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Résumé 
 L'azote est l'un des éléments les plus essentiels dans le monde pour les êtres vivants, 

car il est essentiel pour la production des éléments de base de la cellule, les acides aminés, 

les acides nucléiques et les autres constituants cellulaires. L’atmosphère est composé de 

78% d'azote gazeux, une source d'azote inutilisable par la plupart des organismes à 

l'exception de ceux qui possèdent l’enzyme nitrogénase, tels que les bactéries 

diazotrophique. Ces micro-organismes sont capables de convertir l'azote atmosphérique en 

ammoniac (NH3), qui est l'une des sources d'azote les plus préférables. Cette réaction 

exigeant l’ATP, appelée fixation de l'azote, est catalysée par une enzyme, nitrogénase, qui 

est l'enzyme la plus importante dans le cycle de l'azote. Certaines protéines sont des 

régulateurs potentiels de la synthèse de la nitrogénase et de son activité; AmtB, DraT, DraG, 

les protéines PII, etc.. Dans cette thèse, j'ai effectué diverses expériences afin de mieux 

comprendre leurs rôles détailés dans Rhodobacter capsulatus. 

 La protéine membranaire AmtB, très répandue chez les archaea, les bactéries et les 

eucaryotes, est un membre de la famille MEP / Amt / Rh. Les protéines AmtB sont des 

transporteurs d'ammonium, importateurs d'ammonium externe, et ont également été suggéré 

d’agir comme des senseurs d'ammonium. Il a été montré que l’AmtB de Rhodobacter 

capsulatus fonctionne comme un capteur pour détecter la présence d'ammonium externe 

pour réguler la nitrogénase. La nitrogénase est constituée de deux métalloprotéines 

nommées MoFe-protéine et Fe-protéine. L'addition d'ammoniaque à une culture R. 

capsulatus conduit à une série de réactions qui mènent à la désactivation de la nitrogénase, 

appelé "nitrogénase switch-off". Une réaction critique dans ce processus est l’ajout d’un 

groupe ADP-ribose à la Fe-protéine par DraT. L'entrée de l'ammoniac dans la cellule à 

travers le pore AmtB est contrôlée par la séquestration de GlnK. GlnK est une protéine PII 

et les protéines PII sont des protéines centrales dans la régulation du métabolisme de 

l'azote. Non seulement la séquestration de GlnK par AmtB est importante dans la régulation 

nitrogénase, mais la liaison de l'ammonium par AmtB ou de son transport partiel est 

également nécessaire. Les complexes AmtB-GlnK sont supposés de lier DraG, l’enzyme 

responsable pour enlever l'ADP-ribose ajouté à la nitrogénase par DraT, ainsi formant un 

complexe ternaire. 

 Dans cette thèse certains détails du mécanisme de transduction du signal et de 



ii 

 

 

transport d'ammonium ont été examinés par la génération et la caractérisation d’un mutant 

dirigé, RCZC, (D335A). La capacité de ce mutant, ainsi que des mutants construits 

précédemment, RCIA1 (D338A), RCIA2 (G344C), RCIA3 (H193E) et RCIA4 (W237A), 

d’effectuer le « switch-off » de la nitrogénase a été mesurée par chromatographie en phase 

gazeuse. Les résultats ont révélé que tous les résidus d'acides aminés ci-dessus ont un rôle 

essentiel dans la régulation de la nitrogénase. L’immunobuvardage a également été 

effectués afin de vérifier la présence de la Fe-protéine l'ADP-ribosylée. D335, D388 et 

W237 semblent être cruciales pour l’ADP-ribosylation, puisque les mutants RCZC, RCIA1 

et RCIA4 n'a pas montré de l’ADP-ribosylation de la Fe-protéine. En outre, même si une 

légère ADP-ribosylation a été observée pour RCIA2 (G344C), nous le considérons comme 

un résidu d'acide aminé important dans la régulation de la nitrogénase. D’un autre coté, le 

mutant RCIA3 (H193E) a montré une ADP-ribosylation de la Fe-protéine après un choc 

d'ammonium, par conséquent, il ne semble pas jouer un rôle important dans l’ADP-

ribosylation. 

 Par ailleurs R. capsulatus possède une deuxième Amt appelé AmtY, qui, 

contrairement à AmtB, ne semble pas avoir des rôles spécifiques. Afin de découvrir ses 

fonctionnalités, AmtY a été surexprimée dans une souche d’E. coli manquant l’AmtB 

(GT1001 pRSG1) (réalisée précédemment par d'autres membres du laboratoire) et la 

formation des complexes AmtY-GlnK en réponse à l'addition d’ammoniac a été examinée. 

Il a été montré que même si AmtY est en mesure de transporter l'ammoniac lorsqu'il est 

exprimé dans E. coli, elle ne peut pass’ associer à GlnK en réponse à NH4 
+
. 

 

Mots-clés: AmtB, AmtY, le transport d'ammonium, mutagenèse dirigée, ADP ribosylation, 

fixation de l'azote. 
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Abstract 
 Nitrogen is one of the most vital elements in the world for living creatures since it is 

essential for the production of the basic building blocks of the cell; amino acids, nucleic 

acids and other cellular constituents. The atmosphere is 78% nitrogen gas (N2), a source of 

nitrogen unusable by most organisms except for those possessing the enzyme nitrogenase, 

such as diazotrophic bacteria species. These microorganisms are capable of converting 

atmospheric nitrogen to ammonia (NH3), which is one of the most preferable nitrogen 

sources. This ATP demanding reaction, called nitrogen fixation, is catalysed by the 

nitrogenase enzyme, which is the most important enzyme in the nitrogen cycle. Some 

proteins are potential regulators of nitrogenase synthesis and activity; AmtB, DraT, DraG, 

PII proteins and etc. In this thesis I performed various experiments in order to better 

understand their roles in Rhodobacter capsulatus, in more detail. 

 The membrane protein AmtB, which is widespread among archaea, bacteria and 

eukaryotes, is a member of the MEP/Amt/Rh family. The AmtB proteins are ammonium 

transporters, taking up external ammonium, and have also been suggested to sense the 

presence of ammonium. It has been shown that in Rhodobacter capsulatus AmtB functions 

as a sensor for the presence of external ammonium in order to regulate nitrogenase. 

Nitrogenase consists of two metalloprotein components named MoFe-protein and Fe-

protein. The addition of ammonium to R. capsulatus culture medium leads to a series of 

reactions which result in the deactivation of nitrogenase, called “nitrogenase switch-off”. A 

critical reaction in this process is one in which DraT adds an ADP-ribose group to the Fe-

protein of nitrogenase. The entrance of ammonia through the AmtB pore is regulated by 

GlnK sequestration. GlnK is a PII protein and PII proteins are one of the central proteins in 

the regulation of nitrogen metabolism. Not only is GlnK-AmtB sequestration important in 

nitrogenase regulation, but binding of ammonium by AmtB or its partial transport is also 

necessary. AmtB-GlnK complexes are thought to bind DraG, which is responsible for 

removing the ADP-ribose that DraT adds to nitrogenase, to form a ternary complex.  

 In this thesis details of the signal transduction mechanism and ammonium transport 

were examined by generating and characterizing RCZC, a (D335A) site- directed mutant of 

AmtB. The ability of this mutant, as well as previously constructed mutants RCIA1 

(D338A), RCIA2 (G344C), RCIA3 (H193E) and RCIA4 (W237A), to “switch-off” 
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nitrogenase activity was measured by gas chromatography. The results revealed that all the 

above amino acid residues have critical roles in nitrogenase regulation. Immunoblotting 

was also carried out to check the presence of ADP-ribosylated Fe-protein. D335, D388 and 

W237 seem to be crucial for NifH ADP-ribosylation, since their mutants (RCZC, RCIA1 

and RCIA4 respectively) didn't show ADP-ribosylation on Fe-protein. In addition, although 

a slight ADP-ribosylation was observed for RCIA2 (G344C) we still consider it as an 

important amino acid residue in this matter whereas the remaining mutant RCIA3 (H193E) 

showed Fe-protein ADP-ribossylation after an ammonium shock, therefore it doesn't seem 

to be important in NifH ADP-ribosylation. 

 In addition R. capsulatus possesses a second Amt called AmtY, which in contrast to 

AmtB, doesn't appear to have any specific roles. In order to find out its functionality, AmtY 

was overexpressed in an E. coli strain lacking AmtB (GT1001 pRSG1) (which was carried 

out previously by other lab members) and AmtY-GlnK complex formation in response to 

ammonium addition was examined. It was shown that even though AmtY is able to take up 

ammonia when expressed in E. coli it fails to associate with GlnK in response to NH4
+
. 

 

Keywords: AmtB, AmtY, ammonium transport, site directed mutagenesis, ADP 

ribosylation, nitrogen fixation. 
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1. Introduction: 

 Organisms need various elements for growth; C,H,N,O,P,S,Fe. Among them, 

nitrogen is critical since it is essential for the production of the basic building blocks such 

as amino acids, nucleic acids and other cellular constituents. Nitrogen exists in different 

forms; N2, ammonia (NH3), ammonium (NH4
+
), nitrite (NO2

-
), nitrate (NO3

-
) and organic 

nitrogen (1). Among them, ammonia and ammonium are the forms preferred by 

microorganisms for assimilation (2) while N2 is unusable for most organisms, due to the 

presence of a triple bond between the two nitrogen atoms which makes it almost inert (1). 

Only diazotrophic species can convert dinitrogen (N2) to ammonia, a reaction catalysed by 

the nitrogenase enzyme. This reaction, called nitrogen fixation, requires a large amount of 

energy therefore it is only carried out in the absence or deficiency of ammonia (3, 4). 

 

 

 After the conversion of atmospheric nitrogen to ammonia it is available for 

assimilation by plants and passed to animals in amino acid and protein forms. Ultimately 

molecular nitrogen is released into the atmosphere. These back to back transformations 

repeated in a circular manner is named the nitrogen cycle (Fig 1), which literally recycles 

molecular nitrogen back to the atmosphere (1). 

 

 

 

 

 

 

 

 

 

 

 

 

N2 + 8H
+
 + 8e

-
 +16ATP 2NH3 + H2 + 16ADP  + 16Pi  

Fig 1. Nitrogen cycle (70) 



3 

 

 

1.1 Rhodobacter capsulatus: 

 This purple nonsulfur photosynthetic bacterium, previously named 

Rhodopseudomonas capsulata, has been widely used in research areas such as 

photosynthesis, energetics and nitrogen fixation (5). It grows very fast under either 

anaerobic photosynthetic conditions or aerobically in the absence of light with a doubling 

time of two hours and is stable in long time storage. The optimal growth temperature is 30 

°C (6). R. capsulatus is ovoid or rod-shaped according to pH of the media. Cells are 

arranged as chains and angular. Their color under anaerobic conditions is brown, however 

in the presence of oxygen it turns red (7). It possesses a single 3.5 Mb chromosome and 

contains a 134 kb circular plasmid (5). R. capsulatus produces H2, if grown in the presence 

of light under nitrogen limiting conditions (8). H2 production is catalyzed by nitrogenase 

under anaerobic conditions, with the consumption of ATP and the two-electron reduction of 

H
+
 to H2 (9). 

 

1.2 Nitrogen assimilation: 

 When organisms are in need of nitrogen, a regulatory system increases nitrogen 

assimilation. Assimilatory pathways are repressed under nitrogen sufficiency. In bacteria 

and eukaryotes PII proteins act as nitrogen sensors. In order for any nitrogen source to be 

assimilated, it first has to be converted to ammonium. Various metabolites are essential for 

its assimilation, which in turn signal nitrogen status to the regulatory system.  

 Two assimilatory pathways are available in prokaryotes, namely glutamine 

synthetase (GS)/glutamate synthase (glutamine:2-oxoglutarate aminotransferase, or 

GOGAT) (Fig 2) (10, used with permission) and glutamate dehydrogenase. In the former 

pathway, GS assimilates ammonium by converting glutamate (Glu) to glutamine (Gln). 

Then the amide group from Gln is transferred to 2-oxoglutarate (2-OG) which produces 

two Glu. In conditions where GOGAT doesn't function, glutamate dehydrogenase (GDH) 

makes Glu with 2-OG and ammonia. High concentrations of Glu signal ammonium 

sufficiency whereas high concentrations of 2-OG calls for ammonium deficiency (10). 
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2. Nitrogenase: 

 Nitrogenase is an extremely oxygen sensitive enzyme and in diazotrophic 

organisms, as mentioned earlier, is the enzyme responsible for the conversion of molecular 

nitrogen to ammonia with the consumption of 16 molecules of ATP (2 ATP per electron 

transferred) (11). In the photosynthetic bacteria, the required ATP and high energy electrons 

are provided by photosynthesis (12). Diazotrophic organisms are not found in the eukaryota 

while they are widely distributed in the bacteria and archaea (11). 

 

2.1 Molybdenum-iron nitrogenase: 

Nitrogenases have a conserved structure and functionality and are metalloenzymes since 

they contain MoFe-protein (molybdenum-iron protein) and Fe-protein (iron protein) (Fig 3) 

(54, used with permission), both of which are required for activity (11). Nitrogenase consists 

of structural genes (nifHDK) that encode the Fe-protein and MoFe-protein (3). This kind of 

nitrogenase is presesnt in all the diazotrophs. These two proteins make physical contact in 

Fig 2. Glutamine synthase (GS)-glutamate synthase (GOGAT) 

pathway of ammonia assimilation (10) 



5 

 

 

order to facilitate the electron transfer process (12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.1 FeMo-protein: 

 Molybdenum-iron protein is also known as dinitrogenase which is encoded by the 

nifDK nitrogenase structural genes (3). It is the larger component of nitrogenase and is 

heterotetrameric with α2β2 subunits; the α subunit is composed of 501 amino acids and 

weighs 55 kDa while the β subunit (accession number ADE84335.1) has 512 amino acids 

and weighs 56 kDa (11). FeMo-protein is responsible for the enzyme's activity and 

possesses the N2 reduction active site (4). Dinitrogenase contains P-clusters (8Fe-7S) and 

the iron-molybdenum cofactor (FeMoco) which comprises the N2 reduction active site (3, 

12) (Fig 4) (11, used with permission). Dinitrogenase is extremely oxygen sensetive (11). 

 

 

 

 

 

Fig 3. Structure of molybdenum-iron nitrogenase (54). The α and β subunits of 

MoFe protein are colored in red and blue respectively and Fe-protein subunits 

are shown in yellow and green. 
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2.1.2 Fe-protein: 

 Iron protein, also called dinitrogenase reductase, is encoded by nifH (3) and is the 

smaller part of nitrogenase with homodimeric α2 subunits. Each α subunit (accession 

number ADE84336.1) contains 297 amino acids and weighs 33 kDa (11). Fe-protein 

contains a 4Fe-4S cluster and functions in transferring electrons to the MoFe-protein (Fig 

5) (11, used with permission) in a step that requires MgATP hydrolysis (2, 12). 

Dinitrogenase reductase is irreversibly sensitive to oxygen (11). 

 

 

 

 

 

 

 

Fig 4.  Structure of the complex formed between  

Fe-protein and MoFe-protein of nitrogenase (11). The subunits of the two Fe- 

protein dimers are depicted in cyan, brown, magenta and grey. The α subunits of 

the MoFe-protein are coloured in green and yellow, while β subunits in red and 

blue. 
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2.2 Vanadium- dependent nitrogenase versus Iron-only nitrogenase: 

 Although all diazotrophs contain the molybdenum-iron nitrogenase, some, such as 

R. capsulatus can synthesize a substitute for it with vanidium-iron (FeVco) or iron-iron co-

factors (FeFeco) under molybdenum-limiting conditions (11). The former belongs to the 

vanadium- dependent nitrogenase (V-nitrogenase) whereas the latter originates from the 

iron-only nitrogenase (Fe-nitrogenase). V-nitrogenase and Fe-nitrogenase are encoded by 

the vnf (vanadium-dependent nitrogen fixation) and the anf (alternative nitrogen fixation) 

genes (3). Since V-nitrogenase and Fe-nitrogenase show less specific activity in comparison 

to MoFe-nitrogenase, the latter is always the one used preferentially by diazotrophs (3, 13).  

 

3. Nitrogen fixation in R. capsulatus: 

3.1 Important Nitrogen fixation genes and proteins: 

 Nitrogen fixation in R. capsulatus requires more than 50 genes, a number of them 

will be briefly discussed in this section. The 3 nitrogenases are encoded by 3 different sets 

of genes: the molybdenum nitrogenase (nifHDK), the vanadium nitrogenase (vnfH, 

vnfDGK), and the alternative nitrogenase (anfHDGK) (14). Genes required for the 

biosynthesis of FeMoco are nifU, nifS, nifB, nifQ, nifV, nifE and nifN. Also ntrB/C genes are 

Fig 5. Depicting nitrogenase Fe-protein cycle (11). 
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extremely important as they trigger the first step of nitrogen fixation in R. capsulatus (3 and 

15). 

 Additional genes involved in nitrogen metabolism are the two PII proteins encoded 

by glnK and glnB, glnD, responsible for PII modification, an ammonium transporter protein 

encoded by amtB, and the proteins responsible for the post-translational regulation of 

nitrogenase encoded by draT/G (3). These are vital elements for nitrogen fixation in R. 

capsulatus, and each will be described in detail in the following sections. 

 Some critical genes involved in nitrogen fixation in R. capsulatus are duplicated 

such as FeMoco biosynthesis genes nifB1/nifB2, regulatory genes nifA1/nifA2 and the 

molybdenum regulatory genes mopA/mopB (3, 16). 

 

3.2 The Mep/AmtB/Rh family: 

 As mentioned previously, ammonium, the preferred nitrogen source for organisms 

such as bacteria, fungi and plants, is conducted through the membrane via a large and 

ubiquitous family named the Mep/AmtB/Rh family. However ammonium, in its uncharged 

form ammonia, can also enter the cell through passive diffusion. However, sometimes its 

extracellular level decreases to a limit below which inhibits passive diffusion can no longer 

support cellular needs and ammonium is actively taken up by AmtB/Mep to optimize the 

organism's growth efficiency (11, 17). Methylamine permease (Mep) and ammonium 

transporter (Amt) are critical for ammonium uptake under nitrogen depleted conditions, in 

yeast and bacteria, eukaryotes, archaea respectively (18). The equivalent protein in animals 

is the Rhesus (Rh) protein involved in ammonium homeostasis that is also important for pH 

balance maintenance in the kidney. 

 The most highly conserved part of the proteins in this family is the pore's 

hydrophobic side chains, especially for two centrally located histidines, His193 and His342 

(in R. capsulatus). In addition, all members of this family possess a conserved overall 

structure of 11 transmembrane helices. In addition, a high-affinity ion-binding site, which is 

specific for ammonium, is situated at the extracellular entrance of the hydrophobic pore of 

Mep and Amt proteins that is responsible for ammonium transport at its low concentrations. 

This site is not conserved in the Rh proteins (17). 
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3.3 Mep protein: 

 In yeast, Mep acts as an ammonium sensor and also conducts ammonia through its 

hydrophobic pore under nitrogen limited conditions. Saccharomyces cerevisiae possess 3 

Mep proteins called Mep1, Mep2 and Mep3 (19-24). Mep2 has the highest affinity for 

ammonium (Km 1–2 µM), Mep1 is second concerning ammonium affinity (Km 5–10 µM) 

followed by Mep3 (Km 1.4–2.1 µM) with a dramatic difference (24-27). In conditions of 

limited ammonium or amino acids a dimorphic change is induced resulting in filamentation 

of the diploid yeast cells which enables them to search for their prefereed conditions (24, 

28). In such situations in Saccharomyces cerevisiae Mep2 acts as an ammonium detector 

(24). 

 

3.4 Amt protein: 

 Similar to Mep, Amt may act as an ammonium sensor besides being an ammonia 

transporter channel when external ammonium concentrations are low. R. capsulatus, a 

purple nonsulfur photosynthetic bacterium, potentially has two systems for ammonium 

uptake. One is AmtB, which has been shown to be essential for nitrogenase switch off, the 

other is AmtY that is apparently silent (2). 

 

3.4.1 AmtB: 

 AmtB is usually encoded in a glnK-amtB operon (18). GlnK plays a critical role in 

the regulation of ammonia transport by binding to AmtB under ammonium replete 

conditions and blocking its pore (25). AmtB has 453 amino acids and weighs 46.8 kDa (2). 

AmtB is an ammonium channel protein (Fig 6) (25, used with permission), which has been 

revealed to be homotrimeric with a hydrophobic pore in each subunit (4, 18, 29). AmtB is 

an integral membrane protein whose isolation requires detergent solubilization (17, 30). 

AmtB has 11 transmembarane-spanning α helices (named M1-M11 in figure 6, where the 

corresponding pairs are shown in the same color) with an extracytosolic N-terminus and a 

cytosolic C-terminus (25, 31), together forming a right handed bundle around the pore (31).  
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 AmtB is a high-affinity ammonium uptake system (2) which transports ammonia 

through the cytoplasmic membrane (18) and is capable of methylammonium uptake. 

External NH4
+
 can't be conducted through the AmtB pore unless it is deprotonated at the 

exterior and transferred through the cytoplasmic membrane as NH3. It is reprotonated at the 

cytoplasm upon its arrival (4). The presence of AmtB is essential in order for some 

microorganisms to have optimal growth when extracellular NH4
+
 concentrations are low 

(29). In other words, when the concentration of extracellular NH4
+
 decreases to a level 

below which passive diffusion can cope with cellular demands, ammonia can be 

transported through AmtB to optimize the efficiency of bacterial growth (17). In addition, 

AmtB can compensate for the loss of NH4
+
 from the cell through diffusion (13). Therefore, 

regulation of the internal ammonium concentration could also be another function for AmtB 

(2, 32). AmtB also acts as an ammonium sensor, under ammonium starvation conditions, 

which leads to a series of reactions affecting the regulation of filamentous growth in 

microorganisms (2, 33). In order for AmtB to sense extracellular ammonium, ammonia 

transportation is required through its channel (18). 

 Two conserved phenylalanine side chains, F131 and F240 in R. capsulatus 

(equivalent to F107 and F215 in E. coli, as shown in figure 7) (27, used with permission), 

are situated at the entrance of each hydrophobic pore at the NH4
+
 binding site and they 

block the access to the channel. Inside the pore two highly conserved histidines, H193 and 

H342 in R. capsulatus (equivalent to H168 and H318 in E. coli, as depicted in figure 7, are 

Fig 6. A 3D view of monomer ammonium transporter channel (AmtB) (25). 
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thought to facilitate NH4
+
 deprotonation upon its entrance into the AmtB pore by being 

proton acceptors (27).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 These histidines are preceded by two highly conserved aspartates, D148 and D335 

in R. capsulatus (equivalent to D160 and D310 in E. coli) which appear to be involved in 

H-bonding interactions and have also been suggested to play structural roles. The amino 

acids that line the entrance of the AmtB pore in R. capsulatus are mostly hydrophobic and 

among them F131, W237 and F240 (same as F107, W212 and F215 in E. coli) are the most 

conserved ones (27). The D334 amino acid residue of R. capsulatus, similar to D309 of E. 

coli, participates in AmtB rearrangement upon GlnK binding. It is also a proton donor for 

ammonia upon its arrival at the cytoplasmic side, converting it into ammonium (34). 

Crystallographic studies carried out with E. coli AmtB suggest that the NH4
+
 binding cavity 

site in R. capsulatus is surrounded by F127, F131, W172 and S244 (similar to F103, 

F107,W148 and S219 in E. coli) and influence the specificity of the NH4
+
 binding site (27). 

 

3.4.2 AmtY: 

 Unlike AmtB, which is part of the glnK-amtB operon, AmtY is monocistronic and 

situated 2.5 kb away from ntrBC (genes coding for the NtrB-NtrC regulatory system which 

sense intracellular ammonia in R. capsulatus) and nifR3 (a gene involved in nitrogen 

regulation in R. capsulatus (35)). AmtY (accession number YP_003577944.1) not very 

Fig 7. A cut through the AmtB monomer within the membrane, 

presenting a number of imoportant amino acid residues (27) 
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similar to AmtB with only 42% similarity between them in R. capsulatus (2). They are very 

different in length, especially in their N-terminal region. It is not known whether AmtY 

plays a physiological role in ammonium uptake but it has been revealed that it is not 

responsible for methylammonium uptake. Since permeases that are capable of being probed 

by methylammonium are known as high-affinity ammonium transporters, AmtY is 

considered as a low-affinity one (2). AmtY is placed in the membrane and has 388 amino 

acids and its molecular weight is 42 kDa. 

 

3.5 Ntr system: 

 Sensing ammonia is key point regulating nitrogen metabolism in diazotrophs such 

as R. capsulatus. Extracellular ammonia is sensed by the AmtB protein whereas the 

intracellular ammonia is detected by the Ntr system (3). This system consists of NtrB-NtrC 

regulatory system, the two PII proteins, GlnB and GlnK, and GlnD 

uridylyltransferase/UMP-removing enzyme. Unlike AmtB which senses ammonia directly, 

the Ntr system senses nitrogen indirectly via responding to glutamine (nitrogen assimilation 

product), ATP and 2-oxoglutarate. These metabolites interact with GlnD, GlnB and GlnK, 

but are not capable of binding to NtrB, NifA1, NifA2 and DraT (36). 

 

3.5.1 Nitrogen regulatory protein B (NtrB): 

 NtrB (accession number ADE85542.1) is a bifunctional kinase/phosphatase protein 

playing a key role in transcriptional regulation of nitrogen fixation. This nitrogen regulator 

protein has a homodimeric structure (37), having 355 amino acids and weighing 38 kDa. It 

possesses an unique N-terminal domain and a C-terminal domain which is responsible for 

NtrB's kinase/phosphatase functionality. In nitrogen limiting conditions NtrB acts as a 

positive regulator by autophosphorylating itself in the presence of ATP and transferring the 

phosphate to NtrC. Autophosphorylation occurs at a highly conserved histidine, H139 in E. 

coli , which is located in a conserved region of NtrB. Phosphorylated NtrC binds at the 

promoters of nifA1, nifA2 and anfA, transcriptional activators, and activates their 

transcription. This cascade of reactions finally leads to nitrogenase synthesis (37). 
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3.5.2 Nitrogen regulatory protein C (NtrC): 

 NtrC (accession number ADE85543.1) is a transcriptional activator via the RNA 

polymerase's σ
54

 holoenzyme form. It has 458 amino acids and weighs 50 kDa. NtrC 

consists of three domains, namely, the N-terminal domain, central output domain, and C-

terminal domain. The first domain has an aspartate, D54 in E. coli, which is the 

phosphorylation site. In other words, D54 is the residue that accepts the phosphate donated 

from the H139 of NtrB. The second domain is responsible for the activation of transcription 

by RNA polymerase's σ
54

 holoenzyme form. The last domain has a helix-turn-helix motif 

which is responsible for NtrC DNA binding, before phosphorylazation, and its dimerization 

when binding to the DNA (40, 41). As discussed earlier, phosphorylated NtrC triggers 

transcription of nitrogen-regulated promoters (37). 

 

3.6 NifA Protein: 

 R. capsulatus possess two similar nifA genes named nifA1 and nifA2 which are 97% 

identical to each other. Their sole difference comes from their extreme N-terminal sequence 

(3, 16). These genes code for NifA1 (accession number CAB53157.1), which has 579 

amino acids and weighs 63.6 kDa, and NifA2 (accession number AAB91397.1), which has 

582 amino acids and weighs around 64 kDa, respectively. These proteins are transcriptional 

activators for Mo-nitrogenase structural genes. Studies have shown that the presence of 

both proteins is not essential for their functionality. In other words they can substitute for 

each other as transcriptional activators. Under nitrogen fixing conditions, NtrC is 

phosphorylated by NtrB which then leads to the transcription of nifA1 and nifA2 genes and 

consequently their translation to NifA1 and NifA2. Either one of these proteins then 

activates the transcription of the Mo-nitrogenase structural genes nifHDK and other nif 

genes (3). 

 

3.7 AnfA protein: 

 Under the appropriate conditions, R. capsulatus can also fix nitrogen using the 

alternative Fe-nitrogenase system. It possesses a gene involved in transcriptional activation 

of Fe-nitrogenase, called anfA which encodes the AnfA protein (accession number 

CAA53584.1). This protein has 538 amino acids and weighs 59.1 kDa. Like nifA1/2, in the 
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absence of ammonium, phosphorylated NtrC triggers anfA transcription and in turn its 

translation to AnfA. Unlike nifA1/2, anfA transcription is also dependent on the absence of 

molybdenum, besides the lack of ammonium. Therefore AnfA expression relies on the 

absence of both ammonium and molybdenum. AnfA is responsible for transcriptional 

activation of Fe-nitrogenase structural genes, anfHDK, which in turn causes the synthesis of 

an active Fe-nitrogenase (3, 38). 

 

3.8. PII proteins: 

 PII proteins are small sized homotrimeric proteins that are normally cytoplasmic 

and are among the most well distributed regulatory proteins present in all 3 domains of life 

(3, 42, 39). They act as sensors for cellular nitrogen, carbon and energy status by binding 

effectors such as 2-oxoglutarate, ATP and ADP resulting in conformational changes. PII 

proteins also play critical roles in transcriptional and post-translational levels of Mo-

nitrogenase regulation. In addition, PII proteins undergo transient 

uridylylaion/deuridylylation cycles via GlnD in response to intracellular ammonium (or 

glutamine) levels which ultimately affects carbon and nitrogen metabolism. PII proteins in 

R. capsulatus consist of 2 members. GlnB and GlnK (4, 42). 

 

3.8.1 GlnB and GlnK: 

 GlnB and GlnK are PII signal transduction proteins with GlnB (accession number 

CAA50650.1) being expressed constitutively while GlnK (accession number AAC34722.1) 

is nitrogen-regulated (4, 39). They both have 112 amino acids and weigh about 12.3 kDa. 

They play a central role in the transcriptional regulation of Mo-nitrogenase, though GlnB is 

much more involved than GlnK, to such a degree that it cannot be replaced by GlnK in this 

regulation step. So under nitrogen replete conditions, it is GlnB, and not GlnK, that binds 

NtrB and inhibits the expression at Ntr promoters which in turn prevents Mo-nitrogenase 

expression (4). However, yeast two-hybrid experiments have shown that in the post-

translational regulation of Mo-nitrogenase, both GlnK and GlnB seem to be essential (4, 

36). When the ammonium concentration is low, GlnD-uridyltransferase, uridylylates PII 

proteins (including GlnB) and prevents GlnB from binding to NtrB which results in Mo-

nitrogenase synthesis. As well, in the presence of excess ammonium, UMP-removing 

enzyme, deuridylylates GlnB (completely deuridylylated) and GlnK (poorly deurilylated) 
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which allows GlnB to interact with NifA and inactivates it, which blocks Mo-nitrogenase 

synthesis (4, 39).  

 The X-ray crystal structures of GlnK and GlnB of E. coli have been solved (43, 44). 

The monomer structures of GlnK and GlnB are similar and both contain two α-helices and 

six β-strands that are linked by three loops. The largest loop is called the T-loop which 

stretches from residues 37 to 55 and has a tyrosine, Tyr-51 (Fig 8) (39, used with 

permission), that is the uridylylation site. Another, smaller loop, named the B-loop, is 

situated between residues 82 and 88. The smallest loop, the C-loop, is at the C terminus 

between residues 102 to 105. In the trimeric form, the C-loop of one subunit makes clefts 

by lying among the T-loop and B-loop of the neighboring subunit. These three clefts seem 

to be important in the interaction of PII with its targets (39, 44, 45). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.8.2 GlnD: 

 GlnD (accession number YP_351859.1), which plays a central role in the Ntr 

regulatory system, has 930 amino acids and weighs 102.3 kDa GlnD is a 

uridyltransferase/UMP-removing enzyme, which acts as a nitrogen sensor by detecting the 

Fig 8. GlnB trimer, pointing out some critical 

 amino acid residues (39). 
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level of glutamine. It then transmits the information to GlnK and GlnB via conformational 

changes due to its bifunctional uridyltransferase/UMP-removing ability. GlnK and GlnB 

uridylylation take place in Tyr-51 of the T-loops. As mentioned earlier, in the absence of 

nitrogen (or glutamine) GlnB and GlnK are uridylylated, so NtrB is able to phosphorylate 

NtrC which in turn activates the transcription of nifA genes, causing Mo-nitrogenase 

activity. On the other hand, in the presence of nitrogen (or glutamine) GlnK and GlnB are 

deuridylylated, consequently resulting in the interaction of NtrB with GlnB and blocking 

nitrogenase synthesis (46). 

 

3.9. DraT & DraG: 

 The nitrogenase switch off/on effect, which has been seen in some photosynthetic 

and chemotrophic bacteria, is caused by at least two different mechanisms. One is 

dependent on the covalent modification/demodification of Fe-protein by ADP-ribosylation 

carried out via DraT and DraG, another is independent of this process and mainly relies on 

PII proteins (2) (these mechanisms are discussed thoroughly in the section “Post-

translational regulation of nitrogenase activity”). 

 Dinitrogenase reductase ADP-ribosyltransferase (DraT) and dinitrogenase reductase 

activating glycohydrolyse (DraG) are enzymes responsible for the addition of ADP-ribose 

to arginine 101 residue of the Mo-nitrogenase Fe-protein and for its removal respectively 

(47, 48). Arginine 101 and its other neighboring amino acid residues are extremely 

conserved in NifH proteins among various organisms which reveals their importance (48). 

DraT (accession number CAA50443.1) weighs around 30 kDa with 270 amino acids while 

DraG (accession number CAA50441) has 291 amino acids and weighs 32 kDa. Sequence 

analyses have revealed that draT and draG genes, coding for the corresponding proteins, 

are only 11 bp apart from each other, suggesting the fact that they are located in the same 

operon (48).  

 In the presence of ammonium, ATP, oxygen and darkness, DraT, ADP-ribosylates 

the Fe-protein of Mo-nitrogenase which consequently results in rapid inhibition of the 

nitrogenase enzyme or so called nitrogenase switch off. Since this is a reversible 

mechanism, in the absence of ammonium, oxygen and darkness, DraG removes the ADP-

ribose groups from Fe-protein which reactivates the nitrogenase enzyme, also known as 

nitrogenase switch on (48).  
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3.9.1 DraT & DraG regulation via AmtB and PII proteins: 

 Under nitrogen fixing conditions, GlnK and GlnB are completely uridylylated and 

saturated with ATP and 2-OG, so they are not bound to DraG and DraT. In this situation, 

DraT is inactive while DraG is active and both cytoplasmically loacted (Fig 9 a) (49, used 

with permission). On the other hand, upon an ammonium shock, ammonium assimilation 

increases the level of glutamine which in turn decreases the amount of 2-OG. When a rise in 

glutamine is sensed, GlnD-UMP removing enzyme deuridylylates GlnB and GlnK. Also 2-

OG depletion facilitates the exchange of ATP-PII to ADP-PII, so GlnK and GlnB are no 

longer bound to ATP. Consequently, deuridylylated GlnK-ADP binds to AmtB and DraG 

which block the AmtB pore and inactivate DraG. In the same situation, deuridylylated 

GlnB-ADP binds DraT and activates it (49) (Fig 9 b) (49, used with permission) . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig 9. Role of AmtB and PII proteins in the regulation of DraT and DraG via (a) ammonium 

limitation and (b) ammonium repletion (49). 
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4. Transcriptional regulation of nitrogen fixation: 

4.1 NtrB-NtrC regulatory system at low/high glutamine concentration: 

 When intracellular glutamine (Gln) concentration is low (equivalent to low nitrogen 

concentration) the bifunctional GlnD protein uridylylates GlnB at a tyrosine residue that is 

conserved, in the T-loop (50). Consequently GlnB is not capable of binding NtrB-kinase, 

therefore NtrB autophosphorylates which triggers the first step of nitrogenase synthesis 

cascade by donating the phoshoryl group to NtrC (3). 

 On the other hand at high glutamine concentration (which represents the abundance 

of nitrogen) the bifunctional GlnD protein removes the UMP group from GlnB. In turn 

deuridylylated GlnB interacts with NtrB and prevents it from autophosphorylation. As well, 

the NtrB-GlnB complex forces NtrC to dephosphorylate rapidly (51), which makes it 

unable to activate nifA transcription. In such a situation the process of nitrogenase synthesis 

is blocked from the beginning, which causes a failure in nitrogen fixation (3). 

 

4.2 NifA and AnfA transcriptional activators system: 

4.2.1 Activation of nitrogen fixation genes under nitrogen depletion: 

 Upon a lack of fixed nitrogen, NtrB protein (a sensor kinase) is phosphorylated 

automatically and acts as a phosphodonor for NtrC protein. NtrC binds to nifA1, nifA2 and 

anfA genes, which leads to their transcription and the production of NifA1, NifA2 and 

AnfA proteins respectively (52). NifA1/2 transcribes Mo-nitrogenase's structural genes 

(nifHDK) and any other nif genes. On the other hand AnfA transcribes Fe-nitrogenase's 

structural genes (anfHDGK) (3). Therefore Mo-nitrogenase and alternative nitrogenase are 

synthesized resulting in the fixation of atmospheric nitrogen (Fig 10) (3, use with 

permission). 
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4.2.2 Deactivation of nitrogen fixation genes under nitrogen repletion: 

 The addition of fixed nitrogen to a nitrogen-fixing culture shows a 3 level effect 

(Fig 11) (71, used with permission). The first step is at the pre-transcriptional level and 

causes an interaction between NtrB and GlnB that leads to the dephosphorylation of NtrC, 

therefore, nifA1, nifA2 and anfA genes are not transcribed. At the transcriptional level an 

increase in the amount of fixed nitrogen results in interaction of GlnK and GlnB with 

NifA1 and NifA2 which consequently can no longer activate nif gene expression. As well, 

AnfA will be also inactivated by a rise in the level of fixed nitrogen, however its interaction 

partner is still unclear. The last level influenced by the addition of fixed nitrogen is the 

activation of DraT through an interaction with GlnK or GlnB which in turn will add ADP-

ribose groups to the Fe-protein of nitrogenase enzyme and results in its transient 

inactivation (3). Previous studies have shown that either GlnB or GlnK are sufficient to 

Fig 10. Nitrogen control of nitrogen fixation by GlnB and GlnK (mainly focusing on nitrogen 

depletion conditions) (3). 
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interact with NifA1 and NifA2 to block nitrogenase synthesis which in turn inactivates 

nitrogen fixation (3, 53). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5. Post-translational regulation of nitrogenase activity: 

 A number of purple nonsulfur photosynthetic bacteria, such as R. capsulatus, 

possess a modification/demodification system as a post-translational regulation system for 

nitrogenase (Fig 12) (29, used with permission) DraT (dinitrogenase reductase ADP-

ribosyltransferase) and DraG (dinitrogenase reductase-activating glycohydrolase) play a 

significant role in this nitrogenase control system (3). Under high extracellular NH4
+
 

concentrations (equivalent to low 2-oxoglutarate and ATP/ADP) or in the dark, GlnD-UMP 

removing enzyme deuridylylates Glnk. This is concomitant with the membrane 

sequestration of GlnK-DraG and the formation of the ternary complex (GlnK-DraG-AmtB), 

so ammonia is not able to pass through the AmtB pore (18, 29, 54). Also DraT doesn't 

interact with GlnK and/or GlnB so DraT is able to add ADP-ribose groups to the Arg101 of 

an α subunit of the Mo-nitrogenase's Fe-protein (NifH) and consequently, reversibly, 

Fig 11. Three stages of deactivation of nitrogen 

fixation genes under nitrogen repletion (71). 
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inhibits the MoFe-protein (NifDK) from interacting with it. This ADP-ribosylation leads to 

the inactivation of nitrogenase enzyme that is known as nitrogenase switch off (3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Whereas in nitrogen fixing conditions (equivalent to high 2-oxoglutarate and 

ATP/ADP) or in the presence of light, GlnK is uridylylated by GlnD-uridyltransferase, 

which then makes a binary complex with DraG in the cytoplasm (18, 29, 54). In addition 

DraG removes the ADP-ribose added by DraT which is now bound to GlnK and/or GlnB, 

therefore Fe-protein and MoFe-protein bind together resulting in the activation of 

nitrogenase enzyme, also called nitrogenase switch on (3). However, previous studies have 

showed that under partial nitrogen limitation conditions, a fraction of Fe-protein is kept in 

its ADP-ribosylated form (3, 55). 

 R. capsulatus has a second nitrogenase post-translational regulation system, besides 

the one discussed above, which is independent of ADP-ribosylation (Fig 13) (3, used with 

permission). The exact function of this control system is as yet unclear, however it is 

known that it has some elements in common with the first regulation system, such as AmtB 

Fig 12. Nitrogenase post-translational regulation system,  

ADP-ribosylation-dependent (29) 
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and PII proteins (GlnB/GlnK) (3). The presence of this regulatory system was proven by 

the construction of mutants lacking DraG/DraT activity. These mutants, although lacking 

DraT/DraG activity, demonstrated nitrogenase switch off under nitrogen repletion, 

indicating the presence of a second nitrogenase regulation system independent of ADP-

ribosylation (56). Another study proving the existence of a second nitrogenase post-

translational regulation system was carried out by making strains with mutated nifH allels 

that couldn't be ADP-ribosylated at the Arg101, which nevertheless showed nitrogenase 

switch of upon addition of ammonia (57). 

 The mechanism of switch off independent of ADP-ribosylation is extremely 

dependent on PII proteins (GlnK and GlnB) as well as AmtB. The hypothesis behind this 

regulation system is that Mo-nitrogenase is controlled by the influences on the Rnf 

complex, which is a specific membrane-bound complex that is necessary for transferring 

electrons to nitrogenase under photoheterotrophic conditions. However, supporting 

evidence for this have not yet been published (3). 

 Upon the addition of ammonia, which consequently leads to a decrease in the 2-

oxoglutarate level and ATP/ADP level, deuridylylated GlnK is sequestered at the membrane 

in a binary complex with AmtB. The AmtB-GlnK complex recruits one or more parts of the 

Rnf complex which results in inactivation of electron transfer and nitrogenase switch off 

(3). On the other hand, under nitrogen fixing conditions GlnD-uridylyltransferase 

uridylylates GlnK and the Rnf complex is able to transport electrons to the Fe-protein 

(NifH), therefore nitrogenase is active which is called nitrogenase switch on (3). 
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Fig 13. Nitrogenase post-translational regulation system 

 independentf of ADP-ribosylation (3). 



24 

 

 

 

 

 

Chapter II 

Materials and methods 
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Strains Relevant characteristics References 

E. coli   

DH5α F
-
 φ80lacZΔM15 Δ(lacZYA-argF) U169 recA1 endA1 

hsdR17 (rk
-
, mk

+
) phoA supE44 λ- thi-1 gyrA96 relA1 

Invitrogen 

 

S17.1 RP4-2-Tc::Mu-Km::Tn7,pro,res
-
,mod

+
,Tp

r
,Sm

r
 Simon et 

al.,1983 

XL1-Blue 

 

recA1 endA1 gyrA96 thi-1 hsdR17 supE44 relA1 lac 

[F´ proAB lacI
q
ZΔM15 Tn10 (Tet

r
)]. 

Agilent 

technologies 

 

GT1001 pRSG1 ΔamtB complemented Rc-amtY Blakey et 

al.,2002 

R. capsulatus   

SB1003 wild type, Rif
r
 Cullen et 

al.,1997 

RCAY63 amtB::Km
r
 Yakunin et 

al.,2002 

RCZC RCAY63 carrying pZC (D335A) This study 

RCIA1 RCAY63 carrying pIA1 (D338A) This study 

RCIA2 RCAY63 carrying pIA2 (G367C) This study 

RCIA3 RCAY63 carrying pIA3 (H193E) This study 

 

Table 1. Relevant characteristics of the strains used in this study. 
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Plasmids Relevant characteristics References 

pMECA Ap
r
, MCS in lacZ at EcoRI/HindIII, 2860 bp Thomson J.M. & 

Parrott 

W.M.,1998 

pAY98 Ap
r
, RcglnKamtB (2191 bp), in pMECA at 

EcoRI/PstI,4891 bp 

Tremblay P.L, & 

Hallenbeck P.C., 

2007 

pJB3TC20 Ap
r 
, Tc

r
, broad-host range vector, 7069 bp Blatny J.M. et 

al,1997 

pZC Ap
r 
, Tc

r
, RcamtBD335A (2191 bp), in pJB3TC20 at 

EcoRI/PstI, 7026 bp 

This study 

pIA1 Ap
r 
, Tc

r
, RcamtBD338A (2191 bp), in pJB3TC20 at 

EcoRI/PstI, 7026 bp 

This study 

pIA2 Ap
r 
, Tc

r
, RcamtBG367C (2191 bp), in pJB3TC20 at 

EcoRI/PstI, 7026 bp 

This study 

pIA3 Ap
r 
, Tc

r
, RcamtBH193E (2191 bp), in pJB3TC20 at 

EcoRI/PstI, 7026 bp 

This study 

pIA4 Ap
r 
, Tc

r
, RcamtBW237A (2191 bp), in pJB3TC20 

at EcoRI/PstI, 7026 bp 

This study 

pIMI Ap
r 
, draG (895 bp) in pET22B (5493 bp)  This study 

pPLT60 Ap
r 
, draG (895 bp) in pQE31 (3463 bp) at 

BamHI/HindIII, 3421 bp 

This study 

 

Table 2. Relevant characteristics of the plasmids used in this study. 
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1. Bacterial culture: 

 E. coli cells were grown aerobically overnight in 5 ml LB (Luria-Bertani) with 

ampicillin (100 µg/ml) and incubated at 37°C in a shaker (Thermo scientific, model MAXQ 

5000). LB plates, also used for culturing E. coli, were incubated in a 37°C incubator 

(Canlab) overnight. Liquid LB medium consists of 10 g bacto-tryptone, 5g yeast extract 

and 10 g NaCl, which are mixed in 1 L of distilled water and autoclaved (58). If LB plates 

are needed, 15 g agar is added before autoclaving. Appropriate antibiotics are added after 

cooling down. Around 25 ml of LB-agar is poured into Petri dishes (Fisher brand) in a 

laminar flow hood (Environmental air control, INC) and left for 30 minutes to solidify and 

then kept at 4°C for storage.  

 For E. coli cell fractionation (which will be discussed in detail later) purposes, 

M9Gln (M9 glucose, 1mM glutamine) was used, which lacks ammonia and may or may not 

contain IPTG. In this medium, cells were incubated aerobically overnight at 30°C in a 

shaker (Minitron). Briefly the medium contains 200 ml of sterile M9 salts (6.4% Na2HPO4
-

7H2O, 1.5%KH2PO4, 0.25% NaCl) mixed with 2 ml of 1 M sterile MgSO4, 40 ml of 10% 

sterile glucose, 1 ml of 0.1M sterile CaCl2, 10 ml of 100 mM sterile glutamine and finally 

adjusted to 1 L with distilled water (59). 

 For culturing R. capsulatus, inocolum is from a 1 ml glycerol stock which is 

transferred to a 17 ml screw-cap tube filled with 16 ml of YPS with appropriate antibiotics. 

YPS is made of 2 mM CaCl2, 2 mM MgSO4, 0.3% yeast extract and 0.3% peptone 

dissolved in distilled water and autoclaved (60, 61). This could also be done in 8.5ml 

screw-cap tubes. Tubes are incubated 24 hours anaerobically at 30°C in the presence of 

light, three 150W light bulbs, in the Biotronette Mark III Environmental Chamber (Labline 

instruments). In case of YPS plates, 15 g agar was added to the liquid YPS before 

sterilization. After cooling, antibiotics were added when necessary. The plates were poured 

as mentioned above for LB-agar. After growth in YPS, 1 ml of cells were transferred to 

screw-cap tubes filled completely with RCV + 30 mM (NH4)2SO4+ with the necessary 

antibiotics (Fig 14 A). Liquid RCV consists of 6.6 ml of 60% sodium-lactate, as the carbon 

source, 30 ml of 0.64 M phosphate buffer pH 6.8 (sterilized separately and then added to 

the rest of the components, since it precipitates during autoclaving if combined earlier), 

mixed with 50 ml of super salts which contains 40 ml 1% EDTA, 48 ml 0.5% FeSO4 7H2O, 
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20 ml 20% MgSO4, 20 ml 7.5% CaCl2, Thiamine-HCl (0.1 g/100 ml) and 20ml trace 

elements (which contains 0.39 g MnSO4 H2O (final conc 10mM), 0.7g H3Bo3 (final conc 

45mM) , 0.01 g Cu(No3)2 3H2O (final conc 0.16mM), 0.06 g ZnSO4 7H2O (final conc 0.83 

mM) and 0.18 g NaMoO4 2H2O (final conc 3.28 mM) in 250 ml deionized water) (60), 

then it is autoclaved. If RCV plates are required, 15 g agar is added to 1 L liquid RCV, 

before autoclaving and the plates are poured as described earlier. Growth conditions for 

RCV were as mentioned for YPS. For some experiments, which will be explained later, one 

more step was performed, consisting of transferring 1 ml of RCV+30 mM (NH4)2SO4+ to a 

screw-cap tube, filled to the top with RCV lacking ammonia, with similar incubation 

conditions. RCV tubes could be kept in the environmental chamber for renewal or future 

usage. In case of RCV plates with streaked R. capsulatus (Fig 14 B), they were kept in an 

anaerobic jar in the presence of a gas pack (BD BBL GasPack Plus Anaerobic system 

Envelope with palladium catalyst) to remove the oxygen and optimize growth conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2. Small-scale plasmid preparation: 

 A chemical protocol (explained later) or two different mini-prep kits, QIAprep spin 

A 

B 

Fig 14. Rhodobacter capsulatus culture in (A) RCV liquid and (B) RCV 

plate 
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miniprep kit and Spinsmart Smart™ Plasmid miniprep DNA purification kit, were used to 

isolate plasmid DNA. It has to be mentioned that they all showed about the same efficiency. 

The concentration of DNA was measured using a NanoDrop spectrophotometer (ND-1000). 

 The chemical Mini-prep protocol starts with inoculating the desired colony into LB 

containing the appropriate antibiotics and incubating overnight at 37°C with agitation. The 

cells were harvested by centrifugation (Adams dynamic centrifuge), 10,000 rpm for 5 min, 

and the supernatant discarded. The cell pellet was resuspended in 100 µl TEG (25 mM Tris-

Cl pH 8, 10 mM EDTA pH 8 and 50 mM glucose) which contains 2 mg/ml lysozyme, and 

transferred to a sterile eppendorf tube and kept on ice for 10 min. 200 µl SDS/NaOH (0.2 

M NaOH and 1% SDS) was added to the eppendorf and mixed gently and incubated on ice 

for 10 min. 150 µl of 3 M sodium acetate pH 4.8 was added while mixing gently followed 

by incubation at -20°C which causes a white precipitate to form. It was then centrifuged 

(Sigma, rotor 80301) for 20 min at 12,000 rpm at 4°C. The supernatant was poured into 

new eppendorf tubes, previously filled with cold 100% ethanol, and incubated at -20°C for 

10 min. DNA was pelleted by centrifugation for 15 min, 15,000 rpm at 4°C. Ethanol is 

removed and the DNA pellet is rinsed with 0.5 ml cold 70% ethanol. In the next step, 

ethanol was removed by inversion and the DNA pellet was dried by leaving the eppendorf 

inverted for 5 min. DNA was dried in an additional step under vacuum, using a Speed-Vac 

(UNIEQUIP, model UNIVAPO 100H) for 10 min. Finally the pellet was resuspended in 

25µl of deionized water containing 100µg/ml DNase free Rnase A and stored at -20°C. 

 

3. Site directed mutagenesis by PCR: 

 In order to better understand the importance of a number of conserved amino acid 

residues in AmtB pore, several mutants were constructed in our lab by site-directed 

mutagenesis. Two primers were designed in such a way that they anneal back to back on the 

template plasmid, with the forward primer containing the desired mutation and a reverse 

complement primer with no mutations involved. In the PCR reaction, pAY98 (Table 2) was 

used as the template which was amplified with the Phusion high-fidelity DNA polymerase 

(New Englands Biolabs). This enzyme was used for PCR reactions because of its low error 

rate. This enzyme has 5´→ 3´ polymerase activity, 3´→ 5´ exonuclease activity and its final 

product is blunt-ended. I constructed RcD335A mutant via site directed mutagenesis, as 
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explained below. 

 The primers (from Alpha DNA) used for site directed mutagenesis are shown in 

below, with the bold letter being the mutation. The AmtB sequence of pAY98 is seen in 

figure 15, indicating the positions of forward and reverse primers In this mutant, the 

aspartate residue 335 in R. capsulatus AmtB was converted to alanine, which is underlined 

in the forward primer, to investigate its importance in AmtB functionality in transporting 

ammonia and nitrogenase switch off/on effect and making a complex with GlnK. 

 

Forward primer:  

5' GTTCAAATACGACGCCAGCCTGGACG 3' 

Reverse complement primer: 

5' ATCGCCTTCACCTTGGTGACGAA 3' 

 

 The PCR reaction mixture contained; 10µl of 5X Phusion GC Buffer, with 0.2 mM 

dNTP, 0.5 µM of each primer (forward and reverse), 50 ng DNA (in this case pAY98), 1.5 

µl DMSO, 27.5 µl deionized water and 1 µl of the Phusion enzyme, in a sterile PCR tube. 

The PCR machine (PERKIN ELMER, Gene Amp, PCR system 2400) was programmed for 

30 cycles with an initial denaturation step at 98°C for 30 seconds, followed by an additional 

denaturation at the same temperature for 10 seconds. The program continues with a 65°C 

annealing step for 30 seconds followed by an extension step at 72°C for 3 minutes and a 

final extension stage at the same temperature but for 10 minutes (as recommended in the 

phusion high-fidelity DNA polymerase catalog).  
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5'ATGAACAATCTGACCAAACTGACGGGTCTTGTGGCGGCGCTGGCTGCTGCGGCCCTGC

CTGCCTTTGCGCAGGAAGCGGCCGCTCCGGTCGCCGAAGCCGTTGCCACCGTCACCGA

AGCCGCGGCGCCGATCGTCGACAAGGGCGATGTCGCCTGGATGATGACCTCGACGCTTC

TTGTGCTGTTCATGATCATTCCGGGCCTGGCGCTTTTCTACGGCGGTCTGGTGCGCAGCC

AGAACATGCTCTCCGTGCTGATGCAGACGACGATGATCACCTCGGTGGTGATGATCGTCT

GGGTGCTTTGGGGCTATTCCTTCGCCTTTGGCGGCGGCACCAACCCGTTCTGGGGCGGT

CTGGGCAAGGTCTTCCTGGCCGGCGTGACCGGCGACAGCCTGGCGGCGACCTTCACCG

ATGGCGTGATGCTGCCGGAATATGTGTTCATCGCCTTCCAGATGACCTTTGCCGCGATCA

CGCCCGCGCTTTACGTGGGCGCCTTTGCCGAGCGGATGAAATTCTCGGCGGTGATCCTC

TTCACCGTGCTTTGGGTCACCGTGGTCTATTTCCCGATCGCCCACATGGTCTGGGATGCC

TCGGGTCTGATCTTCAACTGGGGCGCCATCGACTTTGCCGGCGGCACCGTGGTGCATATC

AACGCCGGGATCACCGGTCTGATGGCGGCGATCGTTCTGGGGCCGCGCGTCGGTTTCGG

CCGCGAGAACATGGCCCCGCATTCGATGACGCTGACCATGGTGGGCGCGATGATGCTCT

GGGTCGGCTGGTTCGGCTTCAACGCCGGGTCCAACCTTGAGGCGACCTCGGGCGCGAC

GCTGGCGATGCTGAACACCTTTGTTGCCACCGCCGCGGCCGTCGTCAGCTGGTCGGCCA

CCGAAGCGCTGTTCCGCGGCAAGGCCTCGGGTCTGGGCGCGGCTTCGGGCATGGTCGC

CGGTCTGGTGGCGATCACCCCGGCCTGCGGCACCTCGGGCCCGGTCGGCGCGATCCTGC

TTGGCCTGATCGTCTCGCCGGTGTGCTACTTCTTCGTCACCAAGGTGAAGGCGATGTTCA

AATACGACGACAGCCTGGACGTGTTCGGCGTGCATGGCATCGGCGGGATCGTCGGCGCG

GTGATGACGGGCGTTCTGATGGCCCCCGGCTTCGGCGGCACCGGCGGCGACGATTTCTC

GATCGTGTCGCAGGTGATCATCCAGATCAAGGCGGTCGTCGTGACCATCGCCTGGGCGG

GGATCGGCTCGATCATCCTTCTGTACATCGTCAAGGCCGTCACCGGCCTGCGCGTGGCC

ACCGATGACGAACGTCAGGGCCTTGACCTGACGACCCATGGCGAAAGCGCCTACCACT

CGTAA3' 

 

Fig 15. The original sequence of AmtB protein related to pAY98 (PCR template) and the positions 

of the forward and reverse primers. The position of forward primer, which hybridizes to the 

antisense strand, is highlighted in green (the nucleotide to be mutated is shown in bold ) whereas the 

position of reverse primer, which hybridizes to the sense strand, is highlighted in blue. The arrows 

indicate the direction of polymerization for each primer.  
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 The PCR product was digested with DpnI and migrated on agarose gel. The use of 

DpnI, which cuts methylated DNA, is advantageous in the PCR site-directed mutagenesis 

protocol used here, where the parental pAY98 should be digested while the newly 

synthesized mutated strands remain intact. The correct band was excised, extracted, and 

then ligated. The product of ligation was introduced into DH5α (Table 1) (competent cell 

preparation is explained in section 8 of materials and methods), and plasmid DNA was 

extracted from transformed colonies, followed by sequencing to verify the mutation. 

Purified plasmid went underwent double digestion with PstI and EcoRI in order to recover 

the mutated RcglnKamtBD335A fragment and cloning it into PstI and EcoRI sites of 

PJB3TC20 (Table 2). Two final steps were transformation into S17.1 (Table 1) and 

conjugation in RCAY63. 

 

4. Digestion: 

 Double digestion with with PstI and EcoRI was performed by transferring 5µl of 

10X NEBuffer 3 to an eppendorf adding deionized water (calculated to bring final volume 

to 50µl), along with 0.5µl 100X BSA from NEB , 1µg DNA and finally 1µl of each EcoRI 

(NEB) and PstI (NEB). The eppendorf is incubated at 37°C for 1 hour in order and then 

placed at 80°C for 20 minutes to inactivate the enzymes. 

 In case of DpnI digestion, for each 25µl of PCR product, 3µl 10X NEBuffer 4 and 

1µl DpnI (NEB) were mixed in an eppendorf and incubated at 37°C for 1 hour and 

inactivated for 20 minutes at 80°C. 

 

5. Agarose gel electrophoresis: 

 Agarose gel electrophoresis was performed after mini preps and restriction enzyme 

digestions for verifying their accuracy. Also it was carried out as a prerequisite step in 

purifying DNA from agarose gel, which will be explained in the following section. 

 0.8% agarose gels were made by weighing the appropriate amount of agarose 

(Multicell agarose D1-LE, WISENT INC) and mixing it with 1X TAE buffer ( 0.48% Tris-
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base, 1.14 ml glacial acetic acid, 0.037% EDTA and the volume is adjusted to 1L to have 

50X Tris-Acetate-EDTA buffer). The mixture was microwaved for 1 minute to disssolve the 

gel. Meanwhile, the gel casting tray was sealed with two special rubber gaskets and placed 

in the electrophoresis chamber (Thermo scientific, OWL, Easy Cast B1A) and a comb was 

also put in the tray. When the melted gel cooled, ethidium bromide (0.5 µg/ml) was added 

to the agarose-TAE mixture (only in case of verification, but in case of purification the gel 

was stained with ethidium bromide after migration). Ethidium bromide is used, since it is 

fluorescent when exposed to UV, especially when attached to DNA. Then agarose gel was 

poured in the gel casting tray and left until polymerized. The comb was then removed and 

1X TAE buffer was poured in the electrophoresis chamber till it covered the gel. DNA 

samples were mixed with 6X blue loading dye, before loading in the wells. Along with the 

samples, a marker (1 kb DNA ladder from NEB) was loaded in a separate well. Finally the 

electrophoresis box was connected to 100V current via two electrodes, which moves the 

DNA towards the positive electrode. After migration, gels were exposed to UV (by 

MultiImage light cabinet, Alpha Innotech corporation) in order to take a picture or to be cut 

for DNA extraction. 

 

6. DNA extraction from agarose gel: 

 When pure DNA was needed, such as when the PCR product was digested with 

DpnI and had to be purified from agarose gel (in order to get rid of impurities and excess of 

oligonucleotide primers) prior to its transformation in DH5α, also before ligating the 

mutated RcglnKamtBD335A in EcoRI and PstI sites of PJB3TC20, the DNA samples were 

run on 0.8% agarose gels. Ethidium bromide wasn't added to the gel prior to migration, but 

after migration, the gel was soaked in an ethidium bromide bath (0.5µg/ml ethidium 

bromide in 100ml water) for 5 minutes and rinsed with water for an additional 5 minutes to 

wash out the excess ethidium bromide. The gel was visualized on a UV transilluminator 

(fotodyne) and the corresponding band, according to the marker, was cut and placed in an 

eppendorf. DNA was extracted from the gel by the QIAquick gel extraction kit according to 
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the manufactere's instructions and stored at -20°C. The concentration was measured using a 

Nanodrop spectrophotometer. 

 

7. Ligation: 

 After each digestion comes a ligation step, since it has been proven that circular 

DNA is much better taken in by competent cells than linear ones during transformation. 

Here two kinds of ligation were performed, one to relegate the DpnI digested PCR product 

before transformation into DH5α, the other to ligate the mutated RcglnKamtBD335A into 

the EcoRI and PstI sites of PJB3TC20 prior to transformation in S17.1. For the former 

reaction, T4 ligase (NEB) along with its 10X buffer (NEB) was used overnight in a cooler 

(Microcooler, BOEKEL industries. INC, model 260011) at 16°C. Whereas for the latter, a 

4:1 molar ratio of insert to vector (~10 ng vector) was mixed with T4 ligase and its 

appropriate buffer and incubated under the same conditions. 

 

8. Competent cell preparation: 

 In order to make chemically competent cells, 100 µl of glycerol stock of the desired 

cells, from -80°C, were inoculated in 500 ml of LB without antibiotic. Cells were incubated 

in a 37°C shaker until they reached an OD600 of 0.3 to 0.4. Cells were harvested by 

centrifugation at 5000 rpm at 4°C for 10 minutes in a Sorval GSA rotor, in 250 ml 

centrifuge bottles. The supernatant was discarded and the pellets were placed on ice and 

resuspended in 1/4 volume of ice cold 100 mM MgCl2 (125ml). Cells were centrifuged at 

4000 rpm for 10 minutes in the same conditions. The supernatant was decanted and the cell 

pellets were placed on ice and resuspended in 1/20 volume of ice cold 100mM CaCl2 (25 

ml). An additional 9/20 volume of CaCl2 (225 ml) was added to the suspension and kept on 

ice for 20 minutes. The cell suspension was centrifuged at 4000 rpm and the cell pellets 

were resuspended in 1/50 volume of ice cold sterile 85 mM CaCl2 in 15% glycerol W/V (10 

ml), dispensed in 100 µl aliquots, and frozen at -80°C. 
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9. Transformation: 

 DpnI digested PCR product (pAY98-RcAmtBD335A) was introduced into DH5α. 

The glnKamtBD335A fragment, ligated in PJB3TC20 (making a new plasmid called pZC, 

described in table 2), was introduced into DH5α before transformation into S17.1. In 

addition, pPLT60 (Table 2) and pIMI (Table 2) were introduced into XL1-Blue (Table 1). 

For these transformations, appropriate competent cells were removed from -80°C and kept 

on ice to thaw. The cells were briefly mixed, and 100µl of cells were removed. 1-50ng of 

DNA (no greater than 10µl) was added to the competent cell tube and mixed gently. Tubes 

were then placed on ice for at least 10 minutes. Afterwards the cells were heat-shocked for 

45-90 seconds at 42°C and then placed on ice for 2 minutes. 800µl LB was then added to 

the tube which was incubated for 1 hour at 37°C with shaking followed by pelleting the 

cells by centrifugation (Sigma, rotor 80301) at 1400 rpm for 1 minute. The cells were then 

resuspended in 100 µl of LB liquid and plated on LB plates containing the appropriate 

antibiotics. The plates were incubated overnight at 37°C and stored at 4°C afterwards. 

 

10. Sequencing: 

 Sequencing was performed after pJB3TC20-RcAmtBD335A, pZC, had been 

introduced into DH5α, to verify the correct introduction of the desired mutation. For this 

purpose, a mini-prep was carried out from the transformation plate and sent for sequencing 

to the IRIC Genomics platform. Two forward primers (made by Alpha DNA), which anneal 

to the amtBglnK sequence, were used to sequence amtB in pZC: 

 

First forward primer: 

5' TGT AAG AAC CAC AGG GGA AAC 3' 

Second forward primer: 

5' TTC GAT GAC GCT GAC CAT GG 3' 
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11. Cloning RcglnKamtBD335A in PJB3TC20: 

 In order to clone RcglnKamtBD335A in pJB3TC20, to have pZC (pJB3TC20-

RcAmtBD335A), pAY98- RcAmtBD335A was digested with EcoRI and PstI, and the 

RcglnKamtBD335A fragment was excised from an agarose gel, purified and ligated into the 

same restriction enzyme sites in pJB3TC20. This plasmid possesses the transfer gene (tra) 

which is responsible for the production of the pili required for the physical contact between 

cells for conjugal transfers (63, 64). Introduction of pZC into S17.1, which possesses a 

mobilization gene (mob) a critical gene required for plasmid mobilization and its involved 

in the transfer to R. capsulatus. Both tra and mob are essential for a plasmid transfer by 

conjugation (64).  

 

12. Conjugation: 

 S17.1 containing pZC was conjugated with RCAY63. S17.1/ pZC was inoculated in 

5 ml LB containing tetracycline (10µg/ml) and incubated overnight at 37°C aerobically 

while shaking. In addition, strain RCAY63 (Table 1), a R. capsulatus strain, was cultured in 

YPS containing kanamycin (10 µg/ml) over night at 30°C in 17ml screw-cap tubes 

phototrophically. After growth, 50 µl of each culture was mixed together and spread on 2 

cm
2
 of the center of a YPS plate with no antibiotics and incubated overnight in the dark at 

30°C. A bacterial suspension was then recovered with 1 ml RCV and no antibiotics. Serial 

dilutions were made and were spread on RCV plates with kanamycin (10µg/ml) and 

tetracycline (1.5 µg/ml). Plates were incubated anaerobically (gas pack) at 30°C and 

incubated in the presence of light in the Biotronette Mark III Environmental Chamber 

(Labline instruments) until the appearance of red colonies on the plates. Afterwards, these 

colonies were grown in YPS tubes with tetracycline (1.5µg/ml). After growth, the culture 

was transferred to RCV+30mM (NH4)2SO4+ tubes with tetracycline and kept at 30°C with 

light for further experiments.  
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13. Determination of nitrogenase activity, switch on/off effect: 

 This experiment was carried out to observe the effect of the site directed mutations 

on nitrogenase activity, which was measured using gas chromatography (GC). In this 

technique, acetylene (C2H2) reduction leads to the production of ethylene (C2H4) which is 

an indicator for nitrogen fixation and in turn nitrogenase activity (66). SB1003 (Table 1) 

strain used as a positive control for the switch off effect and RCAY63 was the negative 

control. Mutants (Table 1) RCZC (D335A), RCIA1 (D338A), RCIA2 (G344C), RCIA3 

(H193E) and RCIA4 (W237A) were investigated for nitrogenase activity by gas 

chromatography. 

 Cells were grown in 17 ml screw cap tubes in RCV+30mM (NH4)2SO4
+
. One ml of 

the culture was transferred to another screw cap tube filled with RCV without NH4
+
 for 18-

24 hours, in order to induce nitrogenase. To anaerobic 25 ml vials that were previously 

sealed and filled with argon, using a stream of argon for 10 minutes, 5 ml of the culture 

(RCV lacking NH4
+
) was transferred without introducing oxygen (Fig 16). This was 

achieved by using a 10 ml glass syringe with a long 16 or 18 gauge needle and filling it 

from the bottom portion of the culture, which was less exposed to oxygen.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig 16. 25 ml anaerobic vials containing 5 ml liquid cultures 
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 These vials were preincubated at 30°C in the light for 15 minutes along with 

agitation. Afterwards, 2 ml of acetylene was added to the vials and the amount of produced 

ethylene was measured by injecting 50 µl of the gas phase in the gas chromatograph (GC-

8A (Shimadzu)), every 5 minutes. Liquid samples were also taken at the same time points 

for Western-blotting to check ADP-ribosylation of nitrogenase Fe-protein. After 20 

minutes, 300 µM of NH4Cl was added to the vials and sampling was continued every 5 

minutes for the next 30 minutes, liquid samples were also taken at each time point. Liquid 

samples were kept in 3X SDS PAGE sample buffer and stored at -20°C. The total amount 

of ethylene was calculated at each time point and the state of nitrogenase modification was 

determined by western- blotting of the liquid samples. 

 

14. Cell fractionation: 

 Cell fractionation was carried out in order to check the presence of GlnK in the 

membrane after an ammonium shock in RCIA3, RCZC, SB1003, RCAY63 and E. coli 

GT1001 pRSG1 (Table 1). The detection of GlnK in cytoplasmic and membrane fractions 

was done by western blotting via anti-GlnK antibody. 

 R. capsulatus strains were each grown in duplicate photoheterotrophically in the 

absence of oxygen, in 320 ml of RCV with appropriate antibiotics except for SB1003, 

lacking ammonium source (NH4Cl) to their early stationary phase. To one of the two 

cultures, 1 mM NH4Cl was added and both were incubated an additional 15 minutes under 

the same conditions. Cells were then harvested by centrifugation at 10,000 rpm at 4°C for 

30 minutes in a Sorval GSA rotor. The supernatant was discarded and the cell pellets were 

resuspended in 10 ml of sodium-phosphate buffer pH 7. The suspension was sonicated on 

ice 5X 30 seconds with 30 seconds pause between each burst. The extract was centrifuged 

at 10,000 rpm at 4°C for 10 minutes and the supernatant was centrifuged by 

ultracentrifugation in a Beckman (70,000 rpm, type 70.1 TI) rotor at 250,000 xg for 45 

minutes. Keeping the first 1 ml of the supernatant gave the cytoplasmic fraction, which was 

then frozen at -80°C. The remaining supernatant was removed. The pellet containing the 
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membrane was resuspended in 10ml of sodium-phosphate buffer pH 7 and recentrifuged at 

4°C for 45 minutes at 250,000 xg. The pellet contains the membrane portion which was 

resuspended in 1ml of sodium-phosphate buffer pH 7 and frozen at -80°C (59). 

 E. coli GT1001 pRSG1 was precultured in 5 ml LB with ampicillin by incubating at 

37 °C overnight. And used to inoculate in 500 ml (1/100 dilution) M9Gln (M9 glucose, 

1mM glutamine) lacking ammonia with and without IPTG (59). The cells were incubated 

on a shaker at 30°C overnight until they reached to an OD650 of 1.3-1.4. The culture was 

then divided to two 250 ml and 30 mM NH4Cl was added to one of them, while incubating 

both for another 15 minutes. Cells were harvested by centrifugation at 5000 rpm at 4°C for 

10 minutes in a Sorval GSA rotor. The supernatant was decanted and the pellet resuspended 

in 10 ml of sodium-phosphate buffer pH 7. From this stage on, cells were treated as for R. 

capsulatus strains (59). 

 

15. Bradford assay: 

 The total protein concentration of samples (membrane and cytoplasmic fractions, 

DraG induced and non-induced samples) was measured by Thermo Scientific Coomassie 

Plus (Bradford) protein assay reagent and Bradford reagent Biotechnology grade from 

Bioshop. Bovine serum albumin (BSA) was used as a standard. Standards and samples 

were read at 595 nm (UV-VIS UV-2101PC, Shimadzu).  

 

16. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS- 

PAGE): 

 This technique is widely used to separate proteins due to their molecular weight and 

not the electrical charge. Since the SDS, which is an ionic detergent, used in this process 

binds to proteins and denatures them and imparts a negative charge to all, they would all be 

negatively charged. The required gels in order to separate protein samples are 15% 

resolving and 4% stacking gel. The former is constituted of 2.3 ml distilled water, 5 ml 



40 

 

 

acrylamide/bis-acrylamide (30:0.8), 2.5 ml Tris 1.5 M pH8.8, 100 µl SDS 10%, 100µl 

ammonium persulfate (APS) 10% and 10 µl tetramethylethylenediamine (TEMED), while 

the latter consists of 3 ml distilled water, 0.67 ml acrylamide/bis-acrylamide (30:0.8), 

1.25ml Tris 0.5 M pH6.8, 50 µl SDS 10%, 50 µl ammonium persulfate (APS) 10% and 5 µl 

tetramethylethylenediamine (TEMED). The migration buffer used for running the SDS 

PAGE electrophoresis is made of 4 mM Tris, 39 mM glycine, SDS 0.1% and distilled water. 

Sample preparation was done by adding 3X SDS PAGE sample buffer (3 ml of 0.63 M Tris 

pH 6.8, 3 ml SDS 20%, 3 ml glycerol 100%, 30µl bromophenol blue 1% and 1.5 ml 

Mercaptoethanol) and incubating at 100°C for 10 minutes. A “PageRuler unstained protein 

ladder” from Thermo scientific or in some cases protein ladder (10-250 kDa from NEB was 

used as markers, However a “prestained protein marker broad range” from NEB, was used 

specially when SDS PAGE was followed by a western blot. Samples were loaded on the gel 

and migrated at 200V for around 1 hour. The Bio-Rad SDS PAGE apparatus “Mini protein 

II electrophoresis cell” was used for SDS PAGE. 

 

17. Western blotting: 

 After protein separation by SDS PAGE, the desired protein bands such as E. coli 

GlnK, R. capsulatus GlnK, DraG and Fe-protein, were visualized by western blotting and 

the appropriate antisera; anti EcGlnK, anti RcGlnK, anti DraG, anti 6X histidine, and anti 

Fe-protein. For this purpose, separated proteins were transferred to a PVDF-plus transfer 

membrane (GE water & process technologies) which was soaked in methanol, distilled 

water and transfer buffer (4 mM Tris, 39 mM glycine, SDS 0.1%, Methanol 20% and 

distilled water), with a 16V electrical current over night. The transfer process was carried 

out by using a “Mini trans blot cell” apparatus of Bio-Rad. 

 When the prestained protein marker was observed on the membrane, the transfer 

process had come to an end. The membrane was then incubated in “Tris buffered saline” 

(TBS), 25 mM Tris pH 7.4, 0.15M NaCl and distilled water, for 5 minutes along with 

agitation. This was followed by two 5 minutes incubation in “Tris buffered saline with 
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Tween20” (TBST), TBS+0.1% Tween20, on a shaking platform. The membrane was 

incubated in blocking solution (TBST+ 5% milk powder) for 30 minutes with agitation. It 

was then washed twice for 5 minutes by incubation in TBST with agitation. This was 

followed by a 2 hour incubation with the appropriate primary antibody (rabbit IgG anti-

EcGlnK, anti-RcGlnK, anti-DraG or anti-6X histidine, and anti-Fe-protein antibody), 

diluted 1/5000, in blocking solution (TBST+ 0.5% milk powder) along with shaking. This 

step was followed by two 5 minutes TBST washes and then an hour and a half of 

incubation with the secondary antibody (antibody against rabbit IgG coupled with 

peroxidase), diluted 1/25000, in blocking solution (TBST+ 0.5% milk powder) along with 

agitation. This final incubation was followed by three washing steps, twice with TBST and 

once with TBS. The fixed proteins on the membrane were visualized using the Mandel 

Scientific LumiGlo Chemiluminescent substrate system and exposure to Classic blue 

autoradiography BX film. 

 

 

18. Overexpression of DraG protein: 

 In order to produce proteins to make anti-DraG antibodies, plasmids containing a 

His-tagged DraG (pIMI and pPLT60) were introduced into XL1-Blue competent cells and 

expression of DraG was induced with IPTG. Attempts were made to purify DraG using the 

6x His-tag in order to make antibody against it to be used for further investigations. (67), 

10ml LB with Amp (100 µg/ml), in a sterile 50ml flask, was inoculated with a single 

colony and incubated at 37°C overnight on a shaking platform. To 100ml of prewarmed LB 

with antibiotic, in a 500ml flask, 5ml of the overnight culture was inoculated and grown at 

37°C with vigorous shaking until an OD600 of 0.6 was obtained. Then 1ml of that culture 

was centrifuged and the cell pellet was resuspended in 3X SDS PAGE sample buffer and 

stored at -20°C for later SDS PAGE analysis. To the rest of the culture, 1 mM of IPTG was 

added to overexpress DraG protein. The culture was incubated for 4 to 5 hours at 37°C on a 

shaking platform. Following incubation, another 1ml sample was taken and pelleted, then 
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resuspended in 3X SDS PAGE sample buffer an stored at -20°C for future SDS PAGE 

analysis. Cells were harvested by centrifugation in a Sorval GSA rotor at 5000 rpm for 20 

minutes at 4°C. Cell pellets were frozen at -20°C, in order to be purified later. 

 

19. Standard sample preparation to isolate native protein (DraG): 

 Samples were prepared for protein purification using the protocol of Talon metal 

affinity resins user manual (68). The cell pellet was resuspended in 2ml of chilled 1X 

equilibration/wash buffer pH 7 (50 mM sodium phosphate and 300 mM NaCl) and 

incubated it at room temperature for 20 to 30 minutes. The suspension was then sonicated 

(3X 30 seconds with 30 seconds pause between each burst) and centrifuged in a Sorval 

GSA rotor at 11,500 rpm for 20 minutes at 4°C, to pellet any insoluble material. The 

clarified sample was transferred to a clean tube after reserving a small portion of it at 4°C 

for SDS PAGE analysis. 

 

20. Batch/gravity-flow column purification of DraG protein, using 

TALON Resin: 

 TALON Resin (TALON metal affinity resin, Clontech) was used for protein 

purification (68). In this method of purification, the desired protein, which contains a 6X-

His tag, binds to the nickel ions present in the resin. During the washes, untagged proteins 

are washed from the column while the tagged ones remain bound to the column. To elute 

the desired protein, imidazole elution buffer is added to the column. Imidazole competes 

with the polyhistidine tag in binding to the column, so the tagged proteins elute. For protein 

purification purposes, the resin was throughly resuspended and the required amount was 

transferred to a sterile centrifuge tube. It was then centrifuged in a Sorval GSA rotor at 

3000 rpm for 5 minutes at 4°C to pellet the resin and the supernatant was discarded. The 

resin was resuspended in 10 bed volumes of chilled 1X equilibration/wash buffer pH 7 and 

recentrifuged under the same conditions. Once more the resin was resuspended and 
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centrifuged. The clarified sample was added to the resin and gently agitated at room 

temperature for 20 minutes on a platform shaker to let the polyhistidine-tagged protein bind 

to the resin. The supernatant was removed after centrifugation at 3000 rpm for 5 minutes at 

4°C. The resin was then washed with 10-20 bed volumes of 1X equilibration/wash buffer 

pH 7 with agitation at room temperature for 10 minutes at room temperature. Afterwards, 

the suspension was centrifuged at 3000 rpm for 5 minutes and the supernatant was 

discarded. The last washing and centrifugation was repeated. The pellet was resuspended 

by vortexing in one bed volume of 1X equilibration/wash buffer pH 7. The suspension was 

transferred to a gravity-flow column with an end-cap in place, and the resin was allowed to 

settle. Then the end-cap was removed and the buffer was drained until it reached the top of 

the resin bed. The column was washed with 5 bed volumes of 1X equilibration/wash buffer 

pH 7. The polyhistidine-tagged protein (DraG) was eluted by the addition of 5 bed volumes 

of 1X elution buffer pH 7 (50 mM sodium phosphate, 300 mM NaCl and 150 mM 

imidazole) to the column. The eluted fractions were collected in 500µl portions and stored 

at -20°C for SDS PAGE and western blot analyzes. 
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1. Probing the role of AmtB in nitrogenase regulation in R. capsulatus 

through site-directed mutagenesis: 

1.1 Creating AmtB site directed mutant D335A (RCZC): 

 In order to better understand the importance of some conserved amino acid residues 

in AmtB protein's functionality in the regulation of nitrogenase enzyme, a number of 

mutants were constructed in our laboratory via site directed mutagenesis. Mutant RCZC has 

a point mutation in aspartic acid residue 335 (D335) of R. capsulatus AmtB, that is encoded 

by the glnKamtB operon. This mutation converts the aspartic acid residue (GAC) to alanine 

(GCC), by changing the middle adenine (A) nucleotide to cytosine (C), which was done by 

“site directed mutagenesis” achieved by PCR. 

 The DNA used as a template for PCR was pAY98 (4897 bp), a plasmid carrying the 

R. capsulatus glnKamtB operon (2181 bp) between EcoRI and PstI restriction sites. Two 

primers were used for the PCR reaction, one with the point mutation which would anneal to 

the non-coding DNA strand (Forward primer) and the other without any mutation that 

anneals to the coding strand (Reverse complement primer). After PCR and digestion with 

DpnI (To reduce the number of non-recombinant clones, since DpnI only cuts dam 

methylated DNA which would be in the parental DNA plasmid) it was electrophoresed on 

an agarose gel in order to check the correctness of the size of the PCR product and to 

extract the DNA for transformation into DH5α (on LB+Ampicillin plates). As depicted in 

figure 17 and compared to the 1 kb NEB DNA ladder, the PCR product (pAY98-

RcAmtBD335A) is the size expected, almost 5 kb. 
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 After transformation, DNA plasmid was extracted from the transformances. An 

aliquot of the purified plasmid was sequenced to verify that the mutation was in one correct 

location. Part of the amtB sequencing result containing the mutated nucleotide is shown in 

below, with the underlined codon coding for alanine and the letter in bold representing the 

mutated nucleotide. The wild type sequence is also given for comparison purposes. The 

results confirmed the change of adenine (A) to cytosine (C) and consequently the 

conversion of aspartate residue 335 (D335) to alanine. 

 

Wild type: 

TTCGTCACCAAGGTGAAGGCGATGTTCAAATACGACGACAGCCTG 

D335A mutation: 

TTCGTCACCAAGGTGAAGGCGATGTTCAAATACGACGCCAGCCTG 

 

6 kb 

1 2 

5 kb 

Figure 17. DpnI-digested PCR product on 0.8% agarose gel.  

Lane number 1 is 1 Kb NEB DNA ladder and number 2 represents pZC 

4 kb 
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 After sequence confirmation, the DNA was double digested with EcoRI and PstI 

and subjected to gel electgrophoresis. This gave two closely situated bands (Fig 18). The 

top band was around 2.8 kb (precisely 2706 bp) while the lower one was nearly 2.2 kb 

(exactly 2191 bp), representing part of the pAY98 plasmid and the RcamtBglnKD335A 

portion of the plasmid respectively. The smaller band (2191 bp) was cut and extracted for 

ligation into pJB3TC20.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Ligation required the double digestion of plasmid pJB3TC20 with the same 

restriction enzymes. To verify the size of plasmid pJB3TC20 and its proper digestions, the 

sample was run on agarose gel (Fig 19) prior to ligation with the mutated AmtB fragment. 

This plasmid is 7069 bp and when digested with EcoRI and PstI only one band at 7026 bp 

was observed since the other band is so small (43 bp) that it can't be visualized on the gel. 

1 2 

3 kb 

2 kb 

Figure 18. Double digested pAY98-RcAmtBD335A sample on 0.8% agarose gel. 

well number 1 is 1 kb NEB DNA ladder whereas number 2 shows the digested sample 
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 Double digested pJB3TC20 and the extracted 2191 bp AmtB fragment were ligated 

together with T4 ligase overnight and then introduced in DH5α (on LB+tetracycline or 

ampicillin plates) before another transformation in S17.1 (on LB+tetracycline plates). To 

confirm that the transformed colonies contained both vector and insert, mini prep were 

made, with EcoRI and PstI, and run on agarose gels. As observed in figure 20, two bands 

were visualized on the gel, one being the size of the vector (7026 bp) and the other 

presenting the right size for the AmtB fragment (2191 bp). Therefore we proceeded to the 

final step which was conjugation in R. capsulatus RCAY63 which lacks AmtB. 

1 2 

8 kb 

6 kb 

Figure 19. Double digested pJB3TC20 sample on 0.8% agarose gel. 

well number 1 is 1 kb NEB DNA ladder while number 2 shows double digested pJB3TC20 
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1.2 Regulation of nitrogenase activity in RCZC, RCIA1, RCIA2, RCIA3 and RCIA4 

mutants: 

 Regulation of nitrogenase activity in R. capsulatus strains SB1003 (wild type, 

positive control), RCAY63 (lacking AmtB, negative control), RCZC (D335A), RCIA1 

(D338A), RCIA2 (G344C), RCIA3 (H193E) and RCIA4 (W237A) was studied by gas 

chromatography, as described in section 13 of methods and materials. Cells were grown in 

RCV+30mM (NH4)2SO4+ overnight and transferred to RCV without ammonium source in 

order to induce nitrogenase expression, until the next day when hydrogen bubbles appear in 

the culture tube. Then 5 ml of the cultures were injected into an anaerobic vial, pre-filled 

with argon. The absence of oxygen is critical, since nitrogenase enzyme is extremely 

oxygen sensitive. Vials were preincubated for 15 minutes and after the 15
th

 minute 2ml of 

acetylene were injected into the vials and the amount of ethylene produced was measured 

every 5 minutes. An ammonium shock was given at the 20
th

 minute and its influence on 

nitrogenase activity was followed by continuing to measure the amount of ethylene every 5 

minutes. An effect, i.e. nitrogenase switch-off would be seen as an inhibition in ethylene 

1 2 

8 kb 

6 kb 

3 kb 

2 kb 

Figure 20. double digested pZC sample on 0.8% agarose gel.  

Lane number 1 is 1 kb NEB DNA ladder and number 2 shows double digested pZC. 
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production. 

 The nitrogenase assay carried out with the wild type strain SB1003 (Fig 21) shows 

an linear increase in the amount of ethylene produced with time before the addition of 

ammonium. However after ammonium addition, the total amount of ethylene remains 

almost constant, starting from the 25
th

 minute. This pattern is caused by nitrogenase 

inactivation or so called nitrogenase switch off, which proves the presence of nitrogenase 

regulation in SB1003 (positive control), as expected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 21. Nitrogenase regulation in wild type strain SB1003 
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 The same experiment was performed for RCAY63, which lacks AmtB. As seen in 

figure 22, the amount of ethylene produced is linear with time, and change is observed after 

ammonium addition. This is a typical pattern in strains with no nitrogenase regulation, as 

expected for RCAY63 since switch off can't take place. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The constructed site directed mutants, RCZC (D335A), RCIA1 (D338A), RCIA2 

(G344C), RCIA3 (H193E) and RCIA4 (W237A), were also tested for nitrogenase 

regulation and their ability to switch off after the addition of ammonium. These mutants all 

have had a mutation in one or two of the AmtB amino acid nucleotides, which seemed to be 

highly conserved between R. capsulatus and E. coli. As depicted in figure 23, all the above 

mentioned mutants gave a pattern similar to RCAY63, which leads to the fact that none of 

them are capable of switch off, and therefore nitrogenase regulation must be absent.  
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Figure 22. Nitrogenase regulation in RCAY63 
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Figure 23. Nitrogenase regulation in site directed mutants RCZC (A),  

RCIA1 (B), RCIA2 (C), RCIA3 (D) and RCIA4 (E). Arrows show the 

moment that NH4Cl was added to the samples. 
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1.3 Fe-protein ADP-ribosylation in RCZC, RCIA1, RCIA2, RCIA3 and RCIA4 

mutants: 

 Liquid samples were taken every 5 minutes during the nitrogenase assay, kept in 

SDS PAGE sample buffer and stored at -20°C prior to performing SDS PAGE followed by 

western-blotting with anti Fe-protein antibody. This step allowed the determination of the 

state of Fe-protein modification in RCZC (D335A), RCIA1 (D338A), RCIA2 (G344C), 

RCIA3 (H193E) and RCIA4 (W237A) mutants after the addition of ammonium. SB1003 

and RCAY63 were used as positive and negative controls. As observed in figure 24 A, 

SB1003 showed Fe-protein ADP-ribosylation starting from the 30
th

 minute, 10 minutes 

after the ammonium injection, whereas the Fe-protein in RCAY63 (Fig 24 B) didn't 

undergo ADP-ribosylation after the addition of ammonium. Among the mutants, RCZC 

(D335A), RCIA1 (D338A) and RCIA4 (W237A) (Fig 24 C, E and G respectively) showed 

no ADP-ribosylation, while RCIA2 (G344C) (Fig 24 E) presented a slight form of ADP-

ribosylated Fe-protein from the 25
th

 minute onwards (however it is barely visible in this 

picture). On the other hand RCIA3 (H193E) (Fig 24 F) is the only mutant that has Fe-

protein ADP-ribosylation at the same time points as SB1003, although no switch-off took 

place for this mutant after ammonium addition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

24 A 

 5' 

-N 

 15' 

 -N 

 20' 

 -N 

 25' 

+N 

 30' 

+N 

 35' 

+N 

 40' 

+N 

 45' 

+N 

 50' 

+N 
 10' 

 -N 
NifH 

ADPR 
NifH 

24 B NifH 

24 C 
NifH 

 5' 

-N 

 15' 

 -N 

 20' 

 -N 

 25' 

+N 

 30' 

+N 

 35' 

+N 

 40' 

+N 

 45' 

+N 

 50' 

+N 
 10' 

 -N 

 5' 

-N 

 15' 

 -N 

 20' 

 -N 

 25' 

+N 

 30' 

+N 

 35' 

+N 

 40' 

+N 

 45' 

+N 

 50' 

+N 
 10' 

 -N 

24 D 

 5' 

-N 

 15' 

 -N 

 20' 

 -N 

 25' 

+N 

 30' 

+N 

 35' 

+N 

 40' 

+N 

 45' 

+N 

 50' 

+N 
 10' 

 -N 

NifH 



54 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4 AmtB-GlnK sequestration in response to ammonium shock in RCIA3 mutant: 

 In order to find out whether GlnK (which weighs 12.3 kDa) binds to AmtB in the 

membrane in response to an ammonium shock, cytoplasmic and membrane portions of 

RCIA3 were separated by the cell fractionation method described in section 14 of materials 

and methods. Two RCIA3 cultures of RCV-(NH4)2SO4
+
 were cultured overnight. One of the 

cultures was then treated with ammonium while the other was kept without ammonium. 

The cytoplasmic and membrane fractions were prepared and their proteins separated on 

SDS PAGE (Fig. 25). 4µg of each sample was loaded per well, then transferred to a PVDF 

membrane and blotted with anti RC-GlnK antibody. However, nothing was detected on the 

film, although this experiment was repeated several times without success. To determine if 

the problem was due to the antibodies used, a dot blot was performed, which revealed that 

the primary and secondary antibodies bind together and function properly.  

 

 

 

 

 

Figure 24. Modification of Fe-protein by ADP-riboylation for SB1003 (A),  

RCAY63 (B), RCZC (C), RCIA1 (D), RCIA2 (E), RCIA3 (F) and RCIA4 (G) 
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 The same procedure was carried out for RCZC along with RCAY63 (negative 

control) and SB1003 (positive control) (Fig 26). As it was expected the results for SB1003 

revealed that the level of cytoplasmic GlnK was greater in the absence of NH4
+
 than its 

presence. While in the membrane portion in the lack of nitrogen source nothing was 

detected but with the addition of nitrogen source, GlnK was detected. As expected, this 

revealed GlnK-AmtB sequestration in the membrane with an ammonium shock. On the 

other hand for RCAY63 the amount of GlnK in the cytoplasmic portion was unaffected by 

the addition of NH4
+
. Whereas in the membrane fraction, no GlnK was detected neither 

before nor after ammonium addition which is because this strain lacks AmtB. Therefore 

GlnK-AmtB binding in the membrane does not happen in response to ammonium despite 

the presence of GlnK in the cytoplasm. RCZC showed a similar pattern to SB1003, which 

indicates the sequestration of GlnK to AmtB in the membrane level after an ammonium 

shock. 

Figure 25. SDS PAGE photo of  RCIA3 cytoplasmic and membrane fractions. Lane 1 is 

protein ladder (10-250 kDa) from NEB, lane 2 and 3 represent RCIA3 cytoplasmic and 

membrane portions respectively in the absence of ammonium, lane 4 and 5 are RCIA3 

cytoplasmic and membrane portions in the presence of ammonium.  
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2. Probing the role of R. capsulatus AmtY expressed in Escherchia coli: 

2.1 AmtY-GlnK sequestration in response to ammonium shock in E. coli (GT1001 

pRSG1): 

 Since the function of AmtY in R. capsulatus is unclear, it was expressed in E. coli 

(GT1001 pRSG1) to test its functionality in that species. Possible sequestration of GlnK by 

AmtY after an ammonia shock was examined by carrying out a cell fractionation assay. The 

presence of GlnK in the extracted membrane and cytoplasmic fractions was verified by first 

separating both portions before and after NH4
+
 addition (with and without IPTG) using 

SDS-PAGE (15%), with loading 3 µg of samples per well after the determination of the 

protein concentration in the fractions.  

 

 This step was followed by western blotting, using anti-EcGlnK antibody. The results 

revealed that for the cytoplasmic portion the amount of GlnK didn't change after NH4
+
 

shock (in the absence of IPTG) (Fig 27 A). As well, the same situation was observed for the 

membrane fraction. The amount of GlnK in the cytoplasmic fraction was greater than that 

in the membrane fraction. The analysis was also performed for cultures which had been 

treated with IPTG. The amount of GlnK in the cytoplasmic fraction was unaffected by the 

addition of NH4
+
 (Fig 27 B). On the other hand, a small difference was observed in the 

membrane fraction after ammonia shock, which indicates a slight increase in GlnK 

sequestration by AmtY. Therefore, it seems that AmtY doesn't bind GlnK in E.coli (GT1001 

Fig 26. GlnK-AmtB sequestration in response to ammonium shock in RCZC (D335A), 

SB1003 and RCAY63. Cytoplasmic fractions (C) and membrane fractions (M) were blotted 

with anti RC-GlnK antibody in the presence (+NH4
+) and absence (-NH4

+) of ammonium 

SB1003 RCZC (D335A) RCAY63 

C M C M C M C M C M C M 

-NH4
+ +NH4

+ -NH4
+ +NH4

+ -NH4
+ +NH4

+ 
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pRSG1) in response to NH4
+
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Probing the formation of ternary complex, GlnK-AmtB-DraG, by 

generating anti-DraG antibody: 

3.1 Over-expression and purification of DraG protein: 

 Plasmids pPLT60 and pIMI were introduced into XL1-Blue competent cells on 

LB+ampicillin plates, followed by over-expression of DraG by the addition of IPTG to the 

growth medium (as described in section 18 of materials and methods). After protein 

induction and purification steps (explained in sections 19 and 20 of materials and methods), 

samples before and after induction and the eluted fractions (from purification step) were 

run on 15% SDS PAGE to separate the protein bands (Fig 28 A), The SDS PAGE gels were 

then subjected to a western blot analysis (Fig 28 B) with anti-6X His antibody. As shown in 

B 

A 

C M C M 

C M C M 

+NH4
+ 

+NH4
+ 

Figure 27. GlnK sequestration. Two parallel cultures of GT1001 pRSG1 were grown in 

M9Gln under nitrogen limited conditions, once -IPTG (A) and another time +IPTG (B). 

30mM NH4Cl was added to one of the parallel cultures and incubated for 15 minutes. Cells 

were then harvested and with further centrifugations cytoplasmic (C) and membrane (M) 

portions were separated. SDS-PAGE electrophoresis was carried out for the cytoplasmic 

and membrane fractions, before and after the addition of NH4Cl. This was continued by 

western blotting using anti-GlnK antibody. 
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figure 34, DraG (30 kDa) carried on pIMI appeared to be overexpressed. However, its 

purification was not successful. The same procedure was repeated several times for pPLT60 

plasmid, even using culture volumes as large as 1L and different incubation times with 

IPTG, but overexpression of DraG was never detected. In addition, attempted purification 

of DraG from pIMI was repeated several times with freshly made buffers, but for unknown 

reasons, the DraG protein band was lost during purification, while other protein bands 

seemed to be collected in the eluted fractions instead. The above mentioned problems might 

be due to a problem with plasmid construction (pPLT60) or the production of insoluble 

inclusion bodies(pIMI). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     1              2                     3 

A 

Figure 28. DraG over-expression in pIMI. (A) SDS PAGE picture which lane 1 is 

“prestained protein marker broad range” from NEB, lane 2 is before induction and 

 lane 3 is after induction. (B) Western blot photo which lane 1 is the non-induced 

 form and number 2 presents it after induction. 
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Discussion 
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 Amt, an ammonium transport protein, plays an important role in some bacteria in 

the regulation of nitrogenase. It has been shown that AmtB, one of the Amt proteins of R. 

capsulatus, is necessary for ammonium-induced nitrogenase switch-off and ADP-

ribosylation in this species (2). Two different mechanisms have been shown to affect 

nitrogenase activity in R. capsulatus in response to exogenous ammonium; ADP-

ribosylation of nitrogenase Fe-protein and the ADP-ribosylation-independent switch-off 

effect (2). AmtB appears to be involved in both responses and the working hypothesis is 

that AmtB regulates ADP-ribosylation by forming a complex with GlnK and probably 

DraG at the membrane in the presence of excess extracellular ammonium. This ternary 

complex removes DraG from the cytoplasm causing nitrogenase switch-off (18). 

 In order to better understand the mechanistic details on the molecular level of the 

role of AmtB in ammonia sensing and metabolic regulation, a series of site-directed R. 

capsulatus AmtB with changes in amino acids thought to be important in various aspects of 

the interaction with ammonia, were constructed in our laboratory. The mutants were also 

characterized in terms of nitrogenase switch-off and AmtB-GlnK formation. Here we have 

investigated D335, D338, G344, H193 and W237 highly conserved amino acid residues by 

making their appropriate mutants RCZC (D335A), RCIA1 (D338A), RCIA2 (G344C), 

RCIA3 (H193E) and RCIA4 (W237A). 

 Among the above mentioned amino acid residues, the highly conserved H193 has 

been previously studied by P. Tremblay et al 2008, (18) and proven to be absolutely critical 

for ammonium transport by R. capsulatus AmtB as well as E. coli. It was also shown in the 

same work that a mutation in that residue disables the nitrogenase switch off. This indicates 

the importance of this histidine residue in nitrogenase regulation. In our study on RCIA3 

(H193E), no switch-off was seen even after ammonium addition (Fig 28 D), which matched 

the results obtained previously, supporting its critical role in ammonium transport and 

nitrogenase regulation. However, here it has been shown, against expectations, that this 

mutant shows some NifH ADP-ribosylation in response to ammonium addition (Fig 29 F). 

One explanation for this is that nitrogenase is in excess and a small decrease in active 

nitrogenase brought about by ADP-ribosylation is not enough to cause a decrease in the 

measured nitrogenase activity. This idea is supported by a previous study which found that 

even in highly active nitrogen fixing R. capsulatus cultures some of the nitrogenase is in 
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the ADP-ribosylated form (56). The amino acid D335 has also been previously studied by 

P. Tremblay et al 2008, (18) along with D334 in a R. capsulatus in a AmtB double mutant 

construction. Their results revealed that this double mutant was incapable of ammonium 

transport and nitrogenase switch off. However, it was unclear if this effect was due to one 

or both of the aspartic acid mutations. To study the role of D335 alone, the single mutant 

RCZC (D335A) was constructed here and its response to an ammonium shock investigated. 

RCZC didn't show switch-off (Fig 28 A), suggesting that the results obtained by P. 

Tremblay et al 2008 were due to this mutation in the double mutant and strongly suggesting 

an important role for this residue in nitrogenase regulation and ammonium transport. In 

addition, here it has been shown that there is no modification of nitrogenase Fe-protein in 

the single mutant (Fig 29C). Therefore the D335 mutation blocks both kinds of nitrogenase 

regulation, ADP-ribosylation of Fe-protein and the ADP-ribosylation-independent switch-

off effect. Thus, this aspartate residue seems to be extremely crucial in AmtB function and 

nitrogenase regulation. 

 The 3 remaining mutants, RCIA1 (D338A), RCIA2 (G344C) and RCIA4 (W237A), 

had never been subjected to detailed investigations. When a nitrogenase assay was 

conducted all three mutants showed a linear rate of acetylene reduction despite ammonium 

addition after the 20
th

 minute which in turn means that nitrogenase switch-off is absent (Fig 

28 B, C and E). This experiment reveals the crucial role of aspartate 338 (D338), glycine 

344 (G344) and tryptophan 237 (W237) in R. capsulatus in nitrogenase regulation and 

ammonium transport. These mutants were also examined to check the occurrence of Fe-

protein ADP-ribosylation. Results with RCIA2 (G344C) mutant indicated a slight 

modification of NifH protein via ADP-ribosylation (Fig 29 D). Again this suggests that 

active nitrogenase is in excess. On the other hand with mutants RCIA1(D338A) and RCIA4 

(W237A), no NifH ADP-ribosylation was seen even after ammonium addition at the end of 

the 20
th

 minute (Fig 29 G). No modification means that D388 and W237 in R. capsulatus 

are required for nitrogenase regulation via Fe-protein ADP-ribosylation. 

 The AmtB family is almost invariably encoded in a glnKamtB operon (18), 

suggesting that GlnK and AmtB have a tightly conserved genetic linkage in bacteria (59). 

Previous studies have suggested that upon addition of NH4
+
, GlnK sequesters AmtB to the 

membrane which causes switch-off. It has been shown that AmtB is essential for proper 
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nitrogenase regulation in R. capsulatus and the ammonium-induced membrane 

sequestration of GlnK with AmtB seems to be vital for this process. Previous studies have 

also shown that GlnK sequestration after ammonium shock appears not to be enough in 

order to ensure nitrogenase switch-off and ADP-ribosylation but that binding of ammonium 

by AmtB or its partial transport is also needed (18). However the amount of membrane-

sequestered GlnK seemed to be not important in this process. To check AmtB-GlnK 

sequestration in response to ammonium shock in the RCIA3 mutant, cell fractionation was 

carried out to separate cytoplasmic and membrane fractions, which were then separated by 

SDS PAGE and subsequently transferred to a PVDF membrane and blotted with anti RC-

GlnK antibody. However nothing was detected on the film, although this experiment was 

repeated several times. Dot blot analysis revealed that both primary and secondary 

antibodies were functional. On the other hand, when this experiment was carried out for 

RCZC, GlnK was detected. Its level in the cytoplasmic portion was higher in the lack of 

ammonium in comparison to when ammonium was added. Because in the former case, 

almost all the GlnK is accumulated in the cytoplasm but after the the addition of 

ammonium, some sequester to AmtB in the membrane to block this channel. While in the 

membrane fraction and in the absence of ammonium, GlnK was not seen but visualized 

after an ammonium shock. This confirms the binding of GlnK to AmtB under nitrogen 

repletion conditions, which indicates the fact that the point mutation (D335A) in RCZC did 

not affect GlnK-AmtB sequestration to the membrane. Therefore aspartate 335 (D335) does 

not have a critical role in the sequestration of GlnK to AmtB in the membrane level. 

 R. capsulatus possesses two genes coding for ammonium transport systems, called 

amtB and amtY. AmtB is an ammonium transporter that is also capable of 

methylammonium uptake and which acts as an ammonium sensor involved in nitrogenase 

switch-off, whereas AmtY's functionality is unclear, although it has been shown to not be 

competent for methylammonium uptake (1, 2, 69). As well, previous studies showed that 

AmtY didn't appear to participate in nitrogenase switch-off or in ammonia transport in (2). 

In this work AmtY was expressed in E. coli (GT1001 pRSG1) to be tested for its 

functionality in that species. To detect possible GlnK-AmtY sequestration after ammonia 

shock a cell fractionation assay was carried out. The presence of the GlnK was verified 

using SDS-PAGE (15%) and western blotting of both cytoplasmic and membrane fractions 
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before and after NH4
+
 addition (with and without IPTG). The results revealed that, in the 

absence of IPTG, the amount of GlnK in the cytoplasmic or membrane fractions did not 

appear to change after the NH4
+
 shock (Fig. 33A). The same experiment was performed in 

the presence of IPTG. The levels of GlnK in the cytoplasmic portion was unaffected before 

and after the increase of NH4
+
 (Fig. 33B). On the other hand, a small difference was 

observed in the membrane fraction after ammonia shock, which indicates a slight increase 

in the AmtY-GlnK sequestration when over-expression is induced by IPTG. Thus, the 

results obtained here suggest that AmtY doesn't associate with GlnK in E. coli (GT1001 

pRSG1) in response to NH4
+
. 

 Previous investigations on AmtY functionality carried out in our laboratory had 

revealed that AmtY was transcribed in R. capsulatus under N-limiting conditions. It was 

also shown that AmtY could transport methylammonium in E. coli in addition to its 

capability in correcting the growth defect of an amtB
-
 strain. However, a full understanding 

of the function of AmtY in R. capsulatus obviously requires further investigations.  

 In R. capsulatus at high extracellular ammonium concentrations, GlnK is 

sequestered to the membrane by making a complex with AmtB in order to regulate 

nitriogenase activity, which consequently leads to its switch-off. However, as discussed 

previously, the formation of a GlnK-AmtB complex is not sufficient for nitrogenase 

regulation. It is suggested in other species that DraG binds this binary complex, forming a 

ternary complex, GlnK-AmtB-DraG, which affects nitrogenase switch off. However, details 

of this process are unclear and it has never been shown if this applies to R. capsulatus. 

Therefore, an attempt was made to generate an anti-DraG antibody to be used for probing 

the formation of ternary complexes containing DraG. Several repeated attempts were made 

to over-express His-tagged DraG using pPLT60 and pIMI, carried by E. coli XL1-Blue 

cells. Induction of overexpression with IPTG was only successful for pIMI, however it was 

not possible to purify the induced His-tagged DraG in order to generate antibody against it, 

possibly due to protein instability or inclusion bodies. In the future, specialized E. coli 

strains and expression systems ,which reduce inclusion body build ups, could be used to 

over express Drag. Also the incubation during the induction with IPTG could be carried out 

at lower temperatures instead of 37°C, in order to decrease inclusion bodies. Another 

solution to this problem might be purifying DraG under denaturing conditions to overcome 
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the appearance of inclusion bodies. In addition, other affinity tags could be used as an 

alternative to 6x His-tag. 



 

 

 

 

 

 

Conclusion 
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 In order to better understand the role of a series of highly conserved amino acids in 

R. capsulatus AmtB and their influence on nitrogenase regulation, a number of site directed 

mutants (RCIA1, RCIA2, RCIA3 and RCIA4) were created by previous lab members 

besides an extra one (RCZC) constructed in this study. Mutations were done at D338, 

G344, H193E, W237A and D335 amino acid residues of R. capsulatus AmtB. These 

mutants were assayed for nitrogenase activity to determine if nitrogenase switch-off was 

present upon addition of ammonium. Other possible analyses include, determining 

nitrogenase NifH ADP-ribosylation and GlnK-AmtB complex formation. Results revealed 

that all 5 residues are essential for nitrogenase regulation and ammonium transport as they 

all lost the ability to switch-off nitrogenase activity even after ammonium addition. W237 

and D335 and D338 amino acid residues were absolutely critical for Fe-protein 

modification whereas H193 residue does not seem to be important for this function. 

Although the G344 mutant showed NifH modification, it was only slight, suggesting that it 

is an important amino acid involved in Fe-protein modification. No results were obtained 

for GlnK-AmtB sequestration in response to ammonium shock in RCIA3, whereas RCZC 

showed GlnK-AmtB sequestration in the membrane in response to ammonium repletion. 

 A series of other mutations, such as W237L/F, F131L, W172A/L and F240A/L, 

could be generated in the future to further probe the role of AmtB in nitrogenase regulation 

in R. capsulatus. In addition, mutants will be assayed for methylammonium uptake with 

[14C] in the future. 

 R. capsulatus has two Amt proteins namely AmtB and AmtY. AmtB is an 

ammonium transporter and a sensor for it which plays an important role in nitrogenase 

regulation, while AmtY seems to have none of these functions in this species. To find out 

AmtY function, it was expressed in E. coli (GT1001 pRSG1) and was assayed for GlnK-

AmtY formation before and after ammonium shock. The results showed that the amount of 

GlnK wasn't changed before and after the addition of ammonium neither for the 

cytoplasmic portion nor for the membrane fraction. It can be concluded from the results 

that AmtY does not associate with GlnK in E. coli in response to NH4
+
. 

 In order to make anti-DraG antibody ,to be used for probing the formation of ternary 

complexes (GlnK-AmtB-DraG), further works need to be done to over-express DraG and to 

purify it. To optimize the conditions, some changes should be taken into account. For 

instance, DraG over expression could be done with specialized E. coli strains and 
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expression systems. Incubation temperature could also be decreased during induction with 

IPTG. Purifying DraG under denaturing conditions could be another solution to this 

problem. Using other tags instead of 6x His-tag might be helpful too. 
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