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I Abstract 
Background: Ischemic heart disease (IHD) remains a leading cause of mortality in North 

America. Cardiac cell therapy (CCT) has emerged as a promising therapy to help heal the 

damaged heart. Among the various candidates for stem-progenitor cells, Mesenchymal 

Multipotential Stromal/Stem Cells (MSC) is of great promise. However, there remain unresolved 

issues and challenges that prevent clinical application of MSC-based CCT in IHD. Among the 

latter, low cellular retention rate, in vivo cell tracking and post-delivery apoptosis. Here in, 

growth factor preconditioning and MSC coupling to nanoparticles are investigated as methods to 

optimize MSC. Methods：Lewis Rat MSC (rMSC) and pig MSC (pMSC) were isolated from 

bone marrow. Rat MSCs were preconditioned with SDF-1a, TSG-6 and PDGF-BB, and then 

subjected to hypoxia, serum deprivation and oxidative stress.  Wound healing assays were also 

done with preconditioned rat MSCs. In parallel, novel ferromagnetic silicone core-shell 

nanoparticles (NP) were synthesized.  Pig MSCs were coupled to NPs following 

functionalization of the NPs with an antibody to a well-recognized MSC surface antigen, CD44. 

Subsequently, biocompatibility studies were performed on the pMSC-NP complex and included 

testing of key cellular processes such as migration, adhesion, proliferation and differentiation 

properties. Results: Of all cytokines used, PDGF-BB showed greatest capacity to improve MSC 

survival under conditions of hypoxia, serum deprivation and oxidative stress.  NP conjugation 

has mitigated effect on the migration and proliferation of pig MSC, but do not change the 

differentiation capacity of MSC. Finally, the MSC-NP complex was detectable by MRI. 

Conclusion: Our data suggest that novel strategies, such as PDGF-BB preconditioning and 

ferromagnetic nanoparticle coupling, can be considered as promising avenues to optimize 

MSCs for CCT. 

Key words: MSC, CCT, Precondition, PDGF-BB, Magnetic Nano-particles, MRI 
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Resumé 

Contexte: La cardiopathie ischémique (IHD) reste une cause majeure de mortalité en Amérique 

du Nord. La thérapie cellulaire cardiaque (CCT) a émergé comme une thérapie prometteuse 

pour aider à guérir  certaines malades cardiaques. Parmi les cellulaires avec propriétés 

pluripotentes, les cellules stromales mésenchymateuses (MSC) sont prometteuses. Cependant, 

plusieurs questions  demeurent non résolues et certaines défis empêchent l'application clinique 

de la CCT se dans l'IHD, tels que le faible taux de rétention cellulaire in situ, le suivi des cellules 

in vivo post-implantation et post-acheminements et l`apoptose. Ici, le  traitement préliminaire 

des MSC avec des facteurs de croissance et leur couplage avec des nanoparticules (NP) seront 

étudiés comme des méthodes pour optimiser MSC. Méthodes: Des MSCs provenant du rat 

(rMSC) et du cochon (pMSC) ont été isolés à partir de moelle osseuse. Les rMSC ont été 

préconditionnées avec SDF-1a, TSG-6 et PDGF-BB, et ensuite soumises à une hypoxie, une 

privation de sérum et a un  stress oxydatif. Des études de cicatrisation ont également été 

effectués avec rMSCs préconditionnées. En parallèle, de nouvelles NP ferromagnétiques liées 

aux silicones ont été synthétisées. Les NPs ont été couplées aux pMSCs suivant leur 

fonctionnalisation avec l`anticorps, CD44, un antigène de surface du MSC bien connu. Par la 

suite, les études de biocompatibilité ont été réalisées sur pMSC-NP et en incluant des tests des 

processus cellulaires tels que la migration, l'adhésion, la prolifération et les propriétés de la 

différenciation. Résultats: Parmi toutes les cytokines testées, PDGF-BB a démontré la plus 

grande capacité à améliorer la survie de MSC dans des conditions d'hypoxie, de privation de 

sérum et en reponse au stress oxydatif. La conjugaison de NP a  atténué  la migration et la 

prolifération des pMSCs, mais n`a pas changé leur capacité de différenciation. Enfin, la 

complexe du MSC-NP est détectable par IRM. Conclusion: Nos données suggèrent que de 

nouvelles stratégies, telles que traitement préliminaire de PDGF-BB et le couplage des 
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nanoparticules ferromagnétiques, peuvent être considérés comme des avenues prometteuse 

pour optimiser les MSCs pour la CCT. 

Mots clés: MSC, TDC, Condition, PDGF-BB, Nanoparticules Magnétiques, l'IRM 
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VI INTRODUCTION 

Chapter 1 Introduction 
 

1.1. The clinical burden of ischemic heart disease  

Ischemic heart disease (IHD) remains one of the leading causes of mortality and morbidity 

worldwide (Antman, Anbe et al. 2004; Hunt, Abraham et al. 2005; Krum 2005; Choi D 2009). In 

North America, acute myocardial infarction (AMI) accounts for more than 50% of cardiovascular-

related deaths. Annually, approximately one million patients suffer an AMI, which carries a 

mortality rate of about 25% over 3 years. Less than 20% of patients who survived an ST-

elevation myocardial infarction will have achieved normal restoration of epicardial coronary flow 

and adequate microvascular reperfusion (Gibson, Cannon et al. 2000; Giugliano, Sabatine et al. 

2004). The subsequent loss of viable myocytes irreversibly damages the myocardium. With 

greater numbers of patients surviving AMI as well as an aging population, post-infarction 

congestive heart failure (CHF) has become a health issue with increasing social impact and 

economic burden. The latter carries a poor prognosis for symptomatic patients (up to 50% 

mortality per year)(National Heart 2004).  

1.2. Limitations of current therapeutic strategies for IHD:  

Over the last decade, despite substantial progress made both in acute reperfusion strategies in 

AMI and chronic/preventive therapies for post-infarction CHF, current treatment methods are 

limited as can be evidenced by the aforementioned statistics. Current therapeutic strategies aim 

to enhance myocardial reperfusion during AMI(Gibson 2003) and limit the untoward effects of 

activation of the sympathetic/neuroendocrine systems in the hopes to halt the progressive 

nature of CHF(Jessup and Brozena 2003). At present, orthotropic heart transplantation remains 
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the only treatment for severe and irreversible post-infarction myocardial damage. Yet, 

increasing organ donation shortages have blunted its contributions. This discrepancy between 

demand and supply emphasizes the stark reality that this avenue no longer fills the growing 

clinical need. Accordingly, numerous novel therapies including molecular, pharmacological and 

mechanical have been explored (Landmesser and Drexler 2005; Yacoub, Suzuki et al. 2006). 

Among these strategies, cell-based therapy for cardiac regeneration has captured the attention 

of the clinicians and scientists alike and has emerged as a controversial but promising and 

potentially curative therapeutic strategy for IHD(Sanchez, San Roman et al. 2006). 
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Chapter 2 Cardiac Cell therapy 
 

2.1. Biological basis of a paradigm shift 

The human body possesses a varying capacity to repair and recover after injury, which helps to 

maintain homeostasis throughout life. The latter process is made possible due to a group of 

specialized cells, stem and progenitor cells that are able to regenerate and replace somatic cells 

(IL 200) Following a myocardial infarction (either acutely or chronically), a maladaptive process 

is initiated  which results in injury progression and adverse cardiac remodeling. Current 

therapies have yet to exploit the reparative and/or regenerative potential of the heart. 

A long-held scientific belief was that the heart was a post mitotic organ with terminal 

differentiation. In recent years, a growing body of evidence has challenged this axiom, 

supporting the notion that the adult mammalian heart can indeed undergo repair by 

regenerating cardiomyocytes from both endogenous and circulating sources. Reports 

documenting the existence of immature cardiomyocytes capable of re-entering the cell 

cycle(Beltrami, Barlucchi et al. 2003) or of cardiac repair by non-cardiac stem cells has further 

strengthened the heart’s regenerative potential (Orlic, Kajstura et al. 2001). Much of the recent 

excitement and interest garnered by the field of regenerative cardiovascular medicine revolves 

around the concept of plasticity of adult stem cells (SC) (Blau, Brazelton et al. 2001; Wagers 

and Weissman 2004; Zipori 2005). SCs are undifferentiated cells that are defined by their 

capacity for self-renewal, clonogenicity and mulitpotentiality. Residing in “niches”, SC become 

activated under conditions such as tissue injury(Fuchs, Tumbar et al. 2004). Various 

mechanisms have been put forward to explain the lineage conversion (plasticity) of adult stem 

cells: 1) multiple, distinct SCs within various organs that are able to contribute to tissue-specific 

repair; 2) the persistence of a single pluripotent cell giving rise to cells of different lineage; 3) the 

dedifferentiation, whereby tissue-specific cells revert to a more primitive, multipotent form, which 
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subsequently redifferentiates along a new lineage; 4) the cell-cell fusion by which heterotypic 

cells combine to form new, chimerical cells;  and 5) the transdifferentiation whereas SCs give 

rise to various cell lineages by activation of dormant differentiation cellular pathways altering its 

lineage-specific commitment(Wagers and Weissman 2004). 

2.2. Potential source of cells for cardiac regeneration  

The pool of stem cells and progenitor cells for myocardial regeneration is quite versatile(Fraser, 

Schreiber et al. 2004; Caplice, Gersh et al. 2005; Leri, Kajstura et al. 2005; Muller, Beltrami et al. 

2005; Fukuda and Yuasa 2006; Hristov and Weber 2006). They can be divided into embryonic 

vs. adult stem cells; the latter can be further divided into endogenous(cardiac) vs. exogenous 

stem cells. In brief: 

2.2.1. Embryonic SC: are obtained from the inner mass of embryos at the blastocyst stage. 

They are highly proliferative (can replicate indefinitely in vitro) and are considered totipotent i.e. 

able to differentiate into cells of all germ lines. Nevertheless, the use of human embryonic stem 

cells faces several hurdles such as ethical issues, the need for immunosuppression, unresolved 

culture conditions and the potential for tumorigenicity. 

2.2.2 Adult Stem-progenitor Cells:  

i. Skeletal muscle-derived cells: Skeletal myoblasts are found in a quiescent state in the basal 

membrane of skeletal muscles. Readily isolated from a muscle biopsy and considered to be 

more resistant to ischemia than cardiomyocytes, they can be expanded ex vivo then 

transplanted in an autologous fashion. However, their survival rate is low (less than 50% at 48 

hours) following transplantation into ischemic myocardium. In addition, the debate remains open 

whether skeletal myoblasts directly act on injured myocardium. Evidence suggests that MSCs 

do not form electro-mechanical coupling with the surrounding cardiomyocytes post-implantation. 

This evidence has led to the cautionary use of these cells. Nevertheless, most studies to date 
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have used sample from a heterogeneous population of skeletal myoblasts with less efficient 

engraftment. A distinct subpopulation of more primitive cells, the muscle-derived stem cells, 

show promise of both enhance regenerative potential and improve graft survival, with possibly 

less arrhythmogenicity (Jankowski, Deasy et al. 2002; Oshima, Payne et al. 2005). 

ii. Bone Marrow-derived SC: Recent studies have highlighted the importance of the Bone-

Marrow-derived SC(BMSC) in cardiac homeostasis (Vandervelde, van Luyn et al. 2005). It has 

been hypothesized that the BM not only harbors hematopoietic stem cells but also is a 

repository of circulating tissue-committed stem cells for various non-hematopoietic organs (liver, 

muscle, brain and heart)(Kucia, Dawn et al. 2004; Ratajczak, Kucia et al. 2004).The BM is 

comprised of a heterogeneous population of cells, and the on-going research is to define their 

contributions to myocardial repair(Dimmeler, Zeiher et al. 2005; Lee 2011). Currently, the most 

studied BM-SCs or circulating BM-SCs are as follow: 

- Hematopoietic SC: Discovered over four decades ago and well known for their capacity to 

repopulate the BM, these multipotent cells reside within BM niches and give rise to mature 

blood cells. Of note, no truly specific antigen for identification of these cells have been found so 

far; the known surface markers allow to recognize more specific subpopulation. In mice, they 

are characterized by their surface epitopes, c-kit+Sca-1+Thy-1 low; whereas in humans, 

markers such as CD34, CD 117 and CD 133 allow for their identification. Current efforts in 

cardiovascular research have focused on the identification of a specific subpopulation of these 

cells. 

- Endothelial progenitor cells (EPCs): Derived from mononuclear cells collected from BM or 

peripheral blood, these cells are isolated based on antigens found on both hematopoietic and 

endothelial cells (CD34, VEGF receptor 2 [FLK-1/KDR] or CD133). Well-documented for their in 

vitro maturation towards endothelial cells and convincingly proven to contribute to angiogenesis, 
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these cells have been reported to transdifferentiate into cardiomyocytes. A subpopulation of 

these cells has been associated with minimal expression of surface antigens and a high degree 

of plasticity. Their low abundance in circulation is a limiting step. Hence to achieve sufficient 

numbers for either research or clinical purposes, there is a need for additional steps for ex vivo 

expansion (use of growth factors or cytokines to promote increased mobilization of these cells) 

for greater yields during harvesting. 

- Side-population SC (SPCs): These are a primitive stem cell population, shown to be potent 

hematopoietic stem cells capable of contributing to BM regeneration. These cells can be easily 

selected by their capacity to extrude the dye Hoechst 33342. A distinct, characteristic pattern is 

obtained on fluorescence activated cell sorter (FACS) resulting from this high effluxing dye 

activity, giving a separate population to the side of the main population on a dot-plot emission 

spectra in both the blue (450 nm) and far red (>675 nm) emission channels (Goodell, 

Rosenzweig et al. 1997). This ability is conferred by the ATP-binding cassette (ABC) transporter 

Abcg2/brcp1, the latter protein being restricted to the SP population. First isolated from the BM 

(accounting for ~0.05% of the total cell population), these SCs have since been identified within 

various tissues, including the heart (Hierlihy, Seale et al. 2002; Pfister, Mouquet et al. 2005), 

with documented multilineage differentiation ability regardless of tissue origin. 

- Mesenchymal Multipotential Stromal/Stem Cells (MSCs): These cells will be discussed 

more in detail in the following section as they represent the main cell population related to my 

research work. 

iii. Adipose-derived SC: Adipose tissue is now increasingly recognized as a reliable and easily 

accessible source of stem and progenitor cells. Investigators have managed to isolate from this 

reservoir numerous cell types: hematopoietic stem cells, mesenchymal-like stem cells as well as 

cells presenting the side-population phenotype. Functional improvement of cardiac function has 
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been reported with stem cells derived from this particular niche. As with the BM, isolating which 

cellular fraction of this promising new cell reservoir holds the most potential for myocardial 

repair remains a challenge for the scientific community. 

2.2.3 Adult Endogenous Cardiac SC: Several groundbreaking reports (Quaini, Urbanek et al. 

2002; Nadal-Ginard, Kajstura et al. 2003) have paved the way to the discovery of primitive, 

multipotent resident cardiac stem populations. Cycling cardiomyocytes have been documented 

in both the normal and pathologic adult heart. Currently, four resident cardiac stem cell 

populations have been clearly identified (Anversa, Kajstura et al. 2006; Wang and Sjoquist 

2006). They can be distinguished either by their surface markers (such as c-kit(Beltrami, 

Urbanek et al. 2001; Beltrami, Barlucchi et al. 2003) and Sca-1(Oh, Bradfute et al. 2003; 

Matsuura, Nagai et al. 2004), the presence of the ABCG2 transport protein(Martin, Meeson et al. 

2004) and the capacity for Hoechst dye efflux(Hierlihy, Seale et al. 2002; Mouquet, Pfister et al. 

2005; Pfister, Mouquet et al. 2005). Although an ideal donor source of cells for cardiac 

regeneration, extensive, prolonged ex vivo expansion process, the unexplored issue of cross-

talk between these resident cells and the highly invasive nature of cardiac tissue-cell harvesting 

represent current limitations to their clinical use. 

2.2.4  Induced Pluripotent Stem cells 

A novel alternative is the production of iPS (induced Pluripotent Stem) cells. Recently, 

Takahashi et al. demonstrated that four key transcription factors (Oct3/4, Sox2, Klf4, and c-Myc) 

could be used to reprogram adult somatic skin-derived fibroblasts into functionally cells with 

embryonic-like properties.(Takahashi, Tanabe et al. 2007) The iPS cells have opened the doors 

to vast new possibilities in therapeutic tissue (cardiac and non-cardiac) regeneration from a 

translation perspective: a patient’s own dermal fibroblasts could be reprogrammed into tissue-

specific cells after ex vivo expansion, which can then serve as an autologous source of 
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therapeutic cells.(Nakagawa, Koyanagi et al. 2008) Initially, generation of iPS cells required 

retroviral infection of somatic cells with retrovirus encoding for 3 or 4 genes (Oct3/4, Sox2, and 

Klf4, with or without c-Myc) (Takahashi and Yamanaka 2006; Nakagawa, Koyanagi et al. 2007; 

Takahashi, Tanabe et al. 2007; Nakagawa, Koyanagi et al. 2008). The possibility of random 

integration of these genes in the cell genome with retrovirus has raised safety concerns. 

However, recent reports on the use non-integrative adenoviral vector or transfection with 

plasmid vectors to introduce the latter key “reprogramming” genes have alleviated the risk and 

concern regarding potential insertional mutagenesis (Okita, Nakagawa et al. 2008; Stadtfeld, 

Nagaya et al. 2008).  

2.3 Clinical applicability of cardiac cell therapy:  

Over the last five years, clinical trials based on the early, dramatic animal studies have rapidly 

exploited the underlying assumption that repopulation of scarred myocardium is feasible by 

exogenously supplied cellular surrogates of cardiomyocytes. This recent interest of the scientific 

community for organ regeneration is not without merit as these trials have shown both structural 

and functional improvements following SC transplantation. Of the various cell types, skeletal 

myoblasts(Hagege, Marolleau et al. 2006; Menasche 2006) and BM-derived cells(Assmus, 

Honold et al. 2006; Lunde, Solheim et al. 2006; Schachinger, Erbs et al. 2006) have been the 

most extensively investigated. The rapid transition of the cell-based approach to clinical 

application such as cardiac repair has been fueled in part by the ease of collection and the 

scalability of these two cell populations. The bulk of the evidence from clinical trials to date has 

documented only safety and feasibility in two patient populations: those with recent AMI or post-

infarction CHF. However, small patient numbers, use of surrogate endpoints and negative long-

term data have limited the ability to draw any firm conclusions as to the clinical efficacy of this 

modality in IHD (Wollert, Meyer et al. 2004; Janssens, Dubois et al. 2006; Oettgen, Boyle et al. 

2006). Certain unresolved issues still need to be addressed before cell-based therapy can move 
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towards more widespread clinical use (Ott, McCue et al. 2005; Gersh and Simari 2006; 

Rosenzweig 2006). In light of the main focus of my research, an exhaustive review of the clinical 

cell-based trials published to date is beyond the scope of this writing. 

2.4 Current controversies and limitations regarding the cell-based approach to cardiac 

regeneration and repair  

Ongoing debate regarding the role of cell-based therapy in ischemic heart disease has 

highlighted current controversies and limitations (Stamper and Woodruff 1976; Chien 2004; 

Caplice, Gersh et al. 2005; Wollert and Drexler 2005; Chien 2006): 

i.  The most appropriate cell type remains to be defined and, most likely, may vary 

according to the time from injury as well as the type of myocardial injury. 

ii.  The survival rate as well as the myocardial retention rate of delivered cells may be low 

regardless of cell type with possible explanations ranging from cell-dependent (differentiation 

level, resistance to ischemia, apoptosis) to cell-independent factors (timing of cell therapy, 

delivery method, interaction with other treatment methods). 

iii.  There is no clear certainty about which mechanisms underlying the positive clinical 

benefits of cell-based therapy play a pivotal role in cardiac regeneration/repair: de novo 

cardiomyocyte formation, pro-angiogenic effect, paracrine effects on surrounding  

cardiomyocytes, passive grafting with altered remodeling, recruiting and/or activation of resident 

cardiac stem-progenitor cells. 

iv.  Conflicting findings on the functional benefits of transferred cells have only highlighted 

the lack of methodological uniformity in the field. 

Despite unresolved issues from a mechanistic point of view, the pressing and largely unmet 

clinical need has prompted a rapid transition from basic research to clinical trials. For these 
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reasons, there is now a growing consensus that a greater understanding of basic mechanisms 

involved in myocardial repair is required to push this promising field forward and exploit its full 

potential(Rosenzweig 2006). 

 

Figure: 1 Cardiac Cell Therapy:  A general process of stem cell therapy, from isolation and 
selection of stem cells to the final realization of therapeutic goal. Adapted from Serger etal, 
(Segers VF 2008). 
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Chapter 3 Mesenchymal Multipotential Stromal/Stem Cells 
 

 MSCs are a rare population of cells residing in the BM with putative cells isolated from 

embryonic, fetal and postnatal organs(Boyle, Schulman et al. 2006). However, the BM 

constitutes the main source of MSCs in the adult. These adherent fibroblast-like cells are 

isolated from the mononuclear cells from the BM. No definitive consensus has been reached on 

the exact definition of MSCs. While positive for various adhesion proteins, these cells are CD45, 

CD34 and CD133 negative; CD29, CD44, CD105 and Sca-1(in mice) are widely accepted as 

surface markers for MSCs. It has been argued that MSCs should not be defined strictly based 

on surface antigen expression but also by functional properties such as multipotent growth and 

differentiation behavior. During expansion, MSC have been known to respond to growth factors 

and cytokines: most notably, addition of 5-aza-cytidine has been well documented to favor 

cardiomyocyte phenotypic differentiation (Makino, Fukuda et al. 1999; Pittenger and Martin 

2004). 

MSCs are considered important candidates for regenerative/reparative therapy as they are 

readily obtained from the BM, can home to and repair injured tissues, are known to have 

immunomodulatory properties (therefore opening the possibility to allogenic transplantation) and 

have good survival following transplantation(Zimmet and Hare 2005).   

The term MSC is widely used, but still ill-defined in a field with rapid growth and expansion 

during the last decade (Bianco P 2008). According to the International Society for Cell Therapy 

(ISCT), there are suggested minimal criteria for the using of the term Mesenchymal Stem Cell, 

(figure 2), including fibroblast-like morphology, adherence to plastic upon isolation and 

expression of certain surface markers and differentiation capacity (Dominici M 2006).  Instead of 

being a specified progenitor cells like EPC or Heamtopetic Stem Cells, MSC is more of a 

multipotent Stem Cells. The most usual examination includes the classic trilineage test, adipo, 
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oesto and condro. And MSC has been isolated from different parts of the body, bone marrow, 

fat tissue, blood, placenta and almost every postnatal tissue (da Silva Meirelles L 2006). Thus 

MSC is more likely to be called the residing stem cells with multipotency. The simplicity of 

isolation, excellent multipotency and immuno tolerance distinguish MSC from all potential stem 

cell therapy candidates. 

 

Figure: 2 Minimal Criteria for Mesenchymal Stem Cells:  Suggested minimal criteria for the 

definition of Mesenchymal Stem Cell(MSC), adapted from Dominici etal (Dominici M 2006). 

3.1 Sources of MSC 

Even though MSC is almost omnipresent in the body, commonly used sources are bone marrow 

(BM), umbilical cord blood (UCB) and adipose tissue (AT), although MSC is also present in 

other sources. They are similar in morphology, surface markers, multipotency and other 

characteristics. Based on the standards of the minimal criteria of the establishment of MSC, 

comparison of the three main sources is focused on morphology, surface marker, and 

differentiation capacity. Kern et al carried out an investigation on MSC from the three sources 

on human; they found that morphologically speaking the cells are of no differences; MSCs from 

different sources are also uniform in immuno phenotype (Kern S 2006). Upon the confirmation 

of same morphology and immuno phenotype (22 surface markers were checked), Wagner et al 

confirmed that they are also same in differentiation capacity, and share 25 overlapping gene 
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expression traits (Wagner W 2005 ).  Another checkpoint for MSC from different sources is their 

immunosuppressant capacity. MSCs from either BM or AT or UCB exert immunomodulatory 

capacity (Le Blanc K 2004; Yañez R 2006; Tipnis S 2010).  

And of course, there are differences. The success rate of isolating MSC is near 100% for BM 

and AT, but the chance drops to 63% with UCB.  While BM-MSC is a very rare faction of the BM 

nucleated cells (around 0.001-0.01%), MSCs are 500 times more abundant in AT (Strioga M 

2012).  Out of the three, BM-MSC has shortest culture period and lowest proliferation rate, while 

UCB-MSC has longest culture period and highest proliferation rate. The differentiation capacity 

also varies, AT-MSC posses higher frequency of oil-positive cells under adipogenic 

differentiation, while BM-MSC performs better for calcium deposition under osteogenic 

differentiation (Sakaguchi Y 2005). 

In fact, MSC can be procured from almost all tissues. Periosteum (Ringe J 2008), Placenta 

(Fukuchi Y 2004), Skin (Belicchi M 2004), Synovium (De Bari C 2001; Sakaguchi Y 2005)  etc.. 

are all identified as reliable sources for MSC.  Still, more sources are being explored for 

potential high profile MSCs. A comparison among BM, Synovium, Periosteum, AT and muscle 

derived MSCs has shown that Synovium-MSC is superior in isolation yield, proliferation profile 

and chondrogenesis (Yoshimura H 2007), corresponding to the fact that AT-MSC is best for 

Adipogenesis (Sakaguchi Y 2005). Different sources of isolation may be useful facing different 

clinical demands. Synovium-MSC is suitable for cartilage repair, while AT-MSC is better for 

adipose regeneration, which can be used for breast enlargement (Yoshimura K 2008). 

3.2 Multipotency of MSC 

Compared to other progenitor cells, like EPCs which are lineage-driven towards endothelial 

cells, MSCs are considered to have multipotency and not to be lineage-driven toward one single 

cell population. The classic differentiation of MSC, however, is only the tip of the iceberg since, 
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under proper conditions; MSCs can be coaxed to generate various cell lines.  The multi-organ 

niches of MSCs constitute a likely underlying explanation for this characteristic multipotency.  

Liechty et al. transplanted human MSC into fetal sheep, which differentiated into chondrocytes, 

adipocytes, myocytes, cardiomyocytes and thymic stoma in a site-specific manner. This 

indicates that MSCs are multipotent, and seem to have adaptive differentiation response 

depending on microenvironmental cues (Liechty KW 2000).  Gang et al. incubated umbilical 

cord blood-MSCs with promyogenic conditions for 6 weeks.  Half of the cell population 

expressed myosin heavy chain, a late marker of myogenic differentiation (Gang EJ 2004); Long 

etal. cultured BM-MSC in neurogeinc medium for 6 days, 66% of the cells adopted a dendritic 

morphology and a portion of cells express a wide range of neural markers including Nestin and 

β-tubulin, indicating mature neuron-phenotype (Long X 2005); Chen et al successfully induced 

insulin secretion from rat MSCs after generating differentiated cells with a pancreatic phenotype 

(Lee KD 2004); By a two-step induction protocol using hepatocyte growth factor, Lee etal. 

acquired cells with hepatocyte function including albumin production from human MSC (Chen 

LB 2004).  For cardiac cell therapy, transdifferentiations of MSCs are of great value. Silva et al. 

confirmed in a canine chronic ischemia model that MSCs can differentiate into smooth muscle 

cells and endothelial cells, leading to improved vascularity (Silva GV 2005); In addition, MSC 

have been induced to differentiate into cardiomyocyte (Liechty KW 2000; Wang T 2003; 

Kawada H 2004). Thus, MSC hold many advantages for therapeutic use and for regeneration 

medicine as they can be adapted to many tissue damage settings. 
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3.3 Paracrine effect of MSCs 

As mentioned above, MSCs excrete proteins that influence other cells in their vicinity.  MSC 

secrets a wide range of soluble factors, including PGE-2, VEGF, HGF and SDF-1, which have 

affect the immune system, apoptosis, angiogenesis, chemoattraction, scarring , growth and 

differentiation of other progenitor cells (Meirelles Lda S 2009) (figure 4).   Evidences have 

shown, the restoration of injured heart by AKT overexpressing MSCs is related to the paracrine 

effect of MSC.  Genecchi et al. found that this restoration is not associated with cardiac 

differentiation of implanted MSC, but paracrine effect. The injection of AKT-MSC  

preconditioned with hypoxia also improved cardiac repair in the rat model of myocardium 

infarction, again indicating that the paracrine secretion of cardioprotection substances by MSCs 

play a major role in the repair of the injured heart(Gnecchi M 2005). Another study done by 

Mirutsou et al. revealed the secreted frizzled related protein 2 (sfrp-2) plays an import role in this 

beneficial paracrine effect on cardiomyocytes by AKT-MSC (Mirotsou M 2007).  Beside this 

seminal study, there are also other interesting facts. MSC conditioned medium is able to 

activate Cardiac Progenitor Cells (Nakanishi C 2008), a possible reason for the improvement of 

cardiac function after MSC transplantation. Another interesting fact is that MSC conditioned 

culture medium downregulates cardiac fibroblast proliferation and collagen synthesis, which can 

be translated into potential anti-fibrosis effect (Ohnishi S 2007). Tang et al. found that 

implantation of MSC decreases the expression of proapoptotic protein Bax in the ischemic 

myocardium (Tang YL 2005). In an experiment done by Uemera et al, culture medium of 

hypoxia preconditioned BM-MSC significantly reduced the infarct area in a mice model (Uemura 

R 2006).  Li etal demonstrated that the overexpression of GATA4 in MSC significantly increased 

the secretion of VEGF and IGF, which results in cardiac protection effect (Li H 2010).  The 

diversity and therapeutic potential of the paracrine effect of MSC might provide an answer to the 

complexity of related to IHD. 
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3.4 Immunomodulatory property of MSC 

The immune response is a major concern in the successful delivery of therapeutic cells in the 

obstructed heart. MSCs have the unique capacity to induce immunotolerance in their hosts, 

even in the setting of a xeno-transplantation (Liechty KW 2000). The mechanisms underlying 

this phenomenon are multifold, as shown in (figure 5). Firstly, MSC is of low immunogenicity.  

Both in human and animal, MSCs express the major histocompatability complex (MHC-1) but 

not MHC-2 (Barry FP 2005; Ryan JM 2005), which is known to induce tolerance:  for example, 

positivity of MHC I can help avoid NK cells mediation immune response (Ruggeri L 2001). 

Secondly, MSCs also regulate the immune responses by direct interaction with immune cells or 

indirectly via a paracrine effect. Chen etal. showed that human UCB-MSCs exerts their 

immunosuppressive effect by producing Postaglandin E2, which regulates the production of 

inflammatory cytokines like IFN-γ by peripheral blood mononuclear cells (Chen K 2010). While 

IFN-γ elicits the expression of MHC II, the presence of the latter cytokine enhances the 

immunosuppression of MSC. IFN-γ induces the production by MSCs of Nitrite Oxide (NO) and 

several other chemokines by MSC. These secreted chemokines attract T-lymphocytes, which 

are then suppressed by NO (Ren G 2008). MSC also regulates immune reactions by expressing 

Indoleamine 2,3 dioxygenase (IDO) Which has been found to play a key role in the  immune 

tolerance in murine kidney allograft model (Ge W 2010). These three examples are just part of 

the many mechanisms displayed figure 4. Full comprehension of MSC’s immunomodulatory 

properties remains incomplete as many of the latter remain under active investigation. 

Nevertheless, this unique immunomodulation property of MSCs opens the door for the cells in 

clinic 

The immunomodulation of the MSC does not only support MSC as an excellent choice for 

regenerative cell therapy, but also expand their application for other usages. MSCs are best 

studied in the GVHD, a Graft Versus Host Disease is one of the fields, that MSC is rigorously 
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tested.  In the case of Hematopoietic Stem Cells Transplantation (HSCT), a routine cure for 

leukemia, GVHD is a common and serious implication than can lead to death.  As reported by 

Fang et al, the infusion of HLA-mismatch and unrelated AT-MSC successfully treated two 

children with severe therapy-resistant GVHD after HSCT (Fang B 2007).   In various clinical 

trials, MSCs have been shown successful.  And Osiris Therapeutics, a company endeavoring 

on MSC therapy, has completed phase 2 clinical trials for an off-the-shelf MSC product 

PROCHYMAL® targeting GVHD. 
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Figure: 3:  Multipotency chart of Mesenchymal Stem Cell: MSC give rises to a variety of cell 
lines.  

Photo adapted from Singer etal (Singer NG 2011). 
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Figure: 4 Paracrine effect of Mesenchymal Stem Cell, Mesenchymal Stem Cell secrets wide 

range of soluble factors that regulate a number of beneficial physical functions. Photo adapted 

from Meirelles et al (Meirelles Lda S 2009). 
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Figure: 5 Immunomodulatory Mechanism of Mesenchymal Stem Cells:  A schematic 

summarization of the immunomodulatory mechanisms of Mesenchymal Stem Cells. Photo 

adapted from Barry etal (Barry FP 2005). 
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3.5 In Vivo Distribution and Tracking  

Much like any pharmacological therapies, once delivered in a living system, stem-progenitor 

cells will face problems related to biodistribution. The ideal scenario is that delivered cells would 

remain in the target tissue or organ. However, the distribution of MSCs after injection 

(regardless of delivery strategy) is systemic.  After IV injection, delivered MSCs can be detected 

in BM, spleen, lungs, kidneys and heart with quite low engraftment rates (Allers C 2004; 

Bentzon JF 2005). Frey et al. did a quantitative comparison of three delivery strategies of MSC 

therapy, transvenous, intracoronary and endocardial, in a porcine model of myocardial infarction.  

At day 14 after cell injection, 6% and 3% of initial cells could be detected in the target 

myocardium after intracoronary and endocardial delivery, respectively; no cell could be detected 

in the transvenous group. The major organs with high cell retention rates were mostly the lungs 

but also the liver regardless of delivery strategy (Freyman T 2006). The off-target engraftment 

could undermine the therapeutic potential of these cells and increase their possible deleterious 

effects by introducing MSCs to unaimed organs.  

Thus, better tools are recommended to understand the biodirstribution of cells used for therapy. 

Various imaging techniques have been developed to allow in vivo cell tracking. Current 

strategies revolve around the simple concept of cell labeling with a given agent that could be 

detected with in vivo imaging modalities.  Here, three major categories of labeling will be 

reviewed: Quantum Dots (QD). Radioactive Labeling Agent (RLA), and Magnetic Labeling 

Agent (MLA). 

3.5.1 Quantum Dots 

Biofluorescence and bioluminescence represent very interesting tools for imaging in medicine. A 

potential attractive technology is near-infrared imaging. Fluorescence with longer waves (>700 

nm) are less bothered with artefact related to inherent fluorescence of tissues and/scar, and 



   

37 
 

might therefore provide a possible way for in vivo tracking. Indeed this has been done in small 

and large animal model mostly in cancer detection (Blum G 2007). However, clinical applicability 

is limited as it lacks tissue penetration and therefore cannot be detected with normal measure 

tools. However, near-infrared imaging remains a powerful tool for research and usage in sites 

closer to the body surface. 

Quantum Dots (QDs) refer to semiconductors with special electronic characters related to the 

crystal size and shape, also known as fluorescent semiconductor crystals. Compared to organic 

fluorophores, QDs are brighter, more stable in fluorescence and allow for multicolor imaging 

(Jaiswal JK 2004). A typical QD in use consists of an inorganic fluorophore as the core (such as 

CdSe), and coating layers (usually ZnSe and other molecules) that allows QDs to label the cells. 

Interestingly, QDs’ emission length is determined by its size, and a wide spectrum is provided 

by different QDs ranging from UV to Infrared, thus detectable with optical imaging systems 

(Medintz IL 2005).  By conjugating QD with cancer cell specific antibodies, Gao et al 

successfully labeled prostate cancer cells and obtained sensitive, multicolor in vivo fluorescence 

imaging(Gao X 2004 ) . 

For cell therapy, QDs are able to enter the MSC efficiently and display a emission of 

fluorescence consistent with the distribution traits of MSC location in vivo (Lei Y 2008). Rosen et 

al reconstructed 3D locations image of MSC labeled with QDs 8 weeks after injection, which 

indicates excellent applicability of QD as an in vivo cell tracking imaging modality (Rosen AB 

2007).  However, there are also some pitfalls for QDs.  For example, the QDs are vulnerable to 

autophagy, which transfers the fluorescence to non-target cells (Seleverstov O 2006). Another 

concern is the size of QD probe, usually a conjugated QD is the size of 500-750KDa which 

could affect cell physiology and function(Jaiswal JK 2004). Nevertheless, QD be a powerful non-

invasive tracking method for cell therapy. 
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3.5.2 Radioactive Labeling Agent 

RLAs mediated in vivo tracking enables several high resolution imaging techniques to follow 

biological fate of the injected cells, including Combined Single-photo Emission CT (SPECT) and 

X-ray CT (SPECT/CT). In this setting, commercially available labeling agent such as111In oxine 

have already been used to label a variety of cells (Kraitchman DL 2005).  By labeling MSC with 

30 Bq 111In oxine, Bindslev et al were able to label and track injected cells without altering the 

proliferation and the differentiation of MSCs (Bindslev L 2006). A clinical study done in patients 

with advanced cirrhosis showed that 111In oxine labeled MSCs (0.21-0.67MBq/106) could be 

successfully tracked and quantified (Gholamrezanezhad A 2011).  Radioactive labeling also 

enables 3D imaging by SPECT/CT imaging (Gildehaus FJ 2011). Besides 111In oxine, there are 

also other agents. One of them is [18F]-fluoro-deoxy-glucose (18FDG), which has been used 

successfully and accurately to measure and quantify the distribution of cardiac derived stem 

cells in vivo in a rat model by PET imaging (Terrovitis J 2009). 

Though RLAs are efficient in labeling and visualizing the MSCs in vitro, they posses serious 

defects. The major problem is the radioactivity itself. While the dosages used are hardly harmful 

to the patients, it may be detrimental to the cells labeled, which can lead to the failing of the 

therapy. Moreover, the negative effects of the radioactivity on the patients cannot be fully 

neglected, thus the potential of using RLAs in the clinic is highly mitigated. 

3.5.3 Magnetic Labeling Agent 

MLAs are normally iron oxides or Surpermagnetic Iron Oxide (SPIO), which are detectable by 

Magnetic Resonance Imaging (MRI). The labeling of MSC with SPIOs enables sense in vivo 

high-resolution imaging.  The resolution achieved by MRI of SPIO labeling is adequate enough 

so that as few as 1,000-labeled cells were detectable even at one month after the implantation 

(Loebinger MR 2009). The labeling of cells by SPIOs is related to a phagocytic effect as the 

probe transits inside the cell (Rogers WJ 2006). One advantage of SPIO is that the clinically 
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available MR scanners can be used to detect them.  MSCs labeled with SPIOs show 

unmitigated differentiation, proliferation ability and viability. Using a porcine myocardium 

infarction model followed by MSC injection, Kraithchman et al demonstrated that the location of 

SPIO-labeled MSCs detected by MRI correlates with histological examination. Moreover, MSC 

labeling allows serial tracking of the injected cells over time (Kraitchman DL 2003). To facilitate 

clinical usage, Frank et al. reported a combination of commercially available non-viral 

transfection agents (TA) and SPIOs. The former facilitates the uptake of SPIOs by cells, thus 

increase the MRI signal by 40 folds, which means less SPIOs can be used for similar outcome 

(Frank JA 2003). The size of SPIO may also play a role in the labeling process as choosing the 

optimal SPIOs: cell ratio can contribute to improved labeling efficiency (Lee ES 2009). SPIOs 

have also been shown to be able to detect low number of cells in conjunction with detailed 

topographic analysis with documented clinical safety (de Vries IJ 2005). SPIOs may also have 

additional advantages other than use as a labeling agent. Due to its supermagnetic nature to 

drag and retain labelled cells in target organs by adding an external magnetic field (Arbab AS 

2004). However, SPIOs also have limitations. The study by Amsalem et al described that 4 

weeks after the implantation of SPIO-labeled MSC into the infarcted rat heart, the MRI signal did 

not come from the scar zone but that cardiac macrophages that engulfed the SPIOs. The 

marker therefore does not mean a true labelling of the labelled cells. Though the implantation 

still resulted in improved LVEF, it may indicate that SPIOs are not suitable for long term labeling, 

with "false positive" following phagocytisis of released probes after transplanted cell death 

(Amsalem Y 2007).  Nevertheless, due to their high resolution, and low toxicity profile, SPIOs 

represent an excellent means to provide non-invasive in vivo tracking. Thus, there is much 

therapeutic potential for ferromagnetic probes as tools in cardiac cell therapy. 
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Chapter 4 Optimizing Strategies for MSC Therapy 
Even though MSCs represent promising candidate for cardiac cell therapy, certain challenges 

must be addressed in order to achieve proper clinical translation and efficacy. The pathological 

process ischemic heart failure post-AMI is chronic and slowly evolving in certain patients. 

However, injected MSCs are rarely found engrafted after delivery (Zhang M 2001)due to the 

hostile post-infarction microenvironment, such as hypoxia, lack of serum, inflammatory secretion 

and increased oxidative stress (Byun CH 2005; Zhu W 2006; Brandl A 2011). In order to 

maximize the cardioprotective effects of MSCs, enhanced cell survival is necessary. To 

overcome these challenges, potential strategies are investigated. I will briefly discuss three key 

options: gene therapy, preconditioning and nanotechnology.  

4.1 Gene transfer for MSCs 

Genetically modified MSC can potentially improve cell survival and decrease cell apoptosis. 

Various genes have already been tested for their therapeutic potential in modifying MSCs to be 

more adaptable to a hostile environment while maintaining their phenotype. Akt was one of the 

earliest tested genes: In a murine model of cardiac ischemic injury, the overexpression of Akt 

reduced MSC apoptosis after transplantation, leading to a acceptable post-infarction remodeling 

process (Mangi AA 2003).Li et al. modified MSC to overexpress Bcl-2, an essential anti-

apoptotic gene. Tested under in vitro conditions of hypoxia, the Bcl-2 gene protected MSC from 

of apoptosis and improved the secretion of  vascular endothelial growth factor(Li W 2007). 

Overexpression of the Heat Shock Protein-20 (HSP-20) on MSCs also resulted in enhanced 

resistance to oxidative stress and improved the post-transplantation survival. Beneficial 

paracrine effect was also improved with elevated levels of VEGF, FGF-2 and IGF-1 following 

HSP-20 overexpression(Wang X 2009).  Tsubokawa et al. reported another promising gene tool, 

Heme oxygenase-1 (HO-1), an anti-oxidant and anti-inflammatory protein. The HO-1 

overexpressing MSCs are more resistant to cell apoptosis and cell death; also the VEGF 
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secretion was detected, which leads to larger capillary density and decreased infarction size 28 

days after transplantation (Tsubokawa T 2010). MSCs gene-modified to overexpress CXCR4 (a 

key chemoreceptor involved cell migration and engraftment) or transglutaminase (a fibronectin 

receptor involved in cell adherence) were associated with improved cardiac repair in a model of 

coronary occlusion and reperfusion in rat (Song, Chang et al. 2007; Cheng, Ou et al. 2008) All 

these results point out that the strategies aiming at rescuing the MSCs from apoptosis and cell 

death are promising venues for cardiac cell therapy. However, genetically modificated cells are 

not ready for clinical use because of concerns of insertional mutagenesis associated with the 

viral vector. Finally, genetic engineering or gene transfer remains to a certain extent limited, as 

ethical and scientific questions regarding cell phenotype modulation remain unanswered. 

4.2 Preconditioning 

Compared to gene modification, cell preconditioning represents an attractive avenue. As 

discussed in the previous chapter, the paracrine effect plays a central role in MSC cell 

physiology. The pivotal idea underlying preconditioning is to prepare cells by mimicking the 

hostile microenvironment in which the cells will be engrafted by either a pre-exposure to 

cytokines, growth factors or other chemical agents. MSCs preconditioned could improve 

therapeutic effect either by improving their survival or by potentiating their paracrine properties.  

Hypoxic precondition (HPC) is a simple and effective strategy. By exposing MSCs to hypoxia, 

the cells can be programmed to a state of unregulated paracrine secretion, which can be 

resulted into a better post-transplantations survival, and to improved therapeutic outcomes.  The 

intrinsic reason why HPC improves the prospects of MSC is that it mimics the low oxygen 

concentration(1%) naturally seen by MSCs in their BM niche(Chow DC 2001). Chacko et al. 

have shown that hypoxic precondition induces the expression of proangiogenic and prosurvival 

genes, such as SDF-1a, VEGF, HIF-1a and AKT (Chacko SM 2010). The preconditioned cells 

were also rendered more resistant to different hostile microenvriroments. Leroux et al. used 
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HPC MSCs (0.5% Oxygen) in a skeletal muscle injury. Comparing to normoxia MSCs, HPC 

MSCs implantation shows improved vascular formation and enhanced muscle regeneration 

(Leroux L 2010).  In a rat cerebral ischemia model, the implantation of HPC MSC (0.5% 0xygen) 

resulted in better angiogenesis, neurogenesis and recovery of locomotion activity (Wei L 2012). 

The HPC MSCs have an enhanced migration capacity. In a murine hind-limb ischemia model, 

HPC MSCs were able to achieve greater angiogenesis compared to unconditioned MSCs 

(Rosová I 2008). To test the effect of HPC MSC on IHD, Hu et al. preconditioned mice MSC 

with 0.5% Oxygen and transplanted into infarcted myocardium tissue. The preconditioned MSCs 

increased their expression of proangiogenic genes, including HIF-1a, angiooprotein-1 and 

VEGF. Not only it decreased cell apoptosis but also increased the angiogenesis and improved 

the function of the heart(Hu X 2008). 

Some chemical agents have also been tested for additional benefits on MSC therapy. Diazoxide 

has been found to prevent appotosis of MSC by targeting the Fas protein (Suzuki Y 2010). 

Trimetazidine preconditioning protected against hydrogen peroxide (which induces oxidative 

stress), raised the expression of HIF-1a, survivin and other factors. Rats treated with 

Trimetazidine preconditioned BM-MSCs have a significantly better recovery of myocardium 

infarction(Wisel S 2009). Another reported agent is lipopolysaccharide, which enhances the 

engraftment of transplanted cells and promotes proangiogenetic secretion. This resulted in a 

superior therapeutic neovascularization of infarcted cardiac tissue (Yao Y 2009). Another agent, 

α-lipolic acid, addressed another  important pathological  process occurring in post-infarction 

microenvironment as it inhibits potential inflammation reaction resulting in MSC apoptosis (Byun 

CH 2005).  In summary, the pharmacologic precondition shows promising therapeutic potential 

as adjunctive therapy to cardiac cell delivery. 

Besides pharmacological agents, growth factors can also be used to precondition MSCs. gr 

Growth factor preconditioning can improve MSC therapy in two ways: firstly, by improving the ex 
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vivo expansions of MSC cultures; and secondly, by improving the post-implantation survival and 

function (Rodrigues M 2010).  I will briefly discuss some key growth factors that have been 

studied as preconditioning agents prior to MSC transplantation.  

SDF-1α: In a mice model of hindlimb ischemia, SDF-1α was shown to induce vasculogenesis  

and angiogenesis; In a rat model of myocardium infarction, SDF-1α brought increased cell 

viability and proliferation in the infarcted myocardium(Hiasa K 2004; Pasha Z 2008).  

IGF-1: in a rat model of myocardial infarction, Guo et al. found the IGF-1 precondition 

upregulates the expression of CXCR-4 in vitro, which results in increased cell engraftment and 

survival, thus improving the efficacy of MSC (Guo J 2008).  

TGF-a:  TGF-a increases VEGF production by MSC in vitro, even in the presence of TNF-a or 

hydrogen peroxide, which indicates a strong proangiogenetic effect. Upon implantation, TGF-a 

preconditioned MSCs downregulated the expression of inflammatory and apoptotic factors like 

IL-1β, TNF-a, which resulted in pro-survival effect (Herrmann JL 2010).   

PDGF-BB: This is strong stimulator of proliferation and migration for MSC after wound-

scratching in vitro. The blockage of its receptor leads to hindered bone repair in vivo in a rat 

model (Chung R 2009).  For cardiac repair, PDGF-BB precondition reduces the loss of cells on 

site after implantation, which indicates a potential improved therapeutic potential(Krausgrill B 

2009).  

TSG-6: It is has been shown to reduce the inflammatory response and the infarction size after 

systemic coadministration with human MSC. There is great potential that TSG-6 also serves as 

an excellent preconditioning agent for MSC therapy (Lee RH 2009). 

4.3 Use of Nanoparticles 

There is a clear need to find clinically applicable delivery strategies that are both safe and 
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efficient. Moreover, in order to pave the way for the future, "naked SC" delivery, while 

efficacious in and of itself to a certain extent, is not sufficient. Many strategies have been 

explored to improve targeting of stem cells. For example, cardiac tissue engineering offers 

scientifically appealing solutions to enhance engraftment: from acellular collagen matrices to 

improve cell recruitment, soluble 3-D scaffolds with cells embedded within them to 

decellularized organs that can be reperfused and repopulated with cells as artificial 

organs.(Zimmermann, Melnychenko et al. 2006; Suuronen, Zhang et al. 2009; Taylor 2009) 

Nevertheless, most of the current proposed solutions (for example, cardiac patches and 

bioartificial constructs) still require surgical intervention, which likely limits the type and number 

of eligible patients. 

Nanotechnologies have considerable potential for biomedical application. Currently, critical 

issues to be resolved are their stability and biocompatibility in circulatory system, and surface 

functionalizations that conjugate the targeting spacers or therapeutic agents.(Xu, Hou et al. 

2007; Fang, Bhattarai et al. 2009) Core/shell structures have been proposed in an effort to 

address the stability and biocompatibility problems.(Gupta and Gupta 2005; Zhang 2007; 

Stamopoulos, Manios et al. 2008) Among all the potential candidates, silica-based shells are 

more superior, due to their low cost, relatively simple synthesis, low toxicity and their potential to 

create nanoporous shells offering higher surface areas needed it employed as drug carriers or 

for magnetic concentration. Attaching functional groups onto silica shells remains a critical issue 

that can allow nanoparticles to function as linkers for a large variety of biomolecules and drugs. 

This is usually done by either of two main strategies, post-functionalization or co-condensation. 

For examples, Fernandes-Pacheco et al. reported a simple arc-discharge method for producing 

silica-coated magnetic NPs, which were post-functionalized with primary amine or carboxyl 

groups and covalently coupled to antibodies.(Fernandez-Pacheco 2006) Schoenfisch et al. 

recently synthesized secondary amine-functionalized silica NPs by co-condensation with 

tetraethoxy- or tetramethoxysilane, which can be used as carriers for the storage and release of 
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nitric oxide (NO).(Shin, Metzger et al. 2007; Hetrick, Shin et al. 2008; Hetrick, Shin et al. 2009) 

However, it still remains a challenge to find a simple method to integrate the superparamagnetic 

cores into a nanoporous silica shell, which is simultaneously functionalized, thus offering both 

magnetically targeting possibilities as well as the surface functionalization for coupling with 

targeting key proteins such as antibodies. 

Nevertheless, nanoscale inert biocompatible materials can be functionalized to either impart or 

modulate precise biological functions. Surface modifications and coating of nanomaterials could 

modulate their toxicity, immunogenicity and pharmacokinetic properties as well as impart 

efficient targeting. Several key nanoscale biomaterials have been reported to show promise for 

diagnostic or therapeutic use (quantum dots, biopolymers and magnetofluorescent particles). In 

recent years, magnetic nanoparticles (NPs) have been mainly investigated for their potential 

applications in fields such as cell delivery, magnetic separation magnetic resonance imaging 

and targeted drug delivery. Thus, nanotechnologies will likely help extend the therapeutic reach 

of established or novel, promising cardiovascular therapies such as cardiac cell therapy. 
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VII RESEARCH PROJECT 
 

Optimization studies to improve MSC-based Cardiac Cell Therapy： 

In order to overcome the limitations related to MSC delivery into an ischemic environment (such 

as cell death and poor cell tracking), my research will focus on in vitro studies to optimize MSC 

therapy for cardiac cell therapy. 

Research Objectives: 

1. To investigate the effect of cytokine preconditioning to improve MSC cell survival, under 

conditions mimicking the cardiac ischemic environment. 

2. Investigate the biocompatibility a novel nanoparticle functionalized to specifically couple 

with MSC. 

Research Hypotheses: 

1. MSC preconditioning with key cytokines will improve cell survival. 

2. Functionalized nanoparticles coupled to MSC will form a biocompatible unit. 
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Figure: 6 Nanoparticle-Antibody-Mesenchymal Stem Cell complex: A schematic 

presentation of the proposed NP-Antibody-MSC-Growth factor complex. Both the antibody and 

the growth factor are attached to the NP core. Antibody is used to attach the SPIO nanoparticle 

to the MSC, and the growth factor offers stimulation of the MSC. 
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VIII  MATERIAL AND METHODS 
 

Chapter 1 Isolation and Characterization of MSC 
The Ly laboratory works on numerous small and large animal studies involving MSC, therefore 

my studies will involve BM-derived MSC from both rat and swine origin. 

 1.1 Isolation of Bone marrow derived mesenchymal stem cell from rat 

Male Lewis rats at the weight of 100g were humanely sacrificed according to the Montreal Heart 

Institute Animal Ethic Review Board. Following sacrifice, 70% ethanol was applied to the 

hindlimbs, and then the tibia was surgically removed to a 100mm culture dish containing 

preheated PBS.  Muscles attached to the bones were carefully removed by scissors and rubbed 

with gauze. To assure no muscle cell contamination, cleaned bones were dipped in 70% 

ethanol for 10 seconds and then washed with PBS and dried with sterile gauze immediately.  

The two ends of the bone were swiftly excised by scissors; the bone cavity was flushed with 5ml 

culture medium until the bone became white, using number 23 needle with a syringe. The cell 

suspension was passed through number 23 needle with a syringe for 3 times to obtain a unified 

cell suspension.  Then the cell suspension was transfered equally to two T150 Flasks supplied 

with 20ml culture medium each and cultured in 37°C and 5% CO2.  After 72h, the medium was 

changed for the first time. Cells were passed when the confluence reached 80%, and the 

medium was changed every 3-4days.  

Culture medium: For each 500ml: 50ml FBS (Gibeco),  450ml DMEM, 5ml 

Streptomycin/Penicilin, 3ml HEPES. 

1.2 Isolation of Bone-marrow-derived mesenchymal stem cells from pig 

Landrace-Yorkshire male swine (30-35kg) were used for large animal studies. Following 

sedation and general anesthesia (with Isoflurane 1.5%), bone marrow aspiration was performed 
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at the level of the iliac crest. Bone marrow was isolated by a syringe containing heparin and 

kept in room temperature. In less than 1 hour, isolated bone marrow was processed. Briefly, 9ml 

of Ficoll Paque Plus (GE healthcare) was added to the bottom of a 50ml tube. Then 16ml of BM 

solution was gently transferred on top of the Ficoll without mixing(a ratio of bone marrow to 

Ficoll was maintained at 2:2.4). The tube was centrifuged at 1880rpm for 40 min without brake 

and with slow acceleration. The white layer between the two phases was collected with a sterile 

transferring pipette to a new 50ml tube. Wash three times with 50ml PBS (2000rpm, 5min). 

Resuspend the cells in 5ml culture medium and seed the cells in a T25 flask and culture in 37°C 

and 5% CO2.  Change the medium every 3-4 days and pass the cells when the confluence is 

around 80%. 

1.3 Flow cytometry  

 Even though there is no simple set of putative surface marker that characterize MSCs, certain 

markers are repeatedly used from article to articles.  For the purpose of my research work, 

CD44 and CD90 were chosen as positive markers; CD45 and HLA-DR were used as negative 

markers (All antibodies are conjugated with FITC, Biolegend, CA). Passage 5-6 cells were 

expanded and harvested, and for each marker 70x104 cells were prepared.  Cells were washed 

twice with PBS, and then blocked for 10min with serum from which the antibody is derived. Cells 

were spun down and washed once with PBS.  The antibody was added as recommended by the 

manufacturer. The staining solution used to dilute the antibody was 0.025% BSA in PBS.  

Incubation was carried out in 4 degree for 30 min after which cells were washed twice with PBS 

and suspended for immediate analysis by flow cytometry (Beckman Coulter Inc).  

1.4 MSC Differentiation Assays 

1.4.1 Adipogenic differentiation and oil red-O staining 
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  Passage 6 MSCs were seed in 24-well dish at the density of 4x104 cells/well. When the cells 

came to confluence (70-80%), the medium was changed to Adipogenic Differentiation Medium 

(StemPro®, Invitrogen, CA), 500ul/well. Medium was changed every 3 or 4 days. After eleven 

days, lipid accumulation or vacuoles in cells was checked by Oil-red-O staining.  Thus, medium 

was removed, the wells were washed once with 1ml/well PBS; and then in each well, 200ul oil-

red-o staining solution was added (0.5g oil-red-O in 100ml isopropanol, 0.5%).  After incubation 

for 30min, the oil-red-O staining solution was removed and wells were washed with distilled 

water, 1ml/ well, until the background was clear. Photos were taken by a light microscope 

equipped with digital camera.  

1.4.2 Osteogenic differentiation and Alizarin red-O staining 

Passage 6 rat MSCs were seeded into 24-well dish at the density of 5x104cells/well.  When the 

cells come to confluence (70-80%), the medium was changed to differentiation medium (10-7M 

dexamethasone, 10mM β-glycerol phosphate and 50uM ascorbic acid in culture medium). Then 

the medium was changed every 3 to 4 days.  Two-eight days later, cells were processed for 

Alizarin red-O staining for detection of calcium accumulation. Briefly, cells were fixed in cold 

ethanol 70% for 30min, 500ul/well. Alizarin-red-O working solution was made by adding alizarin 

red-O into distilled water, 1%, PH was adjusted to 4.10-4.30 and filtered through 0.22um filter to 

remove any insoluble particles. After washing the wells once with PBS, 1ml/well, 200ul Alizarin 

red-O working solution was added to each well. Five minutes later, the staining solution was 

removed; then wells were washed with PBS, 1ml/well until the background was clear. 

1.4.3 Chondrogenic differentiation and Alcian Blue staining 

Passage 6 rat MSCs were seeded into 24-well dish at the density of 15x104cells/well. Two-four 

hours later, medium was changed to differentiation medium (StemPro®, Invitrogen, CA). 

Medium was changed every 3 or 4 days. Two-eight days later, cells can be processed for 
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chondrogenic differentiation by Alcian Blue staining. Briefly, 0.1g Alcian Blue was dissolved in 

100ml 0.1N HCl and filtered through 0.22um filter to make working solution. Differentiated cells 

were washed first with distilled water, 1m/well, twice and then fixed with cold methanol for 20min. 

Then the cells were washed once again with distilled water.  Then 200ul Alcian Blue working 

solution was added to each well and incubated for 45 min. Then the cells were washed once 

with 0.1N HCl, and then the wells were washed with distilled water until the background was 

clear. 

1.5 MSC Proliferation Assays 

MSCs were seeded in seven 24-well plates at the density of 1X104/well. Each day, one plate 

was taken to run PMD/MTS assay to determine the number of living cells in each well.  

PMS/MTS solution: To detect the change of cell active cell numbers, Celltiter 96well 

nonradioactive proliferation kit was employed. Before usage PMS (1ml) and MTS (20ml) were 

mixed according to manual provided.  Then the mixed solution was aliquot into 2ml/vial and 

stored in -20°C. When needed, PMS/MTS was thawed before application. When used, 

PMS/MTS was mixed with culture medium at the ration of 1:5; 

 PMD/MTS assay:  Briefly, the culture medium in each well was replaced with 200ul PMS/MTS 

culture medium. Then cells were incubated in the incubator for 1h.  After incubation, the 

absorbance at 490nm of each well was measured by an ELISA reader. 
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Chapter 2 Apoptotic Assays 
 

2. 1 Preconditioning agents 

As discussed in the previous section, preconditioning represents a major option to improve cell 

survival in the ischemic microenvironment. In all studies, 50x104 cells of passage 6-8 rat MSC 

were seeded to each well of six-well dish, overnight before starting the assays. My in vitro 

studies will explore the following agents: TSG-6, SDF-1α and PDGF-BB 

  2.1.1 TSG-6, SDF-1α and PDGF-BB preconditioning 

Every vial of TSG-6(R&D system, CA) was dissolved in 500ul PBS to a concentration of 

10ug/ml. precondition medium spans 5 concentrations: 0.5ug/ml, 1.0ug/ml, 1.5ug/ml, and 

2.5ug/ml.  Five precondition time-spans were also employed: 2hours and 24hours.  Briefly，

passage 8 rat MSCs were seeded at the density of 8,000 cells/well in 96 –well dishes at 100ul 

culture medium per well and allowed to equilibrate overnight. Then medium were changed to 

precondition medium and incubated for different time spans. According to reported data, two 

concentrations for SDF-1α, two concentrations for PDGF-BB and one concentration for TSG-6 

were examined. SDF-1 α: 0.05ug/ml and 0.025ug/ml; PDGF-BB: 10ng/ml and 50ng /ml and 

TSG-6 2.5ug/ml. Incubation time-spans were 2 hours and 24hours. Briefly，passage 8 rat 

MSCs were seeded at the density of 8,000 cells/well in 96 –well dishes at 100ul culture medium 

per well and allowed to equilibrate overnight. Then medium were changed to precondition 

medium and incubated for different time spans.   

2. 2 Oxidative Stress Assay 

Oxidative medium: 30% stabilized H2O2: 100ul was added into 900ul PBS to make initial 

solution. For 10mM H2O2 medium: 102ul initial medium was added into 10ml culture medium. 
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2mM H2O2 culture medium was made by adding together two portions of 10mM H2O2 medium 

and 8 portions of culture medium.  The rest concentration was mixed accordingly. 

Passage 6-8 rat MSCs were preconditioned according to precondition protocol described in 

section 2.1.1. Then the culture medium was changed to oxidative medium at the concentrations 

of 0.0, 0.5, 1.0, 1.5 and 2.0mM in different wells, with an incubation time of 2 hours. Afterwards, 

the oxidative medium was removed and wells were washed once with 100ul/well culture 

medium.  Then the culture medium was replaced by PMS/MTS culture medium, 100ul/well. 

After 1hour of incubation, absorbance at 490n was examined for each well by an ELISA reader. 

2.3 Serum Deprivation 

Passage 6-8 rat MSCs were preconditioned according to precondition protocol. Then serum-

deprivation wells were kept in DMEM only; control wells were kept in normal medium. 24h later, 

PMS/MTS test was performed according to previous protocol to examine the cell viability. 

2.4 Hypoxia  

Passage 6-8 rat MSCs were preconditioned according to precondition protocol as described in 

2.1.1. Then medium was changed, and the cells were transferred into a hypoxia chamber where 

the oxygen concentration was set at 1.8% by influx of 1% oxygen in nitrogen, then the hypoxia 

chamber was incubated for 24h. PMS/MTS assay was performed according to previous protocol 

to examine the cell viability. 

2.5 Combined Hypoxia and Serum Deprivation 

The protocol of 2.3 and 2.4 were combined to perform Combined Hypoxia and serum 

Deprivation Assay. 
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Chapter 3 Wound Healing Assay 
 

3.1 Preconditoning 

50x104 cells/well of Passage 6-8 rat MSC were seeded to six-well dish, cells were allowed to 

equilibrate overnight. Then medium was changed to precondition medium containing SDF-1 α: 

0.05ug/ml; PDGF-BB: 50ng/ml and TSG-6: 2.5ug/ml respectively. Cells were then incubated for 

another 2 or 24 hours before wounding healing assay. For each condition 5 replicates were 

done (figure 7: A).  

3.2 Wound Healing 

Wound healing, or gap closure in a confluent cell monolayer, incorporates the two cellular 

phenomena of migration and proliferation. At the end of the precondition, a 20ul pipette tip was 

used to create the wounds. One vertical wound was created in the middle and three horizontal 

crossing wounds were created as markers. Photos were taken close to the crossings. Three 

photos for each well were taken at time-points of 0h, 6h, and 24hours after scratching. The 

width of the wounds was measured for the healing ability of the cells at fixed points of each well 

(figure 7: B). 
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A 

Plate 1: 

 

 

Plate 2: 

   

   

 

 

B:  

 

 

 

Figure: 7 Wound Healing Assay Arrangement:   A: Plate plan of precondition and would 

healing Assay. For each condition three wells were prepared and from each well three data 

points per time were obtained. B:  Wounds created in one well of six-well dishes for the wound 

healing assay. Three crossings were created and photos were taken at the blue points at three 

time points: 0, 6, and 24 hours.  
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Chapter 4 Ferromagnetic Nanoparticles 
 

4.1 Synthesis and characterization of Nanoparticles (NPs) 

The Veres Research Group, part of the National Research Council of Canada at the Institute of 

Industrial Materials in Boucherville, closely collaborates with the Ly lab. Nanoparticles were 

designed and manufactured at their site and transported to our laboratory for cell coupling and 

biocompatibility studies. 

The following paragraphs provide a summarized version of the complex process of 

nanofabrication of the ferromagnetic, silicone-shell nanoparticles. For NP synthesis, a 2-step 

procedure will be employed starting by the hydrolyzation of tetraethyl orthosilicate (TEOS) and 

N-(2-aminoethyl)-3-aminopropyltrimethoxysilane (AEAP3) molecules. The synthetic route that 

will be employed for the FeO-based nanoprobe (NP1) is briefly outlined. The first step consists 

of the synthesis of Fe3O4/silica nanoparticles by hydrolyzing TEOS in a water-in-oil 

microemulsion that contains the Fe3O4/OA (oleic acids) NPs as seeds. In this process the 

Fe3O4/OA NPs will be first dispersed in cyclohexane, at a concentration of 1 mg/mL, and then 

0.5 ml of the Fe3O4-containing cyclohexane dispersion will be rapidly injected into a mixture of 

Triton X-100, anhydrous 1-hexanol and cyclohexane under a strong vortex for one hour. 

Subsequently, 0.5 ml of ammonia solution (28-30% ammonia solution: water=1:4) will be added 

to the above solution and shaken for another hour. Finally, 25 µl of TEOS will be added and the 

mixture will be allowed to react for a full 24 hours. The As-fabricated products are then 

separated by centrifugation at 9000 rpm, washed with ethanol, and the centrifugation/wash 

procedure is repeated three times. Subsequently, the resultant NPs will dried under vacuum, or 

directly dispersed in de-ionized water for characterization.  

In the second NP synthesis step, 25 µl of AEAP3 are injected into the reaction mixture for 

another 24 hours in order to form the outer nano-nanoporous shell. The resultant product 

denoted as Fe3O4/silica (amino) NPs will be washed with anhydrous ethanol three times, and 
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finally dispersed in de-ionized water for use. The resulting Fe3O4(15nm)/silica(10 

nm)/silica(amino) (10nm) NPs, with a total particle size ranging of about 35 nm will contain 350-

400 primary amine groups/particle. The latter will be used to couple on surface of the MSC by 

targeting the surface marker, CD44. The latter was shown to be specific for BM-MSC during in 

vivo tracking NIR studies performed by Ly et al.(Ly, Hoshino et al. 2009) The covalent coupling 

of the antibody and antigen to the NPs can be carried out via glutaraldehyde as the amine 

reactive homobifunctional crosslinker (Bangs Laboratories). As a control experiment, FITC-

labeled antibody will be employed for covalently coupling with aims of straightforward 

characterizations by fluorescence spectra. The intensity changes of fluorescence spectra will be 

used to monitor the conjugated contents. After synthesis as described above, the "naked" 

antibody will be conjugated to CD44 antigen, followed by a reconfirmation of FITC-labeled 

antibody. Finally, once successful coupling is confirmed, phantom models using low melting 

point agarose (1% at 37oC) for MRI in vitro studies will be performed. 

4.2 Preparation of the NPs 

Stocking solution of NP was at 200μg/ml. To make NP culture medium, stocking solution was 

first taken according to designed volume. Then under a chemical hood, the stocking solution 

was put into a magnetic field for 10min before careful aspiration of the supernatant without 

touching the NPs.  Then replenish the vial with culture medium to make NP culture medium. 

4.3 Proliferation of MSC with NPs 

In 7 24-well plates, seed in each plate 14 wells of pig MSCs, 1X104/well, three groups, control, 

5ug/ml NP and 10ug/ml NP. At time point of day 1, 2, 3, 4, 5, 6, 7, take one plate and run 

PMD/MTS assay to assess the cell number in each well. Briefly, the medium is replaced with 

PMS/MTS in medium (1:5). In each well 200ul PMS/MTS in medium is added. Then the dish is 

incubated in the incubator for 1h. After incubation the absorbance at 490nm is measured using 

an ELISA reader.  
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4.4 Incubation and Visualization of NPs on MSCs 

Histological Visualization  

In a six-well plate, seed 5x104 pig MSCs to each well, let the cells attach to the bottom of the 

well for 16 hours. Then change the medium with medium containing 5ug/ml or 10ug/ml NPs. 

Incubate in the incubator for 1h, then wash twice with PBS 1X. After that, fix the cells with 

methanol for 15 min, and then wash the cells with distilled water, then incubate first with 2% 

potassium ferrocyanide in 6% hydrochloride acid for 30min, and then with Hematoxyline QS for 

1 min. Then wash the cells once with robinet water, and then wash with distilled water until the 

background is clear. Take photo of the wells under microscope under 20X.  

MRI Visualization 

In a six- well plate, seed 5x104 pig MSCs to each well, let the cells attach to the bottom of the 

well for 16 hours. Then change the medium with medium  with medium containing 5ug/ml or 

10ug/ml NPs. Incubate in the incubator for 1h, then wash the cells twice with PBS 1X.  Then put 

the plate into the MRI scanner for MRI imaging. 

4.5 Adhesion Assay of pig MSC combined with NPs  

Prepare the Nano Particles (NPs) medium according to the protocol above. And then cell 

suspension was prepared by harvesting cells from a T75 flask. Three groups of cells were 

prepared, control, 5ug/ml NPs, 10ug/ml NPs. For each group, a sub control without cells is also 

prepared. Seed the cells into a 12-well dish at the density of 2x104cells/well.  Incubate at 37°C 

for 24 hours. Then remove the medium and wash twice with preheated PBS, then trypsize the 

cells in each well. After the cells are fully detached, add in each well 0.8ml culture medium and 

then incubate for another 4 hours. Remove the medium and wash 3 times with preheated PBS. 

In each well, add in 1ml culture medium and 200ul PMS/MTS and then incubate in the incubator 

for 1 hour. Measure the absorbance at 490nm in an ELISA reader after. 
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4.6 Test of toxicity of NPs on MSC 

In six-well plates, seed 5x104 pig MSCs to each well. Let the cells attach to the bottom of the 

well for 16 hours. Then change the medium with medium containing 5ug/ml or 10ug/ml NPs. 

And then incubate for 1, 4 and 24 hours respectively. Then trypsize the cells and count the 

number of viable cells with trypan blue. For each condition and time point, do triplicate. 

4.7 Migration Assay of MSC with NPs 

Add the NP-containing medium (5ug/ml and 10ug/ml) into T75 flasks with MSC when a 

confluence level of 80% was ascertained. Incubate in the incubator for 1 hour, then trypsinize 

the cells and count the number of viable cells using Trypan Blue Dye exclusion test. At the start 

of the assays, 105 cells were added to the superior chamber of migration dish in a volume of 

0.5ml, whereas 0.5ml predetermined medium was added to the interior well. For each condition, 

experiments were performed in triplicate. 

4.8 Differentiation Assay of MSC with NPs 

In six-well plates, seed 5x104 pig MSCs to each well. Let the cells attach to the bottom of the 

well for 16 hours.  Four groups of pig MSCs were prepared: control positive, control negative, 

5ug/ml NP and 10ug/ml NP. Then change the medium with medium containing 5ug/ml and 

10ug/ml NPs. Incubate in the incubator for 1h, then wash the cells twice with PBS 1X. Then the 

medium was changed to differentiation medium (10-7M dexamethasone, 10mM β-glycerol 

phosphate and 50uM ascorbic acid in culture medium). Then the medium was changed every 3 

or 4 days.  Two-eight days later, cells were processed for Alizarin red-O staining for the 

detection of calcium accumulation. Briefly, cells were fixed in cold ethanol 70% for 30min, 

500ul/well. After washing the wells once with PBS, 1ml/well, 200ul Alizarin red-O working 

solution was added to each well. Five minutes later, the staining solution was removed; then 

wells were washed with PBS, 1ml/well until the background was clear. Alizarin-red-O working 
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solution was made by adding alizarin red-O into distilled water, 1%, PH was adjusted to 4.10-

4.30 and filtered through 0.22um filter to remove any insoluble particles.  

4.9 Statistic Methods 

All the data acquired in the experiments was subjected to statistic analysis. Analysis of variance 

was performed for every experiment. Different strategies were chosen according to the number 

of factors and the number of responses. One-way Anova was used for experiments with one 

factor. Main-effect ANOVA was used for experiments with two factors. Statistica from stasoft 

was used to analyze all the data. All graphs were presented as mean+SEM of its group. 

Statistical significance was set at p value below 0.05.  
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IX RESULTS 

Chapter 1 Isolation and Characterization of MSCs 

1.1 Isolation and culture of BM-derived MSCs 

After 72 hour of incubation of the fresh isolated Bone Marrows, cell colonies were observed on 

the bottom of the flask. Pass of the adherent cells resulted in clean culture of spindle-like cell 

monolayer.  The cells grow in DMEM supplied with FBS 10%, adhered to plastic surface and 

exhibited typical Mesenchymal stem cell morphology (figure 8:A).  

1.2 Surface marker expression of the BM-derived MSCs 

Isolated cells were examined by flow cytometry for the expression of several major 

Mesenchymal Stem cells surface markers. The cells express CD44, CD90 and are negative for 

RT1D and CD45, which are markers for the Hematopoietic cells (figure 8:B). 

 1.3 Differentiation capacity of BM-derived MSCs 

The multipotency of mesenchymal stem cells is one of the major reasons that make 

mesenchymal stem cells promising candidate for stem cell therapy. Our mesenchymal stem 

cells were tested as standard procedure for osteogenic, adipogenic and chondrogenic 

differentiation capacities. The cells were positive in all three aspects of stem cell multipotency 

(Figure 9).  

1.4 Proliferation Assay  

The rMSC is very proliferative as reported. The cell number started to increase right after being 

plated, and then reached a plateau from day 4 to day 5, and then experienced another 

proliferation peak at days 5-6. The proliferation started lowering down from day 6. (figure 10).  
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A: 

 

B: 

Figure: 
8 Characterization of Mesenchymal Stem Cell: A: Freshly isolated Bone Marrow MSC colonies.  
B: Established Bone Marrow MSC line was examined by flow cytometry for recommended 
markers.  Cells are positive for mesenchymal markers CD44 and CD90 and negative for RTID 
(rat counterpart of HLA-DR) and CD 45. P2 rat mesenchymal stem cells were used.  
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Figure: 9 Differentiation of 
Mesenchymal Stem Cell:   A: p6 Bone-
marrow derived rat mesenchymal stem 
cells were induced in adipogenic 
differentiation medium for eleven days.  
Lipids accumulation was revealed by the 
staining of oil-red-O. lipid vacuoles are 
revealed by oil-red-O staining as red 
spots. 

B: p6 Bone-marrow derived rat 
mesenchymal stem cells were induced in 
osteogenic differentiation medium for 
twenty-eight days.  Calcium accumulation 
was revealed by the staining of Alizarin-
red-O as red spots. Cells are positive for 
osteogenic morphology (3D cell 
structures) and calcium (red staining). 

C: p4 Bone-marrow derived rat 
mesenchymal stem cells were induced in 
chondrogenic differentiation medium for 
28days.  Chondrogenic differentiation was 
revealed by the staining of Alcian Blue as 
blue stains. Cells are positive for 
chondrogenic morphology (3D cellular 
structures) also. 
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Figure: 10 Proliferation of Mesenchymal Stem Cells: The proliferation pattern of rat MSC 
over a 7-days time span.  No dormant phase is seen in the curve and a twelvefold increase of 
OD value indicating a high proliferation profile of rat MSC. Each data point is an average of 4 
wells. 
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Chapter 2 Cell Necrosis Assay Results 
 

2.1 TSG-6 preconditioning 

Since there is no available data for rat MSC preconditioning with TSG-6, both time range and 

dose ranging were carried out to locate the optimal time and dose for TSG-6. However, the data 

suggest that TSG-6 has no additional effect on the viability of rMSC under the combination of 

Hypoxia + Serum Deprivation or Oxidative stress, for both 2 hours precondition and 24 hours 

preconditioning. Similarly, in doses ranging studies from 0.05ug/ml to 2.5ug/ml, TSG-6 did not 

influence on the response of rat MSC under oxidative stress. TSG-6 did not decrease the 

viability of rat MSC, which indicates that TSG-6 is a safe growth factor to be used in MSC 

therapy (Figure11). In accordance to oxidative stress results, TSG-6 is not improving the 

viability of rat MSC undergoing Hypoxia+Serum Deprivation since no significant differences 

were found among the 5 different concentrations and 2 different precondition timings. This 

suggests that the positive results from TSG-6 therapy in the mouse myocardium infarction 

model are from the effects exerted on other cells by the TSG-6. The MSCs are not a target of 

TSG-6 (figure 12). 

2. 2 SDF-1α and PDGF-BB Preconditioning 

Oxidative stress  

Preconditioned for 2h:  SDF-1α and PDGF-BB were not found to be protective against oxidative 

stress. On the contrary the presence of SDF-1α and PDGF-BB corresponded with lower viability 

of the rMSCs. And the viability is lower when the concentration of SDF-1α or PDGF-BB is higher, 

with lowest viability in PDGF-BB groups (figure 13:A). However, when the H2O2 concentration is 

higher than 1.0mM, the viability is similar with or without cytokines. 

Preconditioned for 24 hours: The protective effect of SDF-1α and PDGF-BB on rMSCs 

undergoing oxidative stress changed dramatically according to preconditioning time. While SDF-
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1α and PDGF-BB were detrimental to the rMSCs when would for 2 hours, they were strongly 

protective when preconditioning time increased to 24 hours. Both SDF-1α and PDGF-BB are 

protective against oxidative stress with PDGF-BB being more protective than SDF-1α. 

Interestingly, the protection did not increase with increasing concentration; on the contrary, 

lower concentrations provided better results. The protective effect was more prominent at 

concentrations of 0.025ug/ml than at 0.05ug/ml for SDF-1α whereas 10ng/ml was better than 

50ng/ml for PDGF-BB (figure 13: B).  

Protection with SDF-1α and PDGF-BB is affected by the severity of the oxidative stress: With 

low concentration of H2O2 (< 0.5mM), damages caused by the oxidative stress were completely 

abolished, with viability higher than 100%. Higher concentration of H2O2 (> 1.5Mm) nullified the 

protective effect of cytokines. 

These results therefore suggest that both SDF-1 α and PDGF-BB preconditioning protects 

MSCs against cell death caused by oxidative stress conditions. 

Combined Hypoxia and Serum Deprivation 

Under hypoxic conditions alone, the cell viability ranged from 80% to 90% regardless the 

preconditioning agent. Under serum deprivation conditions, the viability dropped to almost 60%. 

When serum deprivation was combined to hypoxia, the viability did not change, which suggests 

that serum deprivation is the predominant stressor. Preconditioning with SDF-1α or PDGF-BB is 

conducive to the survival of rat MSC under combined hypoxia and serum deprivation conditions. 

PDGF-BB offered a better protection than SDF-1α, and its protective effects improved with 

progressive concentration. At 50ng/ml of PDGF-BB, the rMSCs’ viability was restored to an 

estate similar to what would be obtained with hypoxic stress alone. This suggests that PDGF-

BB nullifies the deleterious effect of serum deprivation has on viability (figure 14: A).  
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Preconditioning timing also altered findings. As the precondition time increases, the total culture 

time from seeding to the end of the assay also increased.  Hypoxia appeared to provide 

additional protection against cell death. Even when combined with serum deprivation, hypoxia 

increased the viability of rat when we compared viability from serum deprivation only relative to 

serum deprivation +hypoxia. Serum Deprivation remained the dominant cause of the decreased 

cell viability. SDF-1α did not improve the survivability under hypoxia. Regardless of SDF-1α 

concentrations, viability remained unchanged both in hypoxia and hypoxia+serum deprivation. 

Conversely, PDGF-BB still exerted protective and proliferative effect on the rat MSC. PDGF-BB 

stimulated the proliferation of rMSCs. PDGF-BB+hypoxia showed the highest proliferation, with 

40% above the control. MSC proliferation was less under serum deprivation conditions and at 

lower PDGF-BB concentrations. However, all serum deprivation groups had higher proliferation 

than control groups. In the hypoxia groups, the proliferation did not increase much with the 

increase of the concentration, as the concentration of PDGF-BB rose from 10ng/ml to 50ng/ml, 

the proliferation only increased by 3%. However in the hypoxia+ Serum Deprivation groups, the 

proliferation increased almost by 21% when the concentration increased to 50ng/ml.    

Therefore, these above data suggest that, following 24 hours of preconditioning, PDGF-BB 

represents an excellent protective growth factor for MSC under hypoxia and serum deprivation 

conditions (figure 14). 
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Figure: 11 Apoptotic 
Assay of Tumor Necosis 
Factor Stimulated Gene-6 
Protein precondition 2h: 
Oxidative stress and 
Hypoxia+ Serum 
Deprivation of rat MSC after 
2 hours precondition with 
TSG-6. A: TSG-6 showed 
no protection of MSC 
against oxidative stress 
throughout the tested 
concentrations. B: TSG-6 
had no effect on the viability 
of MSC under 
hypoxia+serum deprivation 
throughout the tested 
concentrations. Each 
column is an average of 5 
wells. *:  comparisons are 
found non-significant. 
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Figure: 12 Apoptotic Assay of 
Tumor Necosis Factor 
Stimulated Gene-6 Protein 
precondition 24h: Oxidative 
stress and Hypoxia+ Serum 
Deprivation of rat MSC after 24 
hours precondition with TSG-6. 
A: TSG-6 showed no protection 
of MSC against oxidative stress 
throughout the tested 
concentrations. B: TSG-6 had 
no effect on the viability of MSC 
under hypoxia+serum 
deprivation throughout the 
tested concentrations. Each 
column is an average of 5. *:  
comparisons are found non-
significant. 
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Figure: 13 Oxidative Assay of 
Stromal Derived Factor-1α and 
Platelet Derived Growth Factor-BB 
precondition: A: Oxidative stress 
assay on rat MSC preconditioned 
with SDF-1a and PDGF-BB.  No 
protected was observed when the 
preconditioning time was 2 hours； 
B: 24 hours precondition leaded to 
protection against oxidative stress by 
SDF-1a and PDGF-BB with H202 
concentration under 1.5mm. Each 
column is an average of 5. *: P<0.05, 
comparing to their controls, t-test. 
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A: 

  

B: 

Figure: 14 Hypoxia and Serum 
Deprivation Assay of Stromal 
Derived Factor-1α and Platelet 
Derived Growth Factor-BB 
precondition: A: Hypoxia alone 
did not cause serious drop of cell 
viability at the test time of 
incubation regardless precondition 
or not. After two hours 
precondition, PDGF-BB showed 
protective effect against serum-
deprivation, and the protection 
increases with dose; B: After 24 
hours of preconditioning: PDGF-
BB promoted the proliferation of 
MSC and completely nullified the 
effect of serum-deprivation on. 
n=5 for each column. *: P<0.05, 
comparing to their controls, t-test. 
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Chapter 3 Wound Healing Assay Results 
 

 3.1 Wound Healing Results 

MSC demonstrated strong wound healing properties even without preconditioning. The wound 

healing process is characterized with the closure of the wound by cells migrating in from the two 

sides over time. When preconditioning growth factors are added, the MSC reacted accordingly 

(figure 15).  

At 24 hours after the scratching: PDGF-BB preconditioned MSCs achieved full scratch closure 

regardless of the preconditioning time i.e.100% closure of the wound. Very dense cell 

monolayers were documented only in the PDGF-BB preconditioned cells (figure 15). The other 

groups are left with small gaps that are still visible.  PDGF-BB precondition stimulates the 

proliferation and migration of MSCs, and its effect is time-dependent. 

MSCs showed consistent wound healing properties among the study groups: at 6 hours after 

wound scratching, 29% of the gap was closed for the 2 hour-preconditioning group versus 32% 

for the 24 hour-precondition group; At 24 hours after scratching, the two groups had closed the 

gap between cell margins for up to 80% and 90%, respectively. 

At 6 hours after the scratching:  In the 2 hours preconditioning group, the best healing is seen in 

the SDF-1a preconditioned cells at 32%, but no statistically significant differences was observed 

among all the study groups (control: 29%, PDGF-BB: 28% and TSG-6: 27%) (figure 16 ). In the 

24 hours preconditioning group, PDGF-BB and TSG-6 showed significant improvement on 

healing capacity compared to the control (PDGF-BB:45% versus 32% and TSG-6: 41% versus 

32%, respectively) (figure 16). This indicates that, PDGF-BB and TSG-6 are stronger stimulator 

of migration for MSC, however longer incubation times are needed.  
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Therefore, this data shows a degree of similarity with the above assays is that PDGF-BB is a 

strong pro-proliferation and pro-survival factor for MSC.  
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Figure: 15 Photos of Wound Healing Assay: PDGF-BB preconditioned MSC heals the 
best both after 2 hours preconditioning and 24 hour precondition. The density of the cells is 
the same as original unwounded areas. For the other groups, unfilled gaps can still be 
observed after 24 hours. 
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Figure: 16 Wound Healing Assay:  A and B were preconditioned for 2 hours; C and D were 
preconditioned for 24 hours. A: At 6 hours after wound healing assay, the healing rate was 
similar among the different conditions. B:At 24 hours after wound healing assay, PDGF-BB 
preconditioned MSC healed the best, followed by TSG-6 preconditioned MSC; SDF-1a was 
similar to control. C: At 6 hours after wound healing assay, PDGF-BB preconditioned MSC 
healed the best, 13% better than the control (45% versus 32%), followed by TSG-6 
preconditioned MSC (41%); SDF-1a was similar to control (37%). D: At 24 hours after wound 
healing assay, PDGF-BB preconditioned MSC healed the best, 100%, followed by TSG-6 and 
SDF-1a preconditioned MSCs were similar, both better than control. For each column triplicate 
was performed, for each replicate n=3, comparisons are found non-significant. The healing 
rate is defined as 1-Wound-width/(initial Wound-width). 
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Chapter 4 Nanoparticles and MSC Results 
 

4.1 Visualization of Attachment of NP to MSC  

Histological Visualization of MSC-NP coupling 

The NPs provided by the Veres Research group were all functionalized with an anti-CD44 

antibody firmly anchored on the NP complex. Thus, MSC coupling was achieved via CD 44, 

which was highly expressed in MSCs. After incubation for 1 hour in culture medium, cells are 

mixed with NPs. The multi-step staining process (with multiple washings) did not affect the 

attachment of the NPs. Under light microscopy examination, NPs conjugated with CD44 

antibody are able to attach firmly to MSC cells and appears as aggregated dots that are visible 

under optical microscope. As expected, higher concentration of NPs resulted in denser 

appearance of the dots on the MSC (figure 17: A). 

MRI Visualization of MSC-NP coupling 

Ultimately, a future direction of the project is to use these cells in preclinical, swine model of 

cardiac injury with cell tracking by serial cardiac MRI. Thus, a key first step, consistent with my 

project was to document MRI images show that NPs retained by MSC in the cultured dishes 

were detectable by this imaging modality (figure 17: B). The control dish is transparent without 

any NPs. Both 5ug/ml and 10ug/ml NPs treatment result in detectable MRI signals, which 

stronger signals at 10ug/ml. Thus the conjugation with these novel functionalized, ferromagnetic 

NPs visualized MSC under MRI. 

4.2 Cell Death 

The NP-CD44(+) complex was incubated with MSC over 24 hours. Cells were tested with trypan 

blue for necrosis. NPs did not affect cell viability at any given point. In fact, NPs treated wells 
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are containing slightly more cells than the control. Thus, there does not appear to be any 

cellular toxicity associated with NPs (figure 18). 

4.3 Cell Adhesion 

Following standard plating protocols, compared to wild type-MSCs, NP-CD44(+) conjugated to 

MSC did not lose their ability to adhere to plastic surface (figure 19). 

4.4 Cell Proliferation 

The proliferation curve of pig MSC is relatively smooth over the 7 days span, indicating a stable 

proliferation profile. The conjugation with NPs changes the proliferation profile of MSC, i.e. 

slows down the proliferation of pig MSC to a downward curve other than the upward slope 

observed in the control. The cell number drops initially and then stabilizes. A greater 

concentration increase in NPs did not induce further decrease in proliferation.  The two 

concentrations of NPs presented a similar proliferation profile. The NPs used in this experiment 

down-modulated the proliferation of MSCs, but did not completely stop it (figure 20). 

4.5 Wound Healing  

The gap closure ability of the NP+MSC complex was significantly altered after the conjugation 

with NPs, while the control cells healed over 70% of the wound after 32 hours. This alteration 

did not depend on the NPs concentration and was completed with both of the tested 

concentrations: 5ug/ml and 10ug/ml (figure 21). 

4.6 Cell Differentiation  

Osteogenic differentiation was performed with pig MSC to assess NPs’ impact on MSCs.  The 

NP-conjugated MSC accumulated calcium after the osteogenic induction. NPs did not 

interference with this process. MSC completed osteogenic differentiation after being incubated 

with 5ug/ml NPs. The accumulation of calcium was revealed by alizarin red-O staining (figure 

22).  
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A: 

 

 

B: 

 

 

 

 

  

NP: 10ug/ml NP: 5ug/ml Control 

Figure: 17 Visualization of Nanoparticle: A: Hematoxylin staining of MSCs and NPs. NPs 
appeared in aggregated dots and attached to the cell body of MSCs. Only a small portion of 
the cells surface was in contact with the NPs. In 10ug/ml group more attached NPs are 
found. B: MSCs conjugated with NPs were detectable by MRI. The intensity of MRI signal of 
MSCs was correlated with attached NP numbers; 10ug/ml pretreatment resulted in stronger 
signal. 

Control NP: 5ug/ml NP: 10ug/ml 
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Figure: 18 Adhesion Assay of Nanoparticle-Mesenchymal Stem Cell:  NPs did not affect 
MSC viability. The numbers of viable cells were similar in NP groups and the control group. 
There is no change at different incubation times: 1, 4 and 24 hours. Each column represents 
an average of 3 wells, *p>0.05, not significant.  

Control 
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Figure: 19 Cellular Toxicity of Nanoparticle on Mesenchymal Stem Cells:  NP 
conjugated pig MSC adhered as fast as the control pig MSC.  Each column represents an 
average of 3.  

 

Control 
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Figure: 20 Proliferation Assay of Nanoparticle-Mesenchymal Stem Cells:  Instead of 
proliferation, the numbers NP conjugated MSCs dropped first and then stayed the same for 
the rest of the assay. 5ug/ml and 10ug/ml are the same in the later days of the assay (t>4 
days).  Control MSC displayed a normal increasing curve over time. Each data point is an 
average of 3 wells.  

Control 
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Figure: 21 Wound Healing Assay of Nanoparticle-Mesenchymal Stem Cells:  Wound 
healing Assay of pig MSC conjugated with NP. The control MSCs closed up the wound 
significantly over time. However the NP conjugated MSC (both 5ug/ml and 10ug/ml group) did 
not migrate at all, and no change of wound width over 32 hours. Each data point is an 
average of 3 replicates. 

Control 
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Figure: 22 Differentiation Assay of Nanoparticle-Mesenchymal Stem Cells:  The pig 
MSC differentiated into osteocytes after osteogenic induction regardless of the presence of 
NPs. The calcium accumulation was revealed by Alizarin Red-O staining.  
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X Discussion & Conclusion 

 

Isolation and ex vivo expansion of MSCs 

BM-MSCs have shown tremendous therapeutic potential for cell and tissue replacement 

therapies due to their multipotency, homing properties and paracrine-mediated effects.(Saito, 

Kuang et al. 2002; Barbash, Chouraqui et al. 2003; Rombouts and Ploemacher 2003; Zimmet 

and Hare 2005; Chamberlain, Fox et al. 2007; Fox, Chamberlain et al. 2007; Abdallah and 

Kassem 2008; Penn and Mangi 2008) For my research projects, the isolation of BM MSC was 

successful from both rat and pig, species with success rates concordant to what have been 

reported for the isolation of MSC (Kern S 2006). MSC expressed typical surface markers, can 

differentiate and expand easily in vitro. BM remains an efficient source of MSCs. While we only 

explored BM-derived MSCs, alternatives source could have been pursued for the procurement 

of MSC, such as the adipose tissue. MSCs are presented in much higher abundance in adipose 

tissues but are phenotypically and functionally comparable (De Bari C 2001). No surface marker 

is known to specifically identify MSCs. But some works have shed some light. A new marker 

CD271 has been identified as a potential specific marker for MSC (Bühring HJ 2007). 

Preconditioning  

PDGF-BB has long been known to promote neovascularization by recruiting smooth muscle 

cells and endothelial cells to form new vascular network. Battegay et al found that PDGF-BB 

specifically stimulates cord/tube forming endothelial cells to construct new vessels and promote 

angiogenesis. The expression of PDGF-BB by angiogenic and non-angiogenetic endothelial 

cells are dramatically different (E J Battegay 1994). PDGF-BB has been shown to induce 

metastasis in tumors. Nissens et al found that in lymphatic system, the presence of PDGF-BB is 

important for lymph angiognesis and tumors metastases (Renhai Cao 2004). In the work by 

Ågren et al, PDGF-BB was found to stimulates the proliferation of fibroblasts isolated from 
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chronic venous leg ulcers, indicating a strong reparative ability (Magnus S Ågren 1999). 

Moreover, PDGF-BB also stimulates MSC. First PDGF-BB stimulates the proliferation(Pierre 

Cassiedie 1996) , and the migration of MSCs(Jörg Fiedler 2002). In previous studies, PDGF-BB 

has been shown to promote the MSC-related recovery of injured myocardium(Chung R 2009; 

Krausgrill B 2009). The results in our study correlate with the published literature, proving that 

PDGF-BB is a potent stimulator of MSC. Beyond its beneficial effects on MSC, PDGF-BB alone 

protects the heart after an ischemic injury. Hsie et al. found that by delivering PDGF-BB in (a 

nanomesh of fibers) into ischemically injured hearts, PDGF-BB stimulated endothelial cells to 

protect the heart(Patrick C.H. Hsieh 2006). In our study, PDGF-BB has been identified as an 

effective growth factor that offers protection against oxidative stress, serum deprivation and 

hypoxia. PDGF-BB has been reported to be able to enhance the engraftment of MSC in vivo 

(Krausgrill B 2009). This could be attributed to the anti-apoptotic effect of PDGF-BB on MSC 

against the oxidative and nutrition-low post-infarction environment. In addition to survival 

benefits, PDGF-BB also stimulates the cell migration and proliferation of MSC.  The results from 

the time-dependent experiments of PDGF-BB provide insight to guide future studies. Longer 

PDGF-BB preconditioning time should be favoured to prevent early cell death for future 

translational studies. 

It has been well documented that SDF-1α is a strong chemotactic factor for stem cells, 

improving their homing to the sites of injury. Otsuru et al found that SDF-1α expressed by 

vascular endothelial cells and de novo osteoblasts successfully attracted circulating BM-derived 

osteoblast progenitor cells to sites of bone formation (Satoru Otsuru 2008). Using SDF-1α, 

Schantz et al achieved polarized tissue formation in MSC-based tissue engineering. Using a 

customized micro-delivery system, SDF-1α guided cell migration in 3-dimensional 

polycaprolactone scaffold (Jan-Thorsten Schantz 2007). Preconditioning MSC with SDF-1α has 

been shown to be anti-apoptotic, to favor survival, and engraftment of MSC in the infarcted 
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myocardium (Pasha Z 2008). Yin et al. showed that SDF-1α preconditioning reduces hypoxia 

and serum deprivation induced apoptosis in MSCs through PI3K/Akt and ERK1/2 pathways (Qi 

Yin 2011). Thus, choosing SDF-1α was a reasonable choice for searching an appropriate 

preconditioning agent. However, in my studies, SDF-1α modestly improved MSC survival under 

stressful conditions and modestly improved their migration capacity. Our results are not 

consistent with favorable effects reported by other groups in the other animal models. The 

reason could be SDF-1a may be many a recruiting factor and the body provides a series of 

growth factors that synergized with SDF-1a.  The reason could be that SDF-1α depends on a 

serial of growth factors to exert their beneficial effects. Since no such factors are present in in-

vitro experiments, no beneficial effects could be seen. Likewise, the SDF-1α recruitment 

depends on a gradient of concentration, which is absent in the wound healing assay. This could 

be changed in the in vivo experiments, where the concentration gradient would be inevitable.  

TSG-6 improved cardiac function after systematic co-administration with MSC; however 

preconditioning MSCs with TSG-6 did not offer any advantage to MSCs. Possible reasons could 

be: 1) the target cells of TSG-6 are not MSCs, but other cells, like cardiomyocytes; 2) TSG-6 

may increase the paracrine effect of MSC which can be determined in further studies. No other 

studies have looked at the therapeutic potential of TSG-6 following ischemic cardiac injury.  

Interestingly, hypoxia is not a threat to MSC, but somewhat of a rescuing factor. In my studies, 

MSCs exposed to both hypoxia and serum deprivation led to enhanced viability comparing to 

MSCs exposed to serum deprivation alone. This indicates that hypoxia alone is not a 

threatening factor to MSC. The native environment of the BM-derived MSCs likely provides an 

answer to this observation. In the bone marrow, blood flow is low and oxygen concentration is 

around 2%. Our observations are consistent with the reported beneficial effect of hypoxic 

preconditioning of MSCs. As discussed previously, a key effect of hypoxia on MSCs is to 

enhance the paracrine secretion of factors, such as SDF-1a, VEGF, HIF-1a, and AKT, (Chacko 
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SM 2010) and angioprotein-1(Hu X 2008).  However, a stand-alone strategy of HPC might not 

provide as much benefits as the enhanced proliferation and migration that we observed with 

PDGF-BB. At present, most preconditioning strategies are using either a single-factor or  a 

combination of similar. Adding the beneficiary effect of different strategies may synergize the 

effects of MSCs to CCT. When combined with PDGF-BB preconditioning, the MSCs displayed 

significant proliferation and full recuperation from the serum deprivation-induced stress. The 

combination of PDGF-BB with hypoxic preconditioning could be an interesting venue of 

investigation. 

NPs and MSC 

The conjugation of ferromagnetic NP with functionalized CD44 antibodies was successfully 

coupled to MSCs. MSC labeling allowed the visualizing using a clinically available 1.5 Tesla 

MRI. The NP-C44 (+) showed low toxicity to the MSCs and did not interfere with their adhesion 

ability. Cell proliferation was initially slowed but stabilized, thus was never impaired following 

coupling. However, a complete loss of in vitro migration was documented.   

CD 44 is a highly expressed surface maker in MSCs, thus using it to anchor NPs was a logical 

decision. Nevertheless, docking of NP-Ab complex may have influenced with CD44 function. It 

has been documented that CD44 is involved in MSC migration and proliferation(Zohar R 200; 

Bühring HJ 2007). Thus, my experiments have shown that the coupling of NPs to CD44 could 

have partially altered cell physiology (mainly migration) but not viability. Conversely, of the loss 

in migratory capacity may not reflect a dysfunction of the cell. An additional explanation is that 

attachment of the bulky NP complexes could have impeded MSCs from migrating through the 

migration chamber pores. There is also a possibility that coupling MSCs with NPs may alter 

their therapeutic potential and immunological status, which are to be confirmed. Changing the 

antibody may restore the migration of conjugated MSC. This could be explored in future studies 
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either by synthesizing smaller scale NPs or functionalizing current NP's with a different antibody 

to other key MSC markers such as CD 90, CD105. From a practical standpoint, the NP-MSC 

complexes will be delivered directly into the injured heart (intracoronary or transmyocardial route) 

and not injected via intravenous route. The ability for them to migrate to the site of injury is of 

lesser importance for them to reach their target to secrete their beneficial paracrine factors. 

Future Directions 

The scope of the research projects is to explore two optimization strategies ie. nanotechnology 

and preconditioning. One could envision to cross-link PDGF-BB molecules to NPs on which 

functionalized antibodies (for example CD44 or CD90 or CD105) would provide specific 

coupling with MSC. Furthermore, the ferromagnetic components of the nano-shell can 

contribute to MSC labeling for cell tracking (figure 14).  Such a strategy could be quite efficient 

as MSC will not be labeled and preconditioned simultaneously. The growth factor attached to 

the NP could not only stimulate the MSC after the implantation with high precision and potency, 

it could also contribute to stimulate the repair and the recovery of myocardial tissue. This latter 

aspect would need further studies to assess the effect of PDGF-BB on the infarcted 

myocardium. Finally, delivery of cell and growth factors can be further improved by NPs. The 

ferromagnetic components would thus offer the possibility for site-specific targeted delivery of 

cells and growth factors either by site-specific antibodies (antibodies to cardiac tissue epitopes) 

or by the guidance and retention via manipulation by external magnetic fields. 

CONCLUSIONS 

In summary, the clinical importance of IHD is ever growing especially with an aging population 

and a greater number of patients surviving to myocardial infarction. Among the potential stem-

progenitor cells to heal the infarcted myocardium, MSCs is a promising population that offers 

many advantages, most notably their paracrine effects and their immunomodulatory properties. 
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Nevertheless, there are many challenges that need to be overcome before MSC-based cardiac 

cell therapy becomes a reality. Thus, strategies to optimize their efficiency need to be 

investigated. 

In my research work, I have found that preconditioning can improve MSC viability against 

cellular stressors commonly found in the ischemic environment (hypoxia, serum deprivation and 

oxidative stress). Most notably, PDGF-BB appears to be the most promising cytokine to protect 

(pro-survival), increase the proliferation and favor the migration of MSCs. In addition, I 

documented that novel ferromagnetic NPs functionalized to a common MSC surface epitope, 

CD44, was detectable by MRI. Thus, my research work opens the doors for more focused 

research on multifunctional nano-based methods for cell imaging, preconditioning and targeting 

to improve MSC-based cardiac cell therapy. 
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