification. For two SGCs that are subject

to an operation, say a regularized Boolean intersection, we first subdivide the cells

of these two SGCs, making them compatible with each other, then select cells

by setting the attribute “active” to true, and finally simplify the obtained SGC

after the selection process by removing or merging certain cells (the resulting SGC

represents the same point set but contains no unnecessary cells).

Figure 3.11: The wedge S1 from Example 2.2.2, page 13, described in SGCs.

One possible avenue is that robustness analysis of the problem of Boolean op-

erations will be performed in a geometric system that takes free-form solids as

operands of Boolean operations. These solids are based on primitives that are

three-dimensional r-sets with boundaries defined by SGC cellular representations,

i.e., we have access to the 0-, 1-, and 2-dimensional cells. The 2-dimensional cells

are patches defined by a union of Loop triangles enclosed by crease edges. The

1-dimensional cells correspond to crease edges. The 0-dimensional cells correspond

to corners. For example, the wedge S1 as in Figure 2.2 is represented here, in

Figure 3.11, with SGCs. More specifically, the solid S1, which is a 3-cell, is decom-

posed into five 2-cells, one of which is denoted as F1 as illustrated on the right of

34 CHAPTER 3. REPRESENTATIONS AND OPERATIONS IN SOLID ...

the figure. F1 is defined by two Loop triangles, p1 and p2; with the SGC repre-

sentation, it is also composed of four 0-cells, denoted by Vi, i = 1, ..., 4, and four

1-cells, that is Ei, i = 1, ..., 4.

The supported operations in this system would be the operations of a CSG

representation: regularized Boolean operations and affine transformations.

CHAPTER 4

BOOLEAN OPERATIONS ON SUBDIVISION SURFACES

Boolean operations (union, intersection, difference, etc.) between solids are a fun-

damental set of operations in solid modelling, and are supported in most contem-

porary solid modellers. The set of regularized Boolean operations imposes the

topological interior operation and the topological closure on the resulting objects

obtained from the corresponding classic Boolean operations, ensuring the validity

of the computed solids.

Up until today Boolean operations on solids using standard trimmed-NURBS

are still haunted by possible irregularities, such as gaps and overlaps, among patches

[Far99, KBF05]. On the other hand, subdivision-surface methods have found

more and more uses in graphics industry due to their conceptual simplicity and

their efficiency in smooth surface construction [BK04]. Previous work on Boolean

operations and their robustness on subdivision surfaces includes Biermann-Zorin

[BKZ01], Lai-Cheng [LC06, LC07], and Smith-Dodgson [SD07].

The remainder of the chapter is organized as follows. In Section 4.1, we will give

two methods for the evaluation of Loop subdivision surfaces. We will then discuss

the implementation of Boolean operations on subdivision surfaces in Section 4.2.

Our approach will be similar to the surface-based approach of Biermann and Zorin

[BKZ01].

4.1 Evaluation of Loop surfaces

In our system that reformulates the problem of Boolean operations on solids, which

will be described in detail in Section 5.5, we need to test whether two solids that are

involved in a Boolean intersection are close enough to incur a topological ambiguity,

such as the one described in Example 2.2.2. It is for this reason that we describe

here the two methods for Loop surface evaluation: Stam’s method can be used

36 CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES

in evaluating precisely Loop subdivision surfaces, and the Wu-Peters method may

be employed to evaluate Loop subdivision surfaces in an approximate way, and

to determine the space relations of two solids that are near in space with much

efficiency, which fits our needs very well.

4.1.1 Stam’s method

Direct evaluation, i.e. non-recursive evaluation, of Loop surfaces can be achieved

using Stam’s method [Sta98a]. With it, first we translate each box-spline patch

into a triangular Bézier patch with a different set of control points, and we can

then evaluate or display graphically the generated Bézier triangular patches with

no difficulties. Note also that we subdivide the Loop surface once so that there

exists at most one extraordinary vertex for each Loop patch.

Figure 4.1: A regular Loop patch defined by its 12 control points.

Since the Loop scheme [Loo87] is based on a quartic box-spline of six direction

vectors (see Section 3.4.4), a regular box-spline triangular patch (each of its vertices

has valence n = 6), defined by 12 control points, as shown in Figure 4.1 [Loo87,

p. 2], is itself a triangular Bézier patch. Each patch can be expressed with the

Bézier representation:

p(u, v, w) =
14∑
i=0

pibi(u, v, w)

CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES 37

where bi(u, v, w), i = 0, ..., 14 form an array of 15 Bernstein functions:

{u4, 4u3v, 4u3w, 6u2v2, 12u2vw, 6u2w2, 4uv3,

12uv2w, 12uvw2, 4uw3, v4, 4v3, 6v2w2, 4vw2, w4}

and pi, i = 0, ..., 14 are the 15 control points for the patch. These control points can

be obtained by multiplying a conversion matrix Q15×12 (given in [Sch96, p. 21]) and

the original 12 control points of a Loop patch. This fact is used in particular to find

the eigenstructure of the subdivision matrix corresponding to the Loop method.

For a Loop patch that has an extraordinary vertex of valence n 6= 6, the method

of Stam [Sta98a] can be used to compute the eigenstructure of the subdivision

matrix. Once the eigenstructure is known, a triangular patch is defined in terms

of a projection of initial control vertices and a vector of eigenbasis functions.

4.1.2 The Wu-Peters method

The Wu-Peters method proposed in [WP04] is suitable for approximate evalua-

tion of Loop subdivision surfaces, and especially efficient in interference detections

between Loop surfaces where exact evaluation of Loop patches is not necessary.

When it is employed for interference detections, approximate bounds, which are

much easier to establish than the complex eigenstructure method of [Sta98a], are

computed to support the tests. The Wu-Peters method generally uses the interval

arithmetic of [Kob98] to construct bounds for Loop patches, but does not follow

the normal-direction bounding of [Kob98]; it establishes the bounding volumes,

instead, using interval triangles.

For interference tests, we need to bound the limit patches. To bound the limit

patches appropriately, however, is a matter of a consideration of accuracy and

speed for the application. In the Wu-Peters method [WP04], we need to precom-

pute bounds on the basic functions for the Loop scheme, then for each Loop patch,

we bound its x, y, and z components of the corresponding limit surface. This is

followed by the construction of an offset triangle that encloses the Loop patch,

38 CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES

reducing the intersect tests between free-form solids represented by Loop surfaces

to triangle-triangle tests, which can be accomplished by adopting Guigue and Dev-

illers’ method [GD03], possibly accelerated by using bounding volume methods,

such as the OBB (Oriented Bounding Box) method [GLM96].

Bounds for a Loop patch

For regular Loop patches, all vertices have valence value n = 6. For irregular

patches, extraordinary vertices have different valence values n 6= 6. We assume

that every extraordinary vertex is surrounded by regular vertices. This can be

guaranteed by once uniformly subdividing the initial Loop surface before we com-

pute the component bounds of the mesh. This has been a common method to

simplify the computation and analysis of subdivision surfaces. In deriving the ba-

sic function bounds and computing component bounds, the neighbourhood of a

Loop patch, which is composed of n + 6 vertices, is labeled in such a way (illus-

trated in Figure 4.2) that the vertex numbered 0 is the extraordinary vertex (if

there is any) that needs special treatment.

Figure 4.2: A Loop patch with valence n and its neighbourhood.

The bounds for Loop basis functions are provided in [WP04], in which lists of

bounding values for mesh vertices with different valences are derived and given for

direct use. A Loop limit patch F (u, v) can be described as a linear combination of

control points weighted by a set of basis functions in the u-v parametric domain

CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES 39

[WP04]

F (u, v) =
n+5∑
i=0

cibi(u, v) (4.1)

where bi(u, v), i = 0, ..., n+ 5 are the basis functions, and ci are the control points

of the patch. Extracting a linear function l(u, v) that interpolates the three vertices

c0, c1, and c2, which define the corresponding mesh patch, gives

F (u, v) = l(u, v) +
n+5∑
i=3

dibi(u, v) (4.2)

where di denotes the difference between ci and l(ui, vi) for i = 3, ..., n + 5, and

di = 0, for i = 0, 1, 2. As mentioned before, the bounds for bi are directly provided

in [WP04], so we can bound each component of the limit mesh patch F (u, v) within

the intervals[
l(u, v) +

∑n+5
i=3 dib

−
i (u, v), l(u, v) +

∑n+5
i=3 dib

+
i (u, v)

]
if di > 0[

l(u, v) +
∑n+5

i=3 dib
+
i (u, v), l(u, v) +

∑n+5
i=3 dib

−
i (u, v)

]
otherwise.

By considering the x, y, and z components in the above inequalities, we can

have component-based bounds. Now the bounds for the Loop patch have been

established.

Interference tests

Interference tests between Loop surfaces can be performed by creating an offset

triangle that bounds each Loop patch. For convenience in interference tests, we

construct a base triangle for the offset triangle, which is defined as(
x−i + x+

i

2
,
y−i + y+

i

2
,
z−i + z+

i

2

)
, i = 0, 1, 2

40 CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES

and then an offset triangle is obtained by defining a sphere with radius ρ, whose

center moves over the base triangle mentioned above. This radius is defined as

ρ = max{r1, r2, r3}

where ri, i = 0, 1, 2 is defined by

ri =

[(
x+
i − x−i

2

)2

+

(
y+
i − y−i

2

)2

+

(
z+
i − z−i

2

)2
]1/2

.

By this point, the interference test between two patches is reduced to a test of two

corresponding offset triangles, with the error tolerance set to

ε = ρ1 + ρ2,

where ρ1 and ρ2 are the radii of the spheres corresponding to the respective Loop

patches. This triangle-triangle test can be solved using Guigue and Devillers’

method [GD03] with the above mentioned maximum acceptable error.

Note that interference tests between two solids represented by Loop subdivision

surfaces cannot be absolutely precisely performed due to the nature of the free-

form modelling. Although Stam’s method can be used to precisely evaluate a Loop

surface, it does not provide us bounds of Loop patches for efficient interference

tests. On the other hand, the Wu-Peters method establishes tight bounds for Loop

patches, facilitating our interference tests, which are not to be performed exactly

though: this method will not omit possible intersections, but when we conclude that

there are intersections using this method, it may turn out that there are actually

no intersections. This false-positive prediction, however, will not pose a problem

for us, since we only intend to employ the Wu-Peters method to determine whether

two solids involved in a Boolean intersection are close enough to incur topological

ambiguities, for example, the ambiguities illustrated in Example 2.2.2, in the result

solid.

CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES 41

4.2 Boolean operations on subdivision surfaces

As already mentioned, performing Boolean operations in solid modelling is a basic

problem that has attracted much attention [RS97, AD03, BKZ01, LC07]. While

Boolean operations on solids represented by polygonal meshes (for example, trian-

gular or quadrilateral meshes) or quadric surfaces (spheres, cylinders, cones, etc.)

are generally supported in solid modelling systems, they are not reliable on free-

form solids.

As mentioned in the last chapter, trimmed-NURBS patches have intrinsic dif-

ficulty in keeping patches joined exactly with no gaps or overlaps, while for sub-

division surfaces, trimming curves can be guaranteed with exact interpolation, for

example, through the use of combined subdivision [Lev99a, Lev99b]. (The details

of subdivision surface trimming can be found in [LLS01], and combined subdivi-

sion surfaces are not used in this thesis.) Therefore, the application of subdivision

surfaces may be more reliable and less error-prone in geometric computations and

we think that a reliable method of Boolean operations with subdivision surfaces is

promising in practice.

In the following, two approaches to implement Boolean operations on solids

represented by subdivision surfaces are presented: the surface-based approach of

[BKZ01] and the voxel-based approach of [LC07]. In our work, we will use the

surface-based approach to compute Boolean operations of subdivision surfaces.

We generally follow the method of [BKZ01] and do not intend to make major

improvement to it, because the focus of our work lies on the reformulation of the

problem of the Boolean operations, with associated guarantees, as discussed in the

next chapter.

4.2.1 The surface-based approach

In [BKZ01], a surface-based algorithm generates the control mesh of the approxi-

mate result surface, followed by parameter optimization and fitting of this approxi-

mate surface. The intersection curve of two subdivision surfaces is computed using

42 CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES

a refined version of the control meshes, and a perturbation scheme [Sei94] is applied

to determine whether a point is above or below the plane of a triangle. Note that

the method proposed in [BKZ01] ensures the topological well-formedness of the

result, however, it fails to ensure that its topology is always correct relative to the

true solution and that the result is geometrically accurate.

Given two solid objects defined by meshes M1 and M2, respectively, we want

to obtain the object represented by subdivision surface M approximating the true

result, i.e., the regularized Boolean intersection of M1 and M2. We are especially

interested in the robustness problem of the intersection-curve computation and in

the verification of well-formedness of the final resulting surface.

Intersection curve

The objective of the intersection-curve computation is to find an approximate curve

to the true intersection of two subdivision surfaces. The reason for an approxi-

mation is that the exact intersection of subdivision surfaces is very complex and

generally not necessary: the resulting intersecting curve usually has a very high

degree and may have handles [LC07]. Therefore it is generally difficult to represent

the intersecting curve exactly, and an approximation to this curve is a common

approach. For a summary of intersection problems in solid modelling, refer to

[FHK02, Ch. 25].

This computation involves the bounding-box preprocessing and the triangle-

triangle intersection test. The use of bounding-box preprocessing excludes unnec-

essary computation of triangle-triangle intersections, and the triangle-triangle test

relies on a point-plane test to determine whether an edge intersects a triangle; this,

in turn, is based on a test that determines whether a point falls above, below, or on

the plane of a triangle. The latter can be realized by the above-predicate [For89]

that determines the position relation between a point q0 and the plane through q1,

CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES 43

q2, and q3, which is expressed as followed:

D(q0, q1, q2, q3) = −

∣∣∣∣∣∣∣∣∣∣∣

q0x q1x q2x q3x

q0y q1y q2y q3y

q0z q1z q2z q3z

1 1 1 1

∣∣∣∣∣∣∣∣∣∣∣
(4.3)

The perturbation method [EM90, EC95, Yap90, Sei94] is often used to resolve

degenerate cases. The main advantage of the perturbation over a direct analysis of

degenerate cases is that it provides a straightforward approach to treat degenerate

cases non-trivially, i.e. as a limit of perturbed cases. In [Sei94], however, it is

noted that in some geometric examples, the perturbation method may be more

costly than a direct treatment.

A perturbation ε is applied to the four points in (4.3) so that each of these

points can be expressed as a linear function qi(ε) = qi + εri, where ri is a random

direction for i = 0, 1, 2, 3. The sign of D(q0, q1, q2, q3) can be determined instead

by:

lim
ε→0+

sign D(q0(ε), q1(ε), q2(ε), q3(ε)). (4.4)

The sign can be computed without much difficulty, if it can not be determined with

the current perturbation, we choose another perturbation and recompute the sign.

The triangle-triangle intersection based on the above perturbed predicate can

be implemented using Guigue and Devillers’ method [GD03], which proves more

efficient than the algorithms of Möller [Möl97] and Held [Hel98]. It is based exclu-

sively on orientation predicates and needs fewer intermediate computations. The

idea of this algorithm can be illustrated by Figure 4.3 [GD03, p. 6]: suppose we

have two triangles T1 and T2 with vertices p1, q1, r1, and p2, q2, r2, respectively. π1

and π2 denote the respective planes on which the triangles T1 and T2 lie, and they

intersect at a line L. Let i, j, k, and l denote the intersection of L with four edges

p1r1, p1q1, p2q2, and p2r2, respectively. The algorithm can then be summarized as

follows:

44 CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES

Figure 4.3: Triangle-triangle intersection.

Step One: Each vertex of one triangle is given an orientation test with regard

to the plane of the other triangle. For each triangle, the classification has three

possibilities: all predicates are non-zero and has the same sign, in which case

“no intersection” is reported; all predicates are zero, which reduces to the three-

dimensional triangle-triangle intersection; the predicates have different signs (only

in this case we need to impose the orientation tests on the other triangle).

Step Two: When the triangles pass the above tests, the two triangles are per-

muted so that they satisfy the vertex ordering of Figure 4.3: the vertex p1 (resp.

p2) is the only vertex that lies on the positive side of π2 (resp. π1) in general cases,

or the condition is relaxed to the non-negative side when two vertices of the triangle

lie on one side and the other vertex is on the plane.

Step Three: A conclusion can be reached: for the canonical situation as depicted

in Figure 4.3, the condition for the intersection of these two triangles is (k ≤ j)∩(i ≤
l), which reduces to two predicates: D(p1, q1, p2, q2) ≤ 0 and D(p1, r1, r2, p2) ≤ 0.

CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES 45

Error estimation

The surface-based method computes intersection between limit meshes as an ap-

proximation of the true intersection between two free-form solids, incurring poten-

tial errors. We must try to bound the possible error resulting from this approxima-

tion. A variant of Guigue and Devillers’ method using the CGAL implementation

for evaluating predicates is used for this thesis.

4.2.2 The voxel-based approach

This voxel-based approach is presented by Lai and Cheng [LC06, LC07] to perform

error-controllable Boolean operations on free-form solids represented by Catmull-

Clark subdivision surfaces. Our proposed work will not use this voxel-based ap-

proach. We summarize this approach, however, as an alternative method that may

be worth further investigation for the implementation of Boolean operations on

subdivision-surface models.

This voxel-based approach works in two steps of voxelization: first, two objects

described with the subdivision surfaces are voxelized based on a midpoint subdivi-

sion of the parameter space, see Figure 4.4 [LC07, p. 491]. This global voxelization

is performed on the boundaries recursively until all subpatches are small enough to

be voxelized by their four corners, and then propagated to the interior regions by a

flooding operation. The second voxelization is called the local voxelization that is

only performed on intersecting regions (I-subpatches in [LC07]), which are usually

very small, to improve the computation accuracy of the intersection curves.

Given an error tolerance ε, the condition, such that the distance between each

surface patch of the resulting solid and the corresponding quadrilateral that ap-

proximates it, is not greater than this tolerance, can be derived with no difficulty.

A major benefit of the voxelization in this approach is that no degeneracies

need to be treated specially, since these are difficult to handle in methods that use

polyhedral approximation to the surfaces when computing the intersecting curves.

46 CHAPTER 4. BOOLEAN OPERATIONS ON SUBDIVISION SURFACES

Figure 4.4: Intersection based on 2D parameter space subdivision.

CHAPTER 5

THE REFORMULATION OF BOOLEAN OPERATIONS

As we showed in Chapter 2, the problem of Boolean operations of geometric models

is ill-conditioned when it is subject to uncertainty in the geometric data and no

extra information is provided about the topology. For an ill-conditioned problem, a

small error in the input can result in a large error in the solution. A reformulation

of the problem is then necessary to detect and resolve existing uncertainty.

Our proposed method for this reformulation can be summarized as the follow-

ing: given two solids that are described as their bounding Loop surfaces and that

are operands of a regularized Boolean operation, for example an intersection, we

represent these two solids with the SGC (Selective Geometric Complex) scheme

and impose binding of SGC cells of Boolean operations to resolve uncertainty,

when some uncertainty of the operation is detected; we also propose to eliminate

self-intersection of the result after binding, using the theorems from [APS98], such

that the result is a well-formed Bézier complex. Evaluation and estimation of Loop

surfaces, and the two approaches to the implementation of Boolean operations were

already discussed in the last chapter.

This chapter first emphasizes the necessity of the reformulation, and then elab-

orates the proposed SGC-binding-based external intervention when ambiguities are

detected. Elimination of self-intersection that is based on [APS98] permits us to

ensure well-formedness of the computed solid. We then describe our theoretical

goal: theorems showing that such external intervention is sufficient and necessary

to eliminate the detected ambiguities.

48 CHAPTER 5. THE REFORMULATION OF BOOLEAN ...

5.1 The necessity of reformulation

1 The central difficulty associated with standard Boolean-operation methods is

that they are attempting to solve a problem that is intrinsically ill-conditioned

[ASZ07]. This means that small perturbations of the input arguments may lead to

an incorrect result, and furthermore, the perturbations due to the user’s inability

to accurately specify the input objects are larger than the small perturbations

just mentioned. It follows that, in the general case, any attempt to compute

Boolean operations without supplementary information must inevitably fail, since

the numerical method cannot possibly take account of the perturbations due to

inaccurate specification.

The principal consequence of these remarks is that we must reformulate the

problem of finding Boolean operations in order to incorporate supplementary in-

formation in the ill-conditioned case. We emphasize again that this reformulation is

forced upon us: in the ill-conditioned case, it will be impossible to compute reliably

the correct regularized operation using finite-precision floating-point arithmetic

[IEE08]. Furthermore, even if finite-precision arithmetic were replaced by exact

arithmetic, in the ill-conditioned case the computed answer will almost certainly

be unacceptably wrong, because the user cannot properly specify the problem to

be solved: it is ill-posed, and the inaccuracy in the specification will be sufficient to

render the solution unacceptable. In short, overcoming the difficulties in comput-

ing Boolean operations is not a matter of designing better algorithms, nor of doing

better numerical analysis. It is, rather, a matter of obtaining enough information

to ensure that the correct solution is well-defined by the data.

We note here that this situation is not unusual when dealing with numerical

methods. We have already mentioned the example of polynomial approximation

[FM67] in the introduction, and more generally, similar considerations led to a

revolution in the approach to the solution of linear equations and the eigenvalue

problem [Wil65].

1This section is taken almost verbatim from a draft document [Ste11] by N. F. Stewart.

CHAPTER 5. THE REFORMULATION OF BOOLEAN ... 49

5.2 Binding of cells

We specify the object as composed of primitives that are three-dimensional r-

sets with boundaries defined by SGC cellular representations. An SGC model is

composed of mutually disjoint cells, which can be 0-, 1-, and 2-dimensional; this

representation can handle all types of manifold and nonmanifold objects.

The purpose of binding is to permit external removal of ill condition, for ex-

ample, ill condition as described in Example 2.2.2. Briefly, binding means that

when cells are close, they will be merged. The idea of binding is, to some extent,

inspired by the decomposition in [RO89]: it corresponds to one of the three primi-

tive low-level operations (see Section 3.5 for details) that are the basis for defining

and implementing high-level topological, Boolean, and structural operations. Both

our approach and that of [RO89] try to make two operands “compatible” with each

other. In our work, however, making operands “compatible” is not simply done by

splitting topological cells, but rather achieved by refining Loop triangles. The goal

of our binding is not to build a basis for implementation of higher-level operations,

for example a Boolean intersection, but rather to enable elimination of possible

real-life ambiguities of Boolean operations.

Implementation of the bindings

Suppose we have two solids A and B described by Loop subdivision surfaces that

are concerned in a Boolean operation (union, intersection, difference, etc.). The

binding operations between them can be further specified by means of six cases

(we suppose that the bindings, below, are all from A to B):

VV:

A vertex of one operand to another vertex of another operand.

VE:

A vertex of one operand to an edge of another operand. We need to first

refine triangles that are adjacent to this edge before the binding.

50 CHAPTER 5. THE REFORMULATION OF BOOLEAN ...

VF:

A vertex of one operand to a face of another operand. We need to refine all

triangles in B that contain this vertex before the binding.

EE:

An edge of one operand to another edge of another operand. In this case, we

must perform two VE bindings before we fit the edges together.

EF:

An edge of one operand to a face of another operand. We require two VF

bindings, and one EE binding.

FF:

A face of one operand to a face of another operand. We require three EF,

and three EE bindings.

Figure 5.1: Left: a VE binding. Right: an EE binding is composed of two VE
bindings followed by a refinement.

In Figure 5.1, a vertex Va in A is to be bound to some edge in B, which requires

that a vertex Vb on this edge and near Va is determined, and that triangles adjacent

to this edge are refined. This figure shows also that an EE binding is implemented

based on two VE bindings and a refinement that makes two new edges (Ea and

CHAPTER 5. THE REFORMULATION OF BOOLEAN ... 51

Eb) coincide geometrically. More complex bindings can be implemented using sim-

pler bindings. But how bindings in these cases work, especially what strategy of

refinement should be used and to what extent an automatic binding without exter-

nal intervention is possible, remains under investitation. While automatic model

“healers” may reduce manual work, some artifacts (for example, computers cannot

decide whether a crack between two cubes results from the user’s intention or from

erroneous computations) are literally impossible to detect and eliminate without

external intervention, and the focus of our work is, therefore, to allow external

intervention to eliminate artifacts using bindings, but only when necessary.

5.3 Verification of Bézier complexes

The theorems from [APS98] can be used to ensure the well-formedness of Loop

patches after we compute the result of Boolean operations, possibly subject to

bindings when bindings are necessary to resolve ambiguities.

In [APS98], conditions are given that exclude self-intersections of composite

Bézier curves and patches. These conditions can be categorized into two groups:

necessary and sufficient conditions, which give sharp criteria, and sufficient con-

ditions, which are much easier to compute in practice but give less-sharp criteria.

Perturbation analyses are also provided to obtain maximum perturbations that can

be tolerated to the control points of composite curves or patches that have been

reported with no self-intersections.

5.4 Resolution of ambiguities

In this section we illustrate how topological ambiguities of the result can be resolved

using bindings. Ambiguities, when detected, must be eliminated before we are able

to obtain the correct topological form of the result solid. Examples of such external

removal are manual by the user, or automatic using a “snapping” method; feature

modelling systems may also ensure that no ambiguities exist by their persistent

naming mechanisms.

52 CHAPTER 5. THE REFORMULATION OF BOOLEAN ...

Figure 5.2: Boolean union of a spring clip and a block.

Figure 5.3: Automatic removal of ambiguities using “snapping”.

CHAPTER 5. THE REFORMULATION OF BOOLEAN ... 53

In CAD systems, “snapping” is usually implemented as a tool that enables

convenient “bindings” of elements, such as vertices, edges, and faces, which proves

very useful when modifying an object or aligning elements of an object to those of

another object. The example of computing the Boolean union of a spring clip and a

block (shown in cross-section) from [ASZ07] (Figure 5.2), is modelled and rendered

in three dimensions with Blender 2.59 [Ble11], as shown in Figure 5.3. Ambiguities

exist because the system cannot apprehend the correct “design intent” concerning

the right end of the spring clip. But if “snapping” is enabled (which shows that the

user intent is to join some vertices, edges, or faces), the two ends of the spring clip

can be guaranteed to touch the block surface: we move the clip to make sure that

one end, say, the right end, of the clip, touches the block’s top surface, then make

a rotation of the clip around its right end such that the left end touches the surface

too. (Note that in Blender, only “snappings” from vertex to vertex/edge/face are

supported, while other types of “snappings” such as from edge to edge, edge to face

are not supported yet.) In this way, the problem of set-union in this case can be

reformulated to be well-conditioned.

The tool “snapping” in most contemporary CAD systems is, however, limited to

simple cases in which the objects are represented by polygonal meshes. Automatic

“snapping” for free-form meshes has its own difficulties: first, it is much more costly

in computation to guarantee that a vertex is bound with an edge or a surface in free-

form modelling; second, more sophisticated cases would require edges or surfaces to

be refined in “snapping”, in a similar way as described in Section 5.2. In any case,

we emphasize that the goal of the thesis is not to invent better or more general

snapping algorithms. Rather, the goal is to specify the conditions that must be

satisfied by any algorithm in order to guarantee correctness.

For another example we try to resolve the ambiguities in computing the Boolean

union of two solids S0 and S1 in [ASZ07], whose cross-sections are illustrated in

Figure 5.4. We rotate the cube S1 by 45 degrees and translate it to a position such

that one of its faces touches perfectly the face of S0 with outer normal n, after

which we then compute the Boolean union of the two solids. This inevitably leads

54 CHAPTER 5. THE REFORMULATION OF BOOLEAN ...

Figure 5.4: Two solids S0 and S1.

Figure 5.5: Manual resolution of ambiguities to meet the user intent.

CHAPTER 5. THE REFORMULATION OF BOOLEAN ... 55

to a numerical problem and ambiguities in the “user intent” because the computed

solid that represents the result of the Boolean union would almost certainly have

gaps or overlaps.

If polygonal meshes are used in this example, the reason for this problem is that

the data used for defining S1 have uncertainty due to the rotation and translation

of S1 and the approximate value of
√

2. Automatic “snapping” can be used (which

shows that the user intent is to join some vertices, edges, or faces), in this case, to

guarantee that the two faces of S0 and S1 coincide, and that the final result has

no numerical problems. But if free-form meshes are used instead, we will finally

need to manually resolve the ambiguities, using bindings of SGC cells (details are

given early in Section 5.2). More specifically, we need to perform an FF binding

that makes sure two faces from S0 and S1 respectively coincide if this is the correct

“user intent”. Figure 5.5 illustrates in Blender a result from two solids represented

in polygonal meshes. How to define the required refinement properly in Section 5.2,

however, remains further work.

The third method that may be able to resolve ambiguities is the persistent nam-

ing mechanisms [AMP00, MP02, Mar05] that are used in feature-based parametric

CAD systems, such as Cobalt, Autodesk Inventor, and Creo Parametric (formerly

known as Pro/ENGINEER), to guarantee correct and consistent topological data.

Such CAD systems enable reevaluation of models when parametric specifications

that define the characteristics of the models are modified in later modelling and

are also known as procedural or history-based. The persistent naming mechanisms

can make reevaluation in various stages of modelling consistent without mismatch

and make them able to capture different “design intents”. The persistent nam-

ing mechanisms include rules to eliminate ambiguities such as described earlier in

Example 2.2.2, page 13, so that we can obtain the correct result.

Problems with this mechanism, however, exist which may result in mismatching

objects in reevaluation and failure to apprehend the “design intent” [MP02]. Of

course, another limitation is that this approach works only with feature-based

parametric CAD systems on which Boolean operations on free-form objects are

56 CHAPTER 5. THE REFORMULATION OF BOOLEAN ...

supported.

5.5 Outline of a general solution

Based on the discussion in the previous sections, we could envisage implemention of

a system that resolves the possible topological ambiguities with Boolean operations,

say the Boolean intersection. One possibility for the organization of the overall

system might be along the lines of exception-handling systems of a programming

language, such as C++ and Java. The general outline of the low-level intersection

algorithm might be as follows:

(1) Decompose the two solids represented by Loop subdivision surfaces into SGC

cells.

(2) Perform an interference test using the Wu-Peters method and determine the

zones of possible ambiguities where bindings will be necessary.

(3) Bind corresponding cells of the two solids in the ambiguous zones, thus en-

abling the resolution of possible ambiguities.

(4) Compute the intersection of the two solids using the surface-based method

(see Section 4.2.1, page 41) and the topological bindings mentioned above.

(5) Use the theorems of [APS98] to verify the Bézier complex converted from the

resulting solid is well formed.

In our approach, bindings of cells would be performed externally, either by

asking for intervention from the user, automatic resolution by “snapping”, higher-

level resolution of feature modelling systems, or some other method.

In fact, in Chapter 6, we restricted our attention to a special case, namely,

the planar-cut problem. As for the long-term theoretical goal mentioned at the

beginning of the chapter, we would like to show that the algorithm provides a

solution with the correct topological form, and with small geometric error. To

CHAPTER 5. THE REFORMULATION OF BOOLEAN ... 57

do this, the algorithm may require higher-level external intervention (automatic

snapping, user intervention, feature-modelling mechanisms, etc.). We aim to give

theorem showing that, in addition to being sufficient, such intervention is necessary,

in the sense that the algorithm will only request intervention for problems that are

very close to an ill-conditioned problem, which cannot therefore be solved without

such intervention.

The algorithm given above should therefore be viewed as a low-level intersection

algorithm which requires intervention from a higher-level system.

CHAPTER 6

MANAGING UNCERTAINTY OF GEOMETRIC COMPUTATION

WITH BACKWARD ANALYSIS

The robustness problem in geometric modelling has been studied over decades.

In the context of computation using ordinary IEEE floating-point arithmetic, the

problem has traditionally been treated as one of error control. However, taking

into account the fundamental ideas of error analysis presented in earlier chapters,

such as data uncertainty and the condition of the underlying problem, and using

a criterion that requires correct topological form, the robustness problem becomes

one of managing uncertainty.

Algorithms for Boolean operations on geometric objects defined by subdivision

surfaces have been proposed by different authors in the literature. These works

mainly aim to obtain results that are geometrically correct and that are valid in

topology. Note that an algorithm may produce an object that has valid topological

form (i.e., it is topologically well-formed), but the topological form may not be

correct (i.e., it has a topological form different from that of the true solution).

We focus our attention on ensuring that the computed objects have the correct

topological form.

As described in previous chapters, when correct topological form of the result

is of concern, and when ordinary IEEE floating-point arithmetic is used in the

implementation, an interactive approach is forced upon us: it is necessary that a

higher-level process provide (on request) information about the correct topological

form.

This chapter describes an algorithm to implement this idea in the case of the

planar-cut problem. The contents of this chapter, beginning in Section 6.1, are a

slightly modified version of the published paper [SS13].

Note that the planar-cut problem, i.e. the planar cut of an object represented

by a subdivision-surface mesh, instead of the more general problem of computing

60 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

Boolean operations of two solids defined by subdivision surfaces, is investigated for

reasons of simplicity. This problem is simple to visualize yet far from trivial. This

makes it possible to study the main idea of managing uncertainty in geometric

computations, without having to worry about the complicated technical details

that are found in the implementation of general Boolean operations.

6.1 Introduction

The robustness problem in geometric modelling has been studied over a period of

decades. It raises many interesting theoretical questions [HS05, Yap08], and it is

also of great practical importance, since the cost of unreliable computation in this

application area is measured in billions of dollars [BM99, Far99].

In the context of computation using ordinary IEEE arithmetic [IEE08], the

problem has traditionally been studied as one of error control. Unfortunately, most

analyses carried out have neglected to include certain of the fundamental ideas of

error analysis [DB07], such as uncertainty in the data, and the condition of the

underlying problem. In fact, even a clear definition of a criterion to measure error

is often lacking [HS05, ASZ07]. If the problem is reformulated to take these ideas

into account, with an error criterion that requires correct topological form, then it

immediately becomes clear that the problem may be ill-conditioned, and the ques-

tion of practical concern becomes one of managing uncertainty. This uncertainty

arises, for example, out of uncertainty in the input data, storage, and roundoff error

due to the use of finite-precision floating-point arithmetic, and (for certain methods

of representing geometric objects) the approximation of high-degree polynomials

by polynomials of low degree. Given the practical question just mentioned, it is of

interest to formulate appropriate algorithms for the management of the uncertainty

in the input to geometric algorithms, and management of uncertainty that may be

created by such algorithms.

In this chapter we describe an interactive approach for the robust implementa-

tion of geometric operations on objects defined by subdivision surfaces, in the case

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 61

when we require correct topological form of the result, when there is uncertainty

in the data, and when the computations are done using ordinary IEEE floating-

point arithmetic, with supplementary use of interval arithmetic [MKC09, CXS12,

MPF12, P1712]. It is shown that in this context, an interactive approach is forced

upon us: for the implementation to provide correct results, it is necessary that a

higher-level process provide (on request) information about the topological form of

the result. This is done by having the algorithm throw an exception, to be caught

by a higher-level process, when supplementary topological information is required.

Since the boundaries of subdivision-surface objects can vary in an almost ar-

bitrary manner, it may seem unduly optimistic, at first glance, to seek rigorously

correct topological form. The reason we can hope to do this, of course, is that

we permit the algorithm to trap and request supplementary information. We do

not, however, want the algorithm to do this indiscriminately. The goal is then

to find an algorithm that will request supplementary information only when it is

demonstrably impossible to proceed in any other way.

We are ultimately interested in applying our approach to the general problem of

computing Boolean operations on geometric objects defined by subdivision-surface

meshes, but in order to study the main idea without having it obscured by compli-

cated details, we consider a simpler problem. Specifically, we give an algorithm to

compute the planar cut of an object defined by a subdivision-surface mesh—more

precisely, the object defined by Loop subdivision [Loo87, AS10]. The planar-cut

problem arises frequently in practice [Gra00], it is far from trivial, and yet it is sim-

ple to visualize (see Figure 6.1, which comes from [CGA12]). The algorithm uses

an adaptive version of Loop subdivision, based on RG (Red-Green) triangulation

[MS02, p. 180], and a multi-step rule proposed in [PP09, Sec. VI-A].

In order to avoid possible confusion, we distinguish between the often discussed

problem of interactive editing of subdivision surfaces [ZSS97, AFR02, CLL07], and

the problem discussed here. Interactive editing is a process for specifying surfaces,

while the algorithms we discuss are applied to surfaces that have already been

defined, except possibly for uncertainty in their defining data. The interactive

62 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

approach we propose refers to algorithms for Boolean operations, or for the solution

of the planar-cut problem, and this interactivity has nothing to do with interactive

surface editing.

Algorithms for Boolean operations on geometric objects defined by subdivision

surfaces have been proposed previously in the literature, including for example

the surface-based approach of [BKZ01], and the voxel-based approach of [LC07].

Another reference, for the general problem of surface intersections, is [Pat02]. Our

algorithm can be viewed as a version of the one in [BKZ01], simplified because

we restrict our attention to Boolean intersection, in the case when one of the two

objects to be intersected is a half space. As noted in the next paragraph, the

actual algorithm used is not the subject of the chapter. The main point is how to

deal with the uncertainty in the input data, and with the requirement of correct

topological form (which is in contrast to [BKZ01], where it is only required that

the solution be topologically valid). For sameness of topological form we take the

classical requirement that there should be a homeomorphism linking the true and

computed solutions: see the discussion in [ADPS95].

One of the advantages of using a subdivision-surface representation, rather than

the traditional trimmed-NURBS representation, is that many of the difficulties of

dealing with inconsistent data [ASZ07] are avoided. This is true in particular for

the analysis of error related to the approximation of high-degree polynomials by

polynomials of low degree, mentioned above.

In Section 6.2 it is observed that many geometric problems, such as the problem

of Boolean intersection, are problems for which the condition number is discontin-

uous (as function of the backwards error), but for which it is useful to continue

the solution process through the discontinuity. Then, in Section 6.3, it is observed

that the cutting-plane problem (which is closely related to a very special case of

Boolean intersection) is also such a problem, and we give an algorithm to solve

it. The geometric methods underlying the presented algorithm are not the subject

of the chapter: in fact our algorithm relies almost exclusively on ideas previously

presented in the literature [Loo87, MS02, PP09, Wu05, WP04, Hoh91, PT95]. The

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 63

main contribution of the chapter is in Section 6.4, where we discuss the idea of an

exception mechanism to deal with the possible ambiguity of the topological form

of the result. In particular, we show that the interactive approach is forced upon

us. If the algorithm throws an exception, and asks for help in determining the

topological form, it is usually because a small perturbation of the input data could

lead to a change in the topological form of the solution, and our goal is to find

algorithms which make such a request for supplementary topological information

only when it is necessary. Section 6.5 concludes the chapter, with some remarks on

our prototype implementation, and some remarks on future work.

Figure 6.1: Intersection of a plane and a locally-planar mesh.

6.2 Uncertainty and condition numbers

In the context of Boolean operations on geometric objects, in the presence of un-

certainty, and with a requirement of correct topological form, a mechanism for

interaction with a higher-level process is unavoidable.

Consider for example the problem of specifying a bevel in a feature-based solid-

modelling system [SR04]. The semantics of such specifications rely on the use

of Boolean operations: for example, in Figure 6.2, the bevel is specified as the

64 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

Figure 6.2: Bevel specified by a Boolean difference.

set difference between the block and the narrow wedge-shaped object. Both of

these objects are defined with uncertainty, possibly resulting from previous opera-

tions that used finite-precision arithmetic (say, a rigid motion), or from some other

sources. Calculation of the set difference can easily lead to an object with topolog-

ical form different from that of the correct result, and the correct topological form

must therefore be imposed by a higher-level process (in the present example, by

a “persistent-naming” mechanism, which notifies the algorithm of overlaps in the

input objects [SR04]).

Other examples can easily be given [ASZ07]. For example, if a flexible springclip

is to be joined to an object at one end of the clip, but left separated from the object

at its opposite end, and if again there is uncertainty in the defining data, then it

will be impossible using finite-precision arithmetic to resolve the topological form

without supplementary information.

Since there may be other sources of uncertainty in the data defining the problem,

besides those related to preliminary use of floating-point arithmetic, the level of

data uncertainty will often be much larger than floating-point roundoff error. An

example of another source of uncertainty is the interactive input of objects on a

screen. This example also illustrates another possible “higher-level process”, namely

a procedure for the interactive entry of objects. In this case the correct topological

form would be obtained from the human user.

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 65

These ideas can be placed in the context of a standard error analysis [DB07] by

viewing the error as infinite if the topological form is incorrect. This means that

the computational problem is ill-conditioned for inputs for which small changes in

the input data can lead to a change in topological form, and the condition number

therefore has an infinite discontinuity near data points corresponding to these in-

puts. On the other hand, we wish to continue the computational process through

the discontinuity, i.e., we do not want to abandon the computation in the case of

such ill-condition. External intervention to resolve the ambiguity is consequently

necessary. Our criterion for a good algorithm will be that external intervention will

be requested only when it is necessary, i.e., only when small perturbations of the

uncertain input data could lead to a change in topological form. We seek to define

algorithms that meet this criterion as often as possible.

6.3 Planar cut of a locally-planar mesh

A (triangular) logical mesh M is a finite collection of faces, each defined by a set

(not necessarily ordered) of three vertices {`0, `1, `2}, along with their associated

edge sets {{`0, `1}, {`1, `2}, {`2, `0}} [AS10, p. 10]. The logical mesh is locally

planar if each edge belongs to at most two faces and if, for any vertex `, the j faces

φi incident at ` (i = 0, . . . , j−1) can be ordered in such a way that φi meets φi+1 at

an edge containing ` for i = 0, . . . , j − 2. The locally-planar mesh is in addition a

mesh without boundary if, for each vertex `, the corresponding ordered faces satisfy

the condition that φj−1 meets φ0 along an edge. Note that “locally planar” does

not mean geometric planarity: no geometric information is specified in a logical

mesh. The valence of vertex `, by definition equal to the number of edges incident

at `, is denoted by n.

If we now proceed to associate with each vertex ` (` = 0, . . . , L − 1) a control

66 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

point p` ∈ R3, and collect the p` (written as 1× 3 row vectors) in an L× 3 matrix

p =


p0

...

pL−1


(L×3)

, (6.1)

thenM = (M, p) is called a polyhedral mesh [AS10, p. 15]). This is the geometric

mesh in R3. An example of a connected, triangular, locally-planar polyhedral mesh

without boundary is illustrated in wire-frame format in Figure 6.1.

In this chapter we restrict our attention to (finite) locally planar meshes without

boundary. The hypothesis of local planarity is implicit in most discussions of

subdivision surfaces, although it is usually not explicitly specified. More general

subdivision schemes involving meshes that are not necessarily locally planar have

been studied, for example in [YZ01].

Under weak conditions, application of the Loop subdivision method [Loo87,

AS10], to a locally-planar triangular mesh without boundary, converges uniformly

to a smooth limit surface S = S(u, v), which can be parametrized locally by two

variables u and v. If the control point p` corresponding to each vertex of each

triangle in the mesh is associated with its limit position, the triangles imply a

decomposition of S into triangular curvilinear patches with the limit positions at

the patches’ corners [AS10, p. 111]. Further, if the vertices of the triangle are

regular (n = 6), then the patch can be expressed as a polynomial over the triangle

(in fact, it is a quartic Bézier surface [Sch96, Lai92]). Even at extraordinary (non-

regular) vertices, the surface is C1.

Let the normal vector nc ∈ R3 and the scalar σ define the cutting plane

Pc = {x ∈ R3 : nc ·x = σ}. The contouring problem [Gra00] can be defined as com-

puting the intersection between the plane Pc and the surface S. In fact, however, we

will study a slightly more elaborate problem, namely, the planar-cut problem. For

simplicity, we assume that the initial mesh is connected, so that the corresponding

limit surface is a connected set, and we assume that the surface does not selfinter-

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 67

sect. (Non-selfintersection of single patches, and non-intersection of both adjacent

and non-adjacent triangular surface patches, can actually be checked computation-

ally using the methods of [APS98, GS01].) Let Int(S) be the finite region in R3

defined by S. The planar-cut problem involves the computation of the boundary B

of the intersection between Int(S) and the half space Hc = {x ∈ R3 : nc · x ≥ σ}.
These are sets in R3: they are illustrated in Figure 6.3. In Figure 6.1, which shows

an approximation to a surface, if the normal nc defining the cutting plane points

downward as shown, then the trunk and the top of the head of the elephant are

cut off, and the resulting opening is covered by a planar surface.

As already mentioned, Loop subdivision takes a triangular mesh and produces

a sequence of refined triangular polyhedral meshes that converge uniformly to the

surface S [AS10]. Note that the limit surface is completely determined by the

control points in the given mesh, and the fact that Loop subdivision is used. The

adaptive version of Loop subdivision described in Section 6.4.1, based on Red-

Green (RG) triangulation, changes the approximating meshes that are calculated

as the process proceeds, but it does not change the limit surface.

The planar-cut problem is defined by the initial meshM0, the vector nc, and

the scalar σ; an admissible approximate solution to the problem is a well-formed

(conformal) triangular mesh which is topologically the same as the boundary B of

Int(S) ∩ Hc. Since small perturbations of the geometric input data (the control

points p` of the initial meshM0) may cause the topological form of B to change,

nc

Hc

S B

Int(S)

Pc

Figure 6.3: Left: cross-sections of S and Int(S). Right: cross-section of boundary
B (thick line).

68 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

the problem is ill-conditioned. For example, in Figure 6.4, if all of the control points

p` undergo an identical upward translation, as indicated by the vertical arrow in

the figure, the topological form of B will change. This follows because the surface

will be translated by an amount equal to the translation in the control points, due

to the affine invariance of the subdivision process [AS10, p. 39].

An approximate and high-level description of our algorithm is given now (details

appear in the next section of the chapter). The initial meshM0 is assumed given.

In a first phase, triangles in M0 near the plane Pc are refined using RG triangu-

lation, until a desired error criterion, based on distance between triangle vertices

and the plane Pc, in the direction nc, is satisfied. Nearness to Pc is determined by

using the Wu-Peters bounding box [Wu05]. An important side effect of this first

phase is the creation of a list C (the notation is intended to suggest “close”) of

triangles which, according to the Wu-Peters bounding-box, might possibly have an

associated triangular surface patch that intersects Pc. Although Red-Green trian-

gulation is not described until Section 6.4.1, we remark here that green triangles

are treated as pairs, with the Wu-Peters test applied to the red mother triangle.

The red-green mesh obtained at the end of this initial phase is denotedMν0 .

A triangle is said to generate a simple intersection if the intersection between its

triangular surface patch and Pc consists of a single curve cutting across the patch.

(The curve must not pass through a corner of the triangular surface patch.) In

the second phase, the algorithm processes the triangles in C, subdividing Mν0 if

M0

B

Hc

Pc

pℓ

Figure 6.4: Cross-section of B: risk of change of topological form.

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 69

necessary, replacing triangles that do not generate a simple intersection.

If subdivision occurs, the set C is updated. Subdivision may result in smaller

triangles for which the associated triangular surface patch cannot intersect Pc.

These triangles are deleted from C. Triangles generating a simple intersection are

labelled to indicate the pair of edges joined by a curve which forms the intersection

between the triangular surface patch and Pc. There are three cases, as illustrated

in Figure 6.5. In the figure we have deliberately shown a triangle, with labels

specifying intersections of edges, that does not quite intersect Pc. We do this to

emphasize that it is the intersections associated with the associated triangular sur-

face patch that are relevant, and not the intersections with the triangle itself. The

Loop subdivision method is an approximating method, and not an interpolating

method [AS10]; consequently the limit of a triangle corner could be on the opposite

side of Pc.

In a third phase, the intersection path, between the mesh and Pc, is traced,

using the elements of C. (The reason for separating the second and third phases

is that the process of elimination of non-simple intersections can in principle lead

to subdivision of neighbouring triangles. If the second and third phases were done

together, for each triangle, the intersection curve of the neighbouring triangle might

already have been traced, and this information would have to be transferred to the

children of the triangle. In the context of red-green subdivision, this is not a

straightforward process.)

The fourth and final phase of the algorithm is to merge the modified mesh

Deleted from C, retained in solution mesh

Deleted from C

Retained in C:

Pc

Figure 6.5: Labels on triangles in C.

70 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

with a conformal mesh approximating the planar set Int(S) ∩ Pc. This conformal

planar mesh can be computed using any appropriate triangulation. We used the

constrained Delaunay triangulation [She00] provided by CGAL [CGA12]. The

merged mesh is an admissible approximate solution in the sense defined above.

Some further remarks should be made here, concerning the second phase of

the algorithm. For the planar-cut problem, to specify the topological form of the

result it is necessary and sufficient to specify the topological form of S ∩ Pc. The

topological form of Mν0 ∩ Pc, however, may not be the same as that of S ∩ Pc.
Consequently, to obtain an admissible approximate solution, it may be necessary to

modifyMν0 , by subdivision, in order to find an equivalent meshMν (one with the

same limit surface S) for which the topological form ofMν ∩Pc is the same as that

of S∩Pc. This task is essentially accomplished in the second phase, by decomposing

the intersecting part of the mesh into triangles with simple intersections.

It may happen, however, that even after repeated subdivision, such a decompo-

sition cannot be found, so that it is not possible to determine the topological form

of S ∩Pc. If the subdivision reaches a triangle size that is on the order of the data

uncertainty, the algorithm traps and asks to be informed of the topological form

of S ∩ Pc. Thus, if the algorithm traps, there exists a perturbation of S, approxi-

mately equal to the size of the data uncertainty, which could change the topological

form. Because of the subdivision, however, this does not necessarily mean that a

perturbation of the original input data could lead to a change in topological form.

Restating our previously stated goal, we would like to establish weak conditions

guaranteeing that the algorithm will trap and ask for additional information only

in the case when a perturbation of the original data, approximately equal in size to

the data uncertainty, could lead to a change in topological form. This question is

discussed further in Section 6.5. The case when the curve passes through a corner

of the patch is dealt with by perturbation, as described by the pseudocode below.

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 71

6.4 The uncertainty-management process

In this section we present the techniques used by our algorithm to take account

of the inherent uncertainty, as outlined at the end of the previous section. We

begin in Section 6.4.1 by describing the basic subdivision process used. We then

present certain fundamental techniques used in the algorithm, including the Wu-

Peters bounding box, a specialization of the Hohmeyer test for detection of loop

intersections, and the Variation Diminishing Property for Bézier curves. Finally,

the algorithm to trace the graph defining the topology of S ∩ Pc is described in

Section 6.4.6.

6.4.1 Red-Green Loop triangulation

Our algorithm uses the method of RG triangulation [MS02]. Our implementation

of this method uses a multi-step rule, suggested in [PP09, Sec. VI-A], to determine

appropriate geometric values for the vertices p` ∈ R3, and their successors p`(λ),

where the non-negative integer λ specifies the level of subdivision (p`(0) ≡ p`). For

λ = 0 we have ` = 0, . . . , L− 1, while for positive λ the index ` runs over a larger

range. Note that here, “successor” refers to successive values of the vertex in the

subdivision process.

(The ambiguity in the notation p`, due to the fact that the indexing depends on

the level, should lead to no confusion. The vertices are not stored in indexed form:

rather, they are part of a standard half-edge data structure for meshes. Thus, the

notation p` simply refers to some specific vertex in the mesh.)

Each subdivision of a triangle effected by ordinary Loop subdivision uses the

primal pT4 schema [AS10, p. 17], in which a new logical vertex is introduced

in each edge, and the three new vertices are joined by new edges. Thus, each

triangle is decomposed into four new triangles. A consequence of this fact is that

if the mesh is subdivided uniformly, the amount of data to be stored increases

proportionally to 4λ. Since this function increases very quickly with λ, various

methods of adaptive subdivision have been proposed for practical use. Thus, the

72 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

RG triangulation method used in our algorithm permits triangles in one part of

the mesh to be subdivided while triangles in another part are not.

Figure 6.6: Mesh made conformal by green subdivision.

The main difficulty with adaptive subdivision is that if a triangle is subdivided,

but its neighbour is not, then a non-conformal mesh results, as illustrated in Fig-

ure 6.6 (left), where one triangle has been subdivided to level λ, and the other to

level λ + 1. To correct this, a new (green) edge is introduced, and the triangles

formed by this new edge are labelled green, in contrast to those obtained by the

pT4 subdivision scheme, which are labelled red. Introduction of a new edge in

this way is referred to as green refinement , which is in contrast to the standard

subdivision, referred to as red refinement . See Figure 6.6 (right).

Given certain triangles marked for refinement, a conformal mesh can be main-

tained using the following algorithm [MS02]:

(1) Eliminate all green refinements by restoring the mothers of green triangles.

If a green triangle was marked for refinement, the restored mother is also

marked for refinement.

(2) Refine all red triangles marked for refinement using the pT4 schema.

(3) While there exist triangles with more than one non-conforming vertex, refine

them using the pT4 schema.

(4) Apply green refinement to all triangles having exactly one non-conforming

vertex.

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 73

The algorithm is implemented recursively. Green and red faces are tagged as green

or red in the half-edge data structure representing the mesh. In our context the

application of green refinement, in Step (4), and the elimination of green refinement

in Step (1) of the next subdivision, can be eliminated. One green refinement is

necessary at the very end of the process to make the result conformal.

Proposition 1. [MS02, p. 181]. The RG triangulation algorithm terminates with

a conforming triangulation.

There remains one other difficulty, however, in the context of Loop subdivision.

Any particular vertex ` of valence n may have adjacent triangles that have been

subdivided at (up to dn+1
2
e) different levels, as illustrated by the vertex labelled

p`(λ0) in Figure 6.7.

Figure 6.7: Adjacent triangles subdivided at different levels.

This means that the geometric value p` ∈ R3 is ill-defined. We resolve the

ambiguity by storing the value of p` at the level λ0 at which the vertex was inserted;

this value is denoted by p`(λ0). For a vertex inserted as a result of subdivision at

level λ that does not keep the mesh conformal (as in the case of the middle vertex

in Figure 6.6, left), this means that we store p`(λ+ 1), just as we would in the case

of conformal insertion of a vertex. We also store p`(∞), the limiting value of the

74 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

vertex on the surface S, which can be calculated [PP09] by

p`(∞) =

(
1− 8αn

3+8αn

)
p`(λ0) +

8αn
n(3+8αn)

n∑
i=1

pi`(λ0).

Here, pi`(λ0), i = 1, . . . , n, denotes the geometric value at one of the n one-

neighbours of p`(λ0) at subdivision level λ0, and

αn =
5

8
−
(

3

8
+

1

4
cos

[
2π

n

])2

.

(A one-neighbour of a vertex is another vertex in the mesh, joined at level λ0 to the

original by a single edge.) Unavailable one-neighbours (for example, the neighbours

of the vertex indicated by a “*” in Figure 6.7, at level λ0 + 1) are computed on the

fly, and not retained in the data structure.

We note in passing that in the example of Figure 6.7 we must have λ0 = 0,

since a vertex cannot be inserted with valence n = 5.

Proposition 2. [PP09, Sec. VI-A]. Storage of the two values p`(λ0) and p`(∞)

permits subsequent calculation of p` at any level λ0 + λ by means of the multistep

rule

p`(λ0 + λ) = γn(λ)p`(λ0) + (1− γn(λ))p`(∞),

where

γn(λ) =

(
5

8
− αn

)λ
.

The values of p`(λ0), pi`(λ0), p`(∞), and p`(λ0 +λ) are computed using ordinary

floating-point arithmetic. The p`(λ0) are computed (using Loop subdivision at

Steps (2) and (3) of the RG triangulation algorithm) as convex combinations of

values at the previous level of subdivision, and the error in their calculation can

be bounded tightly using the standard model for floating-point arithmetic [DB07,

Ch. 2]. Similarly, it is straightforward [DB07, p. 107] to take account of the other

errors involved in the calculation of p`(λ0 + λ) (the details are omitted). Thus,

making the mesh available to the higher-level process, we can replace the p`(0) ≡ p`

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 75

by the subdivided mesh in the problem definition, and affirm that the method has

solved a problem corresponding to a surface that has suffered perturbations, which

are assumed to be smaller than those corresponding to the data uncertainty. Our

point of view is that of the backward error analysis [DB07, p. 113]: the algorithm

will give a correct result for a problem which has been perturbed by less than

the data uncertainty, provided only that possible changes in topological form are

detected on the fly.

We note here that alternate weights are often used in the Loop subdivision

formulas (see [AS10, Note 18, p. 328] and[CGA12]). The statement of Proposition 2

can easily be modified to correspond to this alternate choice of weights.

Figure 6.8 shows the results of an RG triangulation using the Loop method with

Figure 6.8: Result of Red-Green Loop triangulation.

the multistep rule of Proposition 2. The mesh is viewed at a very slight angle to the

cutting plane (shown in white), which traverses the figure diagonally from top-left

to bottom-right. The cutting of triangles near the top and bottom of the figure as

indicated by the circles seems unambiguous, but recall, that it is the cutting of the

associated triangular surface patches that is of primary concern. Dealing with this

distinction is the main task of the second phase of the algorithm, described in the

next subsection. Examples illustrating the distinction are also given there.

76 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

6.4.2 Triangles generating simple intersections

The initial phase of the subdivision, described in the previous section, is unre-

markable. A Wu-Peters bounding box [Wu05] provides a criterion to decide which

triangles intersecting Pc should be subdivided first, and to estimate the error in the

approximation. The Wu-Peters bound is obtained by extracting a linear function

from each component of the patch, such as the x-component, and finding a bound

of the form

x+ = l(u, v) +
∑n+5

i=3 max{di, 0}b+
i + min{di, 0}b−i

x− = l(u, v) +
∑n+5

i=3 max{di, 0}b−i + min{di, 0}b+
i

(6.2)

where l(u, v) is the linear function. (In order to define di, b+
i , b

−
i , and l = l(u, v), the

parametric domain is defined locally to be a portion of the plane [Wu05, WP04].

The surface is then defined in terms of auxiliary basis functions having a linear

precision property, and b+
i and b−i are precomputed linear upper and lower bounds

for these basis functions. The function l(u, v) is a linear function approximating

the patch, and the di can be interpreted as the errors in this approximation cor-

responding to control points neighbouring the patch. A complete description is

given in [AS10, pp. 280-283].) Subdivision is carried to a deeper level in regions

of the mesh near Pc, until an externally supplied error criterion is satisfied. This

produces the mesh Mν0 and the list C mentioned in Section 6.3. The bounds in

(6.2) are reminiscent of formulas for interval arithmetic, and interval arithmetic is

in fact used to compute C.

Figure 6.9 shows an example, which uses a base mesh from [CGA12]. The

triangles in C, which according to the Wu-Peters test might intersect the plane Pc,

are shown in red and green. In this figure, the mesh is again viewed at a very slight

angle to the cutting plane.

The algorithm’s next task, in the second phase, is to identify triangles, inMν0

or in some subdivided meshMν with a possibly slightly perturbed limit surface S,

in such a way that the topological form ofMν ∩ Pc is exactly the same as that of

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 77

Figure 6.9: An example of C (triangles shown in red and green).

S ∩ Pc, and to replace them by triangles having only simple intersections. This is

not a straightforward problem. For example, a triangle that does not intersect Pc
may nonetheless have an associated triangular surface patch which cuts the plane

in a curve traversing the patch, in an internal loop within the patch, or both. The

last-mentioned case is illustrated in perspective and in cross-section, respectively,

in Figure 6.10 (left and right). In the left figure, the line intersection is shown

by a solid curve, and the loop intersection by a small dotted circle. Similarly, a

triangle might intersect Pc in a straight line, while the associated triangular surface

loop

PcPc

Figure 6.10: Possibility of a loop intersection with Pc.

78 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

patch intersects Pc in both a curve and a loop, only in a curve, only in a loop, or

not at all. Small changes in the data may change the situation from one case to

another, and we wish to correctly determine which case holds using finite-precision

and interval arithmetic.

As already suggested, the principal approach used to resolve these ambiguities is

to produce an equivalent meshMν by appropriate further subdivision ofMν0 . It is

possible, however, that even after further subdivision it is not possible to determine

the topological form of S∩Pc. In this case an exception is thrown, in order to request

the required information. As mentioned at the end of Section 6.3, the algorithm

should not throw an exception if there is no ambiguity in the topological form of

the result. Consider, for example, the situation illustrated in Figure 6.11, where S

intersects Pc at a sharp angle. If the surface does not vary quickly, relative to the

level of uncertainty, then there is no ambiguity in the topological form, even though

some of the triangle elements (vertices and edges) inMν might be very close to the

plane, and therefore the algorithm should not trap. Furthermore, we would like to

avoid further subdivision whenever possible, to reduce the computational cost of

the algorithm. Consequently, the algorithm does not merely subdivide repeatedly

in the areas of possible intersection with Pc until some very small triangle size

is attained. Instead, it uses the tests described in subsequent subsections, which

detect the topological nature of the intersections between the triangular surface

patch and Pc. The tests may succeed, even for fairly large triangles, so that the

S

Pc

Pc ∩ S

Figure 6.11: No ambiguity in the topological form.

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 79

need for repeated subdivision will usually be avoided. On the other hand, there is

no guarantee that the algorithm described here avoids this.

It is reasonable here to introduce a simplifying assumption, which restricts

slightly the class of problems for which the method is applicable. In general there

might be planar subsurfaces of S that lie in Pc, and to permit specification of this

kind of case, by a higher-level process catching the exception, it might in general

be useful to use Selective Geometric Complexes [RO89] with cells of dimension 2

in the specification of S ∩ Pc, for purposes of communicating with the higher-level

process. (An alternative description of this idea is that S∩Pc might be represented

as a hypergraph with hyperedges sharing three vertices.) For simplicity, however,

it is probably sufficient in practice to consider this case to be a loop intersection,

and require, for purposes of communicating with the higher-level process, that the

intersection ofMν and Pc does not involve two-dimensional sets. Note that, in any

case, triangular surface patches can be constrained to lie in the plane by specifying

that one-neighbour vertices of the associated triangle lie in the plane. The question

of the level of generality provided in the interface with the higher-level process is

discussed further in Section 6.5.

6.4.3 Detection of loops within a surface patch

In order to eliminate differences between the topological form of Mν ∩ Pc, and
that of S ∩Pc, the second phase of the algorithm first tries to eliminate extraneous

intersections of the triangular surface patch which have the form of loops, as in

Figure 6.10.

If the vertices of the triangular surface patch were known to lie on the same

side of Pc, then a bounding-box approach, in conjunction with repeated subdivision,

might be sufficient to confirm that there are no extraneous loop intersections. This

does not work, however, if the vertices are on opposite sides of the plane, since a

bounding-box approach will simply indicate that there is at least one intersection.

Also, again, we would like to remove extraneous intersections without subdivision,

if this is possible.

80 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

To exclude the possibility of this kind of extraneous intersection (loops), we can

make use of bounds on the Gauss map, which is defined as the map that takes a

point on the surface to the corresponding unit surface normal.

Proposition 3. To exclude loop intersections in the triangular surface patch, it is

sufficient to check that neither nc nor −nc is contained in N1, the convex hull of

the image of the Gauss map of the triangular surface patch.

Proof. The statement follows directly from [Hoh91, Theorem 1] (and the notation

N1 has been chosen to be consistent with that of the cited theorem). Indeed, if

the stated condition is satisfied, then there exists a plane {x ∈ R3 : P2 · x = σ}
defined by P2 ∈ R3 such that P2 · nc > σ and P2 · n > σ for n ∈ N1. (Note that

here we have used the condition on −nc.) Further, there is a plane defined by

some P1 ∈ R3, separating the image of the Gauss map from nc, so that P1 · nc < σ

but P1 · n > σ if n ∈ N1. It then follows from Theorem 1 in [Hoh91] that any

intersection of the triangular surface patch with Pc is a curve, a point, or a set

of curves and points; and, further, that all isolated point intersections are at the

boundaries of the surface patches, the curves do not contain any singularities, and

no intersection curve forms a loop.

Note that the stated condition is not a necessary condition. As described in

Section 6.4.5, if at a certain level of subdivision it is not possible to exclude the

possibility of a loop intersection, the algorithm will subdivide further, and test

again.

A fail-safe estimate of N1 can be obtained using the method of [GS01, Secs. 3.1-

3.4], which is based on the method of [Sta98a] for the direct parametric evaluation

of Loop subdivision surfaces. Many details relevant to the implementation are

described in [Sta98a, Sec. 4]. The central idea of the method is to decompose the

triangular parametric domain of the triangular surface patch into a sequence of

subdomains for which the patch is regular (n = 6); and, to change coordinates so

that the subdivision can be expressed in terms of the eigenbasis of the subdivision

matrix, so that subdivision becomes a simple scaling.

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 81

6.4.4 Multiple intersections on surface-patch boundary

Suppose now that the test of the previous subsection has confirmed that there is

no loop intersection of the triangular surface patch and the plane. We now wish to

verify that there is exactly one intersection along a certain boundary of a triangular

surface patch. The algorithm of Section 6.4.5 excludes the possibility of zero or

multiple intersections by using a certain property of Bézier curves, and proceeding

as in the case of loop intersections if the test fails, i.e., by subdividing and repeating

the test. The result is a modified set C composed only of triangles generating simple

intersections. The property mentioned can be described as follows.

A triangular surface patch in Loop subdivision, in the regular case (all vertices

have valence n = 6) can be expressed as a quartic Bézier surface, defined by

the twelve one-neighbours of the mesh triangle (see [Sch96, p. 21] and [Lai92])).

Further, an edge of a Bézier patch is a Bézier curve, and the control points of the

curve are just the five control points along the border of the triangular array of

Bézier control points [APS98]. If we join these five points by line segments, to

produce a control polygon for the curve, it follows from the Variation Diminishing

Principle for Bézier curves that the curve intersects Pc no more frequently than the

Bézier control polygon.

Proposition 4. [PT95, p. 12]. If the control polygon does not intersect Pc, then

the Bézier curve does not intersect Pc. Also, if the control polygon intersects Pc
exactly once, then the curve intersects Pc at most once.

Since a Bézier curve interpolates its endpoints [PT95], the cases of zero and one

intersection can easily be distinguished by checking whether the endpoints are on

opposite sides of the plane. All of these tests can be verified in a fail-safe manner

using interval arithmetic. Again, however, these tests provide only a sufficient

condition. If the sufficient condition is not satisfied then a subdivision step must

be carried out.

82 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

6.4.5 Algorithm giving patches with simple intersections

The algorithm is described in the pseudocode given below. We suppose thatMν0

is non-empty. If the list C is initially empty, then the planar-cut algorithm should

return either Mν0 or ∅, depending on whether Mν0 is entirely above, or entirely

below, the plane Pc.

Green triangles are treated as pairs, with tests applied to the red mother trian-

gle.

If C is not empty, the algorithm below either

• certifies a triangle in C as generating only simple intersections; or

• replaces the triangle in C by child triangles eligible for certification, or deletes

such child triangles because their corresponding triangular surface patch can-

not intersect Pc; or

• throws an exception in order to obtain

• certification; or

• the information that the triangle can be deleted from C.

Certification of a triangle includes labelling of the edges, to indicate a single inter-

section on each of a pair of edges. This unfortunately destroys the monotonicity

property of certification. The property of having no loop intersections is inherited

by any child triangles created by subdivision. On the other hand, to satisfy the

single-intersection test on a given edge, it is necessary to do several things:

• the sufficient condition provided by the Variation Diminishing Principle must

be satisfied;

• the triangle vertices must have the same above-below status, with respect to

the plane Pc, as the corresponding vertices of the associated triangular patch;

• the end points of the edge must be regular (n = 6).

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 83

The first two of these conditions are verified using interval arithmetic. Although

the property that an edge does not have multiple intersections is inherited by

children created by subdivision, the ability to confirm all conditions using interval

arithmetic is not. This means that in principle it is possible that a child of a

certified triangle cannot be certified (see pseudocode, below). Convergence of the

algorithm is guaranteed, however, by the geometric reduction in triangle size due

to subdivision. Similarly, whether or not the various tests eventually pass, the

fact that triangle size is eventually reduced to the size of data uncertainty means

that if the algorithm throws an exception, it is because there exists an additional

perturbation of S of that size which could change the topological form.

Algorithm 1 Pseudocode that gives patches with simple intersections
while there exist uncertified triangles in C do
if size of triangle is smaller than uncertainty level then
if only the above-below status of one or two endpoints of an edge of a
triangle is incorrect then
Perturb the triangle endpoints in a direction parallel to nc, to correct the
situation.

else
Throw an exception, asking the higher-level process to specify the topol-
ogy of the intersection curves on the triangle.

end if
else if Wu-Peters guarantees there is no intersection then
Delete the triangle from C.

else if either the loop test or single-intersection test fails then
Apply RG refinement. Mark the child triangles as uncertified, and put them
in C in place of the mother triangle.

else
Label the edge containing the single edge intersection, and certify the trian-
gle.

end if
end while

Finally, the algorithm scans the vertices of the mesh. If the limit position of a

vertex cannot be isolated from Pc using interval arithmetic, the vertex is perturbed

in a direction parallel to nc to correct the situation.

84 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

The algorithm can be made more efficient by making use of the fact that the

loop test does not have to be repeated for triangles that are the children of a

triangle that has already passed the test. (This monotonicity property for the loop

test was mentioned above, within this subsection.)

In the case when an exception is thrown, specification of the topology may

involve an indication that there is no intersection, so that the triangle can be

deleted from C, or it may involve specification of multiple edge intersections, as in

the case of a saddle point. This is discussed briefly in Section 6.5.

6.4.6 Tracing the graph defining the topology of S ∩ Pc

If the higher-level process is permitted only to specify triangles that have single

edge intersections, the tracing procedure is straightforward. The intersection of

the edge curve is known to exist, and we can compute an approximation to the

intersection between the triangle and Pc. Following the triangle adjacency links

within the mesh permits us to continue the process in the adjacent triangle. Since

we are assuming that each edge of the triangular surface patch has zero or one

(non-composite) intersections with the plane, the intersection path forms a closed

loop.

In the more general case more elaborate procedures must be implemented. This

question is also discussed briefly in the next section.

6.5 Discussion and future work

In previous sections we have described our general approach to the problem de-

scribed in Section 6.3. There remain, however, many interesting research questions,

and several major issues to be resolved in the light of more experimentation. In this

section we first give a brief discussion of our prototype implementation, followed

by a summary of the major issues just mentioned.

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 85

6.5.1 The prototype implementation

The major components of the algorithm described above have been implemented,

but not always in full generality. In particular, the fail-safe calculation of N1,

mentioned at the end of Section 6.4.3, is replaced by an estimate. Study of the

modifications necessary [GS01, Sec. 3.5] to obtain tight bounds for N1 constitutes

an interesting research topic in itself, but it is a topic that is largely independent

of the one discussed here.

Our prototype implementation is written in C++ using standard tools, such

as OpenGL and QT . We also make use of the CGAL library [CGA12] for basic

subdivision, and for other tasks, such as checking the condition of Proposition 3.

Similarly, we used the MPFI package [MPF12] for interval arithmetic.

The prototype implementation does not achieve interactive execution rates. To

illustrate, for the model of Figure 6.9, which has (after a preliminary subdivision to

isolate extraordinary vertices) 304 faces, 456 edges, and 154 vertices, the solution

required about 540 milliseconds to compute the planar cut, when no traps occurred.

Although these times could quite likely be improved with a GPU implementation,

it is important to emphasize that efficiency is not our main concern. Our point

of view is different here: rather than requiring interactive solution rates, we have

made correct topological form a tight constraint. We then try to minimize solution

times subject to this constraint.

It is unlikely that the approach described in this chapter would be of interest

in the context of applications such as gaming, even if interactive rates could be

achieved. It is in traditional CAD applications that correct topological form can

be crucial [HS05, Far99, ASZ07].

6.5.2 Future work

The main questions left open are related to the design of the interface for exception

handling, and the elimination of cases where the algorithm traps even though

there exists no small perturbation of the data which could lead to a change in the

86 CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ...

topological form. Also, it may be possible to replace the backward error approach

of Section 6.4 by one based entirely on a direct forward error analysis, which is

discussed briefly in Chapter 7.

One aspect of the interface design is the level of generality to be treated. For

example, in the specification of the topology, we might permit the higher-level

process to specify only closed-loop topologies; alternatively, we might also permit

the specification of saddle points, as mentioned at the end of Section 6.4.5. The

former choice would limit the generality of the cases that could be handled, while

the latter would require the implementation of a more elaborate tracing procedure,

as mentioned at the end of Section 6.4.6. In the latter case it would be possible for

the higher-level process to specify triangle deletion, or a saddle-point intersection

involving four incident path segments. Even the generality of the latter case would

rarely be needed in practice, but in principle, the specification of even more general

types of topology might be permitted. An example is the possibility of permitting

specification of planar intersections of the mesh and Pc, as mentioned at the end

of Section 6.4.2.

As stated at the end of Section 6.3, our goal is to establish weak conditions

guaranteeing that the algorithm will trap and ask for additional information only

in the case when a perturbation of the original data, approximately equal in size

to the data uncertainty, could lead to a change in the topological form. But (again

as stated at the end of Section 6.3) the fact that the algorithm traps only if there

exists a perturbation of the surface S itself which would change the topological

form does not necessarily guarantee that there exists a perturbation of the original

data that has this effect. In fact, the latter condition is very likely in practice, but

in future work, we would like to narrow the gap between “guarantee” and “very

likely”. This possibility is discussed in the remaining paragraphs of the chapter.

In this context, the test of Proposition 3 has as its intuitive basis the idea that if

the surface (viewed as a function defined locally over Pc) is nearly horizontal, then

because of undulations in the surface, a translation of the original control points

will lead to a change in topological form. If the Wu-Peters bounding box has size

CHAPTER 6. MANAGING UNCERTAINTY OF GEOMETRIC ... 87

on the order of the uncertainty, this means that if the algorithm has thrown an

exception, it has done so in a case when there is no other choice: a perturbation of

the original control points, on the order of the uncertainty in the data, would have

led to a change in topological form.

The test does not, however, provide perfectly tight necessary conditions. For

example, it could fail because of a saddle point, or because the bound on the surface

normal provided by N1 is not tight, so that the surface normal cannot be equal to

±nc, even though we are unable to guarantee this.

The consequence of such gaps between the strength of conditions is not algo-

rithm failure, but unnecessary trapping. This will happen very rarely, but nonethe-

less, it would be better to eliminate such behaviour to whatever extent possible.

In fact, it should be possible to design stronger tests, for example by giving con-

ditions which assure that there exists a local relative minimum [Lue73, Sec. 6.2],

so that again a translation of the original control points will guarantee a change in

topological form. On the other hand, the computational cost of such tests must be

examined.

CHAPTER 7

DISCUSSION AND CONCLUSION

7.1 Forward analysis

The work in Chapter 6 uses the backward error analysis to take into account the

error in the calculation of geometric values for vertices that have been subdivided

adaptively. This approach assumes that the problem has been perturbed by an

amount smaller than the data uncertainty present in the problem. This way, the

proposed algorithm will give a topologically correct result for a perturbed problem,

and the same result can serve as the result for the original problem since those

perturbations are often much smaller than the data uncertainty in the original

problem.

In this section we consider the same problem but from a different point of view—

we adopt the forward error analysis here. Instead of dealing with the perturbed

problem and using the fact that the perturbations are usually much smaller than

data uncertainty in the given data that define the problem, we deal with the prob-

lem directly and solve it by computing and considering the bounding error that

results from the calculation. As the relative error in the calculation of geometric

values for vertices at level (λ0+λ) can always be computed using interval arithmetic

or bounded using the standard model [DB07, Ch. 2] (the runnning error analysis

[Hig02, p. 72] provides an idea of how rounding error can be bounded tightly at

the same time of the execution of the computation that needs to be bounded), we

can therefore propose an approach that directly computes the result with correct

topology in well-conditioned cases, or throw an exception in other cases.

This approach is different from the one presented in Chapter 6 in that the

computation of the geometric values of mesh vertices and limit vertices is done

entirely using interval arithmetic. For example, the geometric values of a vertex

p`, when subdivided adaptively to the level (λ0 + λ), where λ0 ≥ 0 and λ ≥ 1,

90 CHAPTER 7. DISCUSSION AND CONCLUSION

can be computed using the MPFI package [MPF12], and described as a triple

(IA(x), IA(y), IA(z)), where IA(x), IA(y), and IA(z) are intervals representing

the cuboid where the vertex p`(λ0 + λ) may locate. Since geometric values of the

meshes are all represented in interval arithmetic, the algorithm that gives patches

with simple intersections (refer to Section 6.4.5) also uses intervals for the corre-

sponding Wu-Peters test, loop test, and single-intersection test.

7.2 Summary and further work

In this thesis, we targeted the robustness of the problem of Boolean operations

that are fundamental and important in the field of solid modelling. We considered

the problem where the solids are represented using Loop subdivision surfaces, and

in the context that ordinary IEEE arithmetic, the widely accepted standard for

floating-point computation, and interval arithmetic, are used, and that an error

criterion that requires correct topological form is used.

As uncertainty in the data is unavoidable, our point of view was to deal with

the problem as one of managing uncertainty. We proposed an interactive approach

for the robust implementation of geometric operations with the aim to obtain the

correct topological form of the result. When this is not possible, i.e., when sup-

plementary topological information is needed, the algorithm throws an exception,

which will be caught by a higher-level process that is capable of providing such

information when demanded.

One question, that has been left open, is the design of the interface for the

communication between the higher-level process and the Boolean solver. There

also exist cases where the algorithm that deals with the planar-cut problem traps

unnecessarily. This may happen, for example, when there is an extraordinary

vertex whose limit values are very near the plane. Another reason for unnecessary

trapping is that some tests in the algorithm use sufficient conditions that are not

necessary: for example, Proposition 3 in Section 6.4.3 is derived from Hohmeyer’s

conditions that are sufficient but not necessary.

CHAPTER 7. DISCUSSION AND CONCLUSION 91

Another open question is the generality of topology that is allowed for surfaces

in the Boolean solver. Accordingly, our representation of subdivision surfaces may

need to be generalized: by introducing piecewise smooth subdivision surfaces the

solver will support free-form surfaces with creases and corners, and by extending

subdivision rules [YZ01] nonmanifold surfaces will be allowed in the solver. And

if more general surfaces are involved in the problem definition, our algorithm that

gives patches with simple intersection and a more elaborate tracing procedure for

the topology of the Boolean result will have to be reformulated to cover more

general topology.

BIBLIOGRAPHY

[AD03] Bart Adams and Philip Dutré. Interactive Boolean operations on surfel-

bounded solids. ACM Trans. Graph., 22:651–656, July 2003.

[ADPS95] Lars-Erik Andersson, S. M. Dorney, T. J. Peters, and N. F. Stewart.

Polyhedral perturbations that preserve topological form. Comput. Aided

Geom. Des., 12(9):785–799, December 1995.

[AFR02] Ashish Amresh, Gerald Farin, and Anshuman Razdan. Adaptive sub-

division schemes for triangular meshes. In Hierarchical and Geomet-

ric Methods in Scientific Visualization, pages 319–327. Springer-Verlag,

2002.

[AMP00] Dago Agbodan, David Marcheix, and Guy Pierra. Persistent naming

for parametric models. In WSCG, pages 17–38, 2000.

[APS98] Lars-Erik Andersson, Thomas J. Peters, and Neil F. Stewart. Selfinter-

section of composite curves and surfaces. Computer Aided Geometric

Design, 15:507–527, 1998.

[APS00] Lars-Erik Andersson, Thomas J. Peters, and Neil F. Stewart. Equiva-

lence of topological form for curvilinear geometric objects. International

J. of Computational Geometry and Applications, 10:609–622, 2000.

[AS10] Lars-Erik Andersson and Neil F. Stewart. Introduction to the Math-

ematics of Subdivision Surfaces. Society for Industrial and Applied

Mathematics, Philadelphia, PA, USA, 2010.

[ASZ07] Lars-Erik Andersson, Neil F. Stewart, and Malika Zidani. Error analysis

for operations in solid modeling in the presence of uncertainty. SIAM

J. Sci. Comput., 29:811–826, March 2007.

[BF10] Richard L. Burden and J. Douglas Faires. Numerical Analysis. Brooks

Cole, Pacific Grove, California, United States, 9th edition, 2010.

94

[BK04] Stephan Bischoff and Leif Kobbelt. Teaching meshes, subdivision

and multiresolution techniques. Computer-aided Design, 36:1483–1500,

2004.

[BKZ01] Henning Biermann, Daniel Kristjansson, and Denis Zorin. Approximate

Boolean operations on free-form solids. In Proceedings of the 28th an-

nual conference on Computer graphics and interactive techniques, SIG-

GRAPH ’01, pages 185–194, New York, NY, USA, 2001. ACM.

[Ble11] Blender. Blender, 2011. Accessed 2011. http://www.blender.com.

[BLZ00] Henning Biermann, Adi Levin, and Denis Zorin. Piecewise smooth

subdivision surfaces with normal control. In Proceedings of the 27th an-

nual conference on Computer graphics and interactive techniques, SIG-

GRAPH ’00, pages 113–120, New York, NY, USA, 2000. ACM.

[BM99] S. B. Brunnermeier and S. A. Martin. Interoperability cost analysis of

the U.S. automotive supply chain. Technical report, Research Triangle

Institute, Center for Economics Research, 1999.

[BP00] M. Bern and P. Plassmann. Mesh generation. In J.-R. Sack and J. Ur-

rutia, editors, Handbook of Computational Geometry, chapter 6, pages

291–332. Elsevier science, 2000.

[BPK+07] Mario Botsch, Mark Pauly, Leif Kobbelt, Pierre Alliez, Bruno Lévy,

Stephan Bischoff, and Christian Rössl. Geometric modeling based on

polygonal meshes. In ACM SIGGRAPH 2007 courses, SIGGRAPH ’07,

New York, 2007. ACM.

[BS92] M. Boyer and N. F. Stewart. Imperfect form tolerancing on manifold

objects: a metric approach. Int. J. Rob. Res., 11:482–490, October

1992.

[CC78] E. Catmull and J. Clark. Recursively generated B-spline surfaces on ar-

bitrary topological meshes. Computer-aided Design, 10:350–355, 1978.

http://www.blender.com

95

[CGA12] CGAL. Computational geometry algorithms library, 2012. Accessed

2012. http://www.cgal.org.

[CLL07] Zhongxian Chen, Xiaonan Luo, and Ruotian Ling. An adaptive subdivi-

sion method based on limit surface normal. In Tenth IEEE International

Conference on CAD and CG, pages 65–70, 2007.

[CM99] G. Casciola and S. Morigi. The trimmed NURBS age. In Donato Tri-

giante, editor, Advances in Computation: Theory and Practice; Recent

Trends in Numerical Analysis. Nova Science Publishers, Inc., 1999.

[CXS12] CXSC. CXSC, 2012. Accessed 2012. http://www2.math.

uni-wuppertal.de/~xsc/xsc/cxsc.html.

[DB07] G. Dahlquist and A. Björck. Numerical Methods in Scientific Com-

puting, Volume 1. Society for Industrial and Applied Mathematics,

Philadelphia, PA, 2nd edition, 2007.

[dBHR93] Carl de Boor, K. Hollig, and D. Riemenschneider. Box Splines. Springer-

Verlag Berlin, 1993.

[DKT98] Tony DeRose, Michael Kass, and Tien Truong. Subdivision surfaces in

character animation. In Proceedings of the 25th annual conference on

Computer graphics and interactive techniques, SIGGRAPH ’98, pages

85–94, 1998.

[DS78] D. Doo and M. Sabin. Behaviour of recursive division surfaces near

extraordinary points. Computer-aided Design, 10:356–360, 1978.

[EC95] Ioannis Z. Emiris and John F. Canny. A general approach to removing

degeneracies. SIAM J. Comput., 24:650–664, June 1995.

[EM90] Herbert Edelsbrunner and Ernst Peter Mücke. Simulation of simplicity:

a technique to cope with degenerate cases in geometric algorithms. ACM

Trans. Graph, 9:66–104, 1990.

http://www.cgal.org
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html
http://www2.math.uni-wuppertal.de/~xsc/xsc/cxsc.html

96

[Far99] Rida T. Farouki. Closing the gap between CAD model and downstream

application, 1999. SIAM News.

[FHK02] G. Farin, J. Hoschek, and M.-S. Kim. Handbook of Computer Aided

Geometric Design. Elsevier, Amsterdam, 2002.

[FM67] G. E. Forsythe and C. B. Moler. Computer solution of linear algebraic

systems. Prentice-Hall, 1967.

[For89] S. Fortune. Stable maintenance of point set triangulations in two dimen-

sions. In Proceedings of the 30th Annual Symposium on Foundations of

Computer Science, pages 494–499, Washington, DC, USA, 1989. IEEE

Computer Society.

[For92] Steven Fortune. Numerical stability of algorithms for 2D Delaunay

triangulations. In Proceedings of the eighth annual symposium on Com-

putational geometry, SCG ’92, pages 83–92, New York, NY, USA, 1992.

ACM.

[GD03] Philippe Guigue and Olivier Devillers. Fast and robust triangle-triangle

overlap test using orientation predicates. Journal of Graphics, GPU,

and Game Tools, 8(1):25–42, 2003.

[GLM96] S. Gottschalk, M. C. Lin, and D. Manocha. OBBTree: a hierarchical

structure for rapid interference detection. In Proceedings of the 23rd an-

nual conference on Computer graphics and interactive techniques, SIG-

GRAPH ’96, pages 171–180, New York, NY, USA, 1996. ACM.

[GO97] Jacob E. Goodman and Joseph O’Rourke, editors. Handbook of Discrete

and Computational Geometry. CRC Press, Inc., Boca Raton, FL, USA,

1997.

[Gra00] Thomas A. Grandine. Applications of contouring. SIAM Rev.,

42(2):297–316, June 2000.

97

[GS01] Eitan Grinspun and Peter Schröder. Normal bounds for subdivision-

surface interference detection. In Proceedings of the conference on vi-

sualization ’01, VIS ’01, pages 333–340, Washington, DC, USA, 2001.

IEEE Computer Society.

[HDD+94] Hugues Hoppe, Tony DeRose, Tom Duchamp, Mark Halstead, Hubert

Jin, John McDonald, Jean Schweitzer, and Werner Stuetzle. Piecewise

smooth surface reconstruction. In Proceedings of the 21st Annual Con-

ference on Computer Graphics and Interactive Techniques, SIGGRAPH

’94, pages 295–302, New York, NY, USA, 1994. ACM.

[Hel98] Martin Held. ERIT - a collection of efficient and reliable intersection

tests. Journal of Graphics Tools, 2:25–44, 1998.

[Hig02] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms.

Society for Industrial and Applied Mathematics, Philadelphia, PA,

USA, 2nd edition, 2002.

[Hof01] C. M. Hoffmann. Robustness in geometric computations. Computing

and Information Science in Engineering, 1:143–156, 2001.

[Hoh91] Michael E. Hohmeyer. A surface intersection algorithm based on loop

detection. In Proceedings of the first ACM symposium on solid model-

ing foundations and CAD/CAM applications, SMA ’91, pages 197–207,

New York, NY, USA, 1991. ACM.

[HS05] C. Hoffmann and N. Stewart. Accuracy and semantics in shape-

interrogation applications. Graphical Models, 67(5):373–389, 2005.

[IEE08] IEEE, New York. IEEE Standard for Floating-Point Arithmetic, 2008.

IEEE Std 754-2008.

[ISO97] ISO. STEP International Standard, ISO 10303-42, 1997.

98

[Jia08] Di Jiang. Reliable Computation for Geometric Models. PhD thesis,

Département d’informatique et de recherche opérationnelle, Université

de Montréal, 2008.

[KBF05] David J. Kasik, William Buxton, and David R. Ferguson. Ten CAD

challenges. IEEE Comput. Graph. Appl., 25:81–92, March 2005.

[KCVS98] Leif Kobbelt, Swen Campagna, Jens Vorsatz, and Hans-Peter Seidel. In-

teractive multi-resolution modeling on arbitrary meshes. In Proceedings

of the 25th Annual Conference on Computer Graphics and Interactive

Techniques, SIGGRAPH ’98, pages 105–114, 1998.

[Kob96] Leif Kobbelt. Interpolatory subdivision on open quadrilateral nets with

arbitrary topology. In Computer Graphics Forum, volume 15, pages

409–420, 1996.

[Kob98] Leif Kobbelt. Tight bounding volumes for subdivision surfaces. In

Proceedings of the 6th Pacific Conference on Computer Graphics and

Applications, Pacific Graphics ’98, pages 17–. IEEE Computer Society,

1998.

[KS88] Sheldon Katz and Thomas W. Sederberg. Genus of the intersection

curve of two rational surface patches. Computer Aided Geometric De-

sign, 5:253–258, 1988.

[Lai92] Ming-Jun Lai. Fortran subroutines for b-nets of box splines on three-

and four-directional meshes. Numerical Algorithms, 2:33–38, 1992.

[LC06] Shuhua Lai and Fuhua (Frank) Cheng. Voxelization of free-form solids

using Catmull-Clark subdivision surfaces. In Lecture Notes in Computer

Science, pages 595–601. Springer, 2006.

[LC07] S. Lai and F. Cheng. Robust and error controllable Boolean operations

on free-form solids represented by Catmull-Clark subdivision surfaces.

Computer Aided Design and Applications, 4:487–496, 2007.

99

[Lev99a] Adi Levin. Combined subdivision schemes for the design of surfaces

satisfying boundary conditions. Computer Aided Geometric Design,

16:345–354, 1999.

[Lev99b] Adi Levin. Interpolating nets of curves by smooth subdivision surfaces.

In Proceedings of the 26th annual conference on Computer graphics and

interactive techniques, SIGGRAPH ’99, pages 57–64, New York, NY,

USA, 1999. ACM.

[LLS01] Nathan Litke, Adi Levin, and Peter Schröder. Trimming for subdivision

surfaces. Computer Aided Geometric Design, 18:463–481, 2001.

[Loo87] C. Loop. Smooth Subdivision Surfaces Based on Triangles. Master

thesis, Department of Mathematics, University of Utah, Utah, USA,

August 1987.

[Lue73] D. G. Luenberger, editor. Introduction to Linear and Nonlinear Pro-

gramming. Addison-Wesley, 1973.

[Man87] Martti Mantyla. An Introduction to Solid Modeling. Computer Science

Press, Inc., New York, NY, USA, 1987.

[Mar05] David Marcheix. A persistent naming of shells. In Proceedings of the

Ninth International Conference on Computer Aided Design and Com-

puter Graphics, CAD-CG ’05, pages 259–268, Washington, DC, USA,

2005. IEEE Computer Society.

[MKC09] Ramon E. Moore, R. Baker Kearfott, and Michael J. Cloud. Introduc-

tion to Interval Analysis. Society for Industrial and Applied Mathemat-

ics, Philadelphia, PA, USA, 2009.

[Möl97] Tomas Möller. A fast triangle-triangle intersection test. Journal of

Graphics Tools, 2:25–30, 1997.

100

[MP02] David Marcheix and Guy Pierra. A survey of the persistent naming

problem. In Proceedings of the 7th ACM Symposium on Solid Modeling

and Applications, SMA ’02, pages 13–22, New York, NY, USA, 2002.

ACM.

[MPF12] MPFI. Multiprecision interval arithmetic library (MPFI), 2012.

Accessed 2012. http://perso.ens-lyon.fr/nathalie.revol/

software.html.

[MS02] Andreas Meister and Jens Struckmeier. Hyperbolic Partial Differential

Equations. Springer Vieweg, 2002.

[Owe98] Steven J. Owen. A survey of unstructured mesh generation technology.

In International Meshing Roundtable, pages 239–267, 1998.

[P1712] P1788. IEEE interval standard p1788, 2012. Accessed 2012. http:

//grouper.ieee.org/groups/1788.

[Pat02] Nicholas M. Patrikalakis. Shape Interrogation for Computer Aided De-

sign and Manufacturing. Springer-Verlag New York, Inc., Secaucus, NJ,

USA, 2002.

[PP09] Enrico Puppo and Daniele Panozzo. RGB subdivision. IEEE Transac-

tions on Visualization and Computer Graphics, 15:295–310, 2009.

[PT95] Les Piegl and Wayne Tiller. The NURBS Book. Springer-Verlag, Lon-

don, UK, 1995.

[Req80] Aristides A. G. Requicha. Representations for rigid solids: theory, meth-

ods, and systems. ACM Computing Surveys, 12:437–464, 1980.

[RO89] J. Rossignac and M. O’Connor. SGC: a dimension-independent model

for pointsets with internal structures and incomplete boundaries. In

M. Wosny, J. Turner, and K. Preiss, editors, Geometric Modeling for

Product Engineering, pages 145–180. North-Holland, 1989.

http://perso.ens-lyon.fr/nathalie.revol/software.html
http://perso.ens-lyon.fr/nathalie.revol/software.html
http://grouper.ieee.org/groups/1788
http://grouper.ieee.org/groups/1788

101

[RR99] Jarek R. Rossignac and Aristides A. G. Requicha. Solid modeling.

In John G. Webster, editor, Encyclopedia of Electrical and Electronics

Engineering. John Wiley and Sons, Inc., 1999.

[RS97] Ari Rappoport and Steven Spitz. Interactive Boolean operations for

conceptual design of 3-D solids. In Proceedings of the 24th Annual Con-

ference on Computer Graphics and Interactive Techniques, SIGGRAPH

’97, pages 269–278, New York, NY, USA, 1997. ACM Press/Addison-

Wesley Publishing Co.

[SAG84] Thomas W. Sederberg, D. C. Anderson, and Ronald N. Goldman. Im-

plicit representation of parametric curves and surfaces. Computer Vi-

sion, Graphics, and Image Processing, 28:72–84, 1984.

[Sam90] Hanan Samet. Applications of Spatial Data Structures: Computer

Graphics, Image Processing, and GIS. Addison-Wesley Longman Pub-

lishing Co., Inc., Boston, MA, USA, 1990.

[Sch96] J. E. Schweitzer. Analysis and Application of Subdivision Surfaces. PhD

thesis, Department of Computer Science and Engineering, University of

Washington, 1996.

[SD07] J. M. Smith and N. A. Dodgson. A topologically robust algorithm for

Boolean operations on polyhedral shapes using approximate arithmetic.

Computer Aided Design, 39:149–163, February 2007.

[Sei94] Raimund Seidel. The nature and meaning of perturbations in geometric

computing. In Proceedings of the 11th Annual Symposium on Theoreti-

cal Aspects of Computer Science, STACS ’94, pages 3–17, London, UK,

1994. Springer-Verlag.

[She00] Jonathan Richard Shewchuk. Mesh generation for domains with small

angles. In Proceedings of the 16th annual symposium on computational

geometry, SCG ’00, pages 1–10, New York, NY, USA, 2000. ACM.

102

[Spa99] Spatial Technology. The ACIS 3D Toolkit Guide, 1999.

[SR04] Steven Spitz and Ari Rappoport. Integrated feature-based and geomet-

ric CAD data exchange. In Proceedings of the ninth ACM symposium on

Solid modeling and applications, SM ’04, pages 183–190, Aire-la-Ville,

Switzerland, Switzerland, 2004. Eurographics Association.

[SS13] Peihui Shao and Neil F. Stewart. Managing uncertainty and discon-

tinuous condition numbers in geometric computation. Soft Computing,

2013. To appear.

[Sta98a] Jos Stam. Evaluation of Loop subdivision surfaces. In CD-ROM Pro-

ceedings of SIGGRAPH’98. ACM, 1998.

[Sta98b] Jos Stam. Exact evaluation of Catmull-Clark subdivision surfaces at

arbitrary parameter values. In Proceedings of the 25th Annual Confer-

ence on Computer Graphics and Interactive Techniques, SIGGRAPH

’98, pages 395–404, 1998.

[Ste11] N. F. Stewart. Boolean operations on subdivision-surface objects with

interactive removal of ill condition, 2011. Draft document.

[Str06] I. Stroud. Boundary Representation Modelling Techniques. Springer-

Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[SV91] Vadim Shapiro and Donald L. Vossler. Construction and optimization

of CSG representations. Comput. Aided Des., 23:4–20, February 1991.

[Tre92] Lloyd N. Trefethen. The definition of numerical analysis. Technical

report, Cornell University, September 1992.

[VR93] H. B. Voelcker and A. A. G. Requicha. Research in solid modeling at

the University of Rochester: 1972-87. In L. Piegl, editor, Fundamental

Developments of Computer-Aided Geometric Modeling, pages 203–254.

Academic Press, New York, 1993.

103

[Wil65] J. H. Wilkinson, editor. The Algebraic Eigenvalue Problem. Oxford

University Press, 1965.

[WP04] Xiaobin Wu and Jorg Peters. Interference detection for subdivision

surfaces. In Proceedings of the Fifth International World Wide Web

Conference, pages 96–107, 2004.

[Wu05] Xiaobin Wu. An accurate error measure for adaptive subdivision sur-

faces. In Proceedings of the international conference on shapes and

solids, pages 51–56, 2005.

[Yap90] Chee-Keng Yap. Symbolic treatment of geometric degeneracies. Journal

of Symbolic Computation, 10:349–370, August 1990.

[Yap08] Chee Yap. Reliable implementation of real number algorithms: The-

ory and practice. In Peter Hertling, Christoph M. Hoffmann, Wolfram

Luther, and Nathalie Revol, editors, Reliable Implementation of Real

Number Algorithms: Theory and Practice, chapter Theory of Real Com-

putation According to EGC, pages 193–237. Springer-Verlag, Berlin,

Heidelberg, 2008.

[YZ01] Lexing Ying and Denis Zorin. Nonmanifold subdivision. In Proceedings

of the conference on visualization ’01, VIS ’01, pages 325–332, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[Zor06] Denis Zorin. Modeling with multiresolution subdivision surfaces. In

ACM SIGGRAPH 2006 Courses, SIGGRAPH ’06, pages 30–50, New

York, NY, USA, 2006. ACM.

[ZSS97] Denis Zorin, Peter Schröder, and Wim Sweldens. Interactive multires-

olution mesh editing. In Proceedings of the 24th annual conference on

computer graphics and interactive techniques, SIGGRAPH ’97, pages

259–268, New York, NY, USA, 1997. ACM.

	Résumé
	Abstract
	Contents
	List of Figures
	Acknowledgments
	Introduction
	Error analysis for geometric computations
	Error analysis
	Sources of errors
	The IEEE floating-point number system
	Backward error analysis
	Condition number of a problem

	Robustness in geometric computations
	Inconsistency in the representation
	Metrics for the measurement of error
	Conditioning of geometric problems

	Proof of robustness for geometric algorithms

	Representations and operations in solid modelling systems
	Solid modelling
	Introduction
	Mathematics for solid representation
	Constructive solid geometry
	Boundary representation

	Mesh representation
	Definition and types of meshes
	Polygonal meshes

	Trimmed-NURBS representation
	Definition
	The trimming operation

	Subdivision surfaces
	Introduction
	Classification
	The Catmull-Clark scheme
	The Loop scheme
	Piecewise smooth subdivision surfaces

	SGC cellular representation

	Boolean operations on subdivision surfaces
	Evaluation of Loop surfaces
	Stam's method
	The Wu-Peters method

	Boolean operations on subdivision surfaces
	The surface-based approach
	The voxel-based approach

	The reformulation of Boolean operations
	The necessity of reformulation
	Binding of cells
	Verification of Bézier complexes
	Resolution of ambiguities
	Outline of a general solution

	Managing uncertainty of geometric computation with backward analysis
	Introduction
	Uncertainty and condition numbers
	Planar cut of a locally-planar mesh
	The uncertainty-management process
	Red-Green Loop triangulation
	Triangles generating simple intersections
	Detection of loops within a surface patch
	Multiple intersections on surface-patch boundary
	Algorithm giving patches with simple intersections
	Tracing the graph defining the topology of S Pc

	Discussion and future work
	The prototype implementation
	Future work

	Discussion and conclusion
	Forward analysis
	Summary and further work

	Bibliography

