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RESUME

Le prix efficient est latent, il est contaminé par les frictions microstructurelles ou
bruit. On explore la mesure et la prévision de la volatilité fondamentale en utilisant les
données a haute fréquence.

Dans le premier papier, en maintenant le cadre standard du modele additif du bruit et
le prix efficient, on montre qu’en utilisant le volume de transaction, les volumes d’achat
et de vente, I’indicateur de la direction de transaction et la différence entre prix d’achat et
prix de vente pour absorber le bruit, on améliore la précision des estimateurs de volatilité.
Si le bruit n’est que partiellement absorbé, le bruit résiduel est plus proche d’un bruit
blanc que le bruit original, ce qui diminue la misspécification des caractéristiques du
bruit.

Dans le deuxieme papier, on part d’un fait empirique qu’on modélise par une forme
linéaire de la variance du bruit microstructure en la volatilité fondamentale. Grace a la
représentation de la classe générale des modeles de volatilité stochastique, on explore
la performance de prévision de différentes mesures de volatilité sous les hypotheses de
notre modele.

Dans le troisieme papier, on dérive de nouvelles mesures réalizées en utilisant les prix
et les volumes d’achat et de vente. Comme alternative au modele additif standard pour
les prix contaminés avec le bruit microstructure, on fait des hypotheses sur la distribution
du prix sans frictions qui est supposé borné par les prix de vente et d’achat.

Mots clés : Volatilité réalisée, bruit microstructure du marché, volume.



ABSTRACT

The high frequency observed price series is contaminated with market microstruc-
ture frictions or noise. We explore the measurement and forecasting of the fundamental
volatility through novel approaches to the frictions’ problem.

In the first paper, while maintaining the standard framework of a noise-frictionless price
additive model, we use the trading volume, quoted depths, trade direction indicator and
bid-ask spread to get rid of the noise. The econometric model is a price impact linear
regression. We show that incorporating the cited liquidity costs variables delivers more
precise volatility estimators. If the noise is only partially absorbed, the remaining noise
is closer to a white noise than the original one, which lessens misspecification of the
noise characteristics. Our approach is also robust to a specific form of endogeneity un-
der which the common robust to noise measures are inconsistent.

In the second paper, we model the variance of the market microstructure noise that con-
taminates the frictionless price as an affine function of the fundamental volatility. Under
our model, the noise is time-varying intradaily. Using the eigenfunction representation
of the general stochastic volatility class of models, we quantify the forecasting perfor-
mance of several volatility measures under our model assumptions.

In the third paper, instead of assuming the standard additive model for the observed price
series, we specify the conditional distribution of the frictionless price given the available
information which includes quotes and volumes. We come up with new volatility mea-
sures by characterizing the conditional mean of the integrated variance.

Keywords: Realized volatility, market microstructure noise, volume, depths.
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INTRODUCTION

La volatilit¢ mesure la fluctuation ou encore la variabilité d’une série temporelle
donnée. Il est important de souligner le caractere latent et stochastique de la volatilité.
Utilisée aussi bien en évaluation d‘actifs, de couverture de risque et de gestion de por-
tefeuille, la volatilité doit étre estimée et prédite avec précision. La littérature classique
GARCH (Generalized Autoregressive Conditional Heteroskedasticity) présente des mo-
deles paramétriques de la volatilité. Une récente approche de 1’économétrie financiere
estime la volatilité de facon nonparamétrique et ma these s’inscrit dans le cadre de cette
ligne de recherche. L’approche nonparamétrique se base sur la théorie de la variation
quadratique. En outre, ce qui a particulierement alimenté I’avancement de la recherche
est la disponibilité de plus en plus grandissante des données a haute fréquence. Il s agit
des prix et volumes des actifs liquides qui sont transigés a titre de milliers de fois par
jour dans les grandes places boursieres. Ainsi, approximer le processus du prix par un
processus en temps continu devient tres légitime. Plus précisément, le processus du prix

p: est modélisé par la semimartingale,

dp: = Wdt + 6;dW;, t € [0, 1]

ou W, est un processus Brownian standard et o; est la volatilité spot. Dans ma these la

variable d’intérét est la volatilité intégrée IV, définie comme

1
IV = / o2ds.
0



L’intervalle [0, 1] réfere a une journée par exemple. Ainsi, on observe presque des ren-
dements infinitésimaux dp, ou a haute fréquence tout le long de la journée [0, 1]. La fré-
quence d’échantillonnage dr atteint une seconde. Cependant, la base de données Trades
and Quotes (TAQ) qui contient généralement des données a une fréquence d’une se-
conde a récemmment disposé de données a la fréquence d’une milli-seconde. Un tel
progres ouvre la porte pour la recherche sur la volatilité spot par exemple.

Un estimateur consistent de la volatilité intégrée est la volatilité réalisée RV définie par,
N
RV=Yr,
i=1

ou N est la taille de I’échantillon et r; est le rendement a haute fréquence, a une se-
conde par exemple. RV est la variation quadratique du processus de prix. Le type de
théorie asymptotique utilisé pour démontrer la convergence de RV vers IV n’est pas
I’asymptotique Standard puisque I’intervalle couvert [0, 1] reste fixe. On utilise plutot
I’asymptotique Infill, qui remplit de plus en plus d’observations ’intervalle fixe. Ainsi
passer de la seconde a la milli-seconde comme fréquence d’échantillonnage permet a la
théorie asymptotique d’étre une approximation plus réaliste.

Un probleme inhérent aux prix a haute fréquence est qu’ils sont contaminées par des fric-
tions dues au marché qu’on appelle bruit microstructurel du marché. En effet, les actifs
sur le marché ne sont pas transigés a leur valeur fondamentale. Les frictions incluent les
cofits de transaction ainsi que 1’asymétrie d’information sur le marché. Concretement, le
bruit rend la volatilité réalisée inconsistente pour la volatilité intégrée. Le premier esti-
mateur de volatilité robuste a la présence du bruit microstructure a été proposé en 2005.

L’idée est basée sur un échantillonnage de la série des prix et combine deux échelles de



temps : haute fréquence et basse fréquence. Une seconde approche basée sur les autoco-
variances a été développée plutard et délivre des estimateurs consistents avec une vitesse
de convergence optimale de N —1/4, La méthode de pre-averaging introduite en 2009 est
principalement la méme que les deux approches précédentes, mais avec un meilleur trai-

tement des effets de bord et des hypotheses sur le bruit moins contraingnantes.

L apport fondamental de ma these est de spécifier le bruit microstructurel du marché
par des variables économiques ; de facon directe dans les deux premiers papiers et indi-
recte pour le troisieme papier. Ainsi, j’améliore la mesure et la prévision de la volatilité
intégrée. En effet, concevoir les frictions comme un bruit ou une erreur de mesure est une
approche statistique qui ignore la nature méme de ces frictions. En plus, il a été¢ démon-
tré que pour un bruit de magnitude stochastique d’ordre un, la vitesse de convergence
optimale est N ~1/4_Or, Iestimateur pre-averaging a déja atteint cet optimum. Outre la
vitesse de convergence, techniquement les hypotheses sur le bruit sont bien limitées et ne
peuvent pas étre relaxées indéfiniment. D’ailleurs, la majorité des travaux de recherche
suppose un bruit identiquement et indépendemment distribué pour simplifier la théorie.
Introduire de nouvelles variables dans I’estimation de la volatilité s’inspire naturelle-
ment de la théorie microstructure des marchés. En effet, cette théorie étudie le processus
de formation des prix ainsi que les mécanismes de marché. La qualité d’un marché est
bonne si le niveau de frictions est faible. Une mesure de la qualité de marché est la va-
riance du bruit microstructure qui contamine les prix observés. Aussi, la différence entre
prix d’achat et prix de vente d’un actif ou spread, constitue une mesure de friction. Un

spread large peut étre engendré par une forte volatilité fondamentale. D’ou un lien entre



la variance du bruit microstructure et la variance fondamentale. J’étudie les implications
de ce lien dans le deuxieéme papier. D’autres observables tel que le volume de transaction
et les volumes d’achat et de vente (correspondant au maximum qu’on peut acheter ou
vendre aux prix d’achat et de vente respectivement) peuvent entrer dans les mesures de

friction.

Le premier papier de ma these est motivé par quelques modeles de frictions de la lit-
térature théorie microstructurelle des marchés. On considere le modele standard additif
ou le prix observé est la somme du prix sans frictions et du bruit microstructure. On uti-
lise cinq variables explicatives pour capturer sous une forme linéaire le bruit. Quatre des
ces variables sont observables, le volume de transaction, le spread, les volumes d’achat
et de vente. L’unique variable explicative qui est inférée est une variable binaire prenant
la valeur +1 si la transaction est initiée par un acheteur ou -1 si la transaction est initiée
par un vendeur. On utilise un algorithme classique pour inférer la série de cette variable
binaire. Le modele se présente comme une régression d’impacte du prix, ou la variable
dépendente est la série des rendements et les variables indépendantes sont les variations
des cinq variables explicatives du bruit. Econométriquement, il s’agit d’une régression
Infill. Le résidu de cette régression est le rendement sans frictions en plus d’un bruit
blanc non capturé par les variables de frictions. On distingue formellement le cas ou le
bruit blanc est nul, ce qui correspond a ce que les variables de friction ont capturé tout le
bruit microstructure. Ainsi, la série des résidus de la regression de I’impact du prix cor-
respond a des rendements moins contaminés par le bruit que les rendements observés.

On montre, aussi bien théoriquement qu’empiriquement qu’on améliore la précision de



I’estimation de la volatilité si on utilise la série des résidus de la régression de I’impact

du prix a la place des rendements observés.

Dans le deuxieme papier, on suppose que la variance du bruit microstructure varie
en fonction du temps. Plus précisément, on modélise la variance du bruit microstruc-
ture comme fonction affine de la volatilité fondamentale. Dans le cadre théorique des
fonctions propres de volatilité stochastique, on examine les conséquences de notre mo-
dele sur la prévision de la volatilité. Le cas du bruit identiquement et indépendamment
distribué a été étudié dans ce méme cadre théorique. On s’interroge ainsi sur I’apport
du caractere variable en fonction du temps du bruit pour la prévision de la volatilité.
Le cadre théorique des fonctions propres de volatilité stochastique permet d’avoir des
formules exactes pour les mesures de performance du forecasting en fonction des para-
metres du modele de volatilité stochastique supposé pour o;. On constate que la volatilité
réalisée RV performe mieux que les estimateurs robustes au bruit microstructure en ce
qui concerne la prévision de la volatilité. En effet, si la variance du bruit est informative
a propos de la variance fondamentale alors tout estimateur robuste au bruit n’exploite
pas cette information. On aborde aussi le probleme de correction de biais de prévision
dans ce papier. En effet, vu le caractere latent de IV, tout modele de prévision néces-
site un proxy de IV pour I’utiliser comme variable dépendante. Sous notre modele, on
montre qu’utiliser RV comme proxy de IV engendre un biais qui dépend du temps. Si la
variance du bruit est constante, le biais de prévision serait constant aussi. Cette conclu-

sion engendre des implications pratiques quand 1I’économetre calcule la volatilité prédite.



Dans le troisieme papier, on se distingue de la littérature en se basant sur d’autres
hypotheses que le modele additif stipulant que le prix observé est la somme du prix
sans frictions et du bruit microstructure. L’intuition de ce papier remonte a la théorie de
I’identification partielle selon laquelle relaxer certaines hypotheses diminue le risque de
mauvaise spécification du modele mais vient au prix d’une identification partielle et non
totale de I’objet d’intérét. Un exemple simple d’identification partielle est de dériver des
bornes pour la variable d’intérét au lieu d’avoir une estimation ponctuelle. En supposant
que le prix sans frictions est compris entre le prix de vente et le prix d’achat, on a dérivé
des bornes pour RV . Empiriquement, ces bornes ne sont pas informatives car trop larges.
On a donc exploré des distributions conditionnelles du prix sans frictions a support borné
par le prix de vente et le prix d’achat. L’ensemble de conditionnement contient les prix et
les volumes d’achat et de vente. En effet, en introduisant le volume dans les parametres
des distributions, on peut examiner 1’impact sur la prévision de I’information apportée
par le volume. On dérive de nouvelles mesures de volatilité correspondant a I’espérance
conditionnelle de RV pour chacune des distributions supposée pour le prix sans frictions.
Le spread apparait naturellement dans les expressions de certaines nouvelles measures.
Pour la prévision de la volatilité, on montre empiriquement que 1’utilisation du spread et

du volume peut étre bénéfique.



ARTICLE 1

VOLATILITY AND LIQUIDITY COSTS

Abstract[]

This paper proposes a new estimator of the integrated volatility using some liqui-
dity costs variables to absorb the market microstructure noise that contaminates high
frequency prices. More specifically, I model the noise as a linear function of the inferred
trade direction indicator, the signed trading volume, the bid-ask spread and the quoted
depths. These liquidity cost measures can totally or partially absorb the market micro-
structure noise. In either case, I argue that the difference between the observed prices and
the estimated liquidity cost measures yield an adjusted price series that is more likely to
satisfy the usual semi-martingale assumption. I formally test this assumption. Empiri-
cally, I estimate daily integrated volatility for the stock Alcoa from the NYSE. For more
than half of 01/2009-03/2011 business days, a linear liquidity cost function captures all
the noise and the sum of squared adjusted returns is a consistent volatility estimator.

Key phrases : Realized volatility, bid-ask spread, trading volume, quoted depths.
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1.1 Introduction

The advent of large intraday financial databases in the last quarter of the twentieth
century has created new opportunities to improve risk management and asset pricing.
While it is natural to think that with respect to data “more is always better”, this is not
the case when dealing with high frequency asset returns. The reason is that as the sam-
pling frequency increases, observed prices are more contaminated with trading frictions
such as bid-ask bounce, rounding errors, discrete trading prices, etc. These so-called
market microstructure effects create a discrepancy between the frictionless price process
and the observed prices, resulting in the inconsistency of realized volatility as an esti-
mator of integrated volatility (see Zhang et al. (2005) and Bandi and Russell (2008)).
To overcome this problem, the existing literature on the econometrics of high frequency
data has proposed a number of alternative estimators that are consistent for integrated
volatility when observed prices are modeled as the sum of the frictionless price process
and an error term that captures the market microstructure effects (see, among others,
Zhou (1996), Zhang et al. (2005), Hansen and Lunde (2006), Bandi and Russell (2008),
Barndorff-Nielsen et al. (2008), Podolskij and Vetter (2009), and Jacod et al. (2009)).
Although these alternative approaches to estimating volatility are robust to some form of
market microstructure noise, they do not exploit any of the possible driving forces of the
market microstructure effects. Nevertheless, the market microstructure theory literature
suggests a number of potential variables that can explain the existence of this noise term.
For instance, Roll (1984) models the trade price noise as a linear function of the trade
direction indicator (which takes the value +1 if the trade is buyer initiated and -1 if the

trade is seller-initiated) whereas Glosten and Harris (1988) models it as a linear func-



tion of the trade direction indicator and the signed volume. The bid-ask spread is also
a common source of frictions as in Stoll (2000) and Huang and Stoll (1997). A larger
spread is associated with more illiquid stocks and is thus a natural measure of frictions.
In Kavajecz (1999), the ask (bid) depth that specifies the maximum quantity for which
the ask (bid) applies is used to capture inventory control costs as well as asymmetric
information costs. In this context, a larger depth implies an increase in liquidity.

In this paper, instead of leaving the noise unspecified EI, I explicitly model the market
microstructure noise as a linear function of liquidity cost measures such as the trade
direction indicator, the signed volume and the depth. This model is estimated by least
squares and yields a adjusted return series that can then be used in conjunction with exis-
ting realized volatility-like estimators. This approach not only provides a more structural
interpretation to the noise inspired in the microstructure theory literature, but can also
result in more efficient estimators of volatility. Improved estimation is due to the fact
that the adjusted returns are more likely to conform to the assumptions that justify the
use of nonparametric estimators. In the extreme case in which the explanatory variables
absorb all the noise, the resulting adjusted returns effectively measure the frictionless
returns and a realized volatility estimator can be used. This estimator is squared root
convergent, which is the maximum rate of convergence attainable in this context. If ins-
tead the liquidity costs only partially absorb the noise, I argue that the remaining noise is
likely better behaved than the original noise series (i.e. it is closer to being exogeneous
and it is less dependent). This may result in more efficient estimators of integrated vola-

tility based on existing noise robust estimators applied to the adjusted returns series.

2In Carrasco and Kotchoni (2011), the market microstructure noise is modeled semiparametrically and
depends on the frequency at which the prices are recorded.
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Specifically, suppose that the Glosten and Harris (1988) model holds. In this case, the
residual obtained by regressing intraday trade returns on the trade direction indicator and
the signed volume variation corresponds exactly to the frictionless return. Therefore, the
sum of squared residuals (i.e. the realized volatility estimator applied to the residuals)
is the sum of squared frictionless returns and it is a consistent estimator of integrated
volatility with the maximum possible convergence rate.

Assuming that a few explanatory variables such as the trade direction indicator and the
signed volume can fully absorb all the noise is perhaps too strong an assumption. The-
refore, I allow for the possibility that the explanatory variables related to liquidity costs
only partially absorb the noise. In this more realistic scenario, the regression residuals
(i.e. the adjusted returns) no longer represent the frictionless returns and a nonparame-
tric noise robust estimator should be used. One important assumption underlying many
of the existing estimators (such as the subsampling approach of Zhang et al. (2005) and
the pre-averaging approach of Jacod et al. (2009)) is the independence between the noise
and the frictionless price process. This exogeneity assumption has been questioned em-
pirically by Hansen and Lunde (2006). Li and Mykland (2007) show that endogeneity
causes the inconsistency of the subsampling two-times scale volatility estimator. Kalnina
and Linton (2008) discuss an alternative estimator, but require strong assumptions on the
endogeneity form. In this paper, I assume that the explanatory variables capture all the
endogeneity component of the noise and therefore justify the use of the subsampling ap-
proach in conjunction with the residuals obtained from the regression of intraday returns
on liquidity costs variables. The assumption that these variables capture the endogeneity

in the noise is consistent with the asymmetric information models of Glosten and Harris
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(1988) and Hasbrouck (1991), where informational frictions are due to adverse selec-
tion, resulting in endogeneity.

Another assumption that typically underlies the justification of many existing nonpa-
rametric estimators of volatility that are robust to market microstructure noise is the
assumption that the noise is i.i.d. This implies first order negative autocorrelation for
observed returns. Although mathematically convenient, this assumption does not hold
empirically (see Hansen and Lunde (2006) and Diebold and Strasser (2008)). I argue
that by filtering the observed returns with a regression that uses liquidity cost measures,
we obtain a less correlated adjusted return series. Therefore, the i.i.d. assumption on
the remaining noise is more likely to be satisfied. As a consequence, I show here that
the pre-averaging estimator of Jacod et al. (2009) applied to the adjusted returns is more
efficient asymptotically than the pre-averaging estimator applied to the original contami-
nated returns. This result is shown when there is no endogeneity problem in the noise and
therefore the precision gain associated with the adjusted approach of this paper comes
solely from reducing the degree of dependence in the adjusted returns.

By comparing the finite sample simulation results with those predicted by the asymptotic
theory, I find that the method advocated in this paper outperforms the pre-averaging ap-
proach. Empirically, I use intraday data for Alcoa from the NYSE covering the business
days of January 2009 to March 2011 in order to estimate daily volatility. I compare the
realized variance estimator using the adjusted prices with the pre-averaging robust to de-
pendent noise estimator. Using trade price and trade direction indicator, volume, spread
and depths as liquidity costs explanatory variables, the noise is completely soaked up

for more than the half of the business days. For the remaining business days, the noise
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is partially absorbed and I use the pre-averaging robust to noise volatility estimator. In
an artificial option trading market, I find that the agent using the realized variance based
on adjusted prices to estimate volatility achieves profits compared to the agent using the
pre-averaging estimator who endure losses.

The rest of this paper is organized as follows. In Section 2, I present the model for mar-
ket microstructure noise based on liquidity costs. I discuss the estimation of this model
and present a test for the performance of the liquidy cost measure. In Section 3, I discuss
volatility estimation based on adjusted prices using the liquidity measures introduced in
Section 2. Section 4 offers a simulation exercise. Section 5 is an empirical application
where I compare the estimation accuracy of the volatility estimator of this paper to the
pre-averaging estimator. In Section 6, I study option trading in an artificial market, and

Section 7 concludes.

1.2 Liquidity Costs Measurement

The standard additive model of the high frequency literature is given by,

pr=p;+&, t€]0,1], (1.1)

where p; is the observed price, p; is the frictionless price, and & is the noise. The fixed
interval [0,1] is a day, for example. In the literature, there are some attempts to link
the noise to market frictions. For instance, Ait-Sahalia and Yu (2009) relate the market
microstructure noise to financial measures of the stock liquidity, and Bandi and Russell

(2006) distinguish between the adverse selection frictions and transaction costs in the
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noise. From an empirical stand point, Hansen and Lunde (2006) show that & is not a

white noise as commonly assumed, but time-dependent instead. In this paper, I explicitly

specify the noise in the standard model (1.1)) as,

&=FB+&,

where F is an M- vector of liquidity costs observables, and & is a residual independent

white noise. Then, the observed price is given by

Pt:P;k‘i‘Fz/B +&. (1.2)

The Glosten and Harris (1988) model is nested in the previous model and is given by,

*
pr=p; + Bi q: + B> qsVr -
g =~ (1.3)
fixed transaction costs size varying transaction costs

~\~

=¢&

For 3, = 0, the Glosten and Harris (1988) model is reduced to the Roll (1984) model.
In this section, I extend the Glosten-Harris (1988) linear model with adding other ex-
planatory variables in the noise. I first make assumptions about the validity of the noise
explanatory variables. Then I provide consistent estimators of the noise parameters f3.
Finally, I test whether the noise is completely or partially absorbed using the observables
F;. 1If the high frequency adjusted returns are free from first order autocorrelation then
the frictionless return is recovered. But if the adjusted returns are still autocorrelated, I
quantify the improvement done so far by comparing the characteristics of the original

noise and the remaining noise.
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The one-dimensional price process, which is evolving in continuous time over the fixed
interval [0,1], is defined on a complete probability space (U, F, P). I consider an informa-
tion filtration, the increasing family of o-fields (Ft)te[o,l] C F, which satisfies the usual
conditions of P-completeness and right continuity. The prices and explanatory noise va-
riables are included in the information set F;.

The arbitrage-free log price p* is assumed to follow the continuous semimartingale dy-

namics

dp;k = ‘u,[dt + th‘/V[,

where W; is standard Brownian motion and oy is a cadlag volatility function, which is
independent (no leverage). The object of interest of the next section is the integrated va-
riance IV = fol O'Ifdu . I dispose of N equidistant observations ati =0, 1,.., N over [0,1].
For notation simplicity, an intraday variable ¥; stands for Y;/y. The sample size N goes
to infinity, because I use the highest data frequency available. Convergence in probabi-
lity is denoted £>, whereas convergence in law is denoted L, For mixed normal limit
distributions, I denote the stable convergence as LN

I denote r; and r; the intraday observed and latent returns p; — p;—1 and p; — pi_,, res-
pectively. The noise variation Ag; is given by & — & _1. The first differences or variations
of the regressors and the residual noise are denoted by X; = F; — F;_jand A§; =& — &1,

respectively. The semimartingale assumption for the frictionless price is fully exploited
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if I regress returns instead of prices. The price impact regression is given by,

!
* R
rpoo= \X/l_/ B+ri+AE ; i=1,..,N. (1.4)
regressand — regressors residual

In matrix notation, the regression is written as,

F=XB+r + AL, (1.5)
where
" x o x™ A&y
r= CX= L A= ] (1.6)
- xM o x™ Aéy

Observe that, in such a regression, the object of interest -the frictionless return- is part
of the regression residual. In terms of relative magnitudes of the frictionless return com-
pared to the liquidity costs increments, we make in the next subsection the assumptions

to identify each component.

1.2.1 Assumptions

I make the following set of assumptions.
Assumption A
(i) & is i.i.d. and independent from p* and F, E[E] = 0.
(ii) F; = f(p}) + E; such that E[F;|p;] = 0; f(.) is a smooth M-dimensional function.

Assumption A(ii) specifies the form of endogeneity between the frictionless price and
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the liquidity costs variables F. To my knowledge, this paper is the first to consistently
measure the frictionless price volatility under an endogeneity assumption as described
in Assumption A(ii). Under this assumption, nonparametric robust to noise volatility es-
timators converge to the volatility of p* + f(p*) B instead of the volatility of p*. This
result is derived by applying Theorem 1 in Li and Mykland (2007). However, if I relax
the assumption that the unabsorbed noise & is exogenous described in Assumption A(i),
it would be impossible to estimate the volatility of p*. Thus, I am assuming that the li-
quidity costs variables capture all sources of endogeneity. The next assumption specifies
the magnitude of the noise.

Assumption B

() E[(F, —F_)(F, — Ftl_h)] = QM a positive definite matrix ; 7 € [0,1], & > 0.

(i1) 1%/2?[:1 Q; L Q), a positive definite matrix where Q; = QU/N.1/N)

(i) £ XN, (xx) 5 Q.

() NE (LY X:88) (2 45X)| 55 5.

Assumption B concerns the stochastic magnitude of the noise variation compared to the
frictionless return, it also defines the validity of the noise explanatory variables. The part
(iv) is useful to derive the asymptotic distribution of the OLS estimator of f3.
Assumption B imposes bounds for the second moment of X, and the order of the va-
riations X is assumed to be &(1). That is, the variance of X does not vanish when the
sample size N grows. Being of &'(1) is a fundamental identifying assumption, because

the order of noise variations is &(1). To be part of the noise, any explanatory variable
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candidate must be &'(1),

=L XA (17)
O(1/VN) o) o(1)

The notation &(1/+/N) for the frictionless return means that its variance is of order 1 /N,
which is the variance size of the Brownian motion increment. Noise variations dominate
frictionless returns at ultra high frequencies, which translates into the explosion of the
realized variance (or the sum of squared returns) signature plot at high frequencies. If

the frictions € are an exogenous white noise, then
N
E(Y r7] = E[IV]+2NE[€?).
i=1

At ultra high frequencies, N goes to infinity and the signature plot explodes because of
the noise term.

In the presence of informational frictions or endogeneity, the noise increments have two
components : the real frictions component and the informational frictions component. In
this case, the first component dominates the second at ultra high frequencies.

The next assumption will be useful when the liquidity costs explanatory variables capture
all the noise and the remaining noise & is zero. In that case, the residual of the regression
(1.5) is the frictionless return only. The heteroscedasticity of the frictionless return r*
under stochastic volatility will impact the asymptotic distribution of the price impact
regression parameters. To handle this case, we make the Assumption C.

Assumption C YV, r2x,x) &5 Q.

Assumption C is not needed when & # 0. Indeed, in that case, the dominating regression
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residual term is AE (r* is negligible). Under Assumption A(i), this dominating term is
homoscedastic.
In the next subsection, I derive the asymptotic theory for the estimators of the liquidity

costs parameters.

1.2.2 Inference

In this section, I show consistency and asymptotic normality of the OLS estimator
of B. Let E be the OLS estimator of 8 defined by E = (X'X)"'X'r. Two cases are
possible. First, the case where there is a residual exogenous white noise & non captured
by the liquidity costs variables F. Second, if the price impact regression residual is the

frictionless return. All proofs are in the Appendix.

Proposition 1. Under Assumptions A and B, and if £ # 0 a.s.,

(i) B 5 B.

@DVNB —B) = A (01, Q7'SQ7").

Usually, endogeneity causes inconsistency of the OLS estimator. In this case, consis-
tency holds even in the presence of endogeneity because of the relatively small ma-
gnitude of the endogeneity. Moreover, I obtain the usual V/N rate of convergence. The
frictionless return moments do not appear in the asymptotic variance of the OLS esti-
mator. Indeed, the stochastic magnitude of the frictionless return is negligible. Let the

adjusted returns 7 be defined as,

(1.8)
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Then, if £ # 0 a.s., Proposition 1 applies and,

7;l':r;(_"Xi (ﬁ_ﬁ)‘{'Aé’i- (1.9)
~—— .
0(1/VN)
Since E is v/ N-consistent, the order of the estimating error is & (E —B)=0(1/VN) =
O (r*). Therefore, based on their order, the frictionless returns and the estimation error
of E are not distinguishable.

If the noise is completely captured by the liquidity costs variables, the following result

holds.

Proposition 2. Under Assumptions A, B, C, and if € =0 a.s.,

(i) B 5 B.

(iH)N(B —B) = A ()1, @7'Q7Q7).

Consistency is then obtained with a faster rate of convergence than that of the Pro-
position 1 because the residual of the price impact regression is of smaller order of

magnitude than the case where & # 0,

~ /

[ l* Xi - B )
ri=r;+X; (B—B) (1.10)
O(1/N)

in which case the frictionless returns are now the dominant term in the adjusted return

expression.
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1.2.3 Assessing the quality of the liquidity costs measure

As the previous section pointed out, the order of magnitude of the adjusted return 7

is different depending on whether the noise is completely absorbed (i.e. & = 0) or par-
tially absorbed (& # 0). In this section, I present a formal test for serial correlation in the
adjusted returns. The null hypothesis of zero first order serial covariance in the adjusted
returns corresponds to the case where the noise is completely absorbed. The alterna-
tive hypothesis of non zero serial covariance in adjusted returns corresponds to the case
where the noise is partially absorbed.
Within the microstructure literature, this test may be interpreted as a test for the quality
of measurement of trading costs. If the null hypothesis is not rejected, then the expla-
natory variables in the noise capture all the frictions related to trading costs. If the null
hypothesis is rejected, the trading cost measures do not capture all the real frictions.

The null hypothesis Hy and the alternative hypothesis H; are, respectively,

Hy:&=0a.s.
(1.11)

Hy: & #0as.

The hypothesis Hy and H; are respectively equivalent to RC1 =0 a.s. and H; : RC1 <
0 a.s., where the realized autocovariance of order one RC1 for the adjusted returns is

given by,

2

RC1 = (Zr,r, 1—|—Zrlr,+1> (1.12)

l:
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In Barndorff-Nielsen et al. (2008), the asymptotic distribution of the first order autoco-
variance of a continuous semimartingale increments is given. In particular, if the residual
noise & is totally absorbed, that is, if Hy is true, the asymptotic distribution derived by

Barndorff-Nielsen et al. (2008) applies.

Proposition 3. Under Hy, and given Assumptions A, B, and C,

VNRC1 % 4(0,10),

where the integrated quarticity is defined by IQ = fol Gj du.

Suppose IQ is a consistent estimator for the integrated quarticity 7Q. Then, the test

statistic Sy is given by

NRC1
Sy = VN —. (1.13)
10
Observe that under Hy : RC1 =0 a.s.,
Sy L A (0,1). (1.14)
I reject Hy at confidence level o when
|Sn| >cpg, (1.15)

where g denotes the 1 — §-quantile of the .4#7(0, 1) distribution. Notice that this test

is consistent against the alternative H; : RC1 # 0 a.s.
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1.3 Volatility Estimation

Using the adjusted high frequency returns, I estimate integrated volatility in this sec-
tion. First, for the case where the frictionless price is recovered, the realized variance is a
consistent estimator with optimal convergence rate. Second, if the liquidity costs are only
partially absorbed, a robust to noise volatility estimator is still needed. The asymptotic

theory is presented for the two cases.

1.3.1 The frictionless return identification case

I denote [L,L] = ¥V ,(AL;)? the realized variation of a series L;, and (L*,L*) =

limy_[L*,L*] where L} is a semimartingale, and (L*,L*) is the quadratic variation.

Theorem 1. Under Assumptions A, B, C, and if E =0 a.s.,

@) [p,p) S 1v.

(ii) VN([p,p] —IV) > .4 (0,210Q).

According to Theorem 1, if the liquidity costs measures fully absorb the noise, the the
realized volatility of the adjusted price process p is a consistent estimator of IV, and its
asymptotic distribution is the usual distribution of the realized volatility when no market
microstructure noise exists. In particular, estimation error in 3 does neither impact the
consistency nor the asymptotic distribution of the estimator based on the adjusted returns
because this error is of smaller order of magnitude (itis &'(1/N)). To compute confidence
intervals for the integrated volatility, a feasible estimator of the integrated quarticity is

needed. I show in the appendix that the sum of adjusted returns to the fourth power is a
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consistent estimator of the integrated quarticity.

1.3.2 The partially absorbed liquidity costs case

In this section, I treat the case where the noise is partially absorbed. Among the
existing nonparametric noise robust /V estimators I choose the pre-averaging method of
Jacod et al. (2009) because it provides a consistent estimator of the integrated quarti-
city in the presence of market microstructure noise. The integrated quarticity is needed
in the asymptotic distribution of robust to noise volatility estimators. Moreover, under
heteroscedastic and autocorrelated noise, the pre-averaging estimator converges to the
integrated variance at the optimal rat of N'/4. Let L, be a given semimartingale conta-

minated with noise. The sum of the pre-averaged increments [L,L]*"$ is defined as,

=

L, L] = NZ: {é ¢ (%) ALi+j}27

where AL; =L;—L;_j, \/LN = 0+ O(N~/*) for some 8 > 0, and ¢ (x) = min(x, 1 —x).
To reduce the influence of the noise, the pre-averaging approach averages the increments
of L.

Hautsch and Podolskij (2010) extend the original pre-averaging method of Jacod et al.
(2009) to allow for autocorrelated market microstructure noise. I compare the estimator
of Hautsch and Podolskij (2010) using original returns to the Jacod et al. (2009) estima-

tor using adjusted returns. I find that using adjusted returns in the pre-averaging estimator

of Jacod et al. (2009) achieves consistency of the integrated volatility estimator even if

3The kernel estimator of Barndorff-Nielsen et al. (2011) is also robust to heteroscedastic and autocor-
related noise but converges at the slower rate of N'/3.
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there is endogeneity. The pre-averaging estimator of Jacod et al. (2009) or Hautsch and
Podolskij (2010) using the original returns are inconsistent in the presence of endoge-
neity. When there is no endogeneity, the pre-averaging estimator of Jacod et al. (2009)
using adjusted returns is more precise than the pre-averaging estimator of Hautsch and
Podolskij (2010) using original returns (which is consistent in the absence of endoge-
neity).

To describe my next result, some additional notation is required. In particular, let (£;);>0
be a stationary g-dependent sequence, B(g) = E[E2] + E[(F'B)?] + 2y7 _ p(m), where
p(m) = cov(E, ﬁ,FIIJFm B). Let B(q) be a consistent estimator of B(g). The pre-averaging

estimator of Hautsch and Podolskij (2010) using original prices is defined as [p, p|/"* =

v P- P17 — 53 B(q)-

Proposition 4. Suppose Assumptions A and B hold. In the case & # 0 a.s.,

i) If f(.) #0, [p,p]P™ is inconsistent.

i) if f(.) =0,
NY4([p,plPe —1v) 5 4 (0,Te(q)),

where I'e(q) = %9 10+ 12¥1V + %B(q)z.

According to Proposition 4 ii), the pre-averaging estimator is consistent when there
is no endogeneity at the usual N 1/4 rate of convergence. However, as showed in Part 1),
in the presence of endogeneity via f(.), the pre-averaging estimator based on original
prices is inconsistent. My next theorem characterizes the limiting distribution of the

pre-averaging estimator based on adjusted prices p. Let the pre-averaging estimator of



Jacod et al. (2009) using the adjusted prices defined as [p, p]P"¢ = 12 [p, p|*8 — (- +

INfA =

§)[P, Dl

Theorem 2. Suppose Assumptions A and B hold. In the case & # 0 a.s.,
(i) [p, plre S 1v.

(ii) N4 ([P, pIPre —1V) =5 4 (0,T),

where Ty = Blo 10+ 12%&32]IV + %E[éz]z.

(iii) Te(q) = T¢ > 0,

if f(.) =0 and (E);>¢ is a stationary q-dependent sequence.

Theorem 2 (i) shows that the pre-averaging estimator based on adjusted prices is
consistent even in the presence of endogeneity. Part (ii) gives the asymptotic distribution
of [p,p]P". To compare the precision of the usual estimator [p, p|’" and the [p, p]P"®
estimator, I assume that f(.) = 0 in (iii) because [p, p|P"® is inconsistent otherwise. Result

(iii) shows a precision gain if [p, p]P"*

is used to estimate volatility. To conclude, when
the noise is only partially absorbed, the pre-averaging estimator based on adjusted prices
is robust to endogeneity and is more precise than the usual estimator based on the original
prices.

In the next section, I provide a simulation exercise to examine the finite sample properties

of the noise parameters estimators and the volatility estimators.

1.4 Monte Carlo evidence

In this section I compare the finite sample simulation results with those predicted by
the aforementioned asymptotic theory.

I use a two-factor affine stochastic volatility model as in Andersen et al. (2011). Recall
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the frictionless price dynamics,

I take a constant drift g, = u = 0.0314. The first volatility model M1 is a GARCH

diffusion model. The instantaneous volatility is defined by the process,
do? = x(6 — c?)dt + GG,deVt(l),

where k = 0.035, 8 = 0.636, and o = 0.1439.
The second model M2 is a two-factor affine model. The instantaneous volatility follows

a two-factor affine dynamics given by,

o} = 0'12’, + 0’227t dcﬁt = Kj(0; — Gﬁ,)dﬂr an%tdm('j+1), j=1,2,

where k1 = 0.5708, 0; = 0.3257, n; = 0.2286, k» = 0.0757, 6, = 0.1786, and 1, =
0.1096, implying a very volatile first factor and a much more slowly mean reverting se-
cond factor.

Now, I turn to the market microstructure noise explanatory variables dynamics. The vec-
tor of the noise explanatory variables is F; = ( @ qvi qs; d° drb )/ which defines
the trade direction indicator, the signed volume, the signed spread, the ask depth and the

bid depth, respectively.
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1.4.1 The trade direction indicator

The direction of the trade g, is triggered by a Bernoulli process with clustering.
Trades cluster as buys are likely followed by buys and sells are likely followed by sells.
Moreover, some big volume trades are divided into small volume trades and executed
consecutively as a series of sells or buys. The Bernoulli process is originally a sequence
of random binary variables which are independent. A generalization of a Bernoulli pro-
cess which incorporates a dependence structure was given by Klotz (1972), in which he
considered g1, ¢2, ..., qn, as a stationary two-state Markov chain with state space {—1,1}.
The parameters of the process are & = Prob(q; = 1) and A, which measures the degree

of persistence in the chain. The transition matrix is given by,

12041 a (1-Ma
1-o -

T(a,h) = . (1.16)
1-2 A

I use the parameters @ = 1/3 and A = 0.8 to simulate the trade direction sequence.

1.4.2 The trading volume

For the trading volume, the process - inspired from Hasbrouck (1999) - is given by,

vi=M + O (vier — )+ €,

where €' follows a .47(0,0.8) and ¢* = 0.3. To allow for an intraday U effect, the deter-

ministic component 1" of the volume process is specified as a combination of exponen-
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tial decay functions,

open

‘ulv =k + kgpen exp(—k3 T?PEH) + kglose exp(_kgloser_close),

l 1

where Tl.o P€ is the elapsed time since the opening trade of the day (in hours) and Tl-close is
the time remaining before the scheduled market close (in hours). I calibrate the parame-

ters as k; = 15, k57" = 0.5, k37" = 2.5, k5/%¢ = 0.2, and k§/*5¢ = 3.5.

1.4.3 The bid-ask spread

To simulate the spread series, I follow Hasbrouck (1999) model defined as,

N lOg(Ai —Bi>,
A; = Ceiling[(exp(p;) +¢)/Tick|Tick,

B; = Floor|(exp(p}) — c?)/Tick] Tick,
where the quote exposure costs are assumed to evolve as,

a

cf =M + o (el —piy) e
b
cf = uf + (e — i)+ e

c__ open open _open close close .close
Ui =21+2, CXP(—Z3 T; ) +25 "exp(—25 1),

where 777" is the elapsed time since the opening trade of the day (in hours) and Tflose is

i
the time remaining before the scheduled market close (in hours). I calibrate the parame-
ters as z; = 10, 257" = 0.4, 237" = 1.5, 5/ = 0.1, and 2§/ = 2.5. The innovations

e and &’ are independently distributed as .47(0,0.9). The Tick size or minimum price
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variation is 0.01$. The New York Stock Exchange tick size changed from 1/16$ to 0.01$
on January 29, 2001. Technological innovation is indeed propelling the move in financial
markets away from fractional trading and towards decimal trading.
1.4.4 The quoted depths

I generate the quoted depths series using the following AR dynamics,

df = pu’ + ¢ (di — u!) + e

df = pt 4 9 (dl — u?) + &
where €% and &4 are independently distributed as .4 (0,0.5), and u? = 10.

1.4.5 Other parameters

For the endogeneity, I fix the parameters of the function f(p*) as follows,

I %

fr)=(0 1077 2107 510 51078 )p"
The first element of the function vector is null because it corresponds to the trade direc-
tion variable which is binary and could not have a semimartingale component. The true

parameter f3 is fixed as,

!

(51074 —0610% —3107% 2107% —2107%).

B

I add a white noise & for a randomly chosen half of the intraday prices. Precisely, I take

&~ 4(0,51079).
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1.4.6 The results

I run 1000 replications or days. For each day a trade occurs every 5 seconds. A busi-
ness day has 6.5 working hours. For the simulation results, I report in Table 1./ and 1.1,
the bias, variance, and RMSE of the interest variables for model M1 and M2 respecti-
vely. The rows marked relative” report the corresponding results in percentage terms. I
compare three volatility measures. The first measure is the pre-averaging estimator de-
noted [p, p]P"¢, the second is the sum of squared adjusted returns denoted [p, p], and the
third measure is [p, p|/"*s PP¢" which is the sum of squared adjusted returns if & = 0 and
the pre-averaging estimator using adjusted returns else. The results show that the price
impact regression parameters -f3- are estimated very precisely. The [p, p] estimator has
the largest bias because of the residual noise &. The bias of the pre-averaging estimator
is due to the inconsistency for integrated volatility of this estimator in the presence of
endogeneity between the frictionless price and the liquidity costs. The [p, p]/"*s P%P¢" has
the best performance as advocated by this paper asymptotic theory. I measure perfor-
mance using the root mean squared error criterion. Both volatility models M1 and M2

have similar results.

1.5 Empirical analysis

This section is organized as follows. First, I check that the noise explanatory va-
riables are of order one. Second, I present results for the noise parameters estimation. I
find that all the coefficients are significant at the 95% level. Third, I graphically compare
the realized variance and the realized first order covariance for the original prices and the

adjusted prices. I find that adjusted prices are closer to a semimartingale than original
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prices. I propose a formal test to check if the adjusted price is a semimartingale. Fourth,
I estimate integrated volatility using original prices and adjusted prices.

I use Alcoa data, listed on the NYSE covering the 01/2006-03/2011 period. The noise
explanatory variable ¢; is not directly observed, but I infer it from observed series using
the Lee-Ready (1991) trade classification algorithm. A trade is classified as a buy if the
trade price is closer to the ask than the bid, g; = +1. It is classified as a sale if the trade
price is closer to the bid, g; = —1. When matching trades and quotes, I assume a zero
time lag because I use recent data. Appendix A details the data manipulation procedure.
As stated before, the volatility signature plot of Andersen et al. (2000) draws the mean
of daily realized variances across the sampling frequency of the underlying returns. This
plot illustrates the main problem of ultra high frequency data which is the noise conta-
mination problem.

An explanatory variable is valid (i.e. €'(1)) if its quadratic variation explodes at high
frequencies, as in Assumption B. Since g; has a Bernoulli distribution, we know that
the quadratic variation of g; explodes at a high frequency. Figure 1.2 uses the signature
plot visual tool to verify that the quadratic variation of volume, v;, explodes at high fre-
quencies. The same explosion of the sum of squared quoted depths and the spread is
presented in Figures 1.3 — 1.5. Therefore, they are valid noise explanatory variables.

I find that the noise explanatory variables coefficients are significant at the 95% confi-
dence level for almost all the business days (cf. Figures 1.6-1.10). The confidence inter-
vals are computed for the worst case & # 0. Indeed, in such case the confidence intervals
are larger that for the best case & = 0. In the former case, they are of order &'(1/y/N),

and in the latter case of order &(1/N).
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The trade indicator g coefficient is positive for all days except one. The signed volume
qv coefficient is negative for all days. A transaction with higher number of shares ge-
nerates a lower cost per share. For the signed spread gs, the coefficient is negative. A
wider spread is associated with a smaller buy price and a bigger sell price. The quoted
depths coefficients are positive for the ask volume and negative for the bid volume. This
is consistent with inventory control matters. If increasing the ask volume, this makes the
price higher in an attempt to elicit sales. The same is true for the bid volume.

Figure 1.11 presents the RC1 test results. For 344 among 565 business days, the test is
not rejected.

Realized variances with the highest frequency underlying returns are plotted in Figure
1.12. Observe that the explosion is less problematic at high frequencies for the adjusted
prices. Consequently, the unabsorbed noise has a smaller magnitude than the original
noise. The first order autocorrelation for the noise are plotted in Figure 1.11. The origi-
nal noise first order autocorrelation is negative whereas the unabsorbed noise first order
autocorrelation is of smaller magnitude and tends to be rather positive than negative.

To estimate daily integrated volatility, I use the sum of squared adjusted returns as in
Theorem 1 if the zero noise test of section 1.2.3 is not rejected, and the pre-averaging
estimator robust to dependent noise as in Theorem 2 with adjusted prices if the zero noise
test is rejected. I denote such an estimator RV P4P¢r 1 also compute the pre-averaging
estimator using original prices. Figure 1.13 plots the pre-averaging estimator and the
RV!his paper T find that, for 202 business days among 565, the confidence intervals of
the pre-averaging estimator and the RV"#5 P4P¢" are non overlapping. This result shows

that since for many days, the pre-averaging estimator is statistically different from this
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paper’s estimator, one suspects that the pre-averaging approach underlying assumptions’
are unrealistic. Moreover, for Hautsch and Podolskij (2010) empirical results, the esti-
mators are not necessarily positive in all cases and the authors bound them from below
by zero. I do the same in this section.

I also divided each daily high frequency data sample into 3 sub-samples : morning per-
1od, lunch-time and afternoon period. I find that all the empirical conclusions also apply
for the sub-samples (see Fig. 1.14-1.26 in Appendix C). This exercise is helpful if one is

interested in the intradaily instead of daily volatility.

1.6 Volatility forecasting and option trading

In this section I evaluate the proposed integrated volatility forecasts in the context of
the profits from option pricing and trading economic metric. Using alternative forecasts
obtained from alternative volatility estimates, agents price short-term options on Alcoa
stock before trading with each other at average prices. The average profit is used as the
criterion to evaluate alternative volatility estimates and the corresponding forecasts.

I construct an artificial option market as in Bandi et al. (2008) in order to quantify the
economic gain or loss for using alternative Integrated Volatility measures.

Our hypothetical market has 3 traders. Each trader uses a different measure. The first
measure is the pre-averaging estimator denoted [p, p]”"¢, the second is the sum of squa-
red adjusted returns denoted [p, p], and the third measure is [p, p]'"s P4P¢’ which is the
sum of squared adjusted returns if & = 0 and the pre-averaging estimator using adjusted
returns otherwise.

First, each trader constructs an out-of sample one day ahead variance forecast using his
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daily variances series and computes his predicted Black-Scholes option price. I focus on
an at-the-money price of a 1-day option on a 1 Dollar share of Alcoa or General Motors.
The risk free rate is taken to be zero.

Second, the pair-wise trades take place. For two given traders, if the forecast of the first
one is higher than the mid-point of the forecasts of the two traders, than the option is
perceived as underpriced. And the first trader will buy a straddle (one call and one put)
from his counterpart. Then the positions are hedged using the deltas of the options.
Finally, I compute the profits or losses. Each trader averages the two profits or losses
from pair-wise trading. I report the average profits across all days in the sample.

The option trading and profit results are computed as in the following three steps,

1-Let o; denote the volatility forecast for a given measure. The Black-Scholes option
price F; is given by,

b= 2(1)(%6,) — 1, where @ is the cumulative normal distribution.

2-The daily profit for a trader who buys the straddle is :

| R | 2P+ R;(1— 2@(%@)), where the last term corresponds to the hedging, and R; is
the daily return for day t.

The daily profit for a trader who sells the straddle is :

2B— | R | —Ri(1— 2@(%@)),

3- I then average the profits and obtain the metric.

I report in Table 1.7I1 the in-sample and the out-of-sample R? of the Mincer-Zarnowitz
regressions of the realized variance using low frequency returns on a constant and the
forecast of volatility using [p, p]P" , [p, p] , and [p, p]/"s PaP¢r | respectively. The forecas-

ting model is an AR(3) with a rolling window of 100 days. I use Alcoa data, listed in the
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NYSE covering the 01/2006-03/2011 period. Both in-sample and out-of-sample R? of
the [p, p] forecast are the best among the three forecasts. However, the R? of [p, p] and
[p, p]P™ are very close. The same ranking is obtained for the profits, losses in Cents for
the option trading exercise that uses the out-of-sample forecasts of the previous forecas-
ting model. The biggest loss is endured by the agent using the pre-averaging estimator

this paper

whereas the agent using [p, p] has the best profits. The agent using [p, p| is ran-

ked as the second and endures a loss.

1.7 Conclusion

I use measures of friction from microstructure theory to absorb the noise that conta-
minates high frequency prices. I find that explicitly modeling the noise improves the
measurement of volatility. If the noise is completely absorbed, the volatility estimator
has a convergence rate of N 1/2 instead of N'/4. Instead, if the noise is partially absorbed,
the unabsorbed noise is closer to an exogenous white noise than the original noise. In
that case, the volatility estimator is more precise since the asymptotic variance is smaller.
I focus on integrated volatility estimation, but the approach could improve measurement
of intraday quantities such as spot volatility, powers of volatility, leverage effect, and
integrated betas in a multivariate setting. Potentially a nonlinear liquidity costs function
would capture more noise than a linear one. Indeed, nonlinearities are well documented
in market microstructure theory. The resulting econometric model would be a nonpara-
metric price impact regression. Finally, adding jumps in the frictionless price dynamics

may not alter the approach of this paper.
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Figure 1.1 — The trade price signature plot.

Figure 1.2 — The signed volume signature plot.

Figure 1.3 — The signed spread signature plot.

Figure 1.4 — The ask depth signature plot.

Figure 1.5 — The bid depth signature plot.



Figure 1.6 — The trade indicator coefficient with 95% confidence interval.

Figure 1.7 — The signed volume coefficient with 95% confidence interval.

Figure 1.8 — The signed spread coefficient with 95% confidence interval.

Figure 1.9 — The ask depth coefficient with 95% confidence interval.

Figure 1.10 — The bid depth coefficient with 95% confidence interval.
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Figure 1.11 — Realized covariance test results with 95% confidence band.

Figure 1.12 — The original and adjusted realized variance.
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Figure 1.13 — Time series of daily realized measures.
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R? in-sample R out-of-sample profits/losses in Cents

[p, pP’ 0.5113 0.5102 20.1062
[P, Pl 0.5144 0.5199 0.0319
[p, p|his paper 0.4935 0.4957 -0.0535

Table 1.III — Alcoa forecasting performance.

1.8 Appendices

Appendix A : data manipulations
As in Barndorff-Nielsen, Hansen, Lunde and Shephard (2008), I do the following :
1-All data :
P1. Delete entries with a time stamp outside the 9 :30 am to 4 pm window when the
exchange is open.
P2. Delete entries with a bid, ask or transaction price equal to zero.
P3. Retain entries originating from a single exchange (NYSE in our application). Delete
other entries.
2-Quote data only :
Q1. When multiple quotes have the same time stamp, I replace all these with a single
entry with the median bid and median ask price.
Q2. Delete entries for which the spread is negative.
Q3. Delete entries for which the spread is more that 50 times the median spread on that
day.
Q4. Delete entries for which the mid-quote deviated by more than 10 mean absolute de-

viations from a rolling centered median (excluding the observation under consideration)
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of 50 observations (25 observations before and 25 after).

3-Trade data only :

T1. Delete entries with corrected trades. (Trades with a Correction Indicator, CORR 6 =
0).

T2. Delete entries with abnormal Sale Condition. (Trades where COND has a letter code,
except for "E" and "F"). See the TAQ 3 User’s Guide for additional details about sale
conditions.

T3. If multiple transactions have the same time stamp : use the median price.

T4. Delete entries with prices that are above the ask plus the bid-ask spread. Similar for
entries with prices below the bid minus the bid-ask spread.

Appendix B : technical proofs

Proof of Proposition 1

(i) Consistency

We have,

B-B=xx)"'Xr-pB
= (XX)'X (rF+XB+AE)-B

(A.1)
= (X X)X (r + AE)

- [N_lX'X]l [N—‘X’(r*+A5)

Assumption A (3) gives the limit of the first term

[N—IX’X] 0 (A.2)
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For the second term,

[N*lx’(rwAé;)} - [N*IX’Ag] +0(1/VN) (A.3)

INTIX'Ag| = [NTUFE] - [N lag(€)]
- [N_llag(F)lﬁ] + [N_llag(F)/lag(é)] (A.4)

—0

because F and & are independent and E[F] = E[E] = 0. Therefore the second term
converges to 0, it implies along with (A.2) the consistency of 3.
(i) The central limit theorem

Recall from (A.1),

VNGB -p) =[N 'x'x] [V X 0 1 a8)] (A5)
‘We have,

VN X (A8 = VN X VN X AE

~
_|_
B>

o

I
4
M;

i * I I * -1
(/ildf(pu>+Fi_E'—1)ri+\/N XA& (A6)

I
_

I
3
M;

i * i * L * -1y
([ arw [ api+(Fi-Fo)+ YN 'Xag

the dominant term

—



Using Assumption B (iv), we have

VN X' AE 5 ¥ (0)px1,S)
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(A7)

Using Theorem 1 of Barndorff-Nielsen et Al. (2008) for example to find the convergence

rates of the two first terms in (A.6),

i—

N ~
ﬁ( ( i—Fi1)r§‘> =0(1)

i=1

N i i
o (E( | ari /i_ldm) = 0(1/VN)

R

&)

Combining (A.6)-(A.8) gives

VN(B-B)=VN (0(1/VN)+0(1)+ [N"'X'x| VN 'X'ag

_——
—Q-1 o(1)

which implies the CLT using (A.9).

Proof of Proposition 2

(i) Consistency

(A.8)
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If £ =0, we have

B-B=(xx)"x"r-p
= (XX)"'X' (¥ +XB) - B

(A.9)
=XxX)'x'r

! _1 /!
- [N’IX X} [N*lx r*}

Using the Cauchy-Schwarz inequality for each M-vector element, we obtain that

—1y(m) -1 Z?lzlxi(m)z " o A.10
N 'xmp <N =ESE L m=1M (A.10)
i=1

Ny (m)2
Since ¥V, 12 5 1v and =i — — 6(1) than N-1x ) Ly o,

So N-1x'r* 5 0. Using (A.11), we obtain B consistency using (3) in Assumption B
stipulating that N~'X'X = &(1).

(ii) The central limit theorem

i—

SN g o
Xr*:}:(/ ldf(p’;)+ﬂ_p;71)r;k

) l:il i (A.11)
=Y ([ s [ apit (i)

1



Using Theorem 1 of Barndorff-Nielsen et Al. (2008) we have,

(l (| aren [ dpii)) = 01/VN)

(Fi—Fit)ri = A ((0)yrx1,2")

'MZ

N
Il
_

notice that lim[ AR Z*ZXX} —lim[ AR l*ZXX] Q*. We have,

2 A (0w, Q)

Recall,

-~

N(B—B) = [N*IX’X} - [X/r*}
Then we obtain,

-~

N(B—B) = A (O, Q7'Q°Q7)

Proof of Proposition 3

Recall,

46

(A.12)

(A.13)

(A.14)

(A.15)

(A.16)
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under Hy,

ri = \rl-/—kX,-(ﬁ—ﬁ). (A.17)
oUVE) o)

so the frictionless return dominates the adjusted return. Therefore, we can use the Theo-

rem 1 of Barndorff-Nielsen et Al. (2008) to obtain that,

1

N N
\/ﬁ< 7’\1'7”\1‘1‘1‘27”\1';"\#1) = 4(0,41Q) (A.18)

i=1

so VNRC1 2 ¥ (0,10).

O
Proof of Theorem 1
We have in the zero residual noise case,
F=r+(X-X)B-B)+ X(B-B
E-X)B-B)+ LB-P) (A.19)
endogenous noise exogenous noise
Since O(B — ) = O(1/N). Therefore,
r= _r +£X—X2£B—ﬁl+X(B—B) (A.20)
o(1/VN) 6(1/NVN) O(1/N)

So the frictionless return dominates the frictions increment and the adjusted return is

almost the equal to the frictionless return. So consistency and limit distribution results
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are the same if the frictionless return were observed i.e.
0 [p*,p*] 5 1Iv.

(i) VN([p*,p*] - IV) = (0,2 1Q).

O
Proof of Theorem 2
For the usual pre-averaging estimator,
[p. PP =[p" +F'B+&,p"+F B+
=[P+ (") +F)B+E.p"+(f(p) +F)B+E] (A21)

=" +fP)VB+ (FB+&) .p"+f(p")B+(FB+E)

(. J/

vV
semimartingale autocorrelated noise

Since the noise is autocorrelated, we need an autocorrelated-noise-robust estimator. In
Hautsch and Podolskij (2010), the authors extend the pre-averaging estimator to the case
of autocorrelated noise. But they restrict the noise to stationarity and g-dependence type.

By applying their Lemma 3.1, we have

12
0N

+2 (E[éz] FEFBP+2 ) P<m>>

PP 5 (0 + F (0" Bop* + £(0") B)
(A.22)

m=1

which proves the proposition result along with a straightforward application of the theo-
rem 3.3 of Hautsch and Podolskij (2010).

(i) the pre-averaging estimator using adjusted prices.



B, PP =[p*+F (B—B)+&.p"+F (B—PB)+&7

=[P+ (f(p*) +F)B—B)+&p"+(f(p*) +F)(B—B)+&]P
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(A.23)

="+ )V (BB)+F(B—P)+&p"+f(p") (B—B)+F (B—P)+E"

endogenous noise exogenous noise
- o

Vv
semimartingale

In terms of orders of magnitude, the intuition is

F=rt X'B-B)  +X(B-B)+ AL

very small endogenous noise small big

Vv
exogenous noise

=+ X(B—P)+ A&
— =
o0(1/V/N) o(1)

Since 0(B — ) = 0(1//N). Therefore,

we have,

(A.24)

(A.25)

(A.26)
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The first term converges to /V. For the second term,

A N / A
— trace | (B—B) (L. XX))(B —/3)) (A27)
i=1

— trace Zxx )(B-B)B-B)

EL L orEeN
—NQ

we deduce that plim(YY (X, (B — B))?) = 2E[£?).

For the third term,
N / A N ~ ] A
2Y riXi(B—B)=2) rf(X'+X) (B—B)
i=1 j

%,_, o1 /m (A.28)

_ ﬁ(l/mmﬁr;&(ﬁ—

——
—0

so the third term converges to 0. Combining (A.28)-(A.30) gives the result (i).

(ii) the CLT of the pre-averaging estimator using the adjusted prices.
Recall (A.14),

AP TRTSS (A.29)
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So the CLT is a direct application of the usual pre-averaging estimator CLT with a biais
given by (ii).

To correct the biais, we use 5[, p] — E[£2].

(iii) Efficiency gain.

Straightforward because B(q) > E[£2].



Appendix C : Intraday results

Figure 1.14 — Signature plot using trade price (intraday).
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Figure 1.15 — Signature plot signed volume (intraday).

RV (h) = Z((]ivi — ql'fhvifh)z

1
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Figure 1.16 — Signature plot signed spread (intraday).

RV (h) = Z(Qisi - qi*hsifh)z

1
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Figure 1.17 — Signature plot ask depth (intraday).

RV(h) =Y (Di—D;_)?

i
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Figure 1.18 — Signature plot bid depth (intraday).

RV(h) =Y (Di—D;_)?

i
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Figure 1.19 — The trade direction indicator coefficient (intraday).
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Figure 1.20 — The signed volume coefficient (intraday).
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Figure 1.21 — The signed spread coefficient (intraday).
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Figure 1.22 — The ask depth coefficient (intraday).
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Figure 1.23 — The bid depth coefficient (intraday).
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Figure 1.24 — Realized covariance test results (intraday).

The test using adjusted returns is not rejected for 359, 471, 399 among 565 (respec-

tively for mornings, lunch-times, and afternoons).



Figure 1.25 — The original and adjusted realized variance (intraday).
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Figure 1.26 — Time series of daily realized variances (intraday).

For 148, 151, 185 among 565 (respectively for mornings, lunch-times, and after-
noons), the confidence intervals of the pre-averaging estimator and the RV Parer are

non overlapping.



ARTICLE 2

VOLATILITY FORECASTING WHEN THE NOISE VARIANCE IS

TIME-VARYING

Abstract

This paper analyzes the forecasting of integrated variance when one observes high
frequency noisy prices of assets. The paper departs from the literature by assuming that
the variance of the noise is time-varying. We assume that the conditional variance of the
noise is an affine function of the instantaneous variance of the frictionless price. In this
setting, we revisit the results of Andersen et al. (2011) and quantify analytically the pre-
dictive ability of various measures of integrated variance. Importantly, the time-varying
aspect of the noise variance implies that the forecast of the integrated variance is dif-
ferent from the forecast of a realized measure. We characterize this difference, which is
time-varying, and we propose a feasible bias correction. We assess numerically the use-
fulness of our approach for realistic models. We then study the empirical implication of
our method when one deals with forecasting integrated variance or trading option. The
empirical results highlight the improvements achieved by assuming a time-varying noise

variance.

Key phrases : Realized volatility, volatility forecasting, heteroscedastic noise, eigen-

function stochastic volatility models.
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2.1 Introduction

Volatility forecasts are central to many financial issues such as empirical asset pricing
finance and risk management ; see Andersen et al. (2006) for different forecast usages.
The good performance of the return volatility forecasts using high frequency data was
first shown in Andersen et al. (2003).

A problem volatility forecasters face is how to deal with the noise that contaminates the
latent frictionless high frequency prices. One answer is to construct volatility forecasts
based on low frequency returns in order to limit the impact of the noise accumulation.
For instance, Andersen et al. (2003) use intraday returns sampled at a thirty minutes
frequency. Another answer is to use robust to market microstructure noise volatility es-
timators such as the two time scales estimator of Zhang et al. (2005).

The innovation of this paper is to propose a framework under which the realized variance
- defined as the sum of the squared intraday returns - based on the highest available
frequency returns may improve volatility forecasting if the noise variance is an affine
function of the frictionless return volatility. The intuition behind this result is that under
this assumption the noise variance contains information about the fundamental volatility.
Consequently, the realized volatility measure, although inconsistent, also carries infor-
mation about the fundamental volatility. Moreover, by properly centering and scaling the
realized volatility, we obtain a consistent volatility estimator.

The standard homoscedastic assumption on the noise is convenient to derive consistent
robust to noise volatility estimators but it can be rather unrealistic ; see Hansen and
Lunde (2006) for the empirical properties of the market microstructure noise. Howe-

ver, the pre-averaging estimator of Jacod et al. (2009) allows for heteroscedasticity in
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the noise of a general form. Whether the noise is homoscedastic or heteroscedastic, the
realized volatility is inconsistent and dominated by robust to noise forecasts.

The i.i.d. assumption for the noise is assumed in most of the forecasting studies. Ait-
Sahalia and Mancini (2008) analyze the out-of-sample forecast performance of the two
time scales volatility estimator. This estimator is robust to i.i.d. noise but could be incon-
sistent under heteroscedastic noise as showed in Kalnina and Linton (2008). Apart from
individual forecasts, Patton and Sheppard (2009) study optimal forecasts combinations
where the forecasts are the commonly used estimators of integrated variance.
Heteroscedasticity for the noise variance is treated in the literature but this paper is the
first to assume the presence of the fundamental volatility in the noise variance. Kalnina
and Linton (2008) introduce a diurnal heteroscedasticity motivated by the stylized fact
in market microstructure theory of the U-shape intradaily spreads. Indeed, the bid-ask
spread as a friction measure is an important component of the market microstructure
noise. In Bandi et al. (2010), the variance and the kurtosis of the noise are varying across
days but not intradaily. Barndorff-Nielsen et al. (2011) allow for intradaily heterosce-
dastic noise that is independent from the fundamental volatility and derive a consistent
kernel estimator.

Our model is empirically motivated by the high R? that we obtain by regressing the
RV _ the sum of squared returns computed at the highest frequency - on a constant
and RVP", the pre-averaging estimator. This estimator, derived by Jacod et al. (2009),
is a consistent estimator of the integrated volatility even under the assumption of hete-
roscedastic market microstructure noise. We find an R? of 0.94 for Alcoa data covering

the 01,/2009-03 /2011 period. Theoretically, under independent and white noise assump-



68

tions for the noise, this regression has a small R2. In this paper we assume that the noise
variance is an affine function of the fundamental spot volatility. Our model also nests the
common iid noise model in the literature.

This paper is also motivated by a fact observed in financial markets. We observe that du-
ring high volatility times - such as for 2008 financial crisis - transitory volatility (which
is the noise volatility) is also high. For instance, one observes wide bid-ask spreads, and
transaction costs - one of the sources of market microstructure noise - are highly vola-
tile during crisis periods. Consequently, hedging strategies that work well under normal
market conditions may deteriorate in performance during crisis periods. In Stoll (2000),
the asset volatility is used as an explanatory variable for the bid-ask spread. We plot in
Figure 2.1 the time series of the transitory or the noise variance measured by the RV ¢/’
estimator and the fundamental variance measured by the RV?" -a proxy for fundamen-
tal volatility- estimator for Alcoa during 01,/2009-03/2011. We observe a clustering of
these measures during highly volatile periods.

To theoretically examine the performance of volatility estimators in terms of forecasting,
Andersen et al. (2011) use the eigenfunction representation of the general stochastic vo-
latility class of models developed by Meddahi (2001) for a standard 1.i.d. market micro-
structure noise. In this paper, we extend the Andersen et al. (2011) work to analyze the
impact - in terms of forecasting performance - of a specific market microstructure noise
form. Using the theoretical framework of Andersen et al. (2011), we quantify the fore-
casting performance improvement if the noise variance is a function of the fundamental
volatility. Andersen et al. (2004) and Sizova (2011) also use the eigenfunction stochastic

volatility (ESV) framework.
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We then present a numerical study with two stochastic volatility models : a GARCH dif-
fusion model and a two-factor affine model. We find that, under our noise variance form
assumption, the traditional realized variance based on the highest frequency returns out-
performs the kernel, the two time scales, and the pre-averaging estimators under the
Mincer-Zarnowitz R?> metric. The pre-averaging estimator is robust to heteroscedastic
noise and is supposed to perform better than the noisy realized variance in terms of fo-
recasting.

To confront with real data our numerical results about the potential out-of-sample per-
formance of the realized volatility for forecasting, we conduct an empirical application
with Alcoa data covering the 01,/2009-03 /2011 period. The competing forecasts of the
daily integrated volatility are the realized variance based on the highest frequency returns
and some common robust to noise volatility estimators. To assess the performance of the
forecasts, we use a Mincer-Zarnowitz type regression as in the theoretical section and an
option trading economic gain measure derived by Bandi et al. (2008). Using alternative
forecasts, agents price short-term options on the Alcoa stock before trading with each
other at average prices. The average profits are used as the criteria to evaluate alternative
volatility forecasts. We find that the traditional realized variance based on the highest
frequency returns is the best forecast for short and long term horizons as it achieves the
highest R? in the Mincer-Zarnowitz type regression, and it allows to reach a good option
trading gain compared to the overall realized measures that we use.

The rest of the paper is structured as follows. In the next section, we present our model
as well as the setting. Section 3 revisits the common realized measures under the hete-

roscedasticity model of this paper. In the Section 4, we compute analytically the R> of
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the Mincer-Zarnowitz regression that measures the forecasting efficiency of the alterna-
tive realized measures using the ESV framework. In Sections 5 and 6, we provide the
forecasts in practice as well as estimators of the noise variance parameters, respectively.
Sections 7, 8, and 9 present numerical results for two calibrated volatility models and

empirical results for Alcoa data. The last section concludes.

2.2 The model

The main goal of this section is to describe our theoretical framework. In particular,
we state our assumptions and introduce the model for the variance of the noise. We also
define the realized volatility estimator.

We are interested in forecasting the volatility of the frictionless log price denoted p7, and

evolving as a semimartingale given by,

dp; = o,dW;, s € [0,T], (2.1)

where W; is a Wiener process and Oy is a cadlag volatility function. By assumption, the
drift term is zero and Wy and o, are independent to exclude leverage and drift effects.
These simplifying assumptions could be relaxed using the ESV framework. Andersen et
al. (2006) provide a starting point for a direct analytical exploration and quantification
of such effects in the case of white noise. In this paper, we are interested in forecasting

the latent integrated volatility over one-period horizon,

t+1
V) = / o2ds, 2.2)
t
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and m-periods horizon,

m
WViitiom = Zlvm, (2.3)
i=1
where m is a positive integer, and 0 < ¢. We assume the usual additive form contamina-

tion for the observed log price denoted py,

Ps = p;k + us, 2.4)

where u; is the market microstructure noise. The standard assumption on the noise is that
uy is i.i.d. and independent from the frictionless price p;. Heteroscedasticity in the noise
is accounted for in Kalnina and Linton (2008), Barndorff-Nielsen et al. (2011), Jacod et
al. (2009) etc. The two time scales estimator of Zhang et al. (2005), derived under the
standard assumption for the noise, has been extended to the multi time scales estimator
of Ait-Sahalia et al. (2011) to allow for serial correlation in the noise.

This paper is the first to model the noise heteroscedasticity as a function of the funda-
mental volatility ;. We assume that, given the volatility path, the noise variance is an
affine function of the fundamental volatility. Formally, we make the following set of as-
sumptions.

Assumption A

Vs,q € [0,T], and conditioning on the volatility path {6;,0 <7 < T},

1) ug and u, are independent.

i1) ug and W, are independent.

iii) Var[us | 0,0 <1t <T| = a+b6s2, where a,b > 0.
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If b=0, a # 0, the noise is i.i.d. and it is independent from the frictionless return. This
corresponds to the same framework as Andersen et al. (2011). We generalize their fra-
mework by allowing b # 0, in which case the parameter a can be zero. The case where
a = (0 provides a noise variance that is proportional to the fundamental volatility. In ei-
ther cases, the analytical ESV framework helps to quantify the impact of each parameter.
In Assumption A, the noise parameters a and b are constant across days. An interesting
extension to this model is to assume time-varying parameters across days.

A consistent integrated volatility estimator when there is no market microstructure noise

is the standard realized volatility given by

1/h
RV (h) =Y 1 (2.5)
i=1

where 1 =1/N and rj = p; — pi_,. In practice, the frictionless returns are not observed.
We rather dispose of the h-period returns ry = ps — ps_j,. The contaminated and fric-
tionless returns are linked as ry = r; + 5, where ey = u; — u,_j;. The feasible realized

volatility measure based on observed high frequency returns is,

1/h
AGED WAR 2.6)
i=1

The realized volatility is inconsistent for integrated volatility estimation because of the
noise. We now turn to the analysis of the realized volatility forecasting performance

under the noise model of Assumption A.
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2.3 The common realized measures under the heteroscedasticity model

The realized variance RV, (h) is inconsistent under our Assumption A because of the
noise. However, since the noise variance is affine in the fundamental volatility, we show

in the Proposition 1 how we scale RV, (h) to obtain a consistent estimator.

Proposition 1. Under Assumption A,

hRV;(h) —2a

I 2.7
wan Ve @7

when h goes to zero.

All the technical proofs are in Appendix A. The pre-averaging estimator of Jacod
et al. (2009) is robust to our heteroscedasticity noise form. Therefore the pre-averaging
estimator is consistent under Assumption A. For the two time scales estimator of Zhang
et al. (2005) and the kernel estimator of Barndorff-Nielsen et al. (2008), we do not know
whether consistency is achieved under Assumption A.

A standard approach in the literature is to compute the optimal sampling frequency for
returns underlying the realized variance RV; ; see Bandi and Russell (2008) and Zhang et
al. (2005). Indeed, while low sampling frequencies reduce the bias of RV;, they increase
its variance. Consequently, we can optimally trading-off bias and variance by choosing
the frequency that minimizes the mean squared error. In this section, we aim to find the
optimal /4 in the sense of minimizing the conditional mean squared error (on the volatility

path) for RV; denoted MSE and defined as,

MSE (h) = E5 [(RVi(h) —1V;)?] .
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Proposition 2 gives the optimal sampling frequency expression.

Proposition 2. Under Assumption A,

MSE(h) = 2hQ, + %(a+bl‘/,)2 +o(h). (2.8)

When the optimal sampling frequency is high, the following rule-of-thumb applies for

the optimal frequency h*,

2
he w, (2.9)
t

where the quarticity Q; is defined as ff_l olds.

The form of the optimal frequency given in Proposition 2 is basically the same as the
one in Bandi et al. (2010) where the authors find that 4* = ¢ %%]2 Their optimal fre-
quency is derived under the assumption that the second moment of the noise is constant
intradaily but varies across days.

Here we derive the optimal frequency to minimize an estimation error. For the sake of

forecasting, one would minimize a forecasting error and find another optimal frequency.

2.4 Forecasting integrated volatility within the ESV framework

Our procedure builds directly on the eigenfunction representation of the general sto-
chastic volatility (ESV) class of models developed by Meddahi (2001). We first describe
the ESV framework. Then, we derive the analytical expressions of the Mincer-Zarnowitz

regression R? which is our main forecast evaluation tool.
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2.4.1 The ESV framework

We assume that the spot volatility process is in the ESV class introduced by Med-
dahi (2001). If we assume that volatility is driven by a single state variable f;, the spot

volatility takes the form,

p
o’ =Y anPu(fy), (2.10)
n=0

where the integer p may be infinite. We assume the normalization Py(f;) = 1. The latent

state variable evolves as

dfs =m(f)dt +/v(f;)dW,, 2.11)

where the Wtf Brownian motion is independent of the W; Brownian motion driving the
frictionless price. Furthermore, the a, coefficients are real numbers and the P,(f;)’s de-
note the eigenfunctions of the infinitesimal generator associated with f;. In particular,

P,(f;) are orthogonal and centered at zero,
E[R(f)Pi(f)] =0  E[R(f)] =0, (2.12)
and follow first-order autoregressive processes,
VI >0,n> 0, E[P(fis1) | fo, 7 <t] = exp(=Aal)Pu(f3), (2.13)

where (—A,) denote the corresponding eigenvalues.
The above class of models includes most diffusive stochastic volatility models in the

literature. We now turn to the forecast evaluation within the ESV framework.
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2.4.2 Analytical Mincer-Zarnowitz style regression

In this section, we examine the forecasting performance of several volatility esti-
mators. The traditional volatility forecasts are the realized variance RV;(h) with various
sampling frequencies 4 of intraday returns. The robust to noise forecasts compete with
the realized variance. To facilitate the analysis of the realized measures RM;, whether
traditional or robust to noise, we use the quadratic form representation. For a sampling

frequency 4 of intraday returns, the quadratic form representation is given by,

RMi(h) =Y. qijre—14inti—1+jhs (2.14)
1<i,j<1/h

where g;; are weights to be chosen for each realized measure. For instance, the realized

variance based on the highest frequency returns available RV,“” is a realized measure

with ¢!

=1ifi=jand q?}l =0 else. In Andersen et al. (2011), quadratic forms repre-
sentation of the two time scales estimator, the Zhou’s (1996) and the kernel estimators
are provided. We recall these forms in Appendix B. Here, we derive the pre-averaging

estimator quadratic form ; see the Appendix B for the proof. We show that,

12 6
pre _ o all
gij —9— qu‘j Gqul'j ) (2.15)

where

9= ), dni<i<irdin<j<rnd | —— |0 | 5 ) (2.16)
=0
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and 8,<p<. is the indicator function equal to 1 when a < b < ¢ and 0 otherwise. The
tuning parameters of the pre-averaging estimator are 6, the function ¢ (.) and the integer
k.

The R? from the Mincer-Zarnowitz style regression of IV, onto a constant and the

RM,(h), is expressed as,

) _ Cov[IV,y1,RM;(h)]?
RE(IVier, RM: (h)) = Var[lV,y1|Var[RM;(h)] 2.17)

This R? is our forecasting performance measure. Proposition 3 is instrumental in deriving
the following moments in order to compute this measure under our new heteroscedastic

noise assumptions (Assumption A). We have,

Cov[IViy1,RM;(R)] = Y. qijCov[IVii1,r—isinti—1+4ju);
1<i,j<1/h

Var[RM;(h)] = E[RM?(h)] — E[RM; (h)]?,

ERMER) = Y qijauE[r—inre—14jnTi—14xnT—1-1n],
1<i,j k<1 /h

ERM;(h)] = Y, qij(R)E[r—14inri—1+jn)-
1<i,j<1/h

More precisely, we derive in Proposition 3 the expressions of Cov[IV, 1,71 4inli—1+ji],
2
Elry 1 pinlt—14jn -1 +khTi—1+1h)» E[ri—14inTi—1+jn)> and Var[IV;1]. We denote Eu;] =

V, and E[u}] = K,V?2.



Proposition 3. Under Assumption A,

(@) E[ri—14intt—14jn) = aoch+2V, if i=j

Vi for li—jl=1.

(b) Cov[IViy 1,1t 11inTt—1+ jn]

= 6i,( %(1 —exp(—Auh))(1 — exp(—A,)) exp(—An(1 — ih))
n=1""n
2 exp(—A, (1 —ih)) —exp(—A,(2—i
1) § 1) (i)
P xp(—A, (1 — (i — —exp(—A,(2—(i—
I P(=Aall == )~ (2= = 1),

where 0; j =1 if i = j, and 0 otherwise.

78
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(¢) E[ry—14inTt—14 jhTt—1 +khTi—1+1h]

2
= 3agh® +2(K, +3)V.2 + 12aphV, +6Z 7L2 —14 Auh+exp(—A,h)]

P _ _
+ 6> Zaﬁexp(—lnh)—kubZaﬁe)(i(") if i=j=k=1,
n=0 n

2 1 —exp(—Auh
~(Ku+3)%; = 3a0hV, =36 ), a,zllii)

n=1

P
—3b? Z a2 exp(—A,h)
n=1

if i=j=k=I+1lori=j+1=k+1=10+1,

5 exp(—Anh) —exp(—2A,h)
A

P
= agh® + (Ku + 3)V,; +4aohV, + Zﬁ 1 —exp(—Auh)] +2bz
n=1"""n n=1
2,1 —exp(—Ash
+2bZaﬁexii)+2b2Z‘Iaﬁexp(—lnh)—i-bzZaﬁexp(—ﬂmh) if i=j=k+1=1+1,
2
= ah* +4aphV, +4V2+Z )L'; 1 —exp(—A.h)]*exp(—A, (i —k — 1)h)

n

Loy @Sl ) — expl—Auhli—k— 1)

" —A
n=1 n
p . .
»exp(—Auh(i —k+1)) —exp(—A,h(i —k))
+bng'1 a, "
p . .
,exp(—Auh(i —k)) —exp(—Ah(i —k+1))
+bng'1 a, .

P P
+2b° Z a2 exp(—Auh(i—k)) +b* Z a2 exp(—Ah(i—k+1))
n=l1 n=1

p
+5° Y arexp(—Auh(i—k—1)) if i=j>k+1,k=I,

n=1

p
=2(Vy+0* Y anexp(—Aah)) if i=j+1,j=k=1+1,

n=1

P P
= —aghV, =2V} = b* Y ajexp(—Auh(i—k+1)) = b* Y a;exp(—Auh(i—k))
n=1 n=1
p _ - _ _ ] —
bza’%exp( Anh(i 1<+1_));L exp(—Ah(i —k))

if i=j>kk=I+1lori=j+1,j>kk=I,

P
=Vi+ 02 Y aqexp(=Aah(i—K)) if i=j+1,j>kk=1+1,

n=1

=0 else.
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:N

P
(d) VarllV, 1] = Z 22 lexp(—2,) + A, — 1]

S

By taking » = 0 in Proposition 1, we find the same results as Proposition 2.1 of
Andersen et al. (2011). This is coherent with their 1.i.d. noise assumption corresponding
to b = 0 in our framework. In the numerical results subsection, we use Proposition 3 to
quantify the forecasting gain for two specific stochastic volatility models.

For longer forecasting horizons m > 1, the R? from the Mincer-Zarnowitz regression of

IV, 1 1:4+m onto a constant and the RM; (h) is expressed as,

COV[IVH—I:H—maRMt (h)]z
Var[[‘/,+1;,+m] Var[RMt (h)] ’

R*(IV; 4 1:-ym> RMy (h)) = (2.18)

For the numerator we have,

CoV[IViytasm RM ()] = Y qijCoVIIViy1:tm, Te—14inTt—14jh)-
1<ij<1/h

Proposition 4 gives the needed expressions to compute R? for m > 1.
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Proposition 4. Under Assumption A,

(a) COV[IVrH:rer,”z—1+ih”t—1+jh]

2
Si’j(i )‘—g(l —exp(—A,h)) (1 — exp(—A,m)) exp(—A, (1 —ih))

P xp(—A, (1 —ih)) —exp(—A,(m-+1—ih
+b,§1aie p(—An(1—ih)) ;an( (m+ )
+bzp:a%exp(—ln(l—(i—1)h))—;xp(—ln(m+l—(i—l)h)))
n=1 n
P exp(—A, (1 —ih)) —exp(—A,(m+1—i
0§, Sl ) ol )
2 sexp(—A,(1—(i— —exp(—Ap(m+1—(i—
1 S ) =l == )

n=1

where 0; j =1 if i = j, and 0 otherwise.

:l\)

P
(b) Var[lV,y1:44m| = Z ﬁ lexp(—A,m) + A,m — 1].

N

As mentioned for the one-horizon forecasting, by setting » = 0 in the multi-period
volatility forecasting we find the same expressions as Andersen et al. (2011) 1.i.d. noise

case.

2.5 The forecast in practice

In the previous section, we assess the forecasting performance for each realized mea-
sure. In this section, we explicitly give the forecast under Assumption A and a bias cor-
rection. Then, we provide a method to assess the forecasting performance of the realized

measures when the latent dependent variable in Mincer-Zarnowitz regression is replaced
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by a feasible measure of integrated variance.
Let E;[.] denote the expectation operator conditional on all the past up to time t. Using

the quadratic form representation of RM, |, we have

E/[RM, 1] = Z qi;E [rz+ih”r+jh]
1<i,j<1/h
= Z qz’jEz[(F?lih+€t+ih)(rf+jh+et+jh)]
1<i, j<1/h (2.19)
= Z qij( E [rj+ihr;+jh] +E[errinertjn))-
1SjI/h S
=6;;E; [fzt:(ll‘/i 1), 0%4ds]
If we suppose that g;; = 1, Vi = 1..N, then we have
ERM ] = E[IViel+ Y, qijEilerrinerrjn)- (2.20)

1<i,j<1/h

A bias correction is given by E;[RM; 1] — Y1<; j<1/nqijEr[e;inery jn] Tor the realized
measures such that g;; = 1, Vi = 1..N. We conclude that, under Assumption A, the fo-
recasting bias is time-varying. If b = 0, E;[e; e, jp) is constant, and so is the bias
correction.

In the R? expression of equation (2.17), the integrated volatility regressand is latent. In
this section, we replace IV;, | by a feasible estimator denoted RM, | among the realized

measures. The R? is then written as,

(2.21)

L B Cov[RM, . (h),RM;(h))?
R (RMy1 (), RM: (h)) = Var[RM;+1(h)|Var[RM; (h)]
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Using the quadratic form representation of RM,, | and RM;(h), we could compute the
requisite moments. And, observe that we could maximize the R? to find the optimal

sampling frequency h for forecasting.

2.6 Estimating the noise parameters

In this section, we examine the estimation of the noise parameters a and b. We also
provide a centered and scaled version of the realized variance to obtain a consistent
estimator of the integrated variance under Assumption A. Using Proposition 1 and since

the pre-averaging estimator is consistent under Assumption A, we have

hRV;(h) = 2a+ (2b+h)RV/™ + 1, (2.22)

where 1), is a zero mean residual term, and h is fixed. Seen as a regression of hRV;(h)
on a constant and RV,”™, the equation (2.22) delivers estimators of the noise parameters.
More precisely, the regression constant is 2a and the slope is 2b + h.

We denote @ and b the OLS estimators (when T is big and h is fixed) for a and b respec-

tively. Their expressions are,

.1 (thT—l RV,(WRV™ h)

2\ L RVP | (2.23)
o1 hL/ RV:(h) (2b+h) Y RV

2 T T .

We propose a realized measure that results from our noise heteroscedasticity specific

form. We denote RV,a’b(h) the new realized measure if the noise parameters a and b are
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known,

_ hRV;(h) —2a

2.24
2b+h (229

RV (h)

and RV,a’b(h) the new realized measure if the noise parameters a and b are estimated by

dand b respectively.

_ hRVi(h)—2a

= (2.25)
2b+h

We show in Proposition 1 the consistency of RV,“’b(h) when h goes to zero. However,
we do not derive the asymptotic distributions of RVta’b (h), a, b, and RVta’b(h) if T goes to
infinity and h goes to zero. This question is important for future work. A first step would

be to fix h and let T goes to infinity, then allow h to go to zero while T goes to infinity.

2.7 Numerical results

We follow Andersen et al. (2011) for the volatility models choice. The first model

M1 is a GARCH diffusion model. The instantaneous volatility is defined by the process,
do? = x(6 — c?)dt + GG,deVt(z),

where Kk = 0.035, 6 = 0.636, and y = 0.296.
The second model M2 is a two-factor affine model. The instantaneous volatility is given
by,

j+1 .
612 = 6127[ + Gzz’t dGJZJ = Kj(ej — sz’l)dt—F andem(J_'— ), ]= 1,2,
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where k1 = 0.5708, 0; = 0.3257, n; = 0.2286, x, = 0.0757, 6, = 0.1786, and 1, =
0.1096, implying a very volatile first factor and a much more slowly mean reverting se-
cond factor.

We chose two scenarios for the parameter b. The sample size is N = 1 /h = 1440 which
is equivalent to a trade each 15 seconds for a 6 hours daily market. The realized va-
riance RV is based on the frequency ¢/ W instead of the hard-to-estimate
frequency given in (2.9). Andersen et al. (2011) also replace the quarticity by its uncon-
ditional expectation. The expressions of the realized measures are given in Appendix
B. The alternative realized measures are : RV (the realized variance based on the hi-
ghest frequency returns), RV*P4*¢ (the realized variance based on sub-sampled returns
1/h = 1440/5), RV®¢8¢ (the average of the sparse estimators that differs in the first
used observation to compute RV*P¥5¢) RVTS (the two time scales estimator), RV 2"
(the Zhou estimator), RVEe™¢l (the kernel estimator), RV?"¢ (the pre-averaging estima-
tor), and RV""¢ (the realized variance based on optimal frequency returns).

For each scenario and each model, we report in Table 2.1 the mean, variance and mean-
squared-error for the competing realized measures. As anticipated, the ’all’ estimator is
heavily biased whereas the new realized measure reduces the ’all’ estimator bias. When
varying b, the pre-averaging estimator characteristics are almost unchanged which is
coherent with its robustness to heteroscedastic noise property. The two time scales esti-
mator achieve a very good performance as measured by the MSE for both scenarios and
models.

In tables 2.1I and 2.III we report the correlations among the alternatives realized mea-

sures for models M1 and M2 respectively. We provide in Appendix C the analytical
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expressions for the true volatility and realized measures correlations. The realized va-
riance RV is the most correlated with the pre-averaging estimator.

In Table 2.1V, we compute R? for different values of b. The pre-averaging estimator is
robust to heteroscedastic noise so varying b do not change R?. However, the traditional
noisy realized variance estimator computed at the highest frequency dominates when
b is high. This corroborates Assumption A intuition of the noise containing informa-
tion about the frictionless return volatility. As the forecasting horizon increases, each
realized measure has a bigger R2. Moreover, the realized variance based on the highest
frequency returns performs well for multi-period volatility forecasting. Finally, we no-
tice that RV V798¢ achieves a very good performance, as it was also the case in Andersen
et al. (2011) where b = 0.

In the next section, we turn to the empirical forecasting gain of the realized volatility

using real data.

2.8 Forecasting analysis with real data

The goal of this section is to investigate with real data the forecasting performance
of the competing volatility estimators. To evaluate alternative predictors, we use the
Mincer-Zarnowitz regression as in section 4. The proxy for the true IV or the dependent
variable in the Mincer-Zarnowitz regression is the realized variance where returns are
sampled every 300 ticks, RV'*"_ 1 focus on a one-day, 5-days and 20-days ahead forecast

horizon. The Mincer-Zarnowitz regression is given by,

IV, = bo+b1ﬁ717j+b21/\727_,~+err0rj, (2.26)
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where 1V 1,j and v 2,j are the predictors and RV'" is a proxy for IV. The subscript j
refers to the days of the sample.

We use trade prices of Alcoa during 01/2009 —03/2011. In Table 2.V and 2.VI, we
present descriptive statistics and correlations for the alternative realized measure. We
report the Mincer-Zarnowitz R? in Table 2.VII showing that the pre-averaging predictor
does not necessarily outperform the inconsistent realized volatility out of sample. As
the forecasting horizon grows, the forecasting performance increases for the realized
measures. When adding the "all’ estimator in the Mincer-Zarnowitz regression, we notice
an important improvement in R> as advocated in the theoretical study of this paper. We
can further improve the R? providing a practical adjustment as in Andersen et al. (2005

In the next section, we propose another forecasting performance measure.

2.9 Option trading analysis with real data

In this section we evaluate the proposed integrated volatility forecasts in the context
of the profits from option pricing and trading economic metric. Using alternative fore-
casts obtained in the previous section, agents price short-term options on Alcoa stock
before trading with each other at average price. The average profit is used as the crite-
rion to evaluate alternative volatility estimates and the corresponding forecasts.

We construct an hypothetical option market as in Bandi et al. (2008) in order to quantify
the economic gain or loss for using alternative Integrated Volatility measures.
Our hypothetical market has 8 traders. Each trader uses one from the following realized

measures ° Rvall’ Rvsparse’ Rvaverage’ RVTS, RVZhou’ RVKernel’ Rvpre’ and RV™¢. The

Isee the Appendix D for more details.
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quadratic form representations of the realized measures are given in Appendix B.

First each trader constructs an out-of sample one day ahead variance forecast using his
daily variances series and computes his predicted Black-Scholes option price. We focus
on an at-the-money price of a 1-day option on a 1 Dollar share of Alcoa or General Mo-
tors. The risk free rate is taken to be zero.

Second, the pair-wise trades take place. For two given traders, if the forecast of the first
one is higher than the mid-point of the forecasts of the two traders, than the option is
perceived as underpriced. And the first trader will buy a straddle (one call and one put)
from his counterpart. Then the positions are hedged using the deltas of the options.
Finally, we compute the profits or losses. Each trader averages the 8 profits or losses
from pair-wise trading. We then average across days.

Option trading and profit results are computed as in the following three steps.

1-Let o; the volatility forecast for a given measure. The Black-Scholes option price P, is
given by :

P = ZCID(%G,) — 1, where @ is the cumulative normal distribution.

2-The daily profit for a trader who buys the straddle is :

| R, | —2P, + R, (1 —2®(%0;)), where the last term corresponds to the hedging, and R; is
the daily return for day t.

The daily profit for a trader who sells the straddle is :

25— | R [ —R(1 —2@(%0,)).

3- We then average the profits and obtain the metric.

We obtain the profits, losses in Cents in Table 2.VIII for different realized measures.

The traditional realized variance RV achieves the best profit. All of the estimators
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RvPre Rykernel Ry TS RyZhou Rymse endure losses for the agents using them as fore-
casts. Compared with the forecasting performance results using the Mincer-Zarnowitz

regression, the option trading exercise provide similar rankings.

2.10 Conclusion

This paper quantifies the gain for volatility forecasting performance if the noise hete-
roscedasticity form is an affine function of the fundamental volatility. We use the eigen-
function stochastic volatility theoretical framework. If our model is true, using robust to
noise volatility estimator for forecasting do not make profit of the fundamental volatility
information in the noise volatility. The traditional realized variance computed using high

frequency intraday returns exploit this information though.



Figure 2.1 — Time series for Alcoa trade price realized variance.
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Model M1 M2
Mean Variance MSE Mean Variance  MSE

1V, 0.6360 0.1681 0.1681 0.5043 0.0262  0.0262
b=0.35%

RV,“” 9.7943 20.8353 104.7104 7.7662  3.3443  56.0798
RVPAT¢ 24676 1.5894 4.9444 1.9566 0.2742  2.3836
RV,778¢ 24668  1.5419 4.8937 1.9512 0.2459  2.3396
RVITS 0.5133  0.1205 0.1356 0.4023  0.0231 0.0335

RV Zhou 0.6423  0.3346 0.3346 0.5093 0.1166  0.1167
Ry Kernel 0.6423  0.2016 0.2016 0.5093 0.0437  0.0438

RV 0.5793  0.2065 0.2097 0.4723  0.0683  0.0693
RV,a’b 0.6990  0.2050 0.2090 0.5543 0.0329  0.0354
RV/"5¢ 0.6423  0.3391 0.3391 0.5093 0.1188  0.1189
b=0.45%

RV 9.7943 329596 116.8347 77662  5.2379  57.9734
RV PAe 24676  2.2309 5.5858 1.9566 0.3747  2.4841
RVMT98¢ 24668  2.1819 5.5338 1.9512 0.3457  2.4393
RVTS 0.5133  0.1220 0.1370 0.4023 0.0235  0.0339
RVZhou 0.6423  0.3526 0.3526 0.5093  0.1200  0.1201
Ry Kernel 0.6423  0.2053 0.2053 0.5093  0.0447  0.0447
RV 0.5793  0.2121 0.2153 0.4723 0.0701  0.0712
RV,a’b 0.6850  0.1962 0.1986 0.5432  0.0311  0.0326
RV/™¢ 0.6423  0.3570 0.3571 0.5093 0.1222  0.1223

Table 2.1 — Mean, Variance and MSE of the realized measures.

Note : The size of the intraday return h is 1/1440 for RV, RV;P*"*¢ is computed
with i = 5/1440 as well as the RV*7%8¢ estimator. The noise-to-signal ratio is equal to

0.5%, which is defined as V,,/E[IV;]. Recall that V,, = a + bE[c?] under Assumption A.
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b Model Ml M2
Horizon m 1 5 20 1 5 20
0.35% R*(IV,s1.t1m,RVY ) 0.9455 0.8626 0.6238 0.6644 0.4291 0.2063
RV 104m, RV™D) 0.9455 0.8626 0.6238 0.6644 0.4291 0.2063
R* (V4 1:44m, RVPYC) 09183 0.8379  0.6058 0.6004 0.3877 0.1864
RZ(MH,W,RVW”“W) 0.9457 0.8629 0.6239 0.6656 0.4299 0.2067
R*(IViy 141m, RV,TS) 0.8622 0.7867 0.5689 0.4972 0.3211 0.1544
R*(IV, 4 1.4 m, RVZMO) 04862 0.4436 0.3208 0.1573 0.1015 0.0488
R*(IV, 4 144 m, RVFe™) 10,8070 0.7363 0.5324 0.4193 0.2708 0.1302
R*(IV, s 1:1+-m, RV™) 0.6509 0.5939 0.4294 0.2306 0.1489 0.0716
R*(IV, 4 1.4 4m, RV %’) 0.4798 0.4378 0.3165 0.1544 0.0997 0.0479
0.45% R*(IViy1.44m, RV ) 0.9488 0.8656 0.6259 0.6734 0.4349 0.2091
R2(IV41:15m, RV 0.9488 0.8656 0.6259 0.6734 0.4349 0.2091
R*(IV, s 1.4, RVSPY) 09280 0.8467 0.6123  0.6232  0.4025 0.1935
RZ(IV,HHm,RV‘W”“ge) 0.9481 0.8650 0.6255 0.6717 0.4338 0.2086
R*(IV, 4 1.t4m, RVTS) 0.8554 0.7805 0.5643 0.4888 0.3157 0.1518
R*(IV o 141m, RVZM") 04633 04227 0.3056 0.1534 0.0991 0.0476
R*(IVi 1.44m, RVF™) 07957 0.7260 0.5250 0.4120 0.2661 0.1279
R*(IV, s 1.1+ m, RVP™) 0.6295 0.5744 0.4153 0.2255 0.1457 0.0700
R>(IV, 4 1.t 4m, RV]™°) 0.4575 0.4174 0.3018 0.1507 0.0973 0.0468

Table 2.IV — R? for the integrated variance forecasts.



Mean Variance Skewness Kurtosis Minimum
RV/oW 7.649 79.0 3.178 20.111 0.779
RV 11.540  180.1 2.724 12.200 1.334
RV/PAT¢ 8387 93.4 2.775 12.950 0.885
RV,¢T8¢ 8323 91.3 2.741 12.588 0.864
RVTS 7.520 75.4 2.782 12.910 0.723
RV Zhou 7.288 67.0 2.867 14.222 0.654
RvKernel 7 489 74 .4 2.854 13.931 0.668
RV} 7.506 81.9 2.959 15.080 0.681
RV/mse 8.178 87.5 2.818 13.438 0.979

Table 2.V — Descriptive statistics for the realized measures, Alcoa data.
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Horizon 1 5 20
RVA 0.701 0.802 0.773
RV;PTe 0.647 0.723 0.695
RVerase 0.646 0.726 0.698
RVTS 0.611 0.683 0.655
RV Zhou 0.597 0.668 0.634
RvKernel 0.611 0.682 0.651
RV 0.612 0.678 0.658
RV;"™s¢ 0.640 0.706 0.684
RV PS¢ RVAT 0707 0.820 0.791
RV RVAL 0709 0.819  0.790
RV,TS Ryl 0.709 0.819 0.790
RVZhou Ryail 0,712 0.824  0.800
RvKernel pyall 0708 0.818 0.791
RV} RV 0.706 0.817 0.784
RV/"s¢ RV 0.703 0.814 0.782

Table 2.VII — R? for volatility forecasts, Alcoa data.
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Profits/Losses Ranking

RV 0.172 1
RV;PATse 0.034 3
Ry, erase 0.109 2
RVS -0.387 5
RV Zhou -0.482 7
RV Kernel -0.477 6
RV/™ -0.312 4
RV/mse -0.487 8

Table 2.VIII — Rank by annualized daily profits, Alcoa data.
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2.11 Appendices

Appendix A : Technical proofs
Proof of Proposition 1 :
We have,
1/h 1/h
RV,(h) =RV (W) + Y &} i +2 ) g1 4ine
i=1 i=1

When h goes to zero, the first term RV,*(h) converges to IV; and the last term goes to

zero. Therefore, along with Assumption A iii) we obtain that

hRV,(h) =2a+ (h+2b)IV; +o(h), (A.1)

which gives (2.7).
Proof of Proposition 2 :

MSE (h) = Eg [(RV;(h) —1V;)?] (A.2)

— Varg[RV; (h)] + (E[RV; (k)] = IV;)?

Recall the equality,

1/h 1/h

RV;(h) =RV} (h)+ Y. € 1 +2 Y 1t 1 ner—1+in- (A.3)
i=1 i=1
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For the bias term,

1/h 1/h
Es[RVi(h)] = Es[RV/" (h)] + Z Esle} i) +2 ZEG [rz*—1+ihet71+ihl
i=1 i=1 ;6
1/h )
= ZEG(’}*EHM) +Ec[(t—14in— ”t—1+(i—1)h) ]
i=1 (A.4)
Vh  t—1+in 5 1/h
-y / 02ds+ Y (Vara[u— 1) +Varslu, 1 14))
1/h
2
=1V, +2a/h+bY (6] | p+ O 14 (i—1)n)
i=1
For the variance term,
1/h 1/h

Vars[RV;(h)] = Varg|RV/ (h)] + Varg [Z e \iin
i=1

*
+Var6 [2 rt_]+ihe[1+l‘h]

i=1

i 1/h 1/h
+ 2C0VG R‘/t* (h), Z elz_l_‘_ih + 2COVg R‘/l‘* (l’l), 2 Z r;k_l_i_ihet_l_'_ih]
L i=1 i=1
1/ 1/h
+2Covq et271+ih72z rz*l+ihel—1+ih]
Li=1 i=1

(A.5)

Varg[RV,*(h)] = 2hQ, + o(h) (A.0)
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where Q; = ff_l olds is the integrated quarticity.

1/h 1/h 1/h
2 2 2 2
Var[Y e; 1 ul = Y. Varsle; 1 al+ Y, Covsle; 1 iei 1yl
i=1 i=1 i,j=1:i#]
1/h

=) (Varc (U1 sin) +Varo[u_y iy +4Vare [“wlﬂh]vmo[”z—1+(i—1)h]>
i=1
1/h
+ Z Cove[(ur—14in — ”t—1+(i71)h)27 (ut—1+jh - ”t71+(j71)h)
i,j=1:i#]j
1/h
=Y (Varcy W) +Var0[ut2_1+(l-_1)h] +4VC”’G[ut—1+ih]var6[”z—1+(i71)h])
i=1
1/h—1
+2 Y Varg[uj 4]
i=1
1/h—1 1/h
=4 Z Varg[u?_ i) +4Z[a+b6t2_1+ih] [a+bc7t2_1+(i_1)h] +Varg[u? ]+ Var[u?]
i=1 i=1
1 1/h
[KWVii = (a+bo )] +4Y la+bol ylla+bol | i 1)
i=1

7]

|
AN
-
—~
I = 1

i
+ [KVE = (a+bo?)*] + [KuVE — (a+bo?)?]

(A7)



1/h 1/h
Va’”a[ZZ”LHihet—Hih] =4 Z COVG[”t*—Hihet—lJrihv’”z*—1+jhet—1+jh]
1/h
=4 Varc[”ﬁlﬂhet—lﬂh]
i=1
1/h
2 2
=4y Es[ri2 i ineio11a)
i=1
1/h
2 2
=4Y Eo[r}?  ilEsle; 1)
i=1
Vh i 14in 5 5 5
_4 / 62ds)2a+bo2 |, 4 +bGE .
l_Zl( (- 1)h s )[ t—1+ih t—14(i l)h]
Vh i 14in s 5 5
= 8alV, +4b / 0,ds)|0 | i, +0" 1.
t l:ZI( (- 1)h s )[ t—1+ih t—14(i l)h]

2Covgs

1/h
RV} (h), Y etzl+ih] =0
i1

1/h
2Covg RVt*(h),ZZFfH,-hez—mh] =0
i=1
1/h 1/h

2Cov¢s
i=1 i=1

2 * _
Z € 14 ins 2 Z rz1+ihet—1+ih] =0

102

(A.8)

(A.9)

(A.10)

(A.11)



To summarize, we have

MSE(h) = Varg [RV;(h)] + (Eo[RV; (h)] — IV;)?

1/h—1 1/h

103

=2hQ;+o(h)+4 Y [KVi—(a+bol )] +4Y [a+bol ylla+bol | ;1)

i=1 i=1

+ [KuVy — (a+bo7)?] + [KuVy — (a+bo})?]
1/h

t—1+ih
+ 8alV, +4b / 62ds)[6? | g+ 07 i
t 1—21( 1+ (—1)h s )[ t—1+ih t—1+(i l)h]

1/h
+(2a/h+b Z (07 14+ Gtz—l—i—(i—l)h))z

i=1
1/h
=2hQ, + (2a/h+bY (07 14+ 07 1 iny))* +o(1/h) + f(t)
i=1

4
~ 2hQs+ 5 (a+bIV;)?

Proof of Proposition 3 :

(@E[ri—1tinri—14+jn] = E[(ri_1 i+ €—14in) (r_14jn + €—14jn)]
Ifi=j,
E[rz—1+mrz—1+jh] = E[G*Elﬂh + €t271+ih] = aph+2V,
If[i—j| =1,

2
Elrryinri—1+jn] = —E_y i_pyl = =Va

(A.12)

(A.13)

(A.14)

(A.15)
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Else,

Elr;1yinTi—1+jn) = 0. (A.16)

(b)

Cov[IVii 1, Fe—14inTe—1+4 jn)
= Cov[IVyp1, (r{_ i+ €t—1+ih)(’”t*—1+jh +er14n)]
= & jCov[IVii1,r/ 2 in) +Cov[IVii1, e, 1y iner—1+ ]
= 8 jCov[IViy 1,72 ) = 81 j1Cov[IVigr, iy ) — St jCOVIVii 1,47 1 (i)

+ 8 jCov[IViy1, 7y ) + 8 jCoV[IVis 1, ut2—1+(i71)h]
(A.17)

Using (2.21) in ABM(2011),

[\.)

p
Cov[IVisr,r? ol = Y, /’L_Z 1 —exp(—2A,h))(1 —exp(—An)) exp(—An(1 —ih))

N

(A.18)
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‘We have,

Cov[IVir,ur 1 i) = E[Ec[IViiaf_ )] — EIVia | Eluf )

=a0  =V,=a+bay

t+1
= aap+bE[o]_ 1+zh/ Gszds]—a()Vu

i1
= aag + bE| ao+Zan (fie 1+th))/ a0+zam (fs))ds]
t

n=1

t+1
b Y aan | BB Pul s

n,m=1

(A.19)
=b Z andm E[E[Pn(ﬁ—1+ih)Pm(fs)|fra T<t—1+ ih]]ds

=b Z andm E[Pn<ft—l+ih) F[Pm(fs”frafgl_l'i'ihl ]ds

n,m= ! 1
=1 =exp(— A (s—(t—1+ih))) Pu(fy—11in)
P 141
=bYal [ exp(—Auls— (= 1+ih))ds
n=1 !

(1= ih)) — exp(—Aa(2 — ih))
T

o et
n=1

The same for,

bz X0 (A1 i D) —exp( 2 i )

2
Cov[IViy1,u;_y 4 (i_yy,

(A.20)
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To recapitulate,

Cov[IVi 1,1~ 14inti—1+ jn)

p aZ
=65 Z,l 72 (1= exp(=2ah))(1 —exp(—An)) exp(—2(1 — ih))

Ly 2SRl = ih)) —exp(n(2 i)
n=1

- A
b i aflexp(—ln(l —(i— l)h));exp(—xn(z (i l)h))) (A21)
n=1 n
81 z:a%exp(—ln(l — ih));nexp(—ﬂtn(Z —ih))
—&1,jb ilaiexp(_}tn(l —(i— 1)h>)l—nexp(_ln(2 —(i—1)h))

(©)

E[ri 1 i =14 jhT — 1 +-khT1—1+1h)

= E[(r{_ i+ e—1win) (-1 jn+e—11jn) (=1 an + €—1an) (=1 an + €141

(A.22)
Ifi=j=k=1,
[rt—1+lhrt—1+jhrt—1+khrt—1+l/’l] = [”171+ih] + [et—1+ih] + [rt—1+ihet—1+ih]

4 4 4 2 2 2 2
=Er" ] +El i) FE[u ol T OE [y iy io1yn] OB i1 i)

(A.23)
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Equation (2.17) in ABM(2011) gives,
>

p
E[r ] = 3agh* +6 Z /13 —1+ Ayh+exp(—2A,h)] (A.24)

We have,

Eluy_y ) = E[M?—H—(i—l)h] =K.V (A.25)
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E[u_ ity in) = E[Eo (71 intt] 1y 1yl

= E[Eqlu;_y i) Eclu; 1(i—1ynl]

= E[(a+b07 1) (a+b0] | ;1))

=@’ +0°E[07 1 inO7 14 (1) + ADE[O7 Lin) + abE[G] 1 ;1))

— a* +b*E[c>. H_th 14+(i—1)h ul +2abag

=a*+bE[( ao+Zan (fi—1+in) ao+zam (fi—14(-1)n)] +2abag

= a* + b*aj+ b* Z an@mE [Py (fi—1+in) P (fr—14(i—1)n)] + 2abag

n,m=1

p
= +b%a5+b* Y anamE[E[Py(fimt4in)Pu(fio1 - 0n)| frei—141ynl] +2abag

nm=1

P
:a2+b2a(2)+b2 Z anamE [P (f; - 1+(i— l)h) [Pa(ft—1+in)| for<i— 1+(i—1)h ]]+2aba0

nm=1
=exp(—Auh) n(fz—1+ i—l)h)

p
= +Dag+b" Y anamexp(—2uh)E[Pu(fi— 11— 1n)Pa(fi— 15— 1)n)] +2abag

nm=1

P
= a* + b*al+ b* Y a2 exp(—Auh) + 2abay,

n=1

(A.26)

2 2 2 2 2
E[r:—l-i—ihet—l—i—ih] = E[rz*—lﬂh(”r—mh + W 1+(i—1)h — 2u1*1+ihut—1+(i_l)h)] (A27)

_ p[2 2 ) 2
= E[r " it 14in] +E[rt—1+ihut—1+(i—l)h]
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) 2 2 2 2 t= Itk 2
E[rZ i1 yin) = ElEs[r 2yl Ecli_14i]] = E[(a+b0;_ 1 44) /tl+('1)h oy ds|
t—1+ih
= aaoh+bE[Gr21+ih/ o ds]
t—1+(i—1)h
)4 t—1+ih )4
— aaph+bE[(ay+ Y. anPulfi-1em)) / a0+ Y anPu(fy))ds]
) )4 t—1+ih
= aaoh+bajh+b Y. ananm / E[Py(fi—1+in)Pu(fs)]ds
el =1+ (i—1)h
, p t—1+ih
— aaoh+badh+b Y anan / E[E[Pa(f 1200 P f) | frr T < s]]dis
nm=1 t—1+(i—1)h
) p t—1+ih
= aaph+ bayh+b Z anam/ E[Py(f)E[Pa(fi—1+4in)|fz, T < s]ds
el t—1+(i—1)h~ >

exp(— (= 1+ih—5))Pu( ;)
P t—1+ih
= aagh+bagh+b Zaz/ exp(—A,(t — 1 +ih—s))ds
t—1+(i—1)h
—exp(—Anh)
An

n=1

251
= aagh+ balh+b Z a
n=1

(A.28)
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2 2 2 2
ElrZ ity -1yl = E[Es[rZ1 il Ea w14 - 1)]]

t—1-+ih )
=F a+b6 / o.ds
abo? o) [ o
t—1-+ih )
_aa0h+bE[ l‘ 1+(l l)h/t' 1+(i71)h6sd5‘]
t—1+ih
= aaph+ bE| ao—l—Zan (fr—14(i- 1)h))/ S (ap + Zam (fs))ds]
n=1 1= !
) p t—1+ih
= aaph+ bagh+b Z anam/ - E[Pu(fi—i(—1yn) P (f5))ds
mm:] t71+(171)h
5 p t—1+ih
— aaph+bah+b Y anam/ oo EIEB rmrson) PaC) oo < 1 14 (= i ds
n,m=1 =1+0-=

t—1-+ih

P
=aa h+ba2h+b a,a /
0 0 n7§L1 T 1 -1

EPfi1soim) EPulfi)lfe 7<= 14— D] Ids
=exp(—Am (s—(—=1+(i=1)1))) Bn(fi 14— 1)n)

)4 t—1+ih
:aaoh-i-ba%h—I—bZa,zl/ exp(— (s — (t — 1+ (i — 1)h)))ds
= == n

—exp(—Auh)
An

2,1
= aagh+bakh+b Z a?
n=1

(A.29)
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Consequently ifi = j =k =1,

P2
E[}"t,1+ihrt,1+jh}"t,1+khrt,1+lh] = 3(1%]’12 +6 Z l_’;[_l + /'th+exp(—lnh)] +2KMVMZ
n=1"n

P p 1
+6(V,7+b Y anexp(—Aqh)) +12(aghV, +b Y. a;
n=0

n=1

—exp(—Anh)
An
2

2 a
= 3a3h® +2(K, +3)V?2 + 12a0hV, + 6 Zl 2311 Auh o+ exp(—Auh)]
n= n

)

—exp(—Auh)
An

p p 1
+ 6b* Z a2 exp(—Anh) + 12b Z a
n=0

n=1

(A.30)
fi=j=k=Il+1lori=j+1=k+1=1[+1,
E[”tf1+ihrt71+jh”tfl+kh”t71+lh] = E[r1371+ihrl—l+(i—l)h]

_ *3 *2 ) * 2 3 *
= E[(rZ4in 302 iner—14in + 35 cin€i 1 in + €— 1 1in) (rt—H—(i—l)h e 11(i-1)n)]

2 3
= E[(3rt*fl+ihet—1+ih + et—1+ih)ezfl+(i71)h]

2 2 2 2 4
= =3E[r 2 ity - = 3EM ity o nyn) — El 11y
21— exp(—Auh r
= — (K, +3)V? —3aghV, — 3b Z a exi( h) ) —3b? Z a2 exp(—Anh)
n=1 n n=1

(A.31)
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fi=j=k+1=1+1,

E[”r—1+ih”t—1+jh”t—1+kh"t71+lh] = E[rz2—1+ihrzz—1+(i—1)h]
2 2
= E[(r_1in +e—14in) (- mnyn T @—14(-1)n)]
=E[r2 JHEr2 e W ER? J+Ele ]
Tt—1+inT =14 (i—1)n Tt—1+in€r—14(i—1)h —14(i— l)het 1-+ih € 1+lhet 1+(i—1)h
2 2 2 2 2
= E[r i o onl FERZ (o H o))
2 2 2 2 2 2 2
+E[r” 14+(i— l)h(ut—l—i-ih+u171+(z‘71)h>]+E[(ut—1+ih+ut71+(i71)h)(ut71+(i71)h+ut71+(i72)h)]

2w 2 2
= E[r2 w2 o) FEZ et o) TEI et 1 oyl

2 2 2 2
T EFZ ot i) FERZ a4 - 1)

+E[”t271+ihut2—l+(i—1)h]+E[utz—1+ihutz—l+( )]+E[z 14— Dh W+ Eluy 14+ (i— 1)h”t2 1 (i—2)h]

(A.32)
Using (2.18) in ABM(2011),
E[r2 a1 onn] = gl + Z /12 1 —exp(—Ah)]? (A.33)
From (A.14), we have
E[r? ) ity 1 i-1ys) = aaoh+ bagh+ bé 2= exﬁi_l”h) (A.34)
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The third term in (A.17) is written as

2
E[r2 nttd 1y o) = EEs 2 el Esl 1 i o]

5 t—1+ih 5
=F bo . / ods
[(a+b0;_ 1, (i_2)n) SRR ]
t—1+ih 5
_aa0h+bE[ l‘ 1+( 2)h/t' 1+(i71)h6sd5]
t—1+ih
= aaph+ bE| ao—l—Zan (fi—1+G ))/ a0+2am (fs))ds]
n=1 t—1+(i 1
, P 1—1-+ih
— aaoh+bah+b Y aan / EPf1yoa) Pul(fy)ds
nm=1 l‘*l‘I»(l*l)h
, P t—1-+ih ‘
— aaoh+bath+b Y aan / CEEPf1 o) Pl f) ferT <11+ (i—2)h]Jds
[l t—1+(i—1)h
) p t—1+ih
= aaoh+bagh+b )’ anam/ L l)hE[Pn(ftflJr(ifz)h) E[Pn(fo)lfe, 1 <t —1+(i—2)h] ]ds
_ r— 11— ~
=l —exp(— o (5— (= 1+ —2)) P11 )
4 t—14ih
:aa0h+bagh+b2a3/ exp(— (s — (t — 1+ (i —2)h)))ds
n—1 t—l+(i—l)h
p 22, h) — exp(—Ah
:aaoh+ba(2)h+b2a%e)(p( " )lexp( nh)
n=1 i

(A.35)
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2 2 2 2
ElrZ oot 1vinl = EEs[r= i ynlEslui 1 i)

) =10k
=FE|(a+bo/_ . ; / o;d
[(a i 1+in) i ]
t=14Hi-Dh
= aaph+ bE|[o, / oyd
=adp [r 1+ih Lan ]
t—1+(i—1)h
= aaph+ DE| ao+zan (fi- 1+1h>)/t L a0+Zam (fs))ds]
(i
5 t—1+(i—1)h
= aaph+ bagh+b Z anam/ _ E[Py(fi—14in)Pn(fs)]ds
i t—1+(i—2)h
, P t—14(i—1)h
= aaph+ bagh+b Z anam/ ) E[E[Pn(ft—lﬁ-ih)Pm(fs”fT,TSt_1+(i_1)h”ds
i1 t—1+(i-2)h
5 P t—1+(i—1)h
— aagh+badh+b Y anam/t vy Fn) EPGi vl < 5] b
— — 11— ~~
mm=1 —exp(— A ((t—1+ih)—s5))Pu(f;)
t—1+(i—1)h
—aa0h+ba0h+b2 / - exp(—A,((t —14ih) —s))ds
t
—7L h)— —2Ah
:aaoh—f—bagh—f—bZaﬁeXp( i ))Lexp( nh)

(A.36)
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Elr 1*21+(z 1)h”t2 L (i—ynl = E[Eq[r? 14+(i—1)h WEsu; 1 (= 1))

=1H-Dh
=F bG / o,d
[(a+b0;" 1 (i—1yn) e s]
=1H=Dh
= aaph+bE[c* 1+ (i— l)h/t L o ds]
t—14+(i—1)h
_aaol’l+bE ao—l—Zan ft 1+ (i— 1)h))/[1+(. ao+2am fg dS
) t—14(i—1)h
— aagh + ba2h+b nm/ E[Py(f— 1 i) Pu(£)]d
aaoh + baj mmzilaa (2 [Pu(fi—14(i—1)n) P (f5)]ds
, P t—1+(i—1)h
= aaph+ bagh+b Z anam/ . E[E[Pi(fi—14i—1)n)Pu(fs)|fz, T < slds
Wl t—1+(i-2)h
5 P t—1+(i—1)h
= aaon bt b Y anan [ EPEIR el T < s]ds
n,m=1 U A ~~ 4
exp(—An(t—14(i—1)h—s))Pn(fs)
14 t—1+(i—1)h
:aa0h+bagh+b2a,%/ exp(—In(t — 1+ (i— Dh—s))ds
n=1 l—1+(i—2)h

P(_lnh)
A

P 1
= aagh+bagh+b Z a X

n=1

(A.37)

The equation (A.11) gives

14
Elu;_y oty iyl = @ +b2ag+b Y. agexp(—Aqh) + 2abag (A38)
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E[;_ i1 i—on) = E[Eo (71t} 1y -2yl

= E[Eqlu;_y i) Eclu; 1(i—2)nl]

=E[(a+bo’ ) (a+ bGtz,H(ifz)h)]

— a* +b*E[c? 1+th2 - )h]+abE[Gt2_1+,-h]+abE[Gt2_1+(l._2)h]

=a* +b*E[c} | 1,07 +(i—2yn] T 2abag

= a’> + b’E|( a0+Zan (fi—1win) a0+2am (fi—14(i—2)n))] +2abag

= a* + b*aj+ b* Z an@mE [Py (fi—1+in) P (fr—14(i—2)n)] + 2abag

n,m=1

p
= +0%a5+b* Y anamE[E[Py(fim14in)Pu(fio1 s (-200) | fros—14(—2pn]] +2abag

nm=1

=’ +blag+ b’ Z an@mE [P (fi—14(i ) [Pa(fr—1+in) | foe<i—14-(i— )l]+2aba0

nm=1
:eXP(_zlnh)Pn(fr—1+(i—2)h)

p
= a* + b*a+ b* Y. anamexp(—=2A.h)E[Py(fi— 11 (i—2)n) Pa(fi—1+(i—2)n)] + 2abag

nm=1

P
= a* + b*al+ b* Z a2 exp(—2A,h) 4 2abay,

n=1

(A.39)
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E[utz—1+(i—l)h”t2—1+(i—2)h] [EG[”z 14+(i— 1)h”:2 1+(i 2)h]]
= E[Egluy 1, -1yl Eo 14 (-]
E[(a+bo] 14— Dh )(a+b612—1+(i72)h)]
:a2+b2E[Gt 14+ (i— 1)h°2 i) FAbE[GL i) HabE(GL o)

=a* +bE|( a0+zan (fi—1+G=1)h a0+Zam (fi—14(i—2)n))] +2abag

= d+Dbay+b° Z anmE [P (fi—14-(i— 1)) P (fi=14(i—2)n)] + 2abag

nm=1

p
= +0°a5+b" Y anamEE[Pa(fi— 14 1)n) P (fio1+(—2)n) | fr,e<i— 14 (—2)n)] +2abag

nm=1

p
=’ +bag+b> Y. apamE[Pu(fi—14 ) [Pa(fr—14-(i— D)) | e e<r—14 h]]+2aba0

nm=1
=exp(—Anh) n(ft 14+(i—2)h)

p
= a* +b*af+b* Y. anamexp(—Ah)E[Py(fi— 11 (i—2n) Pa(fim14(i-2)n)] + 2abag

nm=1

p
= a® + b*a} + b? Y a2 exp(—A,h) + 2abay,

n=1

(A.40)
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To summarize, ifi=j=k+1=1+1,

P2
E[ry— 1 il 14+ jali—1skhTi—1+1n) = Goh” + (K +3)Vy +4aohVy+ Y )L—Z[l —exp(—Ah)]?
n=1""n

»exp(—Anh) —exp(—2A,h)
a, 1

P p
1oy 1T ERERN )y
n=1 A n=1
P p
+2b? Z a2 exp(—2Anh)) + b? Z a2 exp(—2A,h)
n=1 n=1

(A.41)
Ifi=j>k+1l,k=1

E[FrosinFe—t4 jnTt—1+knTe—1+10]) = E[17_1 L inT 71 oxn)

= E[(r_ i+ er—14in) (5 1y + €r—144n)°]

= E[r2 a2 el FERZ e FEIR2 e 1) + Ele €1

= E[r2 a2l FERZ (e 1)

+ER2 o n + u12—1+(i71)h)] +E[(u_ g4+ ut271+(i71)h) (1 4+ ”z2—l+(k71)h)]
= E[r2 a2 o) FEDantte ) +E[r:31+ihut2—l+(k71)h]

+E[2 gty 1an) + Er2 et o)

2 2 2 2 2 2 2 2
+E[u it 1] + E - it nd T E G o mtt— k] T E M o nt 1 k1))

(A.42)

From (2.18) in ABM (2011),

P2
E[r? a2y o) = agh® + Y )L—Z[l —exp(—Ah)]Pexp(—A,(i—k—1)h)  (A43)
n=1""n
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2 2 2 2
Elr{2y ity 1 ) = E[Ec[r2y LinlEo U1 ]

) {—1-+ih )
=FE|{(a+bo” / o-ds
abo? ) [ oRs
) t—1-+ih )
= aaph+bE|0” / o-ds
0 (O 14k A ]
t—1+ih
= aaph+ DE| ao+Zan (fi- 1+kh))/ L (a0 + Zam (fs))ds]
n=1 1= !
, p t—1+ih
— agoh+bah+b Y. anan / E[Pa(fi14100)Pu(f3)lds
el t—1+(i—1)h
) p t—1+ih
— aaph+bah+b Y anam/ EIEPfo—t k) Pu(fo)| ferT <1 — 1+ kh])ds
prlt t—14(i—1)h
) p t—1+4ih
= aaph+ bagh+b Z anam/ L4 l)hE[Pn(ft—l—i-kh) E[Pm(fs)|fryf§t_l+kh] ]ds
=1 — 1— ~ ~~ -
" —exp(— (5 (1—1+kR))) P (- 1.40)
t—1+ih
— aaoh+ badh+ b Z / exp(—In(s — (1 — 1 +kh)))ds
t—14(i—1)h
—Ah(i—k)) — —Ahli—k—1
:aaoh—f—bagh—f—bZaﬁeXp( nh(i—K)) _j(np( nh(i )
n=1

(A.44)

Using the previous equation,

§ P exp(—=Ah(i—k+1)) —exp(—Ah(i—k
E[rt31+ihu):2—l+(k—l)h] = aagh+ baih+b Z a? (=Aah( —)An )
n=0

(A.45)
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2 2 2 2
Elr{2y ity 14in) = E[Ec[ri2) n)Es w1y nl]

5 t—1+kh 5
=F|(a+boc” .; / o-ds
[( t 1+zh> 14 (k—1)h K ]
5 t—1+kh 5
—aaph+bE |0/ / o-ds
0 [ t—1-+ih L4 (k—1)h s ]
t—1+kh
= aaph+ DE| ao+Zan (fi- 1+1h>)/1 - a0+2am (fs))ds]
n=1
) )4 t—1+kh
= aaph+bagh+b Y ananm / E[P.(fi—11in)Pn(fy)]ds
mm:] t71+(k71)h
) p t—1+kh
— aaph+bah+b Y anam/ E[EIPA(f i) Pulfi)l ferT <1 — 1+ (i—1)h])ds
el t—1+(k—1)h
) p t—1+kh
= aaph+ bagh+b Z anam/ Lk l)hE[Pm(fS) E[Py(fi—14in)|fz, T < s] Jds
_ r— — e —~~ _
mm=1 —exp(— A ((t—14+ih)—$))Pa(fy)
p t—1+kh
:aaoh+bagh+bZafl/ exp(—An((t — 1+ih) —s))ds
o= 1 (- 1)h

p B L B a
:aaoh+bagh+bza’%exp( Anh(i—k)) ;L:Xp( Anh(i—k+1))

n=1

(A.46)

From the previous equation we have,

* 2, exp(—Auh(i— 1 - k) — exp(—Auhli — k)
E[rt21+kh”12—1+(i—1)h] = aaph+bagh+b ) a - 1
n=0 n

(A47)
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2 2 2 2
Elu; ity 1) = E[Esluy g ity 1 )]
= E[Es[u? Eglu?
=E| 0'[”171+ih] o[“t71+kh“

2 2
=E[(a+bo;_y,;)(a+b0;_ | )]

2, 12002 2 2 2

=a"+bE[0;_ 1,0, 1 1] TabE[0; | | +abE[0] 1 1]
=& +DE[07 14,07 1 i) + 2abag

= a”+DE|( aO+Zan (fi—1+in)) (a0 + Zam (fi—1-+4n))] + 2abag

= +bag+ b Z an@mE [Py (fi—1+in) P (fi—144n)] + 2abag

nm=1

p
=& +0a5+b" Y anamE[E[Py(fim1vin)Pu(fimtvkn)| fr.o<i—1-kn] + 2abag

n,m=1

P
=& +baj+b* Y aamE[Pul(fi- 1+ki) E[Pa(fi— 1+m)\fm<z 1+knl] +2abag

n,m=1
=exp(—Anh(i— )) n(fr—14kn)

p
= +Dag+b" Y apamexp(—Anh(i — k) E[Pu(fi—11kn) Pa(fi11k)] + 2abag

nm=1

p
= a* + b*al+ b* ) a2 exp(—A,h(i — k)) + 2abay,

n=1

(A.48)

The same for,

p
E[“?—Hih”z{w(kq)h] = a* +b*a} + b? Z a2exp(—Aph(i—k+1)) +2abay (A.49)
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p
E[ulz_1+(i_1)hut2_1+kh] = a* +b*ai+b* Z a2 exp(—Ah(i—k—1))+2abay  (A.50)

n=1

14
E[w] yyonpt 1y gnpl =@ +b°ag+b> Y agexp(=Aqh(i—k)) +2abag  (A.51)

n=1

To summarize, ifi=j > k+ 1,k =1,

Eri 1 4inte—14 jhTt—14-khTt—1+1h)
)4 612
= agh® +4aghV, +4V,;} + ) 1—3[1 —exp(—A.h)? exp(—A, (i —k—1)h)
n=1""n

p . .
rexp(—Aph(i —k)) —exp(—Ah(i—k—1))
+2bnz::1 a, '
p . .
Lexp(—Anh(i—k+1)) —exp(—Ah(i —k))
+b,§1 a, _n
» . . (A.52)
sexp(—Aph(i—k)) —exp(—Ah(i—k+1))
+an’l a, 7
p
+2b% Y ayexp(—Auh(i—k))
n=1
p
+b% Y ayexp(—Auh(i—k+1))
n=1

P
+5% Y anexp(—Anh(i—k—1))

n=1
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Ifi=j+1,j=k=1+1,

E[ri 1 sinri— 14 Tk = Bl vty 1o onTi—1+(-2]
2
= E[(ri 1 inter—14in) (1 oty e—1+G-1)0) " (R 1 imoyn + €—14-2)n)]
2 2
= E[(r_ 1yt e—14in) (52 oy T G- 1 (imon T €—14-2)n)]

= E[r;kzle(if1)hel—1+ihel—l+(i—2)h] +E[61271+(i71)het—1+ihet—1+(i—2)h]

= 2E[u} 1 (i 1y 1 4 -2n)

p
=2(Vy+0* Y anexp(—Auh))
n=1

(A.53)

Ifi=j>kk=I+lori=j+1,j>kk=1,

E[’”z—1+ih”t—l+jh7”t—1+khrz—1+lh] = E[rt271+ihrt—1+khrtfl+(k71)h]
2
= E[(ri it e—14in) (r o + et—1+kh)(rf_1+(k—1)h + €14 (k—1)n)]

o 2 *2
= E[et_1+ihet71+khet—l+(k—l)h] + E[rt—l—i—ihetflnLkhet—l—o—(k—l)h]

2 2 2 2 9
= —Elu_yy gemnyn (im0 o) — ER i1y - 1)) (A.54)

p
= —aphV, —2V? —1* Z a2 exp(—Ah(i—k+1))

n=1

—bzf 2 exp(—Aph(i—k))

n=1

2 exp(—Auh(i—k+1)) —exp(—Ah(i —k))
—-b Z a% "y

n=1
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Ifi=j+1,j>kk=1I1+1,

E[r14intt—14jn -1 1kht—1+110) = Elr 1 =14 (i— DTt~ 1k =14 (k—1)h)

= E[€r—11ih€—14(i—1)h€—1+kh€—1+(k—1)h] (A.55)

P
= E[]  oontty 1 en) = Vi 07 Y anexp(—=Ayh(i — k))

n=1

Else, E[rz—1+ihrz—1+jhrz—1+khrz—1+lh] =0.
(d) The variance expression is the same as in Andersen et al. (2011).

Proof of Proposition 4 :

(@)CoV[IViq1:pms Fe—14iT—1+ jh)
= Cov[IVi1:tmy (F— 1 in + €—14in) (14 jn + €—14.jn)]
= 8 jCoVIIVittim 72 1 pin] + COVIVii it ms €11 in€s—14.ju]
= 8 jCoVIIVitm, 172 1 pin] = 81 jm 1 COVIVigtimy 714 in] — Si—1, JCOVIVrtgms 1ty L4 (i~ 1)h]
+ 83, COV Ve ity 1 i) + 8 COVIVei ttrmy 71 i1
(A.56)

Using (2.21) in ABM(2011),

=
()

CortV vz i1 1a] = 1. 75 (1 —exp(Aa) (1 —exp(—Aym)) exp(—(1 —i8)

n=1

=l\)|

(A.57)
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‘We have,

Cov[IlVii timsty—1 i) = E[EG[IViviemtti— 1 in)) — EIVis tir-m) F[“?—Hihl

=may =V,=a+bay

t+m 2
= aap+bE[o]_ 1+zh/ o;ds| —apV,

H—m
= aap + bE] ao—l—Zan (fi— 1+,h))/ (ap+ Zam (f5))ds] —aoVy
t

n=1
p t+m
=b Z anam/ E[Pn(ft—l—i-lh)Pm(fs)]dS
nm=1 !
p t+m (A.58)
—b Y anan [ EIER v Palf)|froe <11+ i]lds
n,m=1 !

=b Y, anam | E[Pu(fic14in) E[Pu(fy)lfe, v <t—1+ih] Jds

—exp(— A (5— (t— 1)) Pu(fr— 140

=b) a /thexp(—/'Ln(s— (t—141ih)))ds

b i agexp(—),n(l —ih)) —Z(P(—ln(m‘F 1 —ih))

n=1

The same for,

bz 2exp(—A, (1 —(i—1)h)) —exp(—A,(m+1—(i—1)h))

CoVIIVs L tms Uy 1 (i1 P
n

(A.59)
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To recapitulate,

Cov[IVii 1t 4m» T1—14ihT—1+jh]

P2
= 5i7j(; /1_3(1 —exp(—Azh)) (1 —exp(—A,m)) exp(—A, (1 —ih))

b i 201 = ih)) — exp(—In(m + 1~ ih))
n=1

- An
: . A.60
L 2SRl = (= D) —exp(non + 1= (= D) (4.60)
n=1 )’"
2o exp(—Au (1 —ih)) —exp(—A,(m+1—ih))
5J 1 n;lan ln
2oexp(—A,(1—(i—1)h)) —exp(—A,(m+1—(i—1)h
g p @RIl D) —exp( At 1= = )
n=1 n
(b) The variance expression is the same as in Andersen et al. (2011).
Appendix B : Quadratic form representation for the realized measures
-The all RV Estimator,
all _ .
dij (h) =1 for i=j
(B.1)
=0 otherwise.
-The average RV Estimator,
1 I’lh—l
querage(h) - Z q;;mrse(h,k). (B.2)
Mh k=0
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where,

;7" (hk) =1 for k+1<i=j<Ni+k,
=1 fori#j, (s—Dnp+1+k<i,j<sn,+k s=1,..,N/ny, (B.3)

=0 otherwise.

-The two time scales estimator,

ai; (h) = q;; " (h) — ihgSy (h). (B.4)

-The kernel-Based RV Estimator,

gre" e (K(-),L) = 1 for i=j
[-1 .
=K (T) for [i—j| =1, (B.5)

= 0 otherwise.

In the specific calculations below, we use the modified Tukey-Hanning kernel advocated

by Barndorff-Nielsen, Hansen, Lunde, and Shephard (2006),
K(x) = (1 — cosm(1—x)%)/2. (B.6)

-The pre-averaging estimator
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The following is the proof of the quadratic form representation for the pre-averaging.

2
pre _ 12 6 .l
RV; Gvr_j: §:¢ it | — g RV
k
_ 12 3 my ) 6
~9JN l’mz_1¢(k)¢<k>rl+lrm+l> GZNRV
PR N AW A B 6
S () ) oo
VN 5 I7J§1’+i k k 6°N

12 N2k X I—i J—i 6
= — O1</—i<kO1<j—i<k® (T) () <—) riry | — —=—RVA

VN 5 1J=1 k 62N
) B.7)
12 X —i J—i 6 (
== o 0 ~— ) | riry— =RV
GWI’JZ_I Z 1<I—i<kO1<J— z<k¢ ( ) ¢ < k ) 177 92N t
:q?J
12 ¢ (0 all
= qprrry — qrrriry
evNI,JZ_ o OZNI;l o

Y12 4 6
= Z_ (0\/—6111 GZNC]IJ)’”IFJ

pre
=4

_ pre
= Z qry 1y
1J=1

-The RV/"™¢ estimator :

1/h N
mse mse
RV; Zrz Lo = Y 4 T i - 14y (B.8)
ij=1

sparse

where ¢ = q;;" " (7).
Appendix C : The true volatility and realized measures correlations

We prove that the covariances between the integrated variance and the realized measures
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(needed to compute the correlations in Table 2.11I) are given by,

Cov[IVi,RM;(h)] = Y. qijCov[IVy,ri—1pinti—1+4jul; (C.1)
1<i,j<1/h
where,
P2
COV[IVt,I’t 1+ihTt— H‘Jh Z —2 exp Anh) + Anh — 1)
P2 -
Z ),_’; —exp(—A,(i — 1)h) —exp(—A,(1 —ih))) (1 —exp(—Anh)))
P _ A B .
. Z a22 exp(—Ayih) ;Lexp( An(1—ih))
A o . €2)
B —exp(—A,(i — 1)h) —exp(—A, (1 — (i—1)h))
i— 1]b Z a, ln
P _ N B .
b Z a’%2 exp(—Ayih) —exp(—A,(1 —ih))
n=1 )Ln
P _ A (i — _ _ —(i—
+5i7jb2a,%2 exp(—A, (i —1)h) )Lexp( A (1= (i—1)h))
n=1 n

Indeed,

Cov[IVi, ri—1yinti—14jn] = Cov[IVy, (1 i+ er—14in) (F_14 jn + €—14.jn)]

= &, jCov[IV;, 1%\ ) + Cov[IVi, et vin€r—14ju)
(C.3)
= 8, jCov[IVi, 1%y ] = 8, j 1 CoV[IVi 1y 4 i) = 81, jCoV[IV, u} 1 (1))

+ 8 jCOVIIVi 1) + 81 jCOVIIVi ] i)
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For the first term, using (2.20) in ABM(2011),

[\

P
Cov[IV,, 2, 4] =2 Z %(exp(—lnh) + Ah—1)
= (C.4)

+ i —exp(—A,(i — 1)h) —exp(—A,(1 —ih))) (1 —exp(—A,h)).

n=1

SN

:i’,l S
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For a given integer k, we have

Cov[IV,,u;_ 1 1] = E[Ec[IViu;_ )] — IV E[u7_ 1)
M~ N—

=dao =V,=a+bay

t
= aap + bE[Gtz_Hkh/ o2ds] —agV,

1
= aag + bE| a0+zan ftl—i—kh/ aO+Zam (f5))ds] —aoV,,
l‘i

n=1

=b Z anam/ E[Py(fi—14kn)Pn(fs)]ds

nm=1
P t—1+kh p ;
:bmmZ:lanam/t_l E[Pn(ﬁ1+kh)Pm(.fS)]dS‘Jl‘bn’mZ:lanam/t_l—i_khE[Pn(ﬁ1+kh)Pm(fY)]ds
p t—1+kh
=b ) anam/ ] E[E[Py(fi—1+kn) P (f5)| f2, T < 5]]ds
nm=1 1=
p t
+b ) anam/ E[E[Py(fi—1410) Pu(f)| fr, T <t — 1+ kh]ds
nm=1 t—1+kh

t—1+kh
b Y i [ EIRA(R) EIPfim)lfe T < 5] Jds
—exp(—An((—1+kR)—5))Pa(f3)

14 t
+5 Y anam/ EIPu(fi1vin) ElPu(f)|fet <1 — 14+kh] 1ds

=exp(—Am(s— (t—rkkh)))Pm (fr—1+kn)

t—1+kh 14 t
—bY a,%/ exp(—An((t — 1 + ki) — 5))ds +b Y. a,%/ exp(—on(s — (1 — 1 +kh)))ds
n=1 r—1 n=1 t—1+kh
2,2 —exp(—Aukh) —exp(—A, (1 —kh))
_ 2
= bng’lan 7

(C.5)

Appendix D : A practical adjustment
For the alternative realized measures, we can correct the the Mincer-Zarnowitz regres-

sion R? in practice. In Andersen et al. (2005), practical error corrections are provided
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using the fact that the integrated volatility is latent. Recall the R? expression,

_ Cov[IV,y1,RM;(h)]?
- Var[lVyy1]Var[RM; (k)]

R*(IV,41,RM; (h))

A practical adjustment is to replace Var[IV,;] in the denominator by

Var[lV, 1] — f(W)Avar(IV 1 — Vi) + o(f(h)),

where 1V +1 1s a consistent estimator of IV, 1, Avar(l/\7 t+1 —IViy1) is the asympto-
tic variance, and f(h) is the convergence rate. This adjustment does not apply for non
consistent estimators of integrated volatility. For our model, only robust to heteroscedas-
tic noise volatility estimators are consistent. The two time scales estimator is not robust
to heteroscedastic noise. The traditional estimator namely, the realized variance com-
puted at the highest frequency and the average estimator, are not robust to any type of
noise. However, the only estimators for which a practical adjustment could be applied
are the pre-averaging, the kernel estimators because they are robust to heteroscedastic

noise, and obviously our new realized measure.



ARTICLE 3

A DISTRIBUTIONAL APPROACH TO REALIZED VOLATILITY

Abstract[]

This paper proposes new measures of the integrated variance that uses high frequency
bid-ask spreads and volumes. The traditional approach assumes that the mid-quote is a
good measure of frictionless price. The recent econometric literature explicitly assumes
that the mid-quote is a noisy measure of the frictionless price and proposed new and
robust measures of the integrated variance. This paper departs from the literature by
specifying the conditional distribution of the frictionless price given the available infor-
mation which includes quotes and volumes. The distributional assumption allows one to
characterize the conditional mean of the integrated variance, which we take as new mea-
sures of the integrated variance. We then compare empirically the new measures with
the robust ones when one deals with forecasting integrated variance or trading options.

We show that the new measures dominate in some cases the traditional measures.

Key phrases : Realized variance, bid-ask spread, quoted depths, volatility forecasting,

option trading.

'We thank Bruno Feunou for providing us with the high frequency data used in this paper.
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3.1 Introduction

We are interested in measuring the integrated variance of asset returns using bid and
ask prices. Measuring volatility using high frequency data has attracted a growing in-
terest for many reasons. First, thanks to large data samples availability, we can observe
almost continuous data processes, which in turn justifies the continuous time frame-
work use. The Trades and Quotes (TAQ) database usually releases one-second frequency
prices and quotes, but recently it released one-millisecond frequency data. Such an ul-
tra high frequency dataset opens up research opportunities to explore intraday volatility
features and spot volatility estimation. The second major reason for the growing interest
in using high frequency data to measure volatility, is that the model free approach of the
theory of quadratic variation is not vulnerable to model misspecification, as is the case
with other approaches from the parametric literature.

In this paper we assume conditional distributional assumptions on the frictionless price.
The common approach is to assume that the mid-quotes price - the bid and ask prices
average - is the sum of the frictionless price and a noise term. By making assumptions
on the noise, one could derive consistent estimators of the integrated variance ; see, e.g.,
Zhang et al. (2005), Zhang (2006), Barndorff-Nielsen et al. (2008), and Jacod et al.
(2009). Early assumptions hypothesize an exogenous iid dynamic for the noise. Later
on, it was relaxed to allow for some forms of endogeneity with the frictionless price and
an autocorrelated noise. The problem is that, since noise is not observed it is difficult to
be precise about its time-varying characteristics.

The present paper follows a novel approach. As a first attempt, we derive bounds on

the integrated variance when assuming that the frictionless price lies between the bid
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and the ask prices. Such a non-point-identification (also known as partial identification)
approach was initiated by Manski (2003) and later surveyed by Tamer (2010). Unfortu-
nately, this approach leads to wide bounds, implying that one needs to make additional
assumptions. Our main approach consists in making distributional assumptions on the
frictionless price conditioned on quoted data (the bid, ask, and depths). We then derive
new realized volatility measures. One important feature of the new measures is the ex-
plicit presence of the bid-ask spread variable. So far, in market microstructure theory,
the spread has been only implicitly shown to impound information about volatility ; see
Hasbrouck (1999).

We consider different distributions and evaluate them through three directions. First, the
ability to capture the noise at high frequency using the signature plot ; see Andersen et al.
(1999) H Second, the forecast performance in-sample and out-of-sample. For instance
Andersen et al. (2003) evaluates the forecasting abilities of the standard realized variance
and Ait-Sahalia and Mancini (2008) study the forecasting of integrated volatility using
the robust to noise estimator ; the two time scales estimator. Third, we quantify the pe-
cuniary gain or loss for option pricing in a hypothetical market as in Bandi et al. (2008).
We show that some new measures outperform the existing measures.

We carry out our analysis by adding the quoted depths (the ask volume and the bid vo-
lume) to the conditioning information set. The ask (resp. bid) volume is the maximum
number of shares to buy (resp. sell) at the ask (resp. bid) price. The quoted depths re-
veal information about the stock liquidity and inventory control ; see Kavajecz (1999).

Consequently, using the depths may lessen the microstructure frictions effect. The boun-

’The signature plot of the realized variance draws the realized variance against sampling frequencies.
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ded distributions for the frictionless price that we use are the uniform and the triangular
over the bid-ask interval. We also accommodate the normal distribution to a bounded
support. We explicitly model the correlation between successive prices.

When it comes to the empirical section, we use data from the Alcoa stock traded in the
New York Stock Exchange during the 01/2009-03/2011 period. We find that the best
measures stemming from the forecasting exercise are different from those based on the
option trading exercise. Moreover, the new realized measures could outperform the tra-
ditional robust to noise volatility estimators.

The rest of the paper is structured as follows. First we present the common realized mea-
sures, the Mincer-Zarnowitz regression for forecasting evaluation, and the option trading
exercise. Then, we state the distributional assumptions and the new volatility measures
that they imply. We also assess the forecasting performance of each new realized mea-

sure. Finally, we provide a conclusion.

3.2 The forecasting performance of the realized measures

In what follows, ¢ stands for the day. One observes a sample of size N of intra-day
bids and asks denoted b; 15, a;— 14, in log terms, where i = 1..N and h is the sampling
frequency. The logarithm of the frictionless price is latent and denoted p;_ 1 ;. In all the
paper, we let b;, a;, and p; stand for b, 1 ;/n, a;—11i/n> and p; 1y, respectively. The

intra-day return is given by

ri = Ppi— Pi-1, 3.1
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We suppose that the frictionless price follows a semimartingale given by,

dps = Usds + o, dWs, (3.2)

where Wy is a Wiener process and oy is a cadlag volatility function. The object of interest

is the integrated variance for a given day ¢ defined as,

t
v, = / o2ds (3.3)
-1
The realized variance is defined as
1/h
RVi(h) =Y r{ 1 (G.4)
i=1

where r;_11in = Pr—1+in — Pr—1+(i—1)n- The realized variance computed with the highest
frequency returns would be a consistent estimator of the integrated variance if the obser-
ved price is equal to the frictionless price ; see Jacod (1994), and Barndorff-Nielsen and
Shephard (2002).

Let m;_14,, and s;_1;; denote the mid-quote and the spread, respectively. We have,

ar—1+in +bi—14in 3.5
2 )

My —1+inh =

and

St—1+ih = Gr—1+ih — br—1+in- (3.6)
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In this paper, we make assumptions about the distribution of the frictionless price condi-
tioning on the quotes data. These data include bid, ask prices and, quoted depths (bid
and ask depth) that specify the maximum quantity for which the ask (bid) price applies.
Such assumption is not conflicting with the previous semimartingale assumption for the
price. In this paper, we work in a discrete time setting as we directly make distributional

hypothesis about successive intraday prices.

3.2.1 The common realized measures

The realized variance defined in equation (3.4) is an inconsistent estimator of the
integrated variance because of the market microstructure noise that contaminates fric-
tionless prices. An empirical evidence for the presence of the noise is the signature plot
introduced by Andersen et al. (1999). The signature plot draws a sample average of daily
realized measure of volatility as a function of the underlying returns sampling frequency.
A graph that explodes at high frequencies is an evidence for market microstructure noise
severity. At low frequencies, the plot converges to the integrated variance measure and
the noise effect disappears. Fig. 3.1 presents the signature plot for Alcoa. We use data
covering the 01/2009-03/2011 period in all the paper.

If the highest frequency returns are used to compute the realized variance, we obtain the

all estimator given by

N
RV =Y 1. (3.7)
i=1
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If a low frequency 7 is used to compute the returns, we obtain the following estimator

1/h

RVI" =RV (R) = Ly 38)

The two time scales estimator of Zhang et al. (2005), which is consistent under i.i.d.

market microstructure noise, is defined as,

N

RVtTS _ RVtaverage . _va‘all7 3.9
N

where the average estimator RV“¥¢"“8¢ is the mean of several sparse estimators, formally

K
average _ Z (3 10)

where RV =¥V e ry I+ (i+k—1)p> and /1 is the sampling frequency.
The kernel estimator of Barndorff-Nielsen et al. (2008) achieves a faster rate of conver-

gence than the RVTS and is defined as

Ryfernel — o Zf( ){y,+y i} (3.11)

where 7 = ):]}':1 1t jnTi—14(j—yns f(x) = (1 — cosm(1 —x)?)/2, and L is the band-
width.
The pre-averaging estimator introduced by Jacod et al. (2009) is robust to heteroscedas-

tic market microstructure noise, and achieves an optimal rate of convergence. We denote
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RV/™ the pre-averaging estimator given by,

2
VPre_ Z {Z‘P( )ri+j} _%thall7

Where\f—e—l—ﬁ( N~1/4) for some 6 > 0, and ¢ (x) = min(x, 1 —x).

3.2.2 Mincer-Zarnowitz regression

In order to assess the forecasting performance of a realized measures RM;, we use a

Mincer-Zarnowitz regression given by,

Vi = OC+I3RMt+1|t+m+1, (3.12)

where RM, 1, is the forecast at time t of /V;;; using the measure RM, and 7, is an
error term. A forecast RM; | |, is good if & =0, B =1, and a high R?. Since the dependent
variable is latent, we use RV[ljr”f as a proxy for IV, . In second paper of this thesis, we

discuss a bias correction that results from not observing the dependent variable. For

longer forecasting horizon H, the Mincer-Zarnowitz regression is given by,

Win=a+ BRMH—H\t +NitH. (3.13)

where IV;;1 g = ff+H Gszds, and RM; s is the forecast at time t of /V;; gy using the
measure RM, and 7,4 g 1s an error term. The forecasting model that we use is an AR(3)
model. We conduct an in-sample and an out-of-sample forecasting exercise.

In Table 3.1, we report the R? for the in-sample and out-of-sample forecasts for one
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day and 5 days horizon. We use an AR(3) forecasting model (the dependent variable is
RV'") with a 100 days rolling window. For the short horizon, the pre-averaging estima-
tor achieves the highest R?> whether in-sample or out-of-sample. The realized variance
RVl hag the least R%. However, the R? for the estimators RV®!, RyTS Rykernel and
RVP¢ are close. For the longer horizon of 5 days, we find that the overall forecasting
performance of the 4 estimators has improved upon the short horizon. The RV'S be-

comes the best forecast whether in-sample and out-of-sample when H equals 5 days.

3.2.3 Option trading

In this section we evaluate the proposed integrated volatility estimates in the context
of the profits from option pricing and trading economic metric. Using alternative fore-
casts obtained in the previous section, agents price short-term options on Alcoa stock
before trading with each other at average prices. The average profits is used as the crite-
ria to evaluate alternative volatility estimates and the corresponding forecasts.

We construct an hypothetical option market as in Bandi, Russell and Yang (2008) in
order to quantify the economic gain or loss for using alternative integrated volatility
measures. Our artificial market has as many traders as alternative forecasts. Each trader
uses a different measure from the set of realized measures.

First, each trader constructs an out-of sample one day ahead variance forecast using his
daily variances series and computes his predicted Black-Scholes option price. We focus
on an at-the-money price of a 1-day or 5-days options on a 1 Dollar share of Alcoa. The
risk free rate is taken to be zero.

Second, the pair-wise trades take place. For two given traders, if the forecast of the first
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one is higher than the mid-point of the forecasts of the two traders, than the option is
perceived as underpriced. And the first trader will buy a straddle (one call and one put)
from his counterpart. Then the positions are hedged using the deltas of the options.
Finally, we compute the profits or losses. Each trader averages the profits or losses from
pair-wise trading. We report the average profits across all days in the sample.

The option trading and profit results are computed as in the following three steps,

1-Let o; denote the volatility forecast for a given measure. The Black-Scholes option
price P is given by,

P = 2@(%6,) — 1, where @ is the cumulative normal distribution.

2-The daily profit for a trader who buys the straddle is :

| R, | —2P, + R, (1 —2®(%0;)), where the last term corresponds to the hedging, and R, is
the daily return for day t.

The daily profit for a trader who sells the straddle is :

2P— | R | —R,(1-29(30)).

3- We then average the profits and obtain the metric.

We use the out-of-sample forecasts of the section 3.2.2. We report the profits/losses in
Cents in Tables 3.1I when all the realized measures are used in the trading game. We find
that the agents using the 4 traditional measures RVl RyTS Rykernel and RVP' endure
losses. For the one day horizon, the RV "¢ is the worst estimator, whereas it becomes the
best at the 5 days horizon. The inverse is observed for RV where it is the best at short

horizon but the worst at long horizon.
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3.3 Simple bounds

We suppose that the frictionless price is bounded by the bid and the ask. This as-

sumption is restrictive since the frictionless price could be less than the bid or higher

than the ask. In the future, it would be interesting to consider the case where the friction-

less price could lie outside the bid ask interval. Formally we have,

Assumption A

b,-gp,-gai,i: 1...N.

In the next proposition, we compute the realized variance bounds under Assumption A.

Proposition 1. Under Assumption A,

where

and

RVlinfSRVt SRVtsup’

1/h
RV =Y 7,

=1

; P (3.14)
Rthnf = Zfiza

0 if(bi—ai-1)(ai—bi-1) <0 (3.15)

Min{(bi —a;1)% (a; — b,-_l)z} else.

The bounds derived in Proposition 1 are not tight to be informative. Indeed, they are

based on very weak assumptions. We draw the signature plot of RV and RV** in Fig.
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3.1. Athigh frequencies, the interval [RV""/, RVS*P] is very wide. At low frequencies, this
interval becomes narrow. For the forecasting results, we find in Table 3.1 that the bound
RVSUP beats all the traditional measures RV RyTS Rvkernel and RVP' whether in-
sample, out-of-sample, short or long horizon forecasting. The lower bound RV"/ has
the worst results compared to the traditional measures at short horizon but beats them at
long forecasting horizon. The profits/losses from the option trading exercise are reported
in Table 3.1I. At long horizon, the upper bound RV*"? achieves a big profit whereas the
lower bound RV has a big loss.

In the following section, our goal is to examine some distributional restrictions for the

price. In fact, imposing much more restrictions may provide better volatility estimators.

3.4 A distributional approach

In this section, we impose more restrictions on the distribution of the price. We eva-
luate the new realized measures using signature plots, Mincer-Zarnowitz regression for

forecasting performance, and option trading outcome.

3.4.1 A Dirac measure

If we assume that the frictionless price p; follows a Dirac measure in the mid quotes,

we obtain the usual expression for the the realized volatility,

N
RVA =Y (mi—mi_y)?. (3.16)
i=1
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If we assume that the frictionless price p; follows a Dirac measure in the bid, we obtain
the measure,

N
RV =Y (bi—bi_1)?, (3.17)
i=1

The same applies for the ask, and the corresponding measure is given by,

N
RVA* =Y (ai—ai—1)*. (3.18)
i=1

The signature plots in Fig. 3.1 of RV and RV are very close and more noisy than
RVl at high frequencies. In Table 3.1 reporting the forecasting results, show that RV,?
and RV** have similar forecasting performance with the traditional realized measures.
However, the option trading profits/losses in Table 3.1I are positive for the 5 days horizon
contrarily to the negative outcome of the traditional realized measures. At short horizon,

the traders using RV,” and RV,** endure losses comparable to the traditional measures.

3.4.2 Univariate distributions

We take the set of the intraday quotes as the conditioning set,
I={bj,aj,j=1,..,N}. (3.19)

We derive the components of the squared return conditional expectation,

E[r | 1) = (E[r: | 1))* +Varlr; | 1]

= (Elp; | 1) - E[pi—1 | 1])? (3.20)

+Var(p; | I| +Var|pi—1 | I] —2Cov|pi, pi—1 | 1]
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We make the following assumption.

Assumption B

Conditionally on L, r;_4 4, and p; 1 (;_1), are independent.

Assumption B specifies that any intraday return is conditionally independent from the
previous price. In Proposition 2, we use Assumption B and the expression (3.20) to

derive the conditional expectation of the realized variance.

Proposition 2. Under Assumption A and B,

E[RV,(h) | 1]
1/h
—Z Pe—tvin | 1= E[pr—1s—1y | 1) +Varlp,—1in | 1+ Var(p,_ 41y | 1]

Var[p, 1 (i-1yn | 1]
—2Min s 1 Var A i \/Var _ . 1.
\/ Var|p:—1vin | 1] \/ [Pe—1+in | 1] Iz 14+(i—1)h | 1]

(3.21)

The equation (3.21) is only function of the expectation and the variance. Therefore,
by varying the distributional hypothesis about the intraday price we obtain different es-

timators. We define the resulting realized measure as,

RM, = E[RV; | 1], (3.22)

We specifically examine the realized measures based on uniform and triangular distribu-

tional assumptions.
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3.4.2.1 The uniform distribution

We suppose that the intraday price follows a uniform distribution. Formally,

pi | I ~ Uniform[b;,a;]. (3.23)

The uniform distribution is such that all intervals of the same length on the distribution’s

support [b;,a;] are equally probable. The first two moments are given by,

E[pl | I] = m;,

§2
Var[p;i | 1] = ﬁ

(3.24)

We define RV*"/9"™ ysing equations (3.21) and (3.22),

' 1/h
RVlumform _ Z {(mz _ mifl)z +vi+vi_— 2Mll’l{
i=1

Vi—

L1 i /_v,-l}, (3.25)

Vi

[S)

where v; = % The bid-ask spread appears in the new realized variance RV**/%"™ The

spread is a friction measure that is not yet explored -to our knowledge- in the high fre-
quency literature to measure volatility.

The empirical results of RV*"/°"™ show similar forecasting performance to the traditio-
nal realized measures as reported in Table 3.1. However, short horizon the trader using
RV“niform endures the smallest loss among the realized measures introduced so far as
shown in Table 3.II. At 5 days horizon, the trader using RV*“*/°"™ achieves a profit. The
signature plots in Figure 3.1 show that at high frequencies RV*"/"™ is more noisy than

the realized variance RV%,
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3.4.2.2 The triangular distribution

Let the frictionless price follow a centered triangular distribution,

pi | I ~ Centered Triangular|b;,a;|. (3.26)

The centered triangular distribution has an affine probability density function. The mid-
quotes is the most probable of the distribution support. The expectation and variance

expressions are respectively,

Elpi[1] =m;,
(3.27)
b? +a; +m} — bia; — bim; — ma;

Var(p; | 1] = 13

As for the uniform distribution, we define RV"@"8ular ysing equations (3.21) and (3.22)
as,
1/h

R\/l’ri“”g”l“r = Z {(m, —mi—l)2 +Vvi+vio1 —2Min{
i=1

Vi—

1;1}¢v—im}, (3.28)

Vi
where

. blz + aiz + I’l’ll2 —bja; — bym; — m;a;

3.29
18 529

Vi

The new realized measure RV'"#84la" yseq the bid, ask and mid quotes. Assuming that
the frictionless price has a centered triangular distribution means that the mid quotes is

the most probable value for the frictionless price whereas the other values in the bid ask
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interval are realized with non zero probability, the least probabilities are near the edge of
[bi, a;l.

Empirically, we find that RV/"@"8%4" ig less noisy than the univariate based measures
RVPid Ry sk and RVH“iform as shown in the signature plots of Fig. 3.1. The forecasting
performance of RV @"8"lar measured by the R? of the Mincer-Zarnowitz regression is si-
milar to the univariate based measures as reported in Table 3.1. However, the trader using
RV/riangular endures losses at 5 days horizon in the option trading exercise contrarily to
the other univariate based measures (see Table 3.II). At the one day horizon, RV'" iangular

gives less losses than the traditional realized measures.

3.4.3 Bivariate distributions

In this section, we do not assume the independence form of successive intraday prices
specified by Assumption B. We rather specify the joint distribution of each successive in-
traday prices and use the general equation (3.20) to find the realized measure expression.
We denote p () the correlation between two intraday prices p; 11, and p,_; +(i—1)n- We

assume that,

(i)p(.) € [0,1],decreasing,
(ii)p(0) = L;limy_seop (h) = 0.
Assumption (i) implies that the correlation parameter decreases as the time interval bet-

ween successive observations becomes larger. At the limit, (ii) assumes a zero correlation

if the intraday prices are sampled at a very low frequency.
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3.4.3.1 The bivariate normal distribution

In this section, we assume a joint normal distribution for successive prices. Although
the normal distribution has not a bounded support, we parameterize it to have very slim
tails as if the distribution has almost bounded support (coherently with Assumption A).

Formally we assume,

Di mi Vi Ciil
|1~ A ( , b, (3.30)
where,
cii—1 = p(h)\/vivi_1, (3.31)
and,
vi= A%,

(3.32)
viil = A%s? .
A is a constant such that P[b; < p; < @;]=0.99 and P[b;— < pi—1 < a;—1]=0.99,i.e. L =
0.19.

We define the measure RV ¢orr-Normal using equations (3.20) and (3.22) by,

1/h
Ry corrNormal _ Z (mi —my )2 Vit — 2Ci,i—1 , (3.33)
i=1
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where the variance and covariance are given in (3.31)-(3.32).

The new measure RV <?"""Normal js g function of the friction measure -the spread- and the
correlation parameter that we specify ad hoc.

The empirical performance of the realized measure RV *""Normal is gimilar to the tradi-
tional RV when one look at the signature plot, the Mincer-Zarnowitz regression results,
and the short horizon outcome of the option trading game ; see Fig.3.1, Table 3.1, and
Table 3.11, respectively. However, the trader using RV<?""Noal endures much less loss

than the trader using RV for the long horizon.

3.4.3.2 The bivariate uniform distribution

We assume the bivariate distribution,

pi | I ~ Uniformlb;,a;],
pi—1 | I~ Uniform[b;_1,a;-1],
(h)

Cov[pivpifl ‘ I] = pl—zs,-si,l.

Using equations (3.20) and (3.22), we define the measure RV <0"-Uniform py

A 1/h 2 2 (h)
Ry corrUniform _ —my 2, S Y-l _2p Si_1. 3.34
E{(m, mi_1)"+ 12+ D 12 $iSi—1 ( )

The signature plot and the forecasting results of RV *"-Uni/orm are imilar to the RV <-Normal
as shown in Fig. 3.1 and Table 3.1. For the short horizon, RycorrUniform gchieves the
smallest loss compared to the measures introduced so far including the traditional mea-

sures as reported in Table 3.II. We also notice that the long horizon loss of RV c°r-Uniform
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is smaller than the one for RV cor-Normal

3.4.3.3 The bivariate triangular distribution

We assume that successive intraday prices follow the joint distribution given by,

pi| I ~ Triangular{[b;,a;];m;},

pi—1 | I ~ Triangular{[b;,—y,a;—1];m;_1},
p(h)

Cov|pi,pi—1 | 1| = .
Pi-pi-t 1] Vai—biv/a;i_1 —bi_ (3-39)
1
ﬁ((mi — )2 (i — b))+ (ai — mi)*(ai—y —miy)*/?)
n 4
+(g +g)(mi— bi)*(aiy —mi1 )+ (@i —mi)* 2 (mioy — bi1)¥?)].
Using equations (3.20) and (3.22), we define the measure RV " Triangular fyy,
| 1/h
Ry <orrTriansular — N (m; — mi_y)* +vi+viy — 2Cov[pj, pi—1 | 1], (3.36)
i=1
where
_ bl-2 + a,-2 + m,2 — biaj — bim; —mja; (3.37)

Vi 18 )

and the covariance expression is given in (3.35).

The signature plot of RV<orrTriangular 5 Fig 3.1 shows more bias at high frequencies
than the other bivariate Uniform and Normal distributions based measures, and even the
traditional realized variance RV%!. The forecasting performance of RV - Triangular ag re.

ported in Table 3. is better than RV <r"Normal and Ry corrUniform whether at short or long
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horizons, and in-sample or out-of-sample. The trader using RV <" Triangular achieves the
best profit compared to the overall realized measures of this paper for the long horizon

as shown in Table 3.11.

3.5 The volume information

In order to explore the volume information, we include the intraday quoted depths in

the conditioning set I.

3.5.1 The Dirac distribution

thepths.Weighted

We define a weighted volume measure R as in Gatheral and Oomen

(2010) by,

Vi+VE VA +VE

Rthepths.Weighted _ Z
i=1

2
N (‘/iBai+‘/iAbi Vililai—l‘}_viélbi_l) , (3.38)

where V2 (resp. V4) denotes the bid depth (resp. the ask depth).

depths Weighted ha

The forecasting results using Alcoa data in Table 3.I show that RV} S

the highest R> whether in-sample or out-of-sample, and for short or long horizons,

among the other Dirac based measures RV, RV?“ and RV®*. The signature plot

Vldepths.Weighted

depicted in Fig. 3.1 shows evidence that R is less noisy than RV? and

RV but more noisy than RV at high frequencies. For the option trading exercise,
RVdepths.Weighted .
t

is the unique realized measure that achieves profits for its user at both

short and long horizons.
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3.5.2 The univariate triangular distribution

We assume the price distribution,

P; | I ~ Non Centered Triangular|b;,a;). (3.39)

We denote ¢; the mode, or the most probable value of the distribution support [b;,a;].

The first moments are then given by,

ai+b;+c;
(3.40)
Var[pi | I] _ b% +al-2 +Ci2 —bja; — bic; — C,'a,"

18

Using the quoted depths, we incorporate the volume information in the mode expression.
Let’s denote the volume increments by AVI-A = ViA — Vl/i , and AVI-B = ViB — V£ 1- We set

the mode in the following way,

( B A )
avEL AVAL e AVAAYB
avAave Ot v v @i L AVEAVE £ 0
0.95h;+0.05a;  if AVA=0;AVE+£0
Ci= (3.41)

0.05h;+0.95a;  if AVA£0;AVE=0

0.5b; +0.5a; if AVA=0;AVE =0.
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We define RV depths Triangular yqing equation (3.20) and by applying Proposition 2,

RVdepths.Triangular

1/h 1 b . . b: . )
= Z {(a,+ 3l+Cl gt 13—1 e )2+Vi+vi—1 —2Min (, / Vl;l ) 1) \/\Ti\/Vi—l} )
i=1 i

(3.42)

where

- biz + al-z + Cl2 —bia; — bic; — c;a;

(3.43)
18

Vi

Observe that, the non centered triangular distribution assumption for the price implies
that the most probable value for the frictionless price depend on the quoted depths va-
riations. Incorporating the bid volume and ask volume in the mode expression makes
inventory control matters for volatility estimation. The variations of the quoted depths
measure how severe is the friction.

The signature plot of RV ®¢pths Triangular qoeg not beat the traditional realized variance
RV at high frequencies as showed in Fig. 3.1. The volume information improves the
forecasting ability of the univariate triangular based measure. Indeed, RV ¢¢Pths-Triangular
has higher R? than RV!"#@"84/4" for all horizons and both in-sample and out-of-sample (see
Table 3.I). However, the bivariate triangular based measure Ry corr-Triangular peats hoth
RV depths. Triangular opq Ry/triangular  Therefore, we introduce in the next section a mea-
sure that is based on a bivariate Triangular distribution and also incorporates the volume
information. For the option trading exercise, Table 3.II shows that RV depths Triangular jg

better at long horizon because it causes losses at short horizon. Moreover, the profit
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that the trader using RV 9ePrhs-Triangular achieves is less than the one for the trader using

RV depths-weighted ot 1ono horizon.

3.5.3 The bivariate triangular distribution

In this section, we use the volume information and we impose a bivariate structure

for successive prices. We assume the following triangular distribution for intraday prices,

pi | I ~ Triangular{[b;,a;];c;},

pi-1 |1~ Triangular{[b;-1,a;-1];ci-1},

p(h)
Vai—bivai- —bi_1[ (3.44)

—((ci—=b;)**(cic1 = b1 + (a; — ) (a1 — ci1)Y?)

Covipi,pi—1 | 1] =

n 4
+(g ) (=0 (aiy — i)+ (= e Plei = b)),

where the mode expression is given in (3.41).

Using equations (3.20) and (3.22), we define RV depths.corr-Triangular oq

RVdepths.corr.Trlangular

(3.45)

1/h 2
ai+bi+c; ai_1+bi—1+ci-
:Z(l 3l e 13] ll) +Vi+vi-1 —2Cov[p;, pi—1 | 1],
i=1

where

bl +a?+c} —bja; — bici — cia;
= 18 Y

Vi
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and the covariance is given in (3.44).

Empirically, the trader using RV depths-corrTriangular hag the best profit among the ove-
rall realized measures of this paper (see Table 3.1I) at the long horizon. Therefore, it
is important to exploit the volume information as well as a correlated structure of suc-
cessive intraday prices. However, at short horizon the trader using RV @¢pths-corr.Triangular
endures a loss. As expected for the forecasting exercise, RV @¢pths-corr.Triangular haq the hi-
ghest R? among the all the Triangular based measures RV ¢0""-Triangular - py Triangular qpq
RV depths Triangular \yhether in-sample or out-of-sample and short or long horizon as de-
picted in Table 3.1 Finally, the signature plot of RV 4¢Pths-corrTriangular jn Fig 3 1 shows

a more noisy measure at high frequencies than the traditional RV,

3.6 Conclusion

In this paper, we make distributional assumptions on the frictionless price and we
come up with new realized measures that incorporate the spread and the quoted depths
information. To assess the performance of the new realized measures, we empirically
compare their forecasting ability using Mincer-Zarnowitz regression and an option tra-
ding game. For an Alcoa data sample covering 01/2009-03/2011, we find that the new

realized measures beat in many cases the common robust to noise realized measures.
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Figure 3.1 — Signature plots for Alcoa 01/2009-03/2011.



Alcoa 1 day 5 days

R? In Out In Out
RV 0.4767 0.4746 0.5105 0.4965
RVTS 0.4800 0.4873 0.5133 0.5006
RV kernel 0.4870 0.4934 0.5123 0.4997
RV Pre 0.4927 0.4959 0.5025 0.4910
RVinS 0.4159 0.4101 0.5275 0.5108
RVsuP 0.5121 0.5095 0.5432 0.5313
Ry bid 0.4851 0.4827 0.5056 0.4927
RV ask 0.4754 0.4728 0.5101 0.4954
Ry Uniform 0.4804 0.4781 0.5088 0.4950
RV Triangular 0.4787 0.4765 0.5097 0.4957
RV corrUniform 0.4790 0.4768 0.5096 0.4957
Ry corrTriangular 0.5019 0.4997 0.5238 0.5116
RV corrNormal 0.4778 0.4756 0.5101 0.4961
RV depths.weighted 0.4901 0.4883 0.5179 0.5045
RV depths.Triangular 0.4862 0.4839 0.5120 0.4983
RV depths.corrTriangular () 5072 (0.5049 0.5275 0.5151

Table 3.I — In-sample and out-of-sample forecasting R.
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profits/losses H=1 H=5
Ryl 20.0635 -5.8989
RYTS 02562 23097
Rvkernel -0.2520 -3.4331
Ry 05743 -1.7204
Rvnf -1.5702 -10.6035
RYsup -0.4364  5.7356
Ry 202634 13735
Ry sk 03421 13403
Ry Uniform -0.0533 0.3004
RV Triangular -0.0816 -2.8749
RV corrUniform 0.0418 -2.0785
vaorr.Triangular -0.1139 59221
RV corr.Normal -0.0653 -4.5714
Rvdepths.weighted 0.2051 3.0643
RV depths.Triangular -0.0609 2.6296
Rvdepths.corr. Triangular -0.2759 7.0041

Table 3.1I — Alcoa profits/losses from option trading.



CONCLUSION

La performance de la mesure et la prévision de la volatilit¢ fondamentale ou per-
manente des actifs liquides dépend du traitement des frictions microstructurelles. Dans
cette these, on améliore I’estimation et la prévision de la volatilité en explorant deux
nouvelles facons d’aborder le probléeme du bruit microstructure. Dans le premier et troi-
sieme papier on utilise le spread et le volume pour absorber les frictions. Alors que dans

le deuxieme papier, on insiste sur le caractere variable en fonction du temps des frictions.

L’apport théorique de ma these réside dans la dérivation des distributions asymp-
totiques des estimateurs de volatilité. En effet, dans le premier papier on montre que
I’endogénéité ne cause pas I’inconsistence des estimateurs de volatilité comme serait le
cas pour les estimateurs classiques. Aussi, le fait d’avoir une nouvelle série de rende-
ments moins contaminés par le bruit microstructure rend 1’analyse beaucoup plus simple
que I’approche de pre-averaging pour réduire I’impact du bruit. Le travail théorique du
deuxieme papier montre la flexibilité du cadre des fonctions propres de volatilité sto-

chastique.

Empiriquement, on utilise les données d’ Alcoa de la bourse de New York couvrant la
période 01/2009-03/2011 et ce pour les trois papiers de la these. Globalement on obtient
de bon résultats. Cette période contient une phase de grande volatilité correspondant a la
crise financiere qui a commencé en 2009. La deuxieme phase, surtout en 2011 se carac-

térise par une faible volatilité. Plutard, il est important de tester nos modeles sur d’autres
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actifs et d’autres périodes de temps.

Mon agenda de recherche contient plusieurs pistes de travail. Pour le premier papier,
on pense rajouter une composante de sauts dans la dynamique du prix sans frictions et en
examiner I’impact sur 1’approche du papier. Intuitivement, 1’estimation des parametres
du bruit microstructures ne sera pas affectée car les sauts ont une taille stochastique
plus petite que le rendement sans frictions. Par contre, dans I’anlyse de la volatilité, il
faudrait utiliser des mesures robustes aux sauts. Il est intéressant aussi de généraliser la
forme linéaire des cofits de liquidité utilisée a une forme nonparamétrique. En effet, les
nonlinéarités sont mises en évidence dans les fonctions de cofits de liquidité. L’exten-
sion multivariée est importante pour la mesure des co-volatilités et les bétas. L’étude de

la volatilité spot peut aussi se faire en utilisant I’approche du premier papier.

Pour le deuxieme papier, il est impératif de dériver les lois asymptotiques des deux
parametres de la variance du bruit microstructure. La difficulté technique d’un tel exer-
cice réside dans le fait qu’on fait tendre a la fois le nombre de jours vers ’infini et le
pas d’échantillonnage vers z€ro. On pense aussi examiner le cas des parametres du bruit
microstructure variant a ’intérieur méme de la journée apporterait plus de flexibilité.
L’étude empirique de ce papier ne rejette pas le modele de la variance du bruit. On se

pose la question si ce résultat reste valide si on change la série des données utilisée.

Enfin, dans le troisiéme papier, il est important de relaxer 1’hypotheése qui contraint

le prix sans frictions a €tre comprix entre le prix de vente et le prix d’achat.
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