
Université de Montréal

The distribution of k-tuples of reduced residues

par

Farzad Aryan

Département de mathématiques et de statistique

Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures

en vue de l’obtention du grade de

Maître ès sciences (M.Sc.)
en Mathématique

August

c© Farzad Aryan, 2012





Université de Montréal
Faculté des études supérieures

Ce mémoire intitulé

The distribution of k-tuples of reduced residues

présenté par

Farzad Aryan

a été évalué par un jury composé des personnes suivantes :

Andrew Granville
(président-rapporteur)

Andrew Granville
(directeur de recherche)

Mémoire accepté le:





v

CONTENTS

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

CHAPTER 1. An exponential sum estimate . . . . . . . . . . . . . . . . . . . . 9

CHAPTER 2. A probabilistic estimate . . . . . . . . . . . . . . . . . . . . . . . . . 21

CHAPTER 3. The principal estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

CHAPTER 4. Proof of Theorem 0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Bibliography. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33





1

ACKNOWLEDGMENTS

I am grateful to my advisor Andrew Granville for his support and helpful com-

ments. Additionally, I would like to thank Dimitris Koukoulopoulos and Vorrapan

Chandee for their careful analysis of my thesis and their useful suggestions. Spe-

cial appreciation for the Université de Montréal’s staff, my colleagues and friends,

Mohammad Bardestani, Francois Charette, Dimitri Dias, Daniel Fiorilli, Kevin

Henriot, and Marzieh Mehdizadeh, for their support. Finally, I would like to

dedicate my thesis in loving memory of my father whom I lost last spring.





ABSTRACT

En 1940, Paul Erdős énonça une conjecture sur la distribution des classes in-

versibles modulo un entier. La présente thèse étudie la distribution des k-uplets

de classes inversibles et propose une preuve de la conjecture d’Erdős étendue au

cas des k-uplets.





INTRODUCTION

In 1936 Cramer [1], assuming the Riemann hypothesis (RH), showed that

∑
pn<x

(pn+1 − pn)2 � x(log x)3+ε (0.1)

from which he deduced pn+1 − pn = O(√pn log pn). Based on his probabilistic

model for the primes he also conjectured that

lim sup
n→∞

pn+1 − pn
(log pn)2 = 1.

Taking into account various sieve estimates in Cramer’s probabilistic model,

Granville [2] in 1995 conjectured that

lim sup
n→∞

pn+1 − pn
(log pn)2 ≥ 2e−γ,

which is bigger than 1. Note that γ is the Euler constant. Proving (0.1) uncon-

ditionally seems quite deep, which led P. Erdős to make an analogous conjecture:

Conjecture (Erdős [3]). Let q be a natural number, and let P = φ(q)/q be the

probability that a randomly chosen integer is relatively prime to q. Let

1 = a1 < a2 < · · ·

be the integers co-prime to q in increasing order, and let

Vλ(q) =
φ(q)∑
i=1

(ai+1 − ai)λ.
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then

V2(q)� φ(q)P−2 = qP−1.

More generally

Vλ(q)� qP 1−λ.

For a heuristic of Erdős conjecture note that if ai are uniformly distributed
(
ai−

ai−1 = P−1
)
, then

φ(q)∑
i=1

(ai+1 − ai)λ = φ(q)P−λ = qP 1−λ.

For λ < 2 this was derived by Hooley [4]. Hausman and Shapiro [5] gave weaker

upper bounds for V2. Finally Montgomery and Vaughan [6] in 1986 proved the

conjecture for all λ (and another easier proof appeared in the paper of Mont-

gomery and Soundararajan [8]).

Investigating the distribution of prime numbers and the objects that behave like

them is always an interesting subject for analytic number theorists. Also studying

the behavior of subsets of prime numbers like primes in an arithmetic progres-

sion or s-tuples of primes is of huge interest. In this thesis we investigate the

distribution of of s-tuples of reduced residues which in some sense are similar

to s-tuples of primes and we prove the analogy of Erdős’s conjecture for s-tuple

reduced residues.

Let D = {h1, h2, · · · , hs} and νp(D) be the number of distinct elements in D mod

p. D is called admissible if νp(D) < p for all primes p. We call a+ h1, . . . , a+ hs

an s-tuple of reduced residues if they are each coprime with q.

Theorem 0.1. Let q be a square-free number and D = {h1, h2, · · · , hs} be a

fixed admissible set of integers. Let a1 < a2 < · · · be those integers for which
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ai + h1, . . . , ai + hs is an s-tuple of reduced residues. Then

V Dλ (q) :=
φD (q)∑
i=1

(ai+1 − ai)λ � φD(q)P−sλ

where φD(q) := ∏
p|q(p− νp(D)), and the implied constant depends on D and λ.

The theorem follows immediately for q non-square-free as well, by considering the

result for Q = ∏
p|q p. Motivated by Theorem 0.1 the analogy of this result for

primes is

Conjecture. Let p1, · · · be the set of primes for which pi + hj are prime for all

hj ∈ D. We have ∑
pn<x

(pn+1 − pn)λ �D x(log x)s(λ−1)+ε





CHAPTER 1

AN EXPONENTIAL SUM ESTIMATE

In this chapter we prove a preliminary estimate about the distribution of s-tuples

of reduced residues, using exponential sums. The estimate we derive here is valid

for every choice of q, but this estimate is not the best we will give. We will prove

a better estimate, using this exponential sum estimate, in chapter 3.

Lemma 1.1. Define kq(m) as follows:

kq(m) =


1 if gcd(m, q) = 1,

0 otherwise.

Then we have

kq(m) = P
∑
r|q

( ∑
0≤a<r
(a,r)=1

e

(
m
a

r

))
µ(r)
φ(r)

Proof. We have

kq(m) =
∑

s|(m,q)
µ(s) =

∑
s|q

µ(s)
s

∑
0≤b<s

e

(
m
b

s

)
,

therefore

kq(m) =
∑
r|q

( ∑
0<a≤r
(a,r)=1

e

(
m
a

r

))(∑
s

r|s|q

µ(s)
s

)
.

Since ∑
s

r|s|q

µ(s)
s

= P
µ(r)
φ(r) ,
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we can deduce

kq(m) = P
∑
r|q

( ∑
0<a≤r
(a,r)=1

e

(
m
a

r

))
µ(r)
φ(r) .

This completes the proof of the Lemma. �

Remark 1.1. Important to note that νp(D) ≤ s with equality if p > hs − h1.

Also if D is admissible, then

1
p
≤ 1− νp(D)

p
≤ 1− 1

p

and we have that

∏
p≤hs−h1

1
p
≤

∏
p≤hs−h1

(
1− νp(D)

p

)
≤

∏
p≤hs−h1

(
1− 1

p

)
.

Since hs and h1 are fixed integers, we therefore have

∏
p≤hs−h1

p|q

(
1− νp(D)

p

)
�D

∏
p≤hs−h1

p|q

(
1− 1

p

)s
.

Moreover, if p > hs − h1 then 1− νp(D)
p

= 1− s
p
, so that

∏
p>hs−h1

p|q

(
1− νp(D)

p

)
=

∏
p>hs−h1

p|q

(
1− s

p

)
�D

∏
p>hs−h1

p|q

(
1− 1

p

)s
.

Putting these together we deduce that

φD(q)
q
�D

(
φ(q)
q

)s
= P s.

Now we state the theorem which we will prove at the end of this chapter:

Theorem 1.1. Let

MD
k (q, h) =

q−1∑
n=0

 h∑
m=1

kq(n+m+ h1) · · · kq(n+m+ hs)− h
∏
p|q

(
1− νp(D)

p

)k .
Then we have that

MD
k (q, h)� qhk/2P−2ks+ks,
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where the implicit constant depends on k and s.

In order to go toward the proof we use exponential sums to better understand

the admissible set D = {h1, h2, · · · , hs}. Also we need to prove some lemmas. We

have that

kq(m) = P
∑
r|q

( ∑
0<a≤r
(a,r)=1

e

(
m
a

r

))
µ(r)
φ(r) .

by lemma 1.1. Thus,

kq(m+ h1) = P
∑
r|q

( ∑
0<a≤r
(a,r)=1

e

(
m
a

r
+ h1

a

r

))
µ(r)
φ(r) ,

.

.

.

kq(m+ hs) = P
∑
r|q

( ∑
0<a≤r
(a,r)=1

e

(
m
a

r
+ hs

a

r

))
µ(r)
φ(r) .

So we deduce that

kq(m+ h1) · · · kq(m+ hs) (1.1)

= P s
∑

r1,r2,··· ,rs|q

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

∑
0<ai≤ri
(ai,ri)=1

1≤i≤s

e

(
m

s∑
i=1

ai
ri

)
e

(
s∑
i=1

hi
ai
ri

)
.

By summing the left-hand side of (1.1) we have

h∑
m=1

kq(n+m+ h1) · · · kq(n+m+ hs)

= P s
∑

r1,r2,··· ,rs|q

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

∑
0<ai≤ri
(ai,ri)=1

1≤i≤s

(
h∑

m=1
e

(
m

s∑
i=1

ai
ri

)
e

(
s∑
i=1

hi
ai
ri

))
e

(
n

(
s∑
i=1

ai
ri

))

= P s
∑

r1,r2,··· ,rs|q

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

∑
0<ai≤ri
(ai,ri)=1

1≤i≤s

(
Eh

(
s∑
i=1

ai
ri

)
e

(
s∑
i=1

hi
ai
ri

))
e

(
n

(
s∑
i=1

ai
ri

))
,
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where

Eh(x) =
h∑

m=1
e(mx).

To proceed with the argument we have to consider the case∑s
i=1

ai
ri
∈ Z to extract

the main term from the sum. We have that

P s
∑

r1,r2,··· ,rs|q

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

∑
0<ai≤ri
(ai,ri)=1

1≤i≤s∑s

i=1
ai
ri
∈Z

(
Eh

(
s∑
i=1

ai
ri

)
e

(
s∑
i=1

hi
ai
ri

))
e

(
n

(
s∑
i=1

ai
ri

))

= hP s
∑

r1,r2,··· ,rs|q

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

∑
0<ai≤ri
(ai,ri)=1

1≤i≤s∑s

i=1
ai
ri
∈Z

e

(
s∑
i=1

hi
ai
ri

)
,

since Eh(r) = h for all integers r. Now, we need to use Lemma 3 of [8] (due to

Hardy and Littlewood). Hardy and Littlewood proved that

S(D) =
∑

r1,r2,··· ,rs<∞

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

∑
0<ai≤ri
(ai,ri)=1

1≤i≤s∑s

i=1
ai
ri
∈Z

e

(
s∑
i=1

hi
ai
ri

)

where S is the singular series

S(D) =
∏
p

(
1− 1

p

)−s(
1− νp(D)

p

)
.

Lemma 1.2. (Hardy and Littlewood) Let r1, r2 . . . , rs be square-free integers.

Then

A(r1, · · · , rs) =
∑

0<ai≤ri
(ai,ri)=1

1≤i≤s∑s

i=1
ai
ri
∈Z

e

(
s∑
i=1

hi
ai
ri

)

If ri = r′ir
′′
i with (∏ r′i,∏ r′′i ) = 1, then

A(r1, · · · , rs) = A(r′1, · · · , r′k)A(r′′1 , · · · , r′′k).
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Also, we have that

∑
r1,r2,··· ,rs|q

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

∑
0<ai≤ri
(ai,ri)=1

1≤i≤s∑s

i=1
ai
ri
∈Z

e

(
s∑
i=1

hi
ai
ri

)
= Sq(D),

where we define the singular series

Sq(D) :=
∏
p|q

(
1− 1

p

)−s(
1− νp(D)

p

)

This lemma allows us to partition the sum overA(r1, · · · , rs) into sumsA
(
pe1

1 , · · · , pess
)

corresponding to the primes pi|ri.

Proof. For proving that

A(r1, · · · , rs) = A(r′1, · · · , r′k)A(r′′1 , · · · , r′′k),

we write
ai
ri
≡ a′i
r′i

+ a′′i
r′′i

(mod 1).

By the Chinese Remainder Theorem, each reduced residue ai modulo ri corre-

sponds to a pair a′i, a′′i of reduced residues modulo r′i, r′′i . Hence A(., . . . , .) is a

multiplicative function in all of its variables and therefore, to prove

∑
r1,r2,··· ,rs|q

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

A(r1, · · · , rs) = Sq(D),

it suffices to only prove the case q = p for p prime (since the ri’s are squarefree).

In this case

∑
r1,r2,··· ,rs|q

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

A(r1, · · · , rs) =
∑

I⊆{1,··· ,s}
|I|≥1

(−1)|I|
(p− 1)|I|AI(p),

where

AI(p) =
∑
i∈I

1≤ai≤p−1∑
i∈I ai≡0 (mod p)

e

(∑
i∈I

hi
ai
p

)
.
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Let

BI(p) =
∑
i∈I

0≤ai≤p−1∑
i∈I ai≡0 (mod p)

e

(∑
i∈I

hi
ai
p

)
.

We have that:

1) BI(p) = ∑
J⊆I AJ(p), because we can write

BI(p) =
∑
J⊆I

∑
i∈J

1≤ai≤p−1∑
i∈J ai≡0 (mod p)

aj=0
j∈I\j

e

(∑
i∈I

hi
ai
p

)

2) BI(p) = p|I|−1 if p|hi−hj for all i, j ∈ I, otherwise BI(p) = 0. To see this note

that if hi ≡ hj (mod p) for each i, j, then we have

BI(p) =
∑
i∈I

0≤ai≤p−1∑
i∈I ai≡0 (mod p)

e

(
hi1

∑
i∈I

ai
p

)
=

∑
i∈I

0≤ai≤p−1∑
i∈I ai≡0 (mod p)

1.

This equals p|I|−1 since the condition∑i∈I ai ≡ 0 (mod p) implies that∑i∈I\{i1} ai ≡

−ai1 (mod p), which means that we can choose 0 ≤ ai ≤ p− 1 for i ∈ I \ {i1}, as

we wish and then ai1 is fixed. Now if p does not divide hi − hj for some i, j ∈ I,

we eliminate the condition ∑
i∈I

ai ≡ 0 (mod p)

with replacing aj by −
∑
m∈I\{j} am, which proves BI(p) = 0.

Also let B∅(p) = 1. Therefore if we write I = I1 ∪ · · · ∪ Ip, which is a partition of

values of hi mod p into congruence classes (Ij = {i : hi ≡ j (mod p)}), then by

inclusion-exclusion we find that

AI(p) =
∑
J⊆I

(−1)|I|−|J |BJ(p) = (−1)|I|
(

1 +
p∑

k=1

∑
J⊆Ik
|J |≥1

(−1)|J |p|J |−1
)

= (−1)|I|
(

1 + 1
p

p∑
k=1

(
(1− p)|Ik| − 1

))
= (−1)|I|

p

p∑
k=1

(1− p)|Ik|.
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But then
∑

pe1 ,··· ,pes |p

µ(pe1) · · ·µ(pes)
φ(pe1) · · ·φ(pes)AI(p)

for I = {i : ri = p} is equal to

∑
I⊆{1,··· ,s}

( −1
p− 1

)|I| (−1)|I|
p

p∑
k=1

(1− p)|Ik|. (1.2)

Now let H1 ∪ · · · ∪ Hp be partition of {1, · · · , s} given by Hj := {i : hi ≡ j

(mod p)}. Hence Ik = I ∩Hk and we have that the sum in (1.2) equals

1
p

∑
Ir⊆Hr
1≤r≤p

1
(p− 1)|I1|+···+|Ip|

p∑
k=1

(1− p)|Ik| = 1
p

p∑
k=1

∑
Ik⊆Hk

(−1)|Ik|
p∏
j=1
j 6=k

∑
Ij⊆Hj

1
(p− 1)|Ij |

= 1
p

p∑
k=1
Hk=∅

(
1 + 1

p− 1

)s
=
(

1− νp(D)
p

)(
p

p− 1

)s
.

This completes the proof of Lemma. �

Using Lemma 1.2 we have

h∑
m=1

kq(n+m+ h1) · · · kq(n+m+ hs)− h
∏
p|q

(
1− νp(D)

p

)

= P s
∑

r1,r2,··· ,rs|q

µ(r1) · · ·µ(rs)
φ(r1) · · ·φ(rs)

∑
0<ai≤ri
(ai,ri)=1

1≤i≤s∑s

i=1
ai
ri
/∈Z

(
Eh

(
s∑
i=1

ai
ri

)
e

(
s∑
i=1

hi
ai
ri

))
e

(
n

(
s∑
i=1

ai
ri

))

and, consequently,
 h∑
m=1

kq(n+m+ h1) · · · kq(n+m+ hs)− h
∏
p|q

(
1− νp(D)

p

)k (1.3)

= P ks
∑
ri,j |q

1≤i≤k
1≤j≤s

∏
i,j

µ(ri,j)
φ(ri,j)

 ∑
0<ai,j≤ri,j
(ai,j ,ri,j)=1

1≤j≤s∑s

j=1
ai,j
ri,j

/∈Z
1≤i≤k

Eh
(

s∑
i=1

a1,j

r1,j

)
· · ·Eh

(
s∑
j=1

ak,j
rk,j

)
e

(∑
i,j

hj
ai,j
ri,j

)

× e
(
n

(∑
i,j

ai,j
ri,j

))
.
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Summing (1.3) over n mod q and using the fact that when q∑i ρi ∈ Z

q−1∑
n=0

e
(
n
(∑

i

ρi
))

= 0

unless ∑i ρi ∈ Z, we have that

q−1∑
n=0

 h∑
m=1

kq(n+m+ h1) · · · kq(n+m+ hs)− h
∏
p|q

(
1− νp(D)

p

)k

= qP ks
∑
ri,j |q

1≤i≤k
1≤j≤s

(∏ µ(ri,j)
φ(ri,j)

) ∑
1≤i≤k

0<ai,j≤ri,j
(ai,j ,ri,j)=1∑s

j=1
ai,j
ri,j

/∈Z∑
i,j

ai,j
ri,j
∈Z

Eh
(

s∑
j=1

a1,j

r1,j

)
· · ·Eh

(
s∑
j=1

ak,j
rk,j

)
e

(∑
i,j

hj
ai,j
ri,j

) .

Let F (x) = min(h, 1
‖x‖) where ‖x‖ is the distance between x and the closest

integer to x. We will show that |Eh(x)| ≤ F (x). In order to do this note that
∣∣∣∣∣

h∑
m=1

e(mx)
∣∣∣∣∣ =

∣∣∣∣∣e2πihx − 1
e2πix − 1

∣∣∣∣∣ =
∣∣∣∣∣e2πih2 x − e−2πih2 x

eπix − e−πix

∣∣∣∣∣ =
∣∣∣∣∣sin(πhx)

sin(πx)

∣∣∣∣∣
for −1

2 < x < 1
2 and x 6= 0, we have | sin(x)| > 2

π
x, thus for −1

2 ≤ x ≤ 1
2 we have

∣∣∣∣∣sin(πhx)
sin(πx)

∣∣∣∣∣ ≤
∣∣∣∣∣ 1
sin(πx)

∣∣∣∣∣ <
∣∣∣∣∣ 1

2
π
πx

∣∣∣∣∣ = 1
2x.

We deduce that for arbitrary x we have Eh(x) ≤ 1
‖x‖ , and obviously Eh(x) ≤ h.

Consequently we have

q−1∑
n=0

 h∑
m=1

kq(n+m+ h1) · · · kq(n+m+ hs)− h
∏
p|q

(
1− νp(D)

p

)k

� qP ks
∑
r|q

∑
[r1,1,r1,2,···rk,s]=r

S({ri,j}i,j)
(∏φ(ri,j))

(1.4)

where

S({ri,j}i,j) =
∑

0<ai,j≤ri,j
(ai,j ,ri,j)=1∑s

j=1
ai,j
ri,j

/∈Z∑
i,j

ai,j
ri,j
∈Z

F

(
s∑
j=1

a1,j

r1,j

)
· · ·F

(
s∑
j=1

ak,j
rk,j

)
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Lemma 1.3. Every element of the form

s∑
j=1

ai,j
ri,j

where 0 < ai,j ≤ ri,j

can be written as

a

[ri,1, ri,2, · · · ri,s]
( mod 1), where 1 ≤ a ≤ [ri,1, ri,2, · · · ri,s],

and each fraction that has such a representation has exactly ri,1ri,2···ri,s
[ri,1,ri,2,···ri,s] represen-

tations.

By ri,1ri,2···ri,s
[ri,1,ri,2,···ri,s] representations we mean that the equation

s∑
j=1

ai,j
ri,j

= τ (mod 1)

has exactly ri,1ri,2···ri,s
[ri,1,ri,2,···ri,s] different answers, if it has any.

Proof. Let d = (r1, r2) and we call r′i = ri
d
for i = 1, 2. For fixed a, b we are

interested in the number of solutions for the equation

a

r1
+ b

r2
= x

r1
+ y

r2
(mod 1)

where 1 ≤ x ≤ r1 and 1 ≤ y ≤ r2, which leads us to the number of solutions of

ar′2 + br′1 ≡ xr′2 + yr′1 (mod r′1r′2d). (1.5)

We have a ≡ x (mod r′1) and b ≡ y (mod r′2). Let x = a + ir′1 and y = b + jr′2.

Then by using (1.5) we have

(a− x)r′2 ≡ (y − b)r′1 (mod r′1r′2d).

Therefore we have i + j ≡ 0 (mod d), which has exactly d solutions. So we

conclude that, given a and b, there are exactly d solutions (x, y) with 1 ≤ x ≤ r1

and 1 ≤ y ≤ r2 to the equation

a

r1
+ b

r2
= x

r1
+ y

r2
(mod Z).
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Obviously a
r1

+ b
r2

(mod 1) ∈
{

t
[r1,r2] : 0 ≤ t ≤ [r1, r2]

}
and as we showed above,

each element is repeated exactly d = r1r2
[r1,r2] times. This proves the lemma for

s = 2. Using induction, we have that

ai,1
ri,1

+ · · ·+ ai,k−1

ri,k−1
= a

[ri,1, ri,2, · · · ri,k−1]
,

with exactly ri,1ri,2···ri,k−1
[ri,1,ri,2,···ri,k−1] repetitions each. And, by the first part of the proof

there are exactly
[ri,1, ri,2, · · · ri,k−1]ri,k

[ri,1, ri,2, · · · ri,k]
ways to write ai,1

ri,1
+· · ·+ ai,k

ri,k
as a

[ri,1,ri,2,···ri,k−1] +
ai,k
ri,k

(mod1). Now the total number

of repetitions is

[ri,1, ri,2, · · · ri,k−1]ri,k
[ri,1, ri,2, · · · ri,k]

· ri,1ri,2 · · · ri,k−1

[ri,1, ri,2, · · · ri,k−1]
= ri,1ri,2 · · · ri,k

[ri,1, ri,2, · · · ri,k]

�

Now our task is to bound (1.4), for which we need to use the idea of Mont-

gomery and Vaughan’s Fundamental Lemma [6], slightly modified. In order to

do that we use Lemma 2 from [8, Page 596].

Lemma 1.4. Let q1, · · · , qk be square-free integers, each one strictly greater than

1, and put d = [q1, ..., qk]. Let G be a complex-valued function defined on (0, 1),

and suppose that G0 is a nondecreasing function on the positive integers such that
q−1∑
a=1
|G(a/q)|2 ≤ qG0(q),

for all square-free integers q > 1. Then∣∣∣∣∣ ∑
a1,··· ,ak
0<ai<qi∑ ai

qi
∈Z

k∏
i=1

G(ai/qi)
∣∣∣∣∣ ≤ 1

d

k∏
i=1

qiG0(qi)1/2.

We now need to verify that F satisfies the requirements for G in the Lemma

1.4. Lemma 4 of [6] asserts that

∑
0<a<q

F

(
a

q

)2

� qmin(q, h).
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Since min(q, h) is obviously a non-decreasing function of q, we can use Lemma

1.4 with F and min(q, h) in place of G and G0 respectively. About the condition

qi > 1, note that, since we apply Lemma 1.4 for qi = [ri,1, · · · , ri,s] and we have∑s
j=1

ai,j
ri,j

/∈ Z, then qi = [ri,1, · · · , ri,s] 6= 1. From Lemma 1.3 we have

S({ri,j}i,j) =
∑

0<ai,j≤ri,j
(ai,j ,ri,j)=1∑s

j=1
ai,j
ri,j

/∈Z∑
i,j

ai,j
ri,j
∈Z

F

(
s∑
j=1

a1,j

r1,j

)
· · ·F

(
s∑
j=1

ak,j
rk,j

)

≤ T
∑

0<ai<[ri,1,··· ,ri,s]∑s

i=1
ai

[ri,1,··· ,ri,s]∈Z

F

(
a1

[r1,1, · · · , r1,s]

)
· · ·F

(
ak

[rk,1, · · · , rk,s]

)
, (1.6)

where

T = r1,1 · · · r1,s

[r1,1, · · · , r1,s]
· · · rk,1 · · · rk,s

[rk,1, · · · , rk,s]
.

Now using Lemma 1.4 with G = F and qi = [ri,1, · · · , ri,s], we have that

S({ri,j}i,j)�
r1,1 · · · rk,s

r
hk/2 (1.7)

Now we are ready to prove our Theorem:

Proof of Theorem 1.1. We prove the result with q square-free. Then the

theorem follows for q non-square-free immediately by considering the result for

Q = ∏
p|q p. Now using relations (1.4) and (1.7), we have that

q−1∑
n=0

 h∑
m=1

kq(n+m+ h1) · · · kq(n+m+ hs)− h
∏
p|q

(
1− νp(D)

p

)k

� qP ks
∑
r|q

1
r

∑
[r1,1,r1,2,··· , rk,s]=r

r1,1 · · · rk,s
φ(r1,1) · · ·φ(rk,s)

hk/2

≤qP ks
∑
r|q

1
r

(∑
r′|r

r′

φ(r′)

)ks
hk/2 = qhk/2P ks

∏
p|q

(
1 + 1

p

(
2 + 1

p− 1

)ks)

� qhk/2P−2ks+ks.
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The last inequality is valid since we have that

∏
p|q

(
1 + 1

p

(
2 + 1

p− 1

)ks)
= P−2ks∏

p|q

(
1− 1

p

)2ks (
1 + 1

p

(
2 + 1

p− 1

)ks)

and for p > (ks)2 we have (
2 + 1

p− 1

)ks
= 2kseO( ks

p
).

Thus, from ex > 1 + x, we find that(
1 + 1

p

(
2 + 1

p− 1

)ks)
= 1 + 2ks

p

(
1 +O

(
ks

p

))
< e

2ks
p ,

and, consequently (
1− 1

p

)2ks (
1 + 1

p

(
2 + 1

p− 1

)ks)
< 1.

If p ≤ (ks)2, then(
1− 1

p

)2ks
(

1 + 1
p

(
2 + 1

p− 1

)ks)
< e−

2ks
p 3ks < 1.

�



CHAPTER 2

A PROBABILISTIC ESTIMATE

In this chapter we prove an estimate about the distribution of s-tuples of reduced

residues using a probabilistic method. The estimate derived here is valid only

when q is not divisible by any small prime, and in this case it is the best possible

we can have. In particular, it’s much better than our earlier exponential sum

estimate in this range.

Let Xi, for 1 ≤ i ≤ h, be independent identically distributed random variables

such that

Prob(Xi = 1) = 1− Prob(Xi = 0) = P.

Then

X = X1 + · · ·+Xh

is called a binomial random variable. Given such a random variable X, we denote

with µk(h, P ) its k-th moment about its mean, that is to say,

µk(h, P ) := E
(
(X − hP )k

)
.

We will use these random variables in the proof of the following Theorem:

Theorem 2.1. Let A be a set of h integers and h1 < · · · < hs. Suppose that for

each prime divisor p of q we have p > maxA − minA + hs − h1. Suppose also
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that p > y for all p|q. Then for y > hk and for each fixed even k > 1

MD
k (q, h) =

q−1∑
n=0

 ∑
m∈A

(n+m+hi,q)=1
1≤i≤s

1− h
(
φ(q)
q

)sk � q

(
h

(
φ(q)
q

)s)[k/2]

+ qh

(
φ(q)
q

)s
,

which the implicit constant depends on k and |h1 − hs|.

Remark 2.1. Under the conditions of Theorem 2.1, it provides a better esti-

mate than Theorem 1.1. Indeed Theorem 1.1 yields the estimate

MD
k (q, h)� qhk/2P−2ks+ks

whereas by Theorem 2.1 we have that

MD
k (q, h)� q

(
h

(
φ(q)
q

)s)[k/2]

+ qh

(
φ(q)
q

)s
.

Comparing two bounds and using the fact that q
(
h
(
φ(q)
q

)s)[k/2]
≤ qhk/2P−2ks+ks

proves the point.

Proof. The proof is similar to the proof of Lemma 9 in [6], with a small

variation which we explain. We have that

∑
m∈A

(m+hi,q)=1
1≤i≤s

1− h
(
φ(q)
q

)s
=

∑
1≤j≤H

 ∑
m∈Aj

(m+hi,q)=1
1≤i≤s

1− |Aj|
(
φ(q)
q

)s

where

Aj = {m ∈ A : m ≡ j (mod H)} ,

where H = |hs − h1| + 1. From Hölder’s inequality with, 1
k

+ 1
k
k−1

= 1, we have

that ∣∣∣∣∣
H∑
i=1

ai

∣∣∣∣∣ ≤ H
k−1
k

(
H∑
i=1
|ai|k

) 1
k
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and, consequently,

 ∑
m∈A

(m+hi,q)=1
1≤i≤s

1− h
(
φ(q)
q

)sk ≤ Hk−1 ∑
1≤j≤H

 ∑
m∈Aj

(m+hi,q)=1
1≤i≤s

1− |Aj|
(
φ(q)
q

)sk.

Now we focus on

Sj =
q−1∑
n=0

 ∑
m∈Aj

(n+m+hi,q)=1
1≤i≤s

1− |Aj|
(
φ(q)
q

)sk. (2.1)

We note that

Sj =
∑
n

∑
r

(
k

r

)( ∑
m∈Aj

(n+m+hi,q)=1
1≤i≤s

1
)r(
− |Aj|

(
φ(q)
q

)s)k−r
.

Moreover, we have that

( ∑
m∈Aj

(n+m+hi,q)=1
1≤i≤s

1
)r

=
∑

m1,··· ,mr∈Aj
(n+ml+hi,q)=1

1≤i≤s
1≤l≤r

1

We will show that ml + hi 6= ml′ + hi′ for ml 6= ml′ . Without loss of generality,

we assume that ml < ml′ and therefore ml + hi < ml′ + hi′ . This is true since

ml −ml′ ≡ 0 (mod H) and thus |ml −ml′ | ≥ H > |hi − hi′|. Now we claim that

ml + hi 6≡ ml′ + hi′ ( mod p) for all p|q. Assume, on the contrary, that

ml + hi ≡ ml′ + hi′ (mod p)

for some p|q. Then we have that p|ml + hi−
(
ml′ + hi′

)
. We already have shown

ml + hi −
(
ml′ + hi′

)
6= 0, therefore

p ≤ |ml −ml′ |+ |hi − hi′ |,
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which contradicts our assumption that p > maxA−minA+ hs − h1.

Applying these facts and changing the order of summation in Sj, we have that
q−1∑
n=0

(n+mj+hi,q)=1
1≤i≤s
1≤j≤r

1 =
∏
p|q

(p− st), (2.2)

where t = # {m1, · · · ,mr}. Let S(r, t) denote the Stirling number of the second

kind, i.e. the number of ways of partitioning a set of cardinality r into exactly t

non-empty subsets. Following the proof of Lemma 9 in [6], S(r, t)t! is the number

of surjective maps from a set of cardinality r to a set of cardinality t. We set

S(r, 0) = 0 so that we have
q−1∑
n=0

∑
m1,··· ,mr∈Aj

(n+mk+hi,q)=1
1≤i≤s
1≤k≤r

1 =
r∑
t=0

∑
B⊆Aj

card(B)=t

S(r, t)t!
∏
p|q

(p− st)

As there are
(
|Aj |
t

)
possible choices for B, the above is

q
r∑
t=1

(
|Aj|
t

)
S(r, t)t!

(
φ(q)
q

)st∏
p|q

(
1− st

p

)(
1− 1

p

)−st

and, since p > y > hs − h1 we have that

∏
p|q

(
1− st

p

)(
1− 1

p

)−st
= 1 +Ost

(1
y

)

From Lemma 9 in [6, page.326] we have that

Sj = q
k∑
r=0

(
k

r

)
(−|Aj|P s)k−r

r∑
t=0

(
|Aj|
t

)
S(r, t)t!(P )st

(
1 +Ost(

1
y

)
)

and

q
k∑
r=0

(
k

r

)
(−|Aj|P s)k−r

r∑
t=0

(
|Aj|
t

)
S(r, t)t!(P )st = µk(|Aj|, P s)

using [6, page.327]. Thus

Sj =q
k∑
r=0

(
k

r

)(
− |Aj|

(
φ(q)
q

)s)k−r r∑
t=0

(
|Aj|
t

)
S(r, t))t!

(
φ(q)
q

)st(
1 +Ost

(1
y

))

= qµk

(
|Aj|,

(
φ(q)
q

)s)
+O

{
q

y

(
h
(
φ(q)
q

)s)k
+ h

(
φ(q)
q

)s}
,
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using the fact that |Aj| ≤ h. For the error term the dependence of the implicit

constant on t can be considered to be a dependence on k, since t < s < k we also

use
q

y

r∑
t=0

(
|Aj|
t

)(
φ(q)
q

)st
� q

y

(h
(
φ(q)
q

)s
)r + h

(
φ(q)
q

)s

Next note that Lemma 11 of [6] states that, for any fixed integer k > 0, µk(h, P )�

(hP )[k/2] + hP, uniformly for 0 < P < 1, h = 1, 2, 3, .... So

µk(|Aj|, P s)� (|Aj|P s)[k/2] + |Aj|P s ≤ (hP s)[k/2] + hP s.

Using this and and our assumption that y > hk, we find that

q−1∑
n=0

 ∑
m∈A

(n+m+hi,q)=1
1≤i≤s

1− h
(
φ(q)
q

)sk � q
(
h
(
φ(q)
q

)s)[k/2]
+ qh

(
φ(q)
q

)s
, (2.3)

which concludes the proof of the Theorem. �





CHAPTER 3

THE PRINCIPAL ESTIMATE

In this chapter we will prove our principal estimate about the distribution of s-

tuples of reduced residues, by combining both our probabilistic and exponential

sum estimates. The new estimate that we derive here is valid for every q and it is

better than our exponential sum estimate. Using the principal estimate, we will

be able to prove Theorem 0.1.

Theorem 3.1. Let k be a given even number, and fix constant A > k. Let

q1 = ∏
p|q
p≤y

p and q2 = ∏
p|q
p>y

p, where hA > y > hk. Correspondingly we set

Pi = φ(qi)
qi

for i = 1, 2. For h > P−1 we have

MD
k (q, h)� q(hP s)[k/2] + qh(P )s + qhk/2P−2ks+ks

1 P sk
2 .

And the implicit constant depends on k and s.

Remark 3.1. We call the result above principal estimate. It is better than

Theorem 1.1
(
MD

k (q, h)� qhk/2P−2ks+ks
)
because of the factor P sk

2 in

qhk/2P−2ks+ks
1 P sk

2 .

Proof. Since q is square-free we have q = q1q2 and (q1, q2) = 1. By the

Chinese Remainder Theorem we have that

MD
k (q, h) =

q1−1∑
n1=0

q2−1∑
n2=0

D(n1, n2)k,
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where

D(n1, n2) =
h∑

m=1
(ni+m+hj ,qi)=1

1≤j≤s
i=1,2

1− h
∏
p|q

(
1− νp(D)

p

)
.

Following [6], we may write D = D1 +D2 where

D1 =
∏
p|q2

(
1− νp(D)

p

)
h∑

m=1
(n1+m+hj ,q1)=1

1≤j≤s

1− h
∏
p|q

(
1− νp(D)

p

)

D2 =
h∑

m=1
(ni+m+hj ,qi)=1

1≤j≤s
i=1,2

1−
∏
p|q2

(
1− νp(D)

p

)
h∑

m=1
(n1+m+hj ,q1)=1

1≤j≤s

1

From Holder’s inequality we have Dk ≤ 2k
(
Dk

1 +Dk
2

)
, and consequently

MD
k (q, h)�

∑
n1

∑
n2

Dk
1 +

∑
n1

∑
n2

Dk
2 .

Since D1 is independent of n2, we have that

∑
n1

∑
n2

Dk
1 � q2P

sk
2 MD

k (q1, h),

which by Theorem 1.1 leads to

∑
n1

∑
n2

Dk
1 �k q2P

sk
2 q1h

k/2P−2ks+ks
1 = qhk/2P−2ks+ks

1 P sk
2 .

To estimate ∑n1

∑
n2 D

k
2 let

An1 = {1 ≤ m ≤ h : (n1 +m+ hj, q1) = 1, 1 ≤ j ≤ s} .

Note that the size of An1 is
h∑

m=1
(n1+m+hj ,q1)=1

1≤j≤s

1,

which, by a simple sieve argument, is � hP s
1 . Therefore

∑
n2

Dk
2 =

∑
n2

( ∑
m∈An1

(n2+m+hj ,q2)=1
1≤j≤s

1−
∏
p|q2

(
1− νp(D)

p

)
|An1|

)k
.
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Now, since y > hk and p|q2, we have that p > hk and consequently

∏
p|q2

(
1− νp(D)

p

)
=
∏
p|q2

(
1− s

p

)
=
∏
p|q2

(
1− 1

p

)s(
1 +O

(1
y

))
.

Next we need to use Theorem 2.1 with A = An1 and q = q2. In order to do this

we need to verify that p > maxAn1 − minAn1 + hs − h1 for all p|q2. We have

that maxAn1 − minAn1 ≤ h and, since for p|q2 we have p > y > hk, it suffices

to verify that h + H < hk. This is true because H is fixed, k ≥ 2 and h > P−1.

(Note that we may assume P−1 > H else, otherwise, P−1 is bounded and we can

deduce the result desired here from Theorem 1.1.) Using Theorem 2.1, we have

that ∑
n2

Dk
2 � q2

(
|An1|

(
φ(q2)
q2

)s)[k/2]

+ q2|An1 |
(
φ(q2)
q2

)s
.

Since |An1| � hP s
1 , we have that

∑
n2

Dk
2 � q2

(
h

(
φ(q)
q

)s)[k/2]

+ q2h

(
φ(q)
q

)s
,

consequently we have that
(
with P = φ(q)

q

)
∑
n1

∑
n2

Dk
2 � q(hP s)[k/2] + qhP s.

Finally, we arrive at our principal estimate

MD
k (q, h)� q(hP s)[k/2] + qh(P )s + qhk/2P−2ks+ks

1 P sk
2 . (3.1)

�





CHAPTER 4

PROOF OF THEOREM 0.1

Let a1 < a2 < · · · be the integers, such that ai + hj is co-prime to q for each

hj ∈ D. Let

L(x) = # {i : 1 ≤ i ≤ φD(q), ai+1 − ai > x} .

We have that

V Dλ (q) = λ
∫ ∞

0
L(x)xλ−1dx.

Obviously, L(x) ≤ ∏p|q(p− νp(D)) < CqP s for some constant C = C(D). There-

fore for x < P−1
D

(
with PD = ∏

p|q

(
1− νp(D)

p

))
, since PD � P s, we have that

λ
∫ P−1

D

0
L(x)xλ−1 � qP s

∫ P−1
D

0
xλ−1 � q(P s)1−λ.

To bound L(x) for larger x, we note that if ai+1 − ai > h, for some integer h.

Then
h∑

m=1
(n+m+hj ,q)=1

1≤j≤s

1− hPD = −hPD

for ai ≤ n < ai+1 − h. Let k be a fixed even integer bigger than 2λ. Then

qPD∑
i=1

ai+1−ai>h

(ai+1 − ai − h)(hPD)k ≤MD
k (q, h). (4.1)

If h = [x2 ] and ai+1− ai > x, then ai+1− ai− h > h, so the left-hand side of (4.1)

is ≥ h(hPD)kL(x). Combining this with our principal estimate, Theorem (3.1)



32

yields

x(xPD)kL(x)� q
(
(xPD)k/2 + xk/2P ksP−2ks

1

)
.

Now for x < eP
−α , if y = x2k + 1 where, α = ks

2ks+1 , then we have

P−1
1 =

( ∏
p<y

(1− 1
p

)
)−1
� log y � log x� P−α.

Therefore

P−2ks
1 � (P−α)2ks � P−

sk
2 .

So we have

L(x)� qPD

(xPD) k2 +1
.

By integrating both sides we deduce that∫ eP
−α/k

P−1
0

L(x)xλ−1dx�
∫ eP

−α/k

P−1
D

qPD

(xPD) k2 +1
xλ−1dx.

Since k
2 + 1 > λ we have∫ P−α/k

P−1
D

L(x)xλ−1dx� qP 1−λ
D
� q(P s)1−λ.

For larger x we use Theorem 1.1, which gives us that

MD
k (q, h)� qhk/2P−2ks+ks.

Therefore we have

L(x)� qP−2ks

x
k
2 +1

and ∫ ∞
eP
−α/k

L(x)xλ−1dx� qP−2ks
∫ ∞
eP
−α/k

xλ−1

x
k
2 +1

dx

So taking k = 2bλc+ 1 implies that∫ ∞
eP
−α/k

L(x)xλ−1dx� q
P−2ks

eP−α/k
� q(P s)1−λ,

for P−1 large enough, which finishes the proof.
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