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Résumé 

 

Le CD40 est un membre de la famille des récepteurs du facteur de nécrose tumorale ("Tumour 

necrosis factor", TNF), initialement identifié sur des cellules de carcinome de la vessie. 

L'interaction du CD40 avec son ligand (CD40L) est d'une importance cruciale pour le 

développement des cellules B et de la commutation d'isotype au cours de la réponse immunitaire 

acquise. L'expression du complexe CD40/CD40L était initialement cru d'être limiter aux cellules 

du système immunitaire, mais aujourd'hui il est bien connu que ce complexe est également 

exprimé sur les cellules du système circulatoire et vasculaire, et est impliqué dans diverses 

réactions inflammatoires; de sorte que le CD40L est maintenant considéré comme une molécule 

thrombo-inflammatoire prédictive des événements cardiovasculaires. Les plaquettes expriment 

constitutivement le CD40, alors que le CD40L n'est exprimé que suite à leur l'activation. Il est 

ensuite clivé en sa forme soluble (sCD40L) qui représente la majorité du sCD40L en circulation. 

Il fut démontré que le sCD40L influence l'activation plaquettaire mais son effet exact sur la 

fonction plaquettaire, ainsi que les mécanismes cellulaires et moléculaires sous-jacents à son 

action demeurent inconnus. Ainsi, ce projet a été entrepris dans le but d’adresser les objectifs 

spécifiques suivants: 1) évaluer les effets in vitro du sCD40L sur l'activation et l'agrégation 

plaquettaire; 2) identifier les récepteurs plaquettaires impliqués dans l’action du sCD40L; 3) 

élucider les voies signalétiques intracellulaires induits par le sCD40L; 4) évaluer les effets du 

sCD40L sur la formation de thrombus in vivo. 

 Nous avons trouvé que le sCD40L augmente fortement l'activation et l'agrégation des 

plaquettes en réponse à de faibles concentrations d'agonistes. Les plaquettes humaines traitées 

avec une forme mutante du sCD40L qui n'interagit pas avec le CD40, et les plaquettes de souris 

déficientes en CD40 ne furent pas en mesure d'induire de telles réponses, indiquant que le 

récepteur principal du sCD40L au niveau des plaquettes est le CD40. En plus, nous avons 

identifié la présence de plusieurs membres de la famille du facteur associé du récepteur du TNF 

("TNF receptor-associated factor", TRAF) dans les plaquettes et nous avons montré que 

seulement le TRAF2 s'associe avec le CD40 suite à la stimulation par le sCD40L. Nos résultats 

indiquent aussi que le sCD40L agisse sur les plaquettes au repos par l'entremise de deux voies 

signalétiques distinctes. La première voie implique l'activation de la petite GTPase Rac1 et de sa 

cible en aval, soit la protéine kinase p38 activée par le mitogène ("p38 mitogen-activated protein 
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kinase", p38 MAPK ), menant au changement de forme plaquettaire et à la polymérisation de 

l'actine; alors que la deuxième voie implique l'activation de la cascade signalétique du NF-kB. 

Par ailleurs, à la suite d'une lésion artérielle induite par le chlorure de fer, le sCD40L exacerbe la 

formation de thrombus et l'infiltration leucocytaire au sein du thrombus dans les souris du type 

sauvage, mais pas chez les souris déficientes en CD40. 

 En conclusion, ce projet a permis d'identifier pour la première fois deux voies 

signalétiques distinctes en aval du CD40 plaquettaire et a permis d'établir leur implication dans 

l'activation et l'agrégation plaquettaire en réponse au sCD40L. De manière plus importante, ce 

projet nous a permis d'établir un lien direct entre les niveaux élevés du sCD40L circulant et la 

formation de thrombus in vivo, tout en soulignant l'importance du CD40 dans ce processus. Par 

conséquent, l'axe CD40/CD40L joue un rôle important dans l'activation des plaquettes, les 

prédisposant à une thrombose accrue en réponse à une lésion vasculaire. Ces résultats peuvent 

expliquer en partie la corrélation entre les taux circulants élevés du sCD40L et l'incidence des 

maladies cardiovasculaires. 

 

Mots clés: plaquettes ■ thrombose ■ voies signalétiques ■ CD40 ■CD40L 
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Abstract 

 

CD40 is a member of the tumour necrosis factor (TNF) receptor family, originally identified on 

human bladder carcinoma cells. Interaction of CD40 with its ligand (CD40L) is of crucial 

importance for B cell development and immunoglobulin isotype switching during the adaptive 

immune response. Expression of the CD40/CD40L dyad was initially thought to be restricted to 

cells of the immune system, but today it is known to be also expressed on cells of the circulatory 

and vascular systems, and have important implications in various inflammatory reactions, such 

that CD40L is now regarded as a thrombo-inflammatory molecule and a reliable predictor of 

cardiovascular events. Platelets constitutively express CD40, whereas CD40L is expressed upon 

activation and subsequently cleaved into its soluble form (sCD40L), accounting for the majority 

of circulating sCD40L. Soluble CD40L has been shown to influence platelet activation but its 

precise effect on platelet function, and the underlying cellular and molecular mechanisms remain 

undefined; hence the purpose of this project. The specific aims of this study are: 1) to evaluate 

the in vitro effects of sCD40L on platelet activation and aggregation; 2) to determine the 

receptor(s) on platelets involved in the action of sCD40L; 3) to elucidate the intracellular 

signalling pathways induced by sCD40L; and 4) to evaluate the in vivo effects of sCD40L on 

thrombus formation. 

 We have showed that sCD40L strongly enhances activation and aggregation of washed 

human platelets in response to sub-threshold concentrations of agonists. Human platelets treated 

with a mutated form of sCD40L that lacks CD40 binding, and platelets from CD40 deficient 

mice failed to elicit such responses, indicating that CD40 is the major platelet receptor for 

sCD40L. Moreover, we identified the presence of multiple members of the TNF receptor-

associated factor (TRAF) in platelets and showed that only TRAF2 associates with CD40 after 

sCD40L stimulation. Interestingly, sCD40L primes resting platelets through two distinct 

signalling pathways. The first pathway involves activation of the small GTPase Rac1 and its 

downstream target p38 mitogen-activated protein kinase, leading to platelet shape change and 

actin polymerization; whereas the second pathway involves activation of the NF-κB signalling 

cascade. Furthermore, sCD40L exacerbates thrombus formation and leukocyte infiltration within 

the thrombus mass in wild-type mice but not in CD40 deficient mice following ferric chloride-

induced arterial injury. 
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 In conclusion, we have identified for the first time two distinct signalling pathways 

downstream of platelet CD40, and established their implication in platelet activation and 

aggregation in response to sCD40L. Noticeably, we established a direct link between elevated 

levels of sCD40L and in vivo thrombus formation, while emphasizing the requirement of CD40 

in this process. Therefore, the CD40/CD40L dyad plays an important role in platelet priming that 

predisposes platelets to enhanced thrombus formation in response to vascular injury. These 

results may partly explain the correlation between elevated circulating levels of sCD40L and the 

incidence of cardiovascular diseases. 

 

Key words: platelets ■ thrombosis ■ signal transduction ■ CD40 ■ CD40L 
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1.1 Introduction 

Platelets were considered as "red cell dust" mere fifty years ago, but now they are viewed as 

sentinels of the vascular system, where they react to damage to the vascular wall by forming a 

haemostatic plug. Beyond their role in haemostasis, platelets have emerged as active players in 

inflammation as well as modulators of both the innate and adaptive immunity. Their involvement 

in all facets of atherosclerosis, which is now considered as a chronic inflammatory disease, is 

probably the most relevant example in which platelets are viewed as true thrombo-inflammatory 

cells. The initiation, development, and progression of the atherosclerotic plaque depend largely 

on the interaction of platelets with the endothelium and subsequent recruitment of leukocytes to 

the lesion site, which is mediated by a plethora of molecules expressed and secreted by platelets. 

The thrombotic events resulting from atherosclerotic plaque rupture rely mainly on the activation 

and aggregation of platelets, and their subsequent involvement in mediating activation of the 

coagulation cascade. 

 CD40 ligand (CD40L) is among the important inflammatory molecules expressed by 

activated platelets. This inflammatory mediator was initially thought to be exclusive to activated 

T lymphocytes, but now it is known to be expressed on a wide array of cells, including 

endothelial cells, macrophages, smooth muscle cells, and platelets.1 Interaction of CD40L with 

its cognate receptor, CD40, on B lymphocytes is of major importance in the immune response. 

The pioneering work by Henn et al.2, 3 demonstrated  the presence of the CD40 and CD40L dyad 

in platelets, as well as the role of platelet CD40L in inducing an inflammatory reaction in 

endothelial cells. Platelet CD40L has since been viewed as a key player in atherosclerosis 

development, and now a plethora of evidence point to multiple roles of platelet CD40L, 

including the stabilization of thrombus formation by sustaining platelet/platelet aggregates, 

activation of antigen presenting cells (APC), and differentiation and Ig isotype class switching in 

B cells.4-6 

 Platelets are estimated to account for more than 95% of circulating soluble CD40L 

(sCD40L).7 In addition, there is a close link between elevated levels of circulating sCD40L and 

clinical complications related to multiple vascular diseases, including acute coronary syndromes 

(ACS), peripheral arterial occlusive disease, hypercholesterolemia, and diabetes.8-12 Indeed, 

elevated levels of sCD40L are now considered as a risk factor for future cardiovascular events.13 
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Therefore, a better understanding of the interplay between CD40L and platelets could shed light 

on future diagnostic and preventive cardiovascular disease treatments. 

 

1.2 Origin and structure 

Platelets were first described by Osler in 1873 for their disk-like structure,14 then in 1881 

Bizzozero identified platelets anatomically and associated them with a haemostatic and 

experimental thrombotic role.15, 16 Bizzozero was also the first to identify bone marrow 

megakaryocytes without recognizing them as the precursors of platelets, which was later 

discovered by Wright in 1906.17, 18 Actually, platelets are not only recognized for their 

physiological haemostatic role, but also for their contribution in multiple pathological conditions 

such as vascular thrombosis, atherosclerosis, inflammation, immunity, oncology, coronary and 

cerebral-vascular diseases, diabetes and psychiatric diseases. 

 Platelets are derived from highly specialized cells called megakaryocytes, which have the 

sole purpose of generating platelets. Megakaryocytes develop from pluripotent hematopoietic 

stem cells that are characterized by their surface expression of CD34 and CD41, and have 

become committed to the megakaryocyte lineage as indicated by expression of CD61 (integrin 

β3, GPIIIa) and CD41 (integrin αIIb, GPIIb) according to the model in Figure 1.1.19 

 Although it is well established that platelets originate from megakaryocytes, the 

mechanisms by which they are formed and released remains controversial. Three models of 

platelet formation have been proposed: 1) cytoplasmic fragmentation, 2) platelet budding, and 3) 

pro-platelet formation. The cytoplasmic fragmentation model describes the formation of mature 

platelets within the megakaryocytes. These platelets are then released following the 

defragmentation of the megakaryocytic membrane.20, 21 However, this model lost support 

because of several inconsistent observations.  For instance, the platelet territories within the 

megakaryocytes do not exhibit structural characteristics of platelets. In the platelet budding 

model, platelets are formed by blebs pinching off from the megakaryocyte surface.22, 23 This 

model was also rejected because examination by electron microscopy revealed that these blebs 

lack platelet organelles. Accumulating evidence now support the current proposed pro-platelet 

formation model, in which megakaryocytes in the bone marrow form long cytoplasmic 

extensions through junctions in the lining of blood sinuses, thereby releasing barbell shaped pro-

platelets into the circulation that undergo further fragmentation into individual platelets.24, 25 
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Figure 1.1: Megakaryocytopoiesis. (CFU-GEMM: Colony-forming unit-granulocyte-erythroid-macrophage-
megakaryocyte; BFU-Meg: burst-forming unit-megakaryocyte; CFU-Meg: colony-forming unit-megakaryocyte. 
Michelson A. D. (2007). Platelets. Second Edition. Burlington: Academic Press. p. 24. 
 

 Platelets circulate in the blood at a concentration of 150-450 x 106 per mL in adults and 

have a life span averaging 10 days. Senescent platelets are removed from the circulation in the 

spleen, liver and the mononuclear phagocyte system. Platelets are disc shaped with an average 

dimension of 3 μm x 0.5 μm. They are anucleated cells and their cytoplasmic organelles, such as 

mitochondria, granules, lysosomes and residual membranes of the endoplasmic reticulum 

originate from megakaryocytes.26 The platelet structure is divided into three essential 

components: the plasma membrane, the cytoskeleton and the secretory granules. 

 The platelet plasma membrane is a smooth surface containing invaginations that form the 

open canalicular system (OCS). This system forms an elaborate circuit of plasma membrane 

allowing entry of certain molecules inside the cell. In addition, during platelet activation, the 

granules secrete their contents to the cell surrounding through fusion with the membrane of the 

OCS. Moreover, the OCS provides additional plasma membrane reserve that is used for platelet 

shape change and spreading. Finally, as for other cells, the plasma membrane is an anchoring site 

for multiple receptors and adhesion molecules.27 
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 The platelet cytoskeleton is formed by a monolayer of microtubule filaments underlining 

the plasma membrane, a spectrin membrane cytoskeleton and a cytoplasmic cytoskeleton formed 

by actin filaments (Figure 1.2).28-30 The microtubule filament confers the discoid shape to resting 

platelets while the spectrin membrane cytoskeleton, as well as the actin filaments, helps in 

maintaining the shape of resting platelets. In addition, the actin filaments constitute anchoring 

sites for different membrane glycoproteins (GP).31 As a whole, the platelet cytoskeleton harbours 

a site where multiple biochemical reactions, involved in platelet activation, occur.32 During 

platelet activation, there is reorganization of the cytoskeleton that allows platelets to change from 

their discoid structure into a spherical one containing multiple filopodia protrusions.33, 34 

 

   
Figure 1.2: Structure of platelet cytoskeleton. A) A monolayer of microtubule filaments surrounding the 
cytoplasmic cytoskeleton, which is formed by actin filaments. B) Structure of the membrane cytoskeleton formed by 
spectrin. C) Interaction between spectrin of the membrane cytoskeleton and actin filaments. D) Schematic of the 
membrane and cytoplamic cytoskeletons of platelets. Michelson A. D. (2007). Platelets. Second Edition. Burlington: 
Academic Press. p. 76. 
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 The cytoplasm of platelets is occupied by a large number of secretory granules (see 

section 1.4.3). Platelets contain three types of granules; alpha granules, dense granules and 

lysosomes, which contain a plethora of molecules that play an important role in platelet 

activation, adhesion and aggregation. 

 

1.3 Platelet receptors and adhesion molecules 

Platelets play a pivotal role in haemostasis by maintaining the integrity of the blood vessels. In 

order to accomplish this task, platelets contain multiple receptors and adhesion molecules that 

allow them to respond to external stimuli and to interact with the endothelium, the sub-

endothelial matrix and other platelets. Extensive research on the understanding of platelet 

receptors, adhesion molecules and the underlying signalling cascades shed light into the 

mechanisms by which platelets contribute not only to their physiological role in haemostasis but 

also to their pathological involvement in thrombosis. 

 Among the most important platelet receptors are the seven transmembrane domain 

receptors also known as G protein coupled receptors (GPCRs). Platelets express five types of 

GPCRs: the protease activated receptors (PARs), the purinergic receptors, the thromboxane 

receptors, the serotonin receptor (also known as the 5-hydroxytryptamine receptor; 5-HT 

receptor), and the adrenergic receptor. Human platelets contain PAR1, PAR4 and traces of 

PAR3, while mouse platelets contain PAR4 and PAR3.35-37 The purinergic receptors expressed 

on platelets are the ADP receptors P2Y2 and P2Y12, and the ATP receptor P2X1.38-40 The 

thromboxane receptors expressed by platelets are the two TP splice variants TPα and TPβ.41, 42 

The 5-HT and adrenergic receptors expressed by platelets are the 5-HT2A and α2A, respectively.43, 

44 

 In addition to the GPCRs, platelets also contain four types of adhesion molecules: the 

integrins, the immunoglobulins, the selectins and the sialomucins. The integrins include the 

integrin αIIbβ3 (GPIIb/IIIa), the integrin α2β1 (GPIa/IIa), the integrin αvβ3 (vitronectin receptor), 

the integrin α5β1 (fibronectin receptor) and the integrin α6β1 (laminin receptor). Among the 

immunoglobulins, platelets contain the GPVI, the Fc receptors (FcγRIIA and FcεRI), the 

intercellular adhesion molecule-2 (ICAM-2) and the platelet/endothelial adhesion molecule-1 

(PECAM-1). Among the selectins, platelets contain only P-selectin (CD62P) and among the 
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sialomucins, platelets express only GPIb/IX/V. In this section, only the most relevant receptors 

and adhesion molecules will be discussed. 

 

1.3.1 Protease activated receptors 

Activation of platelets by thrombin was first discovered by Wright and Minot in 1917.45 Now it 

is well established that thrombin is the most potent platelet activator.46 Platelets contain two 

types of thrombin receptors: GPIb/IX/V (see section 1.3.4) and PARs (PAR1, PAR3, and PAR4). 

There are four known ubiquitously expressed members of the PAR family (PAR1, PAR2, PAR3, 

and PAR4).47 PAR1 was first discovered in human platelets following cloning of a mRNA 

encoding this receptor in platelets.48 The presence of PAR3 in murine platelets was put into 

evidence by the delayed thrombin response of platelets derived from PAR3 deficient mice. The 

PAR4-activating peptide (AYPGKF-NH2) was shown to induce activation and aggregation of 

human platelets as well as platelets derived from PAR3 deficient mice, indicating the presence of 

PAR4 as a second PAR receptor in platelets.37 This section will focus on PAR1 and PAR4, since 

PAR3 does not induce signalling but is rather a cofactor for PAR4 in murine platelets, and PAR2 

is absent from platelets.49 

 PARs are seven transmembrane GPCRs that are irreversibly activated by serine proteases 

such as thrombin and trypsin, which cleave the receptors' amino terminal extracellular domain at 

a specific arginyl site, leading to unmasking of a previously cryptic tethered ligand domain that 

binds to a region in the second extracellular loop of the receptor, thereby inducing self activation 

of the receptor.48 Activation of PAR1 by thrombin rapidly transmits the signal across the plasma 

membrane to internally located G proteins. G12/13 activation by PAR1 allows them to bind Rho 

guanine-exchange factors (Rho GEFs) which are responsible for the change in platelet shape.50, 51 

Activation of Gi by PAR1 induces a rapid rise in intracellular Ca2+ due to inhibition of cyclic 

adenosine monophosphate (cAMP), while activation of Gq stimulates phospholipase Cβ (PLCβ)-

induced hydrolysis of membrane phosphoinositides (such as phophatidylinositol 4,5-

bisohosphate [PIP2]), thereby releasing inositol-1,4,5-triphosphate (IP3) and diacylglycerol 

(DAG).52, 53 DAG in turn activates protein kinase C (PKC), which causes phosphorylation of 

proteins such as the vasodilator-stimulated phosphoprotein (VASP).54 IP3 increases cytosolic 

levels of Ca2+ by binding to the IP3 receptor on the endoplasmic reticulum and triggering the 
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release of intracellular Ca2+ stores, and inhibits adenylyl cyclase, leading to decreased cAMP 

levels.52, 55      

 PAR4, on the other hand, is also coupled to G12/13 and Gq, but signalling through this 

receptor is different from that of PAR1. Following cleavage by thrombin, PAR4 generates a 

slower response than PAR1, therefore, providing the majority of the intracellular calcium flux.46, 

56 Moreover, unlike PAR1, PAR4 does not require additional signals from the P2Y12 receptor to 

sustain stable platelet-platelet aggregates.57, 58 

 It is now clear that thrombin acts on human platelets through both PAR1 and PAR4. It 

seems that thrombin cleavage of PAR1 initiates the signals necessary for platelet activation, 

while subsequent activation of PAR4 may be necessary to sustain the signalling events that 

optimize propagation of platelet activation. In addition, it has recently been shown in human 

platelets that PAR1 and PAR4 form a stable complex, which enables thrombin to act as a 

bivalent functional agonist.59 

 

1.3.2 Purinergic receptors 

ADP released form damaged blood vessels, red blood cells and secreted from platelet granules 

(in addition to ATP secreted from platelet granules) (see section 1.4.3) induces platelet activation 

through the purinergic receptors. These extracellular nucleotide receptors are subdivided into two 

groups: the P2X ligand-gated cation channels and the GPCR P2Y receptors.60 Up to date, seven 

members of the P2X receptors (P2X1 - P2X7) have been identified, and each member exhibits a 

distinct agonist profile.61 The P2Y group includes twelve members (P2Y1 - P2Y12).62, 63 It was 

thought that platelets express a single ADP receptor that was designated as the P2T receptor 

(thrombocyte P2), but now it is well known that platelets express three distinct purinergic P2 

receptor subtypes (P2Y1, P2Y12 and P2X1).64, 65 

 The P2Y1 is expressed in a wide range of tissues, including the heart, blood vessels, 

smooth muscle cells (SMC), neural tissues and platelets.66 About 150 copies of this receptor are 

expressed per platelet, which probably explains why ADP is a weak platelet agonist. 

Nonetheless, the P2Y1 receptor is crucial for the initiation of platelet activation induced by ADP 

or collagen.67, 68 The P2Y1 receptor is a 373 amino acid protein that exhibits the classical seven 

transmembrane GPCR structure. Given that P2Y1 is coupled to Gq, it triggers mobilization of 

calcium from internal stores resulting in platelet shape change and a weak, transient aggregation 
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in response to ADP, which were put into evidence through pharmacological inhibition and in a 

murine P2Y1 genetic deficient model.69-71 In addition, P2Y1 deficient mice exhibit a prolonged 

bleeding time, which is due to a defect in in vivo thrombus formation.72 

  The identity of the P2Y12 receptor on platelets was elusive for a long time, and it was 

designated as the P2YADP, P2YAC, P2Tac, P2T and P2Ycyc. Molecular cloning confirmed this 

receptor to be the novel P2Y12 receptor, which is uniquely and abundantly expressed on platelets, 

and to a minor extent in brain tissue.73 The P2Y12 receptor is a GPCR coupled to Gi and its 

activation by ADP induces inhibition of adenylyl cyclase. The important role of the P2Y12  

receptor is in the amplification of platelet aggregation induced by all known platelet agonist such 

as thrombin, collagen, thromboxane A2 (TxA2) and ADP.74 The P2Y12 is also involved in platelet 

dense granule secretion and TxA2 generation.75, 76 

 In platelets, it was initially thought that the P2X1 receptor was activated by ADP, but 

experiments with αβ-meATP (a specific P2X1 and P2X3 agonist) demonstrated an antagonistic 

effect of ADP in human platelets.77 As P2X1 is a ligand-gated cation channel, activation of this 

receptor by ATP induces a transient Ca2+ influx that is responsible for platelet shape change but 

not for aggregation.78 

 In summary, co-activation of the P2Y1 and P2Y12 receptors is necessary for normal ADP-

induced platelet aggregation.71 Hence the targeting of the P2Y12 receptor by the thienopyridine 

compounds ticlopidine and clopidogrel, which are used as antithrombotic drugs.79  On the other 

hand, the P2X1 receptor participates in collagen-induced platelet aggregation under shear 

conditions, which are a requirement for this receptor to fully play its role in thrombus 

formation.77 

 

1.3.3 Thromboxane receptors 

Thromboxane A2 is generated in platelets through the sequential enzymatic conversion of 

arachidonic acid, from the phospholipid bilayer, by the cyclooxygenase (COX-1 in platelets) and 

thromboxane synthase enzymes following activation by agonists, such as thrombin, collagen or 

ADP.80 Thus, TxA2 is considered as a secondary mediator that is involved in the second wave of 

platelet activation as well as in amplifying the response to more potent platelet agonists.81 In 

contrast to TxA2, prostacyclin (PGI2), which is also generated through the sequential enzymatic 

conversion of arachidonic acid (mainly by endothelial cells in the vasculature), inhibits platelet 
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function through the prostagladin I2 (IP) receptor.82 There is much discrepancy regarding the 

TxA2 receptors on platelets. Although cDNAs for both receptors TPα and TPβ splice variants 

have been shown to be present in platelets, only the TPα variant was demonstrated to be 

expressed on platelets using a specific splice variant antibody, which is probably due to a low 

level of expression of the TPβ variant.41, 42 

 The TPα receptor cDNA was cloned from human placenta from which a 343 amino acid 

sequence revealed that it belongs to the GPCR superfamily.83 The TPβ receptor cDNA was 

recently cloned from human endothelial cells from which a 407 amino acid sequence revealed 

that it is a splice variant of the TPα receptor.84 Therefore, the TPα and TPβ receptors differ only 

in their C-terminal domains where the 15 amino acid sequence in the carboxyl end of TPα is 

replaced by a 79 amino acid sequence in TPβ. The G proteins that are coupled to either TPα or 

TPβ in platelets remain unclear. Reports suggest that both TP receptors are coupled to Gq, Gi, G12 

or G13, and that signals from either TP receptor result in activating PLC, thereby releasing IP3 

and DAG.52, 85, 86 

 

1.3.4 GPIb/IX/V complex 

The importance of the GPIb/IX/V complex in haemostasis was put into evidence with the 

discovery of a rare but often severe bleeding disorder, Bernard-Soulier syndrome, where the 

complex is either absent, expressed at low levels or dysfunctional.87 The GPIb/IX/V complex is 

the second most abundant receptor on platelets, as compared to the αIIbβ3 integrin, with 

approximately 25 000 copies per platelet.88 The complex consists of GPIbα (CD42b) disulfide 

linked to GPIbβ (CD42c), non-covalently complexed with GPIX (CD42a) and GPV (CD42d) at 

a ratio of 2:2:2:1.87 The GPIb/IX/V complex does not have a built-in tyrosine kinase activity. It is 

not directly coupled to G proteins, and it does not contain phosphorylatable tyrosine residues that 

recruit signalling molecules. Nevertheless, it utilizes all these avenues to transmit signals by 

associating with other signalling molecules. Indeed, the cytoplasmic tail of GPIbα associates 

with 14-3-3ζ, calmodulin, phosphoinositide 3-kinase (PI3K), the Src family tyrosine kinases and 

filamin A (actin-binding protein).89-93 Interaction of the GPIb/IX/V complex with other proteins 

is mostly due to the globular domain of GPIbα, where it binds von Willebrand factor (vWF), 

thrombin, integrin αMβ2 (CD11b/CD18, macrophage antigen-1 [Mac-1]) on leukocytes, P-

selectin, coagulation factors XI and XII, and high molecular weight kininogen. 
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 Platelet adhesion under high shear depends on the interaction of GPIb/IX/V with 

multimeric vWF deposited on the sub-endothelial matrix. vWF is a large glycoprotein 

synthesized by endothelial cells and megakaryocytes and stored in platelet α-granules and 

Weibel-Palade bodies of endothelial cells.94, 95 Upon a damage to the vessel wall, vWF is 

secreted into the circulation in a form incapable of interacting with GPIb/IX/V. vWF then forms 

multimers on exposed collagen of the sub-endothelial matrix, thereby allowing its binding with 

the GPIb/IX/V complex, which then favours platelet adhesion, activation, secretion and 

aggregation. As mentioned earlier, the GPIb/IX/V complex can also interact with thrombin. In 

fact, it has been demonstrated that this complex is actually the high affinity receptor for thrombin 

on platelets. However,  it is still unclear if the GPIb/IX/V complex induces signals that activate 

platelets following its interaction with thrombin.96 On the other hand, interaction of GPIbα with 

thrombin allows it to act as a cofactor that localizes thrombin to the platelet surface to support 

thrombin cleavage of PAR1.97 Moreover, through interaction with Mac-1, the GPIbα subunit of 

the GPIb/IX/V complex favours recruitment of leukocytes to the site of injury where platelets are 

already adhered.98 Finally, the GPIb/IX/V complex seems to favour platelet rolling on the 

activated endothelium through its interaction with endothelial P-selectin.99 

 

1.3.5 GPVI 

GPVI is a valuable adhesion molecule that is uniquely expressed on platelets, and in addition to 

α2β1, is a major collagen receptor. Because of the low level of expression of GPVI on platelets as 

well as the difficulties in finding a suitable agonist (due to the second collagen receptor α2β1), it 

was difficult to determine the structure of this receptor. However, with the discovery of a 

specific GPVI agonist, the collagen-related peptide (CRP), it was possible to identify the 

structure of the receptor, which revealed that GPVI belongs to the immunoglobulin (Ig) 

superfamily with two Ig-like domains.100 GPVI was also shown to form a complex with the Fc 

receptor γ-chain (FcRγ) through a salt bridge at the Arg252 residue in the transmembrane domain 

of GPVI, which is responsible for stabilizing the complex in two Ig-like domains and one FcRγ 

configuration (Figure 1.3).101 Moreover, the two Ig-like domains of GPVI harbour the collagen 

binding site. Although the exact region that interacts with collagen is still unclear, it seems that 

there are more than one interaction site. The Ig-like domains also contain a high level of 
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glycosylation that allows GPVI to extend over the polysaccharide layer of the platelet surface, in 

a structure similar to GPIbα, thereby increasing its accessibility to collagen.102 

 

         
Figure 1.3: Schematic representation of the GPVI receptor. Mori M. et al. Thrombosis Research. 2004; 114:221-
233. 
 

 The FcRγ is essential for both expression and function of GPVI. Upon activation of 

GPVI by collagen, the immunoreceptor tyrosine-based activation motif (ITAM) within the FcRγ 

becomes phosphorylated by the Src kinases, Fyn and Lyn that are constitutively bound to the 

cytoplasmic tail of GPVI.103 In turn, the phosphorylated ITAM phosphorylates the tyrosine 

kinase Syk, which then induces the activating downstream signalling events, including activation 

of PKC and increase in intracellular Ca2+ by PLCγ2.102 

 It is now clear that GPVI is a major collagen receptor on platelets, but its physiological 

role is still unclear. There are two common haplotypes of GPVI known as GP6a and GP6b with 

observed frequencies of 0.85 and 0.13, respectively, that differ by 5 amino acid substitutions, 3 

in the extracellular domain (Ser199Pro, Lys217Glu, Thr229Ala) and 2 in the cytoplasmic 

domain (Gln297Leu and His302Asn).104 Although there is no difference in the expression level 

between the low- and high-frequency alleles, homozygosity for GP6b is associated with 

decreased functional responses of the receptor, as well as a reduced risk for recurrent 

cardiovascular events and mortality.104, 105 Moreover, it has been shown that in GPVI-deficient 
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patients and GPVI-depleted mice, there is a moderate increase in bleeding time and an 

impairment of platelet aggregation in response to collagen.106, 107 In addition, GPVI-deficient 

platelets exhibit decreased adhesion to collagen under flow conditions, which is abolished upon 

α2β1 blockade.108 Therefore, it seems that GPVI and α2β1 make each their contribution to the 

platelet response to collagen. 

 

1.3.6 α2β1 

The α2β1 is the first collagen receptor to be identified on platelets and serves mainly as an 

adhesion molecule.109 The crystal structure of the α2β1 integrin allowed identification of the 

structures of the α2 and β1 subunits. The extracellular domain of the α2 subunit has a β propeller-

like structure and a collagen-binding αI domain. The extracellular domain of the β1 subunit has 

an I domain-like fold, but it does not directly participate in collagen binding.110, 111 Interaction of 

collagen with the αI domain of the α2 subunit is dependent on the Mg2+ metal coordination site, 

named metal ion-dependent adhesion site (MIDAS), located in the bottom groove of the αI 

domain, while the αC helix in the αI domain seems to guide the collagen molecule into the 

groove in the right position, which is necessary for proper binding (Figure 1.4).112, 113 Signalling 

through the α2β1 integrin is similar to that induced by GPVI stimulation, which includes 

phosphorylation of the Src family kinases and the subsequent activation of PLC.114 Moreover, as 

for most integrins, the α2β1 integrin exists in two conformational configurations, an inactive 

conformation and an active one capable of bind collagen.111 
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Figure 1.4: Schematic representation of the α2β1 integrin. Heino J. Matrix Biology. 2000; 19:319-323. 
 

 It is now evident that α2β1 and GPVI are the two collagen receptors on platelets. 

However, their relative function in collagen-mediated platelet response is still unclear. The GPVI 

induced collagen response seems to be the most important. On the other hand, the α2β1 integrin is 

responsible for platelet adhesion to the exposed collagen surface in the sub-endothelium and in 

β1-deficient mice, the thrombi consist of loose platelet aggregates.115, 116 In addition, genetic or 

pharmacological depletion of GPVI highlight the capacity of α2β1 to mediate collagen signalling 

and haemostasis.108 

 

1.3.7 αIIbβ3 

The αIIbβ3 integrin is the most important and most abundant integrin on platelets, with 

approximately 80 000 copies per resting platelet and with important αIIbβ3 reserves within 

platelet α-granules and the OCS, which increase the integrin's surface expression by 25-50% 

upon platelet activation.117-119 The crucial importance of αIIbβ3 in primary haemostasis is 

evidenced by the bleeding disorder of patients with Glanzmann's disease, where genetic 

disorders in the αIIb and β3 gene result in functional abnormalities and/or prevention of surface 

expression of the αIIbβ3 integrin.120 The bleeding disorder is due to absence or improper 

haemostatic plug formation because of lack of platelet aggregation, which is mediated by the 

cross-linking of αIIbβ3 on adjacent platelets by soluble fibrinogen at low shear rate or vWF at 

high shear rate.121, 122 
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 The αIIb and β3 subunits of the αIIbβ3 integrin are both products of a single gene located on 

chromosome 17, giving rise to a 1008 and a 762 amino acid αIIb and β3 subunits, respectively.123 

The αIIb is proteolytically processed into a heavy and a light chain. The light chain contains a 20 

amino acid cytoplasmic tail, a transmembrane helix, and an extracellular segment that is 

disulfide linked to the heavy chain, which is entirely extracellular. Within the heavy chain, a 

large domain composed of a series of 60 amino acid repeats, which are arranged to form the 

seven blades of the β-propeller, extend outward from a central core. At the base of the β-

propeller there are four divalent cation (Ca2+) binding motifs.124-126 The β3 subunit contains a 48 

amino acid cytoplasmic tail and three major extracellular domains: the A domain, the PSI 

(plexin-semaphorin-integrin) domain, and four endothelial growth factor (EGF)-like domains 

(Figure 1.5).127 The PSI domain seems to be involved in integrin activation, because mutation of 

the cysteine linking it to the EGF-like domain, results in a constitutively active integrin.128 The A 

domain contains 2 or 3 divalent cations (Ca2+) sites, including a MIDAS motif that is highly 

involved in ligand binding. In addition, the A domain of the β3 subunit also contains two 

recognition sites, one for the γ-chain sequence and another for the RGD (arginine-glycine-

aspartic acid) sequence, which is present in ligands of the αIIbβ3 integrin, including fibrinogen, 

fibrin, vWF, vitronectin, fibronectin and autotaxin.121, 129-133 Finally, the EGF-like domains are 

formed by four cysteine rich loops (EGF-1 to EGF-4), which seem to have a regulatory function 

because a cysteine mutation within this region causes activation of the αIIbβ3 integrin.134, 135 
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Figure 1.5: Schematic representation of the αIIbβ3 integrin. Quinn M. J. et al. Arteriosclerosis, Thrombosis, and 
Vascular Biology. 2003; 23:945-952. 
 

 As most integrins, the αIIbβ3 integrin exist in two conformations; an inactive low affinity 

ligand binding conformation, and an active high affinity ligand binding one. Activating signals 

mediated by platelet agonists such as collagen and thrombin induce "inside-out" signals, which 

shifts the αIIbβ3 integrin from its inactive to active conformation. In the active conformation, 

ligand binding to αIIbβ3 stimulates "outside-in" signalling that promote firm platelet adhesion and 

spreading on the extracellular matrix, fibrin clot retraction, and development of platelet pro-

coagulant activity and microparticle generation.136-138 Moreover, there is a close association 

between αIIbβ3 and the platelet cytoskeleton, where the cytoskeleton is involved in regulating the 

structure and activation of the αIIbβ3 integrin. In resting platelets, the αIIbβ3 integrin is associated 

with the membrane cytoskeleton, which favours anchoring of the integrin to the plasma 

membrane, and upon platelet activation and ligation of the αIIbβ3 integrin with fibrinogen, the 

αIIbβ3 integrin associates with cytoplasmic actin, thereby stabilizing ligand/integrin interactions, 

which ultimately lead to stabilizing the platelet aggregates.139 The exact role of the αIIbβ3 integrin 

in platelet adhesion, aggregation and signalling will be discussed in more detail in section 1.4 of 

this chapter. 
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1.3.8 P-selectin 

P-selectin belongs to the selectin family, which is composed of three members that are named 

according to their main expression site: L-selectin is expressed in leukocytes, E-selectin is 

expressed on endothelial cells, and P-selectin is mainly found in platelets but also in endothelial 

cells.140-142 The human selectin family is encoded by genes located on chromosome 1, and all the 

members share a conserved structure consisting of an N-terminal Ca2+-dependent lectin 

recognition motif followed by an EGF-like motif, a series of short consensus repeats (SCRs), a 

transmembrane domain, and a short cytoplasmic tail.143 The main structurally differentiating 

factor between all members of the selectin family is the variation in the number of SCRs, with L-

selectin, E-selectin, and P-selectin having 2, 6 and 9 SCRs, respectively (Figure 1.6). 

 

       
Figure 1.6: Schematic representation of the selectin family members. Image is from the laboratory of Dr. Merhi.   
 

 In platelets, P-selectin is stored in the α-granules, and upon activation it is translocated to 

the plasma membrane, where approximately 10 000 copies of the molecule are then expressed on 

the surface of an activated platelet. This translates to a density of 350 molecules/μm2, which 

exceeds that of activated endothelial cells by approximately 10 fold.144 One of the major roles of 

platelet P-selectin is mediating interactions between platelets and leukocytes through their 

constitutively expressed high affinity P-selectin ligand, the P-selectin glycoprotein ligand-1 

(PSGL-1).145 Therefore, with such a high density of P-selectin molecules expressed on activated 

platelets, this interaction might have an even more important role in recruiting leukocytes to the 
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site of injury/inflammation than the interaction between endothelial P-selectin and leukocyte 

PSGL-1. In fact, it has been demonstrated that in P-selectin deficient mice, there is lack of 

leukocyte recruitment onto the platelet monolayer at the site of vessel injury.146 Moreover, the 

platelet/leukocyte interaction is of major importance not only in a physiological setting, but also 

in pathological ones such as in ischemia-reperfusion injury and in atherosclerosis.147, 148 

 P-selectin also has an important role in platelet/platelet interactions, as shown by its 

involvement in stabilizing platelet aggregates and thrombus formation; however, its ligands on 

platelets are still a matter of debate.149, 150 Although platelets express three potential ligands for 

platelet P-selectin; PSGL-1, GPIbα and sulfatides, sulfatides and GPIbα seem to be the most 

probable ligands. P-selectin and GPIbα but not PSGL-1 blockade, inhibits platelet rolling onto an 

activated endothelium and affects the stability of platelet aggregates, indicating a possible role 

for GPIbα as a P-selectin ligand on platelets.99, 149 By contrast, it has recently been shown that 

blocking antibodies against P-selectin and sulfatides, but not PSGL-1 or GPIbα inhibited platelet 

adhesion to P-selectin and platelet aggregation, indicating that sulfatides, and not PSGL-1 or 

GPIbα are the major P-selectin ligands on platelets.149, 151, 152 Such discrepancy in identifying the 

platelet P-selectin ligand could be attributed to the experimental settings. Furthermore, P-selectin 

expressed on activated platelets promotes fibrin and thrombus formation by recruiting tissue 

factor (TF) bearing monocytes and monocyte derived microparticles to the site of vessel 

injury.153, 154 

 

1.4 Platelet function 

As mentioned earlier in this chapter, platelets play a pivotal role in haemostasis by maintaining 

the integrity of blood vessels through the formation of a haemostatic plug that prevents blood 

loss. In order to accomplish such task, platelets respond to external stimuli mediated by the 

interaction of their receptors with the respective ligands. These interactions lead to a sequence of 

events consisting of adhesion, activation, secretion, and aggregation. In brief, GPIb/IX/V, GPVI, 

α2β1 integrin and αIIbβ3 integrin mediate platelet adhesion and activation, while αIIbβ3 is 

responsible for platelet aggregation, clot retraction and thrombus stability. 
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1.4.1 Platelet adhesion 

Under normal circumstances, platelets circulate in the blood in an inactive state unable to adhere 

or become activated, a process mediated by an important function of the endothelium. The 

endothelial cells not only create a physical barrier preventing platelet and sub-endothelial matrix 

contact, but also actively participate in inhibiting platelet activation by secreting inhibitory 

molecules such as nitric oxide (NO), PGI2, and nucleoside triphosphate diphosphohydrolase-1 

(NTPDase-1, CD39).82 On the other hand, damage to the vessel wall exposes the sub-endothelial 

matrix and activates endothelial cells, thereby initiating the haemostatic mechanism. Platelet 

adhesion at the site of vessel injury is initiated by platelet rolling on the activated endothelium, 

followed by firm adhesion of platelets to the components of the sub-endothelial matrix (collagen 

and vWF).155 

 

Platelet rolling on the activated endothelium 

Platelet rolling on the activated endothelium is the first step in initiating the haemostatic plug. 

Before adhering to the sub-endothelial matrix, circulating platelets undergo a deceleration 

process on activated, P-selectin (present in Weibel-Palade bodies) expressing endothelial cells 

neighbouring the injured vasculature.156 This process is mediated by the interaction of 

endothelial P-selectin with its yet unresolved ligand on platelets, albeit platelet PSGL-1 and the 

GPIb/IX/V complex could be the two possible candidates.99, 151 

 

Platelet adhesion to the sub-endothelial matrix 

At the site of the injured vasculature, following the rolling process onto the activated 

endothelium, platelets come to an arrest upon contact with the sub-endothelial matrix. The arrest 

is made possible by the interaction of platelet GPIb/IX/V, GPVI, α2β1 and αIIbβ3 with the 

components of the sub-endothelial matrix. The importance of the relative initial interactions of 

these receptors with their respective ligands is dependent on the shear force present at the site of 

injured vasculature. For instance, at high shear levels such as in stenotic arteries, initial tethering 

of platelets onto the sub-endothelial matrix fully depends on the weak interaction between the 

GPIb/IX/V complex and vWF, then followed by the firm adhesion of platelets to the exposed 

collagen matrix, which is GPVI and α2β1-dependent.157-159  By contrast, at low shear levels such 

as in the venous circulation, platelet adhesion to the sub-endothelial matrix depends on the 
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interactions of GPVI and α2β1 with collagen fibers, even though the GPIb/IX/V and vWF 

interaction is still present, it is of less importance.160 The αIIbβ3 integrin also participates in 

platelet adhesion by binding fibrinogen and vWF molecules present in the sub-endothelial 

matrix. Figure 1.7 summarizes the major events in platelet adhesion to the sub-endothelial 

matrix. 

 It is of interest to mention that circulating vWF molecules are not able to bind the 

GPIb/IX/V complex, but once in contact with collagen in the sub-endothelial matrix and in the 

presence of shear forces, the vWF molecule undergoes conformational change, which allows it to 

bind the GPIb/IX/V complex.161, 162 Although the vWF/GPIb/XI/V interaction is of a weak 

nature, at high shear levels, it occupies a crucial role in slowing down circulating platelets, which 

then favours GPVI and α2β1-dependent platelet arrest at the sites of injury. 

 

      
Figure 1.7: Platelet adhesion to the sub-endothelial matrix. Under normal conditions, platelet activation is prevented 
by the secreted endothelial mediators (NO, PGI2 and NTPDase-1). At the site of vessel lesion, platelet rolling, 
tethering, adhesion and activation is mediated by the interaction of platelet receptors/integrins with the components 
of the sub-endothelial matrix (see above text). Conde I. D. et al. Catheterization and Cardiovascular Interventions. 
2003; 60:236-246. 
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1.4.2 Platelet activation 

Interaction of GPIb/IX/V, GPVI, α2β1 and αIIbβ3 with components of the sub-endothelial matrix 

is not only responsible for platelet adhesion, but also mediates signals that induce platelet 

activation, secretion and aggregation. As mentioned in the previous section, ligation of 

GPIb/IX/V, GPVI and the α2β1 integrin with their respective ligands mainly induce activation of 

Src family kinases which ultimately activate PLC, specifically PLCγ2, leading to the generation 

of DAG and IP3, that activate PKCs and increase cytosolic Ca2+ levels, respectively. 

Furthermore, ligation of fibrinogen to the αIIbβ3 integrin also induces activation of the Src family 

kinases that activate PLCγ2, and the interaction of talin with the cytoplasmic tail of the β3 

subunit, which is involved in clot retraction.163 

 Following the initial wave of platelet activation induced by ligation of GPIb/IX/V, GPVI, 

α2β1 and αIIbβ3 with the components of the sub-endothelial matrix, activated platelets secrete 

secondary mediators such as TxA2 and ADP (see section 1.4.3) that recruit and activate 

additional circulating platelets at the site of vascular lesion. In addition, TF expressed on 

recruited monocytes, endothelial cells and activated platelets leads to the generation of thrombin 

at the site of injured vasculature, which also participates in recruitment and activation of 

additional platelets.154, 164, 165 Activation of platelets by TxA2, ADP and thrombin is mediated by 

ligation of these secondary mediators with their respective receptors; TPα and TPβ, the 

purinergic receptors, and PARs, which are coupled to G proteins (see section 1.3). Briefly, Gq 

and G12/13 lead to the generation of DAG and IP3 by PLCβ, and to the activation of the Rho 

GEFs, respectively. DAG in turn activates PKCs, which lead to protein phosphorylation, 

including VASP phosphorylation. VASP functions as an anti-capping protein, which is involved 

in crucial cellular functions, including shape change by directly modulating the actin ultra-

structure.166 IP3 binds to its receptor on the endoplasmic reticulum thereby inducing release of 

Ca2+ from intracellular stores. The Rho GEFs; RhoA, Rac1, and Cdc42 are regulators of 

signalling pathways that control actin organization by the formation of stress fibers, lamellipodia 

and filopodia.167 In summary, activation of platelets is mediated by two major signalling 

pathways, one including activation of PLC (PLCγ2 or PLCβ), and the second mediated by 

activation of G proteins through GPCRs. Figure 1.8 summarizes the major signalling pathways 

implicated in platelet activation. 
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Figure 1.8: The major signalling pathways implicated in platelet activation. Varga-Szabo D. et al. Arteriosclerosis, 
Thrombosis, and Vascular Biology. 2008; 28:403-412. 
 
 One of the early hallmarks of platelet activation is the morphological shape change 

induced by the reorganization of the platelet actin cytoskeleton, which transforms platelets from 

their disk-like structure into a spherical one containing multiple filopodia protrusions (Figure 

1.9).33, 34 The change in platelet shape as well as the formation of filopodia allows platelets to 

expand and cover a larger surface area at the site of vessel injury. Platelet activation also leads to 

the expression of P-selectin and the activation of the αIIbβ3 integrin (through an "inside-out" 

signalling mechanism), where they each make their contribution to platelet aggregation. 
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Figure 1.9: Scanning electron microscopy image of platelet shape change. Left: Resting platelet. Right: Activated 
platelet. Images are from the laboratory of Dr. Merhi. 
 

1.4.3 Platelet secretion 

Platelet activation is accompanied with secretion, where platelets secret a plethora of molecules 

stored in their granules, as well as newly enzymatically synthesised compounds, such as TxA2. 

Platelet secretion is an indispensible process linked to their pathophysiological role, including 

recruitment and activation of additional circulating platelets, initiation of thrombus formation, 

mediating intracellular adhesion and triggering cell proliferation and migration. Platelets contain 

three types of secretory granules; α-granules, dense granules and lysosomes, which are formed, 

pre-packaged, and sorted into pro-platelets during platelet formation from megakaryocytes.168  

 Megakaryocytes synthesise most of the protein contents present in platelet granules, and 

during the platelets' life span, platelets incorporate proteins into their existing granules through 

endocytosis. For instance, incorporation of fibrinogen is mediated by its interaction with the 

αIIbβ3 integrin, and its subsequent internalization and sorting into α-granules.169 The α-granules 

are the largest and most abundant granules in platelets with approximately 80 α-granules per 

platelet, and they contain coagulation proteins (e.g. fibrinogen, factor V), soluble adhesion 

molecules (e.g. vWF), growth factors (e.g. platelet derived growth factor [PDGF]), protease 

inhibitors (e.g. plasminogen activator inhibitor-1), and membrane adhesion molecules (e.g. P-

selectin and αIIbβ3).170 The dense granules are less abundant and less voluminous than α-granules, 

with about 3-8 dense granules per platelet; however, they contain substances indispensible for 

platelet activation, such as ADP, serotonin, Ca2+, and magnesium.171, 172 Although the contents of 

the α and dense granules differ from each other, recent studies have shown the presence of P-

selectin, αIIbβ3, and GPIb in both granules.173, 174 Finally, lysosomes contain enzymes that have a 

role in degrading and digesting multiple proteins.175, 176 Table 1.1 summarizes the major contents 

of platelet granules.177 
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Table 1.1: Platelet granule contents. 
 

α-granules Dense granules Lysosomes 
P-selectin 

αIIbβ3 integrin 
GPIb/IX/V 

GPVI 
αvβ3 integrin 
PECAM-1 
Stomatin 

PDGF 
EGF 

VEGF 
Transforming growth factor β (TGF-β) 

Albumin 
Fibrinogen 
Fibronectin 
Vitronectin 
Osteonectin 

vWF 
von Willebrand antigen II 

Thrombospondin 
Platelet factor-4 (PF4) 

IgG, IgA, IgM 
C1 inhibitor 
Plasminogen 

Plasminogen activator inhibitor-1 
Platelet-derived collagenase inhibitor 

High molecular weight kininogen 
Protein S 

α2-antitrypsin 
α2-macroglobulin 

α2-antiplasmin 
Multimerin 

Platelet basic protein 
β-thromboglobulin 

Histidine-rich glycoprotein 
Connective tissue-activating protein III 

Neutrophil-activating protein II 
Coagulation factor V 

Coagulation factor VIII 

GPIb 
αIIbβ3 integrin 

P-selectin 
CD107a (LAMP-1) 
CD107b (LAMP-2) 

CD63 (LAMP-3) 
Serotonin 
Histamine 

ATP 
ADP 
GTP 
GDP 

Pyrophosphate 
Calcium 

Magnesium 

Cathepsin D 
Cathepsin E 

Carboxypeptidase A 
Carboxypeptidase B 

Proline carboxypeptidase 
CD107a (LAMP-1) 
CD107b (LAMP-2) 

CD63 (LAMP-3) 
Acid phosphatase 

Arylsulphatase 
β-D-glucuronidase 
β-D-galactosidase 

β-D-fucosidase 
β-D-glucosidase 

α-D-mannosidase 
α-D-galactosidase 

α-L-arabinofuranosidase 
α-L-fucosidase 

 
 

 

 Activation of platelets by physiological agonist such as thrombin, ADP, TxA2 and 

collagen leads to intracellular signalling events that mediate platelet secretion, where platelets 

discharge their granule contents into the extracellular environment by exocytosis.172 Although 

most of the platelet physiological agonists can mediate α and dense granule secretion, it seems 

that only thrombin, the most potent agonist, is capable of inducing lysosome secretion.178 As 

mentioned earlier in this chapter, ligation of platelet agonists with their cognate receptors induces 

activation of two major signalling pathways (PLC and G protein activation), of which PLC 
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activation seems to be of significant importance for platelet secretion. The increase in cytosolic 

Ca2+ levels by IP3, as well as the activation of DAG following PLC mediated degradation of 

PIP2, leads to the activation of PKCs, which are crucial signalling molecules involved in platelet 

secretion. Platelets contain multiple PKCs (α, β1, β11, δ, ζ, η, and θ) and it seems that each of 

them has a specific role in platelet secretion, where they induce phosphorylation of intracellular 

signalling molecules implicated in the exocytotic machinery.172, 179-183 

 The molecular machinery involved in platelet secretion, which mediates granule fusion 

with surface connected membranes of the OCS or the plasma membrane, remained obscure for a 

long time.184, 185 However, insights into similarities between neuronal and platelet exocytosis, 

revealed molecular components of the secretory mechanism involved in both cell types.186 The 

molecular machinery responsible for membrane fusion during exocytosis is composed of the core 

soluble N-ethylmaleimide sensitive factor (NSF) associated protein receptor (SNARE) 

complexes. The SNAREs associated with granules are termed vesicular SNAREs (vSNARE), 

while those associated with target membranes (e.g. OCS and plasma membrane) are termed 

tSNAREs. In platelets, the identified vSNAREs include the vesicle-associated membrane 

proteins (VAMP) -2, -3, -7, and -8, while the identified tSNAREs include the syntaxins 2, 4, 7, 

and 11, and the soluble NSF-associated proteins (SNAP) -23, -25, and -29.187-193 Platelets also 

contain the Sec1 (platelet Sec1 protein, [PSP]) and Rab proteins that regulate SNARE 

function.183, 194 Platelet exocytosis is mediated by orchestrated steps involved in granule and 

plasma membrane fusion. Briefly, in resting conditions, PSP binds to tSNAREs and prevents 

formation of the SNARE complex required for membrane fusion. Upon platelet activation, the 

increase in cytosolic Ca2+ levels, as well as the activation of the PKCs, induces phosphorylation 

of PSP, which in turn relieves its inhibitory effects on SNARE complex formation.183 

Concurrently, NSF disassembles the cis-conformation of SNAREs on the same membrane 

thereby allowing formation of the trans-conformation of the SNAREs so that they are able to 

interact with their respective SNAREs on opposing membranes.195 Finally, the association of the 

vSNAREs and tSNAREs, in addition to the modulating role of Rab proteins, which facilitates 

docking of opposing membranes and modifies SNARE protein function, allow fusion of granule 

and plasma membranes thereby releasing the granule contents into the extracellular milieu.196-198 

 In addition to granule exocytosis, platelets also synthesize and secrete new molecules 

such as TxA2, upon activation. Platelet activation by physiological agonists such as thrombin, 
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ADP, and collagen induce activation of phospholipase A2, which is responsible for liberating 

arachidonic acid from the membrane lipid bilayer. Arachidonic acid is then converted into the 

prostaglandin TxA2 through sequential enzymatic modification by COX-1 and thromboxane 

synthase enzymes.199 

 

1.4.4 Platelet aggregation 

Platelet aggregation is the final step in primary haemostasis, where platelets cluster together to 

form a stable haemostatic plug following their adhesion and activation. Platelet aggregation is 

mediated by the cross-linking of αIIbβ3 integrins on adjacent platelets by soluble fibrinogen. 

However, in circulating quiescent platelets, the αIIbβ3 integrin is in an inactive conformation with 

a low affinity for fibrinogen. The subsequent activation of platelets by physiological agonists, 

such as thrombin, collagen, ADP, induces intracellular signals, which change the αIIbβ3 integrin 

from a low affinity inactive conformation to a high affinity active one through an "inside-out" 

signalling mechanism. Although activation of the αIIbβ3 integrin is a crucial step in determining 

platelet aggregation, the exact signalling mechanisms involved in its conformational changes 

have not been completely elucidated. Reconstruction of the αIIbβ3 activation pathway in Chinese 

hamster ovary (CHO) cells revealed the importance of talin (a major cytoskeleton actin binding 

protein) in the integrin's activation, and furthermore linked talin to upstream signalling 

partners.200 Platelet activation by physiological agonists leads to the activation of PKCs (see 

section 1.3), which in turn activate the Rap1 small guanosine triphosphatase. Activated Rap1 in 

turn interacts with talin and recruits it to the cytoplasmic tails of the αIIbβ3 integrin where it 

mediates their separation and hence activation of the integrin (Figure 1.10).200, 201 

 

          
Figure 1.10: Schematic representation connecting agonist stimulation to αIIbβ3 activation in platelets. Kasirer-Friede 
A. et al. Immunological Reviews. 2007; 218:247-264. 
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 As mentioned earlier in this chapter, following platelet activation and the subsequent 

activation of the αIIbβ3 integrin, ligand binding to αIIbβ3 stimulates "outside-in" signalling that 

promote firm platelet adhesion and spreading on the extracellular matrix, stabilization of platelet 

aggregates, fibrin clot retraction, and development of platelet pro-coagulant activity. Studies 

conducted on human platelets and CHO cells transfected with the αIIbβ3 integrin revealed three 

distinct "outside-in" signalling pathways derived from αIIbβ3 ligation, where the first is mediated 

by activation of the tyrosine kinase Syk, the second originates from the activation of the focal 

adhesion kinase (pp125FAK), and the third is initiated by phosphorylation of tyrosine residues in 

the cytoplasmic tail of the β3 subunit.202, 203 

 The cytoplasmic tail of the β3 subunit contains two conserved tyrosine residues (Y747 

and Y759), both of which become phosphorylated, probably by the Src kinase Fyn, following 

ligand binding to the αIIbβ3 integrin.203 The N-terminal tyrosine residue is within a conserved 

NPXY motif that mediates binding to proteins with phosphotyrosine binding domains, such as 

the adapter Dok2, which undergoes tyrosine phosphorylation downstream of the integrin.204, 205 

The second tyrosine falls within a similar NXXY motif, and has been shown to bind multiple 

signalling proteins, including Shc.206 The functional importance of these two conserved tyrosine 

residues is evidenced by the recurrent bleeding phenotype and the impaired clot retraction as 

seen in transgenic mice that have these two tyrosine residues of the β3 subunit mutated to 

phenylalanine.207 The molecular basis for this disorder was later attributed to the loss of myosin 

binding to the phosphorylated β3 tail; however, the contribution of Shc or Dok2 to this response 

is still unclear.208 

 Activation the Syk and pp125FAK signalling pathways result from clustering of the αIIbβ3 

integrin, albeit activation of the pp125FAK signalling pathway requires additional platelet 

stimulation by the secondary mediators, TxA2 and ADP.209, 210 The Syk signalling pathway leads 

to activation of the Rac exchange factor Vav-1 and the molecular adaptor SLP-76, that are 

implicated in cytoskeletal regulation downstream of the αIIbβ3 integrin, which leads to 

lamellipodia formation and platelet spreading.211, 212 In addition, Syk also activates PLCγ2, 

through a pathway that is likely to be dependent on SLP-76 and Vav, which also mediates 

platelet spreading.213, 214 Finally, little is known about the pp125FAK signalling pathway, but it 

seems that activation of pp125FAK mediates its interaction with Hic-5 protein, which is an adapter 

molecule implicated in platelet spreading.209 
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1.5 Pathological role of platelets 

It was previously thought that the major platelet role was in physiological haemostasis, in which 

they maintain the integrity of the blood vessels by limiting blood loss following vascular injury. 

Now, a plethora of evidence points to their involvement in multiple pathological conditions. As 

mentioned above, platelets are endowed with multiple molecules either present on their surface 

or secreted following platelet activation, which modulate the development and progression of a 

wide variety of diseases, including vascular thrombosis, atherosclerosis, inflammation, 

rheumatoid arthritis, lupus, cancer, coronary and cerebral-vascular diseases, diabetes and 

psychiatric diseases. This section will focus on the platelet contribution to development and 

progression of the following relevant pathologies: atherosclerosis, thrombosis and inflammation. 

 

1.5.1 Atherosclerosis 

Beyond their role in haemostasis and thrombosis, platelets are critically involved in the onset of 

atherosclerosis, which is now considered as a chronic inflammatory disease.215, 216 Their 

involvement in the initiation, progression and stability of the atherosclerotic plaque has recently 

been put into evidence thanks to new intra-vital microscopy techniques and to the development 

of appropriate atherosclerosis animal models. For instance, it has been shown that in 

hypercholesterolemic rabbits and apolipoprotein E (ApoE) deficient mice (an atherosclerosis 

mouse model characterized by high levels of circulating cholesterol), platelets adhere to 

atherosclerotic-prone sites before lesions are detectable, suggesting that platelets are among the 

first (if not the first) vascular cells to be recruited to the lesion site.217, 218 

 Although the first steps that initiate formation of the atherosclerotic plaque are still 

unclear, it seems that activation of endothelial cells could be the culprit. Mechanoreceptors on 

endothelial cells respond to variations in shear force that is generated by flowing blood at 

atherosclerotic-prone sites (arterial branching points), thereby mediating a change in cell 

morphology, gene expression profiles and increases in adhesiveness.219-221 Therefore, activation 

of endothelial cells increases surface expression of adhesion molecules, specifically P-selectin 

and αvβ3, which have been shown to be required for platelet recruitment to atherosclerotic-prone 

sites. Recruitment of platelets to atherosclerotic sites is mediated by a two step process, where 

the initial contact between platelets and activated endothelial cells is mediated by the weak 

interaction of platelet GPIb/IX/V or PSGL-1 and endothelial P-selectin. This weak interaction is 
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then followed by a firm adhesion of platelets on the activated endothelium through the cross-

linking of αIIbβ3 on platelets with αvβ3 on endothelial cells by fibrinogen.222-225 

 Following adhesion to the activated endothelium, platelets favour atherosclerotic plaque 

development by three different processes. The first is inducing  an inflammatory reaction in the 

endothelium through the release of the pro-inflammatory compounds interleukin-1β (IL-1β) and 

CD40L, which induce a pro-atherogenic phenotype of endothelial cells. This is characterized by 

expression of adhesion molecules (P-selectin, E-selectin, ICAM-1, vascular cell adhesion 

molecule-1 [VCAM-1] and αvβ3), and secretion of chemokines (macrophage chemotactic 

protein-1 [MCP-1]) and matrix degrading enzymes (matrix mettaloproteinases-9 [MMP-9]).2, 3, 

226-228 Secondly, platelets also contribute to the pro-atherogenic environment by releasing growth 

factors (PDGF, EGF, TGF-β, and fibroblast growth factor [FGF]), chemokines (PF4, platelet 

activating factor [PAF], macrophage inflammatory protein-1α [MIP-1α], and regulated upon 

activation normal T-cell expressed and released [RANTES]), and matrix degrading enzymes 

(MMP-2).216, 229-233 Finally, adherent platelets favour recruitment, activation, secretion and 

transmigration of leukocytes at the atherosclerotic site.229, 234 Effectively, as mentioned earlier in 

this chapter (see section 1.3.8) platelets have a much higher level of expression of P-selectin than 

activated endothelial cells, which has been shown to greatly influence leukocyte recruitment to 

the atherosclerotic site.  In the absence of adherent platelets, leukocyte recruitment to the lesion 

site is markedly reduced.235 Moreover, secreted chemokines (RANTES and MCP-1) by adherent 

platelets favour leukocyte homing toward the lesion site.2, 236 Figure 1.11 summarizes the platelet 

involvement in atherosclerotic plaque formation. 

 Development of coronary artery diseases, such as unstable angina, acute myocardial 

infarction, and stable coronary-artery disease, as well as peripheral vascular diseases, are tightly 

linked to the progression and complications related to atherosclerosis.237-239 Moreover, rupture of 

the atherosclerotic plaque exposes pro-thrombotic substances, including components of the 

extracellular matrix and components of the necrotic plaque core, which induce platelet activation 

and thrombus formation. In summary, platelets are implicated in all aspects of atherosclerosis; 

hence the development of multiple anti-platelet agents, such as aspirin (COX-1 inhibitor), αIIbβ3 

inhibitors (abciximab, eptifibatide, and tirofiban), P2Y12 inhibitors (clopidogrel and ticlopidine), 

and thrombin inhibitors (heparin), in order to dampen or limit platelet activation.240 
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Figure 1.11: Model of the role of platelets in atherosclerotic plaque formation. Platelets adhere to the activated 
endothelium by a two step mechanisms, the first is mediated by the weak interactions of platelet GPIb/IX/V or 
PSGL-1 with endothelial P-selectin, then followed by the firm adhesion mediated by αIIbβ3. Activated adherent 
platelets then secrete pro-inflammatory compounds that trigger an inflammatory reaction in the endothelium. 
Moreover, adherent platelets favour recruitment and transmigration of leukocytes at the lesion site. Gawaz M. et al. 
The Journal of Clinical Investigation. 2005; 115:3378-3384. 
 

1.5.2 Thrombosis 

One of the major complications in the circulatory system is thrombosis, which is the formation of 

a blood clot (thrombus) within the blood vessel. Partial or complete occlusion of a blood vessel 

due to a thrombus leads to reduction or blockage of the blood flow, which ultimately causes 

ischemia or infarction of the irrigated organ because of lack of nutrients to meet its metabolic 

needs. Thrombosis is divided into two categories, depending on the location where the thrombus 

is formed, giving rise to arterial or venous thrombosis. Despite similarities between arterial and 

venous thrombosis, in that they both contain a fibrin mesh (the end product of the coagulation 

cascade) and platelet aggregates, there are differences in the initiating cause and the composition 

of the two thrombus types. For instance, there is a body of evidence suggesting that venous 

thrombosis is caused by a disturbance in blood flow, such as stagnation, while in arterial 

thrombosis disturbance in blood flow has a role in initiating thrombus formation but 

atherosclerotic plaque rupture is of more significance.241, 242 In addition, venous thrombi are also 

designated as "red clots" because they contain more fibrin and trapped red blood cells, as well as 

less platelets than arterial thrombi, which are referred to as "white clots".243 This section will 

focus on the mechanisms underlying arterial thrombosis, specifically atherothrombosis, and the 

platelet contribution to the disease. 
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 Atherothrombotic diseases are the leading cause of mortality, and account for more than 

25% of deaths worldwide.244 Development of a clot, following atherosclerotic plaque rupture or 

erosion, in the coronary or cerebral circulation (causing acute myocardial infarction or ischemic 

stroke, respectively) is now the single most common cause of morbidity and mortality globally, 

and involves both aggravated platelet and coagulation cascade activation. Although the 

endothelium actively secretes a range of molecules that inhibit platelet activation (PGI2, NO, 

NTPDase-1) and thrombin generation (thrombomodulin), plaque rupture in combination with a 

severe pre-existing arterial stenosis (abnormal narrowing of blood vessel) leads to an 

exaggerated platelet aggregation response.245, 246 Exposure of the sub-endothelial matrix as well 

as the highly thrombogenic necrotic core to the circulation, following plaque rupture, leads to 

platelet adhesion and activation onto the components of the sub-endothelial matrix (vWF and 

collagen), and the subsequent recruitment and activation of circulating platelets by secreted 

secondary mediators (ADP and TxA2). In addition, at the surface of the growing thrombus, blood 

flow is accelerated, thereby subjecting platelets and immobilized ligands, such as vWF, to 

extensional drag forces.247 Thus platelet recruitment onto the thrombus surface becomes 

extensively dependent on vWF and platelet GPIbα interactions, which is then followed by the 

stable platelet-platelet aggregates mediated by the αIIbβ3 integrin interactions with its ligands, 

such as vWF, fibrinogen, fibrin, and/or fibronectin, and P-selectin interactions with its cognate 

ligands on platelets (see section 1.4.4).87 

 Another important function of activated platelets in thrombus formation is their ability to 

support the assembly of coagulation complexes on their plasma membrane, either through the 

direct recruitment of TF to phosphatidylserine (PS) expressed on the membrane or through the 

indirect binding of TF bearing microparticles (derived from activated or apoptotic 

monocytes/macrophages and T lymphocytes) and leukocytes mediated by P-selectin/PSGL-1 

interactions.153, 248 TF on its turn favours formation of thrombin, which is not only the most 

potent platelet activator, but also converts fibrinogen to fibrin during the coagulation process, 

both of which are important for thrombus growth and stability.164 Moreover, disturbance in blood 

flow, which is an important but yet incompletely understood aspect of thrombogenesis, has an 

impact on platelet adhesiveness and the blood clotting process. Specific alterations in blood flow, 

including flow acceleration at the apex of the stenosis (narrowing caused by growing thrombus) 

followed by flow deceleration, promote platelet deposition onto the thrombogenic surfaces.247 
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The flow deceleration downstream from the site of plaque injury also induces recirculation and 

stagnation of the blood, which favours blood coagulation, leading to the propagation of a fibrin 

and red blood cell rich thrombus that is known as the "fibrin tail".249 Figure 1.12 schematizes 

thrombosis following atherosclerotic plaque rupture. 

 Thrombosis is of a more threat for individuals with hyperactive platelets, such as diabetic 

patients, which are also resistant to regular anti-platelet therapy and therefore require more 

intensive anti-platelet regimens, and in thrombosis-prone groups, including individuals with 

hypertension, hypercholesterolemia, and cigarette smokers and the elderly.250-256 In addition, 

platelet deposition onto reactive surfaces induced by shear gradients is not prevented by 

antiplatelet therapy, such as aspirin, clopidogrel or thrombin inhibitors.247 Therefore, a more 

comprehensive understanding of the role and the possible inhibition avenues of the platelet 

involvement in thrombus formation could be of benefit for atherothrombotic disease 

management. 
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Figure 1.12: Cartoon representation of thrombosis. A) Representation of the ruptured atherosclerotic plaque covered 
by a "white thrombus" formed by platelet aggregates, followed by a "fibrin tail" formed by a fibrin mesh entrapping 
red blood cells. B) Representation of the differences between haemostatic plug formation and thrombosis. Jackson 
S. P. Nature Medicine. 2011; 17:1423-1436. 
 

1.5.3 Inflammation and immunity 

The platelets' role was thought to be restricted to haemostasis, but it is now clear that platelets 

actively participate in inflammation and the host's defence against foreign pathogens. The active 

contribution of platelets to the initiation, development and progression of the atherosclerotic 

plaque (see section 1.5.1), was among the first signs showing their pathological pro-

inflammatory functions.257 Now a plethora of evidence shows that platelets actively interact with 

bacteria, viruses and fungi, and help modulate the immune system. 
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 Toll-like receptors (TLR), which are probably the most important receptors of the innate 

immune system, are pattern recognition receptors that recognize broadly shared molecules by 

pathogens, such as lipopoplysaccharide (LPS), lipoproteins, and other bacterial wall 

constituents.258 Platelets contain TLR1, 2, 4, 6, and 9, which enable platelets to bind bacteria, 

thereby favouring either platelet mediated killing of the bacteria through secretion of 

thrombocidins (antibacterial proteins within platelet α-granules, including thombocidin 1 and 2) 

or by aggregating around the bacteria and "trapping" them for elimination by professional 

phagocytes.259-263 Interestingly, platelet derived thrombocidins have also been shown to kill 

fungi, such as Cryptococcus neoformans. Moreover, LPS activated platelets via TLR4, such as in 

severe sepsis, induce neutrophil activation and their subsequent release of inflammatory 

compounds, including tumour necrosis factor-α (TNF-α) and IL-6 as well as the formation of 

neutrophil extracellular traps consisting of extracellular DNA and nuclear proteins that trap and 

kill free bacteria.261, 264, 265 Platelets have also been shown to drive pathological events during 

infection with Plasmodium spp. parasites (the causative agents of malaria) by promoting 

sequestration and killing of infected red blood cells.262, 266 Platelets also actively aid in combating 

viruses, through phagocytosis of viral particles, which is mediated by either the indirect 

internalization of virus/IgG complexes by the FcγRIIA or through the direct capture of viruses by 

platelet receptors, such as the capture of HIV-1 by platelet DC-SIGN (dendritic cell-specific 

intercellular adhesion molecule-3-grabbing non-integrin, CD209) and CLEC-2 (C-type lectin 

receptor) receptors.267, 268 

 An abundant amount of evidence now points to the role of platelets in modulating both 

the innate and adaptive arms of the immune system. Besides their above mentioned participation 

in killing foreign pathogens, platelets and platelet derived microparticles focus the complement 

system (consisting of a series of proteases and inhibitors that are activated in a cascade-like 

fashion during host defence) to sites of vascular injury and inflammation.269 In addition, secreted 

chemokines and cytokines (RANTES, IL-1β and MCP-1), as well as P-selectin expression by 

platelets, favour recruitment, adhesion and transmigration of leukocytes at sites of vascular 

injury. On the other hand, platelets promote cytotoxic T lymphocyte (CTL) mediated antiviral 

immune response during infection with the hepatitis B virus, where platelet activation has been 

shown to be necessary for the accumulation of virus-specific CTLs at the site of hepatic 

inflammation.270 Moreover, CD40L expressed on activated platelets not only induces an 
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inflammatory response in the endothelium, but also mediates activation of antigen presenting 

cells (dendritic cells [DC] and macrophages), leading to enhanced antigen presentation to T 

lymphocytes. CD40L on activated platelets can also mediate B cell differentiation and Ig class-

switching as demonstrated in virus infected CD40L deficient mice.5, 6 Furthermore, patients with 

immune thrombocytopenia have deficiencies in regulatory T (TReg) cells, and therapeutical 

increase in platelet counts restores TReg cell numbers and functions in these individuals.271-274 

Whether this is due to TGFβ secreted by platelets is still unclear, but given that TReg cell 

differentiation requires TGFβ, it is possible that platelets contribute to TReg formation. 

 Finally, platelets also have important inflammatory functions. This is not only reflected 

by their contribution to the local inflammatory environment during atherosclerotic lesion 

formation, but also to the development of different pathological diseases, such as rheumatoid 

arthritis. Platelet derived microparticles have been shown to be present in joint fluid from 

patients with rheumatoid arthritis.275 This was demonstrated to be dependent on the interaction of 

platelet GPVI with fibroblast-like synoviocytes in the joint, leading to platelet shedding of 

microparticles. In turn, activated platelets as well as platelet derived microparticles induce an IL-

1 dependent inflammatory response in fibroblast-like synoviocytes that is characterized by the 

release of pro-inflammatory cytokines and chemokines, such as IL-8, which promote neutrophil 

recruitment and activation within the joint.275 
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Chapter 2 

The CD40/CD40L Axis 
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2.1 The CD40/CD40L dyad 

Since its initial discovery more than two decades ago, the CD40/CD40L dyad has gained much 

attention in the scientific community. The pivotal role of CD40/CD40L dyad in immunity was 

initially evidenced by the finding that patients suffering from the X-linked hyper-IgM syndrome 

(HIGM) are characterized by mutations in their CD40L gene, resulting in loss of function in the 

CD40L protein. The resulting inactive CD40L protein is unable to induce T cell dependent B cell 

responses, which are characterized by severe defects in humoral immunity, as well as the 

absence of IgG, IgA, and IgE antibodies due to a lack of B cell Ig isotype switching.276 Now it is 

clear that aside from its importance for appropriate immune responses, the CD40/CD40L dyad 

has a much broader cell expression pattern and it is associated with diverse physiological and 

pathological processes. 

   

2.1.1 Structure of CD40 

Human CD40 is a type I transmembrane protein of 48 kDa belonging to the TNF receptor 

superfamily.277, 278 It was initially identified on B lymphocytes by antibody binding, then cloned 

in the Burkitt lymphoma Raji cell line, revealing a cDNA encoding for a 1.5 kb mRNA.279, 280 

The gene encoding CD40 was then localized to region q12-13.2 of human chromosome 20, 

which includes 9 exons.281, 282 Transcription of the human CD40 gene results in a 277 amino acid 

membrane-bound protein that consists of a 22 amino acid leader sequence, a 171 amino acid 

extracellular domain, a single 22 amino acid transmembrane domain, and a 62 amino acid 

cytoplasmic tail.1 A homology exists between CD40 and other members of the TNF receptor 

family, in which the C-terminal domain of CD40 is intracellular, while its N-terminal domain is 

extracellular. In addition, the extracellular domain of CD40 is characterized by a cysteine-rich 

repetitive pattern consisting of 20 cysteines, which form four subdomains composed of a 

combination of two cysteine modules (A1, A2, B1, and B2) (Figure 2.1).278, 283 
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Figure 2.1: Human CD40 gene and protein structure. A) Structure of the CD40 on the human chromosome 20, 
region q12-q13.2, including the 9 exons, which encode for the leader sequence (exon I), the extracellular domain 
(exons II - VI), transmembrane domain (TMD; exon VII), and cytoplasmic domain (exons VIII - IX). Schonbeck U. 
et al. Cellular and Molecular Life Sciences. 2001; 58:4-43. B) Schematic representation of the extracellular domain 
of CD40 containing the 20 cysteine residues (horizontal lines) forming four cystein-rich subdomains composed of a 
combination of two cysteine modules (A1, A2, B1, and B2). The N-terminal region of CD40 is extracellular, while 
the C-terminal region is intracellular. Van Kooten C. et al. Journal of Leukocyte Biology. 2000; 67:2-17. 
 

 It remains unclear whether CD40 molecules are arranged as monomers or multimers on 

the surface of the cell membrane. Certain reports indicate the formation of CD40 dimers on the 

cell surface, while others point to the constitutive trimer composition of the receptor, which 

probably favours its interaction with its trimeric ligand, CD40L.284-286 It seems that the 

monomeric form of CD40 on the cell surface, which then forms trimers following ligation with 

CD40L is probably the most credible arrangement, given that trimeric CD40L molecules exhibit 

a higher potency than the monomeric or dimeric forms (discussed in more detail in section 

2.1.3).287, 288 

 

2.1.2 Structure of CD40L 

Human CD40L (also known as CD154, gp39, TBAM, and TRAP) is a type II transmembrane 

protein belonging to the TNF superfamily.289 The human CD40L cDNA was initially identified 

by screening activated human peripheral blood T lymphocytes with the murine CD40L probe, 

which revealed a 13 kb DNA sequence that was later mapped to the region q26.3-q27.1 of 

chromosome X.289-291 This DNA sequence contains five exons, of which exons II - V mainly 

encode the extracellular domain, while exon I encodes the transmembrane and the cytoplasmic 

domains of CD40L (Figure 2.2).287, 292 Transcription of the human CD40L gene results in a 261 

amino acid membrane-bound protein that consists of a 215 amino acid extracellular domain, a 
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single 24 amino acid transmembrane domain, and a 22 amino acid cytoplasmic tail. Unlike 

CD40, the N-terminal of the CD40L protein is intracellular, while its C-terminal is extracellular. 

On the other hand, the amino acid backbone of CD40L predicts a protein of 29 kDa; however, 

CD40L is identified as a 39 kDa protein, which suggests that posttranslational modifications 

convey its actual molecular mass.278 In addition to the 39 kDa membrane bound full-length form 

of CD40L, soluble forms of the ligand have been described with molecular weights of 31, 18, 

and 14 kDa, of which the 18 kDa form is mainly derived from enzymatic cleavage of CD40L 

expressed on activated platelets.7, 293-295 

 

      
Figure 2.2: Human CD40L gene and protein structure. A) Structure of the CD40L on the human chromosome X, 
region q26.3-q27.1, including the 5 exons, which encode the extracellular domain (exons II - V), transmembrane 
domain (TMD; exon I), and cytoplasmic domain (exon I). Schonbeck U. et al. Cellular and Molecular Life Sciences. 
2001; 58:4-43. B) Schematic representation of CD40L with its extracellular C-terminal region and intracellular N-
terminal region. Van Kooten C. et al. Journal of Leukocyte Biology. 2000; 67:2-17. 
 
 Despite being a type II transmembrane protein, CD40L is expressed on the cell surface as 

a trimeric complex.296 This multimeric conformation of CD40L is of crucial importance for its 

effective interaction with CD40 and the subsequent intracellular signalling induced by the 

latter.286 Moreover, the soluble forms of CD40L also retain their ability to form trimers, which 

could bind CD40 and deliver biological signals.293, 294, 297 

 

2.1.3 CD40/CD40L interactions 

The X-ray crystal structure of CD40L, as well as mutagenesis analysis of both CD40 and 

CD40L, allowed the identification of the residues implicated in stabilizing the interaction 

between these two molecules. The polar interaction between the charged residues, with CD40L 

presenting the basic chains K143, R203, and R207, while CD40 presenting the acidic side chains 
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D84, E114, and E117, favour ligation of the receptor/ligand dyad. In addition, the CD40/CD40L 

complex is further stabilized by a wall of hydrophobic residues surrounding the interacting 

groups.298-300 

 As mentioned above, there is a discrepancy regarding the arrangement of CD40 on the 

cell surface. Whether CD40 is present as a monomer or trimer on the cell surface gave rise to 

two hypothetical models of CD40/CD40L interactions. The first model, in which trimers of 

CD40L interact with constitutive CD40 trimers that form the pre-ligand-binding assembly 

domains (PLAD) (Figure 2.3B), gained much attention within the scientific community. Given 

that CD40 is a member of the TNF receptor family, which are pre-assembled in a trimeric 

composition on the cell membrane, supports this model of interaction.285 On the other hand, a 

second school of thought favours the ligand-induced receptor trimerization model, in which 

trimeric molecules of CD40L induce oligomerization of the CD40 receptor (Figure 2.3A). This 

model is probably the most logical scenario of CD40/CD40L interactions, since the CD40 

intracellular adapter proteins have been shown to form homotrimers or heterodimers and to 

associate with the receptor following its oligomerization, which is due to their increased avidity 

for the cytoplasmic domain of the trimeric receptor.301-303 Moreover, different degrees of 

antibody-induced cross-linking of CD40 have been shown to result in different cellular 

responses, which are probably due to different levels of affinity of the CD40 intracellular adapter 

proteins to the receptor.288, 304 Finally, it has been shown that trimeric molecules of CD40L exert 

a more potent biological response than their monomeric or dimeric counter parts, which is 

probably due to different degrees of ligand-induced receptor oligomerization.288 Thus, there is 

ample amount of evidence supporting the ligand-induced receptor trimerization model of 

CD40/CD40L interactions. 
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Figure 2.3: Models of CD40/CD40L interaction. A) Timeric CD40L-induced CD40 trimerization interaction model. 
(CRAF: CD40 associated factors. They signify the old nomenclature for the CD40 intracellular adapter proteins). B) 
Model of trimeric CD40L interaction with the pre-assembled CD40 trimer. (PLAD: pre-ligand-binding assembly 
domain). Anand S. X. et al. Thrombosis and Haemostasis. 2003; 90:377-384. 
 

2.1.4 Alternative CD40L receptors 

Besides CD40, the dedicated receptor, CD40L has been shown to bind three other receptors, 

namely the αIIbβ3, α5β1, and Mac-1 (αMβ2) integrins (Figure 2.4). Interaction of CD40L with the 

αIIbβ3 integrin was first identified in platelets. Although the αIIbβ3 integrin mainly binds ligands 

(such as fibrinogen) with a RGD motif, the discovery of a snake venom that is capable of binding 

the integrin via a KGD motif, shed light into the possibility that the KGD motif within CD40L 

could favour its interaction with αIIbβ3 on platelets.305, 306 Indeed, CD40L was shown to stabilize 

in vivo thrombus formation by promoting platelet activation through an interaction with the αIIbβ3 

integrin.4 This interaction was later shown to induce tyrosine phosphorylation within the 

cytoplasmic tail of the β3 subunit of the integrin, which ultimately mediates "outside-in" signals 

by the latter (see section 1.4.4 of chapter 1).307 However, the CD40L/αIIbβ3 interaction requires 

an active conformation of the integrin, because αIIbβ3 is unable to bind its ligands in its inactive 

conformation. 
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Figure 2.4: CD40L and its receptors. Binding of CD40L to CD40, αIIbβ3, α5β1, or Mac-1 (αMβ2) induces different 
biological responses. Gaxiola E. (2012). Atherothrombosis. INTECH. p. 82. 
 

 The fibronectin receptor, α5β1, has recently been shown to be one of the CD40L 

receptors. This was demonstrated in the U937 human monocytic cell line, which lacks both 

CD40 and αIIbβ3 expression, where inhibition of either CD40L or α5β1 abolished sCD40L 

binding to the cell surface, as well as sCD40L-induced cell activation.308 Interestingly, sCD40L 

was also shown to only interact with the α5β1 integrin in its inactive conformation, and activation 

of the integrin prevents this interaction. Moreover, point mutations of residues within CD40L, 

which are involved in its interaction with either CD40 or αIIbβ3, revealed that CD40L is capable 

of binding α5β1 independently of its interaction with either CD40 or αIIbβ3.309 Therefore, it seems 

that CD40L is capable of simultaneously binding multiple receptors. Whether this is the case in 

cells that express more than one CD40L receptor, such as platelets (CD40, αIIbβ3, and α5β1), 

remains to be explored.4, 308, 310, 311   

 Finally, Mac-1, also known as αMβ2, is a highly promiscuous receptor capable of binding 

multiple ligands, including GPIbα, fibrinogen, and vitronectin. It is also an important mediator of 

neutrophil and monocyte adhesion to the activated endothelium during inflammation.  Recently, 

it has been demonstrated that Mac-1 is another receptor for CD40L, which is involved in 

mediating CD40L/Mac-1-dependent monocyte and neutrophil adhesion and transmigration at the 
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atherosclerotic lesion site, as well as neointimal formation during atherogenesis.312, 313 

Furthermore, binding of CD40L to Mac-1 requires an active conformation of the integrin. 

 

2.2 Cellular expression and function of the CD40/CD40L dyad 

As mentioned earlier, the CD40/CD40L dyad was initially identified on cells of the immune 

system, specifically on B and T lymphocytes. Now, it is well known that these two molecules 

have a much broader cell expression pattern, encompassing not only cells of the immune system, 

but also cells of the circulatory and vascular systems (Table 2.1). The intricate role of this dyad 

in these systems highlights its crucial function in inflammation and immunity (Table 2.2). 

 
Table 2.1: Cell types expressing the CD40/CD40L dyad. (N/A: no documentation available, - : no expression, + :  
weak expression, ++ : average expression, +++ : strong expression). Modified from Lievens D. et al. Thrombosis 
and Haemostasis. 2009; 102:206-214. 
 

Cell Type 
CD40 CD40L 

Forms of CD40L 
Resting Activated Resting Activated 

CD4+ T lymphocytes - +++ - +++ Membrane, soluble 

B lymphocytes +++ +++ ++ +++ Membrane 

Macrophages + +++ + +++ Membrane 

Platelets ++ +++ - +++ Membrane, soluble 

Dendritic cells (DCs) - +++ ++ +++ Membrane 

Neutrophils + +++ + + Membrane 

Endothelial cells + +++ + + Membrane 

SMCs +++ N/A + N/A Membrane 

 

2.2.1 B lymphocytes 

The CD40/CD40L dyad has a crucial role in B lymphocytes-mediated humoral immunity. B 

lymphocytes constitutively express CD40, and ligation of this receptor with CD40L expressed on 

activated T lymphocytes, in addition to secreted cytokines by the latter, induces proliferation, 

differentiation, and Ig production of B lymphocyte. CD40 activation guides B lymphocytes 

throughout their differentiation program, initiated by pre-B lymphocytes activation and 

differentiation into naive B lymphocytes, which in turn undergo a maturation process, thereby 

forming germinal center cells. Further engagement of CD40L on activated T lymphocyte with 

CD40 on germinal center cells induces their proliferation and differentiation into plasma cells 



44 
 

(antibody producing cells) and memory B lymphocytes (Figure 2.5).278, 314 However, the 

presence of the IL-2 and IL-10 cytokines is also required for the differentiation of germinal 

center cells into memory B lymphocytes. In addition, ligation of CD40 on germinal center and 

memory B lymphocytes induces re-expression of telomerase activity, thereby contributing to the 

expanded life-span of these cells.315 On the other hand, activation of CD40 on memory B 

lymphocytes induces Fas expression, which increases their susceptibility for Fas-mediated 

apoptosis (process of bystander B lymphocyte elimination), an effect that is prevented by 

engagement of the B cell antigen receptor (BCR) in the presence of IL-4.316, 317 Interestingly, 

activated B lymphocytes have been shown to express CD40L, which is capable of inducing 

CD40 activation on adjacent B lymphocytes in a similar way as CD40L expressed on activated T 

lymphocytes.318 

 CD40 activation favours B lymphocytes proliferation and differentiation by increasing 

their expression of co-stimulatory molecules (VCAM-1, ICAM-1, lymphocyte function-

associated angtigen-1 [LFA-1], CD23 [FcεRII], CD80 [B7.1], and CD86 [B7.2]) and their 

release of cytokines (IL-6, IL-10, TNF-α, TGF-β, and lymphotoxin-α [LT-α]).1, 319-325 CD40 

engagement also increases surface expression of the major histocompatibility complexes-I and -

II (MHC-I and MHC-II) on B lymphocytes, thereby improving their antigen presenting 

function.326 

 Finally, CD40 activation is responsible for B lymphocyte Ig isotype class switching, a 

process absent in patient suffering from HIGM, in whom there is accumulation of circulating 

IgM antibodies.276 Although activation of CD40 on B lymphocytes is sufficient to induce the 

switch to IgA and IgG, the switch to IgE and IgG4 requires the IL-4 and IL-13 cytokines.1, 278, 327 

Additional cytokines, namely IL-7, IL-2, IL-10, and TGF-β, fine-tune and enhance Ig isotype 

switching and production.327-329 
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Figure 2.5: Effects of CD40 activation on different stages of B lymphocyte differentiation. CD40L-expressing T 
lymphocytes interact and modulate all stage of B lymphocyte differentiation. Activation of CD40 on memory B 
lymphocytes can either lead to a new round of germinal center reaction and/or an accelerated differentiation into 
plasma cells. (act-T: activated T lymphocyte; pre-B: pre-B lymphocyte; GC: germinal center cell). van Kooten C. et 
al. Journal of Leukocyte Biology. 2000; 67:2-17. 
 

2.2.2 T lymphocytes 

Efficient T lymphocyte activation requires two signals. The first antigen-specific signal is 

provided by the T-cell receptor (TCR), which interacts with a specific antigen presented on 

MHC molecules of APCs, such as dendritic cells, B lymphocytes, and macrophages. This first 

signal induces the expression of the co-stimulatory molecules CD28 and CD40L on T 

lymphocytes, which in turn interact with B7.1 or B7.2 and CD40 on APCs, respectively. This 

provides the second antigen non-specific signal that is required for effective T lymphocyte 

activation and maturation into effector T lymphocytes.1, 330 This second co-stimulatory signal is 

necessary for T lymphocyte proliferation, differentiation, and survival, since its absence leads to 

T lymphocyte anergy, T lymphocyte deletion or the development of immune tolerance.331-334 

Moreover, interaction of CD40L on T lymphocytes with CD40 on APCs induces proliferation, 

differentiation, and activation of the APCs, as well as their up-regulation of the MHC-I and 

MHC-II, and the co-stimulatory molecules B7.1 and B7.2 (see section 2.2.3). Therefore, the 

CD40/CD40L dyad provides a bidirectional signalling mechanism that not only activates, but 

also amplifies the activation of both T lymphocytes and APCs. Furthermore, T lymphocyte 
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membrane-bound CD40L is cleaved by a disintegrin and metalloproteinase domain-containing 

protein-10 (ADAM-10), generating sCD40L, which accounts for a minor proportion of 

circulating sCD40L, given that platelets generate most of the sCD40L within the circulation.7, 335 

 Interestingly, T lymphocytes also express CD40 upon activation; however, its exact role 

remains unclear.336 It seems that, like B lymphocytes, engagement of CD40 on CD8+ T 

lymphocytes with CD40L on CD4+ lymphocytes favours CD8+ memory T lymphocytes 

generation.337 

 

2.2.3 Dendritic cells 

Dendritic cells are APCs by profession, which have a central role in linking innate and adaptive 

immunity. They are sentinels of the innate immune system that immediately react to potential 

pathogens and modulate the adaptive immune system by capturing, processing, and presenting 

antigens on MHCs to antigen-specific T lymphocytes. Immature DCs are capable of efficiently 

up-taking antigens, but they express low levels of MHC and co-stimulatory molecules, such as 

CD40, B7.1 and B7.2. However, upon microbial challenge-induced maturation, DCs up-regulate 

their expression of the MHC/antigen complexes, as well as the co-stimulatory molecules CD40, 

B7.1, and B7.2, thereby increasing their ability to stimulate naive T lymphocytes.330, 338, 339 

Ligation of CD40L on activated T lymphocytes with CD40 on mature DCs provides a 

bidirectional signalling mechanism that stimulates efficient T lymphocyte activation, 

proliferation, and differentiation, and amplifies DC function by increasing their surface 

expression of co-stimulatory and MHC molecules.338, 340 Moreover, continuous stimulation of 

CD40 on DCs induces their release of IL-12, which in combination with CD40L stimulation on 

T lymphocytes drives a potent T helper 1 (Th1) immune response.341-343 

 DCs also express CD40L at levels comparable to those on activated T lymphocytes. In 

addition, ligation of CD40 on DCs further increases their surface expression of CD40L.344 

Although the function of CD40L on DCs is not as well characterized as that of CD40, it seems to 

be involved in mediating activation of CD40 on B lymphocytes and adjacent DCs. This 

activation favours B lymphocyte activation and differentiation, as well as IL-12 production by 

DCs.345, 346 
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2.2.4 Monocytes/macrophages 

Monocytes constitutively express CD40, and given their APC nature, they modulate T 

lymphocyte activation through a CD40/CD40L interaction. Ligation of CD40L on activated T 

lymphocytes with CD40 on monocytes provides a bidirectional signalling mechanism that 

stimulates efficient T lymphocyte activation and proliferation, as well as monocyte 

differentiation into macrophages. CD40 ligation on monocytes/macrophages also induces their 

up-regulation of co-stimulatory molecules (ICAM-1, LFA-3, B7.1 and B7.2), and their release of 

cytokines (IL-1β, IL-6, IL-8, IL-12, and TNF-α), MMPs (MMP-1, MMP-2, MMP-3, and MMP-

9), and TF.347-353 All of which are main mediators involved in the inflammatory, immune, and 

angiogenic functions of monocytes/macrophages.  

 Aside from CD40, monocytes also express Mac-1 and α5β1, which are also CD40L 

receptors. Recruitment and transmigration of monocytes at the site of vascular lesion has been 

shown to be dependent on Mac-1/CD40L interactions, which also induce myeloperoxidase 

secretion by monocytes.313 On the other hand, α5β1/CD40L interactions induce monocyte 

activation and their subsequent IL-8 production.308 Finally, upon activation, monocytes not only 

up-regulate CD40 expression, but also that of CD40L.354 Although the exact function of CD40L 

expressed on monocytes is still unclear, it seems to be involved in the up-regulation of B7.2 

expression on B lymphocytes, as well as atherosclerotic plaque progression and allograft 

rejection.354, 355 

 

2.2.5 Neutrophils 

Neutrophils are the most abundant leukocytes within the circulation, and they are among the first 

immune cells to be recruited to the site of inflammation, where they occupy an indispensable role 

in host defence.356, 357 CD40 was initially identified on neutrophils through assessment of 

neutrophil priming by sCD40L within stored blood pools.358 Neutrophil CD40 was later shown 

to mediate platelet/neutrophil interactions by interacting with platelet CD40L. This 

CD40/CD40L interaction influences both cell types, where activated platelets release sCD40L, 

which binds CD40 on neutrophils and induces their production of ROS. In its turn, ROS 

mediates stimulation of additional platelets, thereby creating a positive feedback loop.359 Platelet 

sCD40L also enhances Mac-1 expression on neutrophils, and elevated levels of sCD40L (mainly 
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platelet derived) have been shown to promote platelet/neutrophil aggregates and neointima 

formation following arterial injury.312 

 

2.2.6 Platelets 

As mentioned in the previous chapter, platelets are not only recognized for their physiological 

haemostatic role, but also for their contribution in inflammation, as well as their modulation of 

both the innate and adaptive branches of the immune system. Since the discovery of the 

CD40/CD40L dyad in platelets, platelet CD40L has gained significant attention within the 

scientific community, given the platelet origin of 95% of circulating sCD40L. However, the 

amount of information regarding the role of platelet CD40 is scarce. Chapter three is dedicated to 

describe the role of the CD40/CD40L dyad in platelet function; therefore, this section will 

provide a brief overview. 

 In resting platelets CD40 is constitutively expressed on the cell surface, while CD40L is 

translocated to the surface following activation.2 CD40L expressed on activated platelets has 

been shown to interact with CD40 on endothelial cells and monocyte, and to mediate an 

inflammatory reaction in these cells, which is characterized by the up-regulation of adhesion 

molecules (E-selectin, ICAM-1, and VCAM-1), and the secretion of chemokines (MCP-1), 

cytokines (IL-6, and IL-8), and MMP-9.2, 3 Platelet CD40L has also been shown to stabilize in 

vivo thrombus formation by promoting platelet activation through an interaction with the αIIbβ3 

integrin.4, 307 On the other hand, ligation of CD40 on platelets leads to the generation and 

secretion of ROS and RANTES, in addition to being a requirement for CD40L cleavage and 

release to its soluble form.3, 360, 361 

 

2.2.7 Endothelial cells 

The CD40/CD40L dyad plays an important role in the inflammatory, angiogenic, and pro-

coagulant functions of endothelial cells. Although both CD40 and CD40L are expressed on 

endothelial cells, the biological repercussions of this dyad on these cells predominantly stem 

from CD40 activation following leukocyte (monocyte, lymphocyte, and neutrophil) and platelet 

adhesion to the activated endothelium. CD40 activation mediates an inflammatory phenotype in 

endothelial cells by inducing the expression of adhesion molecules (E-selectin, VCAM-1, and 

ICAM-1), and the secretion of chemokines and cytokines (IL-1, IL-6, IL-8, MCP-1, MIP-1α, and 
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RANTES), all of which promote monocytes and lymphocytes recruitment at the site of lesion. 2, 

354, 362-367 

 Endothelial cells actively participate in the angiogenic process, which is greatly 

influenced by the CD40/CD40L dyad. Interaction of CD40L with CD40 on endothelial cells 

induces the synthesis and release of extracellular matrix degrading enzymes (MMP-1, MMP-3, 

and MMP-9), which are essential for the infiltration of endothelial cells through the extracellular 

matrix during angiogenesis.368 Moreover, CD40 activation on endothelial cells has been shown 

to favour their proliferation by inducing the secretion of endothelial growth factors, including 

VEGF, FGF, and PAF, which are potent angiogenic agents.369-371 

 Finally, activation of CD40 on endothelial cells favours their pro-coagulant activity, 

which is manifested by TF generation and secretion.372, 373 TF on its turn promotes activation of 

the coagulation cascade, and the subsequent platelet activation. 

   

2.2.8 Smooth muscle cells 

Vascular smooth muscle cells express both CD40 and CD40L; however, little information is 

available regarding the role of this dyad in the function of these cells.354 Ligation of CD40 on 

vascular SMCs has been shown to mediate their release of the IL-8 and MCP-1 chemokines 

through the activation of mitogenic signalling pathways, namely the Src family-kinase pathway, 

which lead to the activation of p38 mitogen-activated protein kinase (MAPK), and the 

extracellular signal-regulated protein kinases (Erk) 1 and 2.374 In addition, ligation of CD40 on 

vascular SMCs activates the IL-1β converting enzyme (caspase-1), and induces IL-6 release.354, 

375 Finally, CD40 activation promotes SMC proliferation, migration and neointimal formation, as 

well as the pro-atherogenic and pro-thrombotic functions of vascular SMCs by favouring the 

release of matrix degrading enzymes (MMP-1, MMP-3, and MMP-9), and TF.376-380 
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Table 2.2: Cell type specific CD40/CD40L-induced signalling. 
 
Receptor Induced by Cell type Effect 

CD40 CD40L 

B lymphocyte 

- Isotype switching 
- Expression of MHC-I, MHC-II, VCAM-1, 

ICAM-1, LFA-1, FcεRII, B7.1, B7.2, and Fas 
- Cytokine production (IL-6, IL-10, TNF-α, TGF-

β, and LT-α) 

Monocyte/ 

Macrophage 

- Up-regulation of co-stimulory activity (ICAM-1, 
LFA-3, B7.1, and B7.2) 

- Myeloperoxidase secretion 
- Cytokine secretion (IL-1β, IL-6, IL-8, IL-12, and 

TNF-α) 
- MMP secretion (MMP-1, MMP-2, MMP-3, and 

MMP-9) 
- TF secretion 

Platelet - Platelet activation 
- RANTES and ROS secretion 

Neutrophil - ROS production 
- Enhanced Mac-1 expression 

DC 
- Cytokine secretion (IL-10 and IL-12) 
- Up-regulation of co-stimulory activity (CD40, 

CD40L, MHC-I, MHC-II, B7.1, and B7.2) 

Endothelial 

cell 

- Up-regulation of adhesion molecules (E-selectin, 
VCAM-1, and ICAM-1) 

- Chemokines and cytokines secretion (IL-1, IL-6, 
IL-8, MCP-1, MIP-1α, and RANTES) 

- ROS production 
- MMP secretion (MMP-1, MMP-3, and MMP-9) 
- Growth factor secretion (VEGF, FGF, and PAF) 
- TF secretion 
- Up-regulation of COX-2 

SMC 

- Chemokines and cytokines secretion (IL-1β, IL-
6, IL-8, and MCP-1) 

- MMP secretion (MMP-1, MMP-3, and MMP-9) 
- TF secretion 
- Up-regulation of COX-2 

T lymphocyte - CD8+ memory T lymphocyte generation 

CD40L CD40 T lymphocyte - Activation of T lymphocyte 
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2.3 CD40 intracellular signalling 

The CD40/CD40L dyad exerts its biological function on the above mentioned different cell types 

by activating specific intracellular signalling pathways. Although both members of the dyad are 

capable of inducing intracellular signals, CD40 has been regarded as the main signalling receptor 

following its interaction with CD40L. Despite the extensive amount of work performed on 

understanding the signalling mechanisms downstream of CD40, there is much controversy and 

the generated information is still incomplete. The discrepancies result from differences in CD40 

mediated signal transduction among different cell types, as well as between the different stages 

of differentiation within the same cell type. Nonetheless, culmination of the knowledge regarding 

CD40 mediated signals lead to the identification of TNF receptor associated factor (TRAF)-

dependent and -independent signalling mechanisms. The cytoplasmic domain of CD40 lacks 

intrinsic kinase activity, and therefore utilizes members of the TRAF family as adaptor proteins 

to mediate signalling events, which account for the majority of the signals generated by CD40 

activation. Following their recruitment to the cytoplasmic domain of CD40, TRAFs thereafter 

induce activation of multiple signalling pathways, including the canonical and non-canonical 

nuclear factor-κB (NF-κB) (see section 2.3.2), the MAPKs (p38 MAPK, Erk1/2, Akt, and c-jun 

N-terminal kinases [JNKs]), the PI3K, and the PLCγ pathways.381 On the other hand, the TRAF-

independent signalling pathway induces activation of the signal transducer and activator of 

transcription 5 (STAT5) through the direct interaction of the janus kinase 3 (JAK3) with the 

cytoplasmic tail of CD40 following its ligation.382, 383 Figure 2.6 summarizes the main CD40-

mediated signalling pathways induced by the different TRAF members, as well as JAK3. 
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Figure 2.6: The different CD40-mediated signalling pathways. Following CD40 activation, TRAF members are 
recruited to its cytoplasmic tail. Each TRAF member then induces activation of a distinct signalling pathway; 
however, some signalling pathways are activated by multiple TRAF members. JAK3 interacts with the cytoplasmic 
tail of CD40, and induces activation of the TRAF-independent pathway. These signals regulate different cellular 
processes. Modified from Elgueta R. et al. Immunological Reviews. 2009; 229:152-172. 
 

2.3.1 Structure and function of TRAFs 

Up to date seven members of the TRAF family have been identified, including TRAF1 to 

TRAF7. These TRAF members have similar structures, which are formed by a TRAF-C domain 

(WD40 domain repeats in TRAF7) at the C-terminal, followed by a leucine rich coiled-coil 

domain, one or multiple zing-finger domains, and a RING domain (except TRAF1) at their N-

terminal (Figure 2.7).381, 384 The TRAF-C domain of TRAFs 1 to 6 is involved in their 

oligomerization, as well as their interaction with members of the TNF receptor family, including 

CD40, while the WD40 domain repeats of TRAF7 are involved in its interaction with MAPK 

kinase kinase 3 (MEKK3). The coiled-coil domain (a.k.a. TRAF-N) is involved in the homo- or 

heterotrimerization of TRAF proteins, such as TRAF3/TRAF5 heterotrimerization.385 The zinc-

finger and RING domains are involved in the ubiquitination of TRAF proteins and their 

subsequent interactions with downstream signalling molecules, such as transcription factors and 
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kinases. Moreover, as mentioned above, following CD40 ligation, TRAFs are recruited to the 

cytoplasmic tail of the receptor. This is done either directly or indirectly through the aid of 

additional TRAF members, as is the case for TRAF5 recruitment, which requires its 

heteroligomerization with TRAF3. Although each TRAF member has a distinct interaction site 

on the cytoplasmic tail of CD40, it seems that the interaction site for TRAF1, TRAF2, and 

TRAF3 overlap.385 

 

  
Figure 2.7: Structure of TRAF proteins. Image is produced by Hachem A. 
 

2.3.1.1 TRAF1 

TRAF1 was initially identified as a molecule interacting with CD120b (TNF receptor 2).386 

Unlike the other TRAFs, TRAF1 does not have zinc-finger and RING domains; therefore it has 

an important role in regulating other TRAF proteins, specifically TRAF2. Indeed, absence of 

TRAF1 in dendritic cells and B lymphocytes results in a reduced recruitment of TRAF2 to the 

cytoplasmic domain of CD40, as well as an increased TRAF2 degradation.387, 388 This, suggests 

that TRAF1 may promote TRAF2-mediated CD40 signals by prolonging membrane localization 

of TRAF2. On the other hand, absence of TRAF2 results in a weak binding of TRAF1 to the 

cytoplasmic domain of CD40.385 Moreover, TRAF1 deficiency in B lymphocytes results in a 

decrease of CD40-mediated IgM production, whereas TRAF1 and TRAF2 deficient B 

lymphocytes exhibit reduced canonical NF-κB pathway and JNK activation, and reduced IgM 

production as compared to cells deficient in either TRAF alone.388 Interestingly, CD40 activation 

leads to the up-regulation of TRAF1 protein level, which probably plays a role in the feedback 

regulation of receptor signalling.389 
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2.3.1.2 TRAF2 

TRAF2 was initially identified through its association with the TNF receptor 2.386 Actually, 

TRAF2 is known to be responsible for the activation of the p38, Erk1/2, Akt, and JNK MAPKs, 

as well as the canonical and non-canonical NF-κB pathways following CD40 ligation. These 

signalling pathways were evidenced in B lymphocytes and embryonic fibroblasts deficient in 

TRAF2, which showed reduced activation of these pathways upon CD40 engagement.390-394 

Activation of the p38, Erk1/2, and JNK MAPKs does not occur directly by TRAF2, but rather 

through the indirect recruitment of the protein kinase MEKK1 by TRAF2 to the cytoplasmic tail 

of CD40. MEKK1 is an essential protein kinase involved in CD40-induced activation of the 

aforementioned MAPKs following CD40 engagement.395 

 Activation of the canonical NF-κB pathway by TRAF2 was put into evidence in TRAF2 

deficient B lymphocytes. However, TRAF2 deficiency does not completely abolish activation of 

the canonical NF-κB pathway, given that TRAF6 can also activate it (Figure 2.8).391, 393 Indeed, 

activation of the canonical NF-κB pathway following CD40 engagement has been shown to be 

completely abolished in B lymphocytes lacking both TRAF2 and TRAF6 binding to CD40.391 

On the other hand, the exact mechanism by which TRAF2 activates the canonical NF-κB 

pathway is still unclear. It was initially thought that the nuclear factor-κB-inducing kinase (NIK) 

was responsible for activating the IκB kinase (IKK), which ultimately mediates canonical NF-κB 

pathway activation. However, NIK deficiency does not result in a defective CD40 response.396, 

397 Therefore, TRAF2 probably activates IKK through its association with MEKK1, which has 

already been shown to activate IKK.398, 399 

 Despite its above mentioned activating roles, TRAF2 negatively regulates the non-

canonical NF-κB pathway. In the absence of CD40 ligation, TRAF2 interacts with the cellular 

inhibitor of apoptosis (cIAP) 1 and 2, TRAF3, and NIK.400, 401 Under these conditions, cIAP1/2 

antagonizes the non-canonical NF-κB pathway by inducing degradation of NIK.402, 403 Indeed, 

deficiency in either TRAF2 or cIAP results in NIK accumulation in mouse embryonic fibroblasts 

(MEF).404 Furthermore, CD40 ligation destabilizes the TRAF2/TRAF3/NIK/cIAP1/2 complex, 

thereby favouring TRAF2 and TRAF3 recruitment to the cytoplasmic tail of CD40.381 Once 

recruited, TRAF2 undergoes auto-degradation, whereas TRAF3 is degraded by cIAP1/2.403, 405 

Degradation of both TRAF2 and TRAF3 induces accumulation of NIK, which, in turn, mediates 

activation of the non-canonical NF-κB pathway.381 
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 In summary, in the absence of CD40/CD40L interactions, TRAF2 acts as a negative 

regulator of the non-canonical NF-κB pathway activation, whereas TRAF2 mediates activation 

of both the canonical and non-canonical NF-κB pathways following CD40 ligation. Activation of 

the canonical and non-canonical NF-κB pathways is responsible for B lymphocyte activation and 

differentiation into plasma cells.398, 400 

 

     
Figure 2.8: Activation of the canonical and non-canonical NF-κB pathways by CD40. TRAF2 interactions with the 
cytoplasmic domain of CD40 induce activation of both NF-κB pathways, whereas TRAF6 induces activation of the 
canonical NF-κB pathways. CD40-induced activation of the canonical NF-κB pathway results in nuclear 
translocation of NF-κB complexes, including the Rel-A/p50 NF-κB complex. Whereas the non-canonical NF-κB 
pathway results in nuclear translocation of predominantly the Rel-B/p52 NF-κB complex. Modified from Bishop G. 
A. Nature Reviews Immunology. 2004; 4:775-786. 
 

2.3.1.3 TRAF3 

TRAF3 was initially identified by its interaction with CD40 and the Epstein-Barr virus 

transforming protein LMP1.406, 407 A controversy exists as to the role of TRAF3 in CD40-

induced NF-κB pathway activation; given that TRAF3 has opposing effects in different cell 

types. As mentioned above, TRAF3 negatively regulates CD40 signalling in B lymphocytes in 

the absence of CD40/CD40L interactions. In fact, in B lymphocytes, expression of a TRAF3-

dominant negative protein or deficiency in TRAF3 leads to the activation of the canonical NF-κB 
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and JNK signalling pathways, as well as the accumulation of NIK and an enhancement in 

TRAF2 recruitment to the cytoplasmic domain of CD40.402, 403, 408, 409 In the presence of 

CD40/CD40L interactions, TRAF3 relieves its negative regulation of the CD40-induced signals 

through its degradation by cIAP1/2. In contrast, in epithelial cells, over-expression of TRAF3 

induces activation of the canonical NF-κB pathway upon CD40 ligation.410, 411 Therefore, 

additional investigations are required in order to better understand the different functions of 

TRAF3 in CD40 signalling. 

 

2.3.1.4 TRAF4 

The TRAF4 gene was initially discovered by screening of cDNA libraries for genes expressed in 

malignant breast cancers.412 Its biological significance was later put into evidence in TRAF4 

deficient mice, which exhibited tracheal malformations.413 TRAF4 is mainly expressed in 

neuronal and epithelial cells, and plays a significant role in embryonic development.413-415 

Although TRAF4 does not interact with CD40, it has been shown to interact with other members 

of the TNF receptor family, namely the lymphotoxin-β receptor (LTβR) and the p75 nerve 

growth factor receptor.414 

 

2.3.1.5 TRAF5 

There is much discrepancy regarding the role of TRAF5 in CD40 signalling. Whether TRAF5 is 

capable of directly or indirectly binding CD40 remains a matter of controversy, given that early 

studies showed direct binding of TRAF5 to the cytoplasmic domain of CD40, whereas later 

studies showed that TRAF5 requires heterotrimerization with TRAF3 for interaction with 

CD40.385, 416 Furthermore, it has been shown that B lymphocytes treated with small interfering 

RNAs (siRNAs) specific for TRAF5 and B lymphocytes of TRAF5 deficient mice exhibit a 

reduction in the canonical and non-canonical NF-κB pathways activation, which is manifested by 

a decrease in antibody production, proliferation, and co-stimulatory molecules expression.417, 418  

Therefore, the roles of TRAF5 and TRAF2 in activating CD40-mediated downstream signals 

seems to be redundant.398 Further investigations are required for elucidating the exact role of 

TRAF5 in CD40 signalling. 
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2.3.1.6 TRAF6 

TRAF6 was initially identified through its interaction with CD40 in a yeast two-hybrid system. 

Now TRAF6 is known to mediate CD40-induced activation of the canonical NF-κB pathway, as 

well as the p38, JNK, and Akt MAPK pathways, which were evidenced in TRAF6 deficient 

MEF and epithelial cells.381 Interestingly, although TRAF6 has a dedicated binding site on the 

cytoplasmic domain of CD40, excision of this site in B lymphocytes does not affect TRAF6 

induced JNK activation and enhanced B7.1 expression following CD40 engagement, as 

compared to TRAF6 deficiency in B lymphocytes.381, 419 This is due to the interaction of TRAF6 

with TRAF2, which subsequently mediates TRAF6 signals independently of its recruitment to its 

binding site on the cytoplasmic domain of CD40.419, 420 

 As mentioned above, TRAF6 induces activation of Akt, a process independent of NF-κB 

activation following CD40 ligation.421 Akt activation occurs in a PI3K dependent manner, in 

which PI3K forms a complex with TRAF6, the Casitas B-lineage lymphoma b (Cbl-b), and the 

Casitas B-lineage lymphoma (c-Cbl) following CD40 engagement.421 In turn Cbl-b induces 

phosphorylation of Akt through PI3K.422 Activation of PI3K/Akt has a crucial role on cell 

survival following CD40 ligation, by mediating inhibition of the pro-apoptotic proteins, caspase 

9 and B-cell leukemia (Bcl); in addition to inducing up-regulation of the anti-apoptotic proteins, 

caspase 8 and the cellular homolog of viral Fas-associated via death domain-like IL-1β 

converting-enzyme inhibitory protein p43 (cFLIPp43).422-425 

 

2.3.1.7 TRAF7 

TRAF7 is the most recent member of the TRAF family to be identified. It was first discovered as 

a protein associated with MEKK3, which is required for TNF-α-induced activation of NF-κB.426 

TRAF7 was later identified through the screening for protein-protein interactions around known 

and candidate components of the TNF-α/NF-κB pathway.427 Up to date, there is still no evidence 

linking TRAF7 to any members of the TNF receptor family; however, it seems to be involved in 

the TLR-2 signalling pathway.428 Moreover, TRAF7 seems to be involved in the activation of the 

JNK and p38 MAPKs, as well as the activation or inhibition of NF-κB, depending on the cellular 

model and biological setting.384 
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2.3.1.8 JAK3 

Although most of the work has focused on the involvement of TRAFs as CD40 adaptor proteins, 

it has been shown in B lymphocytes that the cytoplasmic domain of CD40 contains a binding 

region for JAK3.429 However, JAK3 activation following CD40 ligation is cell type dependent. 

For instance, in B lymphocytes, CD40 stimulation does not induce JAK3 phosphorylation, 

whereas in monocytes and APCs it does.382, 383, 430 JAK3 induces activation of STAT5, thereby 

leading to gene expression of inflammatory cytokines, including TNF-α, interferon (INF)-γ, and 

IL-6, as well as maturation of DCs.431 

 

2.3.2 Structure and function of NF-κB 

NF-κB is a important transcription factor involved in the expression of a wide range of genes 

implicated in different biological processes, including immune responses, cell survival, stress 

responses, and maturation of various cell types (Table 2.3). In mammals, the NF-κB complexes 

are formed by homo- or heterodimerization of five transcription factors: Rel-A (p65), Rel-B 

(p68), c-Rel, and the precursors p105 (NF-κB1) and p100 (NF-κB2), which are processed into 

p50 and p52, respectively. These transcription factors contain an N-terminal DNA-

binding/dimerization domain known as the Rel homology domain, which allows their 

dimerization, as well as their DNA binding (as dimers) at target sequences termed κB sites. The 

Rel-A, Rel-B, and c-rel transcription factors also contain C-terminal transcription activation 

domains (TADs), which favour co-activator recruitment and the subsequent expression of target 

genes. The p50 and p52 transcription factors lack TADs, and therefore activate transcription by 

forming heterodimers with Rel-A, Rel-B, or c-Rel. In contrast, p50 and p52 can inhibit 

transcription if they bind DNA as homodimers, given that they lack TADs.432  

 In the absence of receptor stimulation, the NF-κB complexes are maintained in the 

cytoplasm in an inactive state complexed with the inhibitory inhibitor κB (IκB) proteins (IκBα, 

IκBβ, IκBε, IκBζ, p100, p105, Bcl3, and IκBns), which sequester NF-κB complexes in a latent 

state through their ankyrin-repeat domains.433 Upon receptor activation, and the subsequent 

TRAF recruitment, activation of the NF-κB signalling pathway leads to proteasomal degradation 

of the IκB proteins and the consequential release and nuclear translocation of the NF-κB 

complexes. Activation of the canonical NF-κB pathway leads to nuclear translocation of four 

transcriptional activator complexes (Rel-A/Rel-A, Rel-A/p50, c-Rel/c-Rel, and c-Rel/p50), 



59 
 

whereas activation of the non-canonical NF-κB pathway leads to nuclear translocation of 

predominantly Rel-B/p52 complexes.432, 433 Figure 2.9 schematizes the NF-κB and IκB family 

members, in addition to the IκB kinase (IKK) members (discussed below). 

 
Table 2.3: Genes induced by the NF-κB signalling pathway activation.434, 435 
 
Cytokines and growth factors - IL-1β 

- IL-2 
- IL-6 
- IL-8 
- TNF-α 
- Lymphotoxin (TNF-β) 
- IP-10 
- MIP-1α 
- MCP-1 
- RANTES 
- INF-β 
- Macrophage colony-stimulating factor (M-CSF) 
- Granulocyte/macrophage colony-stimulating factor (GM-CSF) 
- Granulocyte colony-stimulating factor (G-CSF) 
- Melanoma growth stimulating activity (Gro-α, -β and -γ/MGSA) 
- Proenkephalin 

Immunoreceptors - Ig-κ light chain 
- TCR 
- MHC-I 
- MHC-II 
- MHC-II invariant chain 
- β2-microglobulin 
- Tissue factor-1 
- IL-2 receptor α chain 

Adhesion molecules - ICAM-1 
- VCAM-1 
- Endothelial-leukocyte adhesion molecule-1 (ELAM-1) 

Acute phase proteins - Angiotensinogen 
- Serum amyloid A precursor 
- Complement factor B 
- Complement factor C4 

Transcription factors and regulators - c-Rel 
- p105 
- IκBα 
- c-myc 
- Interferon regulatory factor 1 (IRF-1) 

Others - iNOS 
- Vimentin 
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Figure 2.9: Schematic representation of the mammalian NF-κB, IκB and IKK family members. Alternative 
nomenclatures are in parenthesis. The precursors p100 and p105 act as IκB; however, following receptor activation 
and their subsequent proteasomal degradation into p52 and p50, respectively, they function as NF-κB family 
members. (ANK: ankyrin-repeat domain; DD: death domain; RHD: REL homology domain; TAD: transcription 
activation domain; LZ: leucine-zipper domain; GRR: glycin-rich region; HLH: helix-loop-helix domain; Z: zinc-
finger domain; CC: coiled-coil domain; NBD: NEMO-binding domain; MOD/UBD: minimal oligomerization 
domain/ubiquitin-binding domain; PEST: proline, glutamic acid, serine, and threonine rich.) Modified from Hayden 
M. S. et al. Cell Research. 2011; 21:223-244. 
 

2.3.2.1 Canonical pathway 

As mentioned above, in the absence of receptor activation, the NF-κB complexes are sequestered 

in the cytoplasm in a latent state through their association with IκBs. In the canonical pathway, 

the classical IκB (IκBα, IκBβ, and IκBε) sequester the canonical NF-κB complexes (Rel-A/Rel-

A, Rel-A/p50, c-Rel/c-Rel, and c-Rel/p50) in the cytoplasm, and the release of these complexes 

requires phosphorylation and proteasomal degradation of the IκBs following receptor 
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engagement.433 Phosphorylation of IκBs in the canonical pathway is dependent on the activation 

of the IKK complex, which is formed by the two catalytic subunits IKKα (a.k.a IKK1) and IKKβ 

(a.k.a IKK2), and the regulatory subunit NF-κB essential modulator (NEMO; a.k.a. IKKγ). 

Activation of the IKK complex, specifically phosphorylation of IKKβ on serines 177 and 181, 

leads to IκBα phosphorylation at serines 32 and 36.436, 437 Once phosphorylated, IκBα is targeted 

for degradation by the 26S proteasome, thereby releasing the canonical NF-κB complexes, which 

then translocate into the nucleus and initiate transcription of target genes (Figure 2.8). The IκBβ 

and IκBε are also phosphorylated by the IKK complex, and thereafter targeted for proteasomal 

degradation, and the consequential release and nuclear translocation of canonical NF-κB 

complexes.433 

 Since the canonical NF-κB pathway induces expression of genes involved in the 

inflammatory and immune response, its activation must be tightly controlled, given that improper 

regulation of NF-κB activation has been shown to be implicated in pathological conditions, such 

as chronic inflammation and cancer.433, 438, 439 Indeed, IκBα and IκBε have been shown to be 

important negative regulators of the canonical NF-κB pathway activation, as their absence results 

in lethality due to hyperinflammation and increased cytokine expression.439, 440 Additionally, NF-

κB has been shown to induce transcription of the IκBα gene, thereby forming a negative 

feedback loop that limits activation of the canonical NF-κB pathway.441 

 

2.3.2.2 Non-canonical pathway 

In contrast to the canonical pathway, activation of the non-canonical NF-κB pathway is 

dependent on NIK and IKKα. As mentioned in section 2.3.1.2, following degradation of TRAF3, 

there is an accumulation of cytoplasmic NIK. In turn, NIK activates IKKα, which then 

phosphorylates the precursor p100.442 Phosphorylation of p100 targets it for degradation by the 

26S proteasome. However, unlike IκBα, proteasomal degradation of p100 results in degradation 

of only its C-terminal containing ankyrin-repeat domains.443 Removal of these domains generates 

the p52 transcription factor containing the Rel homology domain, which, in turn, preferentially 

associates with Rel-B (Figure 2.8). The formed heterodimer subsequently translocates to the 

nucleus and mediates transcription of the non-canonical NF-κB pathway target genes, which are 

involved in the development and maintenance of secondary lymphoid organs.443, 444 
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 Unlike the canonical pathway, there is limited information regarding the negative 

regulation of the non-canonical pathway. It has been reported that IKKα induces phosphorylation 

and the subsequent destabilization of NIK, which probably provides a mean to down-regulate 

activation of the non-canonical NF-κB pathway.445 

 

2.3.3 Other CD40 intracellular signalling molecules 

Members of the NF-κB family have been the main focus of most of the work on CD40/TRAFs-

induced transcriptional activity. However, NF-κB family members are not the only transcription 

factors downstream of TRAFs. Activation of CD40 in B lymphocytes stimulates activation of a 

wide array of immuno-regulatory proteins, including cytokines, chemokines, Ig, and adhesion 

molecules; however, inhibition of CD40-induced activation of the NF-κB pathways ablates most, 

but not all CD40-mediated gene expression.446, 447 For instance, IL-6 gene expression following 

CD40 activation does not require NF-κB nuclear translocation. The transcription factors activator 

protein 1 (AP1) and nuclear factor of IL-6 (NF-IL-6; a.k.a C/EBPβ) have been shown to mediate 

CD40-induced transcriptional activity alongside NF-κB family members in a TRAF6 dependent 

manner.448 NF-IL-6 and AP1 have an important role in CD40-mediated IL-6 production, as well 

as the subsequent IgM production by B lymphocytes. 

 

2.4 Physiological role of the CD40/CD40L axis 

Section 2.2 covered the biological function of the CD40/CD40L dyad in a cell type specific 

manner, while section 2.3 described the signalling pathways ensued by CD40 following its 

interaction with CD40L. The role of this dyad in the interactions among the different cell types 

in a physiological setting, such as in humoral immunity, cell-mediated immunity and apoptosis, 

will be the main focus of this section. 

 

2.4.1 Humoral immunity 

Humoral immunity, which is also known as thymus-dependent humoral immune response, is a 

branch of immunity that is mediated through antibody production by B lymphocytes. The 

intricate cell-cell contact interactions between APCs (specifically DCs), T and B lymphocytes, as 

well as the crucial role of the CD40/CD40L dyad in these interactions culminate in B 
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lymphocyte activation and differentiation into antibody producing cells, also known as 

plasmocytes. 

 The importance of the CD40/CD40L dyad in the development of humoral immunity was 

initially evidenced in individuals with HIGM, who have a mutation in the gene encoding CD40L 

resulting in a non-functional protein.276 The importance of this dyad was later confirmed by 

genetic deletion of either the CD40 or CD40L gene, and by antibody blockade of the CD40L 

protein.449, 450 Under such conditions, there is a severe impairment in the humoral immune 

response, which is manifested by the lack of germinal center formation and progression, 

antibody isotype switching and affinity maturation, and memory B cells and plasma cells 

formation.276, 449, 450 

 The intricate interactions between DCs, T and B lymphocytes in mounting an effective 

humoral immune response are initiated by the interaction of DCs with pathogens. Upon a 

pathogenic challenge, DCs acquire and present pathogenic antigens to naive CD4+ T 

lymphocytes, which recognize the antigens through the TCR and become fully activated 

following engagement of CD40L and CD28 with their cognate receptors (CD40 and B7.1 or 

B7.2, respectively) on DCs.1, 330 On the other hand, ligation of CD40 on DCs induces their up-

regulation of co-stimulatory (CD40 and B7.2 or B7.1) and MHC molecules (MHC-I and MHC-

II), in addition to inducing secretion of the IL-12, IL-10 and IL-6 cytokines.330, 338, 339, 341, 451, 452 

In turn, IL-12, IL-10 and IL-6 favour T lymphocytes differentiation into effector Th1, TReg and 

Th17 lymphocytes, respectively.343, 452, 453 This bidirectional crosstalk favours clonal 

differentiation of antigen-specific T lymphocytes, as well as maturation and survival of DCs.400 

Activated T lymphocytes then home toward B lymphocyte follicles and position themselves at 

the border of the T lymphocyte zone and B lymphocyte follicles, where they encounter activated 

B lymphocytes expressing the cognate antigen.454, 455 Activation of naive B lymphocytes prior to 

their interaction with activated T lymphocytes occurs through their direct uptake of pathogenic 

antigens or by their interaction with tissue-resident DCs that are activated by the pathogen and 

subsequently home toward the B lymphocyte zone in secondary lymphoid organs.456, 457 

Interaction of T and B lymphocytes at the border zone induces B lymphocyte differentiation into 

either plasmablasts or germinal center cells.458, 459 Interestingly, the extent of CD40/CD40L 

interactions depicts the fate of B lymphocyte differentiation, where extensive CD40/CD40L 

interactions favour plasmablast differentiation.400, 458 Further engagement of T lymphocyte 
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CD40L with CD40 on B lymphocytes stimulates B lymphocyte proliferation, isotype switching, 

and differentiation into plasma cells.278, 314 In summary, pathogen-activated DCs induce 

activation of T lymphocytes, which in turn induce B lymphocyte proliferation, isotype switching, 

and differentiation, where CD40/CD40L interactions play a major role at each interaction step. 

 In contrast, DCs are capable of inducing T lymphocyte-independent B lymphocyte 

antibody production. CD40 activation on DCs by CD40L on activated T or B lymphocytes 

induces expression of the B lymphocyte stimulator protein (BLys or BAFF) and a proliferation 

induced ligand (APRIL) on DCs.460 In turn, BAFF interacts with the BAFF receptor and the B 

cell maturation antigen (BCMA) on B lymphocytes, while ARPIL interacts with the 

transmembrane activator and calcium modulator and cyclophylin ligand interactor (TACI). 

These interactions in the presence of IL-2 and IL-4 secreted by T lymphocytes, favour B 

lymphocytes survival, isotype switching, and IgG and IgA secretion.460-462 

 

2.4.2 Cell-mediated immunity 

It was initially thought that the function of CD40/CD40L dyad was limited to humoral immunity; 

however, substantial amount of evidence now supports its role in cell-mediated immunity. This 

branch of immunity does not involve antibody production or activation of the complement 

system, but is rather mediated by a plethora of agents secreted and expressed by immuno-

competent cells, including T and B lymphocytes, macrophages, natural killer cells, endothelial 

cells, SMCs, platelets, and fibroblasts.1, 463 Ligation of CD40 induces a pro-inflammatory 

response in these cells, which is characterized by the up-regulated expression of adhesion 

molecules, as well as the induced secretion of pro-inflammatory mediators, namely cytokines, 

chemokines, extracellular degrading enzymes (MMPs), growth factors, and coagulation factors 

(TF). All of which are important mediators for both inflammation and immunity as they favour 

recruitment and activation of additional immuno-competent cells at the lesion/infection site. In 

addition, the various secreted growth factors and MMPs influence the wound repair process after 

the resolution of infection and inflammation.1, 368, 463 Tables 2.2 and 2.3 summarize the 

aforementioned mediators influenced by the CD40/CD40L dyad in cell-mediated immunity. 
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2.4.3 Apoptosis 

Aside from its role in immunity, the CD40/CD40L dyad has a role in modulating cell survival. 

Signals induced by CD40 following its ligation either induce or prevent apoptosis depending on 

the cell type in which they occur. For instance, CD40 signals rescue B lymphocytes from 

apoptosis, whereas in certain B lymphoma cell lines they induce apoptosis.464-469 

 CD40-induced inhibition of apoptosis is mediated through its modulation of mediators of 

the intrinsic and extrinsic apoptotic pathways. The intrinsic apoptotic pathway is triggered by 

mitochondrial stress resulting in cytochrome c and Smac/DIABLO release from the 

mitochondria. Association of cytochrome c with Apaf-1 and caspase 9 leads to caspase 3 

activation and the subsequent cellular death by apoptosis.470 Inhibition of the intrinsic apoptotic 

pathway by CD40 is mediated through the up-regulation of the anti-apoptotic Bcl-2 family 

members (Bcl-XL, Mcl-1 and Bfl-1) and survivin that prevent cytochrome c release from the 

mitochondria and block caspase 3 activation, respectively.464, 465, 470-475 On the other hand, the 

extrinsic apoptotic pathway is mediated by activation of Fas and TNF receptor 1, which lead to 

caspase 8 activation and the subsequent caspase 3 activation.470 CD40 inhibits the extrinsic 

apoptotic pathway by up-regulating A20 and cFLIP expression, which respectively inhibit Fas 

and TNF receptor 1 mediated caspase 8 activation.476, 477 Therefore, CD40 signals induce 

expression of anti-apoptotic proteins, which rescue B lymphocytes from apoptosis induced by 

either extrinsic factors (IgM, Fas ligand [FasL] and TNF) or intrinsic factors that induce 

mitochondrial damage. 

 In contrast, activation of CD40 on certain malignant and B lymphoma cell lines results in 

growth arrest and induced apoptosis.470, 478, 479 The pro-apoptotic effect of CD40 activation in 

these cells is mediated through the up-regulation of the pro-apoptotic Bcl-2 family members 

(Bik, Bax and Bak), which favour cytochrome c release from the mitochondria, and the 

subsequent caspase 3 activation.480, 481 CD40 also drives the extrinsic apoptotic pathway by 

inducing the up-regulation of FasL and TNF, thereby leading to caspase 8 activation following 

Fas/FasL and TNF/TNF receptor interactions.482, 483 

 

2.5 Pathological role of the CD40/CD40L axis 

In the previous sections, the physiological function of the CD40/CD40L dyad was discussed. 

The interactions between CD40 and CD40L were shown to be central for mounting an effective 
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inflammatory and immune response. However, these interactions must be tightly regulated, given 

that the improper expression of CD40 and CD40L or the unsuitable interactions between them 

are associated with the pathogenesis of multiple diseases, including autoimmune diseases, cancer 

and atherosclerosis.484-486 This section will focus on the CD40/CD40L contribution to the 

development and progression of these pathologies. 

 

2.5.1 Autoimmune diseases 

An autoimmune disease arises when the body mounts an immune response against substances 

and tissues normally present in the body. In other words, the body attacks its own cells, thereby 

damaging a specific organ or tissue that is present in multiple parts of the body. Given its central 

role in modulating the immune response, the CD40/CD40L dyad significantly contributes to the 

development and progression of multiple autoimmune diseases, such as inflammatory bowel 

disease, type I diabetes, thyroiditis, multiple sclerosis, systemic lupus erythematosus, and 

rheumatoid arthritis. This section will cover the general contribution of the CD40/CD40L dyad 

in the development of autoimmune diseases, as well as its implication in the aforementioned 

diseases. 

 

2.5.1.1 Mechanism of action 

Up to date, there are three proposed mechanisms for the contribution of the CD40/CD40L dyad 

to T lymphocyte-dependent autoimmune diseases. The first proposed mechanism is mediated 

through improper T lymphocyte selection in the thymus. Under normal circumstances, 

expression of tissue-restricted antigens by medullary thymic epithelial cells results in negative 

selection (deletion) of potentially auto-reactive T lymphocytes and the subsequent induction of 

self-tolerance. As CD40 has been shown to cooperate with the receptor activator of NF-κB 

(RANK) in promoting medullary thymic epithelial cells development, a disruption in CD40 

activation in these cells could probably result in their inadequate development.486, 487 Therefore, 

the disturbed development of medullary thymic epithelial cells potentially permits auto-reactive 

T lymphocyte clones to escape negative selection, leading to failure of central tolerance and the 

subsequent potential development of auto-immune diseases. 

 The second proposed mechanism of CD40/CD40L contribution to autoimmune diseases 

occurs in secondary lymphoid organs, where T lymphocytes are primed by APCs (B 



67 
 

lymphocytes or DCs) over-expressing CD40 either constitutively or transiently.486 The over-

expression of CD40 leads to increased interactions between CD40L on T lymphocytes and CD40 

on APCs, which favour the activation of auto-reactive T lymphocytes, as well as the production 

of pro-inflammatory cytokines by APCs and auto-antibodies by B lymphocytes.452 Among the 

secreted pro-inflammatory cytokines, IL-6 has been shown to drive T lymphocytes 

differentiation into Th17 cells.452 In turn, Th17 cells induce cell-mediated tissue damage by 

secreting IL-17.488 Therefore, the increase in CD40 expression and the subsequent exaggerated 

CD40/CD40L interactions potentially lead to the development of autoimmune diseases. 

 The third proposed mechanism results from abnormal expression of CD40 in tissues 

where it is normally undetectable. Under such conditions, the tissues themselves contribute to the 

initiation of the autoimmune disease. Indeed, elevated expression levels of CD40 in target tissues 

(thyroid and pancreatic islet cells) have been associated with the initiation of thyroiditis, and the 

production of inflammatory cytokines resulting in the failure of pancreatic islet cell 

transplants.489, 490 

 

2.5.1.2 Inflammatory bowel disease 

The two major subtypes of inflammatory bowel disease are Crohn's disease and ulcerative 

colitis. They are characterized by recurring inflammation of the small and large intestine. 

Infiltration of macrophages, T and B lymphocytes into the intestinal epithelium disrupts its 

barrier function, resulting in diarrhea, abdominal pain, rectal bleeding, and malnutrition in 

attained individuals.491 

 The initial evidences pointing at the contribution of CD40/CD40L to the autoimmune 

inflammatory bowel disease came from studies in mice. The results from these studies 

demonstrated that the CD40/CD40L interactions were crucial for the initiation of the disease, but 

were not necessary for the progression of the inflammatory responses. In fact, administration of a 

blocking CD40L antibody at the onset of colitis initiation inhibits lymphocytic infiltration into 

the intestinal epithelium, and disease occurrence, whereas blocking CD40L four weeks following 

colitis initiation only improves the disease symptoms.492, 493 Additionally, in mice, over-

expression of CD40L in T lymphocytes results in T lymphocyte infiltration in multiple organs 

and death caused by inflammatory bowel disease by 3-6 weeks of age.494 
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 In patients with Crohn's disease, CD40 is over-expressed on microvascular endothelial 

cells in the inflamed mucosa, and there is an increase in CD40+ DCs found within the intestinal 

mucosa.495, 496 In contrast, genomic association studies did not show an association between the 

CD40 gene and inflammatory bowel disease incidences.497 Nonetheless, in a small study, 77% of 

the patients with Crohn's disease that where treated with a chimeric antagonistic CD40 antibody 

showed a beneficial response to treatment, while the remaining 22% of the patients entered into 

remission.498 

 

2.5.1.3 Type I diabetes 

Type I diabetes, also known as insulin-dependent diabetes, is an autoimmune disease 

characterized by the complete absence of insulin production resulting from the destruction of the 

beta cells in the islets of Langerhans in the pancreas.499 Much of the knowledge regarding type I 

diabetes development came from studies in animal models of this human disease, specifically 

non-obese diabetic (NOD) mice, which spontaneously develop diabetes following insulitis 

(inflammation of the islets of Langerhans), and leukocytic infiltration and destruction of the 

islets. In NOD mice, CD8+ and CD4+ T lymphocytes specific for beta cell antigens, as well as B 

lymphocytes, have been shown to be essential for the pathogenesis of the disease. Transfer of 

CD8+ or CD4+ T lymphocytes specific for beta cell antigens from NOD mice into normal mice 

induces diabetes in the latter, whereas depletion of these cells in NOD mice prevents the 

disease.499 In addition, diabetes in NOD mice is prevented by B lymphocyte depletion.500 

Although B lymphocytes do produce auto-antibodies directed against beta cell antigens (insulin 

and glutamic acid decarboxylase), their role as APCs in promoting diabetogenic T lymphocytes 

activation and proliferation might be of more significance, given that the role of the produced 

auto-antibodies in the pathogenesis of the disease is still unclear.499, 501 Given the central role of 

the CD40/CD40L dyad in the cross-talk between B and T lymphocytes, blocking this interaction 

with an antagonistic CD40L antibody has been shown to delay or prevent diabetes in NOD mice 

and bio-breeding diabetes-prone rats.502, 503 

 The role of CD40+ T lymphocytes in diabetes has recently been examined. Triggering of 

the TCR and CD40 in T lymphocytes from NOD mice up-regulates the level of expression of 

CD40 on these cells. Additionally, the use of an antibody to block CD40 on diabetogenic T 

lymphocytes from NOD mice prevents diabetes induction in NOD SCID (severe combined 
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immunodeficiency) following T lymphocyte transfer.504 In humans, the levels of CD40+ T 

lymphocytes have been shown to be elevated in type I diabetes patients as compared to type II 

diabetes patients and controls.505 

 Finally, the CD40/CD40L dyad also contributes to the inflammatory environment within 

the islets of Langerhans. Pancreatic beta cells from human and mice constitutively express 

CD40, and activation of this receptor in these cells leads to the production of pro-inflammatory  

cytokines (IL-6, IL-8, MIP-1α, and MCP-1β); hence, promoting leukocyte recruitment and 

inflammation.490, 506 Therefore, the CD40/CD40L dyad is a major component in diabetes 

development. 

 

2.5.1.4 Thyroiditis 

Autoimmune thyroid disease affects approximately 5% of humans, and includes Graves' disease 

and Hashimoto's thyroiditis. Graves' disease is characterized by thyrotoxicosis (excess 

circulating thyroid hormones due to an overactive thyroid), infiltration of lymphocytes into the 

thyroid gland, goiter, and presence of auto-antibodies directed against the thyroid stimulating 

hormone receptor. Hashimoto's thyroiditis differs from Graves' disease by a more intense 

infiltration of lymphocytes into the thyroid gland, a loss of thyroid function, and auto-antibodies 

directed against thyroglobulin and thyroid peroxidase.507 

 In Graves' disease patients, analysis of thyroid epithelial cells demonstrated an up-

regulation of MHC-II and co-stimulatory (CD40 and B7.1) molecules, suggesting that these cells 

probably contribute to disease development by enhancing presentation of thyroid auto-antigens, 

as well as co-stimulatory molecules to T lymphocytes.486, 508 Moreover, a single nucleotide 

polymorphism in the Kozak sequence (a consensus sequence in 5'-UTR of an mRNA) of the 

CD40 gene, which gives rise to an allele with a C polymorphism, has been associated with an 

increased risk for Graves' disease.507 This increased risk is probably due to an augmented level of 

CD40 expression on resting B lymphocytes and thyrocytes, when both alleles of the CD40 gene 

harbour this C polymorphism.486, 509 

 In contrast, there are no polymorphisms in the CD40 gene that have been linked to 

Hashimoto's thyroiditis.486 Nonetheless, the CD40/CD40L dyad seems to play a role in the 

development of this disease, since the use of a blocking antibody against CD40L averts 

experimental autoimmune thyroiditis induced in animal models through thyroglobulin 
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injection.510 Additionally, B and T lymphocytes from experimental autoimmune thyroiditis mice 

treated with a CD40L blocking antibody are unable to induce the disease following their transfer 

into immuno-deficient mice, thus, confirming the involvement of the CD40/CD40L dyad in 

autoimmune thyroid disease development..511  

 

2.5.1.5 Multiple sclerosis 

Multiple sclerosis is an autoimmune disease characterized by demyelination of the brain and 

spinal cord due to an infiltration of T lymphocytes (CD4+ and CD8+), B lymphocytes, 

macrophages, and microglia (central nervous system  resident macrophages) into the CNS and 

the subsequent destruction of myelin on nerve fibers, leading  to motor and sensory 

dysfunction.512 Most of the knowledge regarding multiple sclerosis pathogenesis came from 

analyzing human post-mortem brain lesions and experimental autoimmune encephalomyelitis 

(EAE) animal models that are featured by central nervous system infiltration by immune cells 

following immunization with myelin components.512 Analysis of post-mortem brain lesions from 

patients with multiple sclerosis demonstrated that the majority of the cells within the lesion that 

express CD40L were CD4+ T lymphocytes, whereas those expressing CD40 were B 

lymphocytes, macrophages, and microglia.513 In addition, analysis of EAE mice demonstrated 

the expression of CD40 in the spinal cord during the acute and relapse phases of the disease, 

whereas CD40L expression only peaked during the relapse phase.514 

 The contribution of the CD40/CD40L dyad to multiple sclerosis development was 

evidenced in mice deficient in CD40L or mice treated with a CD40L blocking antibody on the 

onset of EAE induction, which prevented disease development probably by favouring a non-

pathogenic Th2 immune response rather than a Th1 one.513, 515, 516 Indeed, CD40L blocking 

antibody treatment in mice at the peak of the acute phase of the disease decreased the level of 

infiltration of inflammatory cells into the central nervous system, as well as Th1 cell 

differentiation.517 Moreover, CD40 is expressed by microglia and it is up-regulated by INF-γ 

treatment.518 Activation of CD40 in these cells induces their activation and secretion of IL-12 

and TNF, which induce Th1 differentiation and the subsequent neuronal cell death.518-520 CD40 

expressed on microglia has also been shown to be an important contributor for EAE 

development, given that CD40 deficiency in microglia results in a less severe EAE due to a 
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decrease in T lymphocyte infiltration into the central nervous system, in addition to a reduction 

in demyelination.520, 521 

 Finally, there is accumulating evidence pointing toward a genetic background for 

multiple sclerosis; however, no correlation was found between the CD40 gene and incidence of 

the disease.497, 512, 522 

 

2.5.1.6 Systemic lupus erythematosus 

Systemic lupus erythematosus (SLE) is a systemic autoimmune disease that affects multiple 

organs of the body, including skin, joints, lungs, kidneys, brain, and heart. It is due to circulating 

auto-antibodies directed against dsDNA (double stranded DNA) and other nuclear components, 

which form immune complexes (antibody and antigen) that deposit on small blood vessels and 

subsequently favour recruitment and assembly of the complement system, thereby causing 

vasculitis (inflammatory destruction of blood vessels).523 

   Patients with an active SLE disease have T lymphocytes (CD4+ and CD8+) that over-

express CD40L, in addition to B lymphocytes and monocytes that abnormally express 

CD40L.523-526 The implication of CD40L expressed on B lymphocytes in SLE pathogenesis was 

put into evidence by two approaches. The first approach showed that B lymphocytes from SLE 

patients produced antibodies in a CD40L-dependent manner, whereas the second approach 

demonstrated a lupus-like disease development in transgenic mice that harbour CD40L+ B 

lymphocytes. 524, 527 Interestingly, in patients with SLE, there is a correlation between circulating 

levels of CD40L and disease severity.528 Moreover, in these patients, there is a decrease in the 

number of CD34+ haematopoietic progenitor cells in the bone marrow, which was shown to be 

due to CD40 activation and the subsequent Fas-mediated apoptosis of these cells.529 The 

decrease in the number of CD34+ haematopoietic progenitor cells in SLE patients probably 

correlates with the frequent pancytopenic (reduced number of circulating white and red blood 

cells, and platelets) phenotype in these patients. 

 In a mouse model of SLE, treatment with an anti-CD40L blocking antibody before any 

apparent SLE symptoms prevents complications associated with the disease, such as proteinuria 

(high urine protein levels), kidney disease, in addition to prolonging survival and decreasing the 

levels of circulating antibodies against dsDNA.530-532 Interestingly, a long-term positive outcome 
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on kidney function, levels of anti-dsDNA antibodies and survival is observed albeit a short 

treatment period with an anti-CD40L antibody.533 

 Finally, SLE incidence has been shown to be associated with multiple genomic loci.497, 523 

The region q11.2-13.1 on chromosome 20, which harbours the CD40 gene, has been recognized 

as a site potentially linked to SLE occurrence.523, 534 Moreover, a missense single nucleotide 

polymorphism within the CD40 gene, which gives rise to a CD40 protein with a higher 

signalling capacity, aggravates SLE symptoms in patients with a pre-established disease. 

However, there is no correlation between this polymorphism and SLE incidence.535, 536 

 

2.5.1.7 Rheumatoid arthritis 

Rheumatoid arthritis (RA) is an autoimmune disease affecting approximately 1% of humans and 

it is characterized by chronic inflammation within the joint due to the infiltration of immune cells 

and activation of fibroblast-like synoviocytes, which create a local inflammatory environment 

through the secretion of pro-inflammatory compounds, such as cytokines, chemokines and 

MMPs.537, 538 In addition, joints of RA patients are characterized by thickening of the synovium 

and destruction of the cartilage and bone, which are mainly caused by fibroblast-like synoviocyte 

activation and proliferation.537 

 Fibroblast-like synoviocytes from RA patients have been shown to express CD40 that is 

additionally up-regulated following INF-γ and TNF-α treatment.539 Activation of CD40 on these 

cells contributes to joint destruction by inducing the up-regulation of adhesion molecules 

(ICMA-1 and VCAM-1), as well as the secretion of pro-inflammatory cytokines (IL-6, IL-8, IL-

15, IL-17 and TNF), chemokines (MIP-1α and MCP-1), and growth factors (GM-CSF).537-542 

Additionally, osteoclast-mediated bone resorption is stimulated by the RANK ligand, which is 

expressed by fibroblast-like synoviocytes following CD40 activation.543 On the other hand, 

activation of CD40 expressed on DCs within the synovial tissue induces secretion of TNF, which 

has been shown to contribute to collagen degradation in ex vivo cultures.544 

 T lymphocytes from RA patients highly express CD40L as compared to healthy 

individuals and this level of expression correlates with higher disease severity and increased Ig 

production by B lymphocytes in these patients.545-547 Moreover, T lymphocytes form these 

patients have been shown to induce IL-12 secretion by synovial DCs and macrophage, in a 

CD40L-dependent manner.548 In a mouse model of arthritis, treatment with a CD40L blocking 
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antibody prevents the disease if given prior to disease induction; however, it does not reverse the 

disease if given once the disease has established.549, 550 On the other hand, treatment with an 

agonistic CD40 antibody at the onset of arthritis induction aggravates the disease.551 Therefore, it 

seems that the CD40/CD40L dyad has a main role only at the initial stages of arthritis. 

 Finally, as for most autoimmune diseases, RA has a strong genetic component. Multiple 

genomic loci have been associated with RA incidence, including the CD40 locus which has been 

associated with juvenile RA.497, 552 Furthermore, a single nucleotide polymorphism in the CD40 

gene, as well as single nucleotide polymorphisms in signalling molecules downstream of CD40, 

including A20 and TRAF1 have been associated with RA occurrence in the European 

population.553 

  

2.5.2 Cancer 

As mentioned earlier in this chapter, CD40 was initially cloned in Burkitt's lymphoma. It was 

later identified on multiple tumour cell types, including epithelial neoplasia, non-Hodgkin's 

lymphoma, melanoma, bladder carcinoma, and osteosarcoma.279, 280, 554-558 Therefore, cancer is 

probably the first human disease to be associated with the CD40/CD40L dyad. Given the 

widespread expression of CD40 on multiple tumours, it is suggested to play a role in tumour 

pathogenesis. Indeed, accumulating evidence demonstrates that a constitutive low-level of CD40 

engagement favours neoplastic cell growth by promoting tumour cell proliferation and protection 

against apoptotic cell death in an NF-κB dependent manner.559-561 The constitutive low-level of 

CD40 activation is due to the low level of CD40L co-expression on tumour cells, including non-

Hodgkin lymphoma, Burkitt lymphoma, chronic lymphocytic leukemia, and breast carcinoma, 

which mediates CD40 ligation in an autocrine manner. Disruption of this low-level of 

CD40/CD40L interactions by a CD40L blocking antibody has been shown to reduce tumour cell 

proliferation and favour tumour cell death.559-562 

 In contrast, the CD40/CD40L dyad has been shown to have a rather negative impact on 

tumour pathogenesis. Patients with HIGM syndrome, who lack a functional CD40L protein, have 

a severely compromised immune system, and are therefore presented with higher incidences of 

multiple leukemia and carcinoma.563 Additionally, patients with chronic lymphocytic leukemia, 

who display a lack of CD40L on activated CD4+ T lymphocytes, show characteristics 

comparable to those of HIGM patients, including immunodeficiency and increased tumour 
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incidences.564 In mice, CD40L deficiency results in a lack of a protective anti-tumour immune 

response against fibrosarcoma, melanoma, bladder carcinoma, and adenocarcinoma, as compared 

to wild-type mice.565, 566 Moreover, treatment of tumour-bearing mice with an agonistic CD40 

antibody results in a reduction of tumour growth and metastasis due to an increase in tumour 

specific CTLs and natural killer (NK) cell activation.567, 568 

 The CD40/CD40L dyad exerts its anti-tumour function through indirect and direct 

mechanisms. The indirect mechanism involves activation of NK cells and tumour-specific CTLs 

that mediate tumour eradication.569 The direct mechanism is mediated through the activation of 

CD40 on tumour cells, which induces their up-regulation of pro-apoptotic mediators, thereby 

driving apoptotic cell death. The direct mechanism also involves the up-regulation of adhesion 

and MHC molecules on tumour cells following CD40 activation, which favours their recognition 

by anti-tumour immune cells.569 

 

2.5.3 Atherosclerosis 

Atherosclerosis is a chronic inflammatory disease of the arterial wall, and it is the major 

pathology at the root of cardiovascular diseases, including myocardial infarction, stroke and 

peripheral arterial disease.215 The atherosclerotic plaque is characterized by the accumulation of 

lipids, cells, cellular debris, calcium and extra-cellular matrix within the arterial wall.570 

Development and progression of an atherosclerotic lesion involve the contribution of immune (T 

lymphocytes, B lymphocytes, monocytes/macrophages, neutrophils, and mast cells) and non-

immune cells (vascular SMCs, endothelial cells, and platelets). Both CD40 and CD40L are 

expressed on these different cell types in the atherosclerotic lesion.463, 571 Interestingly, CD40 and 

CD40L are detected in the atherosclerotic lesions in the early stages of atherosclerosis, and their 

expression levels increase with plaque progression reaching highest expression levels in 

advanced, rupture-prone and ruptured plaques.571 

 The involvement of the CD40/CD40L dyad in atherosclerotic plaque development is 

supported by a substantial amount of evidence. For instance, treatment of hyperlipidemic low-

density lipoprotein (LDL) receptor deficient mice with an anti-CD40L blocking antibody has 

been shown to considerably decrease the size and lipid content of the atherosclerotic lesions.572, 

573 Moreover, CD40L deficiency or inhibition with a blocking antibody in ApoE-/- mice results in 

a 5.5 fold decrease in atherosclerotic plaque area, as well as an increase in the level of collagen 
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and SMCs, and a decrease in the lipid levels and the number of inflammatory cells within the 

atherosclerotic plaque.573, 574 Moreover, treatment of ApoE-/- mice with an anti-CD40L blocking 

antibody at the onset of atherosclerosis or after atherosclerosis establishment results in the 

formation of lipid-poor and collagen rich plaques, thereby demonstrating the involvement of 

CD40L in the initiation and progression of atherosclerotic plaques.575 Therefore, it seems that 

lack of CD40L favours the development of stable atherosclerotic plaques by removing its 

influence on the initiation, progression, and stability of the plaques. 

 

2.5.3.1 Plaque initiation 

Initiation of the atherosclerotic plaque is characterized by the retention and modification of 

LDLs in the arterial wall, which is subsequently followed by chemokines and adhesion 

molecules expression. Expression of these molecules favours monocytes, neutrophils and T 

lymphocytes recruitment at the lesion site and their consequential trans-endothelial migration.576 

The CD40/CD40L dyad plays a substantial role in mediating this process. However, the initial 

factors involved in the expression of members of this dyad on macrophages, endothelial cells, 

SMCs and T lymphocytes in the developing atherosclerotic lesion are still unclear. Oxidized 

LDLs (oxLDLs), pathogens (e.g. Chlamydia pneumonia), disturbed mechanical forces within the 

arterial lumen, and heat shock proteins (HSPs) are among the candidates driving CD40 and 

CD40L expression on these cell types at the onset of atherosclerotic plaque formation.463, 577 

Ligation of CD40 on endothelial cells by CD40L expressed on activated T lymphocytes or 

platelets induces pro-inflammatory and pro-atherogenic phenotypes of endothelial cells, which 

are characterized by the expression of adhesion molecules (P-selectin, E-selectin, ICAM-1, 

VCAM-1, and LFA-1) and secretion of cytokines and chemokines (MCP-1, MCP-3, MIP-1α, 

MIP-1β, MIP-3α, RANTES, IL-6, IL-8, and IL-15).367, 463, 578, 579 Thereby, favouring additional 

leukocyte recruitment, adhesion, and trans-endothelial migration at the lesion site. 

 

2.5.3.2 Plaque progression 

Progression of an atherosclerotic plaque into a complex lesion is distinguished by the formation 

of foam cells in the sub-endothelial space, which derive from phagocytosis of oxLDL particles 

by monocyte-derived macrophages. This is accompanied by the migration and proliferation of 

SMCs into the intima, ultimately forming a fibrous cap overlying a lipid-rich necrotic core, as 
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well as the formation of neovessels that sustain lesion growth. In the sub-endothelial space, 

interaction of CD40 on monocyte-derived macrophages with CD40L on infiltrating T 

lymphocytes induces the secretion of cytokines (IL-1β, IL-6, IL-12, and TNFα), and matrix 

degrading enzymes (MMP-1 and MMP-3) by macrophages, which favour SMCs proliferation 

and migration from the medial layer to the intima.485, 571 Additionally, ligation of CD40 on 

migrating SMCs induces the secretion of MCP-1, IL-1β, IL-6, and IL-8, all of which contribute 

to the progression of the atherosclerotic lesion.374, 571 Fibroblasts migrating from the adventitial 

layer into the atherosclerotic lesion also contribute to the progression of the atherosclerotic lesion 

by secreting chemoattractant cytokines, such as IL-6 and IL-8, following CD40 ligation.580 

 Irrigation of a developing atherosclerotic plaque is favoured by the formation of 

neovessels, which is greatly influenced by the CD40/CD40L dyad. Ligation of CD40 on 

endothelial cells and macrophages induces secretion of pro-angiogenic factors, namely growth 

factors (VEGF, FGF, and PAF) and MMPs (MMP-1, MMP-2, MMP-3, and MMP-9).368-371 

MMPs degrade the extracellular matrix, therefore allowing endothelial cells to infiltrate and to 

proliferate within the matrix, a process favoured by growth factors. 

 Accumulation of these events leads to the formation of a fibro-fatty plaque consisting of 

infiltrated leukocytes, foam cells, proliferating SMCs, extracellular matrix proteins, and lipid-

rich particles.581 

 

2.5.3.3 Plaque instability 

A stable atherosclerotic plaque is characterized by a thick fibrous cap containing a considerable 

amount of intact fibrillar collagen overlying a small necrotic core. On the other hand, a 

vulnerable or unstable rupture-prone atherosclerotic plaque is characterized by a thin fibrous cap 

containing scarce amounts of collagen overlying a large necrotic core.463 Rupture of a vulnerable 

atherosclerotic plaque exposes its thrombogenic necrotic core, as well as components of sub-

endothelial matrix, to the circulation leading to thrombus formation and the subsequent partial or 

complete occlusion of the affected vessel. The CD40/CD40L dyad promotes plaque instability 

by favouring thinning of the fibrous cap and contributing to the thrombogenicity of the necrotic 

core. 

 Thinning of the fibrous cap of an atherosclerotic plaque is due to a disturbance in the 

balance between extra-cellular matrix production and MMP secretion.582, 583 Activation of CD40 
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on SMCs, endothelial cells, and macrophages increases the production of MMP-1, MMP-2, 

MMP-3, and MMP-9.350, 351, 368, 376, 378 In addition, MMP-1, MMP-8, MMP-13 have been shown 

to co-localize with CD40 within human and experimental atherosclerotic lesions.584, 585 

Therefore, MMP accumulation within the atherosclerotic plaque favours degradation of the 

extracellular matrix, specifically interstitial collagen, which leads to fibrous cap thinning and 

plaque instability. 

 The CD40/CD40L dyad enhances the thrombogenic property of the atherosclerotic 

plaque by increasing its TF content. Indeed, CD40 activation on SMCs, endothelial cells, and 

macrophages increases TF expression, which is a potent stimulator of the coagulation process 

and platelet activation.350, 372, 377 Furthermore, CD40 ligation on endothelial cells decreases the 

expression of thrombomodulin, which is an anticoagulant factor that inactivates thrombin.586 

Finally, CD40L stimulates platelet activation and stabilizes thrombus formation through its 

interaction with the αIIbβ3 integrin, thereby enhancing thrombosis following plaque rupture.4, 307 

Figure 2.10 summarizes the role of the CD40L in atherothrombosis. 

 

         
Figure 2.10: Role of CD40L in atherosclerotic plaque initiation, progression and stability. Gaxiola E. (2012). 
Atherothrombosis. INTECH. p. 84. 
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2.5.4 sCD40L as a marker of cardiovascular diseases 

Given the significant contribution of the CD40/CD40L dyad to the initiation, development and 

instability of atherosclerotic lesions, in addition to the platelet origin of 95% of circulating 

sCD40L, the sCD40L has gained much attention in the scientific community as a probable 

predictor of cardiovascular diseases. Indeed, multiple clinical studies have assessed the 

correlation between the levels of circulating sCD40L and cardiovascular diseases, specifically in 

stable and acute coronary artery disease, stable and unstable angina and myocardial infarction 

(Table 2.4). Data from these studies showed increases in the level of circulating sCD40L in 

patients with acute myocardial infarction, unstable angina, or stable angina, as compared to 

healthy individuals.8, 10, 587-593 In addition, the levels of circulating sCD40L were shown to 

correlate with the severity of ACS.8, 591 Interestingly, the increase in the levels of sCD40L in 

these patients is independent of other important inflammatory markers, such as IL-6, soluble 

VCAM-1, soluble ICAM-1, C reactive protein, and troponin.588, 594 Therefore, the levels sCD40L 

could be used as a better diagnostic marker of cardiovascular events. 

 Multiple clinical studies have assessed the correlation between the levels of plasma 

sCD40L and complications related to cardiovascular diseases. For instance, the CAPTURE 

(c7E3 Fab anti-platelet therapy in unstable refractory angina) trial showed a 3 fold higher risk for 

cardiovascular death and acute myocardial infarction in patients with higher levels of sCD40L.595 

Additionally, the MIRACL (myocardial ischemia reduction with aggressive cholesterol 

lowering) study showed that elevated levels of sCD40L are an independent risk factor for 

reoccurring cardiovascular events.596 Moreover, individuals with a 3459A>G single nucleotide 

polymorphism within the CD40L gene have a higher risk of acute myocardial infarction 

incidence.590 Finally, a small study demonstrated that high plasma levels of sCD40L could 

predict increased restenosis following coronary angioplasty.597  

 Whether the elevated levels of circulating sCD40L is a cause or a consequence of the 

underlying cardiovascular disease is still inconclusive. Elevated sCD40L levels could either be 

the consequence of a higher degree of platelet activation in these patients, or the cause of disease 

development and the associated complications related to the disease. Therefore, further 

investigations are required to clarify the role of the CD40/CD40L dyad in cardiovascular disease. 
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Table 2.4: CD40L in stable and unstable coronary syndrome. (UA: unstable angina; SA: stable angina; AMI: acute 

myocardial infarction; CAD: coronary artery disease) 

Population Syndromes sCD40L levels 
 vs. control 

Reference 

26 patients with UA 
29 patients with SA 

19 controls  

UA 
SA 

↑ 
- 

 
Aukrust P. et al.8 

20 patients with UA 
10 patients with SA 

10 controls 

UA 
SA 

↑ 
↑ 

 
Wang Y. et al.593 

20 patients with UA 
24 patients with SA 

12 patients with AMI 
16 controls 

UA 
SA 

AMI 

↑ 
↑ 
↑ 

 
Yan J. et al.589 

15 patients with AMI 
12 patients with UA 
23 patients with SA 

30 controls 

AMI 
UA 
SA 

↑ 
↑ 
- 

 
Peng D. Q. et al.591 

15 patients with AMI 
25 patients with UA 
15 patients with SA 

12 controls 

AMI 
UA 
SA 

↑ 
↑ 
- 

 
Garlichs C. D. et al.10 

109 patients with AMI 
201 patients with stable CAD 

286 controls  

AMI 
Stable CAD 

↑ 
↑ 

 
Tousoulis D. et al.588 

204 patients with stable CAD 
189 controls 

CAD ↑ Tayebjee M. H. et al.592 

219 patients with AMI 
389 controls 

AMI ↑ Antoniades C. et al.587 
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Chapter 3 

The CD40/CD40L Axis in Platelets 
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3.1 Differential expression of the CD40/CD40L dyad in platelets 

As mentioned in the previous chapter, both members of the CD40/CD40L dyad are present in 

platelets. CD40 is constitutively expressed on the surface of resting or activated platelets, and its 

expression levels have been shown to slightly increase following platelet activation.2, 330 On the 

other hand, as for other cell types expressing CD40, it remains unclear whether CD40 is arranged 

as monomers or multimers on the platelet surface (see section 2.1.3 of chapter 2). 

 Unlike CD40, CD40L is not expressed on resting platelets, but upon activation by 

thrombin, collagen, or ADP, CD40L is translocated to the platelet surface. The expression of 

CD40L on platelets seems to coincide with α-granule secretion, which is characterized by P-

selectin expression and the release of granule contents (PF4, TGFβ, and PDGF), suggesting that 

CD40L is present within α-granules; however, further investigations are required to clarify this 

issue.330 Once on the platelet surface, CD40L is cleaved into its soluble 18 kDa form within 1 to 

2 hours of platelet activation, which accounts for approximately 95% of circulating plasmatic 

sCD40L levels. However, the mechanisms by which CD40L is cleaved on the platelet surface 

remain poorly characterized. MMP-9 has been shown to be involved in platelet CD40L cleavage, 

as its inhibition in Crohn disease patients significantly reduces CD40L shedding.598 In addition, 

it has been demonstrated that shedding of sCD40L from the platelet surface requires engagement 

of CD40.3 On the other hand, MMP-2 and its association with the αIIbβ3 integrin have been 

shown to be required for effective sCD40L release by activated platelets, given that the 

enzymatic activity of platelet MMP-2 depends on activation of the αIIbβ3 integrin.599-601 

Moreover, as for CD40L expressed and shed by T lymphocytes, CD40L is also expressed and 

shed as a trimer by platelets.3 

 Although the presence of the CD40L/CD40 dyad in platelets is now well established, the 

amount of information regarding its involvement in platelet function is scarce. Soluble CD40L 

has been shown to induce platelet activation, and secretion of ROS and the chemokine RANTES 

through binding of CD40.310, 360, 361 In contrast, sCD40L has been shown to activate platelets and 

stabilize thrombus formation in an αIIbβ3-dependent manner.4, 307 Moreover, platelet CD40L 

induces an inflammatory response in endothelial cells, which is characterized by chemokine and 

cytokine secretion and the expression of adhesion molecules.2 
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3.2 Platelet response following CD40 activation 

In 2001, the first hint for a functional role of CD40 in platelets was put into evidence, where its 

ligation was shown to be required for platelet release of sCD40L.3 In 2003, stimulation of resting 

platelets with sCD40L was shown to induce responses characteristic of platelet activation, such 

as P-selectin expression, platelet shape change, and formation of platelet/leukocyte aggregates.310 

These responses were shown dependent on CD40L/CD40 but not CD40L/αIIbβ3 interactions, as 

blockade of αIIbβ3 with epitifibatide does not affect them. Moreover, the formed 

platelet/leukocyte aggregates are due to the CD40L-induced expression of P-selectin on platelets 

and its interaction whit PSGL-1 on leukocytes, although CD40L expressed on T lymphocytes has 

been shown to bind platelet CD40.361 Activation of CD40 on resting platelets by sCD40L was 

later shown to induce the secretion of the chemokine RANTES and the production of ROS.360, 361 

These studies also show activation of the p38 MAPK in platelets following sCD40L stimulation; 

however, the involvement of TRAFs and the NF-κB signalling pathway in sCD40L-induced 

platelet responses were not evaluated. 

 

3.3 Platelet CD40L in thrombus formation 

As mentioned in the previous chapter, CD40L harbours a KGD motif, which allows its 

recognition by the αIIbβ3 integrin on platelets.4, 307 Mice deficient in CD40L (CD40L-/-) are 

presented with an in vivo defect in arterial thrombus stability and a delay in arterial occlusion 

time, despite not having a defect in initial adhesion of single platelets or the time required for 

first thrombus growth.4 Infusion of sCD40L into these mice corrects thrombus instability and 

reduces the arterial occlusion time, suggesting that CD40L is involved in the formation of stable 

and irreversible platelet aggregates. Furthermore, the effects of sCD40L on thrombus stability 

depend on its interaction with the αIIbβ3 integrin and not CD40; since injection of a mutated form 

of sCD40L that lacks αIIbβ3 binding dose not correct the haemostatic defects in CD40L-/- mice, as 

compared to its non-mutated form. Moreover, CD40 deficient mice do not exhibit a haemostatic 

defect, which further confirms the role of the CD40L/αIIbβ3 but not the CD40L/CD40 interactions 

in platelet aggregate stability. This CD40L/αIIbβ3 interaction was later shown to induce tyrosine 

phosphorylation within the cytoplasmic tail of the β3 subunit of the integrin, which ultimately 

mediates "outside-in" signals by the latter.307 In light of these studies, the CD40L/αIIbβ3 

interaction probably favours thrombus stability by inducing "outside-in" signals through αIIbβ3 
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that mediate Bcl-3 synthesis in platelets, which is involved in fibrin clot retraction, given that 

platelets from Bcl-3 deficient mice exhibit a defect in fibrin retraction and stabilization.602, 603 

 

3.4 Platelet CD40L in endothelial cell activation 

In 1998, a functional role for platelet CD40L was put into evidence for the first time.2 Ligation 

of CD40 on endothelial cells with CD40L on activated platelets was shown to induce 

inflammatory and pro-thrombotic responses in endothelial cells, which are characterized by the 

expression of adhesion molecules (E-selectin, VCAM-1, and ICAM-1) and TF, as well as the 

secretion of cytokines (MCP-1, IL-6, and IL-8) and MMP-9.2, 3 These cellular response induced 

by platelet CD40L on endothelial cells are of great importance in the development of 

atherosclerotic lesions. Indeed, as mentioned in the first chapter, platelets are among the first (if 

not the first) cells to be recruited to the atherosclerotic-prone sites and their interaction with the 

activated endothelium is essential for plaque development. This highlights the importance of the 

platelet CD40L and endothelial CD40 interaction in inflammation and atherosclerosis. 
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Hypothesis and Objectives 
Multiple lines of evidence now support the existence of a plethora of inflammatory mediators 

potentially involved in the pathogenesis of vascular disease. Among these, the CD40L/CD40 

dyad has gained much attention and circulating levels of sCD40L are now considered as reliable 

predictors of cardiovascular events. Although the presence of the CD40L/CD40 dyad in platelets 

is well defined, its exact involvement in platelet function remains elusive. Soluble CD40L has 

been shown to activate platelets and stabilize thrombus formation in an αIIbβ3-dependent manner. 

In contrast, sCD40L has been shown to induce platelet activation, and secretion of ROS and the 

chemokine RANTES through binding of CD40. Nonetheless, the physiological impact, and the 

cellular and molecular mechanisms involved in CD40L-induced platelet activation are still 

undefined. 

Hypothesis: Platelets play a central role in the development of cardiovascular diseases, and since 

platelets constitutively express CD40, elevated levels of circulating sCD40L, as seen in ACS 

patients, may activate quiescent platelets through CD40 and subsequently contribute to disease 

progression and complications. 

Objectives: 

1 -  To evaluate the in vitro effects of sCD40L on platelet activation and aggregation 

2 -  To determine the receptor on platelets on which sCD40L mediates its effects 

3 -  To elucidate the intracellular signalling pathways induced by sCD40L 

4 -  To evaluate the in vivo effects of elevated levels of circulating sCD40L on thrombus 

formation in a mouse model 

Expected results: 

1 -  sCD40L activates resting platelets and enhances platelet function 

2 -  sCD40L mediates its effects on platelet function via CD40 and the subsequent TRAF 

association   

3 -  Increased levels of circulating sCD40L exacerbate thrombus formation in response to 

vascular injury 
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Chapter 4 

Scientific Contribution 
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Background for the first article 

 

Since its discovery, the CD40/CD40L dyad has gained much attention within the scientific 

community. It has been shown to be involved in immune and inflammatory responses, and to 

have a broad expression pattern encompassing not only cells of the immune system, but also 

cells of the circulatory and vascular systems. Elevated levels of circulating sCD40L are tightly 

linked to incidence of cardiovascular diseases, which makes them potential diagnostic and 

preventative tools for future cardiovascular disease treatments. 

 Given that platelets express CD40 and account for 95% of circulating sCD40L, multiple 

studies have focused on the impact of the CD40/CD40L dyad on platelet function. However, the 

underlying cellular and molecular mechanisms by which this dyad affects platelet function, 

including platelet activation, aggregation, and in vivo thrombus formation remain poorly 

characterized; hence the objective of this study. 
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Abstract 

Objective—CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts 

cardiovascular events. Platelets constitute the major source of soluble CD40L (sCD40L), which 

has been shown to influence platelet activation, although its exact functional impact on platelets 

and the underlying mechanisms remain undefined. We aimed to determine the impact and the 

signaling mechanisms of sCD40L on platelets.  

Methods and Results—sCD40L strongly enhances platelet activation and aggregation.  Human 

platelets treated with a mutated form of sCD40L that does not bind CD40, and CD40-/- mouse 

platelets failed to elicit such responses. Furthermore, sCD40L stimulation induces the association 

of the tumor necrosis factor receptor-associated factor-2 with platelet CD40. Noticeably, 

sCD40L primes platelets through activation of the small GTPase Rac1 and its downstream target 

p38 mitogen-activated protein kinase, which leads to platelet shape change and actin 

polymerization. Moreover, sCD40L exacerbates thrombus formation and leukocyte infiltration in 

wild type mice but not in CD40-/- mice. 

Conclusion—sCD40L enhances agonist-induced platelet activation and aggregation through a 

CD40-dependant tumor necrosis factor receptor-associated factor-2/Rac1/p38 mitogen-activated 

protein kinase signaling pathway. Thus, sCD40L is an important platelet primer predisposing 

platelets to enhanced thrombus formation in response to vascular injury. This may explain the 

link between circulating levels of sCD40L and cardiovascular diseases. (Aretioscler Thromb 

Vasc Biol. 2010; 30:2424-2433) 

   

Key Words: platelets ■ signal transduction ■ thrombosis ■ CD40L 
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Multiple lines of evidence now support a plethora of inflammatory mediators potentially 

involved in the pathogenesis of vascular disease. Among these, the CD40 ligand (CD40L)/CD40 

dyad has been the focus of much attention and circulating levels of soluble CD40L (sCD40L) are 

now considered as reliable predictors of cardiovascular events.1-4 

 CD40L is a 48-kDa trimeric transmembrane protein belonging to the tumor necrosis 

factor superfamily originally identified on cells of the immune system.5, 6 Interaction of CD40L 

with its respective receptor on B cells, CD40, a 39-kDa glycoprotein from the tumor necrosis 

factor receptor family, is of critical importance for immunoglobulin isotype switching during the 

immune response.7 Today, we know that these two molecules are also present on cells of the 

vascular system, including endothelial cells, monocytes/macrophages, smooth muscle cells and 

platelets,8, 9 and have important implications in inflammatory reactions, through up-regulation of 

cell adhesion molecules and production of pro-inflammatory cytokines, chemokines, growth 

factors, matrix metalloproteinases and pro-coagulants.8, 10-12 The involvement of the 

CD40L/CD40 dyad in thrombo-inflammation has been highlighted in all pathogenic phases of 

atherosclerosis, including endothelial dysfunction, platelet activation, thrombosis, and neointima 

formation.13-20 

 Platelets are highly specialized blood cells of paramount importance in normal 

hemostasis and thrombo-inflammatory complications. The pioneering work of Heen et al. 

showed that both CD40L and its receptor CD40 are found in platelets.8 Whereas CD40 is 

constitutively expressed on platelets, CD40L rapidly appears on the platelet surface following 

activation, on which it is subsequently cleaved, generating a soluble fragment of 18-kDa, termed 

sCD40L, accounting for >95% of its plasmatic concentration.21 Circulating levels of sCD40L in 

patients have now emerged as strong indicators of cardiovascular risk, as there appears to be a 

significant correlation between levels of sCD40L and vascular complications such as 

atherosclerosis and acute coronary syndromes (ACS).2-4  

 Although the presence of the CD40L/CD40 dyad in platelets is well defined, its exact 

involvement in platelet function remains elusive. Andre and al. have shown that CD40L binds to 

αIIbβ3 and stabilizes arterial thrombi in mice,13 whereas others have shown that CD40L can 

induce platelet activation and secretion of reactive oxygen species and the chemokine RANTES 

through binding of CD40.14, 17, 22 Nevertheless, the physiological impact and the mechanisms 

involved in CD40L-induced platelet activation are poorly characterized. Here we show that 
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sCD40L primes and enhances agonist-induced activation and aggregation of human platelets 

through a CD40-mediated tumor necrosis factor receptor-associated factor (TRAF)-2/Rac1/p38 

mitogen-activated protein kinase (MAPK)-dependant pathway, which ultimately leads to platelet 

shape change and actin polymerization. Moreover, we show that enhanced levels of sCD40L 

exacerbate thrombus formation and leukocyte infiltration in response to vascular injury, in a 

CD40-dependant manner. 

 

Materials and Methods 

Reagents and antibodies 

Recombinant human soluble CD40L (sCD40L) was obtained from R&D systems           

(Minneapolis, MN), while recombinant mouse soluble CD40L (msCD40L) came from Alexis 

Biochemicals (San Diego, CA). Recombinant human mutant sCD40LR/Y (Arginin (R) 203 for 

Alanin and Tyrosin (Y) 145 for Alanin) and its wild type counterpart sCD40LWT were generated 

as previously described.23 Antibodies against TRAF-1, -2, -3, and -6 were all purchased from 

Cell Signaling Technology (Beverly, MA). Anti-CD40 antibody used for immunoprecipitation of 

human CD40 was also from R&D systems, while anti-CD40 antibody used for detection of 

CD40 by immunoblotting came from Santa Cruz Biotechnology (Santa Cruz, CA). Anti-

phospho-VASP (Ser157), anti-phospho-p38 (Thr180/Tyr182), anti-VASP (total) and anti-p38 (total), 

as well as the antibody against Rac1 were all procured from Cell Signaling Technology (Beverly, 

MA). Antibodies against P-selectin (AK4) and the active form of αIIbβ3 (PAC-1) were obtained 

from BD Biosciences (Mississauga, ON). The specific Rac1 NSC23766 inhibitor, the p38 

SB203580 inhibitor and the actin polymerization Latrunculin B inhibitor were purchased from 

Calbiochem (San Diego, CA). Alexa Fluor 555-phalloidin came from Invitrogen (Carisbad, CA). 

Protein A agarose beads were obtained from Upstate Biotechnology, Inc. (Lake Placid, NY) and 

p21-activated kinase-protein binding domain (PAK1-PBD) beads were from Cytoskeleton, Inc 

(Denver, CO). Native type I collagen and adenosine diphosphate (ADP) were from Chronolog 

Corp. (Havertown, PA), while human thrombin was purchased from Sigma-Aldrich (Oaskville, 

ON). 
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Animals 

Age- and sex-matched wild type (WT) and CD40-/- mice, both on C57BLK/J6 background, were 

purchased from the Jackson Laboratory (Bar Harbor, ME) and housed under pathogen free 

conditions. Handling and care of animals were in compliance with guidelines established by the 

animal care and ethical committee of the Montreal Heart Institute.      

 

Isolation of human and mouse platelets 

Venous blood was drawn from healthy volunteers, free from medication known to interfere with 

platelet function for at least 10 days before the experiment, in accordance with the guidelines of 

the human ethical committee of the Montreal Heart Institute. Platelet-rich plasma (PRP) was 

obtained by centrifugation of acid citrate dextrose (ratio of 1:5) anticoagulated blood at 200g for 

15 minutes. Platelets were then pelleted from PRP, to which 1 �g/mL of PGE1 was added, 

washed with HBSS-Hank’s sodium citrate buffer (138 mM NaCl, 5 mM KCl, 0.34 mM 

Na2HPO4, 0.4 mM KH2PO4, 4.2 mM Na2HCO3, 5.6 mM Glucose, 10 mM HEPES, 12.9 mM 

sodium citrate, pH 7.4), also containing PGE1 (0.5 �g/mL), and finally resuspended in HBSS-

Hank’s buffer containing 2 mM MgCl2 and 2 mM CaCl2. 

 Murine washed platelets were prepared from mice anesthetized with a mixture of 75 

mg/kg of Ketamine (Vetalar, Belleville, QC) and 0.5 mg/kg of medetomidine (Domitor, Pfizer, 

Kirkland, QC). Blood was drawn by cardiac puncture in 1-cc syringes containing 50 �L of 

heparin (1000 iU/mL) and diluted (1:1) with modified Tyrode’s buffer (150 mM NaCl, 2.5 mM 

KCl, 12 mM NaHCO3, 2 mM MgCl2, 2 mM CaCl2, 1 mg/mL BSA, 1 mg/mL dextrose, pH 7.4), 

containing prostacyclin (0.2 �g/mL). PRP was obtained by centrifugation of blood at 164g for 8 

minutes, to which prostacylin (0.1 �g/mL) was added, and platelets were pelleted by 

centrifugation at 1000g for 5 minutes. Platelets were finally resuspended in modified Tyrode’s 

buffer. 

 Human and mouse platelets were adjusted to 250 x 106 platelets/mL, unless otherwise 

specified, and allowed to rest at 37ºC for 30 minutes before further manipulation.  

 

Flow cytometry analysis of platelet activation 

Translocation of platelet P-selectin and activation of αIIbβ3 were measured by flow cytometry, as 

previously described.24 Platelets were preincubated with sCD40L prior to cell stimulation with 
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agonists, fixed with 1% paraformaldehyde, washed and stained with saturating concentrations of 

anti-P-selectin antibody (AK4-PE conjugated) for 30 minutes or its isotype-matched control IgG. 

For measurement of αIIbβ3 activation, PAC-1 antibody (FITC-conjugated) was incubated with 

platelet suspensions prior to activation with sCD40L and agonists. Samples were analyzed 

(20,000 events) on an Altra flow cytometer (Beckman Coulter, Mississauga, ON) and platelets 

were gated by their characteristic forward and side scatter properties.         

 

Measurement of platelet aggregation 

Aggregation of human and mouse washed platelets was monitored on a four-channel optical 

aggregometer (Chronolog Corp., Havertown, PA) under shear (1000 rpm) at 37ºC. sCD40L 

(human, mouse and the mutated R/Y and WT forms) was pre-incubated with platelet suspensions 

under static conditions at 37ºC, 30 minutes prior to addition of agonists, and traces were recorded 

until stabilization of platelet aggregation was reached.       

 

Immunoprecipatation of CD40  

Platelets (500 x 106/mL) were stimulated as indicated, pelleted, then lysed into ice-cold RIPA 

lysis buffer (1% NP-40, 0.25% deoxycholic acid, 150 mM NaCl, 50 mM Tris-HCl pH 7.4, 1 mM 

EDTA, 1 mM PMSF, 1 mM sodium-orthovanadate, 1 mM sodium fluoride, 1 μg/mL aprotinin, 1 

μg/mL leupeptin, and 2 μg/mL benzamidin) for 1 hour at 4ºC. Lysates were sonicated on ice and 

pre-cleared with 100 �L of protein A agarose beads for 15 minutes at 4ºC. Beads were then 

pelleted and the supernatant was incubated with 5 �g/mL of anti-CD40 antibody overnight at 

4ºC. Samples were treated with 100 �L of protein A agarose beads for 1 hour at 4ºC and 

precipitated by centrifugation, washed three time with ice-cold RIPA lysis buffer, resuspended in 

2X Laemmli buffer, and boiled for 5 minutes. Supernatants were analyzed by immunoblot for the 

presence of TRAF-1, -2, -3, and -6, as well as CD40. 

 

SDS-PAGE and immunoblotting 

Proteins were resolved in 8% or 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis 

(SDS-PAGE) gels and transferred to nitrocellulose membranes. The membranes were blocked 

with 5% non-fat dry milk for 1 hour, washed three times with TBS/T (150 mM NaCl, 20 mM 

Tris, pH 7.4, 0.1 % Tween-20) and incubated with appropriate primary antibody overnight at 
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4ºC. Following washing steps, membranes were labeled with horseradish peroxidase-conjugated 

secondary antibody for 1 hour, washed and bound peroxidase activity was detected by enhanced 

chemiluminescence (PerkinElmer Life Sciences, Waltham, MA). 

 

Rac1 activation assay 

Platelets (1 x 109/mL) were treated with sCD40L and reactions were terminated by addition of an 

equi-volume of ice-cold 2X lysis buffer (50 mM HEPES, 300 mM NaCl, 2% Igepal, 20% 

glycerol, 20 mM MgCl2, 50 mM sodium fluoride, 2 mM EDTA, 2 mM sodium orthovanadate, 20 

�g/mL leupeptin, and 20 μg/mL aprotinin). Lysates were then clarified by centrifugation at 

14,000g for 5 minutes at 4ºC and supernatants were treated with 10 μg of PAK1-PBD beads for 

1 hour at 4ºC. Beads were centrifuged and washed three times with ice-cold lysis buffer. They 

were then resuspended in 2X Laemmli sample buffer, boiled for 5 minutes, and supernatants 

were analyzed by immunoblotting for the presence of Rac1.  

 GDP and GTPγS were used as negative and positive controls, respectively. Supernatants 

from lysates were treated with either GDP (1 mM) or GTPγS (100 μM) for 15 minutes at room 

temperature, and reactions were terminated by placing samples on ice and adding MgCl2 (60 

mM). Samples were then clarified by centrifugation, incubated with PAK1-PBD beads, and 

treated with the same procedure as described above.        

 

Scanning electron microscopy 

Platelets treated or not with sCD40L were allowed to immobilize on 2% bovine serum albumin 

(BSA)-treated glass cover slips for 30 minutes at 37ºC. Samples were then fixed in 2% 

paraformaldehyde overnight at 4ºC. Dehydration of surfaces was achieved by placing samples in 

ethanol/water followed by amyl acetate/ethanol baths for 15 minutes each, increasing the 

ethanol/water proportion from 30% to 100% and the amyl acetate/ethanol proportion from 25% 

to 100%. Slides were subsequently coated with gold palladium particles and analyzed on a 

Hitachi S-4700 Field Emission Gun Scanning Electron Microscope (FEG-SEM).       

 

Actin polymerization assay 

Platelets treated or not with sCD40L in the presence or absence of Latrunculin B were allowed to 

immobilize on 2% BSA-treated glass cover slips for 30 minutes at 37ºC. Samples were then 
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fixed in 2% paraformaldehyde for 20 minutes at room temperature. Platelets were permeabilized 

with 0.05% Triton X-100 in 2% BSA and stained with Alexa555-phalloidin in 1% BSA for F-

actin detection. Series of fluorescent confocal images (Z stacks) were acquired with a LSM 510 

confocal microscope (Zeiss. Oberkochen, Germany). Alexa555-phalloidin was visualized using a 

543-nm helium-neon laser line and a 63�/1.4 plan-apochromat objective (Zeiss) was used for 

magnification (voxel size is 28 nm X 28 nm X 250 nm (X,Y,Z)). Final images were produced 

using the Zeiss LSM 510 software and saved as LSM files.  

 

Thrombosis model 

The effect of sCD40L on thrombus formation was determined in a FeCl3 mouse carotid injury 

model, as previously described.25, 26  Briefly, anesthetized C57BL6 WT and CD40-/- mice were 

injected with sCD40L (0.25 mg/Kg) through the jugular vein, 5 minutes prior to FeCl3 (4%) 

injury of the right carotid artery, and blood flow and time to thrombotic occlusion (blood flow of 

0 mL/minute) were measured with the aid of a miniature ultrasound flow probe (0.5 VB 552, 

Transonic Systems Ithaca, NY) interfaced with a flow meter (T206, Transonic Systems) and a 

computer-based data acquisition program (Iox 2.2.17.19, Emka, Falls Church, VA). Mouse 

plasmatic sCD40L was measured by ELISA (Bender MedSystems, San Diego, CA), according to 

the manufacturer’s instructions.    

 

Histology and Immunostaining   

Following in vivo thrombosis measurements in mice, injured and contralateral non-injured 

carotid arteries were excised, fixed in 10% buffered formalin and analyzed by hematoxylin and 

eosin staining or CD45 immunostaining for leukocytes infiltration within the thrombus mass, as 

previously described.25 Briefly, sections were embedded in paraffin, sectioned at 6 microns, and 

stained with hematoxylin and eosin, or an anti-CD45 antibody (Santa Cruz, Santa Cruz, CA). 

Samples were visualized using an Olympus BX60 microscope (Olympus imaging America Inc, 

Center Valley, PA) and images were captured with a Retiga 2000R camera (QImaging 

Corporation, Surrey, BC) and visualized through the Image Pro Plus 6.2 software (Media 

Cybernetics, Bethesda, MD). 
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Measurement of intracellular calcium flux 

Platelets in HBSS-Hank’s sodium citrate buffer were incubated with 5 μg/ml Fluo-4 AM for 30 

minutes at 37°C. Platelets were then removed from excess Fluo-4 AM by centrifugation and 

resuspended in final HBSS-Hank’s buffer containing 2 mM MgCl2 and 2 mM CaCl2. Platelets 

were then placed onto a FluoroDish and mounted on a LSM 510 confocal microscope (Zeiss. 

Oberkochen, Germany). sCD40L (1 μg/ml) or thrombin (0.1 U/ml) was added to the platelet 

suspension and series of fluorescent confocal images were acquired in real-time at a rate of 30 

images/second (excitation wavelength selected was 488 nm). 

 

Dense granule release 

ATP release was measured by a Lumi-Aggregometer according to the manufacturer’s 

instructions (Chrono-log Corp. Havertwon, PA). Briefly, 25 μl Luciferin-Luciferase (Chrono-

Lume) reagent was added to a 475 μl platelet suspension 2 minutes before addition of sCD40L (1 

μg/ml) or thrombin (0.1 U/ml). 

 Dense granule release was measured by mepacrine uptake into platelets.27 Platelets in 

HBSS-Hank’s sodium citrate buffer were incubated with 5 μM mepacrine (Quinacrine 

dihydrochloride, Sigma-Aldrich) for 30 minutes at 37°C. Platelets were then removed from 

excess mepacrine by centrifugation and resuspended in final HBSS-Hank’s buffer containing 2 

mM MgCl2 and 2 mM CaCl2. Secretion of dense body constituents was evaluated by flow 

cytometry as the fluorescence remaining in platelets upon stimulation with sCD40L or thrombin; 

in comparison to resting platelets.  

 

Statistical analysis 

Results are presented as mean ± SEM of at least 3 independent experiments. Statistical 

comparisons were done using a one-way ANOVA, followed by a Dunnetts-t-test for comparison 

against a single group. Data with P<0.05 were considered statistically significant. 
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Results 

sCD40L Enhances Platelet Activation and Aggregation Through Interaction With CD40 

We first evaluated the functional effects of sCD40L on platelet activation and aggregation, as it 

remains poorly characterized. Incubation of platelets with sCD40L alone had no effect on 

platelet aggregation (Figure 1A, upper panel) but led to a significant and dose-dependent 

increase of platelet aggregation induced by a subthreshold or priming concentration of collagen, 

thrombin or ADP (Figure 1A), indicating that this is a broad platelet phenomena and not agonist-

specific. As sCD40L showed a significant impact on platelet aggregation, we sought to 

determine its effect on platelet activation. As expected, sCD40L was unable to trigger activation 

of αIIbβ3 on resting platelets, whereas it caused a significant increase in P-selectin expression 

(Figure 1B). However, αIIbβ3 activation and P-selectin expression were both significantly 

enhanced in the presence of subthreshold concentrations of collagen, thrombin and ADP.  

 Because it has been shown that αIIbβ3, in addition to CD40, can constitute a CD40L 

receptor on the platelet surface,13, 28 it was imperative to investigate through which receptor 

sCD40L acts. To address this issue, we first generated a mutant recombinant sCD40L 

(sCD40LR/Y), that does not bind CD40 while retaining αIIbβ3 binding (Supplemental Figure I) and 

showed that this molecule failed to enhance platelet aggregation induced by a priming 

concentration of collagen compared to its WT counterpart (sCD40LWT) (Figure 1C). Second, 

unlike platelets from WT mice, platelets from CD40-/- mice were insensitive to mouse sCD40L 

in response to a subthreshold concentration of collagen (Figure 1D). These data clearly show that 

sCD40L enhances platelet function through interaction with its counterreceptor CD40. 

 

sCD40L Triggers TRAF-2 Association With CD40 

It is well established that the TRAF family is tightly linked to CD40 signaling in immune cells. 

The TRAF family comprises six known members, among which TRAF-1, -2, -3 and -6 have 

been the most studied, although their expression in platelets is yet to be determined. We 

therefore investigated the expression of the major TRAF members and their association with 

CD40 on sCD40L stimulation. Interestingly, we found that in addition to CD40, platelets express 

TRAF-1, -2, and -6, and traces of TRAF-3 were detected (Figure 2A). Most importantly, only 

TRAF-2 associates with CD40 after stimulation of resting platelets with sCD40L, whereas none 

of these members were shown to be associated with CD40 at baseline conditions (Figure 2A and 
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2B). In addition, sCD40LWT, but not sCD40LR/Y, caused association of TRAF-2, further 

supporting the contribution of CD40 in response to sCD40L. 

 

sCD40L Induces Platelet Shape Change and Actin Polymerization 

In search of the underlying cellular and molecular events involved in the effects of sCD40L on 

platelet function, we first found that stimulation of resting platelets with sCD40L caused a 

significant morphological shape change characterized by an increase in lamellipodia and 

filopodia formation (Figure 3A).  Second, sCD40L induced actin polymerization, as noted by the 

increase in F-actin staining in treated platelets (Figure 3B). To determine the implication of these 

cytoskeletal and morphological changes in sCD40L-induced potentiation of platelet aggregation, 

we pretreated platelets with latrunculin B, a specific inhibitor of actin polymerization, and found 

that it completely reversed sCD40L’s capacity to increase platelet aggregation (Figure 3C and 

3D). 

 

The Small GTPase Rac1 and p38 MAPK Are Required for sCD40L Signaling  

The Rho family GTPase member Rac1 and the VASP represent key signaling components 

required for cytoskeletal reorganization and shape change in platelets. Phosphorylation of VASP, 

particularly at Ser157, regulates its anticapping activity and thereby promotes platelet filopodia 

formation.29 As shown in Figure 4A, stimulation of resting platelets with sCD40L, but not with 

sCD40LR/Y, induced phosphorylation of VASP on Ser157 and activation of Rac1. To assess the 

implication of the small GTPase Rac1, we used a specific Rac1 inhibitor, NSC23766. 

Pretreatment of platelets with NSC23766 significantly reversed sCD40L’s ability to enhance 

platelet aggregation (Figure 4B) and P-selectin expression (Figure 4C) in resting platelets.  

 Activation of p38 MAPK is of significant importance in CD40 signaling, and in platelets 

it could therefore act as a downstream target of Rac1 in response to sCD40L. In fact, sCD40L 

induced a time-dependent activation of p38 MAPK and inhibition of Rac1 with NSC23766 

significantly reduced its activation, indicating that p38 MAPK does indeed act as a downstream 

target of Rac1 (Figure 5A). Furthermore, specific blockade of p38 MAPK with SB203580, 

which prevented its phosphorylation (Supplemental Figure II), impaired the effects of sCD40L 

on platelet P-selectin expression (Figure 5B) and aggregation (Figure 5C), thus highlighting its 
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implication in these responses. These data establish Rac1 and its downstream effector p38 

MAPK as key components involved in sCD40L signaling in platelets. 

 

sCD40L Exacerbates Thrombus Formation and Leukocyte Infiltration  

To date, no direct correlation between circulating levels of sCD40L and thrombosis has been 

established, and this could be of important clinical and physiopathological relevance. In order to 

explore this aspect, we injected sCD40L (0.25 mg/kg or approximately 5 µg/mouse) into WT 

and CD40-/- mice before vascular injury, thereby enhancing its plasma circulating levels to 47.5 ± 

3.7 ng/mL (n=4), and assessed thrombus formation. Infusion of sCD40L into WT mice 

significantly exacerbated thrombus formation, in comparison to vehicle-treated mice, in which 

occlusion was only partial (Figure 6). Interestingly, CD40-/- mice were protected from increased 

levels of circulating sCD40L, as no significant difference in thrombosis between treated and non-

treated groups was observed (Figure 6A and 6B), confirming the in vivo contribution of the 

CD40 receptor in sCD40L-induced thrombus formation. Because sCD40L induces surface 

expression of P-selectin on platelets (Figure 1B), we sought to determine the extent of leukocyte 

infiltration within the thrombus because of its involvement in platelet/leukocyte interactions, a 

well-established aspect of hemostasis known to potentiate thrombus formation.30 Leukocyte 

infiltration, as measured by CD45 immunostaining (Figure 6C) and optical quantification of 

histological sections post-thrombosis (Figure 6D), was significantly increased in WT but not in 

CD40-/- mice that received sCD40L. These results establish a direct in vivo correlation between 

circulating levels of sCD40L and arterial thrombosis, while highlighting the requirement of the 

CD40 receptor in this process.  

 

Discussion 

CD40L has gained much attention over the years for its involvement in the pathogenesis of 

atherosclerosis and today, numerous clinical studies show a tight association between levels of 

sCD40L and vascular diseases.1-4 The majority of sCD40L found in plasma is believed to 

originate from activated platelets, and this in turn has been shown to influence platelet activation. 

Here, we provide novel insights into the regulation of platelet function by CD40L, as we show 

that sCD40L primes platelets and enhances aggregation through a CD40-mediated TRAF-

2/Rac1/p38 MAPK-dependant pathway. This ultimately leads to shape change and actin 
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polymerization. Furthermore, we establish a direct correlation between circulating levels of 

sCD40L and thrombus formation. 

 To get insights into the cellular and molecular impact of sCD40L on platelet function, it 

was important that we first investigate its effect on platelet aggregation and activation. sCD40L 

was unable to trigger aggregation of resting platelets or to induce activation of the integrin αIIbβ3, 

whereas it significantly increased the expression of P-selectin, in accordance with previous 

studies.14, 17, 22 This may attributed to the fact that sCD40L alone does not affect intraplatelet 

calcium influx (Supplemental Figure III) or dense granule secretion, as assessed by ATP release 

and mepacrine uptake (Supplemental Figure IV), which are necessary for integrin activation and 

platelet aggregation.  However, we found that sCD40L strongly enhanced platelet aggregation, 

P-selectin expression and αIIbβ3 activation in response to subthreshold concentrations of platelet 

agonists, indicating that it rather acts as a broad and potent primer of platelets, such as matrix 

metalloproteinase-2, plasma protein growth arrest-specific 6 and stromal derived factor-1α.31-33 

Moreover, this priming phenomenon holds true for B cell proliferation, as sCD40L requires 

costimulation with interleukin-4 for immunoglobulin E secretion.34, 35 Taken together, this would 

indicate that CD40L acts as an accessory, but important, element in platelet function. 

 One important aspect of controversy regards the identification of the platelet receptor for 

sCD40L. In our study, we were able to show by molecular and genetic approaches that sCD40L 

enhances platelet function by interacting with CD40. These results are in agreement with 

previously published data showing that sCD40L can induce platelet activation and secretion of 

reactive oxygen species and the chemokine RANTES through binding to CD40.14, 17, 22 In 

addition to CD40, its constitutively expressed receptor on platelets, it has been reported that 

sCD40L binds to αIIbβ3.13, 28 However, this occurs in the presence of 40 µg/mL of rsCD40L on 

preactivated platelets (αIIbβ3 already in its active form), which is 40 times higher than the 

concentration used in the present study. This may suggest that CD40 and αIIbβ3 constitute the 

high- and low-affinity receptors for sCD40L, respectively. However, additional studies are 

necessary to specifically address this issue. Thus, it appears that increased levels of circulating 

sCD40L, as seen in ACS patients, prime platelets via CD40, whereas its interaction with αIIbβ3 at 

the site of vascular injury, where higher levels of sCD40L may be generated, stabilizes platelet 

aggregates. 
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 CD40 signaling in immune and endothelial cells requires its association to TRAF 

proteins. To our knowledge, the expression of TRAF members in platelets and their association 

with platelet CD40 following sCD40L stimulation are still unknown. Here, we found that only 

TRAF-2 associates with CD40 upon ligation, indicating that it may be responsible for 

sCD40L/CD40-induced signaling in platelets. Although present in platelets, neither TRAF-1 nor 

TRAF-6 associate with CD40, indicating that they may rather play a role in tumor necrosis factor 

signaling. Even though CD40 contains binding sites for both TRAF-2 and TRAF-6, binding of 

either one is sufficient to induce activation of nuclear factor-�B in B cells.36 This would also hold 

true for platelets, as binding of TRAF-2 alone appears sufficient to trigger downstream signaling.  

 In platelets, Rac1 and VASP govern shape change, cytoskeletal reorganization and 

spreading, through lamellipodia and filopodia formation, respectively. VASP is typically 

phosphorylated on two main residues, Ser239 and Ser157. Platelet inhibitors induce 

phosphorylation of both residues, whereas agonists that cause platelet activation trigger 

phosphorylation of VASP on Ser157, thereby promoting anticapping activity and favoring actin 

polymerization and filopodia formation.37, 38 Our finding that sCD40L promotes phosphorylation 

of VASP on Ser157 provides evidence for its role as an inducer of shape change in platelets. As 

further support for the role of sCD40L in these processes, we highlight its capacity to induce 

activation of the small GTPase Rac1. Rac1 activation in response to sCD40L was shown to be of 

physiological importance, given that its specific inhibition significantly reduced sCD40L’s 

ability to potentiate platelet aggregation and P-selectin expression. Interestingly, in accordance 

with our results, it has recently been shown that in endothelial and WEHI 231 B cells, CD40 

signaling-induced reactive oxygen species generation requires activation of Rac1.19, 39 Moreover, 

in immune cells, CD40L is classically known to induce activation of MAPKs, such as p38. Here, 

we were able to confirm that sCD40L induces activation of p38 MAPK in resting platelets, 17, 22 

and further highlight its involvement in platelet activation and aggregation as a downstream 

effector of Rac1 in response to sCD40L. Consistent with its role in sCD40L-induced shape 

change and platelet priming, p38 MAPK has been shown to be an important regulator of actin 

polymerization and platelet spreading.40 

 Whether enhanced levels of sCD40L seen in patients with ACS are a consequence of 

increased platelet activation or a predetermining cause of these complications (or perhaps both) 

is still unknown. Here, we provide novel evidence demonstrating a direct correlation between 
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enhanced levels of sCD40L and thrombosis. Mice that received sCD40L prior to vascular injury 

showed increased thrombus formation, indicating that they were predisposed to thrombotic 

stimulus. Our study adds new insights to a previous work showing that CD40L-/- mice develop 

unstable thrombi and that this deficiency can be overcome by infusion of 1.6 mg/kg sCD40L in a 

αIIbβ3-dependent manner.13 Here, a different approach was employed, as we increased circulating 

levels of sCD40L in mice by injecting 0.25 mg/kg to reach approximately 50 ng/mL of plasma 

sCD40L, to mimic conditions similar to those seen in patients with ACS. In this experimental 

setting, sCD40L was shown to exacerbate thrombosis in WT mice but not in CD40-/- mice, 

indicating that enhanced levels of sCD40L prime resting platelets in a CD40-dependent manner, 

predisposing them to enhanced thrombus formation. Because CD40-/- mice do not show a defect 

in thrombus formation, it is likely that CD40 is not essential for platelet hemostasis in the 

absence of significant levels of sCD40L but rather has a pathological importance in 

atherothrombosis in the presence of elevated levels of circulating sCD40L as seen in patients 

with ACS. Given that sCD40L induces platelet P-selectin expression, which is involved in 

platelet/leukocyte interactions14, 17, 20  and stabilization of thrombus mass,30 we measured the 

extent of leukocyte infiltration within the thrombus. We found significantly more leukocytes 

within the thrombus of sCD40L-treated mice, presumably accounting for the increase in 

thrombus formation seen in these animals, concomitantly with enhanced platelet predisposition 

to activation and aggregation in response to vascular injury.  

 Elevated levels of sCD40L are associated with increased cardiovascular risk, as seen in 

patients with ACS, such as unstable angina41 and acute myocardial infarction.3 However, the 

relative importance of the soluble form versus the membrane-bound form in thrombus formation 

is still unknown. It is likely that both forms are involved in primary hemostasis, whereas under 

pathological conditions, thrombosis is exacerbated by increased levels of the soluble form. 

Nevertheless, the involvement of CD40L in atherogenesis, thrombus formation, platelet-

mediated inflammation, and plaque destabilization makes it a potential therapeutic target in 

atherothrombosis. Accordingly, it would be pertinent for future clinical studies to evaluate the 

degree of platelet priming in ACS patients, specifically through sCD40L-induced TRAF-2 

association with CD40, for instance. Hence, a direct clinical link between sCD40L and platelet 

function could be established for pharmacological targeting.  
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 In summary, aside from this newly identified TRAF-2/Rac1/p38 MAPK pathway 

involved in  platelet priming in response to sCD40L, we highlight the relevance of sCD40L in a 

physiopathological setting of platelet function and thrombus formation. Indeed, enhanced levels 

of sCD40L potentiate platelet aggregation and exacerbate thrombus formation and leukocyte 

infiltration in response to vascular injury, in a CD40-dependant manner. This study provides 

novel evidence for the regulation of platelet function by sCD40L and may partly explain the link 

between levels of circulating sCD40L and the occurrence of cardiovascular complications. The 

CD40L/CD40 axis may ultimately represent a therapeutic target in the treatment of thrombo-

inflammatory diseases. 
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Figure legends 

Figure 1: sCD40L enhances platelet activation and aggregation through interaction with 

CD40. A, Dose-dependent effect of sCD40L on platelet aggregation. Platelets were preincubated 

with the indicated concentrations of sCD40L for 30 minutes at 37ºC, and aggregation was 

induced by a priming dose of collagen (0.25 μg/mL). Upper aggregation traces show the effect of 

sCD40L alone (1 μg/mL). Histogram represents the mean of data of platelet aggregation in 

response to sCD40L alone (no agonist) or in the presence of a priming (low) dose of collagen 

(0.25 μg/mL), thrombin (0.02 U/mL), or ADP (5 μM). High doses of agonists (5 μg/mL 

collagen, 0.5 U/mL thrombin, or 20 µmol/L ADP) were used as positive controls (n=5; *P<0.05 

versus low dose). B, Effect of sCD40L on P-selectin (CD62P) expression and αIIbβ3 activation, as 

assessed by flow cytometry. Left plots represent resting platelets (- collagen: gray for baseline, 

black for sCD40L). Right plots represent platelets in the presence of a priming concentration of 

collagen (+ collagen: gray for priming dose of collagen, black for priming dose + sCD40L, and 

white for high-dose collagen alone, as positive control). Histograms represent the mean of data 

of plots for CD62P expression and αIIbβ3 activation in response to sCD40L alone (no agonist) or 

in the presence of a priming (low) dose of collagen (1 μg/mL), thrombin (0.02 U/mL), or ADP (5 

μM). High doses of agonists (collagen 5 μg/mL, thrombin 0.5 U/mL or ADP 20 μM) were 

employed as positive controls (n=5; †P<0.05 versus baseline and *P<0.05 versus low dose). C, 

Effect of recombinant mutant sCD40LR/Y and sCD40LWT on human platelet aggregation. 

Platelets were incubated with 1 μg/mL of sCD40LR/Y or sCD40LWT for 30 minutes at 37ºC, and 

aggregation was induced by a priming dose of collagen (0.25 μg/mL). sCD40L was employed as 

a positive control. D, Effect of mouse (m) sCD40L on WT and CD40-/- mouse platelet 

aggregation. Platelets were incubated with msCD40L (1 μg/mL) for 30 minutes at 37ºC, and 

aggregation was induced by a priming concentration of collagen (1 μg/mL). Data in parentheses 

shown in C and D represent the mean ± SEM of n=4. 

 

Figure 2:  sCD40L induces TRAF-2 association with CD40. A, Representative blots of lysates 

from resting (baseline) or sCD40L (1 μg/mL)-stimulated platelets immunoprecipitated using an 

anti-CD40 monoclonal antibody and analyzed by SDS-PAGE for TRAF-1, -2, -3, and -6. B, 

Histogram represents the mean of data of blots in A, expressed as arbitrary units of optical 

density (n=5; *P<0.05 versus baseline). C, CD40 was immunoprecipitated from lysates of 
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resting (baseline), or 1 μg/mL of sCD40LR/Y or sCD40LWT stimulated platelets. 

Immunoprecipitates were then analyzed by SDS-PAGE for TRAF-2. Blot shown is 

representative of 4 independent experiments. 

 

Figure 3:  sCD40L induces platelet shape change and actin polymerization. A, Scanning 

electron micrographs of resting (baseline), sCD40L, sCD40LWT, and sCD40LR/Y (all at 1 

μg/mL)-stimulated platelets at low (top: �2,500) and high (bottom: �30,000) magnifications. 

Images are representative of 4 independent experiments. B, Actin polymerization in resting 

(baseline) and in sCD40L (1 μg/mL)-treated platelets, with or without 10 μmol/L latrunculin B 

(Lat), as assessed by confocal microscopy. Images are representative of 3 independent 

experiments. C, Platelets were preincubated with latrunculin B (10 μmol/L) or vehicle dimethyl 

sulfoxide for 15 minutes at 37ºC. Cells were then left unstimulated (control) or incubated with 

sCD40L (1 μg/mL) and aggregation was triggered by a priming dose of collagen (0.25 μg/mL). 

D, Represents the mean of data of traces in C (n=3; *P<0.05).  

 

Figure 4:  The Rho-GTPase Rac1 is required for sCD40L signaling. A, VASP 

phosphorylation and Rac1 activation were detected from platelets left untreated (baseline) or 

incubated with sCD40L (1 μg/mL) for the indicated time. Control experiments were performed 

in parallel with 1 µg/mL of sCD40LR/Y and sCD40LWT after 30 minutes stimulation. Blots are 

representative of 4 independent experiments. B, Effect of Rac1 inhibition on sCD40L-induced 

potentiation of platelet aggregation. Platelets were preincubated with the Rac1 inhibitor 

NSC23766 (50 �mol/L) or vehicle demethyl sulfoxide for 15 minutes at 37 ºC. Cells were then 

left unstimulated (control) or incubated with sCD40L (1 μg/mL). Aggregation was then monitor 

in the presence of a priming dose of collagen (0.25 μg/mL).  Histogram represents the mean of 

data of aggregation traces (n=4; *P<0.05 versus sCD40L). C, Platelets were left untreated 

(baseline) or incubated with sCD40L (1 μg/mL) with or without NSC23766 (50 �mol/L) and 

assessed by flow cytometry for CD62P expression. Histogram shows the mean data of overlay 

plot (n=3; *P<0.05 versus sCD40L). 

 

Figure 5:  The p38 MAPK is an important Rac1 downstream target in response to sCD40L. 

A, Platelets were left untreated (time 0) or stimulated with sCD40L (1 μg/mL), with or without 
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NSC23766 (50 �mol/L), for the indicated time and assessed for p38 MAPK phosphorylation by 

SDS-PAGE. Results are expressed as fold increase in optical density (O.D.) over time 0 (n=4; 

*P<0.05). B, Platelets were left unstimulated (baseline) or incubated with sCD40L (1 μg/mL), 

with or without the p38 MAPK inhibitor SB203580 (5 �mol/L) and assessed for CD62P by flow 

cytometry. Histogram represents the mean of data of overlay plot (n=5; *P<0.05 versus 

sCD40L). C, Platelets were preincubated with SB203580 (5 �mol/L) or vehicle demethyl 

sulfoxide for 15 minutes at 37ºC. Cells were then left unstimulated (control) or incubated with 

sCD40L (1 μg/mL), and aggregation was then induced by a priming dose of collagen (0.25 

μg/mL). Histogram represents the mean of data of aggregation traces (n=4; *P<0.05 versus 

sCD40L). p-p38 indicates phosphorylated p38 

 

Figure 6:  sCD40L exacerbates thrombus formation and leukocyte infiltration. A, WT and 

CD40-/- mice were injected with sCD40L (0.25 mg/kg) or vehicle (control) prior to FeCl3-

induced injury of the right carotid artery, and thrombus formation was monitored by residual 

blood flow measurements. Traces are representative of 6 mice/group (*P<0.05 versus control). 

B, Representative histological sections stained with hematoxylin–eosin and observed by optical 

microscopy (magnification, �20). C, CD45-positive cells, observed by immunostaining of the 

injured carotid arteries, were mainly detectable in sCD40L-treated WT mice (arrows), indicative 

of leukocyte incorporation within the thrombus mass (magnification, �40). D, Histogram shows 

quantitative measurements of leukocytes/thrombus section (n=6, *P<0.05 versus WT).   
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Supplemental Figure I 

 

 
 

Supplemental Figure I: Specific binding of CD40 ligand to CD40- or αIIbβ3-coated well plates. Plates were 
coated with 4 μg of soluble hCD40 or αIIbβ3 overnight at room temperature. After extensive washing, plates were 
blocked with 1% BSA, then recombinant soluble hsCD40L wild type (WT) or hsCD40L R/Y was added overnight 
at a concentration of 100 ng/mL. A polyclonal anti-hCD40L-biotinylated antibody was used followed by addition of 
striptavidin-HRP. The signal was detected by addition of TMB substrate. The reaction was halted by the addition of 
1N H2SO4. Optical density (O.D.) was then measured by spectrophotometry. 
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Supplemental Figure II 

 

 
 

Supplemental Figure II: Effect of SB203580 (0.1 μM -10 μM) on sCD40L-induced p38 MAPK 
phosphorylation. Resting platelets were preincubated with the indicated concentration of SB203580 for 15 minutes 
at 37ºC or left untreated, and then stimulated with sCD40L (1 μg/mL). Total platelet lysates were analyzed by SDS-
PAGE for phospho-p38 MAPK. Blot shown is representative of 3 independent experiments. 
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Supplemental Figure III 

 

 
 

Supplemental Figure III: Effect of sCD40L on intracellular calcium flux. Intracellular calcium was measured by 
Fluo-4 AM fluorescence by real-time confocal microscopy following stimulation of platelets with either sCD40L (1 
μg/mL) or thrombin (0.5 U/mL), as described in materials and methods. Tracings are representative of 3 
experiments. 
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Supplemental Figure IV 

 

 
 

Supplemental Figure IV: Effect of sCD40L on platelet dense granule secretion. A, ATP secretion as measured 
by Luciferase assay (Chrono-Lume, Chrono-log). Results are expressed as a measure of increase in luminescence. 
Blot is representative of 3 independent experiments. B, Dense granule secretion was evaluated by measuring the loss 
of mepacrine fluorescence following activation by sCD40L (1 μg/mL) or thrombin (0.5 U/mL); in comparison to 
untreated cells which was set as 100% fluorescence (n=3; *P< 0.05 vs. baseline). 
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Supplemental Figure V 

 

 
 

Supplemental Figure V: Effect of sCD40L on high dose collagen. Washed platelets were incubated with sCD40L 
(1 μg/mL) or left untreated for 30 minutes at 37°C, then stimulated with collagen (aggregation: 2 μg/mL; flow 
cytometry: 5 μg/mL), and assessed by optical aggregometry and flow cytometry for CD62P expression and αIIbβ3 
activation, as described in materials and methods. 
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Background for the second article 

 

In our first study we demonstrated that sCD40L enhances platelet activation and aggregation in 

response to subthreshold concentrations of platelet agonists, including thrombin, collagen and 

ADP, through a CD40-dependent TRAF2/Rac1/p38 MAPK signalling pathway. We also showed 

that increased levels of circulating sCD40L, as seen in ACS patients, exacerbates thrombus 

formation and leukocyte infiltration within the thrombus mass in a CD40-dependent manner. 

 In B lymphocytes, it is well documented that CD40 induces activation of the NF-κB 

signalling pathway through either TRAF2 or TRAF6. In platelets, the members of the NF-κB 

family have recently been identified and shown to be involved in platelet activation and 

aggregation. However, their role in platelet CD40 signalling remains unknown; hence the 

objective of this study. 

 



123 
 

Authors contributions 

 

Ahmed Hachem: Planning and execution of all the experiments in this article except (Figure 

4B). Writing and editing the article. 

 

Daniel Yacoub: Planning and execution of the aggregation experiments (Figure 4B). Intellectual 

input and editing the article. 

 

Younes Zaid: Platelet isolation for aggregation experiments and editing the article. 

 

Walid Mourad: General co-direction. Participated in the interpretation of the results, helped in 

editing the article. 

 

Yahye Merhi: General direction. Designed the study, analysed the data, provided intellectual 

input and helped in editing the article. 

  



124 
 

Involvement of nuclear factor κB in platelet CD40 signaling 

 
Ahmed Hachem a, Daniel Yacoub a,c, Younes Zaid a, Walid Mourad b,c, Yahye Merhi a,b,* 

 
a Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 5000 Belanger, Montréal, Québec, 

H1T 1C8, Canada 

  
bUniversité de Montréal, Department of Medicine, 2900 boul. Édouard-Montpetit, Montréal, Québec, 

H3T 1J4, Canada 

 
cCentre Hospitalier Université de Montréal, 264 boul. René-Lévesque est, Montréal, Québec, H2X 1P1, 

Canada  

  
* Corresponding author at: Laboratory of Thrombosis and Hemostasis, Montreal Heart Institute, 

5000 Belanger, Montréal, Québec, Canada, H1T 1C8; Tel: +1 514 376-3330 ext. 3035; Fax: +1 

514 376-1355; E-mail: (Y. Merhi). 

 

Abbreviations: TNF, tumor necrosis factor; sCD40L, soluble CD40 ligand; TRAF, tumor 

necrosis factor receptor-associated factor; NF-κB, nuclear factor κB; MAPK, mitogen-activated 

protein kinase; JNK, c-jun amino terminal kinase; ERK, extracellular signal-regulated protein 

kinase; SNAP-23, synaptosomal-associated protein 23. 

  



125 
 

Abstract 

CD40 ligand (CD40L) is a thrombo-inflammatory molecule that predicts cardiovascular events. 

Platelets constitute the major source of soluble CD40L (sCD40L), which has been shown to 

potentiate platelet activation and aggregation, in a CD40-dependent manner, via p38 mitogen-

activated protein kinase (MAPK) and Rac1 signaling. In many cells, the CD40L/CD40 dyad also 

induces activation of nuclear factor kappa B (NF-κB). Given that platelets contain NF-κB, we 

hypothesized that it may be involved in platelet CD40 signaling and function. In human platelets, 

sCD40L induces association of CD40 with its adaptor protein the tumor necrosis factor receptor 

associated factor 2 and triggers phosphorylation of IκBα, which are abolished by CD40L 

blockade. Inhibition of IκBα phosphorylation reverses sCD40L-induced IκBα phosphorylation 

without affecting p38 MAPK phosphorylation. On the other hand, inhibition of p38 MAPK 

phosphorylation has no effect on IκBα phosphorylation, indicating a divergence in the signaling 

pathway originating from CD40 upon its ligation. In functional studies, inhibition of IκBα 

phosphorylation reverses sCD40L-induced platelet activation and potentiation of platelet 

aggregation in response to a sub-threshold concentration of collagen. This study demonstrates 

that the sCD40L/CD40 axis triggers NF-κB activation in platelets. This signaling pathway plays 

a critical role in platelet activation and aggregation upon sCD40L stimulation and may represent 

an important target against thrombo-inflammatory disorders. (Biochem Biophys Res Commun. 

2012; 425:58-63) 

 

Keywords: Platelet, CD40L, TRAF, NF-κB, p38 MAPK 
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1. Introduction  

 CD40 is a 48 kDa membrane glycoprotein belonging to the tumor necrosis factor (TNF) 

receptor family. It was first discovered on human bladder carcinoma cells [1], but is now known 

to be present on a plethora of cell lines including B lymphocytes, endothelial cells, monocytes, 

dendritic cells and platelets [2,3,4,5]. Interaction of CD40 with its CD40 ligand (CD40L), a 

member of the TNF superfamily, plays a pivotal role in the immune response. The cytoplasmic 

domain of CD40 lacks direct kinase activity and therefore utilizes members of the TNF receptor-

associated factors (TRAFs) as adapter proteins to mediate signaling events. TRAF1, 2, 3, 5 and 6 

have been shown to interact with the cytoplasmic domain of CD40 and regulate downstream 

signaling pathways upon its ligation [6,7,8]. TRAF6 and TRAF2 mediate the activation of the 

canonical and non-canonical NF-κB pathways in response to CD40 engagement. 

 Nuclear factor κB (NF-κB) proteins are formed by hetero- or homo-dimerization of the 

five Rel/NF-κB DNA-binding subunits, which include RelA (p65), RelB (p68), c-Rel, p50 (NF-

κB1) and p52 (NF-κB2). These NF-κB complexes are maintained in the cytoplasm in an inactive 

state through the inhibitor κB (IκBα or IκBβ). In response to stimuli, the NF-κB dimers in 

association with the inhibitory IκB subunit are regulated by the IκB kinase (IKK), which consists 

of two kinase subunits, IKKα and IKKβ, and a regulatory subunit, IKKγ/NEMO. Upon 

phosphorylation by IKK, the IκB subunit is targeted for proteosomal degradation, thereby 

releasing an active form of NF-κB that translocates into the nucleus. Nuclear translocation of 

p50/RelA and p52/RelB is responsible for the canonical and non-canonical NF-κB pathways, 

respectively [9]. Liu et al. [10] has demonstrated the presence of NF-κB and IκBα in platelets, as 

well as the induction of the NF-κB signaling pathway following platelet activation. Thereafter, 

Malaver et al. [11] has shown that IκBα is phosphorylated in thrombin-activated platelets and 

pharmacological inhibition of this factor leads to impairment of platelet function, thereby 

attributing non-genomic functions to NF-κB in anucleated platelets. In contrast, Gambaryan et 

al. [12] showed that NF-κB negatively regulates platelet activation by thrombin and collagen via 

PKAc activation.  

 Platelets are pivotal contributors to thrombosis and homeostasis, but also participate in 

inflammation and immunity [13]. The work by Henn et al. [5,14] demonstrated the presence of 

the CD40L/CD40 dyad in platelets; they showed that CD40 is constitutively expressed on the 

platelet surface, while CD40L rapidly appears on the platelet surface following activation.  
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Surface expressed CD40L is subsequently cleaved into an 18 kDa fragment, which accounts for 

>95% of plasmatic soluble CD40L (sCD40L) concentrations [15]. Circulating levels of sCD40L 

in patients have now emerged as strong indicators of cardiovascular risk, as there appears to be a 

significant correlation between elevated levels of sCD40L and vascular complications such as 

atherosclerosis and acute coronary syndromes [16,17,18]. 

 We have previously shown that sCD40L enhances agonist-induced platelet activation and 

aggregation through a CD40-dependent TRAF2/Rac1/p38 mitogen-activated protein kinase 

signaling (MAPK) pathway [19]. Although the presence of both the CD40L/CD40 dyad and NF-

κB/IκBα in platelets is recognized, the involvement of NF-κB/IκBα in platelet CD40 signaling 

and function remains unknown. This study was therefore designed to test the hypothesis that NF-

κB is involved in platelet CD40 signaling and function. 

 

2. Materials and methods 

2.1 Reagents and Antibodies 

 Recombinant human sCD40L was obtained from R&D systems. Antibodies against 

TRAF2 (rabbit polyclonal), phospho-IκBα (mouse monoclonal, Ser32/36), phospho-p38 MAPK 

(rabbit polyclonal, Thr180/Tyr182) and β-actin (rabbit polyclonal) were purchased from Cell 

Signaling Technology. The mouse monoclonal anti-CD40 antibody used for 

immunoprecipitation of human CD40 was also from R&D systems, while the rabbit polyclonal 

anti-CD40 antibody used for detection of CD40 by immunoblotting came from Santa Cruz 

Biotechnology. Antibody against CD62P (mouse monoclonal, AK4-PE conjugated) was 

obtained from BD Biosciences. The specific IKK inhibitor VII and the p38 MAPK inhibitor 

SB203580 were purchased from Calbiochem, while the IκBα phosphorylation inhibitor BAY 11-

7082 was purchased from Sigma-Aldrich. Protein A agarose beads were obtained from Upstate 

Biotechnology, Inc. Native type I collagen was from Chronolog Corp. 

 

2.2 Platelet isolation 

 Venous blood was drawn from healthy volunteers, free from medication known to 

interfere with platelet function for at least 10 days before the experiment. The protocol was 

approved by the human ethical committee of the Montreal Heart in accordance with the 

declaration of Helsinki for experiments involving humans. Washed platelets were prepared as 
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previously described [19], adjusted to the indicated concentrations and allowed to rest at 37 ºC 

for 30 min before further manipulation. 

 

2.3 Flow cytometry 

 Platelet P-selectin (CD62P) expression, as a marker of α granule secretion and platelet 

activation, was measured by flow cytometry as previously described [19]. Briefly, platelets (250 

� 106/mL) were pre-incubated with or without the indicated inhibitor for 10 min at 37 ºC. 

Platelets were then stimulated with sCD40L for 30 min at 37 ºC, fixed with 1% 

paraformaldehyde, washed and stained with saturating concentrations of anti-CD62P antibody 

for 30 min or its isotype-matched control IgG. Platelets were analyzed (20,000 events) on an 

Altra flow cytometer (Beckman Coulter) after gating their characteristic forward and side scatter 

properties. 

 

2.4 Platelet aggregation 

 Platelets were adjusted to 250 x 106 /mL and aggregation was monitored on a four-

channel optical aggregometer (Chronolog Corp.) under shear (1000 rpm) at 37 ºC. Platelets were 

pre-incubated with or without the indicated inhibitors for 10 min at 37 ºC prior to incubation 

with sCD40L for an additional 30 min under static conditions at 37 ºC. Platelet aggregation was 

then monitored following the addition of collagen (0.5 μg/mL) and recorded until stabilization of 

platelet aggregation. 

 

2.5 Immunoprecipitation of CD40 

 Platelets were stimulated as indicated and lysed into ice-cold modified RIPA lysis buffer 

(1% NP-40, 0.25% deoxycholic acid, 150 mM NaCl, 50 mM Tris-HCl pH 7.4, 1 mM EDTA, 1 

mM PMSF, 1 mM sodium-orthovanadate, 1 mM sodium fluoride, 1 μg/mL aprotinin, 1 μg/mL 

leupeptin, and 2 μg/mL benzamidin) for 1 h at 4 ºC. Lysates were sonicated on ice and pre-

cleared with 100 �L of protein A agarose beads for 15 min at 4 ºC. Beads were then pelleted and 

the supernatant was incubated with an anti-CD40 antibody overnight at 4 ºC. Samples were 

treated with 100 �L of protein A agarose beads for 1 h at 4 ºC. Beads were then precipitated by 

centrifugation, washed three times with ice-cold modified RIPA lysis buffer, resuspended in 2� 
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Laemmli buffer and boiled for 5 min. Supernatants were analyzed by immunoblotting for the 

presence of TRAF2 and CD40 proteins. 

 

2.6 SDS-PAGE and immunoblotting 

 Proteins were resolved in 8% or 12% sodium dodecyl sulfate-polyacrylamide gel 

electrophoresis (SDS-PAGE) gels and transferred to nitrocellulose membranes. The membranes 

were blocked with 5% non-fat dry milk for 1 h, washed three times with TBS/T (150 mM NaCl, 

20 mM Tris, pH 7.4, 0.1 % Tween-20) and incubated with the appropriate primary antibody 

overnight at 4 ºC. Following washing steps, membranes were labeled with horseradish 

peroxidase-conjugated secondary antibody for 1 h, washed and bound peroxidase activity was 

detected by enhanced chemiluminescence (PerkinElmer Life Sciences). To assess equal protein 

loading, membranes were stripped, blocked with 5% milk and blotted for β-actin. 

 

2.7 Statistical analysis 

 Results are presented as mean ± SEM of at least three independent experiments. 

Statistical comparisons were done using a one-way ANOVA, followed by a Dunnetts-t-test for 

comparison against a single group. Data with P < 0.05 were considered statistically significant. 

 

3. Results 

3.1 sCD40L induces TRAF2 association to CD40 and IκBα phosphorylation in platelets 

 We first confirmed our previous finding that sCD40L induces the association of TRAF2 

to platelet CD40 [19] and showed that pretreatment with a blocking anti-CD40L antibody 

entirely prevents TRAF2 binding to CD40 in response to sCD40L (Fig. 1A). We then evaluated 

the activation of the NF-κB signaling pathway downstream of platelet CD40 by assessing IκBα 

phosphorylation on residues Ser32/36, which leads to degradation and release of the active form of 

NF-κB. Our results show for the first time that sCD40L induces a time-dependent 

phosphorylation of IκBα in human platelets (Fig. 1B). Since the phosphorylation of IκBα at 5 

min was close to maximum, we chose this time point for subsequent experiments. Pretreatment 

with a blocking anti-CD40L antibody prevents platelet IκBα phosphorylation in response to 

sCD40L (Fig. 1C). 
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3.2 IκBα phosphorylation downstream of CD40 is independent of p38 MAPK 

 Signaling pathways downstream of CD40 have been shown to involve both NF-κB and 

p38 MAPK [20,21]. Indeed, we have previously shown that sCD40L enhances platelet function 

through activation of p38 MAPK [19], albeit the link between this MAPK and NF-κB activation 

remains uncharacterized. In order to delineate the cross-talk between these signaling cascades 

downstream of platelet CD40, we employed specific inhibitors of IκBα and p38 MAPK 

phosphorylation, BAY 11-7082 and SB203580 respectively. In platelets, inhibition of IκBα 

phosphorylation does not influence p38 MAPK phosphorylation following sCD40L treatment, 

and vice versa (Fig. 2A and B). These results indicate that platelet CD40 signals via two distinct 

pathways, one involving the NF-κB pathway and another involving p38 MAPK. 

 

3.3 IκBα is required for sCD40L-induced platelet activation and potentiation of aggregation  

 We have previously shown that sCD40L induces platelet CD62P expression and 

potentiates platelet aggregation in response to sub-threshold doses of platelet agonists [19]. In 

order to show the importance of IκBα in this process, the IKK inhibitor VII, which targets the 

kinase responsible for IκBα phosphorylation, was employed. Pretreatment of platelets with the 

IKK inhibitor VII not only decreases IκBα phosphorylation in a dose-dependent manner (Fig. 

3A), but also abolishes platelet activation in response to sCD40L stimulation, as assessed by 

CD62P expression (Fig. 3B). In functional studies, pretreatment of platelets with either BAY 11-

7082 or IKK inhibitor VII reverses the pro-aggregating effects of sCD40L (Fig. 4A and B). 

These results indicate that the NF-κB signaling pathway, which involves both IκBα and IKK, 

plays an important role in platelet CD40 signaling, activation and aggregation in response to 

sCD40L. 

 

4. Discussion 

 The presence of CD40L in platelets, which is cleaved to generate most of the sCD40L 

within the circulation, and its ability to induce an inflammatory response in the vascular system 

is well documented [5,14]. However, its modulation of platelet function remains a matter of 

debate. Andre and al. have shown that sCD40L binds to αIIbβ3 and stabilizes arterial thrombi in 

mice [22]. In contrast, we and others have shown that sCD40L induces platelet activation 

through CD40 [19,23,24,25]. Indeed, we have previously demonstrated that sCD40L exacerbates 
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platelet activation and aggregation through a CD40-dependent TRAF2/Rac1/p38 MAPK 

signaling pathway. We have also shown that elevated levels of sCD40L predisposed platelets to 

enhanced thrombus formation in response to vascular injury [19]. In this study, we further 

investigated the signaling pathways downstream of platelet CD40 in response to sCD40L. 

 In B lymphocytes, it is well documented that CD40 induces activation of the NF-κB 

signaling pathway through either TRAF2 or TRAF6 [26]. Having shown that sCD40L induces 

the association of TRAF2/CD40, but not TRAF6/CD40 [19] in platelets, we sought to evaluate 

whether CD40 ligation could trigger activation of the NF-κB signaling pathway in platelets. We 

showed for the first time that treatment of platelets with sCD40L activates the NF-κB signaling 

pathway, which was revealed by the phosphorylation of IκBα on Ser32/36. These results add 

insights to previous work [11], showing that NF-κB may be a novel mediator of platelet 

responses.  Although previous work has focused on the involvement of p38 MAPK in platelet 

CD40 signaling [19,23], the interrelation between this pathway and the NF-kB cascade remains 

undetermined. Craxton et al. [27] have shown that p38 MAPK regulates NF-κB activation in B 

cells, whereas p38 MAPK inhibition does not affect CD40-mediated NF-κB DNA binding, 

suggesting that NF-κB is not a direct target of the p38 MAPK pathway. In the present study, we 

show a divergence between the NF-κB and p38 MAPK signaling pathways downstream of 

platelet CD40. This branching phenomenon suggests that these pathways regulate different 

aspects of CD40-mediated platelet responses. For instance, the p38 MAPK pathway may be 

involved in actin polymerization, cytoskeleton reorganization and platelet spreading [28], while 

the NF-κB pathway may regulate de novo protein synthesis through its interaction with 

microRNAs [29], which have been shown to be present in platelets [30]. However, further 

investigations are needed to specifically address this issue.   

 Malaver et al. [11] have demonstrated the implication of NF-κB in platelet function and 

showed that blockade of the NF-κB pathway by BAY 11-7082 reverses platelet activation as 

well as aggregation triggered by thrombin, collagen and ADP. Since we have previously 

demonstrated that sCD40L induces platelet activation as assessed by α-granule secretion [19]; 

here we show that pretreatment of platelets with the IKK inhibitor VII, which inhibited IκBα 

phosphorylation, reversed sCD40L-induced platelet α-granule secretion, as assessed by CD62P 

translocation to the platelet membrane. Therefore, aside from activating NF-κB, IKK could 

regulate the activation of critical elements involved in the degranulation process, such as the 
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synaptosomal-associated protein 23 (SNAP-23). In fact, IKK2 regulates mast cell degranulation 

by phosphorylating SNAP-23 in a NF-κB-independent manner [31]. In functional studies of 

platelet aggregation, sCD40L stimulation of platelets potentiates aggregation by a mechanism 

involving the NF-κB signaling pathway, since inhibition of this pathway by either BAY 11-7082 

or the IKK inhibitor VII abolished sCD40L-induced potentiation of platelet aggregation. These 

results indicate that sCD40L via NF-κB, as well as p38 MAPK as previously demonstrated [19], 

primes platelets and predisposes them to enhanced aggregation responses in the presence of 

thrombotic stimulus. 

 In summary, this study shows for the first time that sCD40L is an important inducer of 

the NF-κB signaling pathway activation in platelets independently of the p38 MAPK pathway. 

This translates into platelet priming and enhancement of platelet activation and aggregation.  

Thus, the CD40L/CD40/NF-κB axis may ultimately represent a therapeutic target in the 

treatment of thrombo-inflammatory diseases. 
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Figure legends 

Figure 1: sCD40L induces TRAF2 association to CD40 and IκBα phosphorylation in 

platelets. (A) Platelets (500 � 106/mL) were left untreated or incubated with 1 μg/mL sCD40L 

for 15 min at 37 ºC in the presence or absence of a blocking anti-CD40L antibody (5 μg/mL). 

Total cell lysates were then immunoprecipated using an anti-CD40 antibody and immunoblotted 

for TRAF2 and CD40 expression. Blots are representative of three independent experiments. 

Histogram represents the mean of data of overlay blots, expressed as arbitrary units of optical 

density (n = 3; *P < 0.05 vs. baseline or sCD40L). (B) Time-dependent course of IκBα 

phosphorylation on Ser32/36 (p-IκBα Ser32/36) following sCD40L treatment. Lysates form 1000 � 

106 platelets/mL from untreated (Baseline) or sCD40L-treated (1 μg/mL) were resolved in 12% 

SDS-PAGE and assessed for p-IκBα Ser32/36. Blots are representative of three independent 

experiments. Histogram represents the mean of data of overlay blots, expressed as fold increase 

in optical density, as compared to baseline (n = 3, *P < 0.05 vs. baseline). (C) Dose-dependent 

effect of anti-CD40L treatment on IκBα phosphorylation. Platelets were left untreated or 

pretreated with the indicated dose of anti-CD40L for 5 min at 37 ºC prior to stimulation with 

sCD40L. Platelet lysates were then analyzed for p-IκBα Ser32/36. β-actin blots shown are from 

stripped p-IκBα Ser32/36 membranes. Blots are representative of five independent experiments. 

Histogram represent the mean of data of overlay blots, expressed as arbitrary units of optical 

density (n = 5, *P < 0.05 vs. baseline and †P < 0.05 vs. sCD40L alone). 

 

Figure 2: IκBα phosphorylation downstream of CD40 is independent of p38 MAPK 

phosphorylation. (A) Dose-dependent effect of BAY 11-7082 on IκBα and p38 MAPK 

phosphorylation. Platelets (1000 � 106/mL) were incubated with vehicle DMSO or the indicated 

concentrations of BAY 11-7082 for 5 min at 37 ºC and stimulated with sCD40L (1 μg/mL) for 5 

min. Platelet lysates where resolved in 12% SDS-PAGE and assessed for p-IκBα Ser32/36 (n = 4) 

and phospho-p38 MAPK (p-p38 MAPK) (n = 3). (B) Dose- dependent effect of SB203580 on 

IκBα and p38 MAPK phosphorylation. Platelets were incubated with vehicle DMSO or the 

indicated concentration of SB203580 for 10 min at 37 ºC prior to sCD40L stimulation (1 μg/mL) 

for 5 min. Platelet lysates where assessed for p-IκBα Ser32/36 (n = 4) and p-p38 MAPK (n = 4). β-

actin blots are from stripped membranes of either p-IκBα or p-p38 MAPK blots. Blots are 

representative of the indicated number of independent experiments. Histograms represent the 
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mean of data of overlay blots, expressed as arbitrary units of optical density (*P < 0.05 vs. 

baseline and †P < 0.05 vs. sCD40L alone). 

 

Figure 3: IκBα is required for sCD40L-induced platelet activation. (A) Platelets (1000 � 

106/mL) were incubated with vehicle DMSO or the indicated concentration of IKK inhibitor VII 

for 5 min at 37 ºC and stimulated with sCD40L for 5 min. Platelet lysates where resolved in 12% 

SDS-PAGE and assessed for p-IκBα Ser32/36. β-actin blot is from stripped membranes of p-IκBα 

blot. Blots are representative of four independent experiments. Histogram represent the mean of 

data of overlay blots, expressed as arbitrary units of optical density (n = 4; *P < 0.05 vs. baseline 

and †P < 0.05 vs. sCD40L alone). (B) Effect of IκBα inhibition on platelet activation in response 

to sCD40L. Platelets (250 � 106/mL) were left untreated or stimulated with sCD40L (1 μg/mL) 

in the absence or presence of the indicated concentration of IKK inhibitor VII. Platelet activation 

was assessed by flow cytometry for the expression of CD62P. Histogram represents the mean of 

data expressed as percent of CD62P positive platelets (n = 3; *P < 0.05 vs. baseline and †P < 

0.05 vs. sCD40L alone). 

 

Figure 4: IκBα is required for sCD40L-induced potentiation of platelet aggregation. (A and 

B) Effect of IκBα inhibition on the potentiation of platelet aggregation induced by sCD40L. 

Platelets were preincubated with the IκBα phosphorylation inhibitors BAY 11-7082 (10 �M) or 

IKK inhibitor VII (2.5 �M), or vehicle DMSO for 5 min at 37 ºC. Cells were then left 

unstimulated (control) or treated with sCD40L (1 μg/mL). Aggregation was then monitor in the 

presence of a priming dose of collagen (0.5 μg/mL). Histograms represent the mean of data of 

aggregation traces (n = 3; *P < 0.05 vs. Control). 
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The CD40/CD40L dyad was initially thought to be restricted to cells of the immune system and 

to occupy a crucial role in regulating adaptive immunity. Now, it is well known that these two 

molecules have a much broader expression pattern, encompassing cells of the circulatory and 

vascular systems. The broad expression pattern of this dyad shed light into its contribution not 

only to immune responses, but also to inflammatory reactions. Indeed, the implication of the 

CD40/CD40L in all the facets of atherosclerosis, which is considered to be a chronic 

inflammatory disease, as well as the tight correlation between circulating levels of sCD40L and 

ACS incidence support its role as an inflammatory modulator. As platelets express members of 

this dyad and occupy a significant role in the development and progression of cardiovascular 

diseases, multiple studies attempted to determine the impact of sCD40L on platelet function. 

However, the precise effect of sCD40L on the in vitro platelet function and in vivo thrombus 

formation, as well as the underlying signalling mechanisms remain unclear; hence the objective 

of this project. 

  The main results of these studies demonstrate that sCD40L potentiates platelet activation 

and aggregation in a CD40-dependent manner through two signalling pathways. The first 

signalling pathway involves TRAF2/Rac1/p38 MAPK, while the second involves TRAF2/NF-

κB. In addition, these results show that an increase in circulating sCD40L levels exacerbates in 

vivo thrombus formation in response to arterial injury, and leukocyte infiltration within the 

thrombus mass via CD40. 

 As aggregation is the main physiological function of platelets, we initially evaluated the 

effect of sCD40L on this important aspect of platelet function. Our results indicate that treatment 

of resting platelets with sCD40L alone induces a slight membrane translocation of P-selectin; 

however, it is unable to induce neither platelet aggregation nor activation of the αIIbβ3 integrin. 

This effect of sCD40L on platelets differs from those induced by other platelet agonists, such as 

collagen and thrombin, which trigger αIIbβ3 activation and platelet aggregation. In fact, sCD40L 

alone was unable to induce intra-platelet calcium influx and dense granule secretion, which are 

essential for αIIbβ3 activation and platelet aggregation. In contrast, sCD40L potentiates P-selectin 

expression, αIIbβ3 activation, and platelet aggregation in response to sub-threshold concentrations 

of platelet agonists, including collagen, thrombin and ADP. Therefore, these results indicate that 

sCD40L probably acts as a broad and potent primer that predisposes platelets to an enhanced 

response to physiological agonists. Aside from sCD40L, platelet priming has been shown to be 
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induced by other molecules, namely MMP-2, MDC, plasma protein growth arrest-specific 6 

(Gas-6), and stromal cell-derived factor-1α (SDF-1α).230, 604, 605 Similarly to sCD40L, these 

molecules potentiate platelet responses to activating stimuli without occupying a main role in 

primary haemostasis. These molecules play a significant role in pathological thrombus 

formation, which makes them attractive potential targets for novel antiplatelet therapies.606 

Moreover, the priming effect of sCD40L is seen in other cell types, such as proliferating B 

lymphocytes, in which sCD40L requires IL-4 co-stimulation for IgE production. Taken together, 

these findings indicate that sCD40L acts as important accessory element in platelet function. 

 To this date, the identity of the sCD40L receptor on platelets remains a matter of 

controversy, given that platelets express three receptors for CD40L (CD40, αIIbβ3, and α5β1).4, 308, 

310, 311 The results of our study using molecular and genetic approaches show that CD40 is the 

main receptor through which sCD40L mediates its potentiating effect on platelet responses. 

These results are consistent with previous studies demonstrating that sCD40L induces platelet 

activation, and secretion of ROS and RANTES through its interaction with CD40, the 

constitutively expressed CD40L receptor on the platelet surface.310, 360, 361 In addition, sCD40L 

has been shown to interact with the αIIbβ3 integrin on platelets.4, 307 However, this interaction was 

demonstrated by treating preactivated platelets (αIIbβ3 already in its active conformation) with 40 

μg/mL of sCD40L, which is 40 times higher than the concentration used in our studies. This 

suggests that CD40 is probably the high-affinity receptor for sCD40L, whereas αIIbβ3 is the low-

affinity one. Therefore, additional investigations are required to clarify this issue. Nonetheless, 

we could hypothesize that the increased levels of circulating sCD40L, as seen in ACS patients, 

prime quiescent platelets through CD40, as the αIIbβ3 integrin is in its inactive conformation. 

However, at the site of vascular injury, higher levels of sCD40L generated within the thrombus 

by activated platelets stabilize platelet aggregates via αIIbβ3 in its active conformation. However, 

this does not exclude the possibility that within a growing thrombus mass, CD40L expressed on 

activated platelets could interact with CD40 on adjacent platelets, thereby mediating CD40-

dependent signals. Indeed, our unpublished results indicated that this is most probably the case 

(discussed in more detail below). 

 CD40 signalling in immune and non-immune cells requires the recruitment and 

association of TRAF molecules with its cytoplasmic tail. To our knowledge, the expression of 

TRAF members in platelets and their association with platelet CD40 following sCD40L 
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stimulation have not been reported. Our results demonstrate for the first time that platelets 

express TRAF1, 2, and 6, and that only TRAF2 associates with CD40 following sCD40L 

stimulation, indicating that it may ultimately be responsible for the downstream signalling events 

arising from platelet CD40 activation. Despite their presence in platelets, neither TRAF1 nor 

TRAF6 associates with CD40, suggesting that they might instead have a role in TNF receptor 

and TLR signalling. However, TRAF1 might play a role in enhancing TRAF2-mediated CD40 

signals in platelets by promoting membrane localization of TRAF2.387, 388 On the other hand, the 

cytoplasmic domain of CD40 contains binding sites for both TRAF2 and TRAF6, and binding of 

either one is sufficient to induce activation of NF-κB in B lymphocytes.391 This is probably the 

case for platelets, as binding of only TRAF2 is sufficient to induce downstream signalling. 

However, unlike TRAF6, TRAF2 can activate both the canonical and non-canonical NF-κB 

signalling pathways, suggesting that in platelets TRAF2 binding potentially leads to activation of 

these two pathways. In addition, the almost complete lack of TRAF3 in platelets probably 

enhances TRAF2-mediated CD40 signals, since TRAF3 negatively regulates CD40 signalling by 

sequestering TRAF2 in a complex with cIAP1/2.402, 408 

 In B lymphocytes, it is well documented that CD40 induces activation of the NF-κB 

signalling pathway through either TRAF2 or TRAF6.444 In platelets, the members of the NF-κB 

signalling pathway have recently been characterized and shown to be involved in platelet 

activation; however, their role in platelet CD40 signalling is still unknown.607-609 As we have 

shown that sCD40L induces the association of TRAF2 but not TRAF6 with CD40 in platelets, 

we sought to assess whether CD40 ligation could trigger activation of the NF-κB signalling 

pathway in platelets. Our results demonstrate for the first time that treatment of platelets with 

sCD40L activates the NF-κB signalling pathway, specifically the canonical pathway, which was 

revealed by the phosphorylation of IκBα on Ser32/36. These results add new insights to previous 

work showing that NF-κB may be a novel mediator of platelet responses.608 Moreover, as 

mentioned earlier, it is probable that within a growing thrombus mass, CD40L expressed on 

activated platelets could interact with CD40 on adjacent platelets and induce signalling. Our 

unpublished results (Annex I, figure 1) demonstrate that platelet treatment with thrombin, which 

is also generated during thrombus formation, induces rapid expression of CD40L. This is in 

agreement with previous published studies demonstrating that CD40L is expressed on platelets 

upon activation; however, these studies failed to demonstrate whether the newly expressed 
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CD40L is capable of inducing CD40 signalling in platelets.2 Our results add new insights to 

these previous works by documenting that upon thrombin activation, TRAF2 associates with 

CD40 and IκBα is phosphorylated on Ser32/36 in a CD40L-dependent manner. This suggests that 

the newly expressed CD40L on platelets is capable of interacting with CD40 and subsequently 

trigger signalling, which contributes to platelet function upon thrombin stimulation. Whether the 

membrane or soluble form of CD40L generated by thrombin-stimulated platelets induces CD40 

signalling remains to be determined. However, it is unlikely to be the soluble form that interacts 

with CD40 in thrombin-stimulated platelets, given that IκBα phosphorylation and TRAF2 

association are detectable as early as 5 and 15 minutes, respectively, whereas platelets shed 

sCD40L within 1 to 2 hours of platelet activation and shedding also requires CD40 ligation.3 

  In search of the underlying molecular mechanisms by which sCD40L mediates its pro-

activating and pro-aggregating effects on platelets, we initially hypothesized that sCD40L might 

induce the secretion of weak platelet agonists, such as TxA2 and ADP, which could be 

responsible for the increase in platelet activation and aggregation in response to sub-threshold 

concentrations of agonists. Given that platelets secrete ADP from dense granule stores, we 

assessed dense granule release following sCD40L stimulation of resting platelets. Our results 

demonstrate that sCD40L alone does not affect dense granule secretion, as assessed by ATP 

release and mepacrine uptake. Additionally, we did not detect any changes in TxA2 release 

(unpublished results; Annex I, figure 2), as measured by enzyme-linked immunosorbent assay 

(ELISA), from resting platelets following sCD40L stimulation, suggesting that sCD40L does not 

influence COX-1 activation in platelets. At light of these results, we speculate that patients under 

aspirin regiment would not be protected from the sCD40L effects on platelet function. Moreover, 

Chakrabarti et al.360 have shown that platelets generate ROS following sCD40L stimulation; 

however, whether sCD40L potentiates platelet activation and aggregation via ROS production 

remains to be determined, since ROS have already been shown to contribute to platelet 

activation.359 On the other hand, the morphological changes observed in platelets by scanning 

electron microscopy reveal that sCD40L rather acts directly on platelets by inducing intracellular 

signals that trigger platelet shape change characterized by the formation of filopodia and 

lamellipodia, which predispose platelets to enhanced responses in thrombogenic environments. 

 In platelets, Rac1 and VASP regulate shape change, cytoskeletal reorganization, and 

spreading, via lamellipodia and filopodia formation, respectively.54, 610 VASP is mainly 
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phosphorylated on two principal residues, Ser239 and Ser157. Platelet inhibitors, such as NO and 

PGI2 induce phosphorylation of VASP on both residues, whereas platelet agonists, such as 

thrombin and collagen, trigger phosphorylation of VASP on Ser157, thereby promoting the 

anticapping activity of VASP and the subsequent actin polymerization and filopodia formation.54, 

611, 612 Our results demonstrate that sCD40L induces phosphorylation of VASP on Ser157, thereby 

providing evidence for its role as an inducer of shape change in platelets. The role of sCD40L in 

this process is further highlighted by its capacity to activate the small GTPase Rac1, which is 

involved in lamellipodia formation. Soluble CD40L-induced activation of Rac1 is 

physiologically significant, as specific inhibition of Rac1 considerably reduces sCD40L's ability 

to potentiate platelet aggregation and P-selectin expression. These results are in agreement with 

previous published findings demonstrating that CD40 signalling induces Rac1-dependent ROS 

production in WEHI 231 cells and endothelial cells.613, 614 Interestingly, inhibition of Rac1 

activation does not completely reverse sCD40L's ability to potentiate platelet aggregation and P-

selectin expression, probably due to VASP and NF-κB activation, which are possibly not related 

to Rac1 activation and may therefore be responsible for the residual effects of sCD40L on 

platelets. 

 In immune cells, CD40L is typically known to induce activation of MAPKs, such as 

p38.400 This seems to hold true for platelets. Indeed, our results confirm that stimulation of 

resting platelets with sCD40L induces the activation of p38 MAPK, and further highlight its 

involvement in platelet activation and aggregation, given that its inhibition abolishes the pro-

activating and pro-aggregating effects of sCD40L. Furthermore, our results demonstrate that p38 

MAPK is a downstream effector of Rac1, since its inhibition affects p38 MAPK activation. 

However, inhibition of Rac1 activation delays but does not completely inhibit p38 MAPK 

activation, which might explain in part the lack of complete reversal of sCD40L-induced 

potentiation of platelet aggregation and P-selectin expression following Rac1 inhibition. 

Nonetheless, the role of p38 MAPK in platelets seems to compliment that of Rac1, because it 

appears to be an important modulator of actin polymerization and platelet spreading, hence 

further confirming that sCD40L has an important role in inducing platelet shape change.615 

Moreover, extensive work has focused on the involvement of p38 MAPK in CD40 signalling; 

however, the association between this pathway and the NF-κB cascade remains a matter of 

debate.360, 616, 617 Craxton et al.618 have shown that p38 MAPK regulates NF-κB activation in B 
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cells, whereas p38 MAPK inhibition does not affect CD40-mediated binding of NF-κB to DNA, 

suggesting that NF-κB mediates its effects via both p38 MAPK-dependent and -independent 

pathways. Our results demonstrate a divergence between the canonical NF-κB and p38 MAPK 

signalling pathways downstream of platelet CD40, suggesting that these two pathways regulate 

different aspects of CD40-mediated platelet responses. For instance, the p38 MAPK pathway 

may be involved in cytoskeleton reorganization, as it has already been demonstrated to play an 

important role in actin polymerization and platelet spreading, whereas the NF-κB pathway may 

regulate de novo protein synthesis by modulating mRNA translation through its interaction with 

microRNAs (miRNAs), which have already been shown to be present in platelets.615, 619, 620 

Nonetheless, further investigations are required to clarify this issue. 

 Malaver et al.608 have implicated the canonical NF-κB pathway in platelet function and 

showed that blocking IκBα phosphorylation, which is responsible for its activation, reverses 

platelet activation and aggregation triggered by a wide array of platelet agonists, including 

thrombin, collagen and ADP. In the present study, we show that sCD40L induces platelet 

activation as assessed by P-selectin translocation to the membrane, which is indicative of α-

granule secretion, as well as activation of the canonical NF-κB signalling pathway. We then 

hypothesized that this pathway may be involved in platelet α-granule secretion. In fact, our 

results demonstrate that blockade of IKK, which phosphorylates IκBα, reverses sCD40L-induced 

α-granule secretion as assessed by P-selectin translocation. Therefore, apart from its role in 

activating the canonical NF-κB pathway, IKK could regulate key elements involved in the 

degranulation process, such as SNAP-23, which is involved in membrane and vesicle fusion. In 

fact, in mast cells, IKK2 regulates degranulation by phosphorylating SNAP-23 in a NF-κB-

independent manner.621 Whether this is the case in platelets merits further investigation, given 

that SNAP-23 is involved in platelet α-granule secretion.188 Furthermore, we evaluated the 

involvement of the canonical NF-κB signalling pathway in the effects of sCD40L on platelet 

function. Our results show that inhibition of the canonical NF-κB signalling pathway by 

preventing either IKK activation or IκBα phosphorylation abolishes sCD40L-induced 

potentiation of platelet aggregation. These results indicate that sCD40L, through both NF-κB and 

p38 MAPK, primes platelets and predisposes them to enhanced aggregation responses in the 

presence of thrombotic stimuli. In addition, the NF-κB signalling pathway does not influence 

activation of the p38 MAPK pathway, and vice versa. However, this does not remove the 
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possibility of a crosstalk between NF-κB and p38 MAPK, and that inhibition of either abolishes 

the sCD40L-induced platelet responses. 

 To date, it is still unclear whether the elevated levels of sCD40L seen in patients with 

ACS are a consequence of increased platelet activation or a predetermining cause of disease 

development (or possibly both). Our results demonstrate for the first time a direct correlation 

between enhanced levels of sCD40L and thrombosis. Infusion of sCD40L into mice prior to 

vascular injury exacerbates thrombus formation as compared to control mice, indicating that 

these mice were predisposed to enhanced thrombotic stimuli. These results add new insight to 

the work by Andre et al.4 that shows correction of thrombus instability, in a αIIbβ3-dependent 

manner, in CD40L deficient mice that were treated with 1.6 mg/kg of sCD40L. In our study, a 

different approach was used, as we aimed to mimic conditions in ACS patients where sCD40L 

levels are elevated. Under these conditions, injection of 0.25 mg/kg of sCD40L into mice results 

in plasma concentrations of approximately 50 ng/ml. These concentrations probably reflect the 

rapid clearance of a significant portion of the molecule by the liver or another metabolic organ. 

Nonetheless, circulating concentrations result in exacerbated thrombus formation in WT but not 

CD40-/- mice, indicating that elevated circulating sCD40L concentrations influence platelets 

through CD40 but not αIIbβ3, given that the integrin is in its inactive conformation. Moreover, 

this circulating concentration of 50 ng/mL of sCD40L that was achieved in our experimental 

model is noteworthy, since it is similar to the concentrations noted in multiple clinical studies, in 

patients with coronary and peripheral artery diseases.594, 595 In addition, sCD40L levels are 

further increased in individuals with high cardiovascular risk factors, such as diabetes, obesity, 

metabolic syndrome, hypertension, and smoking.622, 623 Furthermore, CD40-/- mice do not show 

defect in thrombus formation, therefore it is likely that CD40 is not required for platelet primary 

haemostasis, but rather has a pathological importance in atherothrombosis in the presence of 

elevated levels of sCD40L as seen in ACS patients. Nonetheless, the possibility that the αIIbβ3 

integrin may be in an active conformation in circulating platelets of ACS patients could not be 

excluded, which suggests that sCD40L may interact with αIIbβ3 on circulating platelets and 

induce "outside-in" signals through the integrin. However, the effects of sCD40L on platelets 

through its interaction with αIIbβ3 are seen at concentrations of 1.6 mg/kg, which are many folds 

greater than the concentrations seen in these patients and our study. In this regard, the 

CD40L/CD40 interactions in ACS patients and individuals with high cardiovascular risk factors 
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would prime and predispose platelets to an exaggerated response to thrombotic stimuli, whereas 

the CD40L/αIIbβ3 interaction would be implicated in thrombus stability at the lesion site where 

higher concentration of sCD40L are generated by activated platelets. 

 Expression of P-selectin on the platelet surface plays an important role in thrombus 

stabilization, as well as in platelet/leukocyte interactions and the recruitment of leukocytes to the 

site of vascular injury.310, 312, 360, 624 As sCD40L induces the expression of P-selectin on the 

platelet surface, we evaluated the extent of leukocyte infiltration within the thrombus mass. 

Although sCD40L has already been shown to promote platelet/leukocyte aggregate formation, 

we were the first to demonstrate in an in vivo setting that the increase in leukocyte infiltration 

within the thrombus of sCD40L-treated mice is CD40-dependent.310 The synergy between the 

increase in leukocyte (probably TF expressing leukocytes) infiltration and the enhanced platelet 

predisposition to activation and aggregation in response to vascular injury may explain the 

increased thrombus formation in the animals' in response to elevated levels of sCD40L. 

 The relative contribution of the soluble versus the membrane-bound form of CD40L in 

thrombus formation is still unknown. It is most likely that both forms are involved in the 

pathophysiological functions of the CD40/CD40L axis. In fact, our preliminary results  

(unpublished results) suggest that thrombin, which induces platelet membrane expression of 

CD40L, results in TRAF2 association with CD40 and activation of the canonical NF-κB 

signalling pathway in a CD40L-dependent manner. On the other hand, elevated levels of 

sCD40L, as seen under pathological conditions, predispose platelets to enhanced activation and 

aggregation in response to thrombotic stimuli. Nonetheless, the involvement of CD40L in 

atherogenesis, thrombus formation, platelet-mediated inflammation, and plaque instability makes 

it a potential target for the treatment of thrombo-inflammatory complications. In this regard, it be 

would relevant for future clinical studies to evaluate the level of platelet priming in ACS 

patients, who present elevated levels of sCD40L. This could be done by assessing the levels of 

TRAF2 association with CD40 or the activation of the NF-κB signalling pathway. Thus, a direct 

clinical association between the levels of circulating sCD40L and platelet function could be 

established for pharmacological targeting. 

 In summary, our studies show for the first time the in vitro and in vivo pathophysiological 

implication of sCD40L in different aspects of platelet function. We demonstrated that sCD40L 

potentiates platelet activation and aggregation in a CD40-dependent manner through two 
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divergent signalling pathways (Annex I, figure 3). The first signalling pathway involves 

TRAF2/Rac1/p38 MAPK, while the second involves TRAF2/NF-κB. In addition, our results 

show that an increase in circulating sCD40L levels exacerbates in vivo thrombus formation in 

response to arterial injury, and leukocyte infiltration within the thrombus mass in a CD40-

dependent manner. Therefore, these studies provide novel evidences for the regulation of platelet 

function by sCD40L and may explain in part the link between enhanced levels of sCD40L and 

the incidence of cardiovascular complications. The CD40/CD40L axis may eventually represent 

a therapeutic target for the treatment of thrombo-inflammatory diseases.  
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The results of our studies reveal a novel role for sCD40L in regulating platelet function and 

thrombus formation. In fact, the underlying cellular and molecular mechanisms induced by 

sCD40L, which affect platelet activation, aggregation, and thrombus formation, were 

unexplored. Interestingly, the most relevant results of our studies stem from the correlation 

between increased levels of circulating sCD40L and exacerbated in vivo thrombosis, which may 

explain in part the link between enhanced levels of sCD40L seen in ACS patients and disease 

complications. Moreover, the identification of the intracellular signalling pathways by which 

sCD40L affects platelet function provides important clues for the development of specific 

therapeutic targets for the treatment of thrombotic diseases. 

 However, as for any other pharmacological target, care should be taken in developing 

specific antagonists against the CD40/CD40L dyad in order to avoid unwanted side effects. For 

instance, blockade of either CD40 or CD40L could result in immune defects, such as the one 

seen in HIGM patients who lack effective development of an adaptive immune system in 

addition to increased cancer incidence due to a lack of an immune response against tumour cells. 

Therefore, a better understanding of the mechanisms by which this dyad affects platelet function 

would be necessary in order to develop effective pharmacological tools against specific 

signalling pathways involved in platelet CD40 signalling. A suggestive approach would be to 

target CD40-induced TRAF2 signalling specifically in platelets through either the use of peptides 

that interfere with TRAF2/CD40 interactions, or the use of vectors or nanoparticles that block 

CD40 or TRAF2. 

 Although our studies add significant novel insights into the cellular and molecular 

mechanisms by which sCD40L affects platelet function, they do not answer all the questions and 

issues related to CD40/CD40L interactions in platelets. For instance, future studies addressing 

the following issues could provide more insights into the role and the mechanisms of action of 

the CD40L/CD40 axis in platelets: 

1 -  What is the exact role of TRAF2 in platelet CD40 signalling, specifically in response to 

thrombin? 

2 -  What is the exact role of the canonical NF-κB signalling pathway in platelet CD40 

signalling? Is it involved in regulating de novo protein synthesis by modulating mRNA 

translation through its interaction with miRNAs or degranulation? 
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3 -  Is the non-canonical NF-κB signalling pathway activated by sCD40L, given that TRAF2 

is involved in the activation of both NF-κB pathways? If yes, what is its role in platelet 

function in response to sCD40L? 

4 -  What is the relative contribution of the p38 MAPK and NF-κB signalling pathways 

downstream of platelet CD40? 

5 -  Does sCD40L induce its effects on platelets through ROS generation? 

6 -  What is the relative contribution of CD40 and αIIbβ3 in platelet function in response to the 

membrane-bound or soluble forms of CD40L? 

7 -  Can elevated levels of sCD40L be used as a cardiovascular disease diagnostic marker, 

such as troponin? 

Answers to these questions will undoubtedly bring important contributions to our knowledge 

regarding the precise role of the CD40/CD40L axis in platelets, and consequently in thrombotic 

cardiovascular disease development. 

 In conclusion, our studies confirm the tight link between the CD40/CD40L axis, 

inflammation and thrombotic cardiovascular disease pathogenesis, and suggest that this dyad 

may ultimately represent a potential therapeutic target in the treatment of these diseases. 

Nonetheless, further investigations are required to better understand the role of this dyad and its 

molecular partners in disease development and progression.  
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Unpublished results 

 

This section includes data that were not published. 

Figure 1 
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Figure 1: Thrombin and sCD40L induce TRAF2 association with CD40 and IκBα phosphorylation in platelets. A. 
CD40 and CD40L expression on platelets following thrombin stimulation. Platelets (250 X 106/mL) were left 
untreated or stimulated with thrombin (0.1 U/mL) and assessed for CD40 and CD40L expression by flow cytometry. 
Histogram represents the mean of data expressed as percent of CD40 and CD40L positive platelets (n=3; *P<0.05 
vs. baseline). B. Platelets (500 X 106/mL) were left untreated or incubated with 1 μg/mL sCD40L or 0.1 U/mL 
thrombin for 15 minutes at 37ºC in the presence or absence of a blocking anti-CD40L antibody (5 μg/mL). Total cell 
lysates were then immunoprecipated using an anti-CD40 antibody and immunoblotted for TRAF2 and CD40 
expression. Blots are representative of 3 independent experiments. Histogram represents the mean of data of overlay 
blots, expressed as arbitrary units of optical density (n=3; *P<0.05 vs. baseline and †P<0.05 vs. sCD40L or 
thrombin alone). C. Dose-dependent effect of anti-CD40L treatment on IκBα phosphorylation. Platelets (1000 X 
106/mL) were left untreated or pretreated with the indicated dose of anti-CD40L for 5 minutes at 37ºC prior to 
stimulation with sCD40L (n=5) or thrombin (n=3) for 5 minutes. Platelet lysates were then analyzed for p-IκBα 
Ser32/36. β-actin blots shown are from stripped p-IκBα Ser32/36 membranes. Blots are representative of the indicated 
number of independent experiments. Histogram represent the mean of data of overlay blots, expressed as arbitrary 
units of optical density (*P<0.05 vs. baseline and †P<0.05 vs. sCD40L or thrombin alone). 
 

 

 

 

Figure 2 

 

   

Figure 2: Effects of sCD40L and thrombin on TxA2 secretion. Platelets (250 X 106/mL) were left untreated or 
treated with sCD40L (1 μg/mL) or thrombin (0.5 U/mL) and supernatants were assessed for 11-dehydro-TxB2 (the 
stable metabolite of TxA2) by ELISA. Histogram represents the mean of data expressed as pg/mL of 11-dehydro-
TxB2 (n=4; *P<0.05 vs. baseline). 
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Schematic representation 

 

This section includes a schematic representation of the signalling pathways downstream of 

platelet CD40 that were discovered in our studies. 

Figure 3 

 

 

Figure 3: Schematic representation of the two divergent signalling pathways downstream of platelet CD40. Upon 
sCD40L/CD40  interaction, TRAF2 associates with the cytoplasmic tail of CD40. TRAF2 then induces activation of 
IKK, which in turn is responsible for IκBα phosphorylation and its subsequent degradation and release of the active 
form of NF-κB. On the other hand, TRAF2 activates Rac1, which in turn activates p38 MAPK. It is still unknown 
how TRAF2 induces activation of VASP. Culmination of these signalling pathways leads to the observed effects of 
the CD40/CD40L dyad on platelet function. Image is produced by Hachem A.  
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