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Cette thèse intitulée:

Impacts and Detection of Design Smells

présentée par :

Abdou Maiga
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Membre du jury : Bruno Dufour

Examinateur externe : Ahmed E. Hassan

Représentant du doyen de la FAS : Philippe Langlais



Résumé

Les changements sont faits de façon continue dans le code source des logiciels pour prendre en

compte les besoins des clients et corriger les fautes. Les changements continus peuvent conduire

aux défauts de code et de conception. Les défauts de conception sont des mauvaises solutions à des

problèmes récurrents de conception ou d’implémentation, généralement dans le développement

orienté objet. Au cours des activités de compréhension et de changement et en raison du temps

d’accès au marché, du manque de compréhension, et de leur expérience, les développeurs ne peu-

vent pas toujours suivre les normes de conception et les techniques de codage comme les patrons

de conception. Par conséquent, ils introduisent des défauts de conception dans leurs systèmes.

Dans la littérature, plusieurs auteurs ont fait valoir que les défauts de conception rendent les

systèmes orientés objet plus difficile à comprendre, plus sujets aux fautes, et plus difficiles à

changer que les systèmes sans les défauts de conception. Pourtant, seulement quelques-uns de ces

auteurs ont fait une étude empirique sur l’impact des défauts de conception sur la compréhension

et aucun d’entre eux n’a étudié l’impact des défauts de conception sur l’effort des développeurs

pour corriger les fautes.

Dans cette thèse, nous proposons trois principales contributions. La première contribution

est une étude empirique pour apporter des preuves de l’impact des défauts de conception sur la

compréhension et le changement. Nous concevons et effectuons deux expériences avec 59 sujets,

afin d’évaluer l’impact de la composition de deux occurrences de Blob ou deux occurrences de

spaghetti code sur la performance des développeurs effectuant des tâches de compréhension et de

changement. Nous mesurons la performance des développeurs en utilisant: (1) l’indice de charge

de travail de la NASA pour leurs efforts, (2) le temps qu’ils ont passé dans l’accomplissement de

leurs tâches, et (3) les pourcentages de bonnes réponses. Les résultats des deux expériences ont

montré que deux occurrences de Blob ou de spaghetti code sont un obstacle significatif pour la

performance des développeurs lors de tâches de compréhension et de changement. Les résultats

obtenus justifient les recherches antérieures sur la spécification et la détection des défauts de con-

ception. Les équipes de développement de logiciels doivent mettre en garde les développeurs

contre le nombre élevé d’occurrences de défauts de conception et recommander des refactorisa-
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tions à chaque étape du processus de développement pour supprimer ces défauts de conception

quand c’est possible.

Dans la deuxième contribution, nous étudions la relation entre les défauts de conception et les

fautes. Nous étudions l’impact de la présence des défauts de conception sur l’effort nécessaire pour

corriger les fautes. Nous mesurons l’effort pour corriger les fautes à l’aide de trois indicateurs:

(1) la durée de la période de correction, (2) le nombre de champs et méthodes touchés par la

correction des fautes et (3) l’entropie des corrections de fautes dans le code-source. Nous menons

une étude empirique avec 12 défauts de conception détectés dans 54 versions de quatre systèmes:

ArgoUML, Eclipse, Mylyn, et Rhino. Nos résultats ont montré que la durée de la période de

correction est plus longue pour les fautes impliquant des classes avec des défauts de conception. En

outre, la correction des fautes dans les classes avec des défauts de conception fait changer plus de

fichiers, plus les champs et des méthodes. Nous avons également observé que, après la correction

d’une faute, le nombre d’occurrences de défauts de conception dans les classes impliquées dans

la correction de la faute diminue. Comprendre l’impact des défauts de conception sur l’effort des

développeurs pour corriger les fautes est important afin d’aider les équipes de développement pour

mieux évaluer et prévoir l’impact de leurs décisions de conception et donc canaliser leurs efforts

pour améliorer la qualité de leurs systèmes. Les équipes de développement doivent contrôler et

supprimer les défauts de conception de leurs systèmes car ils sont susceptibles d’augmenter les

efforts de changement.

La troisième contribution concerne la détection des défauts de conception. Pendant les ac-

tivités de maintenance, il est important de disposer d’un outil capable de détecter les défauts de

conception de façon incrémentale et itérative. Ce processus de détection incrémentale et itérative

pourrait réduire les coûts, les efforts et les ressources en permettant aux praticiens d’identifier et

de prendre en compte les occurrences de défauts de conception comme ils les trouvent lors de la

compréhension et des changements. Les chercheurs ont proposé des approches pour détecter les

occurrences de défauts de conception, mais ces approches ont actuellement quatre limites: (1) elles

nécessitent une connaissance approfondie des défauts de conception, (2) elles ont une précision et

un rappel limités, (3) elles ne sont pas itératives et incrémentales et (4) elles ne peuvent pas être

appliquées sur des sous-ensembles de systèmes. Pour surmonter ces limitations, nous introduisons

SMURF, une nouvelle approche pour détecter les défauts de conception, basé sur une technique

d’apprentissage automatique — machines à vecteur de support — et prenant en compte les re-

tours des praticiens. Grâce à une étude empirique portant sur trois systèmes et quatre défauts de

conception, nous avons montré que la précision et le rappel de SMURF sont supérieurs à ceux de

DETEX et BDTEX lors de la détection des occurrences de défauts de conception. Nous avons

également montré que SMURF peut être appliqué à la fois dans les configurations intra-système
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et inter-système. Enfin, nous avons montré que la précision et le rappel de SMURF sont améliorés

quand on prend en compte les retours des praticiens.

Mots-clés : défaut de conception, anti-patrons, défauts de code, mauvaises odeurs, détection, re-

structurations, refactorisations, compréhension de programme, maintenance de programme, cor-

rection de faute, génie logiciel empirique.



Abstract

Changes are continuously made in the source code to take into account the needs of the customers

and fix the faults. Continuous change can lead to antipatterns and code smells, collectively called

“design smells” to occur in the source code. Design smells are poor solutions to recurring design

or implementation problems, typically in object-oriented development. During comprehension

and changes activities and due to the time-to-market, lack of understanding, and the developers’

experience, developers cannot always follow standard designing and coding techniques, i.e., de-

sign patterns. Consequently, they introduce design smells in their systems. In the literature, several

authors claimed that design smells make object-oriented software systems more difficult to under-

stand, more fault-prone, and harder to change than systems without such design smells. Yet, few

of these authors empirically investigate the impact of design smells on software understandability

and none of them authors studied the impact of design smells on developers’ effort.

In this thesis, we propose three principal contributions. The first contribution is an empirical

study to bring evidence of the impact of design smells on comprehension and change. We design

and conduct two experiments with 59 subjects, to assess the impact of the composition of two Blob

or two Spaghetti Code on the performance of developers performing comprehension and change

tasks. We measure developers’ performance using: (1) the NASA task load index for their effort;

(2) the time that they spent performing their tasks; and, (3) their percentages of correct answers.

The results of the two experiments showed that two occurrences of Blob or Spaghetti Code design

smells impedes significantly developers performance during comprehension and change tasks.

The obtained results justify a posteriori previous researches on the specification and detection

of design smells. Software development teams should warn developers against high number of

occurrences of design smells and recommend refactorings at each step of the development to

remove them when possible.

In the second contribution, we investigate the relation between design smells and faults in

classes from the point of view of developers who must fix faults. We study the impact of the pres-

ence of design smells on the effort required to fix faults, which we measure using three metrics:

(1) the duration of the fixing period; (2) the number of fields and methods impacted by fault-fixes;
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and, (3) the entropy of the fault-fixes in the source code. We conduct an empirical study with

12 design smells detected in 54 releases of four systems: ArgoUML, Eclipse, Mylyn, and Rhino.

Our results showed that the duration of the fixing period is longer for faults involving classes with

design smells. Also, fixing faults in classes with design smells impacts more files, more fields, and

more methods. We also observed that after a fault is fixed, the number of occurrences of design

smells in the classes involved in the fault decreases. Understanding the impact of design smells on

development effort is important to help development teams better assess and forecast the impact of

their design decisions and therefore lead their effort to improve the quality of their software sys-

tems. Development teams should monitor and remove design smells from their software systems

because they are likely to increase the change efforts.

The third contribution concerns design smells detection. During maintenance and evolution

tasks, it is important to have a tool able to detect design smells incrementally and iteratively. This

incremental and iterative detection process could reduce costs, effort, and resources by allow-

ing practitioners to identify and take into account occurrences of design smells as they find them

during comprehension and change. Researchers have proposed approaches to detect occurrences

of design smells but these approaches have currently four limitations: (1) they require extensive

knowledge of design smells; (2) they have limited precision and recall; (3) they are not incre-

mental; and (4) they cannot be applied on subsets of systems. To overcome these limitations,

we introduce SMURF, a novel approach to detect design smells, based on a machine learning

technique—support vector machines—and taking into account practitioners’ feedback. Through

an empirical study involving three systems and four design smells, we showed that the accuracy

of SMURF is greater than that of DETEX and BDTEX when detecting design smells occurrences.

We also showed that SMURF can be applied in both intra-system and inter-system configurations.

Finally, we reported that SMURF accuracy improves when using practitioners’ feedback.

Keywords: design smells, antipatterns, code smells, bad smells, detection, restructuring, refactor-

ings, program comprehension, program maintenance, fault fix, empirical software engineering.
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Chapter 1

Introduction

In this chapter, we present the context of our research work, which is agile software development.

We state the relationship between design smells and comprehension and change. We present the

problems and our thesis saying that there is a strong relationship between the understanding of

software systems, the effort required for their change, and the occurrences of design smells, in

an agile software development context. We present our approach, SMURF, to detect occurrences

of design smells, taking into account the practitioners’ feedback to improve the quality of the

software systems.
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1.1 Context: Software Maintenance and Evolution

Software systems are prevalent in all areas of societies including the most sensitive as medicine,

economics. They therefore play a central role in our societies. In this context, the quality of

software systems becomes crucial. The development of software involves several steps. These

steps include the specification of requirements, design, implementation, testing, deployment, and

maintenance. Software maintenance is defined by the IEEE Standard 1219 [IEEE, 1999] as: the
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modification of a software product after delivery to correct faults, to improve performance or other

attributes, or to adapt the product to a modified environment. Maintenance activities have become

expensive nowadays. They reach more than 70% of the overall costs of software development

[Pressman, 2001]. Bennett and Rajlich [2000] recall the categories of maintenance:

• Adaptive - changes in the software environment;

• Perfective - new user requirements;

• Corrective - fixing errors;

• Preventive - prevent problems in the future.

They showed that around 75% of the maintenance effort concern adaptive and perfective mainte-

nance while 21% of the maintenance effort is spent in error correction. The most important kinds

of maintenance are adaptive and perfective maintenance. Developers continuously evolve their

systems to implement new functionality as well as to fix faults. For example software evolution is

central to agile software development [Beck et al., 2001], which is a set of collaborative, iterative,

and incremental development methods. Agile methods are based on four common values, which

are the team, the working software, the customer collaboration, and responding to change [Beck et

al., 2001]. Martin et al. [2003] summarise the characteristics of agile methods as follows: “Agile

Methods are:

• Iterative: the team delivers a full system at the very beginning and then changes the func-

tionality of each subsystem with each new release;

• Incremental: the system as specified in the requirements is partitioned into small subsystems

by functionality. New functionality is added with each new release;

• Self-organizing: the team has the autonomy to organise itself to best complete the work

items;

• Emergent: technology and requirements are “allowed” to emerge through the product de-

velopment cycle.”

Since its introduction, agile software development methods gained in popularity and are the most

used software development methods in industry. Many books and articles have been written to

explain the methods and help practitioners to apply them in their projects [Martin, 2003]. For

software maintenance and evolution activities, comprehension and change are important. The

comprehension of a system is the degree to which its source code can easily be understood by

developers [Ignatios et al., 2003 ; Ignatios et al., 2004 ; Khomh and Guéhéneuc, 2008].
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Design patterns are “good” solutions to recurring design problems, conceived to increase

reuse, code quality, code readability, resilience to changes and, above all, maintainability [Gamma

et al., 1994]. Due to the time-to-market, lack of understanding, and their experience, develop-

ers cannot always follow standard designing and coding techniques, i.e., design patterns [Fowler,

1999a]. Therefore, they introduced antipatterns and code smells in their systems. Antipatterns and

code smells are poor solutions to recurring design or implementation problems [Webster, 1995]. In

this thesis, as in previous research work [Moha et al., 2009], we use the term “design smells” for

both antipatterns and code smells. Design smells reflect developers’ expertise. They are generally

the result of misuse of the object-oriented paradigm and–or design patterns [Brown et al., 1998].

Consequently, design smells creep up in systems. An example of design smell is the Blob, also

called God Class, which is a large and complex class that centralises most of the behavior of a

system. A Blob also depends on data stored in surrounding data classes. A Blob is characterised

by a low cohesion and a large size. It prevents the use of polymorphism through inheritance [Moha

et al., 2010c]. Another example of design smell is the MessageChain, which occurs when the im-

plementation of a functionality in one class requires a long chain of method invocations between

objects from different classes [Moha et al., 2010c]. Classes with message chains are more prone

to faults than others [Khomh et al., 2011a].

1.2 Motivation

Previous work showed the negative impact of design smells on software quality attributes and

also on comprehension [Abbes et al., 2011] and change [Khomh et al., 2011a]. Software systems

are always subject to modification to adapt or implement new requirements. Therefore, software

systems evolve over time and the understandability of the source code is important to adapt, im-

plement new requirements but also to fix fault. Researchers have performed empirical studies to

show that design smells like Spaghetti Code combined with Blob create hurdles during program

comprehension [Abbes et al., 2011], software evolution, and maintenance activities [Khomh et al.,

2011a].

The importance of these two activities, comprehension and change, in the software mainte-

nance and evolution activities, motivate us to gather quantitative evidences on the relation between

design smells and comprehension, faults, and the developers’ effort to fix the faults. Bringing these

evidences is important for practitioners, i.e., developers, testers, and managers, and will contribute

to reduce maintenance costs and improve software quality. Indeed, the knowledge of the impact of

design smells on comprehension and fault-fixing activities will help practitioners to take rational

decisions about how dealing with design smells.
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Thus, evidences of a negative impact of design smells on comprehension, fault-fixing activi-

ties, and on a relation between the fixing of faults and the number of occurrences of design smells

will allow us to advise practitioners to be more cautious with design smells, i.e., with their design

decisions (or lack thereof). These evidences adding to previous results [Moha et al., 2010c ; Abbes

et al., 2011 ; Khomh et al., 2011a] could help practitioners justify the removal of design smells.

Previous work [Moha et al., 2009] discussed the importance for maintenance activities to automat-

ically detect occurrences of design smells. We now link design smells and effort concretely. The

tools proposed so far in the literature to detect design smells are not iterative and incremental. To

fill this gap and contribute to the reduction of software maintenance costs, we provide SMURF,

a tool based on a machine learning algorithm to automatically detect the occurrences of design

smells iteratively and incrementally. SMURF takes into account the practitioners’ feedback and

allows iterative and incremental detection with higher accuracy. If developers independently de-

tect design smells among few classes of their systems as there are developed and incrementally

add more classes to the previous release, the correction or removing of those design smells will be

less costly than in the whole system at the end of the development.

1.3 Problem Statement and Thesis

In the literature, design smells are conjectured to negatively impact comprehension and the effort

to fix the faults. However, only few studies empirically investigated the impact of design smells

on comprehension and change (through fault-fixing activities) as reported in Chapter 3.

Comprehension is the central element for the effectiveness of software maintenance and evo-

lution [von Mayrhauser and Vans, 1995]: a good understanding of the source code of a system

is essential to allow its inspection, maintenance, reuse, and extension: in other words, its change.

Also the effort to fix a fault has an important effect on the costs of software maintenance in terms

of time and money.

Our thesis is that it is possible to bring quantitative evidences of the impact of design smells

on comprehension and fault-fixing effort and provide a tool for accurate incremental and

iterative design smells detection.

Therefore, we tackle the three (3) following problems:

• The lack of evidence of the impact of design smells on comprehension;

• The lack of evidence of the impact of design smells on fault-fixing effort;

• The limitations of the previous design smells detection approaches.
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Evidence of the Impact of Design Smells on Comprehension. In the literature, design smells

are conjectured to negatively impact comprehension but few studies have empirically investigated

this impact of design smells. In software maintenance and evolution context, it is important to in-

vestigate the impact of design smells on comprehension because this is one of the most important

activities in such a context. To investigate this impact, we design and conduct two experiments

with 59 subjects. In these experiments we assess the impact of the composition of two occurrences

of Blob or two occurrences of Spaghetti Code on the performance of developers performing com-

prehension and change tasks. We analyse whether increasing the number of occurrences of some

design smell, i.e., two occurrences of the Blob or two occurrences of the Spaghetti Codes, in some

systems impacts the comprehension.

We gather quantitative evidence of the impact of Blob and Spaghetti Code design smells on

comprehension. We measure developers’ performance using: (1) the NASA task load index for

their effort; (2) the time that they spent performing their tasks; and, (3) their percentages of correct

answers. The results of the two experiments show that two occurrences of Blob or Spaghetti Code

design smells significantly impede developers’ performance during comprehension and change

tasks. The obtained results justify a posteriori previous research on the specification and detection

of design smells. Software development teams should warn developers against high number of

occurrences of design smells and recommend refactorings at each step of the development to

remove them when possible.

Gathering these evidences of the relation between Blob and Spaghetti Code design smells and

comprehension will help us to advise practitioners to be more cautious with design smells, i.e.,

with their design decisions (or lack thereof), especially in agile software development context

where comprehension is very important.

Evidence of the Impact of Design Smells on Fault-fixing Effort. When doing maintenance

and evolution changes, developers face faults and must fix them continuously. Design smells are

prevalent in systems [Khomh et al., 2011a] and several studies [Abbes et al., 2011 ; Khomh et al.,

2011a] have shown that they negatively impact software development and maintenance. Khomh

et al. [Khomh et al., 2011a] showed that classes participating in design smells are more prone

to changes and faults than others. However, none of previous work empirically investigated the

impact of design smells on the developers’ effort to fix faults.

We gather quantitative evidence on the relation between design smells, faults, and the devel-

opers’ effort to fix the faults. We study the impact of the presence of design smells on the effort

required to fix faults, which we measure using three metrics: (1) the duration of the fixing period;

(2) the number of fields and methods impacted by fault-fixes; and, (3) the entropy of the fault-fixes
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in the source code. We conduct an empirical study with 12 design smells detected in 54 releases

of four systems: ArgoUML, Eclipse, Mylyn, and Rhino. Our results show that the duration of

the fixing period is longer for faults involving classes with design smells. Also, fixing faults in

classes with design smells impacts more files, more fields, and more methods. We also observed

that after a fault is fixed, the number of occurrences of design smells in the classes involved in the

fault decreases. Understanding the impact of design smells on development effort is important to

help development teams better assess and forecast the impact of their design decisions and there-

fore lead their effort to improve the quality of their software systems. Development teams should

monitor and remove design smells from their software systems because they are likely to increase

the change efforts.

Incremental Design Smells Detection Approach. Due to the impact of design smells shown

in our two first contributions, it is important to detect design smells incrementally and iteratively

to help developers to remove them early. If developers independently detect design smells among

few classes of their systems as they are developed, and remove them before adding more classes to

produce the next release, the maintenance costs will be reduced as ccomprehension will be easier

and the effort to fix faults reduced. Another factor that participates to reduce the cost is that the

removing of design smells at this stage will be easier and less expensive than in the whole system

at the end of the development process. Current design smells detection approaches as proposed

by Marinescu [Marinescu, 2004a], Moha et al. [Moha et al., 2009] and Alikacem et al. [Alikacem

and Sahraoui, 2006] are not iterative and incremental and they required extensive knowledge of

design smell specifications. Therefore we propose SMURF, a SVM-based, incremental and it-

erative design smells detection approach. SMURF is an approach based on a machine learning

technique—support vector machines—and taking into account practitioners’ feedback. Through

an empirical study involving three systems and four design smells, we show that the accuracy of

SMURF is greater than that of DETEX and BDTEX when detecting design smells occurrences.

We also show that SMURF can be applied in both intra-system and inter-system configurations.

Finally, we reported that SMURF accuracy improves when using practitioners’ feedback.

1.4 Contributions

The main contributions of this thesis follow three axes:

1. To answer the problem of lack of evidence of the impact of design smells on comprehension,

we conduct an empirical study of the impact of Blob and Spaghetti Code design smells on
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comprehension. We found that the combination of two Blob or two Spaghetti Code design

smells impedes significantly developers performance during comprehension and change.

2. To answer the problem of lack of evidence of the impact of design smells on fault-fixing

effort, we conduct an empirical study on the evidence of the impact of design smells on fault-

fixing efforts. We found that the duration of the fixing period is longer for faults involving

classes with design smells. Also, fixing faults in classes with design smells impacts more

files, more fields, and more methods. We also observed that after a fault is fixed, the number

of occurrences of design smells in the classes involved in the fault decreases.

3. To answer the problem of the limitations of the previous design smells detection approaches,

we propose an approach named SMURF to detect iteratively and incrementally design

smells. We exploit the benefits of SVM to detect the occurrences of design smells while

taking into account practitioners feedback.

1.5 Publications

This research work has been the object of the following publication:

Abdou Maiga, Nasir Ali, Marwen Abbes, Foutse Khomh, Yann-Gaël Guéhéneuc, Giuliano
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1.6 Organisation of the Thesis

The remainder of this thesis is organised as follows:

Chapter 2 (p. 9) provides background materials required to understand this thesis. It presents

the studied objects and systems used in our empirical studies. It also recalls the machine

learning technique and statistical techniques used in our analysis.

Chapter 3 (p. 21) provides a brief description of the state-of-the-art of design smells definition

and detection approaches, the link between design smells and evolution, developers, changes

and faults

Chapter 4 (p. 27) explores the study of the impact of design smells on comprehension

Chapter 5 (p. 46) explores the study of the impact of design smells on fault-fixing effort.

Chapter 6 (p. 73) presents an iterative and incremental design smells detection approach, SMURF.

Chapter 7 (p. 94) presents the conclusions of this thesis and outlines some directions of future

works.

Appendix A (p. 107) presents the definitions of the metrics used in this thesis.

Appendix B (p. 111) presents the complete list of code smells and antipatterns considered in this

thesis with their definitions.

Appendix C (p. 116) presents some examples of comprehension questions submitted to the

subjects.

Appendix D (p. 117) presents the definition of TLX Rating Scale.

Appendix E (p. 118) presents the post-mortem questionnaire.

Appendix F (p. 119) presents the Eclipse tutorial.



Chapter 2

Background

In the following, we provide background materials required to understand this thesis. We provide

definitions of design smells, faults, and fault fixes and justify our choice of the subject systems and

studied smells. We also recall the machine learning and statistical techniques used in our analyses.

Contents

2.1 Studied Design Smells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Studied Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Faults and Fault-fixes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.4 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.5 Statistical Techniques for Analysis . . . . . . . . . . . . . . . . . . . . . . . 18

2.5.1 Multivariate Regression Analyses . . . . . . . . . . . . . . . . . . . 18

2.5.2 Mann-Whitney U-test . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5.3 t-Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.4 Cliff d effect size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5.5 KruskalWallis Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.1 Studied Design Smells

In this thesis, we consider the well known 12 design smells from Brown’s and Fowlers’ books

[Brown et al., 1998 ; Fowler, 1999a]. We briefly describe these 12 design smells in the following.

A complete list and description of design smells is provided in appendix B.
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1. AntiSingleton (ATS): A class that provides mutable class variables, which, consequently,

act as global variables.

2. Blob (BLB): A class that is too large and not cohesive enough. This class centralizes most

of the processing, takes most of the decisions, and is associated to data classes.

3. ClassDataShouldBePrivate (CDSBP): A class that exposes its fields, thus violating the prin-

ciple of encapsulation.

4. ComplexClass (CC): A class that has (at least) one large and complex method, in terms of

cyclomatic complexity and LOCs.

5. LargeClass (LC): A class that has grown too large in term of LOCs.

6. LazyClass (LYC): A class that has few fields and methods (with little complexity).

7. LongMethod (LM): A class that has a method that is overly long, in term of LOCs.

8. LongParameterList (LPL): A class that has (at least) one method with a long list of param-

eters with respect to the average number of parameters per methods in the system.

9. MessageChain (MC): A class that uses a long chain of method invocations to implement (at

least) one of its functionality.

10. RefusedParentBequest (RPB): A class that redefines inherited methods using empty bodies,

thus breaking polymorphism.

11. SpeculativeGenerality (SG): A class that is defined as abstract but that has very few children.

Her children do use its methods.

12. SwissArmyKnife (SAK): A class whose methods can be divided in disjunct sets of many

methods, i.e., providing different, unrelated functionalities.

We choose these design smells because they have been used in previous studies, eg., [Khomh

et al., 2009b ; Moha et al., 2009]. They are representative of design and implementation problems

with data, complexity, size, and the features provided by classes [Khomh et al., 2011a].

We also choose these 12 design smells because the percentages of classes participating in these

design smells are not negligible in the studied systems. Figure 2.1 shows that these percentages

vary across releases of the studied systems and that they are always higher than 45%, with peaks

as high as 80%.
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Figure 2.1 – Participation of classes in design smells in the analyzed releases.
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Table 2.1 reports the distribution of the studied design smells. A cell in the table reports, on

the left side of the dash (respectively, on its right), the number of classes in the first release of

a given system (respectively, its last) with a particular design smell, followed by their percent-

ages with respect to the total numbers of classes. For example, the cell at the intersection of the

ArgoUML column and the AntiSingleton row reports that in the first release of ArgoUML, 352

classes were AntiSingleton, representing 44.44% of the total number of its classes, while in the

last release, only three classes were AntiSingleton, representing 0.16% of the total number of its

classes. Percentages go as high as 51.71% of classes participating in LazyClass in the first release

of Eclipse.

Khomh et al. [Khomh et al., 2011a] also report that classes participating in design smells

participate, in average to a minimum of, two distinct design smells in ArgoUML, three in Eclipse,

two in Mylyn, and two in Rhino and, to a maximum of, nine unique design smells in ArgoUML,

24 design smells in Eclipse, 7 design smells in Mylyn, and 7 design smells in Rhino [Khomh et

al., 2009b]. Thus, enough occurrences of the 12 chosen design smells are present, both in raw

numbers and in percentages, in the studied systems to perform statistical analyses.

We identify the occurrences of design smells in systems using DECOR (Defect dEtection for

CORrection) [Moha et al., 2010b].

DECOR is an approach based on the automatic generation of detection algorithms from rule

cards. DECOR proposes the descriptions of different design smells and provides algorithms and

a framework called DetEx. DetEx convert design smells descriptions automatically into detection

algorithms and extract different occurrences of design smells. We apply DetEx in three steps:

first, we reuse/define a rule card describing a smell through a domain analysis of the literature on

the smell. From the rule card, we generate a detection algorithm. Finally, we apply the detection

algorithm on a model of a system to detect the different occurrences of the design smell in this

system.

2.2 Studied Systems

The subject systems of our studies are four open-source Java programs: ArgoUML, Eclipse, My-

lyn, and Rhino. ArgoUML is an open-source UML-based system design tool. Eclipse is an open-

source integrated development environment. Mylyn is a plug-in for Eclipse, which aims at reduc-

ing information overload and making developers’ multi-tasking easier. Rhino is an open-source

implementation of a JavaScript interpreter.
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Table 2.2 – Characteristics of the studied systems.

System Versions (Number) LOCs Number of classes

ArgoUML 0.10.1-0.26.2 (10) 128,585-316,971 792-1,841

An open-source UML-based system design tool

Eclipse 1.0-3.3.1 (13) 781,480-3,756,164 4,647-17,167

An open-source integrated development environment

Mylyn 1.0.1-3.1.1 (18) 207,436-276,401 1,625-2,762

A plug-in for Eclipse

Rhino 1.4R3-1.6R6 (13) 30,748-79,406 89-270

An open-source implementation of a JavaScript interpreter

These four systems are well known, belong to different domains, and have different architec-

tures. They have been used in previous studies, eg., [Khomh et al., 2011a ; Moha et al., 2009 ;

Khomh et al., 2011b]. We report some descriptive statistics of the four systems in Table 2.2.

2.3 Faults and Fault-fixes

Developers usually document faults in a system to warn their community of pending issues with

the system functionalities. They use issue-tracking systems to post the descriptions of faults and

the descriptions on their fixes. A common issue-tracking system, used for the four studied systems,

is Bugzilla. We analyse Bugzilla issues as did previous work [Zaman et al., 2011] to identify faults

in the studied systems. Developers also use, in addition to issue-tracking systems, version-control

systems, such as CVS or SVN, to share the source code in which they have integrated their fault

fixes. Therefore, we use these two sources of information to identify fault fixes performed by

developers to fix faults in the four studied systems: issue-tracking systems and version-control

systems.

First, we use a mapping between faults and fault fixes provided by Khomh et al. [Khomh et

al., 2011a], who identified changes to classes in the studied systems to fix faults by looking at the

commits logs of the systems in their version-control systems and by relating the changes to faulty

classes using the IDs of the faults in the commit logs [Fischer et al., 2003]. We are interested in

particular to faults which have been set to “Fixed” or “Closed”. In the particular case of Rhino,

we use a manually-validated, publicly-available mapping between faults and commits [Eaddy et

al., 2008]. The obtained mappings allow us to relate faults and classes and, using the occurrences

of design smells provided by DECOR, we can relate classes with design smells and, thus, relate

faults to design smellS by transitivity.
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Second, we also consider the patches attached to faults in the issue-tracking systems. When

developers fix a fault, they may upload in their issue-tracking system a patch, which is a piece of

code describing the modifications to the code base to fix the fault. Patches typically identify the

lines of codes and the related classes and methods that the developers modified to fix the fault.

We use these patches to relate faults to occurrences of design smells, on the one hand, with the

characteristics of the particular changes performed by developers to fix the faults, on the other

hand.

Using these two sources of information, we say that a fault t involves a class c when the

developers modified c to fix the fault t. We call r the release against which the fault was reported

by the developers, i.e., a patch was submitted against release r and–or the source code of release r

include code fixing the fault t. Thus, using the releases against which a fault is reported and fixed,

we can collect the following pieces of data:

• The duration of the fixing period D f in term of number of days. We compute D f using the

date of the introduction of the description of the fault in the issue-tracking system and that

of the introduction of the patch and–or the commit of source code commented as fixing the

fault.

• The number NbrElts of any field and–or method added/removed when the fix is introduced

by developers. We compute NbrElts by parsing the patch diff files to count the number of

added/removed fields N f ,t and the number of added/removed method Nm,t .

• The entropy of the fault fixes. The entropy of the fault fixes represents the complexity of the

fault-fixes [Zaman et al., 2011], i.e., the dispersion of the fault-fixing changes in different

classes to fix the fault. To compute this entropy, we consider:

– n, the number of files modified to fix a fault;

– li, the number of lines of code changed (added/deleted) by the changes for f ilei;

– l = ∑n
i=1(li), the total number of lines of code changed for all files.

We then use the normalised Shannon Entropy as:

Hn(P) =−
n

∑
i=1

(
li

l
× logn

li

l
)

where li
l
≥ 0; i = 1,2, . . . ,n and

n

∑
i=1

li

l
= 1.
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Figure 2.2 – The optimal hyperplane and the maximal margins with the support

vectors.

The duration of the fixing period D f , The number NbrElts, and the entropy of the fault fixes

Hn(P), constitute the measures used in the present study to relate design smells to developers’

fault-fixing efforts.

2.4 Support Vector Machines

SVM is a set of techniques based on statistical theory of supervised learning introduced by Vapnik

[Cortes and Vapnik, 1995]. It relies on the existence of a linear classifier in an appropriate space

and uses a set of training data to train the parameters of the classifier. SVM is based on the use

of functions called kernel, which allows an optimal separation of data into two categories by a

hyperplane. Figure 2.2 shows a hyperplane that separates two sets of points.

Assuming some training data x = x1 . . .xn and their labels y = y1 . . .yn that are vectors in the

space R
n, which has a dot product, where yi ∈ {−1,1}, SVM builds a function f to assign for

a given xi, the label yi. The function f uses an hyperplane to assign the labels by separating

the hyperspace in two. There are many valid hyperplanes but SVM can compute the optimal
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hyperplane, which intuitively passes in the “middle”’ of the two sets of data. Formally, the SVM

finds the hyperplane for which the minimum distance to the training examples is maximal. The

margins are the distances between the hyperplane and the closest examples. These margins are

called support vectors, as shown in Figure 2.2. The optimal separating hyperplane is the one that

maximises the margin. A hyperplane is defined as a set of points x satisfying h(x) = w · x+b = 0

where · is the dot product; w is the normal vector to the hyperplane; and the parameter b
||w|| is the

perpendicular distance from the hyperplane to the origin. Therefore, there are two support vectors:

x+marge for the support vector (positive border) near to positive class C+ and x−marge for the support

vector (negative border) near to negative class C−. The following equation describes the support

support vectors: 



w · x+marge +b = 1

w · x−marge +b =−1

The distance (margin) between the two support vectors is calculated by subtracting their equa-

tions: Margin = 2
||w|| . Maximising the margin is equivalent to minimizing ||w||. To prevent data

points from falling into the margin, the following constraint is applied:

∀i,





w · xi +b ≥ 1∀xi = 1, . . . , p

w · xi +b ≤−1∀xi = 1, . . . , p

The computation of the maximum margin and the search procedure of separating hyperplane

can often only be resolved linearly through separable discrimination problems. SVM suggests

reconsidering the problem of the lack of linear separator in a higher dimensional space (possibly

infinite dimensional). In this new space, it is likely that there is a linear separator. Formally, a non-

linear transformation ϕ can be applied to the input vectors x. The arrival space ϕ(X) is called the

space of re-description. In this space, the hyperplane equation becomes: h(x) =w ·ϕ(x)+b, which

verifies yk ·h(xk)> 0, for all the points xk in the training dataset, i.e., the separating hyperplane in

the space of re-description. The following optimization problem is obtained:

Maximise L̃(α) =
p

∑
k=1

αk −
1

2
∑
i, j

αiα jyiy jφ(xi)
T φ(x j)

subject to αi ≥ 0

and

p

∑
k=1

αkyk = 0 (2.1)

The problem with this formulation is that it implies a dot product between vectors in the space

of re-description, with high dimensions, which is costly in terms of computations. To resolve
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this problem, a kernel function K is used, which satisfies: K(xi,x j) = φ(xi)
T ·φ(x j). Hence, the

expression of the hyperplane becomes:

h(x) =
p

∑
k=1

α∗
k ykK(xk,x)+w0 (2.2)

The kernel function allows to perform the computations in the original space, which is much

less expensive than high-dimensional dot product. Further, the transformation ϕ does not need to

be known explicitly, only the kernel function is involved in the computations. The kernel function

may lead to complex transformations and even re-description of spaces of infinite dimension [John

Shawe-Taylor, 2000].

2.5 Statistical Techniques for Analysis

The analysis of the results of our experiments in this thesis involve classifiers, population tests,

and correlational analyses. In the following, we discuss these statistical techniques.

2.5.1 Multivariate Regression Analyses

In our thesis, we use multivariate regression analyses to analyse the relation between particular

kinds of design smells and a study phenomenon. To determine the weight of each kind of design

smells in numbers, we use multivariate regression analyses because one of the uses of regression

analyses is to understand which, among some independent variables, i.e., the different kinds of

design smells, are related to the dependent variables, i.e., the durations of fixing periods, the

number of elements impacted by fault-fixes, and the entropy of fault-fixes.

The general linear regression model with p independent variables is based on the formula:

yi = β1xi1 +β2xi2 + · · ·+βpxip + εi

where:

• xi j are characteristics describing the modelled phenomenon, in our case, the number of each

kind j of design smells involved in the fixing of fault i;

• β j are the model coefficients.

Based on the p-values of each variable xi1, xi2, . . . , xip, we reject the null hypotheses H02K ,

H03K , and H04K, if the p-value of the variable xip that describes a particular kind of design smells
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is less than α . If p-value < α then we assume that the particular design smell impacts more the

developers’ fault-fixing effort than others.

2.5.2 Mann-Whitney U -test

In this thesis, we compute the Mann-Whitney U (also called Mann-Whitney-Wilcoxon or Wilcoxon

Rank-Sum Test) test to compare two groups of observation.

The Mann-Whitney U -test is a non-parametric test. We use the Mann-Whitney U -test because,

as a non-parametric test, it does not make any assumption on the underlying distributions. This test

can be used for very small group (The minimum size of each group is between 4 and 8 according

to the authors). The Mann-Whitney U is used to test the null hypothesis that two groups come

from the same distribution or alternatively, whether observations in one group tend to be larger

than observations in the other group.

For example, we want to compare the average time to answer a question on a system containing

occurrences of design smells (Group Gx) versus the time average to answer a question on a system

without occurrences of design smells (Group Gy). We will test the null hypothesis that the average

time of the two groups (Gx and Gy) are similar, or alternatively, whether the difference between the

average time of the two groups is statistically significant different and the average time to answer

a question on a system containing occurrences of design smells tend to be larger than the average

time to answer a question on a system without occurrences of design smells. In the Mann-Whitney

U -test, for each time xi, we compare xi to every y j. The number of possible comparisons that we

can make is nx ∗ny. We consider the following :

• nx: number of subjects who answer question from Group Gx and we note their time {x1,x2, . . .xn}.

• ny: number of subjects who answer question from Group Gy and we note their time {y1,y2, . . .yn}.

• Ux: the number of times an xi from Group Gx is greater than a y j from Group Gx

• Uy: the number of times an xi from Group Gx is smaller than a y j from Group Gx

• U = min(Ux,Uy)

In order to reject or accept the null hypothesis, we compare the value U with the value given

in the Tables of Critical Values for the Mann-Whitney U -test. Using this tables for Mann-Whitney

U -test we get a p-value. If p-value < α , we reject the null hypothesis and alternatively conclude

that the average time to answer a question on a system containing occurrences of design smells

is larger than the average time to answer a question on a system without occurrences of design

smells. In this thesis, results are intended as statistically significant at α = 0.05
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2.5.3 t-Test

In addition to performing non-parametric tests, we also test our hypotheses with the (parametric)

t-test. Performing the t-test is of practical interest to estimate the differences between the mean of

a phenomenon under study (eg., the difference of the number of design smells in classes with and

without faults). A paired t-Test is used to test the null hypothesis that two groups have the same

mean for an observed phenomenon.

Other than testing the hypotheses with Mann-Whitney U -test and t-Test, we also estimate the

magnitude of the difference in means between the two groups. We use the non-parametric effect

size measure Cliff’s d to capture this magnitude.

2.5.4 Cliff d effect size

We use the non-parametric effect size measure Cliff’s d, which indicates the magnitude of the

effect size of the treatment on the dependent variable. Cliff’s d is defined as:

d =
#(yi > x j)−#(yi < x j)

ny.nx

=

∑
i

∑
j

di j

ny.nx

where di j = sign(yi − x j) and #(yi > x j) the number of comparisons between observations in the

two groups for which the Group i observation is larger than the Group j observation.

The effect size is small for 0.147 ≤ d < 0.33, medium for 0.33 ≤ d < 0.474, and large for

d ≥ 0.474 [Grissom and Kim, 2005].

2.5.5 KruskalWallis Analysis

We use KruskalWallis one-way analysis of variance by ranks to analyse the impacts of the miti-

gating variables in our experiments. The KruskalWallis Test is a non-parametric test that does not

require to make assumption about the data set distribution. This test the non-parametric equivalent

to the one-way ANOVA and an extension of the Mann-Whitney U Test. It allows the comparison

of more than two independent groups.



Chapter 3

Related Work

In this chapter, we summarise previous works on the impact of design smells and their detec-

tion techniques. We start with the state-of-the-art of design smells definition, then we present the

link between design smells and software maintenance activities which include comprehension and

change. Finally, we present the state-of-the-art of design smells detection approaches in perspec-

tive with our approach, SMURF.

Contents

3.1 Design Smells Definition and Impact. . . . . . . . . . . . . . . . . . . . . . . 21

3.2 Design Smells Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Design Smells Definition and Impact.

Design Smells Definition. The first book related to design smells in object-oriented development

was written in 1995 by Webster [Webster, 1995]; his contribution includes conceptual, political,

coding, and quality-assurance problems.

Riel [Riel, 1996] defined 61 heuristics characterising good object-oriented programming to assess

a system quality manually and improve its design and implementation.

Brown et al. [Brown et al., 1998] described 40 design smells, including the Blob and Spaghetti

Code. These books provide in-depth views on heuristics, design smells aimed at industrial and

academic audiences.
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Beck [Fowler, 1999a] defined 22 code smells, suggesting where developers should apply refac-

torings. A refactoring is a technique used to improve the internal structure of a program without

changing its external behaviour [Fowler, 1999a]. Long method, large class, data class, and long

parameter list are examples of code smells. Appendix B provides complete description of code

smells and antipatterns.

Mäntylä [Mäntylä, 2003] and Wake [Wake, 2003] proposed classifications for code smells. These

works have been important to aware people about the existence of antipatterns and also their

potential impact. The description that the authors gave constituted the basis for the proposed

detection tools for design smells detection.

Design Smells Impact. Deligiannis et al. [2003 ; 2004] proposed the first quantitative study of

the impact of antipatterns on software development and maintenance activities. They performed a

controlled experiment with 20 students on two systems of the impact of Blob classes on the under-

standability and maintainability of the systems. The results of their study suggest that Blob classes

affect the evolution of design structures and the subjects’ use of inheritance. However, Deligian-

nis et al. did not assess the impact of God classes on the ease of their subjects to understand the

systems and the subjects’ ability to perform successful comprehension tasks on these systems.

Du Bois et al. [2006] showed through a controlled experiment with graduate students that the

decomposition of God classes into a number of collaborating classes using well-known refactor-

ings can improve their understandability. In their experiment, students were asked to perform

simple maintenance tasks on God classes and their decompositions. Du Bois et al. found that the

students had more difficulties understanding the original God class than certain decompositions.

However, their study did not reveal any objective notion of “optimal comprehensibility”.

Abbès et al. [2011] performed an empirical study to investigate whether the occurrence of

design smells does indeed affect the understandability of systems by developers during compre-

hension and maintenance tasks. They designed and conducted three experiments, with 24 subjects

each, to collect data on the performance of developers on basic tasks related to program compre-

hension and assessed the impact of two antipatterns and of their combinations: Blob and Spaghetti

Code. They measured the developers’ performance with: (1) the NASA task load index for their

effort; (2) the time that they spent performing their tasks; and, (3) their percentages of correct

answers. Collected data showed that the occurrence of one antipattern does not significantly de-

crease developers’ performance while the combination of two design smells impedes significantly

developers’ performance. However, they did not study other combinations.
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Olbrich et al. [2009] analysed the historical data of Lucene and Xerces over several years

and concluded that Blob classes and classes subjected to Shotgun Surgery have a higher change

frequency than other classes; with Blob classes featuring more changes.

Similarly, Chatzigeorgiou and Manakos [2010] studied the evolution of Long Method, Fea-

ture Envy, and State Checking throughout successive versions of two open-source systems and

concluded that a significant percentage of these smells are introduced during the addition of new

methods to the systems. They also found that these smells persist in systems and that their re-

moval is often a side effect of adaptive maintenance rather than the result of targeted refactoring

activities.

Yamashita and Moonen [2012] investigated the extent to which code smells reflect factors

affecting software maintainability and observed that using code smell definitions alone, developers

cannot fully evaluate the overall maintainability of a software system. They concluded on the need

to combine different analysis approaches to achieve more complete and accurate evaluations of the

overall maintainability of a software system.

Khomh et al. [2012] investigated the impact of design smells on classes in object-oriented

systems by studying the relation between the presence of design smells and the change- and fault-

proneness of the classes. They detected 13 design smells in 54 releases of ArgoUML, Eclipse,

Mylyn, and Rhino, and analysed (1) to what extent classes participating in the smells have higher

odds to change or to be subject to fault-fixing than other classes, (2) to what extent these odds (if

higher) are due to the size of the classes or to the presence of smells, and (3) what kinds of changes

affect classes participating in smells. They showed that, in almost all releases of the four systems,

classes participating in design smells are more change- and fault-prone than others. They also

showed that size alone cannot explain the higher odds of classes with design smells to underwent

a fault or change compared to other classes.

These previous works show the importance of doing empirical studies on design smells to

bring evidences of the negative impact of design smells on software quality attributes and main-

tenance activities. These works also show that design smells impede maintenance activities from

many point of view: design smells are more change and fault prone; then they lead to more cor-

rective maintenance. They impede also the understandability of systems, making change more

difficult. Only few studies investigate the impacts of design smells on source code understandabil-

ity and none of them study their impact on fault-fixing effort. We provide two empirical studies

to bring evidences on the impact of design smells on source code understandability and on fault-

fixing activities.
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3.2 Design Smells Detection.

Several approaches to specify and detect code smells and antipatterns exist in the literature. They

range from manual approaches, based on inspection techniques [Travassos et al., 1999], to metric-

based heuristics [Marinescu, 2004a ; Munro, 2005 ; Oliveto et al., 2010], using rules and thresh-

olds on various metrics [Moha et al., 2009] or Bayesian belief networks [Foutse Khomh et al.,

2009]. Commercial tools such as Borland Together1 and InCode2 also enable automatic detec-

tions of code smells and design smells.

Detection Techniques. Many researchers studied antipatterns detection. Rahma et al. [2011]

used quality metrics to identify and predict antipatterns in UML designs using structural and be-

havioural data.

Ballis et al. [2008a ; 2008b] worked on both the detection of design patterns and antipatterns

using a rule-based matching approach for extracting all occurrences of a design pattern/antipattern

in a graph representation of the source code.

Langelier et al. [2005] proposed a visual approach to detect antipatterns. They proposed this

approach to deal with complex systems. They claimed that hybrid techniques that combine au-

tomatic analysis with human expertise through visualization are excellent alternatives. Based on

that, they proposed a visualization framework that supports quality analysis of large-scale software

systems.

Marinescu [2004b] presented detection strategies to detect and localise antipatterns in sys-

tems. Marinescu defined 10 detection strategies to capture 10 important antipatterns, but suffered

from two drawbacks: (1) a user may not successfully detect an antipattern without having exten-

sive knowledge of metric-based rules and (2) different results would be obtained using different

thresholds (whose definition itself is difficult).

Dimitrios et al. [2012] explored the ways in which the antipattern ontology can be enhanced

using Bayesian networks to reinforce the existing ontology-based detection process. Their ap-

proach allows software developers to quantify the existence of an antipatterns using Bayesian

networks, based on probabilistic knowledge contained in the antipattern ontology regarding rela-

tionships of antipatterns through their causes, symptoms and consequences.

Kessentini et al. [2010] used search-based techniques to detect antipatterns conjecturing that

the more the code deviates from good practices, the more it is likely to be vulnerable to antipat-

terns, without mentioning the values of recall obtained.

1http://www.borland.com/us/products/together
2http://www.intooitus.com/products/incode
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Moha et al. [2009] proposed an approach based on a set of rules (metrics, relations between

classes) that describes the characters of each antipattern to identify them.

Khomh et al. [2011b] presented BDTEX (Bayesian Detection Expert), a Goal Question Metric

(GQM) based approach to build Bayesian Belief Networks (BBNs) from the definitions of antipat-

terns. The output of the BBN is a probability that a class is an antipattern or not. For example,

the probability of a class being a Blob depends directly on the two symptoms: MainClass and

DataClass.

The approaches of Moha et al. [2009], Marinescu [2004b], Rahma et al. [2011] are mostly

based on the use of code/design quality metrics and thresholds to identify antipatterns. The use of

these approaches to characterise new antipatterns or to customise existing rules of detection for im-

proving their performance, require practitioners to have an extensive knowledge of design smells,

at least about code/design quality metrics and software quality. The knowledge is necessary to

derive the rules from the textual description of design smells. Another issue with these approaches

is the choice of thresholds whose definition is difficult. Similarly, using the approach proposed by

Ballis et al. [2008a ; 2008b] requires also to learn the proposed language and to describe struc-

turally and semantically antipatterns using that language. Khomh et al. [Khomh et al., 2011b]

approach based on Bayesian networks needs extensive knowledge to characterise the antipatterns

and built the Bayesian networks. Moreover, based on probability, it cannot tell the user that a class

is an antipattern. Then, we will face again the problem of threshold to decide if we consider a

class as an occurrence of an antipattern or not based on the probability. The approach of Moha

et al. [2009] cannot be used successfully on a set of classes because it needs the whole system to

automatically set up the thresholds via boxplots. Moreover, none of the above approaches cannot

benefit from practitioners’ feedback and the only way to improve the performance of one of them

is to modify the rules and–or the thresholds of the antipattern formal description.

Support Vector Machines (SVM). SVM has been used in several domains in the past for var-

ious applications, eg., bioinformatics [Bedo et al., 2006], information retrieval [Ye et al., 2011],

and object recognition [Choi et al., 2012]. It is a recent solution and alternative to the classi-

fication problem. For examples, Takashi et al. [2006] presented a document retrieval method

using non-relevant documents. The approach used an active learning technique based on SVM for

evaluating the relevant feedback. Guihong et al. [2008] used C-SVM, a variant of SVM, for term

classification and proved that expansion terms determined in traditional ways for pseudo-relevance

feedback were not all useful. SVM has also been used in image retrieval systems when Sethia et

al. [2005] used invariant feature histograms to compare the efficiency of different SVMs. They

claimed that a significant performance gain was obtained only after several feedback rounds. Kim
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et al. [2008] proposed the change classification approach for predicting latent software bugs based

on a SVM. Lucia et al. [2012] used incremental user feedback to enhance the rate of true positives

found while analysing anomaly reports. The approach was validated using the anomaly reports of

three real programs and the results showed clear increase in the number of true positives found in

the anomaly reports.

Design smells detection is or can be seen as a classification problem where we must distinguish

between design smell classes and non-design smell classes. We believe that the success of SVM

in resolving classification problems can be exploited to have a better detection for design smells.

No previous approaches used SVM to detect design smells.

User Feedback. As with SVM, users’ feedback is a mechanism widely used in various domains

with good results. In the field of image retrieval, Zhou et al. [2007] used relevance feedback along

with SVM to allow users to unblur images. Sethia et al. [2005] also used both SVM and relevance

feedback to improve image retrieval, exploiting the users’ feedback on the initial results to achieve

better results based on the feedback. Onoda et al. [2006] proposed an approach for an interactive

document retrieval using only non-relevant documents information. Basu et al. [2008] used a

clustering algorithm to iteratively integrate feedback. Similar to SVM, there has been no work on

taking into account users feedback in design smells detection.

3.3 Summary

These previous works raised the awareness of the community towards the impact of design smells

on software development and maintenance activities. These maintenance activities are very impor-

tant in a continuous integration development environment, such as agile software development. In

this thesis, we build on these previous works and propose experiments assessing the impact of the

Blob and Spaghetti Code on the understandability of systems. We then investigate the impact of

design smells on the effort required to fix faults in systems. These two studies and evidences will

help developers to take rational decisions about dealing with design smells. Based on the impact

of design smells and to help developers reduce maintenance costs, several approaches proposed to

automatically remove the occurrences of design smells [Moha et al., 2009 ; Marinescu, 2004b ;

Rahma Fourati and Abdallah, 2011 ; Khomh et al., 2011b] but these previous approaches have

some limitations. Therefore, we finally propose an incremental and iterative approach based on

SVM and using users’ feedback to accurately detect the occurrences of design smells.



Chapter 4

Evidence of the Impact of Design smells

on Comprehension

In the following, we provide details on the study of the impact of design smells on comprehension.

We explain the study details and present the results of the empirical study.
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4.1 Context and Problem

In theory, design smells are “poor” solutions to recurring design problems; they stem from expe-

rienced software developers’ expertise and describe common pitfalls in object-oriented program-

ming, eg., Brown’s 40 design smells [Brown et al., 1998]. Design smells are generally introduced

in software systems by developers not having sufficient knowledge and–or experience in solving

a particular problem or having misapplied some design patterns. Coplien [Coplien and Harrison,

2005] described a design smell as “something that looks like a good idea, but which back-fires

badly when applied”.

Examples of Design smells: An example of design smell is the Blob, also called God Class.

The Blob is a large and complex class that centralises the behavior of a portion of a software system

and only uses other classes as data holders, i.e., data classes. The main characteristics of a Blob

class are: a large size, a low cohesion, some method names recalling procedural programming, and

its association with data classes, which only provide fields and–or accessors to their fields. Another

example of design smell is the Spaghetti Code, which is characteristic of procedural thinking in

object-oriented programming. Spaghetti Code classes have little structure, declare long methods

with no parameters, and use global variables; their names and their methods names may suggest

procedural programming. Spaghetti Code classes do not exploit, and in some cases prevent the

use of object-orientation mechanisms, i.e., polymorphism and inheritance.

Premise: Design smells are conjectured in the literature to decrease the quality of software

systems. Yet, despite the many studies on design smells, few studies have empirically investi-

gated the impact of design smells on program comprehension. Program comprehension is central

to an effective software maintenance and evolution [von Mayrhauser and Vans, 1995], specially

in the context of agile software development which is an iterative and incremental development

environment. Indeed, a good understanding of the source code of a system is essential to allow

its inspection, maintenance, reuse, and extension. Therefore, a better understanding of the factors

affecting developers’s comprehension of source code is an efficient and effective way to ease main-

tenance. In an effort to address this gap in prior literature, we conducted two experiments with 59

subjects. We analysed whether increasing the number of occurrences of same design smells, in
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particular two occurrences of the Blob or two occurrences of the Spaghetti Codes, in the systems

impact comprehension.

Goal: Comprehension is an important activity for software maintenance and evolution. Com-

prehension of a system is the degree to which its source code can easily be understood by de-

velopers [Khomh and Guéhéneuc, 2008]. We want to gather quantitative evidence of the impact

of Blob and Spaghetti Code design smells on comprehension. Gathering evidence of the relation

between Blob and Spaghetti Code design smells and comprehension is important for practition-

ers, i.e., developers, testers, and managers and will contribute to reduce software development

costs and improve software quality. Indeed, the knowledge of the impact of design smells on

comprehension will help practitioners to take rational decisions about how dealing with design

smells. Thus, evidence of a negative impact of design smells on comprehension, will allow us to

advise practitioners to be more cautions with design smells, i.e., with their design decisions (or

lack thereof).

Study: We conduct two experiments: we study whether systems with two Blobs, first, and two

Spaghetti Codes, second, are more difficult to understand than systems without any design smell.

The experiments are performed with 59 subjects and on six different systems developed in Java.

The subjects are graduate students and professional developers with experience in software devel-

opment and maintenance. We ask the subjects to perform three different program comprehension

tasks covering three out of four categories of usual comprehension questions [Sillito, 2007]. We

measure the subjects’ performance with: (1) the NASA task load index for their effort; (2) the

time that they spent performing their tasks; and, (3) their percentages of correct answers.

Results: Collected data of this study show that increasing the number of occurrences of a

Blob or a Spaghetti Code design smell impacts comprehension.

Relevance: Understanding the impact of Blob and Spaghetti Code design smells on compre-

hension is important from the points of view of both researchers and practitioners. For researchers,

our results bring further evidence to support the conjecture in the literature on the negative impact

of design smells on comprehension. For practitioners, our results provide concrete evidence that

they should pay attention to systems with a high number of classes participating in design smells,

because these design smells would reduce their comprehension and, consequently, increase their

systems’ aging [Parnas, 1994]. Our results also support a posteriori the removal of design smells

as early as possible from systems and, therefore, the importance and usefulness of design smells

detection techniques.



4.2. Study Design 30

4.2 Study Design

Abbès et al. [2011] showed that co-occurrence of Blob and Spaghetti Code, impacts program

understandability. However, it is not clear whether the reported negative impact of design smells

on system understandability is due to the density of design smells in the systems and – or to

the occurrences of the specific design smells together. Thus, we cannot claim, from the study

conducted by Abbès et al. [2011], that increasing same type of design smells could impact system

understandability.

In this study, we further examine the impact of occurrences of the same design smell (Blob

or Spaghetti Code) on comprehension. Precisely, we replicate the experiment done by Abbès et

al. and conduct two experiments to analyse whether two occurrences of Blobs or two occurrences

Spaghetti Code, in a single system, impacts comprehension. This study will provide confidence

and more detailed view on the study conducted by Abbès et al. [2011]. We perform two ex-

periments: Experiment 1 deals with two occurrences of Blob and Experiment 2 deals with two

occurrences of Spaghetti Code in a system. We choose these design smells because they are

well-known and have been used in the literature to perform other experiments, in particular in the

previous work by [Khomh et al., 2009a ; Bois et al., 2006 ; Moha and Guéhéneuc, 2005 ; Vaucher

et al., 2009 ; Moha et al., 2010a ; Abbes et al., 2011]. In each experiment, we assign two sys-

tems to each subject: one containing two occurrences of Blob or Spaghetti Code design smell and

one without any design smell. We then measure and compare the subjects’ performances for both

systems. We follow Wohlin et al.’s template [2000] to describe the experimental design.

4.2.1 Research Questions

Our research questions stems from our goal of understanding the impact of two occurrences of the

same design smell on on program comprehension. We choose the Blob and Spaghetti Code design

smells because we conducted a replication of the experiment of Abbès et al. and also to compare

the results with previous studies done with these design smells. Therefore, we can declined our

research question in two research questions:

• RQ1 - what is the impact of two occurrences of the Blob design smell on comprehension?

• RQ2 - what is the impact of two occurrences of the Spaghetti Code design smell on com-

prehension?

To answer our research questions, we perform two experiments with a total 59 subjects. Each

subject is given two systems, one with and one without Blob and Spaghetti Code design smells, to



4.2. Study Design 31

perform program comprehension tasks. For RQ1, we use Blob design smell and for RQ2 we use

Spaghetti Code design smell. We record each subject’s total correct answers, total time, and total

effort to perform program comprehension tasks for each system.

When designing our experiment, our first reflection was to formulate our hypothesis properly

as this guide us to a good design. According to our goal, we want to assess null hypothesis when

subjects perform comprehension tasks with source code. We perform statistical tests to accept or

reject the null hypothesis. For RQ1, we formulate the following null hypotheses:

• H012Blobs
: There is no statistically significant difference between the subjects’ average correct

answers when executing comprehension tasks on the source code of systems containing two

occurrences of Blob design smell compared to systems without any design smells.

• H022Blobs
: There is no statistically significant difference between the subjects’ average time

spent when executing comprehension tasks on the source code of systems containing two

occurrences of Blob design smell compared to systems without any design smells.

• H032Blobs
: There is no statistically significant difference between the subjects’ average effort

spent when executing comprehension tasks on the source code of systems containing two

occurrences of Blob design smell compared to systems without any design smells.

For RQ2, we formulate the following null hypotheses:

• H012Spaghettis
: There is no statistically significant difference between the subjects’ average cor-

rect answers when executing comprehension tasks on the source code of systems containing

two occurrences of Spaghetti design smell compared to systems without any design smells.

• H022Spaghettis
: There is no statistically significant difference between the subjects’ average time

spent when executing comprehension tasks on the source code of systems containing two

occurrences of Spaghetti design smell compared to systems without any design smells.

• H032Spaghettis
: There is no statistically significant difference between the subjects’ average

effort spent when executing comprehension tasks on the source code of systems containing

two occurrences of Spaghetti design smell compared to systems without any design smells.

4.2.2 Objects and Subjects of the Study

Objects of the Study. We choose three systems for each experiment, all developed in Java, and

briefly described in Table 4.1. We performed each experiment on 3 systems, because one system

could be intrinsically easier/more complex to understand.
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Experiments Systems Classes SLOCs Release

Azureus v2.3.0.6 1,449 191,963 2005

1 iTrust v11.0 565 21,901 2010

SIP v1.0 1,771 486,966 2010

ArgoUml v0.20 1,230 113,017 2006

2 JHotDraw v5.4b2 484 72,312 2004

Rhino v1.6R5 108 48,824 2009

Table 4.1 – Object Systems.

For Experiment 1, we use Azureus1: (now known as Vuze) a Bit Torrent client used to transfer

files via the Bit Torrent protocol; iTrust2: a medical application that provides patients with a means

to keep up with their medical history and records as well as communicate with their doctors,

including selecting which doctors to be their primary care-giver, seeing and sharing satisfaction

results, and other tasks; and, SIP3: (now known as jitsi) an audio/video Internet phone and instant

messenger that supports some of the most popular instant messaging and telephony protocols.

For Experiment 2, we use ArgoUML4: a UML diagramming application written in Java; JHot-

Draw5: a graphic framework for drawing 2D graphics; and, Rhino6: an open-source implementa-

tion of a JavaScript interpreter.

We used the following criteria to select the systems. First, we selected open-source systems;

therefore other researchers can replicate our experiment. Second, we avoided to select small sys-

tems that do not represent the ones that developers deal with normally. We randomly assigned a

set of three systems to each experiment. We also chose these systems because they are typical ex-

amples of systems having continuously evolved on periods of time of different lengths. Hence, the

occurrences of Blob and Spaghetti Code in these systems are not coincidence but are realistic. We

use the design smell detection technique, DETEX, which stems from the DECOR method [Moha

and Guéhéneuc, 2005 ; Moha et al., 2010a] to ensure that each system has two occurrences of the

Blob and–or the Spaghetti Code design smell. We manually validated the detected occurrences

and we manually verified that the remaining classes are not occurrences of design smell. From

each system, we randomly selected a subset of classes responsible for managing a specific task to

limit the size of the displayed source code to the subjects. For example, in iTrust we chose the

source code of the classes responsible for providing patients with a means to keep up with their

medical history and records as well as communicate with their doctors.

1http://www.vuze.com/
2http://agile.csc.ncsu.edu/iTrust/
3http://www.jitsi.org/
4http://argouml.tigris.org/
5http://www.jhotdraw.org/
6http://www.mozilla.org/rhino/
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However this difference would not impact our results because, regardless of the sizes, a subject

concentrates his efforts only on a small part of the subset in which a Blob or Spaghetti Code class

plays a central role, i.e., the Blob class and its surrounding classes. Therefore, we ensure that all

subjects perform the comprehension tasks within, almost, the same piece of code. Then, we refac-

tor [Fowler, 1999b] each subset of each system to remove all other occurrences of (other) design

smells to reduce possible bias by other design smells, while keeping the system compilable and

functional. We performed manual refactoring following the guidelines of Fowler’s book [Fowler,

1999b]. For example when dealing with a Blob class, we replace it by multiple smaller classes or

just spread the methods to their right places.

Therefore, for Experiment 1, each subset contains two occurrences of the Blob. For Exper-

iment 2, each subset contains two occurrences of the Spaghetti Code. We finally refactor each

subset of the systems to obtain new subsets in which no occurrence of the design smells exist. We

use these subsets as base line to compare the subjects’ performance and test our null hypothesis.

Subjects of the Study. Both experiments were performed by 59 anonymous subjects. Some sub-

jects were enrolled in the M.Sc. and Ph.D. programs in the Computer and Software Engineering

Department in École Polytechnique de Montréal, in the Computer Science Department in Uni-

versité de Montréal, and the School of Computer Science in Carleton University. Others were

professionals working for software companies in the Montréal area. All subjects were volunteers

and could withdraw at any time, for any reason.

4.2.3 Independent and Mitigating Variables

The independent variable in Experiment 1 is the presence or not of two occurrences of a Blob

design smell, which is a Boolean value stating whether the source code contain two occurrences

of Blob or not. It is the value of this independent variable that should influence the subjects’

performances. In Experiment 2, the independent variable is the presence or not of two occurrences

of a Spaghetti Code design smell in the source code.

We retain three mitigating variables possibly impacting the measures of the dependent vari-

ables:

• Subject’s knowledge level in Java.

• Subject’s knowledge level of Eclipse.

• Subject’s knowledge level in software engineering.
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With Design smells Without Design smells

System 1 S3,S7,S9,S11,S12,S18,S21,S24 S1,S5,S8,S10,S15,S16,S20,S22

System 2 S1,S2,S6,S14,S15,S17,S20,S22 S4,S7,S9,S11,S13,S18,S19,S23

System 3 S4,S5,S8,S10,S13,S16,S19,S23 S2,S3,S6,S12,S14,S17,S21,S24

Table 4.2 – Experimental design.

We assess the subjects’ levels using a post-mortem questionnaire administered to subjects at

the end of their participation to our study to avoid any bias, because some questions pertain to

design smells. This questionnaire uses Likert scales for each of the mitigating variables and also

include open questions about design smells, refactorings, and so on.

4.2.4 Dependent Variables

The dependent variables measure the subjects’ performance, in terms of effort, time spent, and

percentage of correct answers.

We measure the subjects’ effort using the NASA Task Load Index (TLX) [Hart and Staven-

land, 1988]. The TLX assesses the subjective workload of subjects. It is a multi-dimensional

measure that provides an overall workload index based on a weighted average of ratings on six

sub-scales: mental demands, physical demands, temporal demands, own performance, effort, and

frustration. The details on these sub-scales are explained in Appendix D. We combine weights and

ratings provided by the subjects into an overall weighted workload index by multiplying ratings

and weights; the sum of the weighted ratings divided by fifteen (sum of the weights) represents

the effort [Hart and Stavenland, 1988].

We measure the time using a timer developed in Java that the subjects must start before per-

forming their comprehension tasks to answer the questions and stop when done.

We compute the percentage of correct answers for each question by dividing the number of

correct elements found by a subject by the total number of correct elements they should have

found. For example, for a question on the references to a given object, if there are ten references

but the subject found only four, the percentage would be forty.

4.2.5 Study Design and Procedure

Study Design. Our design is a 2×3 factorial design [Wohlin et al., 2000], presented in Table

4.2. In 2×3 factorial design there cannot be more combinations than detailed in Table 4.2. Thus,

we randomly select any combination from S1 to S24 for the subjects from S25 to S30. We have
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three different systems, each with two possibilities: containing or not containing the occurrences

of the design smell. Hence, six combinations are possible. For each combination, we prepare a

set of comprehension questions, which together form a treatment. We have six different groups of

subjects, each one affected by each one treatment.

This design is a between-subject design [Duchowski, 2007] with a set of different groups

of subjects, which allows us to avoid repetition by using a different group of subjects for each

treatment. We take care of the groups to ensure their homogeneity and avoid bias in the results, for

example we ensure that no group entirely contains male or female subjects. The use of balanced

groups simplifies and enhances the statistical analysis of the collected data [Wohlin et al., 2000].

Procedure. We received the agreement from the Ethical Review Boards of Université de Montréal

and Carleton University to perform and publish this study. The collected data is anonymous. The

subjects could leave any experiment at any time, for any reason, and without penalty of any kind.

No subject left the study or took more than 45 minutes to perform the experiment. The subjects

knew that they would perform comprehension tasks, but did know neither the goal of the experi-

ment nor whether the system that they were studying contained or did not contain design smells.

We informed them of the goal of the study after collecting their data, before they finished the

experiment.

For each experiment, we prepare an Eclipse workspace packaging the target classes, on which

the subjects must perform their comprehension tasks to answer the selected questions. The workspace

contains compilable and functional subsets, linked to JAR files with the rest of the system com-

piled code. It also includes the timer, the TLX program, a brief tutorial on the use of Eclipse, a

brief explanation about the system at hand, and the post-mortem questionnaire. We conduct the

experiments in the same lab, with the same computers and software environments to avoid any

kind of environmental bias. No subjects knew the systems on which they perform comprehension

tasks, thus we eliminate the mitigating variable relative to the subject’s knowledge of the system.

Questions. We used comprehension questions to elicit comprehension tasks and collect data on

the subjects’ performances.

We consider questions in three of the four categories of questions regularly asked and answered

by developers [Sillito, 2007]: (1) finding a focus point in some subset of the classes and interfaces

of some source code, relevant to a comprehension task; (2) focusing on a particular class believed

to be related to some task and on directly-related classes; (3) understanding a number of classes

and their relations in some subset of the source code; and, (4) understanding the relations between
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different subsets of the source code. Each category contains several questions of the same type

[Sillito, 2007].

We choose questions only in the first three categories, because the last category pertains to

different subsets of the source code and, in our experiments, we focus only on one subset con-

taining the occurrence(s) of the design smell(s). In each chosen category, we select the two most

relevant questions through votes among four Ph.D student in software engineering. Selecting two

questions in each category allows us to have, for each subject, a different question from the same

category on the system with and without design smell, hence reducing the possibility of a learning

bias for the second system.

The six questions are the followings. The text in bold is a placeholder that we replace by

appropriate behaviors, concepts, elements, methods, and types depending on the systems on which

the subjects were performing their tasks.

• Category 1: Finding focus points:

– Question 1: Where is the code involved in the implementation of this behavior?

– Question 2: Which type represents this domain concept or this UI element or action?

• Category 2: Expanding focus points:

– Question 1: Where is this method called or this type referenced?

– Question 2: What data can we access from this object?

• Category 3: Understanding a subset:

– Question 1: How are these types or objects related?

– Question 2: What is the behavior that these types provide together and how is it

distributed over these types?

For example, with Azureus, we replace “this behavior” in Question 1, Category 1, by “indi-

cating the health status of the resource to be downloaded, by calculating the number of seeds and

peers” and the question reads: “Where is, in this project, the method involved in the implementa-

tion of indicating the health status of the resource to be downloaded, by calculating the number of

seeds and peers?”

For category 2, it may seem that the questions could be simply answered by subjects using

Eclipse. Yet, subjects still must identify and understand the classes or methods that they believe

to be related to the task. Moreover, discovering classes and relationships that capture incoming

connections prepare the subject for the questions of the third category. We provide in Appendix

C, example of questions for Azureus.
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4.2.6 Analysis Method

We use the (non-parametric) Mann-Whitney test to compare two sets of dependent variables and

assess whether their difference is statistically significant, see Section 2.5.2. The two sets are the

subjects’ data collected when they answer the comprehension questions on the system with two

occurrences of Blob or Spaghetti Code design smell and without. For example, we compute the

Mann-Whitney test to compare the set of times measured for each subject on the system with

with two occurrences of Blob design smell with the set of times measured for each subject on

the system without any design smell. Other than testing the hypotheses, we also estimate the

magnitude of the difference in means between the two groups. We use the non-parametric effect

size measure Cliff’s d, which indicates the magnitude of the effect size of the treatment on the

dependent variable, see Section 2.5.4.

We use KruskalWallis one-way analysis of variance by ranks to analyse the impacts of the

mitigating variables, see Section 2.5.5.

4.3 Study Results

We now present the results of the study, answer each research question, and try to reject the null

hypothesis. Our motivation for conducting this study was to confirm and explain if the impact of

the combination of Blob and Spaghetti Code design smells observed in the Abbès et al.’s study

[2011] was due to the number of occurrences or the number of different kind of design smells. We

also want to discuss the impact of the increase of the number of occurrences of the same design

smells compared to the result obtained in the Abbès et al.’s study.

4.3.1 Impact of Two Occurrences of the Blob on Comprehension

Table 4.3 – Mann-Whitney tests and Cliff’s d results for Experiment 1.

M.-W. p t-Test p Cliff d

Times <0.01 <0.01 0.87

Answers <0.01 <0.01 0.53

Efforts <0.01 <0.01 0.73

For experiment 1, Table 4.3 reports the results of the Mann-Whitney tests and Cliff’s d effect

sizes to compare the three indicators of performance (effort, time spent, and percentage of correct
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answers) of the subjects working on the systems with and without two occurrences of Blob design

smells.

The results show that :

• there is a statistically significant difference between the average effort of the subjects work-

ing on a system with two occurrences of Blob and that of the subjects working on a system

without any occurrences of design smells with large effect size

• there is a statistically significant difference between the average time spent by the subjects

working on a system with two occurrences of Blob and that of the subjects working on a

system without any occurrences of design smells with large effect size

• there is a statistically significant difference between the average percentage of correct

answers of the subjects working on a system with two occurrences of Blob and that of the

subjects working on a system without any occurrences of design smells with large effect

size.

Figure 4.1 illustrates the statistical differences of the dependent variables: (1) the subjects’

efforts are higher (2) the times spent by the subjects to perform the comprehension tasks are higher;

and, (3) the percentages of correct answers are lower, in the system with the two occurrences of

Blob design smells. Moreover, Cliff d effect size values are large (0.71 in average).

We thus can reject the null hypotheses H012Blobs
,H022Blobs

, H032Blobs
and answer our RQ1 that

the subjects working with a system with two occurrences of blob put more effort and spend

more time but have less percentage of correct answers than the subjects working with a system

without any design smell. The two occurrences of the Blob design smells have a strong impact

on subjects’ efforts, times, and percentages of correct answers. A possible explanation is that

two occurrences of the Blob design smells impedes the subjects’ comprehension

4.3.2 Impact of Two Occurrences of the Spaghetti code on Comprehension

Table 4.4 – Mann-Whitney tests and Cliff’s d results for Experiment 2.

M.-W. p t-Test p Cliff d

Times <0.01 <0.01 0.93

Answers <0.01 <0.01 0.93

Efforts <0.01 <0.01 0.55
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For experiment 2, Table 4.4 reports the results of the Mann-Whitney tests and Cliff’s d effect

sizes to compare the three indicators of performance (effort, time spent, and percentage of correct

answers) of the subjects working on the systems with and without two occurrences of Spaghetti

Code design smells.

For experiment 2, the results show that :

• there is a statistically significant difference between the average effort of the subjects work-

ing on a system with two occurrences of Spaghetti Code and that of the subjects working on

a system without any occurrences of design smells with large effect size

• there is a statistically significant difference between the average time spent of the subjects

working on a system with two occurrences of spaghetti Code and and that of the subjects

working on a system without any occurrences of design smells with large effect size

• there is a statistically significant difference between the average percentage of correct

answers of the subjects working on a system with two occurrences of spaghetti Code and

and that of the subjects working on a system without any occurrences of design smells with

large effect size.

Figure 4.1 illustrates the statistical differences of the dependent variables: (1) the subjects’

efforts are higher (2) the times spent by the subjects to perform the comprehension tasks are higher;

and, (3) the percentages of correct answers are lower, in the system with the two occurrences of

Spaghetti Code design smells. Moreover, Cliff d effect size values are large (0.80 in average).

We thus can reject the null hypotheses H012Spaghettis
,H022Spaghettis

, H032Spaghettis
and answer our RQ2

that the subjects working with a system with two occurrences of Spaghetti Code put more

effort and spend more time but have less percentage of correct answers than the subjects

working with a system without any design smell. The two occurrences of the Spaghetti Code

design smells have a strong impact on subjects’ efforts, times, and percentages of correct

answers. A possible explanation is that two occurrences of the Spaghetti Code design smells

impedes the subjects’ comprehension

4.4 Discussion

This section discusses the results reported in Section 4.3, summarised in Table 4.5. We structure

the discussion as follows: first, we discuss the interpretation of our results compared to the re-

sults of Abbès et al. study, and second, we discuss the impact of the mitigating variables in our

experiments and results.
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Table 4.5 – Summary of the statistically-significant results.

Answers Effort Time

RQ1 X X X

RQ2 X X X

4.4.1 Interpretation of the Results

Abbès et al.’s study [2011] concluded that one occurrence of Blob or Spaghetti Code doesn’t

significantly affect the subjects’ comprehension of the source code. We found in our study that

when we increase the number of occurrences of the design smells (Blob or Spaghetti Code), we

observe significant differences in subjects’ efforts, times, and percentages of correct answers with

very large effect size. This finding in our study confirm the fact that the more occurrences of the

Blob and Spaghetti Code design smells we have in the source code, the higher the complexity

of source code and therefore, the comprehension of the subjects will be negatively impacted.

For example some design smells directly impact the implementation of a method/class, such as

Spaghetti Code, which is a symptom of complex logics with interlocked control flows. Thus,

the occurrences of such design smells could directly lead to more complexity and, thus, impact

negatively program comprehension. Also, the Blob design smell is characterized by a large class

(God class) which is not cohesive enough. This class centralizes most of the processing, takes

most of the decisions, and is associated to data classes. Thus, when developers must fix a bug in

such a class, they must check all the “surrounding” classes to make sure that they understand all

the different links so that when changing this class, they can adapt all these “surrounding” classes

to the changes. These characteristics could lead to difficulty to understand the code source and

thus, could make developers spending more effort to understand them when they need to fix them

and spend more time without finding sometimes the correct information.

Abbès et al.’s study [2011] concluded that a combination of the Blob and the Spaghetti Code

design smells has a strong impact on subjects’ efforts, times, and percentages of correct answers.

With our study, we found that two occurrences of same design smell (Blob or Spaghetti Code) has

also a strong impact on subjects’ efforts, times, and percentages of correct answers. This findings

explicit the results obtained in Abbès et al.’s study and rather extend it.

We can say that two occurrences of Blob or Spaghetti Code design smell in code source is

sufficient to negatively impact the maintainers’ efforts, times, and percentages of correct answers

no matter if these two occurrences are from the same design smell or from two different kind of

design smell.
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Systems Efforts Time % of Correct Answers

Java Knowledge With Blob 0.08 0.06 0.12

Without Blob 0.78 0.27 0.42

With Spaghetti 0.24 0.75 0.41

Without Spaghetti 0.70 0.67 0.30

Eclipse Knowledge With Blob 0.19 0.44 0.46

Without Blob 0.54 0.33 0.28

With Spaghetti 0.18 0.21 0.26

Without Spaghetti 0.86 0.21 0.31

Software Engineering Knowledge With Blob 0.37 0.32 0.43

Without Blob 0.47 0.15 0.05

With Spaghetti 0.33 0.48 0.55

Without Spaghetti 0.88 0.76 0.33

Table 4.6 – Kruskal-Wallis p-values of the impact of knowledge levels (AP =

Design smell).

We used statistically-significant results of RQ1, and RQ2 to warn developers about the neg-

ative impact on programm comprehension of co-occurrence of two Blob or two Spaghetti Code

design smells. Developers should thus be wary of and track these design smells. Because the num-

ber of occurrences of design smells is related to difficulty to understand the source code. Thus,

correcting these design smells may help in understanding the source code, reducing the time spent

for a task and the effort and increasing their ability to find the correct information.

4.4.2 Impact of the Mitigating Variables

We investigated if the three mitigating variables: Java knowledge, Eclipse knowledge, and soft-

ware engineering knowledge, impacted our results. We set 5 levels, using Lickert scales, corre-

sponding to the subjects’ respective levels (bad, neutral, good, excellent, expert).

We performed Kruskal-Wallis one-way analysis of variance by ranks test to assess the impact

of the mitigating variables on the three measured variables (time, effort, and % of correct answers),

which shows that the mitigating variables do not impact our results, as shown by the high p-

values in Table 4.6. The lack of impact of these mitigating variables is consistent with previous

findings [Cepeda Porras and Guéhéneuc, 2010], in which the authors assessed the impact of

some subjects’ knowledge on design patterns on the understandability of various representations

of software systems.
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4.5 Threats to Validity

Some threats limit the validity of our study. We now discuss these threats and how we alleviate or

accept them following common guidelines provided in [Wohlin et al., 2000].

4.5.1 Construct Validity

Construct validity threats concern the relation between theory and observations. In this study, they

could be due to measurement errors. We use times and percentages of correct answer to measure

the subjects’ performances. These measures are objective, even if small variations due to external

factors, such as fatigue, could impact their values. We also use the TLX to measure the subjects’

effort. The TLX is by its very nature subjective and, thus, it is possible that our subjects provided

us with particular effort values.

The degree of seriousness of the design smells is also a threat to construct validity. The Blob

and Spaghetti Code, in each system, were validated through a voting process for decisions. Four

Ph.D. students voted for the design smells. We follow the definitions provided in the book of

Brown et al. [1998] to deal with design smells. Yet the occurrences used could have been more or

less serious than in other systems. Future work should mitigate this threat.

Construct validity threats could also be due to a mistaken relation between design smells and

system understandability. We believe that this threat is mitigated by the facts that many authors

discussed this relation, that this relation seems rational, and that the results of our analysis tend to

show that, indeed, design smells impact system understandability.

4.5.2 Internal Validity

We identify four threats to the internal validity of our study: learning, selection, instrumentation,

and diffusion.

Learning threats do not affect our study for a specific experiment because we used a between-

subject design. A between-subject design uses different groups of subjects, to whom different

treatments are assigned. We also took care to randomize the subjects to avoid bias (eg., gender

bias). Each subject performed comprehension tasks on two different systems with different ques-

tions for each system. However, the same subjects performed Experiment 1 and Experiment 2.

The learning effect is minimal because in the Experiment 2 we used different systems and differ-

ent questions.
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Selection threats could impact our study due to the natural difference among the subjects’ abil-

ities. We tried to mitigate this threat by asking only volunteers, therefore with a clear willingness

to participate. We also studied the possible impact of their levels of knowledge in Java, of Eclipse,

and in Software engineering, through three mitigating variables without obtaining any statistically

significant results.

Instrumentation threats were minimized by using objective measures like times and percent-

ages of correct answers. We observed some subjectivity in measuring the subjects’ effort via

TLX because, for instance, one subject 100% effort could correspond to another’s 50% of effort.

However, this subjectivity illustrates the concrete feeling of effort of the subjects.

Diffusion threats do not impact our study because we asked subjects not to talk about the study

among themselves and the systems and questions among experiments were different. However,

all the subjects attend the experiment at the same moment so it is impossible that the subjects

exchanged some information.

4.5.3 Conclusion Validity

Conclusion validity threats concern the relation between the treatment and the outcome. We paid

attention not to violate assumptions of the performed statistical tests. Also, we mainly used non-

parametric tests that do not require to make assumption about the data set distribution.

4.5.4 Reliability Validity

Reliability validity threats concern the possibility of replicating this study. We attempted to pro-

vide all the necessary details to replicate our study. The systems, questionnaires, and raw data to

compute the statistics are on-line7.

4.5.5 External Validity

We performed our study on six different real systems belonging to different domains and with

different sizes, see Table 4.1. Our design, i.e., providing only on average 75 classes of each system

to each subject, is reasonable because, in real maintenance projects, developers perform their tasks

on small parts of whole systems and probably would limit themselves as much as possible to avoid

getting “lost” in large code base. However, we cannot assert that our results can be generalised to

other Java systems, systems in other programming languages, and to other subjects; future work

7http://www.ptidej.net/downloads/experiments/emse12r/
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includes replicating this study in other contexts, with other subjects, other questions, other design

smells, and other systems.

4.6 Summary

Design smells are conjectured in the literature to negatively impact the quality of systems. Few

previous studies have empirically investigated the impact of design smells on program compre-

hension. We revisit studies on the impact of Blob and Spaghetti Code design smells on program

comprehension. We design and conduct two experiments with 59 subjects, to assess the impact

of two occurrences Blob or Spaghetti Code design smells, on the developers’ performance dur-

ing program comprehension tasks. We measure developers’ performance using: (1) the NASA

task load index for their effort; (2) the time that they spent performing their tasks; and, (3) their

percentages of correct answers. The results of the two experiments confirm and explicit previous

findings by Abbès et al., that the combination of two Blob or two Spaghetti Code design smells

impedes significantly developers performance during comprehension and maintenance tasks. The

obtained results justify a posteriori previous researches on the specification and detection of de-

sign smells. Software development teams should warn developers against increasing the number

of design smells in software systems and recommend refactorings to remove them when possible.

Consequently, developers and quality assurance personnel should be wary with growing numbers

of Blob and Spaghetti Code design smells in their systems as they could reduce their system un-

derstandability and, therefore, increase the risks of the systems aging and also the introduction of

faults. Indeed, D’Ambros et al. [D’Ambros et al., 2010] found that an increase in the number of

design smells in a system is likely to generate faults.
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Figure 4.1 – Graphical representations of the collected data.



Chapter 5

Evidence of the Impact of Design Smells

on Fault-fixing Efforts

In the following, we provide details on the study of the impact of design smells on fault-fixing

activities. We explain the study details and present the results of the empirical study.
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5.1 Context and Problem

Context. Design smells are poor solutions to recurring design or implementation problems. De-

sign smells reflect developers’ poor expertise. They are generally the result of misuse of the

object-oriented paradigm and–or design patterns. An example of design smell is the Blob, also

called God Class, which is a large and complex class that centralises most of the behavior of a

system. A Blob also depends on data stored in surrounding data classes. A Blob is characterized

by a low cohesion and a large size. It prevents the use of polymorphism through inheritance [Moha

et al., 2010c]. Another example of design smell is the MessageChain, which occurs when the im-

plementation of a functionality in one class requires a long chain of method invocations between

objects from different classes [Moha et al., 2010c]. Classes with message chains are more prone

to faults [Khomh et al., 2011a].

Background. Design smells are prevalent in systems [Khomh et al., 2011a]. Several studies

[Abbes et al., 2011 ; Khomh et al., 2011a] have shown that design smells negatively impact soft-

ware development and maintenance. Khomh et al. [Khomh et al., 2011a] showed that classes

participating in design smells are more prone to changes and faults than others. Many (other)

studies on design smells and software fault exist and are summarised in chapter 3. However, none

of them empirically investigated the impact of design smells on the developers’ effort to fix faults.

Premise and Goal. Following previous work on the negative impact of design smells on class

change and fault-proneness and because software maintenance is the most expensive part of any

software development effort [PressmanR.S., 1996], we suppose the following premise:

There is a relation between design smells, faults, and developers’ effort to fix faults.

Validating this premise is important for practitioners, i.e., developers, testers, and managers.

Indeed, if we bring evidences on the negative impact of design smells on fault-fixing activities and



5.1. Context and Problem 48

on a relation between the fixing of faults and the number of occurrences of design smells, then we

could advise practitioners to be more cautions with design smells, i.e., with their design decisions

(or lack thereof). These evidences could help practitioners justify the removal of design smells

and would also further confirm, a posteriori, previous statements on the negative impact of design

smells on software development and maintenance, and highlight the importance of design smell

detection.

We want to gather quantitative evidence on the relation between design smells, faults, and the

developers’ effort to fix the faults.

Study. First, we conduct a preliminary study on the relation between design smells and faults.

This study replicates a previous study [Khomh et al., 2011a] and forms the ground on which

we build the rest of our study. It confirms the relation between the number of occurrences of

design smells in a class and its fault-proneness. This study allows us to gather the occurrences of

design smells needed for the rest of the study and gives us confidence in this collected occurrences

because we can reproduce previous results. Second, we compute data related to the developers’

effort to fix faults: the durations of the fixing periods of faults, the number of fields and methods

impacted by the fault fixes, and the entropies of the fault fixes. The entropy of a fault fix captures

the distribution of the code modified during the fix across the files of a system. Third, we relate

occurrences of design smells—their numbers and kinds—with our measures of the developers’

effort to fix faults using (non-parametric) Mann-Whitney tests as well as multivariate regression

analyses. We perform our study on 10 releases of ArgoUML, 13 of Eclipse, 18 of Mylyn, and 13

of Rhino. In total, we analyze 7,797 faults and their fixes and 106,776 occurrences of 12 different

design smells in the 26,793 different classes of the studied systems.

Results and Relevance. The results of our analyses lead us to conclude that, generally, design

smells increase the developers’ effort to fix faults and, thus, to confirm our premise. This increase

in effort is due to increases in the duration of fault fixes and in the complexity of the fixes. Un-

derstanding the impact of design smells on developers’ fault-fixing efforts is important for both

researchers and practitioners. For researchers, our study brings evidence that design smells are

indeed negative for software development and maintenance. Our results confirm previous obser-

vations that there is a higher number of occurrences of design smells in fault-prone classes than

in non fault-prone classes. We also bring concrete, novel evidence of the impact of design smells

on developers’ fault-fixing effort and further justify a posteriori previous work on the detection

of design smells. For practitioners, we provide concrete, novel evidence that they should pay at-

tention to the presence of design smells in their systems and try to avoid them or, at least, correct

them before fixing faults. Design smells increase developers’ fault-fixing effort and, consequently,
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may increase software costs. Managers could use design-smell detection techniques to assess the

volume of classes participating in design smells in to-be-acquired systems and, thus, adjust their

offers and forecast the systems cost-of-ownerships and–or plan for refactoring because the design

smells will impact fault-fixing effort.

5.2 Study Design

We formulate five research questions (RQs) and ten hypotheses related to the relations between the

presence of occurrences of design smells and the developers’ fault-fixing efforts, using the three

measures defined in the previous section. The first research question is a preliminary question

about the relation between design smells and faults. It allows us to collect required data for the

subsequent RQs and is a replication of a previous work [Khomh et al., 2011a]. Thus, it plays

the role of a sanity check before addressing the four novel RQs. The remaining four research

questions pertain to fault-fixing duration, impacted elements, their entropies, and (conversely) the

design smells impacted by fault fixes.

For the preliminary research question, we formulate two hypotheses, pertaining to systems

as whole or to each of their versions individually (H01A and H01V ). For each of the last subse-

quent questions, we formulate two hypotheses: one concerning all the design smells collectively

(H02A. . . H05A) and another one concerning the impact of each kind of design smell independently

(H02K . . . H05K).

5.2.1 Research Questions

5.2.1.1 Relation between Design Smells and Faults

First, we ask a preliminary research question about the relation between faults and design smells.

This preliminary question addresses the relation between the number of occurrences of design

smells in a class and the number of occurrences of faults in that class and ask: RQ1: What is the

relation between the number of design smells in a class and its fault-proneness?

To answer this question, we analyse whether classes participating in a higher number of oc-

currences of design smells are more fault-prone than other classes, by testing two null hypotheses:

• H01A: The number of occurrences of design smells in fault-prone classes is not significantly

higher than the number of occurrences of design smells in other classes across all versions

of a system when considering all the classes in all the versions of a program as one dataset
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• H01V : The number of occurrences of design smells in fault-prone classes is not significantly

higher than the number of occurrences of design smells in other classes when considering

each version of a program independently.

We test these two hypotheses to observe both a “global” (across all versions) and a “local”

effect (version by version) of design smells on fault proneness. We must observe these two effects

to ensure that the impact is not circumstantial (in few given versions but not in all versions) but is

also not due to some other, unknown factors (in all versions but not in a particular version).

5.2.1.2 Relation between Design Smells and the Duration of Fixing Periods

Second, we study the relation between faults involving classes with design smells and the duration

of fixing periods and ask: RQ2: What is the relation between the duration of fixing periods

and the participation in design smells of classes involved in the corresponding faults?

We are interested to evaluate whether developers take more time to fix faults involving classes

with design smells than faults involving classes without design smells, by testing the null hypoth-

esis:

• H02A: There is no statistically-significant difference between the duration of fixing periods

for faults involving classes with design smells and that for faults involving classes without

design smells.

We are also interested to evaluate whether faults involving classes with particular kinds of

design smells take more time to be fixed than other faults, by testing the null hypothesis:

• H02K : There is no statistically-significant difference between the duration of fixing periods

for faults involving classes with a particular kind of design smells and that for other faults.

5.2.1.3 Relation between Design Smells and the Number of Impacted Elements

Third, we address the relation between faults involving classes with design smells and the number

of elements (fields and methods) of the classes impacted by the fault-fixing and ask: RQ3: What

is the relation between the number of elements (fields and methods) of the classes impacted

by fault-fixes and the participation in design smells of classes involved in the corresponding

faults?

We analyse whether the fixes of faults involving classes with design smells impact more ele-

ments than that of faults involving classes without design smells, by testing the null hypothesis:
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• H03A: There is no statistically-significant difference between the number of elements im-

pacted by the fixes of faults involving classes with design smells and that of faults involving

classes without design smells.

We also analyse whether the fixes of faults involving classes with particular kinds of design

smells impact more elements than fault-fixes of other faults, by testing the null hypothesis:

• H03K : There is no statistically-significant difference between the number of elements im-

pacted by the fixing of faults involving classes with a particular kind of design smells and

that of other faults.

5.2.1.4 Relation between Design Smells and Fault-fixing Entropy

Fourth, we address the relation between faults involving classes participating in design smells and

the entropy of fault-fixes and ask: RQ4: What is the relation between the entropy of fault-fixes

and the participation in design smells of classes involved in the corresponding faults?

We analyse whether the fixes of faults involving classes with design smells have higher entropy

than that of faults involving classes without design smells, by testing the null hypotheses:

• H04A: There is no statistically-significant difference between the entropy of the fixes of

faults involving classes with design smells and that of faults involving classes without design

smells.

We also analyse whether the fault-fixes of faults involving classes with particular kinds of

design smells have higher entropy than fault-fixing of other faults, by testing the null hypothesis:

• H04B: There is no statistically-significant difference between the entropy of the fixes of

faults involving classes with a particular kind of design smells and that of other faults.

5.2.1.5 Relation between Fault-fixing and the Number of Occurrences of Design Smells

Fifth, we address the impact of fault-fixing on the number of occurrences of design smells and

ask: RQ5: What is the relation between fault-fixes and the number of occurrences of design

smells in classes involved in faults before and after fixing the faults?

We analyse whether fault-fixes impact the number of occurrences of design smells in classes

involved in faults, by testing the null hypothesis:
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• H05A: There is no statistically-significant difference between the number of occurrences

of design smells in classes involved in faults before fixing these faults and that in classes

involved in faults after fixing the faults.

We also analyse whether fault-fixes impact classes with particular kinds of design smells dif-

ferently that other classes, by testing the null hypothesis:

• H05K : There is no statistically-significant difference between the number of occurrences of

a particular kind of design smells in classes involved in faults before fixing these faults and

that after fixing the faults.

5.2.2 Independent Variables

In our study, we associate to each class a set of variables APi, j,r, which indicate the number of

occurrences of a design smell j in which a class i participates in a release r of a system under

study. We name Rs the set of releases for a system under study and D the set of the 12 studied

design smells. St is the set of classes involved in the fix of a fault t.

We use these variables in the formulation of the independent variables as follows:

• Relation between Design Smells and Faults

In H01A, we consider all the classes in all the versions of a system as one dataset. The

independent variable, HasFi, is a Boolean variable that indicates whether a class i underwent

or not at least one fault-fix between the dates of the first and the last studied releases of the

system.

In H01V , we analyse the relation between the number of occurrences of design smells in

which a class participates and its fault-proneness, version per version independently. The

independent variable, HasFi, j, is a Boolean variable that indicates whether a class i under-

went at least one fault-fix between the studied version j of a system and its version j+1.

• Relation between Design Smells and the Duration of Fixing Periods, Relation between De-

sign Smells and the Number of Impacted Elements, and Relation between Design Smells

and Fault-fixing Entropy

In H02A, H03A, and H04A, the independent variable, HasSt , is a Boolean variable that indicates

whether a fault t involves at least one class participating to at least one occurrence of some

design smells. We formulate that:
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HasSt =





0, ∑
i∈St , j∈D

APi, j,r = 0;

1, ∑
i∈St , j∈D

APi, j,r > 0.

In H02K , H03K , and H04K, the independent variable, APj,r, indicates the number of occur-

rences of a particular design smell j in the classes of St involved in the fix of a fault t

reported against the version r of a system. We write that:

APj,r = ∑
i∈St , j∈D

APi, j,r

• Relation between Fault-fixing and the Number of Occurrences of Design Smells

In H05A, the independent variable, APt,c, indicates the number of occurrences of the design

smells in the set St of classes involved in a fault t in the version r in which the fault t has

been reported (i.e., before the fault-fix). We formulate:

APt,r = ∑
i∈St , j∈D

APi, j,r

In H05K , for each kind of design smell k, the independent variable, APt,c,k, indicates the

number of occurrences of design smell of type k in the set St of classes involved in a fault t

in the release r in which the fault t has been reported (i.e., before the fault-fix).

We formulate:

APt,r,k = ∑
i∈St

APi,k,r

5.2.3 Dependent Variables

Following the notations in the previous subsection, we formulate the dependent variables for the

different hypotheses. Some dependent variables for some RQs are independent variables of other

RQs.

• Relation between Design Smells and Faults

In H01A, we consider all the classes in all the versions of a system as one dataset. The

dependent variable, APi, indicates the total number of occurrences of design smells in which

a class i participates. We formulate that:
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APi = ∑
j∈D,k∈Rs

APi, j,k

In H01V , we analyse each version independently. The dependent variable, APi,r, indicates,

for a studied version r, the total number of occurrences of design smells in which a class i

participates. We formulate that:

APi,r = ∑
j∈D

APi, j,r

• Relation between Design Smells and the Duration of Fixing Periods

For H02A and H02K , the dependent variable Dt , duration of the fixing period, indicates the

number of days between the date of the report of the fault t (Dr,t ) and the day of the fix or

correction (Dc,t ) of t. We formulate that:

Dt = Dc,t −Dr,t

• Relation between Design Smells and the Number of Impacted Elements

For H03A and H03K , the dependent variable is the number of elements NbrElts impacted by

a fault-fix. We define NbrElts as the total number of methods and fields that the developers

modified to fix a fault. Nm,t and N f ,t are, respectively, the number of methods and fields

added/removed to fix the fault t. We compute N f ,t and Nm,t by parsing the patch diff files to

count the number of added/removed fields and the number of added/removed methods.

We formulate:

NbrElts = Nm,t +N f ,t

• Relation between Design Smells and Fault-fixing Entropy

For H04A and H04K , the dependent variable, Et , is the entropy of the fix of a fault t. The

entropy of a fault-fix represents the complexity of that fault-fix and reflects the disorder

spread by that fault-fix in the source code. We recall that:

Et =−
n

∑
i=1

(
li

l
× logn

li

l
),

• Relation between Fault-fixing and the Number of Occurrences of Design Smells
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We study the relation between the number of occurrences of design smells in the classes

involved in a fault t before the fix of t and that after the fix of t. In H05A, the dependent

variable, APt,c, indicates the number of occurrences of design smells in the set St of classes

involved in a fault t after the correction of the fault (i.e., after the fault-fix).

We formulate:

APt,c = ∑
i∈St , j∈D

APi, j,c

In H05K , for each kind of design smell k, the dependent variable, APt,c,k, indicates the number

of occurrences of design smell of type k in the set St of classes involved in a fault t after the

correction of the fault (i.e., after the fault-fix). We formulate:

APt,c,k = ∑
i∈St

APi,k,r

5.2.4 Analysis Method

We divide our analysis method in four specific analyses for:

• H01A and H01V ;

• H02A, H03A, and H04A;

• H02K , H03K , and H04K ;

• H05A and H05K .

5.2.4.1 H01A and H01V

We compute the (non-parametric) Mann-Whitney test to compare the two groups of classes, those

with faults and those without faults in H01A and H01V , with respect to their number of occurrences

of design smells and analyse whether the difference in their average numbers of occurrences of de-

sign smells is statistically significant. We use the Mann-Whitney test because, as a non-parametric

test, it does not make any assumption on the underlying distribution, see Section 2.5.2.

In H01A, we analyse the results of the test to see if the difference is statistically significant.

Results are intended as statistically significant at α = 0.05. Therefore, if p-value < 0.05, we

reject the null hypothesis H01A and conclude that the average number of occurrences of design

smells in fault-prone classes is higher than that in non fault-prone classes.
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We will reject the hypothesis H01V if the p-values are < α for each version for 75% of the

analysed versions, as in previous work [Khomh et al., 2011a]. We will then conclude that, per

version, the average number of occurrences of design smells in higher in fault-prone classes.

Other than testing the hypotheses, we also estimate the magnitude of the difference in means

between the two groups. We use the non-parametric effect size measure Cliff’s d, which indicates

the magnitude of the effect size of the treatment on the dependent variable, see Section 2.5.4.

5.2.4.2 H02A, H03A, and H04A

We compute the (non-parametric) Mann-Whitney test to compare the group of faults involving

classes with design smells and the group of faults involving classes without design smells. We

analyse the results to see whether their difference is statistically significant, again with α = 0.05.

Therefore, for H02A, if p-value <α , we reject the null hypothesis and conclude that the average

duration of fixing periods of faults involving classes with design smells is higher than that of faults

involving classes without design smells.

For H03A, if p-value < α , we reject the null hypothesis and conclude that the average number

of elements impacted by the fixes of faults involving classes with design smells is higher than that

of faults involving classes without design smells.

For H04A, if p-value < α , we reject the null hypothesis and conclude that the average fault-

fixing entropy of faults involving classes with design smells is higher than that of faults involving

classes without design smells.

5.2.4.3 H02K , H03K , and H04K

For the hypotheses H02K , H03K , and H04K , we analyse the relation between particular kinds of

design smells and:

• the durations of the fixing periods (H02K);

• the number of elements (fields, methods) impacted by fault-fixes (H03K);

• the entropy of the fault-fixes (H04K).

To determine the weight of each kind of design smells in numbers, we use multivariate re-

gression analyses because one of the uses of regression analyses is to understand which, among

some independent variables, i.e., the different kinds of design smells, are related to the dependent
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variables, i.e., the durations of fixing periods, the number of elements impacted by fault-fixes, and

the entropy of fault-fixes.

The general linear regression model with p independent variables is based on the formula:

yi = β1xi1 +β2xi2 + · · ·+βpxip + εi

where:

• xi j are characteristics describing the modelled phenomenon, in our case, the number of each

kind j of design smells involved in the fixing of fault i;

• β j are the model coefficients.

Based on the p-values of each variable xi1, xi2, . . . , xip, we reject the null hypotheses H02K ,

H03K , and H04K, if the p-value of the variable xip that describes a particular kind of design smells

is less than α . If p-value < α then we assume that the particular design smell impacts more the

developers’ fault-fixing effort than others.

5.2.4.4 H05A and H05K

For H05A and H05K , the two groups of classes, before and after the fault-fixes, are not independent.

Thus, we use the paired Mann-Whitney test for the two groups, before and after fault-fixes, to

compare the number of occurrences of design smells in each group. We analyse the results to see

whether the difference is statistically significant. We again choose α = 0.05. If p-value < α , we

reject the null hypothesis H05A and conclude that the average number of occurrences of design

smells increases or decreases with the fault-fixes.

For H05K , we do the same computation as in H05A for each particular kind of design smell and,

in the same condition, we conclude on the effect of fault-fixes on the number of occurrences of

each particular kind of design smell.

5.3 Study Results

We now report the results of the analyses performed to answer the research questions.
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Table 5.1 – Mann-Whitney tests and Cliff’s d results for the number of oc-

currences of design smells in classes with faults compared to classes without

faults across all versions.

Systems M-W p Cliff’s d

ArgoUML < 0.01 0.55

Eclipse < 0.01 0.28

Mylyn < 0.01 0.13

Rhino < 0.01 0.45

5.3.1 Relation between Design Smells and Faults

Table 5.1 reports for ArgoUML, Eclipse, Mylyn, and Rhino the results of the Mann-Whitney tests

and Cliff’s d effect sizes to compare the number of occurrences of design smells in classes with

faults and that in classes without faults, across all versions.

For the four studied systems, the results show that there is statistically significant difference

between the number of occurrences of design smells in classes with faults and that without faults

with small effect size for Mylyn, medium effect size for Eclipse, and large effect size for Ar-

goUML and Rhino.

We thus can reject the null hypothesis H01A and conclude that the number of occurrences of

design smells in classes with faults is significantly higher than that in other classes across all

versions with large effect size for two studied systems and medium and small effect size for

the other two studied system.

Table 5.2 reports for ArgoUML, Eclipse, Mylyn, and Rhino the results of the Mann-Whitney

tests and Cliff’s d effect sizes to compare the number of occurrences of design smells in classes

with faults and that in classes without faults, per version. For some releases, the tests could not be

performed (N/A) because of the small numbers of faults and–or design smells.

For the analysed versions of the four studied systems, the p-values in 36 out of 39 versions are

statistically significant for H01V with a small effect size for 9 versions (25%), medium effect size

for 8 versions ( 22%), and large effect size for 13 versions (36%). These results indicate that, for

most of the analysed versions, fault-prone classes are those with higher numbers of occurrences

of design smells.

We thus can reject the null hypothesis H01V and conclude that the number of occurrences of

design smells in classes with faults is significantly higher than that in other classes per version

with large or medium effect size for most of the studied versions of the systems (21).
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Table 5.3 – Mann-Whitney tests and Cliff’s d results for the duration of the

fixing periods.

System M-W p Cliff’s d

ArgoUML 0.60 −

Eclipse < 0.05 0.10

Mylyn < 0.05 0.15

Rhino 0.87 −

5.3.2 Relation between Design Smells and the Duration of Fixing Periods

Table 5.3 reports for ArgoUML, Eclipse, Mylyn, and Rhino the results of the the Mann-Whitney

tests and Cliff’s d effect sizes to compare the duration of the fixing periods for faults involving

classes with design smells and that for faults involving classes without design smells.

We put − on the Cliff’s d effect sizes column to show that we do not compute the Cliff’s d

effect sizes when the difference is not statistically significant.

The results show that for Eclipse and Mylyn, the difference between the duration of the fixing

periods for faults involving classes with design smells and that for faults involving classes without

design smells is statistically significant.

For ArgoUML and Rhino, the difference between the duration of the fixing periods for faults

involving classes with design smells and that for faults involving classes without design smells is

not statistically significant.

We can reject the hypothesis H02A for Eclipse and Mylyn. We cannot reject H02A for Ar-

goUML and Rino. We thus conclude that the duration of the fixing periods for faults involving

classes with design smells or not are system dependent

Table 5.4 summarises the results of the multiple regression describing the relations between

the duration of the fixing periods and the different kinds of design smells. We observe that the

durations are not related to any particular kind of design smells because none of the particular

kind of design smells impact the durations of the fixing periods significantly across all systems,

i.e., there is no full line of check marks.

We cannot reject H02K for any design smell in any of the studied systems. We thus conclude

that the different kind of design smells can collectively impact the durations of the fixing

periods for faults not individually
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Table 5.4 – Kinds of design smells significantly correlated with the duration of

the fixing periods.

ArgoUML Eclipse Mylyn Rhino

AntiSingleton X

Blob

ClassDataShouldBePrivate

ComplexClass

LargeClass

LazyClass X

LongMethod X

LongParameterList X

MessageChains X

RefusedParentRequest

SpeculativeGenerality

SwissArmyKnife X

Table 5.5 – Mann-Whitney tests and Cliff’s d results for the number of ele-

ments impacted by fault-fixes.

System M-W p Cliff’s d

ArgoUML 0.09 −

Eclipse < 0.05 0.57

Mylyn < 0.05 0.40

Rhino < 0.05 0.40

5.3.3 Relation between Design Smells and the Number of Impacted Elements

Table 5.5 reports for ArgoUML, Eclipse, Mylyn, and Rhino the results of the Mann-Whitney tests

and Cliff’s d effect sizes to compare the number of elements impacted by fault-fixes of faults

involving classes with design smells and that of faults involving classes without design smells. We

put . on the Cliff’s d effect sizes column to show that we do not compute the Cliff’s d effect sizes

when the difference is not statistically significant.

The results show that, for Eclipse, Mylyn, and Rhino (75% of the studied systems), the differ-

ence between the number of elements impacted by the fixes of faults involving classes with design

smells and that of faults involving classes without design smells is statistically significant with

medium effect size for Mylyn and Rhino and with large effect size for Eclipse.
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Table 5.6 – Kinds of design smells significantly correlated with the number of

elements impacted by fault-fixes.

ArgoUML Eclipse Mylyn Rhino

AntiSingleton X X

Blob X X

ClassDataShouldBePrivate X X X

ComplexClass X X X

LargeClass X X

LazyClass X

LongMethod X X

LongParameterList X X X

MessageChains X X X

RefusedParentRequest X X X

SpeculativeGenerality X

SwissArmyKnife X

Therefore, we can reject the null hypothesis H03A and conclude that the difference between

the number of elements impacted by the fixes of faults involving classes with design smells

and that of faults involving classes without design smells are statistically significant with

medium and large effect size

Table 5.6 summarises the results of the multiple regression describing the relations between

the number of elements impacted by fault-fixes and the different kinds of design smells.

The different kinds of design smells related to the number of elements impacted by the fault-

fixes in 75% of studied systems are: ClassDataShouldBePrivate, ComplexClass, LongParame-

terList, MessageChains and RefusedParentRequest.

We can reject the null hypothesis H03B and conclude that some particular kinds of design

smells (ClassDataShouldBePrivate, ComplexClass, LongParameterList, MessageChains and

RefusedParentRequest) make fault-fixes impact more fields and method than others.

5.3.4 Relation between Design Smells and Fault-fixing Entropy

Table 5.7 reports for ArgoUML, Eclipse, Mylyn, and Rhino the results of the Mann-Whitney tests

and Cliff’s d effect sizes to compare the entropy of fixes of faults involving classes with design

smells and that of faults involving classes without design smells.
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Table 5.7 – Mann-Whitney tests and Cliff’s d results for fault-fixing entropy.

System M-W p Cliff’s d

ArgoUML < 0.05 0.79

Eclipse < 0.05 0.34

Mylyn < 0.05 0.36

Rhino < 0.05 0.25

Table 5.8 – Kinds of design smells significantly correlated with the fault-fixing

entropy.

ArgoUML Eclipse Mylyn Rhino

AntiSingleton

Blob X X

ClassDataShouldBePrivate X X

ComplexClass X

LargeClass

LazyClass X X

LongMethod X X

LongParameterList X X

MessageChains

RefusedParentRequest

SpeculativeGenerality X X

SwissArmyKnife

The results show that, for all the analysed systems, the difference between the entropy of fixes

of faults involving classes with design smells and that of faults involving classes without design

smells is statistically significant with medium and large effect sizes.

Therefore, we can reject the null hypothesis H04A and conclude that the fixes of faults in-

volving classes with design smells have higher entropies than that of faults involving classes

without design smells with small effect size for Rhino, medium effect size for Eclipse and

Mylyn, and large effect size for ArgoUML.

Table 5.8 summarises the results of the multiple regression describing the relations between

the fault-fixing entropy and the different kinds of design smells. We observe that the fault-fixing

entropy is not related to any particular kind of design smells because none of the particular kind of

design smells impact the fault-fixing entropy significantly across all systems, i.e., there is no full

line of check marks.
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Table 5.9 – Mann-Whitney results for the number of occurrences of design

smells in classes before and after fault-fixes.

System M-W p Cliff’s d

ArgoUML < 0.01 0.52

Eclipse < 0.01 0.22

Mylyn < 0.01 0.15

Rhino < 0.01 0.25

We cannot reject H04K for any particular kind of design smell for all the studied systems. We

thus conclude that the different kind of design smells can collectively impact the fault-fixing

entropy not individually. The negiative impact of some particular kind of design smells (Blob,

ClassDataShouldBePrivate, LazyClass, LongMethod, LongParameterList, SpeculativeGen-

erality) on fault-fixing entropy is system dependent

5.3.5 Relation between Fault-fixing and the Number of Occurrences of Design Smells

Table 5.9 reports for ArgoUML, Eclipse, Mylyn, and Rhino the results of the Mann-Whitney

tests and Cliff’s d effect sizes to compare the number of occurrences of design smells in classes

involved in faults before and after fixing the faults.

The results show that, for all the analysed systems, the difference between the number of

occurrences of design smells in classes involved in faults before and after fixing the faults is

statistically significant with small effect sizes for Eclipse, Mylyn and Rhino and with large effect

size for ArgoUML.

Therefore, we can reject the null hypothesis H05A and conclude that, after fault-fixing, the

number of occurrences of design smells decrease significantly with small and large effect

sizes.

Table 5.10 reports for ArgoUML, Eclipse, Mylyn, and Rhino the results of the Mann-Whitney

tests and the direction of evolution when comparing the number of occurrences of particular kinds

of design smells in classes before and after fixing faults.

The results show that, for some of the different kinds of design smells in ArgoUML (7 out of

9 kinds of design smells), Eclipse (7 out of 9 kinds of design smells), Mylyn (1 out of 8 kinds of

design smells), and Rhino (5 out of 7 kinds of design smells), fault-fixes impact significantly the

number of occurrences of these different kinds of design smells.

Therefore, we can reject the null hypothesis H05K and conclude that, after fault-fixing, the

number of occurrences of some kinds of design smells decrease/increase significantly
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Table 5.10 – Mann-Whitney results for the number of occurrences of design

smells in classes before and after fault-fixes.

Design smells
ArgoUML Eclipse Mylyn Rhino

p-value Impact p-value Impact p-value Impact p-value Impact

AntiSingleton < 0.01 − < 0.01 − N/A N/A < 0.01 −

Blob < 0.01 + 0.64 − 0.06 + N/A N/A

ClassDataShouldBePrivate 1.00 0 < 0.05 + 0.98 − 0.38 −

ComplexClass < 0.01 + < 0.01 − 0.086 + < 0.02 +

LargeClass < 0.01 + N/A N/A 0.1 + < 0.02 +

LazyClass N/A N/A < 0.01 0 N/A N/A N/A N/A

LongMethod < 0.01 + < 0.01 + < 0.02 + 0.21 −

LongParameterList < 0.02 + 0.41 − 0.86 − < 0.01 −

MessageChains < 0.02 + < 0.01 − 0.12 + < 0.03 −

RefusedParentRequest 0.09 + < 0.01 + 0.14 + N/A N/A

5.4 Discussion

This section discusses the results reported in Section 5.3, summarised in Table 5.11. We structure

the discussion as follows: first, we discuss statistically significant results, second, we discuss non-

statistically significant results and, finally, we discuss general concerns about our experiments and

results.

5.4.1 Statistically-significant Results

5.4.1.1 Relation between Design Smells and Faults

Table 5.2 shows that there are significant differences between the number of occurrences of design

smells in the classes with faults and the number of occurrences of design smells in the classes

without faults.

These results confirm those obtained in previous work and we can explain the relation in

two ways. First, some design smells impact directly the implementation of a method/class, such

as the Spaghetti Code, which is a symptom of complex logics with interlocked control flows.

Thus, the occurrences of such design smells could directly lead to more complexity and, thus,

more propension to faults. Second, some design smells impact indirectly the implementation of a

method/class, such ClassDataShouldBePrivate: per se, occurrences of this design smell may not

yield to faults but they could lead to developers mistakenly writing code that indirectly lead classes

in inconsistent states.
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5.4.1.2 Relation between Design Smells and the Duration of Fixing Periods

Results of RQ2 show that the duration of fixing periods increases for Eclipse and Mylyn in the

cases of classes with occurrences of design smells. However, no design smell in particular satisfied

our threshold of 75% of the systems. We explain these results using Table 2.1. Table 2.1 reports

the number of occurrences of design smells in Eclipse and Mylyn when compared to these in

ArgoUML and Rhino and shows that there are more occurrences in Eclipse and Mylyn than in the

other two systems. Also, Table 2.1 reports that these numbers of design smells (in percentages

of the total number of classes) seem to increase in Eclipse and Mylyn while they decrease in

the other two systems. Thus, the sheer numbers of occurrences of design smells and their trends

could explain the statistically-significant relations between design smells and the duration of fixing

periods in Eclipse and Mylyn: more occurrences impede the developers’ fault-fixing efforts.

In particular, we can explain the negative impact of the LongMethod, LongParameterList,

MessageChain, and SwissArmyKnife design smells on the durations of fault-fixes as follows:

these smells have in common to increase some characteristics of the source code such as the

method length, the number of parameters of a method, number of conditional statements. Long

methods and/or huge number of parameters could lead to difficulty to understand the code and

thus, could make developers spending more effort to understand them when they need to fix them.

The relation between the AntiSingleton and LazyClass design smells and the duration of fixes

could be due to the time spent by developers over classes whose design and implementation do

little (LazyClass) or have unnecessary public methods (AntiSingleton). Thus, occurrences of these

two design smells “sand in the way” of the developers’ fixing efforts.

5.4.1.3 Relation between Design Smells and the Number of Impacted Elements and Rela-

tion between Design Smells and Fault-fixing Entropy

Table 5.5 shows a correlation between the presence of design smells in a faulty class and the num-

ber of fields and methods impacted by its fix. We observe that the fixing of faults involving classes

with design smells impacts more fields and methods than others. We explain this correlation with

the relation between design smells and the design and implementation of systems: design smells,

even if located in one class, relate actually to several classes. For example, the ClassDataShould-

BePrivate design smell implies that other classes are using the fields declared in a class directly,

while these fields should be private. Thus, when developers must fix a bug in such a class, they

must check all the “surrounding” classes to make sure that they do not inadvertently introduce

faults and, when changing this class, must adapt all these “surrounding” classes to the changes.
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In particular, fixes related to some design smells impact more fields and methods than other

fixes: ClassDataShouldBePrivate, ComplexClass, LongParameterList, MessageChains and Re-

fusedParentRequest. These design smells either impact the interactions among collaborating

classes (ClassDataShouldBePrivate, LongParameterList, MessageChains, and RefusedParentRe-

quest) or per se, imply more fields and methods (ComplexClass). Therefore, it is not surprising

that occurrences of these design smells require more fields and methods to be changed when fixing

faults. Hence the observed high entropy values.

5.4.1.4 Relation between Fault-fixing and the Number of Occurrences of Design Smells

We rejected the null hypothesis H05A and concluded that, after fault-fixing, the number of oc-

currences of design smells decrease significantly with small and large effect sizes. We explain

the relation between fault fixes and the decreases in the number of occurrences of design smells

as follows. Because design smells increase the developers’ efforts both in time spent and in the

number/entropy of the impacted fields and methods, developers may remove, intentionally or not,

design smells as they fix faults as a means to ease fixing, testing, and future changes. When they

fix a fault, they can observe that some structures make the work difficult to achieve and they can

then decide to refactor the code while fixing the fault.

More studies are required to confirm developers’ intentions for removing such smells.

We also reject the null hypothesis H05K and conclude that, after fault-fixing, the number of

occurrences of different kinds of design smells decreases/increase significantly. For exemple fault-

fixing decreases the number of :

• AntiSingleton (in ArgoUML, Eclipse, and Rhino),

• CompleClass (in Eclipse),

• LongParameterList (in Rhino),

• MessageChains (in Eclipse, and Rhino).

The fault-fixing, also increases the number of :

• Blob (in ArgoUML),

• CompleClass (in ArgoUML, and Rhino),

• LongMethod (in ArgoUML, Eclipse, and Mylyn),

• LongParameterList (in ArgoUML),
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• MessageChains (in ArgoUML),

• RefusedParentRequest (in Eclipse).

Future work includes explaining these differences in observation between the different kind of

design smells and among the systems.

5.4.2 Non-statistically-significant Results

5.4.2.1 Relation between Design Smells and Faults

All results for RQ1 were statistically significant.

5.4.2.2 Relation between Design Smells and the Duration of Fixing Periods

We could not reject H02A for ArgoUML and Rhino. We explain the lack of relation between design

smells and the duration of fault fixes by the small number of occurrences of the smells in these

two systems and the small number of faults in these two systems compared to Eclipse and Mylyn.

We cannot reject H02K for any particular kind of design smell in more than one of the studied

system. Again, we explain the lack of relation between the different kinds of design smells and the

duration of fault fixes by the small number of occurrences of the different kinds of design smells

in these two systems and the small number of faults.

5.4.2.3 Relation between Design Smells and the Number of Impacted Elements and Rela-

tion between Design Smells and Fault-fixing Entropy

We cannot reject H04K for any particular kind of design smell in more than 50% of the studied

systems. We explain this lack of clear correlation by the proportion of the different kinds of

design smells in the various systems. Future work includes performing more experiments on other

systems to confirm/infirm the observations, see also Section 5.5.

5.4.2.4 Relation between Fault-fixing and the Number of Occurrences of Design Smells

All results for RQ5 were statistically significant.
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5.4.3 General Discussions

An important threat to the validity of our study is the difference between the versions in which a

fault may be introduced/fixed and that in which it is reported as occurring and as fixed. Indeed,

it is possible that a fault exists prior to the version against which it is reported, just because it

has never been encountered in previous versions or because users did not bother reporting it in

previous versions. Similarly, it is possible that a fault is fixed in a version prior to that for which it

is reported as fixed due to the time to test the code thoroughly or because of an omission to do so.

We use the statistically-significant results of RQ1 and RQ5 to warn developers about the nega-

tive impact on faults of design smells (RQ1). Developers should thus be wary of and track design

smells. Because the number of occurrences of design smells is related to the presence of faults in

a class, correcting these design smells may help avoiding or reducing the risk of faults in classes

while removing fault reduces the number of smells (RQ5).

5.5 Threats to validity

We now discuss the threats to the validity of our study following the guidelines for case study

research [Yin, 2008].

5.5.1 Construct validity

Construct validity threats concern the relation between theory and observation. In our study, they

are mainly due to measurement errors. The identification of classes impacted by faults, fault-

fixes requires analysing issue-tracking systems and version-control systems. For Rhino, we use

an existing classification [Eaddy et al., 2008]. For the other three systems, we made sure that our

algorithms provided correct results by veryfying manually random samples.

For design smells detection, we use DECOR, which includes its authors’ subjective under-

standing of the design smells. The accuracy of its detection algorithms is not perfect [Moha et al.,

2010a]. DECOR accuracy impacts our results because we may have classified a class not partici-

pating in a design smell as participating in it and vice-versa. Other techniques and tools should be

used to confirm our results.
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5.5.2 Internal Validity

Threats to internal validity do not affect our study, being an exploratory study [Yin, 2008]. We

do not claim causation, but relate the presence of design smells with fault-fixing durations, the

number of elements impacted by fault-fixes, and fault-fixing entropy.

5.5.3 Conclusion Validity

Conclusion validity threats concern the relation between the treatment and the outcome. We paid

attention not to violate assumptions of the performed statistical tests. We used only non-parametric

tests that do not make any assumption about the data set distribution (i.e., Mann-Whitney tests and

Cliff’s d effect size).

5.5.4 Reliability Validity

Reliability validity threats concern the possibility of replicating this study. We attempted to pro-

vide all the necessary details to replicate our study. Moreover, the source code repositories and

issue-tracking systems of the studied systems are available to obtain the same data. Moreover, the

results of the validation and the datasets are available on-line 1.

5.5.5 External Validity

Threats to external validity concern the possibility to generalise our results. We studied four

software systems having different sizes and belonging to different domains. We used also a repre-

sentative subset of design smells. Future work includes reproducing this study with other software

systems and other design smells.

5.6 Summary

We posed the following premise:

There is a relation between design smells, faults, and the developers’ effort to fix faults.

We performed an empirical study and analysed: (1) the relation between design smells and

faults; (2) the impact of the presence of design smells in faults on fault-fixing duration; (3) the

impact of the presence of design smells in faults on the number of fields and methods impacted by

1http://www.ptidej.net/download/experiments/emse12/
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fault-fixing; (4) the impact of the presence of design smells in faults on fault-fixing entropy; and,

(5) the impact of fault-fixing on the number of occurrences of design smells.

We performed our study on 54 versions of ArgoUML, Eclipse, Mylyn, and Rhino and showed

the negative impact of design smells on fault-fixing effort. Indeed, we provided quantitative ev-

idences to the conjecture that design smells may make program maintenance harder by showing

that faults involving classes participating in design smells: (1) take more time to fix, (2) impact

more fields and methods, and (3) have higher entropy than others.

For researchers, our study brought evidence that design smells impact their fault-fixing efforts.

Our results also support a posteriori the removal of design smells as early as possible from systems

and, therefore, the importance and usefulness of design smells detection techniques and the use of

detection tools.

For practitioners, we provided concrete evidence that developers should pay attention to the

presence of design smells in systems and try to avoid them or, at least, correct them before perform-

ing maintenance tasks. Design smells increase developers’ fault-fixing efforts and, consequently,

may increase software maintenance costs. Also, a tester could decide to focus on classes partici-

pating in design smells, because she knows that such classes are likely to contain faults [Khomh et

al., 2011a]. Finally, a manager could use design-smell detection techniques to assess the volume

of classes participating in design smells in a to-be-acquired system and, thus, adjust her offer and

forecast the system cost-of-ownership and–or plan for refactoring because the design smells will

impact fault-fixes effort.
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Table 5.11 – Summary of the statistically-significant results of our study.

ArgoUML Eclipse Mylyn Rhino

RQ1
H01A X X X X

H01V X X X X

RQ2

H02A X X

H02K

AntiSingleton X

LazyClass X

LongMethod X

LongParameterList X

MessageChains X

SwissArmyKnife X

RQ3

H03A X X X

H03K

AntiSingleton X X

Blob X X

ClassDataShouldBePrivate X X X

ComplexClass X X X

LargeClass X X

LazyClass X

LongMethod X X

LongParameterList X X X

MessageChains X X X

RefusedParentRequest X X X

SpeculativeGenerality X

SwissArmyKnife X

RQ4

H04A X X X X

H04K

Blob X X

ClassDataShouldBePrivate X X

ComplexClass X

LazyClass X X

LongMethod X X

LongParameterList X X

SpeculativeGenerality X X

RQ5
H05A X X X X

H05K X X X X



Chapter 6

SMURF: A SVM-based, Incremental

Design Smells Detection Approach

In the following, we provide details on an iterative and incremental design smell detection ap-

proach, SMURF. We explain the details of SMURF and present the results of an empirical study.
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6.1 Context and Problem

Developers continuously evolve systems to implement and adapt to new customers’ needs, as well

as to fix bugs. Due to the time-to-market, lack of understanding, and the developers’ experience,

developers cannot always follow standard designing and coding techniques, i.e., design patterns

[Fowler, 1999a]. Consequently, design smells creep up in software systems.

Motivation. Researchers have performed empirical studies to show that design smells like Spaghetti

Code and Blob create hurdles during program comprehension [Abbes et al., 2011], software evo-

lution and maintenance activities [Khomh et al., 2011a]. The Spaghetti code design smell is char-

acteristic of procedural thinking in object-oriented programming [Brown et al., 1998]. Spaghetti

code is related to classes without object-oriented structure. In general, classes are spaghetti code

when they contain methods that are very long without having parameters, but with lots of branch-

ing statements. Therefore, such classes do not exploit object-oriented mechanisms, such as poly-

morphism and inheritance, and also prevent them from being used by developers [Moha et al.,

2009]. Another example of design smell is the Blob. A Blob is a large class that mostly con-

trols the behaviour of a system or part thereof [Brown et al., 1998]. The main characteristics of a

Blob class are: large size, low cohesion, some method names recalling procedural programming,

and association with several data classes, which only hold data with little behaviour. These two

design smells and many more yield to design and implementation of systems that are, at best,

cumbersome and hinder evolution, in particular by impeding program comprehension [Abbes et

al., 2011]. It is important to detect design smells in order to refactor/or remove them. This will

improve software quality and reduce maintenance costs.

Limitations. Current design smell detection approaches as proposed by Marinescu [Marinescu,

2004b], Moha et al. [Moha et al., 2009] and Alikacem et al. [Alikacem and Sahraoui, 2006], have

four limitations: (1) they require extensive knowledge of design smells, (2) they have limited preci-

sion and recall, (3) they are not incremental and iterative, and (4) they cannot be applied on subsets
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of systems. We claim that the first and second limitations, i.e., high complexity and low accuracy,

would be reduced by taking into account the practitioner’s feedback. Indeed, practitioners using

the textual description of design smells can easily recognise them (and then provide feedback on

the detection results) but they will require more knowledge to define and set-up rules and thresh-

olds, based on design or program metrics and properties to characterise design smells. Also, the

current approaches are not flexible and cannot take advantage of practitioners feedback, so their

accuracy can be improved only by changing the approach itself. Using practitioners feedback is

an easy and valuable way to improve the accuracy of design smells detection.

Further, the third and fourth limitations are even more important, because they prevent a prac-

titioner to guide the detection process and that today’s software systems often weight hundreds

of millions of lines of code. With such large systems, a detection approach cannot be applied

frequently because of parsing and analysis times. Thus, it is important to detect design smells

iteratively and incrementally to reduce the maintenance costs and encourage practitioners in the

design smells detection. Indeed, if developers detect design smells independently among few

classes of a software (subset of the system) as they developed, the detection will take less time.

This will also permit the easy removal/or refactoring of the design smells compared to, when they

perform the detection on the whole system at the end of the development. Moreover, the improve-

ment at this stage will facilitate the next steps in the development. Also, the number of detected

occurrences when dealing with the whole system can be huge and discourage the practitioners to

analyse and correct them. We argue that these limitations could be taken care of by using support

vector machines (SVM).

Answer. SVM have been applied in various areas, eg., bioinformatics [Bedo et al., 2006], in-

formation retrieval [Ye et al., 2011] and object recognition [Choi et al., 2012]. SVM is a recent

alternative solution to the classification problem and relies on the existence of a linear classifier

in an appropriate space by using a set of training data to train the parameters of the model. It is

based on the use of functions called kernel, which allows an optimal separation of data in different

categories. When apply to design smells detection, we believe that SVM can yield better precision

and recall values when compared to that of previous approaches, and can take into account practi-

tioners’ feedback. Also, SVM is by definition incremental because we can increase its training set

incrementally. Finally, it can be applied on subsets of systems because it considers system classes

one at a time, not collectively as previous rule-based approaches do. To the best of our knowledge,

researchers have not yet studied the potential benefits of using SVM to detect design smells.

Contribution. The contribution of this study is two-fold. First, we propose our iterative and

incremental approach SMURF to detect design smells using SVM and practitioners’ feedback.
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We exploit the benefits of SVM to detect the occurrences of design smells while taking into ac-

count practitioners’ feedback. We use the most studied design smells, i.e., Blob, Spaghetti Code,

Functional Decomposition, and Swiss Army Knife, and perform more than 300 experiments to

compare the results of DETEX [Moha et al., 2009] and BDTEX [Khomh et al., 2011b], the two

best state of the art approaches, respectively, in exact and probabilistic design smells detections,

with the results of SMURF. We use both the measures of precision and recall to compare the ap-

proaches on a set of three programs namely ArgoUML v0.19.8, Azureus v2.3.0.6, and, Xerces

v2.7.0. We showed that the accuracy of SMURF is greater than that of DETEX and BDTEX when

detecting design smell occurrences on a set of classes or on the whole system. We also showed

that SMURF can be applied in both intra-system and inter-system configurations. Finally, we re-

ported that SMURF accuracy improves when using practitioners’ feedback. We thus conclude that

our conjecture is correct: a SVM-based approach can overcome the four limitations of previous

approaches.

6.2 SMURF Process

SMURF is based on Support Vector Machines (SVM) to detect occurrences of design smells. We

provide some backgrounds on SVM in Section 2.4.

Our approach to detect design smells, SMURF, is based on a SVM using a polynomial kernel,

and can take into account practitioners’ feedback. We use SMURF to detect the well-known design

smells: Blob, Functional Decomposition, Spaghetti code, and Swiss Army Knife. For each design

smell detection, the detection process is identical. Figure 6.1 shows the overview of SMURF,

which we illustrate with the Blob design smell for the sake of clarity. We define:

• T DS = {Ci, i = 1, . . . , p}, a set of classes Ci derived from an object-oriented system that

constitute the training dataset;

• ∀i,Ci is labelled as Blob (B) or not (N);

• DDS is the set of the classes of a system in which we want to detect Blob occurrences.

To detect the Blob classes in the set DDS, we apply SMURF through the following steps:

Step 1 (Object Oriented Metric Specification) SMURF takes as input the training dataset

T DS. For each class from T DS, we calculate object-oriented metrics that will be used as the

attributes xi for each class in T DS. We use POM1 to compute metrics for all the studied systems.

1http://wiki.ptidej.net/doku.php?id=pom
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Figure 6.1 – SMURF process overview.

POM is an extensible framework, based on the PADL meta-model [Guéhéneuc and Antoniol,

2008], which provides more than 60 metrics [Guéhéneuc et al., 2004], including the well-known

metrics by Chidamber and Kemerer.

Step 2 (Train the SVM Classifier) We train the SVM classifier using the dataset T DS and the

set of metrics computed in Step 1. We define the training dataset as: T DS = {(xi,yi)|xi ∈ R
p,yi ∈

{−1,1},∀i ∈ (1, . . . ,n)} where yi is either 1 or −1, indicating respectively if a class xi is a Blob

occurrence or not. Each xi is a p-dimensional real vector with p the number of metrics.

The objective of the training step is to find the maximum-margin hyperplane that divides the

classes into the two different groups, Blob or Not-Blob.

Step 3 (Construction of the dataset DDS and detection of the occurrences of a design smell)

We build the dataset of the system on which we want to detect the occurrences of design smell as

follows: for each class of the system, we compute the same set of metrics as in Step 1. We use the

SVM classifier trained in Step 2 to detect the new occurrences of the design smell in the dataset

DDS.
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Step 4 (Interactive learning and practitioners’ feedback) After detecting occurrences of a

design smell using SMURF, the result is showed to the practitioner. Then it gives the occurrences

of Blob and Non-Blob classes to the practitioner and asks for her opinion. She then can mark

the occurrences as true when she agrees or false when she disagrees. We take into account the

opinion of the practitioner and add her evaluated occurrences to the training dataset. This addition

will permit the SVM to build a new optimal hyperplane that provides more accurate results in

subsequent detections, from the practitioners’ point of view. Practitioners can repeat Steps 2 to 4

as many times as desired.

6.3 Empirical Study

The goal of our empirical study is, by comparing our approach, SMURF with DETEX [Moha et

al., 2009] and BDTEX [Khomh et al., 2011b], to validate that SMURF can overcome the four

limitations (mentioned before) of the previous approaches. The quality focus of our study is the

accuracy of SMURF, in terms of precision and recall. The perspective is that of researchers and

practitioners interested in verifying if SMURF can be effective in detecting various kinds of design

smells, in taking into account feedback, and in overcoming the previous limitations.

6.3.1 Research Questions

The goal of our empirical study is to evaluate the accuracy of SMURF and the impact of practi-

tioners’ feedback on the design smells detection results. We also seek to compare SMURF with

DETEX [Moha et al., 2009] and BDTEX [Khomh et al., 2011b], the best two state of the art ap-

proaches, respectively, in exact and probabilistic design smells detection. DETEX and SMURF

are both exact design smells detection approaches. Thus, we could perform a full comparison

between the two approaches using the same set of programs used by Moha et al. [2009] in their

experiment. In the case of BDTEX, which is a probabilistic design smells detection approach, we

use the data provided by the authors to perform a comparison of BDTEX and SMURF.

Like other machine learning techniques, applying SMURF requires preprocessing. Indeed, we

must first train SMURF on some sets of known occurrences of the design smells and non design

smells, one design smell at a time, before applying it on some sets of classes. Our experiment is

divided in four steps.

First, we train SMURF on a set of known occurrences of one design smell and non-design

smell classes. Then, we apply SMURF on a set of classes of design smells and non-design smells

occurrences. The selection of design smells and non-design smells classes is random. We also
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apply DETEX on the same set of classes (we reproduce this experiment four times: as many times

as the number of design smells). The first set of experiments allows us to show whether SMURF

overcomes the first, second, and fourth limitations.

Second, we repeat the fist step with different sizes of subsets of the systems. Finally, we use

the entire subject system. We also apply DETEX on the same subsets. These experiments allow

us to compare the precision and recall of SMURF on different subset sizes with that of DETEX in

a realistic settings to verify whether SMURF overcomes the first, second, and fourth limitations.

Third, we train SMURF on a set of known occurrences of one design smell and non-design

smells from one system and then apply it on the classes of another system. We then add feedback

to SMURF in the form of additional known occurrences of the design smell. The last set of

experiments allows us to compare the accuracy of SMURF with/without feedback and the impact

of practitioners’ feedback on its accuracy to verify whether SMURF overcomes the first, second,

and third limitations.

Finally, we train and apply SMURF on the same data that was used by BDTEX for training

and testing 2 . We then compare the results of the two approaches.

Thus, we address the following research questions:

• RQ1: How does the accuracy of SMURF compare with that of DETEX, in terms of precision

and recall? We decompose RQ1 as follows:

– RQ11: How does the accuracy of SMURF compare with that of DETEX, in terms of

precision and recall, when applied on a same subset of a system?

– RQ12: How does the accuracy of SMURF compare with that of DETEX, in terms of

precision and recall, when applied on a same entire system?

• RQ2: How does the accuracy of SMURF compare with that of BDTEX, in terms of preci-

sion and recall when applied on a same entire system?

• RQ3: How does the accuracy of SMURF change when trained/applied on the same system

and trained/applied on different systems, in terms of precision and recall?

• RQ4: How does the accuracy of SMURF, with relevance feedback, compare with that of

SMURF without feedback, in terms of precision and recall?

2http://www.ptidej.net/download/experiments/jss10/
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Table 6.1 – Description of the objects of the study.

Names Versions # Lines of Code # Classes # Interfaces

ArgoUML 0.19.8 113,017 1,230 67

A design tool UML

Azureus 2.3.0.6 191,963 1,449 546

A peer-to-peer client that implements the protocol BitTorrent

Xerces 2.7.0 71,217 513 162

A syntaxic analyser

6.3.2 Objects

The objects3 of our study are ArgoUML v0.19.8, Azureus v2.3.0.6, and Xerces v2.7.0, three open-

source Java systems. We chose these systems due to several factors. First, we selected open-source

systems that are freely available so that other researchers can replicate our study. Second, we

selected systems that have been used by other researchers to allow comparisons [Moha et al.,

2009].

Table 6.1 provides the details of the studied systems. Moha et al. [2009] used these three sys-

tems, thus we use these three systems for the comparison between DETEX and SMURF. Khomh

et al [2011b] used only one of the three systems (Xerces v2.7.0) and thus, we compare BDTEX

and SMURF using that system.

6.3.3 Subjects

The subjects of our study are the following four design smells: Blob, Functional Decomposition

(FD), Spaghetti Code (SC), and Swiss Army Knife (SAK). We chose these four design smells

because they are well known and commonly studied design smells and also for the comparison

purpose with Moha et al. [2009] and Khomh et al. [2011b]. Indeed, Moha et al. [2009] used these

four design smells and Khomh et al. [2011b] three of them.

Blob. A Blob, also called God class [Riel, 1996], is a class that is too large, with many attributes

and methods, and not cohesive enough. The blob monopolises most of the processing performed

by the system, takes most of the decisions, or a part thereof, directs closely the treatment of other

classes, and depends on associated data classes. A data class declares only attributes and performs

no processing on them.

3argouml.tigris.org/, azureus.sourceforge.net/, and xerces.apache.org/xerces-c/
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Functional Decomposition. A Functional Decomposition occurs if a developer, with good ex-

perience in procedural programming and not enough knowledge of object-oriented principles,

implements an object-oriented system. Brown describes this design smell as a “main routine that

calls several subroutines” [Brown, 1996]. A Functional Decomposition typically yields a main

class in which inheritance and polymorphism are not used.

Spaghetti Code. Spaghetti Code is an design smell that is also characteristic of procedural think-

ing in object-oriented programming. The Spaghetti Code is revealed by classes without structure,

declaring many methods with no parameters but sharing class/instance variables. The Spaghetti

Code prevents the use of object-oriented mechanisms, such as polymorphism and inheritance.

Swiss Army Knife. A Swiss Army Knife corresponds to a complex class that offers many ser-

vices, for example, a class that implements a large number of interfaces. A Swiss Army Knife is

different from a Blob because it exposes high complexity to address all foreseeable needs of a part

of a system, while the Blob is a singleton hogging all the processing/control flow of a system.

6.3.4 Data Collection and Oracles

Moha et al. [2009] built four oracles of four design smells, for three systems based on the results

of DETEX. For each system and each design smell, the detected classes have been checked by

independent engineers to assess whether they are true or false positive. The engineers manually

validated the detected classes depending on the design smell definition and their context.

We reuse these oracles to assess both the precision and recall of DETEX and SMURF.

For the comparison of BDTEX and SMURF, we used the oracles provided by Khomh et al.

[2011b] 4. They manually checked each class of the program to assess whether it is an occurrence

of design smell or no.

As expressed in the following equations, we define the precision and the recall.

Precision =
NTP

NTP+NFP

Recall =
NTP

NTP+NFN

where: NTP (number of true positives) is the number of detected occurrences of an design smell

that are true occurrences; NFP (number of false positives) is the number of detected occurrences

4http://www.ptidej.net/download/experiments/jss10/
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of an design smell that are false occurrences; NFN (number of false negatives) is the number of

occurrences of an design smell that are not detected.

We use Weka5 to implement SMURF, using its SVM classifier. In all the experiments, we train

SMURF on training datasets T DS and apply it on detection datasets DDS.

6.3.5 Analysis Methods

For the purpose of the comparison of DETEX with SMURF, we build for each system and each

design smell, three datasets that are composed of two parts: design smells and non-design smell

classes in equal numbers. For example, if we consider Blob and ArgoUML, we build three datasets

DDS1, DDS2, and DDS3.

To build each dataset we use 30 Blob classes in ArgoUML (identified with the oracles) and add

30 non-Blob classes by choosing them randomly in the remaining classes of ArgoUML. We then

divide the 60 classes randomly into the three datasets DDS1, DDS2, and DDS3, making sure that

each dataset contains 10 Blob classes and 10 non-Blob classes. To answer our research questions,

we perform a 10-fold cross validation that leads us to conduct 264 experiments: four design smells,

three systems, and 10 different sets of non-design smell classes. We choose the non design smell

classes 10 different times and always consider the average of the 10 runs to avoid any bias due to

the random choice of the non design smell classes.

For the comparison of SMURF with BDTEX, we use the same trained and test data used by

Khomh et al. [2011b].

RQ1. To answer RQ11 (respectively RQ12), we train SMURF on a dataset DDS1 and detect oc-

currences of an design smell on DDS2 (respectively on the rest of the whole system). We compute

the precision and recall of SMURF on DDS2 (respectively we compute the number recovered oc-

currences of BLOB on the rest of the whole system). We then run DETEX on the same dataset,

DDS2 (respectively on the rest of the whole system), and compute its precision and recall.

RQ2. To answer RQ2, we train SMURF and detect occurrences of an design smell on respec-

tively the same trained dataset and test dataset used by Khomh et al. [2011b] for the system Xerces

for the three design smells they studied. We compute the precision and recall of SMURF on that

test dataset. We then compute the precision and recall of BDTEX at different threshold levels

according to their results on that test dataset.

5http://www.cs.waikato.ac.nz/ml/weka/
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RQ3. To answer RQ3, we train SMURF on a dataset DDS1 from one system and detect occur-

rences of an design smell on DDS2, from either the same system or another system. We compute

the precision and recall of SMURF applied to the DDS2 of the same system and also that of

SMURF applied to the DDS2 of another system. We then run DETEX on the same dataset DDS2

of the same/other system, and compute its precision and recall.

RQ4. To answer RQ4, we first train SMURF on DDS1 and apply it on DDS2 and compute, as for

the other RQs, its precision and recall. We then simulate the practitioners providing their feedback

by adding to the trained dataset DDS1 of SMURF, different percentage (25%, 75% and, 100%) of

the content of DDS3. Indeed, DDS3 contains a set of labelled design smells and non design smells

and then can constitute the set that practitioners would incrementally constitute when validating

the detected occurrences as true or false occurrences. For each level of added feedback, we train

SMURF on the new trained dataset and re-apply it on DDS2 and again compute its precision and

recall.

6.4 Study Results

We now report the results of our empirical study. These results are discussed in following section.

The data for replication purpose and the other results are available online6.

6.4.1 Accuracy of SMURF Compared to That of DETEX

Figures 6.2 and 6.3 report the precision and recall values when applying DETEX and SMURF

on different subsets (DDS2 dataset). The results of SMURF are better than that of DETEX on all

the different subsets. We observe that on small number of classes (25% of classes of the system)

DETEX has poor performance because it cannot detect occurrences of design smells without the

entire system being present because it uses boxplots and thresholds to identify design smells.

On the contrary, SMURF has acceptable precision and recall values. We observe in Figure 6.3

(50% subset) that DETEX has a precision of 100% while SMURF has a precision of around 70%

but this is explained by the fact that DETEX detected only 4 classes (out of 38 Spaguetti Code)

that are really Spaguetti Code. This leads to 100% of precision. Yet, DETEX missed 34 classes

and considered them as safe classes but there are actually Spaguetti Code. This is why with this

subset the recall of DETEX is only 10%. It is important to have a balance between precision and

recall values. If we increase the precision and drastically decrease the recall, this means that we

6http://www.ptidej.net/download/experiments/wcre12a/
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Figure 6.2 – Precision and recall of SMURF and DETEX on different subset

size (Blob and Xerces).
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Figure 6.3 – Precision and recall of SMURF and DETEX on different subset

size (Spaghetti Code and Xerces).
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Figure 6.4 – Trends in the increase of precision and recall when decreasing the

probabilty of being an design smell for Blob and Xerces.

are missing some occurrences of design smells and we consider them as safe but there are risky

classes. If we increase the recall and drastically decrease the precision, this means that we are

detecting most of the occurrences of design smells but also report several safe classes as design

smells.

Thus, we answer RQ1: “How does the accuracy of SMURF compare with that of DETEX, in

terms of precision and recall?” as follows: on different sizes of subsets of systems, SMURF

outperforms DETEX, while on small systems, SMURF can detect occurrences of design

smells not detected by DETEX

.

6.4.2 Accuracy of SMURF Compared to That of BDTEX

Figures 6.4 and 6.5 show the accuracy of SMURF and BDTEX when detecting respectively occur-

rences of Blob and Spaguetti Code in Xerces. It shows that SMURF performs better than BDTEX

and is more stable. This observations are discussed in Section 6.5.2
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Figure 6.5 – Trends in the increase of precision and recall when decreasing the

probabilty of being an design smell for Spaguetti Code and Xerces.

Table 6.2 – Precision of SMURF in inter-systems.

ArgoUML (%) Azureus (%) Xerces (%)

Blob 92.00 96.00 89.00

FD 57.00 62.00 36.00

SC 77.00 74.00 91.00

SAK 56.00 73.00 90.00

Thus, we answer RQ2: “How does the accuracy of SMURF compare with that of BDTEX,

in terms of precision and recall when applied on a same entire system?” as follows: SMURF

has a better precision and recall than BDTEX.

6.4.3 Accuracy of SMURF in Inter-systems Configurations

Tables 6.2 and 6.3 report the values of precision and recall in the inter-system configuration in

which SMURF is trained using the classes of one system (chosen randomly) and applied on the

subsets of classes of another system. Evidently, SMURF has quite acceptable values for precision

and recall, for inter-system configurations.
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Table 6.3 – Recall of SMURF in inter-systems.

ArgoUML (%) Azureus (%) Xerces (%)

Blob 62.00 48.00 94.00

FD 40.00 100.00 20.00

SC 96.00 88.00 91.00

SAK 68.00 84.00 56.00

Thus, we answer RQ3: “How does the accuracy of SMURF change when trained/applied on

a same system and trained/applied on different systems, in terms of precision and recall?”

as follows: SMURF has a better precision and recall than DETEX. Even in the inter-system

configuration, its precision and recall are acceptable in the most of cases excepted for the

functional decomposition in the programs ArgoUML (the recall is 40%) and Xerces (the

precision is 36% and the recall 20%).

6.4.4 Accuracy of SMURF using Users’ Feedback

Figure 6.6 shows the changes in precision and recall values. In future work, we will study other

scenario for the feedback (adding only or in different size design smells or non design smells).

We observe that the more feedback, the better the precision, up to 100%. For recall, the more

feedback, the better the recall but with a slight decrease when we use 100% feedback. We discuss

these observations below.

Thus, we answer RQ4: “How does the accuracy of SMURF with relevance feedback compare

with that of SMURF without feedback, in terms of precision and recall?” as follows: both

precision and recall values increase when taking into account practitioners’ feedback.

6.5 Discussion

We now provide detailed discussion on SMURF, results, feedback, and some of our observations.

6.5.1 SMURF vs. DETEX

When applied on different sizes of subsets of systems, we observe that DETEX could not detect

occurrences design smells on small subsets and, when it did, the precision and recall values were

quite low. We explain this observation by the use of boxplots and thresholds by DETEX. When

DETEX analyses a few classes, its use of boxplots and thresholds yield most of the classes to fall
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Figure 6.6 – Trends in the increase of precision and recall when integrating

incremental feedback.
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under (respectively above) the thresholds and hence, not to be reported. The problem does not

arise when analysing an entire system because then the boxplots quartiles are different and more

classes fall within the threshold values set in the rules. SMURF can work on the whole system

and as well as on part of a system. In most of cases, for all configurations (intra or inter-system),

SMURF provides acceptable recall and precision values. However we observe that for functional

decomposition in the inter-system configuration, the recall is low for ArgoUML(40%) and Xerces

(20%) and the precision is low for Xerces (36%). We can explain these results by the fact that, we

did not have enough detected occurrences of this design smells. When applying SMURF on the

whole system for detecting occurrences of design smell, it performed better than DETEX.

6.5.2 SMURF vs. BDTEX

BDTEX is a probabilistic approach which provides probabilities that a class is an occurrence of

design smell. However our SMURF approach is an exact detection approach which is a boolean

detection approach telling that a class is an occurrence of an design smell or not. Because the

user is not necessarily an expert in the field of design smells, she will refer to a threshold to make

her decision to consider a class as an design smell or not. And to compare the precisions and

recalls of BDTEX versus SMURF, we consider several decisions thresholds based on probability.

We consider that the decision is made to consider a class as an instance of design smell when the

probability is 1, then we compute the precision and recall. Then we consider a probability thresh-

old of 0.9 and we compute again the precision and recall. And so on by decreasing probability.

The results of this comparison are shown with the figures 6.4 and 6.5 for Blob and Spaguetti Code

on Xerces system. The results show that BDTEX contains a high level of uncertainty. For Ex-

ample, for spaghetti code, while the precision of SMURF is 90%, from a probability threshold of

0.8, the accuracy begins to drop below 50% quickly and significantly. For the Blob while SMURF

is 90% precision BDTEX remains at 0% precision even if the probability constraint relaxes up to

0.7. Its from 0.6 probability that the accuracy of BDTEX goes up without reaching the level of that

of SMURF and decreases immediately after. The recall is almost zero when at the beginning the

requirement is high, but when we decided to release the constraint, it rises to the level of SMURF

or even exceed, which is quite normal since in this case BDTEX accepts most classes. Thus, at

this level, BDTEX has high recall but bad precision.

6.5.3 Other Design smells/Systems

SMURF requires labelled data to train its SVM. Having this labelled data is a limitation of our

approach. However, we claim that it is easier for practitioners to label classes as being occurrences
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of some design smells than to write rules and choose right threshold values. Indeed, it is easier

for practitioners to recognise an design smell when seeing one rather than to define the rules

to detect it [Brown et al., 1998]. This observation relates to the concept of “quality without a

name” by Alexander [Alexander et al., 1978], who suggested that it is easy to assess the quality of

something when seeing it but difficult to define this very same quality ex nihilo. Thus, we claim

that practitioners can easily and incrementally build their own oracles to train SMURF. SMURF

would fit in their context and, thanks to the feedback loop in SMURF, practitioners could keep

on improving its results as time goes, by adding/removing more labelled data as they find new

occurrences of some design smells and decide that an existing occurrence should not be reported

any longer or not.

6.5.4 Practitioners’ Feedback

SMURF allows practitioners to provide their feedback. The feedback is an easy and valuable way

to improve the approach accuracy as confirmed by the results in figure 6.6. In most of the cases,

when we increase the feedback provided to SMURF, the recall and the precision increase. How-

ever, we observe that when using 100% of the feedback, the recall of SMURF decreases slightly

when compared to 75% of the feedback (but is still higher than when not using any feedback).

We explain this observation by the fact that our oracles, obtained from a previous work [Moha et

al., 2009], may not be completely accurate and, thus, integrating their data could lead to misclas-

sification of some true positive occurrences. Future work includes revising entirely the oracles to

identify misclassified occurrences, if any.

6.5.5 Software Evolution

With previous approaches [Moha et al., 2009], practitioners needed to run the whole design smell

detection process every now and then. Re-executing the detection process meant that practitioners

must then manually verify all the reported occurrences again the possible occurrences that have

already been reported in a previous run. SMURF overcomes this problem by using the previously

set of manually-validated design smells as oracle, either for training or as feedback. For example,

if a practitioner built an design smells’ oracle APoracle for ArgoUML version 1. SMURF can use

APoracle to train its SVM to detect design smells in the subsequent versions of ArgoUML, which

lessens the limitation of SMURF concerning labelled data. Thus, as a software system evolves, the

related training/feedback data will also increase in size and yield an improvement in the accuracy

of SMURF and reduction in the manual validation.
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6.5.6 SMURF and Practitioners

Previous approaches depended heavily on rules and thresholds. To define rules, a practitioner

must have a detailed technical knowledge of design smells and the underlying framework. There

is no general rule to define what an design smell is. Thus, it is difficult for a practitioner to write

a rule. For example, it is quite possible for a practitioner to state that a Blob class must contain

300 LOC and for another practitioner this could be 30,000 LOC. Defining a wrong threshold

and–or rule would negatively impact the results of the approach and would make it useless for

the practitioners. SMURF overcomes both of these limitations, i.e., use of design smell rules and

thresholds. SMURF can detect occurrences of design smells in object-oriented systems without

having to manually set rules for detection. Also, SMURF has a good precision and recall, even

in the inter-system configuration. Finally, SMURF provide better results to practitioners as they

integrate their feedback.

6.6 Threats to Validity

We now discuss threats to the validity of our results [Yin, 2008].

Internal Validity. In our study, threats to internal validity are mainly related to the identification

of classes suspected to be occurrences of design smells. To reduce the effect of this threat, we

used previous oracles of occurrences of design smells reported by Moha et al [Moha et al., 2009].

These occurrences have been manually validated by independent engineers.Concerning the poten-

tial dependence of the obtained results on the chosen design smells and systems, our study is not

affected. Indeed, we used four well-known and representative design smells. These design smells

also have been used in previous works. Further, we applied our approach to three open-source sys-

tems with different size and these systems have also been used by previous researchers. Moreover,

we limited the bias of intrinsic randomness of our results by repeating each experiment 10 times

for each design smell per system; a total of 264 experiments before and after feedback to compare

the results.

Reliability Validity. Reliability validity threats concern the possibility of replicating the study

concerned. To mitigate this threat, we used open-source systems that can be freely downloaded

from the Internet. We attempted to provide all the necessary details to replicate our study. More-

over, the results of the validation and the datasets are available online.
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External Validity. Threats to external validity concern the possibility to generalise our results.

We studied three systems with different sizes and different domains. In spit of the fact that three

systems might not be a very large number that can be generalized, as the systems were of varying

sizes, and domains, we can claim that the results can be generalized with certain degree of con-

fidence. Further, we also used a representative subset of design smells. However, we will apply

SMURF on other systems and design smells in future work to negate the threat completely.

6.7 Summary

Design smells are a fact of developers’ life when developing software systems under the conditions

prevailing nowadays: distribution in time and space, time pressure, complexity, agile software

development context. In particular, design smells impede program comprehension [Abbes et al.,

2011] and thus have negative impact on both development and changes. We observed that current

design smell detection approaches had four limitations: (1) they require extensive knowledge of

design smells, (2) they have limited precision and recall, (3) they are not incremental and iterative,

and (4) they cannot be applied on subsets of systems.

To overcome these limitations, we introduced a novel approach to detect design smells, SMURF,

based on support vector machines (SVM). SUMRF is an iterative and incremental detection ap-

proach that allows (1) learning the detection rules from a set of known occurrences of design

smells and non design smells, and (2) improving accuracy. Thus, SMURF, overcomes the pre-

vious limitations. Practitioners can easily produce the needed set according to their needs and

context.

We designed an empirical study that allowed us to compare the results of DETEX [Moha et al.,

2009] and BDTEX [Khomh et al., 2011b], the best two state of the art approaches, respectively,

in exact and probabilistic design smells detections, with the results of SMURF. We performed

more than 300 experiments to show how SMURF performs on a set of three programs (ArgoUML

v0.19.8, Azureus v2.3.0.6, and Xerces v2.7.0) using four design smells (Blob, Functional Decom-

position, Spaghetti Code, and Swiss Army Knife).

We showed that the accuracy of SMURF is greater than that of DETEX and BDTEX when

detecting design smells on a set of classes or on the whole system. We also showed that SMURF

can be applied in both intra-system and inter-system configurations. Finally, we reported that

SMURF accuracy improves when using practitioners’ feedback.

We thus conclude that our conjecture is correct: SVM-based approach can overcome the four

limitations of previous approaches and could be more readily adopted by practitioners.



Chapter 7

Conclusions and Future Work

In this chapter, we summarize the results and conclusions of our thesis. We also discuss opportu-

nities for future work.
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7.1 Conclusions

Software maintenance and evolution are important in software development. Therefore, in soft-

ware maintenance and evolution comprehension and change are central. Then, it become crucial

to analyze the factors that could influence comprehesion and change. Therefore, in this thesis, we

analyzed the impact of design smells. We conducted an empirical study to bring evidence of the

impact of design smells on comprehension. We designed and conducted two experiments with 59

subjects to assess the impact of the composition of two Blob or two Spaghetti Code, on the per-

formance of developers performing comprehension tasks. We measured developers’ performance

using: (1) the NASA task load index for their effort; (2) the time that they spent performing their

tasks; and, (3) their percentages of correct answers. The results of the two experiments showed

that two occurrences of Blob or Spaghetti Code design smells impedes significantly developers

performance during comprehension and change. The obtained results justify a posteriori previous

researches on the specification and detection of design smells. Software development teams should

warn developers against high number of occurrences of design smells and recommend refactorings

at each step of the development to remove them when possible.
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Then, we investigated the relation between design smells and faults in classes from the point

of view of developers who must fix faults. We studied the impact of the presence of design smells

on the effort required to fix faults, which we measure using three metrics: (1) the duration of the

fixing period; (2) the number of fields and methods impacted by fault-fixes; and, (3) the entropy of

the fault-fixes in the source code. We conducted an empirical study with 12 design smells detected

in 54 releases of four systems: ArgoUML, Eclipse, Mylyn, and Rhino. Our results showed that

the duration of the fixing period is longer for faults involving classes with design smells. Also,

fixing faults in classes with design smells impacts more files, more fields, and more methods. We

also observed that after a fault is fixed, the number of occurrences of design smells in the classes

involved in the fault decreases. Understanding the impact of design smells on development effort is

important to help development teams better assess and forecast the impact of their design decisions

and therefore lead their effort to improve the quality of their software systems. Development teams

should monitor and remove design smells from their software systems because they are likely to

increase maintenance efforts.

Finaly, we analysed the problem of design smells detection. In the context of software main-

tenance and evolution it is important to have a tool to detect design smells incrementally and

iteratively. This incremental and iterative detection process could reduce costs, effort, and re-

sources by allowing practitioners to identify and take into account occurrences of design smells

as they find them during comprehension and change. Researchers have proposed approaches to

detect occurrences of design smells but these approaches have currently four limitations: (1) they

require extensive knowledge of anti-patterns; (2) they have limited precision and recall; (3) they

are not incremental; and (4) they cannot be applied on subsets of systems. To overcome these lim-

itations and propose an incremental and iterative tool, we introduced SMURF, a novel approach

to detect design smells, based on a machine learning technique—support vector machines—and

taking into account practitioners’ feedback. Indeed, through an empirical study involving three

systems and four design smells, we showed that the accuracy of SMURF is greater than that of

DETEX and BDTEX (the state of the art) when detecting design smells occurrences. We also

showed that SMURF can be applied in both intra-system and inter-system configurations. Finally,

we reported that SMURF accuracy improves when using practitioners’ feedback.

We thus, confirm our thesis: we bring quantitative evidence of the impact of design smells on

comprehension and fault-fixing effort and provide a tool for accurate incremental and iterative

design smells detection.
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7.2 Future Work

To strengthen the evidence of the impact of design smells on comprehension, future work includes

investigating the relation between the number of occurrences of design smells and understandabil-

ity (i.e., subjects’ efforts, times, and percentages of correct answers). For example, we plan to

investigate the impact of three and more occurrences of a design smells on systems understand-

ability. We also plan to replicates the studies in other contexts, with other subjects, other questions,

other design smells, and other systems.

For the impact of design smells on fault and fault-fixing effort, we plan to replicate our studies

with other software systems and other design smells. Other than using only open-source projects,

we plan to extend this study to industrial systems. Last, but not least, a replication of this study on

design patterns is desirable to compare the impact of design smells on fault fixing effort with the

impact of design patterns on fault fixing effort.

For incremental an iterative design smells detection tools, future work includes performing an

empirical study about the use of SMURF in real-world environments. We will ask our industrial

partners help in realising such a study. Further, we would also reproduce the study with other

systems and design smells to increase our confidence in the generalisability of our conclusions.

Another study could be the evaluation of the impact of the quality of feedback on SMURF results.

Future work includes also the study on how long does a design smell survive. We will study the

factors of introduction and propagation of design smells in software systems. We will investigate

the factors of extinction of design smells and design a tool to propose refactorings for design

smells
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Naouel Moha and Yann-Gaël Guéhéneuc. On the automatic detection and correction of soft-

ware architectural defects in object-oriented designs. In In Proceedings of the 6 th ECOOP

Workshop on Object-Oriented Reengineering. Universities of Glasgow and Strathclyde, 2005.

[Moha et al., 2009] cited pages 2, 3, 6, 10, 13, 23, 24, 25, 26, 74, 75, 78, 79, 80, 81, 91, 92, 93
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Appendix A

Definitions of Metrics

This Appendix presents the definitions of all the metrics used in this thesis.

ACAIC: ancestor Class-Attribute Import Coupling.

ACMIC: ancestors Class-Method Import Coupling.

AID: average Inheritance Depth of an entity.

ANA: count the average number of classes from which a class inherits informations.

CAM: computes the relatedness among methods of the class based upon the parameter list of the

methods.

CBOin: coupling Between Objects of one entity.

CBOout: coupling Between Objects of one entity.

CIS: counts the number of public methods in a class.

CLD: class to Leaf Depth of an entity.

cohesionAttributes: returns the degree of cohesion between methods and attributes of a class.

connectivity: returns the degree of connectivity of an entity in a system.

CP: the number of packages that depend on the package containing entity.

DAM: returns the ratio of the number of private (protected) Attributes to the total number of

Attributes declared in a class.
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DCAEC: returns the DCAEC (Descendants Class-Attribute Export Coupling) of one entity.

DCC: returns the number of classes a class is directly related to (by attribute declarations and

message passing.

DCMEC: returns the DCMEC (Descendants Class-Method Export Coupling) of one entity.

DIT: returns the DIT (Depth of inheritance tree) of an entity.

DSC: count of the total number of classes in the design.

EIC: the number of inheritance relationships in which superclasses are in external packages.

EIP: the number of inheritance relationships where the superclass is in the package containing

entity and the subclass is in another package.

ICHClass: compute the complexity of an entity as the sum of the complexities of its declared

and inherited methods.

LCOM1: returns the LCOM (Lack of COhesion in Methods) of an entity.

LCOM2: returns the LCOM (Lack of COhesion in Methods) of an entity.

LOC: returns the number of line of code of an entity.

MFA: the ratio of the number of methods inherited by a class to the number of methods accessible

by member methods of the class.

MOA: count the number of data declarations whose types are user defined classes.

NAD: number of attributes declared.

NADExtended: number of attributes declared in a class and in its member classes.

NCM: returns the NCM (Number of Changed Methods) of an entity.

NCP: the number of classes package containing entity.

NMA: returns the NMA (Number of New Methods) of an entity.

NMD: number of methods declared.

NMDExtended: number of methods declared in the class and in its member classes.

NMI: returns the NMI (Number of Methods Inherited) of an entity.
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NMO: returns the NMO (Number of Methods Overridden) of an entity.

NOA: returns the NOA (Number Of Ancestors) of an entity.

NOC: returns the NOC (Number Of Children) of an entity.

NOD: returns the NOD (Number Of Descendents) of an entity.

NOH: count the number of class hierarchies in the design.

NOM: counts all methods defined in a class.

NOP: returns the NOP (Number Of Parents) of an entity.

NOParam: compute the average number of parameters of methods.

NOPM: count of the Methods that can exhibit polymorphic behavior.

PIIR: the number of inheritance relationships existing between classes in the package containing

entity.

PP: the number of provider packages of the package containing entity.

REIP: EIP divided by the sum of PIIR and EIP.

RFP: the number of class references from classes belonging to other packages to classes belong-

ing to the package containing entity.

RPII: PIIR divided by the sum of PIIR and EIP.

RRFP: RFP divided by the sum of RFP and the number of internal class references.

RRTP: RTP divided by the sum of RTP and the number of internal class references.

RTP: the number of class references from classes in the package containing entity to classes in

other packages.

SIX: returns the SIX (Specialisation IndeX) of an entity.

WMC1: computes the weight of an entity considering the complexity of a method to be unity.

McCabe: number of points of decision + 1.

CBO: coupling Between Objects of one entity.

LCOM5: returns the LCOM (Lack of COhesion in Methods) of an entity.
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WMC: computes the weight of an entity by computing the number of method invocations in

each method.

PageRank: measures the relative importance of a class in the overall structure of relations among

classes.



Appendix B

Specification of Code Smells and

Antipatterns

This Appendix presents the definitions of code smells and antipatterns studied in this thesis.

B.1 Detailed Definitions of the code Smells

In this thesis we focused on the following code smells:

AbstractClass: this code smell is characteristic of the Speculative Generality Antipattern. This

odor exists when we have generic or abstract code that isn’t actually needed today. Such

code often exists to support future behavior, which may or may not be necessary in the

future.

ChildClass: this code smell occurs when the number of methods declared in a class and the

number of it’s declared attributes is very high. It is a symptom of poor object decomposition.

The public interface of the class differing greatly from the one of its super-class. This code

smell characterises the Tradition Breaker antippatern.

ClassGlobalVariable: this code smell occurs when a class declares public class variable that are

used as “global variable” in procedural programming.

ClassOneMethod: this code smell occurs when a class has only one method.

ComplexClassOnly: this code smell is present when a class both declares many fields and meth-

ods and which methods realise complex treatments, using many if and switch instructions.
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Such a class is probably providing lots of services while being difficult to maintain and

fragile due to its complexity.

ControllerClass: this odor is present when a class monopolises most of the processing done by

a system, takes most of the decisions, and closely directs the processing of other classes.

DataClass: this code smell is present when a class contains only data and performs no processing

on these data. It is composed of highly cohesive fields and accessors.

FewMethod: this code smell characterise Lazy classes that declare few methods.

FieldPrivate: this code smell is present when many private fields are declared. It’s generally

symptomatic of the Functional Decomposition antipattern.

FieldPublic: this code smell is symptomatic of the Class Data Should Be Private antippatern.

It occurs when the data encapsulated by a class is public, thus allowing client classes to

change this data without the knowledge of the declaring class.

FunctionClass: this code smell occurs when we have a main class, i.e., a class with a procedural

name, such as Compute or Display. It is symptomatic of the Functional Decomposition

antipattern.

HasChildren: this code smell describes classes with many children.

LargeClass: this odor concerns classes that are trying to do too much. These classes do not

follow the good practice of divide-and-conquer which consists of decomposing a complex

problem into smaller problems. These classes also have low cohesion.

LargeClassOnly: this code smell concerns classes with a very high number of attributes and/or

methods defined.

LongMethod: this odor is a method with a high number of lines of code. A lot of variables and

parameters are used. Generally, this kind of method does more than its name suggests it.

LongParameterListClass: this odor corresponds to a method with high number of parameters.

This smell occurs when the method has more than four parameters. Long lists of parameters

in a method, though common in procedural code, are difficult to understand and likely to be

volatile.

LowCohesionOnly: this code smell characterises the lack of cohesion in a class.

ManyAttributes: this code smell occurs when the number of attributes declared in a class is too

high.
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MessageChainsClass: this code smell is present when you see a long sequence of method calls

or temporary variables to get some data. This chain makes the code dependent on the rela-

tionships between many potentially unrelated objects.

MethodNoParameter: this code smell occurs when a class declares methods with no parameter.

MultipleInterface: this code smell occurs when a class implements a high number of interfaces.

It is generally symptomatic of the Swiss Army Knife antipattern.

NoInheritance: this odor is present when inheritance is scarcely used.

NoPolymorphism: this odor is present when polymorphism is scarcely used.

NotAbstract: this odor occurs when a developer haven’t yet seen how a higher-level abstraction

can clarify or simplify his code.

NotClassGlobalVariable: this odor manifest itself in the anipattern Anti-Singleton when a class

declares public class variable that are used as “global variable” in procedural programming.

It reveals procedural thinking in object-oriented programming and may increase the diffi-

culty to maintain the program.

NotComplex: this code smell characterises classes performing “atomic” functionality, with little

complexity.

OneChildClass: this code smell occurs when a class does not have child class.

ParentClassProvidesProtected: this code smell occurs when a subclass does not use attributes

and/or methods protected inherited by a parent.

RareOverriding: this code smell occurs when a class rarely overrides inherited attributes and/or

methods.

TwoInheritance: this odor characterises a hierarchy with a depth greater than two.

B.2 Detailed Definitions of the Antipatterns

This thesis focused on the following antipatterns:

Anti-Singleton: it is a class that declares public class variable that are used as “global variable”

in procedural programming. It reveals procedural thinking in object-oriented programming

and may increase the difficulty to maintain the program.
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Blob: (called also God class [Riel, 1996]) corresponds to a large controller class that depends on

data stored in surrounded data classes. A large class declares many fields and methods with

a low cohesion. A controller class monopolises most of the processing done by a system,

takes most of the decisions, and closely directs the processing of other classes [Wirfs-Brock

and McKean, 2002].

Class Data Should Be Private: it occurs when the data encapsulated by a class is public, thus

allowing client classes to change this data without the knowledge of the declaring class.

Complex Class: it is a class that both declares many fields and methods and which methods

realise complex treatments, using many if and switch instructions. Such a class is probably

providing lots of services while being difficult to maintain and fragile due to its complexity.

Large Class: it is a class with too many responsibilities. This kind of class declares a high

number of usually unrelated methods and attributes.

Lazy Class: it is a class that does not do enough. The few methods declared by this class have a

low complexity.

Long Method: it is a method with a high number of lines of code. A lot of variables and param-

eters are used.Generally, this kind of method does more than its name suggests it.

Long Parameter List: it corresponds to a method with high number of parameters. This smell

occurs when the method has more than four parameters.

MessageChains: it Occurs when you have a long sequence of method calls or temporary vari-

ables to get some data. This chain makes the code dependent on the relationships between

many potentially unrelated objects [Fowler, 1999a].

Speculative Generality: it is an abstract class without child classes. It was added in the system

for future uses and this entity pollutes the system unnecessarily.

Swiss Army Knife: it refers to a tool fulfilling a wide range of needs. The Swiss Army Knife

design smell is a complex class that offers a high number of services, for example, a complex

class implementing a high number of interfaces. A Swiss Army Knife is different from a

Blob, because it exposes a high complexity to address all foreseeable needs of a part of a

system, whereas the Blob is a singleton monopolising all processing and data of a system.

Thus, several Swiss Army Knives may exist in a system, for example utility classes.

The Refused Parent Bequest: it appears when a subclass does not use attributes and/or methods

public and/or protected inherited by a parent. Typically, this means that the class hierarchy

is wrong or badly organized.
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The Spaghetti Code: it is an antipattern that is characteristic of procedural thinking in object-

oriented programming. Spaghetti Code is revealed by classes with no structure, declaring

long methods with no parameters, and utilising global variables for processing. Names of

classes and methods may suggest procedural programming. Spaghetti Code does not exploit

and prevents the use of object-orientation mechanisms, polymorphism and inheritance.
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Example of Comprehension Questions

Question 1: Where is, in this project, the method involved in the implementation of indicating the

health status of the resource to be downloaded, by calculating the number of seeds and peers?

Question 2: What is the type (class) that implements all the services related to the download of

a resource, like calculating the connection to any peer or seeding, determine the health status,

manage torrent files, etc?

Question 3: Where is the type DownloadManagerStateImpl referenced?

Question 4: What data can we access from an object of the type DownloadManagerImpl?

Question 5: How are the types DownloadManagerImpl and DownloadManagerStateImpl related?

Question 6: What is the behaviour that DownloadManagerStateImpl and DownloadManagerImpl

provide together? (Tick two answers)

1. Add a new peer using the given address and port.

2. Calculate the number of peers and seeds

3. Calculate the number of remote connections

4. Download torrents



Appendix D

TLX Rating Scale Definition

Title Endpoints Descriptions

MENTAL DEMAND Low/High How much mental and perceptual activity was required

(e.g., thinking, deciding, calculating, remembering,

looking, searching, etc.)? Was the task easy or de-

manding, simple or complex, exacting or forgiving?

PHYSICAL

DEMAND

Low/High How much physical activity was required (e.g., push-

ing, pulling, turning, controlling, activating, etc.)? Was

the task easy or demanding, slow or brisk, slack or

strenuous, restful or laborious?

TEMPORAL

DEMAND

Low/High How much time pressure did you feel due to the rate

or pace at which the tasks or task elements occurred?

Was the pace slow and leisurely or rapid and frantic?

EFFORT Low/High How hard did you have to work (mentally and physi-

cally) to accomplish your level of performance?

PERFORMANCE Good/Poor How successful do you think you were in accomplish-

ing the goals of the task set by the experimenter (or

yourself)? How satisfied were you with your perfor-

mance in accomplishing these goals?

FRUSTRATION

LEVEL

Low/High How insecure, discouraged, irritated, stressed and an-

noyed versus secure, gratified, content, relaxed and

complacent did you feel during the task?
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Post-mortem Questionnaire

Question 1: Are you familiar with the term “empirical study”? If yes, please give a brief definition.

Question 2: Are you familiar with the term “anti-pattern”? If yes, please give a brief definition.

If possible, please provide an example of an anti-pattern.

Question 3: Do you know the definition of “refactoring”? Please give a brief definition.

Question 4: How would you rate your skills and knowledge of software engineering? (Check the

box that best describes your level)

bad quiet good good excellent expert

Question 5: How would you rate your level of experience in Java?

bad quiet good good excellent expert

Question 6: How would you rate your level of experience in Eclipse?

bad quiet good good excellent expert

Question 7: How did you find the information provided in the procedure? (You can tick several

boxes)

Not too much correct too much simple complex

Question 8: What was the impact of the amount of information provided during the procedure on

your performance in accomplishing the requested tasks? (Negative? Positive? Required too much

concentration? Sufficient? etc.)

If you have any other comment, please write it below. Thank you.



Appendix F

Eclipse Tutorial

To answer the given comprehension questions, you need to parse the code and search for different

types, methods and classes in the project. This is a brief tutorial explaining how to search, find a

reference, open the hierarchy, reach the declaration of a function or type etc.

1. Searching for an element corresponding to a specific pattern:
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To access this menu, select the project, then the Java search tab in the search menu of

Eclipse, or simply press simultaneously Ctrl+H. This will bring up the search window,

which has a series of tabs (you can choose any other tab according to what you are looking

for). Enter a “Search string”, select, in the “Search For tab”, what you are looking for (a

type, method, field, etc.). Then select in the “Limit to” tab what you are looking for (the

declaration, references, etc.), select also in the “Scope” tab “Selected resources” and do

not forget to select in the field “Search In”: “sources” and “required projects” only!! to

limit the search to the source files only.

Finally hit search. The search results will be displayed at the bottom of the screen. Double

clicking on the results listed will focus the editor on that instance of the search string.

Notice: It is possible to use the wildcard * to replace any string.

Example: if you are looking for a class named like “Something -status- Something else”,

just write *status* in the “Search string” field, select “Type” in the “Search For tab”, select

“Declaration” in the “Limit To” tab and select in the “Scope” tab “Selected resources”; This

will search all the classes that start by any string, contains essentially the word “status” and

finish by any string.

Similarly, “?” replaces any character.

2. Reach the declaration of a given element:

Select the desired element (method, field, class, etc.) then right click on it and choose “Open

Declaration”, or simply press F3.

3. Open type hierarchy:

Displays the hierarchy of a type. Select the desired type or class, then right click on it and

choose “Open Type Hierarchy”, or simply press F4.

4. Find references in the project:

Allows to search, in the whole project, all references related to an element. Just select the

desired element (method, field, class, etc.) then right click on it and choose “References”

then “Project”.

5. Outline of a class:

Displays the outline of a class by showing its different fields and methods. Select the desired

class or object then right click on it and choose “Show In” then “Outline”.


