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ABSTRACT 

Background: Increased intracranial pressure (ICP) worsens the outcome of acute liver failure (ALF). This study 

investigates the underlying pathophysiological mechanisms and evaluates the therapeutic effect of albumin dialysis 

in ALF with use of the Molecular Adsorbents Recirculating System without hemofiltration/dialysis (modified, M-

MARS). 

Methods: Pigs were randomized into three groups: sham, ALF, and ALF + M-MARS. ALF was induced by hepatic 

devascularization (time = 0). M-MARS began at time = 2 and ended with the experiment at time = 6. ICP, arterial 

ammonia, brain water, cerebral blood flow (CBF), and plasma inflammatory markers were measured. 

Results: ICP and arterial ammonia increased significantly over 6 hrs in the ALF group, in comparison with the sham 

group. M-MARS attenuated (did not normalize) the increased ICP in the ALF group, whereas arterial ammonia was 

unaltered by M-MARS. Brain water in the frontal cortex (grey matter) and in the subcortical white matter at 6 hrs 

was significantly higher in the ALF group than in the sham group. M-MARS prevented a rise in water content, but 

only in white matter. CBF and inflammatory mediators remained unchanged in all groups. 

Conclusion: The initial development of cerebral edema and increased ICP occurs independently of CBF changes in 

this noninflammatory model of ALF. Factor(s) other than or in addition to hyperammonemia are important, 

however, and may be more amenable to alteration by albumin dialysis. 

Keywords: liver ischemia, cerebral blood flow, cerebral edema, inflammation 

INTRODUCTION 

Raised intracranial pressure (ICP), in conjunction with cerebral edema, is a common complication of acute liver 

failure (ALF), contributing significantly to mortality and morbidity (1–5). The underlying pathophysiological 

mechanisms are not entirely clear, but hyperammonemia is a consistent finding and is believed to play a major role 
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(6). This is emphasized by studies in which ammonia-lowering strategies prevented brain edema and severe 

encephalopathy in rats with ALF (7, 8). It has also been suggested that increased cerebral blood flow (CBF) may be 

coupled with intracranial hypertension in ALF (9). However, whether increased CBF is a cause of raised ICP 

(temporally preceding it), an effect, or just an association remains unclear. Recently, it has been demonstrated that 

other factors such as inflammation and subliminal infection may be involved in the pathophysiology of intracranial 

hypertension in ALF (10, 11). 

Recent studies have investigated the role of Molecular Adsorbents Recirculating System (MARS) in liver failure (12–

14). This is an extracorporeal device (15–17) utilizing albumin dialysis with hemofiltration/dialysis to remove 

albumin-bound toxins (18) that accumulate in liver failure and thus may improve/prevent associated cerebral, renal, 

and circulatory disturbances (12, 19). One consistent observation with its use in patients with liver failure has been 

an improvement of hepatic encephalopathy (12–14, 20). However, most of the data pertain to patients with acute 

decompensation of chronic liver disease, and the effect of MARS therapy on cerebral status in ALF remains unclear. 

A porcine model of ALF induced by hepatic devascularization has been developed and validated (21–24) and shows 

the characteristic rise of ICP, with a concomitant increase in blood ammonia and hyperdynamic vasodilated 

circulation, renal dysfunction, and worsening liver function characterized by coagulopathy and hyperbilirubinemia 

(21–24). The present study utilizes this model to better understand the pathophysiological basis of intracranial 

hypertension and investigates the impact of albumin dialysis with use of MARS without any hemofiltration/dialysis 

(which we have termed modified MARS [M-MARS]) on the development of increased ICP in ALF, in relation to 

arterial ammonia, cerebral edema (measuring brain water), CBF, and plasma inflammatory mediators—factors 

thought to be of pathophysiological importance in ALF. 

METHODS 

The study was performed at the Surgical Research Laboratory, University of Tromsø, Norway, with approval of the 

Norwegian Experimental Animal Board. Twenty-four female Norwegian Landrace pigs from three different litters, 

weighing 23–30 kg (mean ± sem, 26.8 ± 0.3) were used, and all the studies were performed by the same 

investigators (SS, CR, LMY, GIN, SSD, and MK) over a 3-month period. The operating theater and all the associated 

facilities remained unchanged throughout the experimental period. 

Study Design. 
The pigs were randomized according to sealed, prenumbered envelopes into one of three groups: sham, ALF, and 

ALF + M-MARS (eight per group) (Fig. 1). Details of the surgery, including sham operation, are described elsewhere 

(21, 24). In brief, in the sham group, sham abdominal surgery was performed without interfering with hepatic blood 

supply. In the other two groups, hepatic devascularization was performed by an end-to-side porta-caval anastomosis 

followed by hepatic artery ligation. Time = 0 hrs was set with ligation of the hepatic artery (ALF, ALF + M-MARS) or 

completion of surgery just before the closing of the abdominal wall (sham). All pigs were monitored over the 

following 6 hrs. In the ALF + M-MARS group, albumin dialysis was instituted for 4 hrs, from time = 2–6 hrs. 

Experiments were terminated with an overdose of pentobarbital and potassium chloride at time = 6 hrs. 

The Animal Model. 
Details regarding animal room facilities, anesthesia, and surgical preparation has previously been reported (21–25). 

All animals received 500 mL 0.9% NaCl containing 625 mg of glucose as a preoperative load in order to prevent any 

preoperative dehydration. The pigs were premedicated with intramuscular ketamine (20 mg/kg) and atropine (1 

mg). Anesthesia was induced with an intravenous bolus of 10 mg/kg pentobarbital and 10 µg/kg fentanyl and was 

maintained during surgery with a central venous infusion of 4 mg/kg/hr pentobarbital, 0.02 mg/kg/hr fentanyl, and 

0.3 mg/kg/hr midazolam. Anesthesia was stopped after hepatic devascularization. If clinical signs of light sedation 

appeared, small doses of fentanyl and midazolam were given as boluses. Because of drug removal by MARS (25), ALF 
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+ MARS animals were kept sedated by a continuous infusion of 0.04 mg/kg/hr fentanyl and 0.6 mg/kg/hr 

midazolam, with additional boluses given when clinically indicated. 

The pigs were ventilated (Paco2, 4.5–5.0 kPa) throughout the experiment and were infused with 0.9% NaCl (at 3 

mL/kg/hr), 50% glucose (at 0.6 mL/kg/hr, except for sham-operated animals, which received only half that amount 

to make the glucose levels comparable between the groups), and 20% human albumin (at 0.66 mL/kg/hr, to 

counteract intra-abdominal fluid loss during and after surgery), as described previously (21–25). Normal core body 

temperature was maintained at 38.5 ± 1°C. Heparin was used to keep the activated clotting time >100 sec (>180 sec 

during MARS). 

Figure 1.An outline of the study design (ALF, acute liver failure; ICP, intracranial pressure; M-MARS, 

modified Molecular Adsorbents Recirculating System). 

Catheter Placement. 
A very thin catheter developed by Ten Have et al. (26, 27) was introduced into the abdominal aorta. MARS was 

performed through an 11.5-French dual lumen catheter (Mahurkar, Tyco Healthcare, Gosport, Hampshire, UK) in the 

inferior vena cava (positioned during abdominal surgery). ALF and sham animals also received a vena caval catheter 

to be comparable. A 7-French pigtail catheter (Cordis, Miami, FL) was inserted via the left carotid artery into the left 

ventricle of the heart for microsphere injection. Position was confirmed by online pressure curves. 

Use of M-MARS. 
MARS (Monitor 1, Teraklin AG, Rostock, Germany) (15) dialyses blood across an albumin-impregnated membrane 

against 20% human albumin, the premise being that albumin-bound toxins in the blood detach, bind to free binding 

sites on the membrane, and pass on to albumin in the dialysate. Normally, the dialysate is then cleansed by 

hemodialysis/filtration (removing water-soluble toxins) and activated charcoal and anion-exchanger (adsorbing 

albumin-bound toxins), is “regenerated,” and adsorbs more toxins from the blood (15, 16, 18). Because the present 

study was designed to specifically evaluate the role of albumin dialysis in ALF, hemofiltration/dialysis was not 

performed (i.e., there was no additional removal of free water/water-soluble toxins, other than what might be 

removed by a closed-circuit recirculating albumin dialysis), and the renal part of the circuit was clamped off. Thus, 

this was a modified MARS circuit (M-MARS). Albumin recirculation continued, as has been previously described (Fig. 

2). A roller pump (Stöckert Shiley, Munich, Germany) was used to run the blood circuit at 150 mL/min, with the 

albumin dialysate circulated by the MARS pump also at 150 mL/min. 
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Figure 2.A schematic diagram of the modified Molecular Adsorbents Recirculating System (M-MARS) circuit. Blood 

is dialyzed against 20% albumin across the MARS membrane. The albumin dialysate is sequentially cleansed by the 

activated charcoal column and the anion exchange resin column and is thus recirculated. The segments for the renal 

module of the circuit have been clamped off. 

ICP Monitoring. 
A burr hole was created over the right frontal region of the skull (2 cm lateral, 1 cm rostral from bregma and 1 cm 

ventral), the dura mater was incised, and a stable drift-free ICP transducer for continuous measurements (Codman 

MicroSensor, Johnson & Johnson, Raynham, MA) was inserted into the frontal cortex at least 1 hr before completion 

of abdominal surgery. The burr hole was sealed with bone wax to ensure stable positioning of the catheter and to 

prevent pressure release. ICP monitoring has been described in detail elsewhere (21–24). Average values from the 

last 5 mins before each time point were used for analysis of the continuous data. After the experiments were 

terminated, a craniotomy was performed and the brain was examined for any intracranial hemorrhage. 

Brain Water Measurement. 
Following termination of the experiments, the brain was rapidly removed and samples were dissected from the 

frontal cortex (grey matter) and adjacent subcortical white matter of the frontal lobe, as well as the cerebellar cortex. 

Brain tissue water content (measure of cerebral edema) was determined by the previously described gravimetric 

technique, with use of kerosene and bromobenzene to generate a liquid column with a known linear density gradient 

(28). 

CBF Measurement. 
The method of blood flow determination with fluorescent microspheres has been described in detail elsewhere (29). 

In brief, 1 × 106 fluorescent microspheres (polystyrene, 15.5 µm ± 2%; Molecular Probes, Eugene, OR) were injected 

via the left ventricular catheter at time = 0 and 6 hrs. Simultaneously, a reference arterial sample was collected from 

the arterial cannula at 4 mL/min × 2 mins (Harvard withdrawal pump, Harvard Apparatus, Millis, MA) which 

allowed for the calculation of absolute blood flow. At time = 6 hrs, brain tissue samples (forebrain, cerebellum) were 

collected and stored at -80°C until analysis. Samples were weighed before digestion in ethanolic KOH (Sigma, Poole, 

UK) in a 60°C oven over 24 hrs, before vacuum filtration through an 8-µm polycarbonate membrane (Kunstoff, 

Grafenhausen, Germany) (30). The filtered microspheres were washed with 1% Triton-X 100 (Sigma) and stored in 

the dark until measurement. Immediately before measurement, the microspheres were dissolved in diethylene 

glycol monoethyl ether acetate (Sigma) and analyzed with a fluorescence spectrometer (LS50B, Perkin-Elmer, 

Norwalk, CT) and an autosampler and diluter station with common autosampler software (models AS90/91and DS6, 

respectively, FLWinLab, Perkin-Elmer). Values are expressed as mL/min/100 g tissue (wet weight). 
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Plasma Measurements for Ammonia and Inflammatory Mediators/Surrogate Markers.  
Arterial blood was collected every 2 hrs and centrifuged, and the plasma was stored at -70°C for subsequent analysis. 

Ammonia levels were determined with an ammonia reagent kit (171-B, Sigma Diagnostics, St. Louis, MO) by an 

automated enzymatic method (Cobas Fara II, Roche, Basel, Switzerland). Cytokines (interleukin [IL]-6, IL-8, and 

tumor necrosis factor [TNF]-[alpha]) were detected with commercially available porcine cytokine sets (R&D 

Systems, Minneapolis, MN) used according to the manufacturer’s instructions (lower limit for detection, 5 pg/mL). 

Malondialdehyde was detected with a modified Thiobarbituric Acid Reactive Substances (TBARS) assay, described 

by Lapenna et al. (31), wherein the major interfering/oxidizable component in the plasma is inhibited by addition of 

sodium sulfate. F2-isoprostanes (free 8-isoprostane F2[alpha]) was assayed with a commercial enzyme 

immunoassay kit (Cayman Chemical, Ann Arbor, MI) according to the manufacturer’s instructions; 200 µL plasma 

was deproteinized with 600 µL ethanol containing 3H-prostaglandin E2 (3H-PGE2) as an internal standard to 

account for losses. After centrifugation the supernatant was reduced to near-dryness, and 2 mL acetic acid was 

added and applied to a preconditioned C18 SPE cartridge (Waters, Milford, MA). The column was washed with water, 

dried with nitrogen, and eluted with high-performance-liquid-chromatography-grade hexane. The prostanoid 

fraction was eluted with 5 mL ethylacetate containing 1% methanol, the eluant was reduced to dryness and 

reconstituted in 450 µL of enzyme immunoassay buffer (100 µL was used to determine recovery of 3H-PGE2), and 

50 µL was added to the enzyme immunoassay plate with isoprostane tracer and antibody. Isoprostane levels were 

determined with reference to authentic standards and were corrected for losses. 

Statistics. 
Results are expressed as mean ± sem. Significance of difference within a group was tested by paired Student’s t-test, 

and between-groups differences were tested by unpaired Student’s t-test or two-way ANOVA, as appropriate; p < .05 

was considered statistically significant. GraphPad software (Prism 4.0, GraphPad Software, San Diego, CA) was used. 

RESULTS 

Three pigs were excluded: one sham and one ALF, because of intracranial hemorrhage, and one ALF, because of 

technical problems with ICP monitoring; 21 pigs (sham, 7; ALF, 6; ALF + M-MARS, 8) were ultimately included. 

Intracranial Pressure. 
Following liver devascularization, the ALF group (7.0 ± 0.8 to 15.5 ± 1.7 mm Hg) developed a significant increase in 

ICP over 6 hrs (121.4 ± 22.1%; p = .005) in comparison with the sham group (8.4 ± 0.9 to 9.7 ± 1.2 mm Hg, a 15.3 ± 

13.1% increase [p > .05]; ALF vs. sham, p < .05). This rise was attenuated in the ALF + M-MARS group (9.1 ± 1.0 to 

14.5 ± 1.6 mm Hg, a 58.9 ± 16.0% increase [p < .001]; ALF + M-MARS vs. ALF, p < .05). However, the ICP in the ALF + 

M-MARS group remained significantly higher than in the sham group (ALF + M-MARS vs. shams, p < .05) (Fig. 3). 

Similarly, the absolute increase of ICP over 6 hrs was significantly greater in the ALF group (8.5 ± 1.5 mm Hg) than in 

the sham group (1.3 ± 0.6 mm Hg; p < .01). This rise was attenuated with M-MARS (5.4 ± 1.0 mm Hg; p < .05 vs. ALF), 

although it was still significantly greater than in the sham group (p < .01). Finally, the area under the curve for 

relative change in ICP (mm Hg) vs. time over the duration of M-MARS dialysis (time = 2–6 hrs) was significantly 

lower with M-MARS (6.5 ± 0.9 mm Hg/hr) than in the ALF group (11.5 ± 2.4 mm Hg/hr; p < .05). 
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Figure 3.Rise of intracranial pressure (ICP, expressed as percentage change from baseline) in the three 

groups over the duration of the study (ALF, acute liver failure; M-MARS, modified Molecular Adsorbents 

Recirculating System). 

Brain Water. 
Brain tissue water content in the grey and white matter of the frontal lobe at 6 hrs was significantly higher in the ALF 

group than in the sham group. M-MARS prevented an increase in ALF-induced water content in the white matter (p = 

.04) but not in the grey matter. Cerebellar water content did not significantly differ between the three groups (Fig.4). 

  

 

 

 

 

 

 

 

Figure 4.Brain water content per unit mass of brain tissue (g water/g tissue, expressed as a percentage) at 

the end of the experiments (time=6) in the three groups of pigs (*p<.05 vs. sham; †p<.05 vs. ALF;ALF,acute 

liver failure;M-MARS,modified Molecular Adsorbents Recirculating System) 

Cerebral Blood Flow. 
CBF, measured at time = 0 and 6 hrs in the forebrain and the cerebellum, was not significantly different over time or 

amongst brain regions within or between any of the three groups (Table 1). 
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Table 1.Cerebral blood flow (ml/min/100 g; mean±SEM) at baseline (time=0 hrs) and at the end of the 

experiments (time=6 hrs) in the three groups of pigs 

 

 

Ammonia. 
Elevation of arterial ammonia occurred over 6 hrs in the ALF group and was significantly higher than in the sham 

group (p < .0001). The ALF + M-MARS group also developed hyperammonemia, which was not significantly different 

from that in the ALF group but significantly higher than in the sham group (p < .0001) (Fig. 5). 

  

   

 

 

 

 

 

 

 
 

Figure 5.Rise in arterial ammonia over the duration of the study period in the three groups (ALF, acute liver 

failure;M-MARS, modified Molecular Adsorbents Recirculating System). 

 

Inflammatory Markers. 
None of the inflammatory mediators or surrogate markers studied (cytokines: IL-6, IL-8, TNF-[alpha]) changed 

significantly over time in any of the groups. Plasma malondialdehyde, an oxidative stress marker, increased 

significantly after 6 hrs in the ALF and ALF + M-MARS groups but not in the sham group. The change relative to 

baseline (time = 0) in the ALF group (120.1 ± 42.0% increase) was significantly higher than in the sham group (22.1 

± 9.3% decrease; p < .01), whereas that in the ALF + M-MARS group (35.2 ± 8.4% increase) was significantly lower 

than in the ALF group (p < .05). The percentage changes were not significantly different between the sham and ALF + 

M-MARS groups, although 6-hr levels were significantly higher in the latter. Plasma F2-isoprostane, another 

oxidative stress marker, did not increase significantly in any of the groups. The increases relative to baseline in the 

ALF (22.1 ± 16.4%) and ALF + M-MARS groups (21.7 ± 15.0%) were significantly higher than in the sham group 

(20.0 ± 7.2% decrease; p < .05) but not significantly different amongst themselves (Table 2). 
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Table 2.Plasma levels of cytokines, malondialdehyde, and F2-isoprostanes in the three groups of pigs at 

baseline (time=0 hrs) and at the end of the experiments (time=6) 

DISCUSSION 

ALF causes cerebral edema, leading to increased ICP and consequent morbidity and mortality (1–4). However, its 

underlying mechanisms have not been fully elucidated. Previous studies have consistently shown an improvement in 

the mental state of patients whose liver failure is treated with MARS (12–14, 20). The present study investigated the 

pathophysiological factors responsible for increased ICP in ALF, with use of M-MARS dialysis as an experimental tool. 

A porcine liver-devascularized ALF model previously demonstrated to have a characteristic increase in ICP (21–24) 

and large enough to evaluate an extracorporeal device was used. The rise of ICP and increase in brain water without 

significant change in CBF and inflammatory markers suggest a significant initiating role of ammonia in the 

pathogenesis of increased ICP in ALF. The attenuation of ICP increase with M-MARS was not due to reduced arterial 

ammonia and was independent of changes in CBF, peripheral inflammatory markers, or systemic hemodynamics 

(which remained unaltered with M-MARS; data reported elsewhere (32)), suggesting that other undefined 

mechanisms are important. Our data also demonstrate asymmetric distribution of brain water, possibly implicating 

different types of astrocytes or other cell types in the pathogenesis of brain edema in ALF. Normalization of brain 

water in the white matter by M-MARS suggests this region is a possible new therapeutic target. 

A noteworthy point is the variation in baseline ICP between the three groups, with the difference between ALF 

(lowest) and ALF + M-MARS groups (highest) tending toward statistical significance (p = .09), although all baseline 

values were still within normal limits. The probable reason is interlitter variation, with uneven distribution of 

animals from the three litters used for the study between the three groups, in spite of the randomization protocol 

used. This confounded analysis of the ICP data with use of actual values of the groups. We therefore analyzed the 

data with use of percentage changes, differences in absolute changes ([DELTA] ICP), and area under the curve for 

relative change in ICP vs. time. All three of the statistical methods used to overcome the difficulties introduced by 

variations in the baseline indicate a significant rise of ICP in ALF in comparison with sham, as well as a significant 

attenuation with albumin dialysis. Moreover, whereas analysis of absolute ICP values is important to interpret the 

clinical relevance of data, the present study was designed to allow early institution of albumin dialysis to attenuate 

an increase in ICP. Thus, the absolute ICP values cannot be directly translated to the clinical setting of ALF, but the 

change in ICP can be used to study underlying pathophysiology. 

Hyperammonemia is thought to be central in the pathogenesis of increased ICP in ALF (6), and this is supported in 

our model where intracranial hypertension was accompanied by rising arterial ammonia in ALF (as opposed to 

sham). Similar arterial levels have previously been shown to be associated with high brain ammonia extraction (33) 

and brain stem herniation in ALF patients (6). However, even though M-MARS attenuated the rise of ICP, 

hyperammonemia persisted, suggesting other factors are important in the development of intracranial hypertension. 

Removal of these putative factors can potentially result in a beneficial lowering of ICP. Unfortunately, the presence of 
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extensive intracranial arteriovenous anastomoses (34, 35) in pigs meant that further analyses for brain ammonia 

flux/extraction (with use of arterial and reverse jugular venous samples) would be difficult to interpret. 

Cytotoxic brain edema is commonly observed in ALF and is thought to be the underlying mechanism of intracranial 

hypertension. Most studies investigating this phenomenon concentrate on brain water changes in the frontal cortex 

(grey matter) in different animal models (7, 8, 36). This study explored the possibility of regional cerebral 

differences by measuring brain water in the frontal cortex (grey matter), adjacent subcortical white matter, and 

cerebellar cortex. In addition to the consistently observed increase in brain water in the grey matter in the ALF 

group, a significant increase was also noted in white matter but not in the cerebellum, a finding emphasizing that 

cerebral edema in ALF is not entirely confined to grey matter. This may provide novel insights into pathogenesis. It is 

known that astrocyte swelling (possibly due to accumulation of the ammonia-detoxification product glutamine) in 

grey matter causes brain edema in ALF (4, 37). However, astrocytes are also found in white matter, although of a 

different type (fibrous astrocytes, compared to protoplasmic astrocytes in grey matter). This suggests that astrocytes 

in general are prone to swell and/or that other cells in white matter (e.g., oligodendrocytes) contribute to brain 

edema in ALF. The additional observation of normalization of white matter water content with albumin dialysis, 

without improvement of grey matter edema, implies that white matter water content may be the more labile 

component and more amenable to therapeutic interventions. Anecdotal reports on rat models of ALF demonstrating 

regional differences of brain water between forebrain (predominantly grey matter) and hindbrain (predominantly 

white matter) (38–40) support our findings. 

Reports of CBF in the setting of ALF have varied widely (41–44), perhaps because of the differences in techniques 

used and the lack of longitudinal observations, which would define a clearer temporal resolution. The technique 

using microspheres has previously been used in pig models and has been shown to compare well with other 

methods of measurement (45–48). In our model, no significant change in CBF in the forebrain or the cerebellum 

(hindbrain) accompanied either the rise in ICP with ALF or the decrease with albumin dialysis. All values observed 

remained within normal limits for pigs. This observation, suggesting that an increase in CBF does not initiate the rise 

in ICP observed in the ALF pig, is at variance with data from experimental studies involving porta-caval-shunted 

ammonia-infused rats (36). This may reflect differences in the models and timing of measurements. Our results are 

supported by observations in patients with ALF, from which we recently showed that increased CBF was associated 

with bursts of ICP, to values >20 mm Hg, but an increase in CBF was not found to be the important initiating event in 

the pathogenesis of intracranial hypertension (49). It is interesting that an ICP >20 mm Hg was observed in only two 

pigs (both 21 mm Hg) in our study. 

We also investigated the role of mediators of inflammation (or surrogate markers) in relation to these cerebral 

effects. Takada et al. (50) showed in a pig model of ALF that animals administered lipopolysaccharide and amatoxin 

intraportally developed greater intracranial hypertension than animals given amatoxin alone. ALF patients who had 

higher systemic inflammatory response syndrome scores or who were overtly infected were more likely to develop 

intracranial hypertension (51, 52). Malondialdehyde levels showed statistically significant changes but remained 

within the normal range and were unlikely to be of pathophysiological relevance. F2-isoprostanes did not increase 

significantly in ALF, but the change from baseline was significantly higher than in the sham group, mainly because of 

a significant reduction in levels in the latter group (perhaps due to recovery from surgical stress). None of the 

proinflammatory cytokines studied increased significantly in any of the groups, suggesting that the cerebral changes 

over 6 hrs in our model developed independently of any inflammation, including oxidative stress. Hence, it was not 

possible to evaluate the role of MARS in removing cytokines, as has been reported recently (53). Our results support 

the notion that inflammation is unlikely to be an important initiating factor in the pathogenesis of intracranial 

hypertension in ALF, but as we have recently observed in ALF patients, it may be more important in the later stages 

of ALF (49). 

The cerebral effects of albumin dialysis observed in the present study were evident with a 4-hr session started 2 hrs 

after the induction of ALF, implying that early institution of therapy for ALF patients might bring about a rapid 



Sen, S. et al., 2006. Effect of albumin dialysis on intracranial pressure increase in pigs with acute liver failure: a randomized study. 

Critical Care Medicine, 34(1), p.158-164. 

The final publication is available at http://dx.doi.org/10.1097/01.CCM.0000196203.39832.3C 

clinical response. Hemodialysis may worsen intracranial hypertension in ALF (54–56); therefore, closed albumin 

dialysis without additional hemodialysis/filtration may be a worthwhile option. There was no significant change in 

arterial ammonia levels, even though ammonia was detectable in the MARS dialysate (data not shown). Although it is 

possible that absence of the renal circuit in M-MARS could have reduced ammonia removal, the results of the present 

study are in keeping with our previous observation with conventional MARS (with continuous venovenous 

hemofiltration) in patients with acute or chronic liver failure, of marked improvement of hepatic encephalopathy 

despite unchanged arterial ammonia (even though ammonia was being removed by the circuit) (57). 

In the present study, a modified MARS circuit was used without any renal replacement module to evaluate albumin 

dialysis without additional removal of water-soluble toxins. Although this was advantageous in studying the 

underlying pathophysiological changes, our results cannot be directly extrapolated to systems using albumin dialysis 

with hemofiltration/dialysis. On a similar note, porcine blood was dialyzed against human albumin. Human and 

porcine albumin have similar molecular weights (66–67 kDa) (58), and although their binding properties do vary 

(59), their affinity for substances such as bilirubin are very similar (60). Thus, although the exact rate of change may 

be affected by this interspecies difference, we believe our results to be essentially valid for albumin dialysis in 

human patients. On a similar note, although human albumin was intravenously infused into the pigs, no reaction was 

observed against the xenogenic protein, which is in keeping with all the previous observations in studies using this 

model (21–24). 

The results of this study show that M-MARS has beneficial effects on ICP in a devascularized pig model of ALF. 

Regional differences exist for brain edema, with white matter edema being more amenable to therapeutic 

interventions such as albumin dialysis. Unidentified factors in addition to hyperammonemia appear to be important 

in the pathogenesis of increased ICP in ALF, which are altered by albumin dialysis. Identifying these putative factors 

and understanding their intracerebral effects may provide novel therapeutic targets. 
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