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Résumé 

L’incidence du diabète chez les premières nations du Canada est plus de trois fois celle 

du reste du pays, dû, en partie, aux traitements culturellement inappropriés. Notre projet 

vise à traiter le diabète chez ces populations à partir de leur pharmacopée de médicine 

traditionnelle afin d’améliorer l’acceptation des traitements. En utilisant une approche 

ethnobotanique, notre équipe a identifié 17 plantes médicinales utilisées pour traiter des 

symptômes du diabète par les Cris d'Eeyou Istchee (Baie James, Québec). Parmi eux, 

l'extrait éthanolique de baies de Vaccinium vitis-idaea a montré un effet stimulateur sur le 

transport du glucose dans les cellules musculaires squelettiques et les adipocytes en 

culture. Le but de cette thèse était d’élucider les mécanismes par lesquels cet extrait 

exerce ses effets anti-hyperglycémiants, d’identifier ses principes actifs et de confirmer in 

vivo, son efficacité. Les résultats démontrent que V.vitis a augmenté le transport du 

glucose dans les cellules musculaires en cultures, C2C12 et L6 et a stimulé la 

translocation des transporteurs GLUT4 dans les cellules L6. L'extrait a également inhibé 

la respiration dans les mitochondries isolées du foie du rat. Cet effet est semblable à celui 

de la metformine et en lien avec la production du stress métabolique et l'activation de 

l'AMPK. De plus, la voie de signalisation de l’insuline ne semble pas être impliquée dans 

le mécanisme d’action de V. vitis. 

Le fractionnement guidé par la stimulation du transport du glucose a mené à l'isolation 

des principes actifs; la quercétine, la quercétine-3-O-galactoside, et la quercétine-3-O-

glucoside. Comparable à l'extrait brut, ses composés ont stimulé la voie AMPK. 

Cependant, la quércetine était la seule à inhiber la respiration mitochondriale.  

Pour valider l'effet de V.vitis in vivo, l'extrait (1% dans l'eau de boisson) a été administré 

aux souris KKA
y
 pendant 10 jours. La glycémie et le poids corporel ont été 

significativement réduits par V.vitis. Ces effets ont été associés à une diminution de la 

prise alimentaire, ce qui suggère que V.vitis diminue l'appétit. L'étude pair-fed a confirmé 

que les effets de V.vitis sont, majoritairement, dû à la réduction de l’appétit. De plus, 

V.vitis a augmenté la teneur en GLUT4 dans le muscle squelettique, a stimulé la 
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phosphorylation de l'ACC et a augmenté les niveaux de PPAR-α dans le foie des souris 

KKA
y
. Ces effets se voient être additifs à l’effet anorexigène de V. vitis. 

Au cours du fractionnement bioguidé de l’extrait, l’ester méthylique de l'acide caféique 

(CAME), un produit formé lors de la procédure du fractionnement, a démontré un effet 

stimulateur puissant sur le transport du glucose dans les celules C2C12 et donc un 

potentiel anti-diabétique. Pour identifier d'autres acides caféique active (AC) et pour 

élucider leurs relations structure-activité et structure-toxicité, vingt dérivés AC ont été 

testés. Outre CAME, quatre composés ont stimulé le transport du glucose et ont activé 

l'AMPK suite au stress métabolique résultant d'un découplage de la phosphorylation 

oxydative mitochondriale. L’activité nécessite une fonction d’AC intacte dépourvu de 

groupements fortement ionisés et ceci était bien corrélée avec la lipophilicite et la 

toxicité. Les résultats de cette thèse soutiennent le potentiel thérapeutique de V. vitis, ses 

composés actifs ainsi que de la famille de l’AC et pour la prévention et le traitement du 

diabète.  

 

Mots-clés : Vaccinium vitis, diabète de type 2, AMPK, ACC, PPAR-α, OPD, KKA
y
, 

GLUT4, produits de santé naturels, médecine traditionnelle, la forêt boréale canadienne, 

les Autochtones d’Amérique du nord. 
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Abstract 

Type 2 diabetes in Canadian First Nations is three times higher than the national average. 

Poor prognosis is partly attributed to cultural inappropriateness of pharmaceutical 

products. Our project aims to develop culturally adapted diabetes treatment based on 

traditional medicine pharmacopoeia. Our team has identified 17 plants used to treat the 

symptoms of diabetes by the Cree of Eeyou Istchee (James Bay, Quebec). Among them, 

the ethanol extract of Vaccinium vitis-idaea berries was found to have an important 

stimulatory effect on glucose uptake in cultured skeletal muscle cells and adipocytes. The 

goal of this thesis was to elucidate the mechanisms of action of this plant product as well 

as to isolate and identify its active constituents using a bioassay-guided fractionation 

approach and finally to validate the antidiabetic activity in vivo. The extract of V.vitis 

enhanced glucose uptake in cultured C2C12 and L6 skeletal muscle cells and stimulated 

the translocation of GLUT4 transporters to the cell membrane of L6 cells. It mildly 

inhibited ADP-stimulated oxygen consumption in isolated rat liver mitochondria, an 

effect similar to that of metformin and consistent with metabolic stress and the 

consecutive activation of AMP-activated protein kinase (AMPK) pathway. The insulin 

pathway does not seem to be involved in V.vitis signaling. 

Fractionation of this plant extract, guided by glucose uptake activity, resulted in the 

isolation of the active principles, quercetin-3-O-galactoside, quercetin, and quercetin-3-

O-glucoside. Similar to the crude extract, the quercetin glycosides and the aglycone 

stimulated the AMPK pathway. However, only the aglycone inhibited ATP synthase in 

isolated mitochondria. 

To validate the effect of V.vitis in vivo, the extract (1% in drinking water) was 

administered to KKA
y
 mice for 10 days. Glycemia and body weight were significantly 

reduced by V.vitis. These effects were associated with decrease of food intake, suggesting 

that V.vitis reduces the appetite. The pair-fed study confirmed that the previous effects of 

V.vitis are almost mediated by its appetite reducing action. In addition, V. vitis-treatment 

increased the content of GLUT4 protein in skeletal muscle, stimulated the 

phosphorylation of ACC and increased the levels of PPAR-α in the liver of KKA
y
 mice. 

These effects could be additives to the apetite controling effect of V. vitis. 
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In the course of bioguided-fractionation, caffeic acid methyl ester (CAME), a by-product 

of fractionation procedure, has been shown to potently stimulate glucose uptake in 

cultured skeletal muscle cells and therefore to have anti-diabetic potential. To identify 

other active caffeic acid (CA) derivatives and to elucidate their structure–activity and 

structure-toxicity relationships, twenty CA derivatives were tested. In addition to CAME, 

four compounds were found to stimulate glucose uptake and activate AMPK. Uncoupling 

of mitochondrial oxidative phosphorylation by these compounds resulted in metabolic 

stress which could explain the activation of AMPK. The activity required an intact caffeic 

acid moiety devoid of strongly ionized groups and was well correlated with lipophilicity 

and toxicity. 

The results of the present thesis support a therapeutic potential for V.vitis, and its active 

compounds, as well as the CA family of compounds for the prevention and treatment of 

diabetes. 

 

Keywords: Vaccinium vitis, type 2 diabetes, AMPK, ACC, PPAR-α, OPD, KKA
y
, 

GLUT4, natural health products, traditional medicine, Canadian boreal forest, Aboriginal 

populations of North America. 
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1. Introduction 

The last few decades of the 20th century have witnessed the rise of worldwide 

epidemic obesity along with type 2 diabetes mellitus in adults, as well as in children and 

adolescents. Type 2 diabetes is a metabolic disorder characterized by hyperglycemia. Its 

prevalence varies among different ethnic groups. In Canada, the overall prevalence of 

diabetes among Canadian adults was approximately 5.5% in 2004-2005 according to 

National Diabetes Surveillance System (NDSS) data. The populations most affected are the 

aboriginal populations with a higher prevalence in women compared to men. The recent 

socio-cultural changes experienced by these populations including adoption of a sedentary 

lifestyle, the consumption of non-traditional foods, along with the genetic predisposition to 

the disease are the major causes of the epidemic (Boston et al. 1997); (Young et al., 2000); 

(Hegele, 2001). Aboriginals also suffer from diabetes complications, including end-stage 

renal failure, retinopathy and peripheral neuropathy, at a disproportionately high rate. It 

was reported that death from diabetes complications is 5-fold higher among aboriginal 

women as compared with Canadian women (Young et al., 2000).  

The Cree represent the largest aboriginal group in Canada, with more than 72,000 

registered individuals (Statistics Canada, 2002). Eeyou Istchee, which literally means ―land 

of the people‖, is the homeland of the Cree Nation of Eastern James Bay. The Cree of 

Eeyou Istchee (CEI) have a population of approximately 14,000 people who live in 9 

communities spread across the northern part of the province of Quebec (Secrétariat aux 

affaires autochtones, 2004). Over the past decade, diabetes has reached unprecedented 

proportions among the CEI with a prevalence of 17.7% among adults aged over 20 years 

(Légaré, 2004). A high prevalence of gestational diabetes has been also observed in CEI, 

which ranks second among aboriginal groups worldwide (Rodrigues et al., 1999). 

To address this serious aboriginal health issue, diabetes prevention and treatment 

projects need to be adapted to the cultural and social environment of these populations. 

Aboriginal peoples have a long tradition of using plants in their environment for healing 

purposes; through millennia of trial and errors they had developed a comprehensive 
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traditional pharmacopeia that was handed down from generation to generation largely as 

verbal teaching and as part of their cultural tradition (Young et al., 2000).  

After the European colonization, some of their traditional knowledge was lost; 

fortunately much was documented by anthropologists and was recognized in the official 

Pharmacopeia of the United States and Canada. The first Pharmacopoeia of the United 

States, published in 1820, included 170 indigenous plant species. Similarly, the Canadian 

Pharmaceutical Journal contained more than twenty species prescribed by First Nations as 

medication (Erichsen-Brown, 1979; Vogel, 1990). 

Despite the wealth of the Cree Nations’ traditional knowledge, no work has been 

done to examine the potential of their medicinal plants to treat the relatively recent diabetes 

epidemic. The approach that our research team has adopted was to develop culturally 

relevant diabetes treatment options in these communities.  Taking into consideration the 

complexity of diabetes and its relatively recent evolution among the Cree population, the 

ethnobotanical approach adopted by our project was based on the the symptoms and 

complications of the disease. Hence a questionnaire that included 15 symptoms of type 2 

diabetes, rather than diabetes per se was prepared. In collaboration with the CEI, we have 

conducted ethnobotanical surveys in four CEI communities: Mistissini, Whapmagoostui, 

Nemaska and Waskaganish and have identified seventeen medicinal plant species that are 

traditionally used to treat symptoms related to diabetes (Leduc et al., 2006), (Fraser et al., 

2007), (Harbilas et al., 2009). Bioactivity screening projects for antidiabetic properties of 

these plant products have showed that over half of them possess significant antidiabetic 

activities (Spoor et al., 2006), (Harbilas et al., 2009). The present study focuses on the 

antidiabetic properties of the berries of Vaccinium vitis-idaea, a medicinal plant product 

used in the communities of Whapmagoostui and Mistissini to treat frequent urination and a 

number of other symptoms of diabetes (Leduc et al., 2006); (Fraser et al., 2007). 
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1.1 Energy homeostasis 

1.1.1 Glucose homeostasis 

Glucose is the primary metabolic fuel for all body tissues and the obligatory energy 

substrate for the brain. Despite the relatively small weight of the brain (2% of body 

weight), it uses 25% of the total body glucose (Dong et al., 2003). Therefore, a constant 

and adequate supply of glucose is necessary to maintain normal brain function (Tirone and 

Brunicardi, 2001). During fed and fasting states, healthy individuals are able to maintain 

plasma glucose in narrow ranges (fasting blood glucose of 3.3–5.6 mmol/L and post-

prandial glucose of 4.40–6.94 mmol/L). To keep this tight control of blood glucose 

concentration, a balance should be achieved between glucose absorption by the intestine, 

glucose production by the liver and glucose disposal in peripheral tissues (Beardsall et al., 

2008). Insulin is the master regulator of blood glucose level in the fed state and does so by 

controlling glucose uptake by muscle and fat cells and by suppressing hepatic glucose 

production. On the other hand, glucagon and other counter-regulatory hormones 

(catecholamines, cortisol and growth hormone) maintain blood glucose levels during 

fasting (Beardsall et al., 2008). 

1.1.1.1 The insulin receptor: transduction through tyrosine kinase signaling 

The insulin receptor (IR) is a heterotetrameric plasma membrane protein receptor 

that consists of two extracellular α- and two intracellular β-subunits linked by disulfide 

bonds. It belongs to a subfamily of receptor tyrosine kinases that also includes the insulin-

like growth factor and an orphan receptor, known as the IR-related receptor (Ward, 1999). 

Before ligand binding, IR is inactive, although it is oligomerized, since the α subunit 

exhibits allosteric inhibition of the β subunit catalytic activity.  Binding of the ligand 

(insulin) induces a conformational change which stimulates the catalytic activity and 

induces transphosphorylation of the receptor on specific tyrosine residues. Once 

phosphorylated, these tyrosine residues, along with the sequence of adjacent amino acids, 

create binding sites for docking proteins, which contain domains that bind phosphotyrosine 

such as Src homology 2 domain (SH2) and phosphotyrosine binding (PTB). Scafolds 
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(insulin receptor substrate (IRS), Gab, and Shc), adaptors (Grb2), kinases 

(phosphatidylinositol 3-kinase (PI3-K), Src), phosphatases (Shp2) and ubiquitinating 

proteins (c-Cbl) are recruited to the phosphorylated active IR through these domains to be 

phosphorylated by the catalytic activity of IR on tyrosine residues (Baron et al., 1992), 

(Saltiel and Kahn, 2001). This links IR to several major signaling pathways, one involves 

phosphatidylinositol 3-kinase (PI3-K) and the other involves Ras/mitogen-activated protein 

kinase (MAPK) cascade (Figure 1).  

1.1.1.1.1 PI3-Kinase pathway and downstream targets 

This pathway is responsible for the metabolic action of insulin. Recruitment of PI3-

K to IRS through its regulatory subunit, p85, results in the phosphorylation of 

phosphatidylinositol (4,5) bisphosphate (PI(4,5)P2) by PI3-K catalytic subunit, p110, 

which generates phosphatidylinositol (PI(3,4,5)P3). PI(3,4,5)P3 serves as docking site for 

pleckstrin homology domain (PH) containing serine/threonine kinase Akt/PKB. Once 

correctly positioned at the membrane, Akt gets phosphorylated by its activating kinases, 

phosphoinositide-dependent protein kinase-1 (PDK1), at threonine 308 (Jacob et al., 2008). 

PDK1 also phosphorylates and activates the atypical forms of protein kinase C (PKC), 

including PKCξ and PKCλ. Both Akt and atypical PKC have been shown to mediate 

insulin dependent glucose transport (Czech and Corvera, 1999). This is discussed in detail 

further below. 

1.1.1.1.2 The Ras–MAPK cascade 

The Ras-MAPK pathway is mainly involved in mediating cell growth, survival and 

cellular differentiation. Phosphorylation of IRS-1 by IR induces the translocation of 

cytosolic adaptor protein, growth factor-bound protein 2 (Grb-2) through its SH2 domain. 

Grb2 also contains SH3 domain which allows the constitutive association with the proline 

rich region of the guanyl nucleotide exchange factor, son of sevenless (SOS). 

Alternatively, Grb2/SOS complex is recruited to IR through the assistance of another 

adaptor, Shc. The recruitment of Grb2 from the cytoplasm to the plasma membrane binds 

the small GTPase Ras. Through guanine exchange, SOS activates Ras, thus allowing its 
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interaction with downstream effectors and their activation. Ras initiates a kinase cascade 

via the stepwise activation of Raf, the MAP kinase-kinase MEK and the MAP kinases 

ERK1 and ERK2. Once activated, ERKs promote gene expression and protein synthesis by 

phosphorylating targets such as p90 ribosomal protein S6 kinase (p90RSK) and the 

transcription factor ELK1 (Avruch, 1998).  

1.1.1.1.3 Cbl/CAP/TC10 pathway in lipid rafts 

The insulin receptor also phosphorylates other substrates such as the Cbl-binding 

protein APS. Phosphorylation of APS is necessary for its binding with Cbl and the 

subsequent phosphorylation of Cbl by IR. Cbl interacts also with Cbl-associated protein 

(CAP), a protein that belongs to the Sorbin homology (SoHo) family of adaptor proteins. 

The phosphorylated APS-Cbl–CAP complex then translocates to lipid raft domains in the 

plasma membrane through the interaction of the SoHo domain of CAP with the lipid raft 

protein, flotillin. Once translocated into the lipid raft, the phosphorylated Cbl recruits the 

SH2/SH3 adaptor protein CrkII through its SH2 domain along with the guanyl nucleotide-

exchange protein C3G. C3G, in turn, catalyze the exchange of GTP for GDP on the lipid-

raft-associated protein TC10, a Rho family GTPase, resulting in its activation. Along with 

the PI3-K, TC10 stimulates the trafficking of Glut4 vesicles, their docking and their fusion 

with the plasma membrane (Saltiel and Kahn, 2001), (Kimura et al., 2002). This pathway 

was first described in 3T3-L1 adipocytes, but was later reported in cardiac muscle and 

adipose tissue in vivo (Gupte and Mora, 2006). Another group suggested that the 

Cbl/CAP/TC10 signaling cascade was present in skeletal muscle, activated by insulin, and 

impaired by high-fat feeding (Bernard et al., 2006). 

1.1.1.1.4 Regulation and termination of IR signal 

Given the important biological functions of IR, its signal must be tightly regulated. 

This occurs by terminating IR signaling through its internalization and dephosphorylation 

by protein tyrosine phosphatases (PTPases) such as PTP1B. IR is then ubiquitinated and 

degraded by the proteasome (Zinker et al., 2002), (Saltiel and Kahn, 2001).  
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Alternative regulation of IR could be the result of cross talk signaling from other 

receptors such as the epidermal growth factor receptor (EGFR), tumor necrosis factor 

alpha (TNF-α) and integrin receptors. IR has been shown to be phosphorylated at  Ser/ Thr 

residues, which results in the attenuation of insulin signaling (Coba et al., 2004). Finally, 

IRS-1 is also the target of Ser/ Thr phosphorylation by PKC-β, which results in the 

inhibition of the catalytic activity of IR (Aguirre et al., 2002) (Liberman et al., 2008) 

(Ishizuka et al., 2004). IRS can also be negatively regulated by kinases mediators of insulin 

signalling upon prolonged insulin stimulation such as PKCξ,(Liu et al., 2001), 

mTOR/S6K1 (Tremblay et al., 2007) and certain MAPK (Engelman et al., 2000). Novel 

members of PKC family (nPKCs) such as PKC-ε, -η and –θ can directly phosphorylate 

IRS-1 on serine/therionine residues. nPKCs are involved in free fatty acids (FFAs)-induced 

insulin resistance. The metabolism of FFA increases the content of intramyocellular 

diacylglycerol (DAG), a potent allosteric activator of conventional and novel PKCs (Dey 

et al., 2006).  

 

 

 

 

 

 

 

 

 

Figure 1 Insulin signaling pathways (Saltiel and Kahn, 2001) 

 

1.1.1.2 Glucose transporters and insulin action  

In the fed state, insulin promotes glucose disposal mainly through glucose uptake 

by peripheral tissues and its subsequent utilization/storage. Because glucose is a polar 
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molecule, it does not diffuse through the lipid bilayer of cell membranes and therefore 

glucose transporters are required (Olson and Pessin, 1996).
 
Two different types of glucose

 

transporters have been identified: the energy dependent sodium glucose co-transporters 

(SGLT) and the facilitative glucose transporters (GLUT). SGLT are expressed mainly in 

the intestine and kidney, where they
 
actively transport glucose against its concentration 

gradient
 

by using the energy derived from the co-transport of sodium down its 

electrochemical gradient (Shepherd and Kahn, 1999).  

GLUT transporters are a family composed of 14 structurally related proteins that 

mediate facilitative transport of glucose along its concentration gradient. These proteins 

have 12 membrane spanning domains with both C- and N- terminal tails of the protein 

oriented on the cytoplasmic side (Augustin, 2010; Olson and Pessin, 1996; Thorens and 

Mueckler, 2009; Wood and Trayhurn, 2003). They are encoded by distinct genes and have 

distinct substrates and tissue distribution (Table 1). GLUT family can be grouped into three 

classes bases on their structural similarities, class I that includes GLUT1-4 and GLUT14, 

class II comprises GLUT5, 7, 9, 11, and class III which has GLUT6, 8, 10, 12 and the 

proton driven myoinositol transporter HMIT (or GLUT13). GLUT4 is the main insulin-

responsive glucose transporter and is located primarily in skeletal muscle cells, cardiac 

muscle cells and adipocytes (James et al., 1989). In these tissues, GLUT4 is responsible for 

most of the glucose uptake, even though they also express the GLUT1 isoform (Giorgino 

et al., 2000). In the basal state, less than 5% of GLUT4 resides in the cell surface, the rest 

are present in the membrane of the vesicles. Upon insulin stimulation, GLUT4 is 

translocated to the cell surface and glucose uptake is increased (Cushman et al., 1998), 

(Suzuki and Kono, 1980), (Marette et al., 1992).  
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Table 1 Distribution of mammalian facilitative glucose transporters (Augustin, 2010; 

Thorens and Mueckler, 2009) 

Name Tissue distribution Insulin 

sensitivity 

Function 

GLUT1 Ubiquitous, erythrocytes and 

brain 

No Basal glucose transport, transport 

across blood-brain barrier 

GLUT2 Liver, pancreatic β-cells, 

intestine, kidney 

No Intestinal absorption, renal re-

absorption,  

pancreatic and hepatic control of 

glucose homeostasis 

GLUT3 Widely distributed in human 

tissues, restricted to brain in 

other species. Immune cells. 

No Glucose transport into neurons in 

brain, basal transport in many 

human cells.  

GLUT4 Skeletal muscle, cardiac 

muscle, adipose tissue 

Yes Insulin-dependent glucose 

transport. 

GLUT5 Intestine, testes, kidney. No Fructose transport. 

GLUT6 Leucocytes, spleen, brain. No n. d. 

GLUT7 Apical membrane of small 

and large intestine 

No Exhibits a low level of transport 

activity for fructose and glucose. 

GLUT8 Brain,  heart Yes Role in neuronal proliferation and 

heart atrial activity. 

GLUT9 Liver, kidney, intestine No Regulator of uric acid liver. 

GLUT10 Liver, pancreas No n. d. 

GLUT11 Different tissue types No Glucose, fructose transport, main 

substrate has not been identified. 

GLUT12 Heart, prostate, musle, small 

intestine, WAT 

Yes Glucose homeostasis. 

GLUT13  Brain No Myoinositol transporter. 

GLUT14 Testis No Most likely a glucose 

transporter. 
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Once inside muscle, glucose is phosphorylated
 
by hexokinase or glucokinase, 

yielding glucose 6-phosphate (G-6-P). G-6-P can
 
be then used either for the synthesis of 

glycogen via the activity of glycogen synthase (GS) or metabolized in the
 
glycolytic 

pathway via enzymes such as pyruvate kinase (Roach, 2002).  

 

1.1.1.3 Alternative pathway to glucose uptake: AMP-activated protein kinase 

pathway 

AMP-activated protein kinase (AMPK) is a ubiquitous heterotrimeric enzyme 

composed of α, β and γ subunits. The α subunit contains a serine/threonine protein kinase 

catalytic domain. It also holds Thr/172 which is the principal site of its phosphorylation by 

upstream kinases and thus its activation. The β subunit has glycogen-binding domains and 

appears to stabilize the interaction between α and γ subunits. The γ subunit binds AMP or 

ATP in a mutually exclusive manner (Wong and Lodish, 2006).  

 AMPK is a metabolic stress-sensing protein kinase that is activated in response to 

depletion of ATP content and an increase in the cellular AMP/ATP ratio under stress 

conditions such as hypoxia, physical exercise and inhibition of mitochondrial respiration 

(Chen et al., 1999). AMP is thought to allosterically activate the enzyme and prevent its 

dephosphorylation. On the other hand, the tumor suppressor LKB1 is the major kinase 

responsible for phosphorylation of AMPK on Thr
172

 in the α-subunit. However, LKB1 is 

not directly activated by AMPK, but the later induces conformational changes in AMPK 

rendering it more susceptible to phosphoylation by LKB1. Ca
2+

/calmodulin-dependent
 

almodulin protein kinase kinase (CAMKK) can also phosphorylate AMPK on Thr
172

 and 

activate it (Shen et al., 2007). When AMPK is activated,  energy-consuming anabolic 

pathways are shuts down (such as fatty acid, protein and cholesterol synthesis) and ATP-

producing catabolic pathways are activated (such as fatty acid oxidation) (Viollet et al., 

2003). 

Within skeletal muscle, the activation of AMPK increases glucose uptake through 

the stimulation of GLUT4 translocation to the plasma membrane by a mechanism distinct 
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from PI3-K stimulated by insulin. P38 MAPK appears to be activated by several 

stimulators of AMPK, including AICAR and mitochondrial uncouplers, and is thought to 

mediate the effect of AMPK on activation of GLUT4 exposed at the cell surface (Lemieux 

et al., 2003; Pelletier et al., 2005; Ribe et al., 2005). In non-insulin sensitive tissues, 

AMPK stimulates glucose transport by activating GLUT1 at the plasma membrane.  In 

addition, AMPK upregulates the expression of GLUT4 possibly through the direct 

phosphorylation of the transcriptional co-activator PPARγ coactivator-1 (PGC 1α) or 

through the derepression of the transcription factor myocyte enhancer factor-2 (MEF2). 

Moreover, activation of PGC-1α by AMPK also increases the mitochondrial biogenesis 

resulting in greater mitochondrial oxidative capacity. Thus, AMPK activation might 

protect against mitochondrial dysfunction thought to predispose to metabolic diseases such 

as obesity and type 2 diabetes (Lowell and Shulman, 2005). 

On the other hand, AMPK phosphorylates and inhibits acetyl-CoA carboxylase 

(ACC). There are two isoforms of ACC in mammalian tissues: ACC1 and ACC2. ACC1 is 

a cytosolic protein involved in fatty acid synthesis, while ACC2 exists mainly in the 

mitochondria and regulates fatty acid oxidation. Collectively, inhibition of ACC leads to 

reduction of malonyl-CoA concentrations, an allosteric inhibitor of carnitine palmitoyl 

transferase (CPT-1).  The later enzyme regulates the transport of long chain fatty acids to 

mitochondria for β-oxidation. Thus, the derepression of CPT-1 by ACC phosphorylation 

decreases intramyocyte accumulation of lipids and increases insulin sensitivity of muscle 

(Winder and Hardie, 1999), (Zhou et al., 2009) (Fogarty and Hardie, 2010). 

 In a similar manner, activation of AMPK in the liver stimulates fatty acid oxidation 

and inhibits expression of genes encoding lipogenic enzymes (fatty acid synthase and 

ACC) (Viollet et al., 2003). The action of AMPK on the lipogenic genes is mediated by 

reduction of transcription activators namely carbohydrate responsive element-binding 

protein (ChREB) and sterol regulatory element-binding protein 1c (SREPB-1c). In 

addition, AMPK inhibits the synthesis of cholesterol via the suppression of 3-hydroxy-

methyl-glutaryl-CoA reductase (HMGR).  
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AMPK also decreases hepatic glucose production mainly by inhibiting the 

expression of gluconeogenic genes such as phosphoenolpyruvate carboxylase (PEPCK) 

and Glucose 6-phosphate (G-6-Pase). The action of AMPK on the expression of these 

genes involves regulation of transcription factors including cAMP-response element-

binding protein (CREB), hepatocyte nuclear factor-4α (HNF4-α), Forkhead box O1( 

FOXO1), and the orphan nuclear receptor small heterodimer Partner (SHIP). The 

metabolic actions of AMPK are summarized in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2  major effects of AMPK on glucose and fatty acid metabolism in liver and skeletal 

muscle (Hwang et al., 2009). 

It has been reported that the insulin-sensitizing drugs thiazolidinediones and 

biguanides, though chemically unrelated, exert part of their effects through regulation of 

the activity of AMPK (Fryer et al., 2002). Biguanides such as metformin and phenformin 

are reported to be transported by the organic cation transporter-1 (OCT1) which is highly 

expressed in liver. The detailed mechanisms of these agents will be discussed under 

treatment section. On the other hand, the synthetic nucleotide analogue nucleoside 5-

aminoimidazole-4-carboxamide riboside (AICAR) has been widely used to study the effect 
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of AMPK in animals. Inside the cell, AICAR is metabolized to the monophosphorylated 

derivative ZMP, which mimics the effect of AMP on AMPK activation. Interestingly, 

direct activators of AMPK such as A-769662 and PT1 have been recently developed. The 

action of these agents does not seem to be mediated by AMP. Activation of AMPK by A-

769662 appears involve the β-subunit (Fogarty and Hardie, 2010) 

 

 

 

 

 

 

 

  

   

 

 

 

Figure 3 : Activators of AMPK (Fogarty and Hardie, 2010) 

1.1.1.4 Regulation of hepatic glucose production  

The liver is responsible for maintaining glucose homeostasis by achieving a balance 

between the uptake and conversion of glucose to glycogen (glycogenesis) on the one hand, 

and the release of glucose by breaking down glycogen (glycogenolysis) or by de novo 

synthesis of glucose (gluconeogenesis), on the other hand (Nordlie et al., 1999). In 

gluconeogenesis, glucose is synthesized from non-carbohydrate precursors such as lactate, 

glycerol, and alanine. The enzymes controlling these processes are mainly regulated at the 
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level of gene transcription by several hormones, principally glucagon and insulin (Shao et 

al., 2005). 

In the fasting state, insulin levels drop while glucagon levels rise. Indeed, glucagon 

enhances glycogenolysis and gluconeogenesis in the liver, while inhibiting glycogenesis to 

increase glucose production and maintain blood glucose levels stable (Aronoff et al., 

2004). Similarly, growth hormone and cortisol regulate blood glucose levels during fasting 

by stimulating lipolysis, which increases levels of circulating FFAs and glycerol. This 

glycerol, once transported into the liver is phosphorylated and converted into glucose 

(Beardsall et al., 2008).  

In contrast, during fed state and in response to rising blood glucose levels, insulin 

stimulates glycolysis by increasing gene transcription of glucokinase and pyruvate kinase. 

In parallel, insulin decreases gene transcription of gluconeogenic enzymes, fructose 1,6-

bisphosphatase and the rate limiting enzymes, PEPCK and G-6-Pase. In addition insulin 

exerts an indirect control on gluconeogenesis by decreasing substrate availability 

(Beardsall et al., 2008), (Barthel and Schmoll, 2003).  

Finally, in the liver, as in the muscle, insulin induces glycogenesis. Indeed, insulin-

stimulated activation of Akt results in the dephosphorylation and the activation of glycogen 

synthase (GS) through the inhibition of glycogen synthase kinase 3 (GSK-3) following its 

phosphorylation (Bouskila et al., 2008). Parallel to that, insulin inhibits liver glycogen 

phosphorylase activity, the enzyme catalzing glycogenolysis (Petersen et al., 2001). 

1.1.2 Regulation of lipogenesis and lipolysis 

As is the case with glucose metabolism, insulin is also a key hormone regulating 

lipid metabolism. It does so by controlling both lipogenesis and lipolysis in adipose tissue. 

It promotes the activity of lipoprotein lipase (LPL), the enzyme that hydrolyzes lipids in 

lipoproteins such as chylomicrons and very low density lipoprotein (VLDL), and its 

secretion by the liver (Pradines-Figueres et al., 1988). Simultaneously, insulin inhibits the 

activity of hormone-sensitive lipase (HSL), the key enzyme of lipolysis in the adipocytes, 

thereby limiting the release of fatty acids and glycerol and allowing the storage of 
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triglycerides (Kraemer and Shen, 2002). Moreover, insulin enhances the activity of 

enzymes involved in lipid synthesis including pyruvate dehydrogenase, fatty acid synthase 

and ACC (Moustaid et al., 1996). Sterol regulatory element-binding proteins (SREBPs) are 

transcription factors that regulate enzymes required for cholesterol and fatty acid synthesis. 

Recent studies showed that expression of SREBP-1 was enhanced by insulin in liver, fat, 

and skeletal muscle, the three major insulin-sensitive tissues (Nadeau et al., 2004).  

1.2 Diabetes mellitus  

1.2.1 Definition and diagnosis 

Diabetes mellitus is a worldwide epidemic currently affecting 246 million people 

and that number is expected to rise to 380 million by 2025 (Levitt, 2008). It is 

characterized by increased circulating glucose concentration associated with abnormalities 

in the metabolism of carbohydrate, fat and protein (WHO 1999). Diabetes stems from 

inadequate insulin secretion, from the failure of the body to respond to insulin normally or 

from both (Cavaghan et al., 2000). Patients presenting symptoms of diabetes such as 

polyuria, thirst, unexplained weight loss, fatigue and in severe cases drowsiness or coma 

can be diagnosed for diabetes by monitoring their fasting blood glucose levels. In healthy 

subjects, fasting blood glucose levels should be less than 100 mg/ dL (5.5 mmol/ L).  

Subjects with fasting glucose levels above those values are very likely to have either 

impaired glucose tolerance (IGT) or diabetes and should undergo an oral glucose tolerance 

test (OGTT). OGTT should be preceded by 10 to 16 hours overnight fast and blood 

samples are drawn at fasting and during the 2 hours following a 75 g oral glucose load. A 

fasting glycemia of 126 mg/dl (7 mmol/L) or above as well as a glycemia of 200 mg/ dl 

(11.1 mmol/L) after 2 hours following an OGTT confirms diagnosis of diabetes (WHO 

1999). 

1.2.2 Diabetes Classification 

The classification of diabetes has changed considerably over the past three decades. 

In 1980, the WHO proposed two major classes of diabetes mellitus and named them type 1 
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diabetes or insulin dependent diabetes mellitus (IDDM) and type 2 diabetes or non insulin-

dependent diabetes mellitus (NIDDM). Both the 1980 and 1985 WHO reports recognized 

other classes of diabetes including Gestational Diabetes Mellitus (GDM) and Other Types 

Diabetes. As knowledge regarding the pathophysiology of diabetes evolved, a newer 

classification based on the etiology of the different forms of diabetes has been adopted. 

The etiological classification of diabetes mellitus currently recommended by WHO and the 

American Diabetes Association (ADA) recognize two broad etiopathogenetic categories, 

now called type 1 and type 2 diabetes. The terms IDDM and NIDD which classified 

patients based on treatment are no longer used (Gavin et al. 1997, WHO). While 

continuing to recognize gestational diabetes independently, other specific types of diabetes, 

secondary to or associated with specific diseases or with a distinct etiology, have been 

categorized under ―Other specific types‖ (WHO, 1999).   

1.2.2.1 Type 1 diabetes mellitus (T1DM) 

T1DM is responsible for 5-10% of all cases of diabetes. This form of disease 

encompasses the cases that are primarily due to β-cell destruction with autoimmune or 

idiopathic origin and are ketoacidosis-prone. It does not include forms of β-cell destruction 

with specific causes (e.g. cystic fibrosis) (WHO 1999). Patients who have T1DM are 

metabolically normal before the disease is clinically diagnosed (Kahn and Saltiel, 2005). 

T1DM is usually characterized by the presence of auto-antibodies against islet cells 

or against insulin. Individuals who have one or more of these antibodies are classified 

under type 1A diabetes.  On the other hand, some forms of type 1 diabetes have no known 

etiology or clinical evidence of autoimmune antibodies and are classified under the term 

type 1B or idiopathic diabetes (WHO, 1999, (Tanaka et al., 2000), (Kahn and Saltiel, 

2005). A major characteristic of T1DM is the dependence on exogenous administration of 

insulin due to an absolute deficiency of insulin (WHO 1999).  

1.2.2.2 Type 2 Diabetes mellitus (T2DM) 

T2DM accounts for approximately 90-95% of cases diagnosed with diabetes 

worldwide. It results from insufficient insulin secretion, combined with insulin resistance 
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(WHO 2003). These individuals might not require insulin treatment, although many end up 

needing it to maintain blood glucose control. Obesity, family history and physical 

inactivity increase the risk of developing T2DM (Oguma et al., 2005). Until recently, 

T2DM was considered as adult-onset disease. However, evidence is accumulating that, as a 

consequence of the current epidemic of obesity, diabetes among children and adolescents 

is becoming increasingly apparent (Copeland et al., 2005).  

1.2.2.3 Gestational diabetes mellitus (GDM) 

This term refers to hyperglycemia first appearing or first being diagnosed during 

pregnancy whether or not insulin treatment is adopted or diabetes persists after pregnancy. 

In Canada, GDM affects 3.7% of non-Aboriginal women and 8–18% of Aboriginal 

pregnant women (Rodrigues et al., 1999). GDM is considered a risk factor for developing 

T2DM (Kim et al. 2005).  

1.2.2.4 Other Specific Types of diabetes 

Sometimes referred to as secondary diabetes, these types are less common causes of 

diabetes mellitus. This category comprises a variety of conditions, in which the molecular 

defects are well defined or the underlying disease process can be identified (WHO 1999).  

An example is β-cell dysfunction associated with specific monogenetic defects known as 

MODY, or maturity onset diabetes of the young, since the onset of hyperglycemia occurs 

at a young age (Hattersley, 1998). 

1.2.3 Pathogenesis of type 2 diabetes  

T2DM is a polygenic disease where genetic defects underlie insulin resistance and 

insulin insufficiency, the two major players in the pathogenesis of T2DM. For many years, 

β-cell dysfunction was thought to be secondary to increased secretory demands induced by 

insulin resistance. However, it is now well established that the two processes evolve in 

parallel, more or less independently of one another (Saltiel and Kahn, 2001). Indeed, 

environmental factors and life style including consumption of high-calorie foods, physical 

inactivity, and obesity contribute to the development of the disease (Hamman, 1992). 
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Toxicities from hyperglycemia (glucotoxicity) and FFAs (lipotoxicity) affect β-cell 

function and further aggravate insulin resistance. The net outcome is the impairment of 

basal and stimulated insulin secretion, the dysregulation of glucose production by the liver 

and of glucose uptake by muscle (Unger, 1995), (Weyer et al., 1999).   

1.2.3.1 Insulin resistance  

Insulin resistance is a condition in which normal levels of insulin do not generate a 

normal biological response. Because one of insulin’s major physiological actions is to 

maintain glucose homeostasis, a rise in the fasting plasma glucose level can eventually 

occur (Krentz, 1996). If the pancreatic islet is normal, it will compensate for the 

insensitivity to insulin by increasing β-cell insulin secretion, with ensuing 

hyperinsulinemia. During progression towards diabetes, pancreatic β-cells can no longer 

produce enough insulin and glucose levels rise relatively rapidly (Bonner-Weir, 2000). 

The metabolic syndrome, or syndrome X, is a cluster of three or more abnormalities 

that includes obesity (notably, abdominal adiposity measured by waist circumference; see 

next section), dyslipidemia (hypertriglyceridemia and hypercholesterolemia), high fasting 

plasma glucose and hypertension (Reaven, 2002). Insulin resistance is the center of these 

abnormalities and is more common in obese subjects. Therefore, it is considered a risk 

factor for the development of both type 2 diabetes and cardiovascular diseases (Silfen et 

al., 2001). As a matter of fact, 90% of individuals with type 2 diabetes are either 

overweight or obese (Torgerson et al., 2004). As the association between obesity and 

insulin resistance has been reported in both normoglycemic and diabetic individuals, it is 

now believed that a strong connection exists between insulin resistance in T2DM and 

increased adiposity (Steinberger and Daniels, 2003). 

1.2.3.1.1 Body-Fat distribution and insulin resistance 

The distribution of fat rather than the degree of obesity appears to be an important 

indicator for the metabolic complications of obesity. Fat accumulated around abdominal 

organs, referred to as central obesity, is more metabolically active than subcutaneous fat. 

As a result, there is a greater influx of FFAs and increased accumulation of triglycerides in 
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non-adipose tissues (ectopic fat). This ectopic fat aggravates insulin resistance since 

intramyocellular triglycerides (IMTG) inhibit insulin-stimulated glucose uptake in the 

muscle (Shulman 2002). In the liver, increased delivery of FFAs leads to increased hepatic 

glucose output and increased hepatic insulin resistance (Gastaldelli et al., 2007). FFAs 

accumulation in the pancreas leads to accumulation of toxic fatty acid metabolites inducing 

apoptosis and β-cell dysfunction (Lencioni et al. 2008). Finally, intra-abdominal fat is also 

more active in producing adipocyte-secreted hormones (adipokines) and inflammatory 

cytokines than is subcutaneous fat (Xu, 2003).  

1.2.3.1.2 Secretory function of adipose tissue 

White adipose tissue (WAT) was once thought to be an inactive storage tissue. 

Over the past few years, however, it was found to be an active secretory organ producing 

many hormones. These are referred to as adipokines because they are secreted by the 

adipocytes; leptin, adiponectin and resistin are prominent examples. WAT also secretes a 

large variety of other cytokines such as interleukine-6 (IL-6) and its receptor antagonist 

(IL-1Ra) as well as TNF-α (Fain et al., 2004), (Juge-Aubry et al., 2005). Under normal 

physiological conditions adipokines play an important role in regulating inflammation, 

glucose and lipid metabolism, as well as contributing to the maintenance of energy 

homeostasis. In obesity, and particularly in central obesity, however, they contributed to 

related metabolic and vascular complications (Kusminski et al., 2005). 

1.2.3.1.2.1 Leptin 

Leptin is the product of ob/ob gene and is secreted mainly by WAT.  It acts on 

receptors in the brain and other tissues to diminish food intake and increase energy 

expenditure thus decreasing body weight (Meli et al., 2004). Leptin action is mediated 

through AMPK pathway, which can be activated either directly by leptin or indirectly 

through the hypothalamic-sympathetic nervous system axis (Minokoshi et al., 2002). 

Leptin stimulates fatty acids oxidation and increases glucose uptake, and prevents ectopic 

lipids accumulation in non-adipose tissues, thereby enhancing insulin sensitivity. Although 

http://www.nature.com/nature/journal/v415/n6869/full/415339a.html#B3
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circulating leptin levels increase in obesity, which should result in better insulin response, 

obese individuals were found to be resistant to leptin action (Zimmet et al., 1996).  

1.2.3.1.2.2 Adiponectin 

Adiponectin is a hormone with potent insulin sensitizing properties, whose 

expression was though to be restricted to adipose tissue (Ziemke and Mantzoros). 

Interestingly, human and murine cardiomyocyte were found to express adiponectin and its 

receptors (Ding et al., 2007; Guo et al., 2007; Pineiro et al., 2005). Recently, the human 

vascular smooth muscle cells (VSMC) of coronary artery were also reported to express and 

secrete adiponectin (Ding et al., 2010). In contrast to the other adipokines (e.g. leptin and 

resistin), circulating adiponectin levels are reduced in obese, insulin-resistant humans. 

Indeed, adiponectin expression correlates negatively with visceral adipose tissue in either 

lean or obese subjects (Lihn et al., 2004). In addition, experimental studies in animals and 

humans have shown that insulin-sensitizer such as thiazolidinediones substantially increase 

adiponectin concentrations (Lindsay et al., 2002). A similar action has recently been found 

with a fermented blueberry juice prepared in our laboratory (Vuong et al., 2009).  

Similar to the action of leptin, the insulin-sensitizing properties of adiponectin can 

be attributed, at least in part, to activation of AMPK in skeletal muscles and adipocytes, 

thereby increasing fatty acids oxidation and increasing glucose uptake. Furthermore, 

adiponectin activates AMPK in the liver, resulting in reduced rate of hepatic glucose 

production (Kadowaki et al., 2008). Therefore, the decrease in adiponectin levels in insulin 

resistance further aggravates hyperglycemia. 

1.2.3.1.2.3 Resistin 

This hormone discovered in 2001 appears to be a pro-inflammatory cytokine that 

has a potential role in inflammation and immunity (Tilg and Moschen, 2006). Murine 

resistin consists of 114 amino acids, while human resistin is composed of 108 amino acids. 

However, although the expression of resistin in mice was originally detected in the 

adipocytes, it has also been detected in the pituitary glands, the hypothalamus and in the 

blood circulation. Conversely, in humans, resistin is highly expressed in the bone marrow 
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and to a much lesser extent in the adipose tissue where its expression is confined to non-

fat-stroma-vascular fraction. It is also found in the placenta, pancreatic islets, synovial 

tissues and circulating blood  Like many proinflammatoy cytokines such as TNF-α, resistin 

targets adipocytes and enhances inflammation in adipose tissue through a distinct signaling 

pathway despite that factor that both of them activates NF-κB. Several studies suggest that 

increasing levels of resistin is involved in insulin resistance and type 2 diabetes (Filkova et 

al., 2009; Kusminski et al., 2005). A recent study has shown that resistin induced β-cell 

apoptosis in rat RINm5F insulinoma cells (Gao et al., 2009). In several cell lines, Akt, a 

downstream target of PI3K, can be phosphorylated by resistin which leads to attenuation of 

insulin signaling (Gao et al., 2007a). 

1.2.3.1.3 Inflammation in obesity 

Obesity is associated with a state of chronic, low-grade systemic inflammation. 

There is now much evidence that a strong relation exists between distribution and 

metabolism of adipose tissue and inflammation. Visceral adipose tissue is reported to be 

more metabolically active and has a higher lipolytic rate than subcutaneous adipose tissue. 

Several studies have demonstrated the association between visceral adiposity and several 

inflammatory markers such as C-reactive protein (CRP), TNF-α, IL-6, macrophage 

migration inhibitory factor (MIF), monocyte chemoattractant protein-1 (MCP-1), and 

macrophage inflammatory protein (MIP). The mechanism of cytokine production by the 

adipose tissue has been demonstrated by several studies. In summary, the adipose tissue 

undergoes a constant remodeling that is accelerated in the case of obesity. Accumulation of 

fat in adipocytes induces hypertrophy and increases endoplasmic reticulum stress and 

number of dead adipocytes. This process is followed by infiltration of immune cells such 

as macrophages, T-lymphocytes and neutrophils. Throughout cross talk between 

macrophages and the adipocytes, inflammatory cytokine and leptin production is enhanced. 

On the other hand, the production of the anti-inflammatory adipokine adiponectin is 

downregulated (Lee et al., 2010). Leptin receptors have reported on the surface of various 

immune cells and have been associated with production of TNFα- and IL-6. The 

macrophage derived TNF-α enhances the release of FFAs via lipolysis. FFAs and 
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inflammatory cytokines in their turn drain into the portal circulation, where they can 

substantially affect glucose and lipid metabolism in the liver. Moreover, FFAs are a potent 

ligand of Toll-like receptors on the macrophages. These receptors mediate activation of 

NF-κB pathway; hence a vicious circle of inflammation that involves adipocyets and 

marcophages is initiated (Figure 4) (Mathieu et al.; Suganami and Ogawa, 2010). 

 

 

 

 

 

 

 

 

 

Figure 4 Molecular mechanism underlying adipose tissue inflammation (Suganami and 

Ogawa, 2010) 

It has been suggested that the inflammatory state of obesity and particularly the 

production of inflammatory adipokines, is associated with complications of obesity such as 

type 2 diabetes, as well as the other components of the metabolic syndrome (Clement and 

Langin, 2007). It is also noteworthy that insulin resistance is established, in part, through 

the phosphorylation of IRS on serine residues by inflammatory cytokines such as TNF-α 

(Hotamisligil, 1999). 

1.2.3.2 Pancreatic Beta Cell dysfunction 

Normal beta cells exhibit a biphasic insulin secretion in response to a rapid and 

sustained glucose challenge. The first phase of insulin response is a transient phase that 

peaks in 5-10 minutes, and decays toward baseline in 20 minutes. During this phase, the 

http://www.jleukbio.org/content/vol88/issue1/images/large/zgb9990951570002.jpeg
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liver responds quickly by switching off glucose production. A second sustained phase has a 

lower peak, is often oscillatory in nature and can last for several hours. A defect in the 

first-phase insulin response was detected in subjects with impaired glucose tolerance (IGT) 

and in the early stage of type 2 diabetes (Saltiel and Kahn, 2001). A defective second-

phase insulin secretion detected in individuals with T2DM is the manifestation of complete 

β-cell failure and this necessitates insulin therapy (Gerich, 2002).  

Several mechanisms underline the progressive loss of β-cell function. Some studies 

suggest that increased islet apoptosis and diminished proliferation are genetically 

programmed. Chronic hyperglycemia, hyperlipidemia and deposition of islet amyloid are 

thought to be involved in reduction of β-cells mass and ultimately β-cell failure (Steppel 

and Horton, 2004), (Hoppener et al., 2000).  

1.2.4 Diabetes complications 

Diabetes mellitus is clearly associated with a number of long-term microvascular 

and macrovascular complications. The etiology of these complications is likely 

multifactorial and closely related to chronic hyperglycemia. The microangiopathies of 

diabetes include retinopathy, nephropathy, and peripheral and autonomous nervous system 

damages. Although microangiopathies represent a serious problem in diabetic patients, 

mortality and morbidity rates in type 2 diabetes are often associated with macroangiopathic 

complications such as coronary artery disease, peripheral vascular disease and 

cerebrovascular disease (Singhania et al., 2008). 

1.2.5 Treatment 

1.2.5.1 Lifestyle interventions 

The majority of cases of type 2 diabetes can be avoided by lifestyle modification. A 

combination of factors such as weight loss, regular exercise, eating a diet high in fiber and 

low in saturated and trans-fats, smoking cessation and alcohol reduction was associated 

with a reduced risk for type 2 diabetes (Klein et al., 2004). 
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1.2.5.2 Pharmacological treatment 

Some patients with type 2 diabetes mellitus respond well to body weight reduction, 

diet and exercise. However, most patients eventually require drug therapy to maintain 

adequate glycemic control, in part because adherence to lifestyle changes is difficult to 

maintain or integrate. Several classes of oral antidiabetic drugs are currently available but 

due to the progressive nature of type 2 diabetes, a considerable proportion of patients will 

eventually resort to insulin therapy. In these patients, insulin is used either as monotherapy 

or as combined therapy with other oral antidiabetic agents, to maintain adequate glycemic 

control (Ambavane et al., 2002), (Krentz and Bailey, 2005). 

The main classes of oral antidiabetic drugs include those that increase insulin 

secretion, known as insulin secretagogues (sulphonylureas and rapid-acting secretagogues), 

insulin sensitizers (biguanides and thiazolidinediones), inhibitors of intestinal carbohydrate 

digestion and absorption (α-glucosidase inhibitors) (Krentz and Bailey, 2005) and the 

novel class of incretin-based antidiabetic drugs (Ng et al., 2007). 

1.2.5.2.1 Insulin secretagogues  

1.2.5.2.1.1 Sulfonylureas  

These drugs lower blood glucose concentrations by stimulating insulin secretion by 

binding to the β-cell’s sulphonylurea receptor (SUR-1), which is a member of the ATP-

binding cassette or the traffic ATPase superfamily. This interaction inhibits the 

conductance of adenosine triphosphate (ATP)- dependent postassium (KATP) channels 

leading membrane depolarisation and opening of voltage-dependent calcium channels. The 

rise in the intracellular calcium concentration leads to increased fusion of insulin 

containing granules and insulin exocytosis (Ducobu, 2003).  

The main adverse effect of sulfonylureas is hypoglycaemia, which can be 

prolonged and life-threatening, although rarely. The first generation sulfonyureas such as 

chlorpropamide and glibenclamide are associated with a greater risk of hypoglycaemia 

than the second-generation sulfonylureas (gliclazide, glimepiride, glipizide) because they 

bind carrier proteins in the blood which makes them prone to drug interaction. 
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Sulfonylureas can induce significant weight gain, mainly as a result of increasing insulin 

levels (Krentz and Bailey, 2005). 

1.2.5.2.1.2 Rapid-acting insulin secretagogues (the glitinides) 

Glitinides stimulate rapid, but short-term insulin secretion, thus should be taken 

immediately before meals to improve postprandial glycemic control. Glitinides include the 

carbamoylmethyl benzoic acid derivative repaglinide and the d-phenylalanine derivative 

nateglinide (Ambavane et al., 2002). Like sulphonylureas, these agents bind to the SUR1 

in the plasma membrane of the β-cell but at a different binding site. They provide superior 

glycemic control when used in combination therapy with metformin or thiazolidinediones. 

Due to their short metabolic half-life, hypoglycaemia, if ever occurs, is rarely prolonged 

(Schmitz et al., 2002), (Dailey, 2005). 

1.2.5.2.2 Insulin sensitizers 

1.2.5.2.2.1 Biguanides 

Metformin is the only biguanide currently available on the market after the 

withdrawal of phenformin from the United States in 1975 due to induction of lactic 

acidosis. It ameliorates hyperglycemia without increasing insulin secretion, weight gain, or 

hypoglycaemia. This drug has been shown to have several metabolic effects. However, 

despite numerous studies on metformin, its complete cellular mechanisms of action have 

yet to be fully identified. The major mechanism of action of metformin is to suppress 

hepatic glucose production by improving hepatic sensitivity to insulin on the one hand and 

decreasing the availability of certain gluconeogenic substrates (e.g. lactate) on the other 

hand. Metformin also enhances peripheral insulin sensitivity; it increases insulin-dependent 

glucose uptake by skeletal muscle through a mechanism involving GLUT4 translocation to 

the cell membrane. Moreover, metformin acts in an insulin-independent manner to induce 

fatty acids oxidation, suppress lipogenic enzymes expression and reduce triglyceride levels 

in patients with hypertriglyceridaemia. Until now, these pleiotropic therapeutic benefits of 

this drug are almost all attributed to activation of AMPK (Zhou et al., 2001), (Krentz and 

Bailey, 2005). 
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1.2.5.2.2.2 Thiazolidinediones (TZDs) 

Agents of this class are selective ligands of the nuclear transcription factor 

peroxisome-proliferator–activated receptor  (PPAR). The PPAR receptors (PPARs) 

belong to a subfamily of the nuclear-receptor superfamily that regulates gene expression in 

response to ligand binding. Since their initial discovery, three PPARs have been identified, 

namely PPARα, PPARδ/β and PPARγ. Troglitazone was the first drug of this class to be 

available but was later withdrawn due to idiosyncratic hepatic failure. Two other TZDs, 

rosiglitazone and pioglitazone have been approved for use as antidiabetic medication by 

USA Food and Drug Administration (FDA). These two drugs have notably been shown to 

be devoid of hepatotoxic potential (Norris et al., 2007). 

Several mechanisms can explain the improvement of insulin sensitivity by TZDs. 

First, stimulation of PPARγ by TZDs promotes differentiation of pre-adipocytes to 

adipocytes with accompanying fat storage and reduction of FFAs. This leads to enhanced 

insulin signaling in insulin-sensitive tissues. Second, PPARγ activation by TZDs inhibits 

secretion of pro-inflammatory cytokines such as TNFα, and increases adiponectin levels 

(Yki-Jarvinen, 2004). Finally, TZDs have been shown to activate AMPK in liver, skeletal 

muscle and adipocytes (Fryer et al., 2002), (Hardie et al., 2006). 

1.2.5.2.3 α-Glucosidase Inhibitors 

Drugs belonging to this class, such as acarbose and miglitol, competitively and 

reversibly inhibit the activity of α-glucosidase enzymes in the intestinal brush border 

membrane. The α-glucosidase enzyme is responsible for poly- and disaccharide digestion 

and release of monosaccharide. Therefore, these inhibitors should be taken with meals 

containing digestible carbohydrates but not monosaccharides as they do not affect the 

absorption of glucose. Gastrointestinal problems including nausea, vomiting, flatulence 

and diarrhea constitute the main side-effects of α-glucosidase Inhibitors treatment (Toeller, 

1994), (Krentz and Bailey, 2005). 
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1.2.5.2.4 Dipeptidyl peptidase 4 inhibitors and GLP-1 analogues 

Incretins are gastrointestinal hormones that enhance absorbed glucose disposal 

through the stimulation of insulin release and the inhibition of glucagon secretion. The two 

major incretin hormones are glucose-dependent insulinotropic polypeptide (GIP) and 

glucagon-like peptide-1 (GLP-1). Incretins are rapidly degraded to inactive form by the 

enzyme dipeptidylpeptidase 4 (DPP-4), hence their therapeutic utility is very limited 

(Verspohl, 2009). Therefore, two current therapeutic approaches have been developed to 

enhance the endogenous incretin action: incretin mimetics resistant to DPP-4 degradation 

such as the GLP-1 analogues exenatide and liraglutide, and the DPP-4 inhibitors such as 

sitagliptin and vildagliptin (Halimi, 2008). Several other compounds are under clinical 

development.  

1.2.5.3 Herbal medicine and diabetes 

Despite all the strategies and treatments used to manage type 2 diabetes, the overall 

glycemic control in diabetic patients remains unsatisfactory. As a result, many people all 

over the world are gradually reverting to the use of complementary and alternative 

medicine (CAM).  In general, 38% of adults at the age of 18 years or older use CAM in the 

United States according to 2007 National Health Interview Survey (NHIS) with the natural 

products as being the most used CAM therapy (17.7% of adults using CAM). Individuals 

with life threatening diseases, such as cancer and HIV, are more likely to use CAM 

(Barnes et al., 2008). In Canada, one third of type 1 and type 2 diabetes patients attending 

diabetes education programs were reported to use CAM, including herbal remedies (Nahas 

and Moher, 2009). 

 The use of herbal remedies to treat diabetes in several parts of the world can be 

traced back thousands of years ago.  Medicinal plants have been incorporated into the 

traditional medicine of many ancient civilizations such as those of China, India, Egypt and 

Greece. Moreover, many modern pharmaceuticals are plant-derived. An example is 

metformin, which is derived from the naturally occurring compound guanidine. The later is 



27 

 

isolated from Galega officinalis, also known as French Lilac or goat’s rue, a common 

traditional remedy for diabetes (Yeh 2003). 

 Coccinia indica (ivy gourd), Ocimum sanctum (holy basil) and Gymnema sylvestre 

are used to treat diabetes described as ―sugar urine‖ (madhumeha) in Ayurveda, an ancient 

Indian healing system. Trigonella foenum graecum (fenugreek) is widely used in herbal 

medicine in North Africa, India and the Middle East (Haddad et al., 2001). In early Greek 

and Latin pharmacopoeias, defatted fenugreek seeds have been recommended for diabetes. 

Bauhinia forficate, referred to as ―vegetable insulin‖, and Myrcia uniflora have been used 

for treatment of diabetes in Brazilian and South American herbal medicine. Ficus carica 

(fig leaf) is a popular herbal treatment for diabetes in Spain and South-western Europe. 

Opuntia streptacantha (nopal) or the prickly pear cactus is native to southeast USA and is 

commonly used to treat diabetes among Mexican Americans (Yeh et al., 2003). 

Momordica charantia, also known as bitter melon, has been used for a long time to treat 

diabetes in Asia, Africa, India and South America. In fact, several constituents of this plant 

are found to have antidiabetic properties, among these are the two steroid glycosides 

charantin, vicine, as well as polypeptide-p (an insulin-like protein) (Basch et al., 2003), 

(Yeh et al., 2003).  

1.3 Genus Vaccinium  

The genus Vaccinium belongs to the family Ericaceae and consists of more than 

150 species. Some plants of this genus bear edible fruits that have attracted the attention of 

the industry for the production of juices and jams (Hjalmarsson and Ortiz, 2001).  

Various members of this genus have been used in traditional medicine to treat 

symptoms related to diabetes (Cignarella et al., 1996), (Chambers and Camire, 2003), 

(Leduc et al., 2006). Leaves and fruits of V. myrtillus L (European blueberry or bilberry) 

were the most widely used antidiabetic preparation in Europe prior to the discovery of 

insulin (Helmstadter, 2007). The commercial drug Difrarel®, prescribed for circulatory 

disorders, contains 100 mg of bilberry anthocyanins (Meskin, 2002).The infusion of V. 
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ashei reade (rabbiteye blueberry) leaves has been used as a folk medicine in Europe for the 

treatment of lifestyle-related diseases (Sakaida et al., 2007).  

Consumption of unsweetened cranberry juice (V. macrocarpon Ait.) improved 

glycemic control in patients with type 2 diabetes (Wilson et al., 2008). V. angustofolium 

Ait. (Canadian lowbush blueberry) is highly recommended by Quebec traditional 

practitioners (Haddad et al., 2001) and is also mentioned by Cree Elders of Eeyou Istchee 

for treatment of diabetic symptoms and complications, (Leduc et al., 2006), (Martineau et 

al., 2006). A recent study has shown that the biotransformed juice of V. angustifolium 

incorporated in the drinking water of diabetic KKA
y
 mice lowered blood glucose levels 

(Vuong et al., 2009).  

1.3.1 Vaccinium vitis-idaea 

 V. vitis is an evergreen dwarf shrub that grows widely in northern temperate, boreal 

and subarctic zones and is particularly used in Scandinavian culture as herbal medicine and 

in the preparation of traditional meals. The flowers of this plant are produced singly or in 

cluster of up to 15 and have white to pinkish red, bell-shaped corolla (Figure 2). The 

berries are bright red and globular, approximately 0.75 to 1.0 cm in diameter (Figure 2). 

Interestingly, the berries of this plant were stored without the use of sugar due to their high 

content of benzoic acid (Wang et al., 2005), (Hjalmarsson and Ortiz, 2001), (Stang et al., 

1990). V. vitis berry is an economically important crop and has been used to produce juice, 

sauce, candy, jelly, syrup, ice cream, pickle and liqueur (Stang et al., 1990).  

V. vitis has around 25 common names worldwide. The mostly used English names 

are lingonberry, cowberry, moss cranberry, mountain cranberry, partridgeberry, red 

whortleberry, alpine cranberry and lingon or lingen (Stang et al., 1990), (Cheng et al., 

2005). Hultén identified two sub-species of V. vitis: the North American V. vitis-idaea ssp. 

minus (Lodd.) Hult and the larger European plant as the variety vitis-idaea L. The two 

subspecies can be distinguished mainly by their size, V. vitis-idaea measures more than 30 

cm, whereas V. vitis-idaea ssp. minus rarely exceeds 20 cm (Stang et al., 1990), 

(Hjalmarsson and Ortiz, 2001), (Gustavsson, 2001). 
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Since ancient times, the stem and leaf of V. vitis have been used as an anti-

inflammatory folk medicine to treat respiratory system infections in China (Wang et al., 

2005). In Swedish folk medicine, V. vitis drink has been used to treat fever, diarrhea and 

scurvy. Tea, derived from leaves, has been promoted as a cure to urinary tract infections 

and as anti-rheumatic medication (Hjalmarsson and Ortiz 2001). These effect were 

confirmed by recent studies where the leaves and berries of this plant were shown to have 

anti-microbial and anti-inflammatory effects (Fokina et al., 1993), (Tunon et al., 1995). In 

addition, other studies have shown that V. vitis berries had anticancer activity in vitro 

which was attributed to its high anthocyanin content. Finally, V. vitis showed a higher 

antioxidant activity as compared to other berries including blackberries, blueberries and 

cranberries (Wang et al., 2005). 

 

 

 

 

 

 

 

Figure 5 Flowers and fruits of V. vitis-idaea 

1.3.1.1 Phytochemicals of V. vitis 

In addition to vitamins C and E, and carotenoids, V. vitis contains a wide range of 

bioactive compounds that belong mainly to flavonoid, phenolic acid, tannin and stilbene 

classes (Perry 1980), (Wang et al., 2005), (Rimando et al., 2004), (Kahkonen et al., 2001). 

1.3.1.1.1 Flavonoids 

Flavonoids constitute the largest and most important group of polyphenolic plant 

secondary metabolites with more than 6000 known compounds (Pietta, 2000), (Schijlen et 
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al., 2004). Flavonoids have attracted a lot of attention due to their health-promoting effects. 

Due to the presence of aromatic hydroxyl groups, they have strong antioxidant properties, 

where they act as scavengers against reactive oxygen and nitrogen species. Therefore, 

flavonoids protect DNA, proteins and lipoproteins as well as membrane lipids (Vessal et 

al., 2003), (Ciz et al., 2008). Among the different classes of flavonoids, anthocyanins, 

flavonols and flavan-3-ols are the main classes detected in V. vitis 

1.3.1.1.1.1 Anthocyanins 

Anthocyanins are the most important water-soluble pigments in plants, producing 

blue, red and purple colours. They exist as glycosides and acylglycosides of the aglycone 

anthocyanidins. The most common sugar constituents found in these compounds are 

glucose, rhamnose, xylose, galactose, arabinose, and fructose (Wang et al., 1997). 

Anthocyanins from blueberries were reported to have a remarkable antidiabetic activity in 

vivo (51% reduction in blood glucose levels) using diabetic C57bl/6J mice (Grace et al., 

2009). Cyanidin-3-glucoside, cyanidin-3-galactoside and cyanidin-3-arabinoside were 

identified in the berries and the aerial parts of V. vitis naturally growing in Finland (Ek et 

al., 2006). 

 

 

Figure 6 The structures of anthocyanidins detected in V. vitis-idaea 

1.3.1.1.1.2 Flavonols 

Quercetin and kaempferol along with their glycosides are the most common 

flavonols in V. vitis berries, although, quercetin glycosides are more abundant than 

kaemferol ones (Hokkanen et al., 2009). It was reported that Kaempferol and quercetin 

improved insulin-stimulated glucose uptake in mature 3T3-L1 adipocytes (Fang et al., 

2008). In addition, quercetin exhibited antidiabetic properties in streptozocin-induced 

diabetic animals (Vessal et al., 2003), (Shetty et al., 2004b). 

 

R= glucose,           cyanidin-3-glucoside 

R= galactose,        cyanidin-3-galactoside 

R=arabinose,         cyanidin-3-arabinoside 
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Figure 7 The structures of quercetin and kaempherol 

1.3.1.1.1.3 Flavan-3-ols  

Flavan-3-ols (catechins and their polymers proanthocyanidins) are widely 

distributed in the plant kingdom. Catechins constitute one-fifth of the total estimated intake 

of flavonoids (Kuhnau, 1976), (Einbond et al., 2004). (+)-Catechin and (−)-epicatechin are 

the predominant catechins in Vaccinium species. The content of catechins was found to be 

10 times higher in V. vitis (250 mg/kg fresh weight) than in the other Vaccinium species 

(cranberry, 30 mg/ kg and bilberry, 75 mg/kg) (Maatta-Riihinen et al., 2004). 

Proanthocyanidins will be discussed in more detail under the class of tannins. 

Previous studies have demonstrated that (−)-epicatechin, normalized blood glucose 

levels, protected normal rat β-cells and promoted β-cell regeneration in islets of alloxan-

treated rats  (Chakravarthy et al., 1981), (Chakravarthy et al., 1982). 

 

 

 

 

 

Figure 8 The structure of catechin 

1.3.1.1.2 Phenolic acids 

Phenolic acids and their esters, amides and glycosides are also important 

constituents of our diet. Two classes of phenolic acids can be distinguished: derivatives of 

benzoic acid and derivatives of hydroxycinnamic acid (Manach et al., 2005). Indeed, the 

http://upload.wikimedia.org/wikipedia/commons/d/db/Catechin_structure.svg
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berries of V. vitis have high content of free benzoic acid but not significant amount of its 

derivatives (Visti et al., 2003).  

On the other hand, chlorogenic acid (ester of caffeic acid) is the major 

hydroxycinnamic acid derivative and the greatest contributor of total polyphenolic content 

in highbush blueberries (Lee et al., 2002). Caffeic acid, ferulic acid and coumaric acid 

glycosides are the most predominant hydroxycinnamic acids in berries and leaves of V. 

vitis (Ek et al., 2006). 

 

 

 

 

Figure 9 The structures of benzoic acid and hydroxycinnamic acid 

1.3.1.1.3 Stilbenes 

This group of phenolics is present in considerable quantities in grapes and wine 

(Rimando et al., 2004). Stilbenes have been reported to possess anticancer and antioxidant 

activities (Rimando et al., 2005). 

 Resveratrol was found in all Vaccinium species, V. vitis obtained from Nova 

Scotia, Canada, contains the highest concentration of resveratrol, almost the same as that 

found in grapes (6500 ng/g dry sample) (Rimando et al., 2004). Resveratrol is well known 

for its cardioprotective effect (Das and Maulik, 2006). However, recent in vitro and in vivo 

studies indicate that resveratrol has also anti-diabetic properties (Breen et al., 2008), 

(Szkudelska and Szkudelski), (Su et al., 2006), (Chi et al., 2007), (Penumathsa et al., 

2008). 

 

 

 

 

Benzoic acid Hydroxycinnamic acid 
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Figure 10 The structure of resveratrol 

1.3.1.1.4 Tannins 

Tannins are water-soluble polyphenols that are present in many plants and have a 

molecular weight between 500 and 3000 Da (Haslam, 1988). There are two classes of 

tannins: hydrolyzable and nonhydrolyzable (condensed) tannins.  Hydrolyzable tannins are 

composed of a central core of a polyhydric alcohol such as glucose, in which the hydroxyl 

groups are partially or totally esterified by either gallic acid (gallotannins) or 

hexahydroxydiphenic acid (ellagitannins) (Chung et al., 1998).  

Condensed tannins are structurally more complex than hydrolyzable tannins. They 

are the polymers of flavan-3-ols and flavan-3,4-diols, or a mixture of the two (Chung et al., 

1998). Oligomers and polymers of catechins linked principally through the C-4 of the 

flavanol unit are called proanthocyanidins or procyanidins (Duenas et al., 2003). The 

structures of procyanidins isolated from berries of V. vitis are shown in figure 8 (Ho et al., 

2001). Proanthocyanidin A was also detected in berries and leaves of V. vitis (Ek et al., 

2006). 

The biological activities of tannins include anti-oxidant, anti-tumoural, anti-

microbial, anti-HIV, platelet aggregation inhibitory, antidiarrhoeal and anti-inflammatory 

activities (Yokozawa et al., 1993), (Chung et al., 1998), (De Bruyne et al., 1999). 
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Figure 11 Structure of tannins isolated from V. vitis-idaea (Ho et al., 2001) 

1.4 Scope and objectives of the study 

V. vitis was identified by our team through the ethnobotanical survey carried out in 

Whapmagoostui First Nation (Fraser et al., 2007).  In a subsequent bioassay screening 

study, V. vitis emerged as the most promising plant with antidiabetic activity since it 

increased basal and insulin-dependent glucose uptake in murine C2C12 skeletal and 3T3 

adipocyte cell lines (Harbilas et al., 2009). The aim of this thesis is to investigate the 

mechanisms of the antihyperglycemic activity of the crude extract of V. vitis. With the help 

of bioactivity-guided fractionation and different chromatographic methods, the active 

compounds of this extract will be identified and their structure will be elucidated. The pure 

compounds will be then evaluated for the antidiabetic activity and the involvement of the 

different signaling pathways that regulate glucose metabolism will be determined. The 
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final goal of this study is to conduct validation studies in order to confirm the in vivo 

antidiabetic activity of V. vitis in animal models of diabetes. 

In the course of the fractionation procedure, a caffeic acid derivative was identified 

and later understood to represent an artefact of the interaction of the eluting solvent with V. 

vitis components. Given the outstanding potency of this compound in stimulating skeletal 

muscle cell glucose uptake, a structure-activity study was carried out.  

 

  



36 

 

2. Article 1 

 

 

Stimulation of AMPK and enhancement of basal glucose uptake in 

muscle cells by quercetin and quercetin glycosides, active principles of 

the antidiabetic medicinal plant Vaccinium vitis-idaea 

 

Hoda M. Eid 
1,3*

 and Louis C. Martineau 
1,3*

, Ammar Saleem 
2,3

, Asim Muhammad 
2,3

, 

Diane Vallerand 
1,3

,  Ali Benhaddou-Andaloussi
1,3

, Lidia Nistor 
1,3

, Arvind Afshar 
1,3

, John 

T. Arnason 
2,3

, Pierre S. Haddad 
1,3

 

 * These authors contributed equally to this work 

 

Affiliation 

1
 Natural Health Products and Metabolic Diseases Laboratory,  

Dept. of Pharmacology, Université de Montréal, Montreal, Quebec, Canada 

2
 Phytochemistry, Medicinal Plant and Ethnopharmacology Laboratory, 

Dept. of Biology, University of Ottawa, Ottawa, Ontario, Canada 

3 
Canadian Institutes of Health Research Team in Aboriginal Antidiabetic Medicines and 

Montreal Diabetes Research Center 

 

Authors’ contribution 

I performed the experimental work, data analysis and wrote the paper.  

Louis Martineau contributed to the elaboration of protocols, interpretation of data and 

correction of the paper.  

Ammar Saleem and Asim Muhammad helped with the isolation, the identification and the 

quantification of V. vitis active constituents.  

Ali Benhaddou Andaloussi and Lidia Nistor contributed to the elaboration of glucose 

uptake protocol. 



37 

 

Diane Vallerand performed the mitochondrial respiration assay. 

Arvind Afshar performed the cell culture rate of acidification assay as well as the cytosolic 

ATP assay for quercetin. 

Dr Pierre Haddad is my supervisor. 

   

Running title 

Antidiabetic mechanism of Vaccinium vitis-idaea 

Keywords: Aboriginal populations of North America • Bioassay-guided fractionation • 

Flavonoids • Mitochondria • Traditional medicine 

 

Molecular Nutrition and Food research, 2010,  54 (7), 991-1003. 

http://www3.interscience.wiley.com/journal/123573712/issue


38 

 

Abstract 

Several medicinal plants that stimulate glucose uptake in skeletal muscle cells were 

identified from among species used by the Cree of Eeyou Istchee of northern Quebec to 

treat symptoms of diabetes. This study aimed to elucidate the mechanism of action of one 

of these products, the berries of Vaccinium vitis idaea, as well as to isolate and identify its 

active constituents using a classical bioassay-guided fractionation approach. Western 

immunoblot analysis in C2C12 muscle cells revealed that the ethanol extract of the berries 

stimulated the insulin-independent AMP-activated protein kinase (AMPK) pathway. The 

extract mildly inhibited ADP-stimulated oxygen consumption in isolated mitochondria, an 

effect consistent with metabolic stress and the ensuing stimulation of AMPK. This 

mechanism is highly analogous to that of Metformin. Fractionation guided by glucose 

uptake activity resulted in the isolation of ten compounds. The two most active 

compounds, quercetin-3-O-glycosides, enhanced glucose uptake by 38-59% (50 µM; 18 h 

treatment) in the absence of insulin. Quercetin aglycone, a minor constituent, stimulated 

uptake by 37%. The quercetin glycosides and the aglycone stimulated the AMPK pathway 

at concentrations of 25-100 µM, but only the aglycone inhibited ATP synthase in isolated 

mitochondria (by 34 and 79% at 25 and 100 µM, respectively). This discrepancy suggests 

that the activity of the glycosides may require hydrolysis to the aglycone form. These 

findings indicate that quercetin and quercetin 3-O-glycosides are responsible for the 

antidiabetic activity of V. vitis crude berry extract mediated by AMPK. These common 

plant products may thus have potential applications for the prevention and treatment of 

insulin resistance and other metabolic diseases. 
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Introduction 

Aboriginal populations allover world are particularly at risk for developing type II 

diabetes mellitus. The same genetic attributes that have favored the survival of these 

populations in harsh environments have now turned into a liability, increasing 

susceptibility to metabolic diseases when a sedentary lifestyle and a calorie-dense diet are 

adopted [1][2]. The incidence rate of diabetes in these populations is often accompanied by 

a disproportionately high rate of diabetic complications, including nephropathy, 

retinopathy, and peripheral neuropathy, a phenomenon attributed to low adherence to 

modern anti-diabetic medications [1][3]. As these complications more than diabetes itself 

contribute to a decrease in quality of life and to important social costs, there is an 

imperative to develop treatment options that are well-adapted from a cultural perspective in 

order to ensure adherence. 

One approach is to identify efficacious treatments for diabetes within the traditional 

pharmacopea of the affected populations and to promote the integration of such products 

into the diet. This is the approach that our research team has been using in order to address 

this issue in Canadian native populations, specifically the Cree of Eeyou Istchee 

(Northeastern James Bay area of the Canadian province of Quebec), a population 

experiencing one of the highest rates of diabetes in Canada [4-9]. In collaboration with the 

Cree of Eeyou Istchee, we have conducted two ethnobotanical surveys and identified 17 

medicinal plant species that are traditionally used to treat symptoms related to diabetes 

[10][11]. Two bioactivity-screening projects for antidiabetic properties using cell-based 

assays have revealed that over half of the 17 species enhance glucose uptake in skeletal 

muscle cells [12][13]. Seven species identified through a survey of the community of 

Mistissini [10] and found to promote glucose uptake [12] were recently studied together in 

an attempt to elucidate their mode of action [14]. This study concluded that, in all cases, 

activity involved the AMP-activated protein kinase (AMPK) pathway, a well-recognized 

therapeutic target for metabolic diseases and mediator of the effects of Metformin [15][16]. 

Moreover, the activation of AMPK was related to a transient disruption of mitochondrial 

energy tranduction, a mechanism analogous to that of Metformin [17]. Although the active 
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principles were not identified, such effects on mitochondrial function were observed to be 

consistent with the anti-microbial role of many plant metabolites [18]. 

This study focuses on the glucose-uptake-enhancing effects of the berries of 

Vaccinium vitis idaea, also known as Mountain cranberry or lingonberry, a medicinal plant 

product used in the communities of Whapmagoostui and Mistissini to treat frequent 

urination and a number of other symptoms of diabetes [10]. This product was the most 

active to emerge from our second bioactivity-screening project [13]. Various members of 

the Vaccinium genus, including lowbush blueberry (V. angustifolium), American cranberry 

(V. macrocarpon) and European bilberry (V. myrtillus), are traditionally used for the 

treatment of diabetes by several cultures throughout the world [19]. The goal of this study 

was to test the hypothesis that the enhancement of glucose uptake by V. vitis idaea berry 

extract is mediated by a mechanism similar to that of the boreal forest medicinal plant 

species studied previously [14] and to simultaneously elucidate the active principles of this 

medicinal species using our expertise in the phytochemistry of Ericacea [20][21]. We 

conclude that quercetin and certain glycosides of this well-studied and widely distributed 

flavonoid [22] transiently inhibit mitochondrial ATPsynthase, leading to the activation of 

AMPK, and propose that quercetin and quercetin glycosides are responsible for the 

antidiabetic activity of V. vitis and perhaps of other species of this genus. 
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Materials and Methods 

Plant material and extraction 

Berries of V. vitis idaea L. (V. vitis) were collected in Whapmagoostui, Que., 

Canada, and kept at -20°C until use. Plant material was authenticated by a taxonomist (A. 

Cuerrier, Montreal Botanical Garden, Montreal, Que., Canada) and voucher specimens 

were deposited at the Montreal Botanical Garden herbarium (voucher Whap04-21). In total 

800 g of the berries were freeze-dried (Super Moduylo freeze dryer; Thermo Fisher, 

Ottawa, Ont., Canada) to yield 114 g of dry material. The dry material was then extracted 

three times for 24 h with ten volumes of 80% ethanol on a mechanical shaker and then 

filtered under vacuum using Whatman 1 paper. The supernatants were combined and dried 

using a rotary evaporator (RE 500; Yamato Scientific, Tokyo, Japan) followed by 

lyophilization. Preliminary phytochemical characterization of V. vitis berry crude extract in 

the form of extract yield, total phenolic content and identification of a small number of 

marker compounds, have been reported in an earlier study [13]. Markers include catechin, 

para-coumaric acid, cyanidin glycosides, and quercetin glycosides. The freeze-dried 

ethanol extract was reconstituted in water (15% w/v) and extracted in a separatory funnel 

with equal volume of ethyl acetate to yield an ethyl acetate soluble fraction. The aqueous 

solution remaining after ethyl acetate extraction was freeze-dried and kept for bioactivity 

screening. Crude extract and fractions were solubilized in DMSO at 200 mg/mL, aliquoted, 

and stored at -20°C until bioactivity testing. Isolates were similarly prepared and used at a 

final concentration of 100 mM. Quercetin and quercetin-3-O-glucoside were purchased 

from Sigma-Aldrich (St. Louis, MO, USA). Quercetin-3-O-galactoside was purchased 

from Indofine Chemical (Hillsborough, NJ, USA). Pure compounds were reconstituted to a 

concentration of 100 mM in DMSO, aliquoted, and stored frozen. 

 

Cell culture 

C2C12 murine skeletal myoblasts and H4IIE murine hepatocytes were obtained 

from the American Type Cell Collection (ATCC; Manassas, VA). Cell culture media were 

purchased from Invitrogen Life Technologies (Burlington, ON) unless otherwise noted. 
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Other reagents were purchased from Sigma–Aldrich (Oakville, ON) unless otherwise 

noted. C2C12 myoblasts were cultured in 6- or 12-well plates in high-glucose Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10 % fetal bovine serum (FBS), 

10 % horse serum (HS) and antibiotics (penicillin 100 U /mL, streptomycin 100 µg /mL) at 

37 °C in a 5 % CO2 atmosphere. After 80 % confluence, myoblasts were differentiated into 

myotubes in DMEM supplemented with 2 % HS and antibiotics for exactly 7 days, 

resulting in the fusion of all cells into multinucleated myotubes. H4IIE hepatocytes were 

grown in 6-well plates DMEM supplemented with 10 % FBS until fully confluent and 

experiments were performed 1 to 3 days later. Treatments were initiated 18 h prior to 

glucose uptake or signaling experiments. Aliquots of crude extract and fractions were 

diluted in differentiation medium at 1:1000 for a final DMSO concentration of 0.1 % and a 

final extract or fraction concentration of 200 µg /mL. The crude extract concentration of 

200 µg /mL was previously used for bioactivity screening and determined to be non-

cytotoxic [13]. Aliquots of isolates or pure compounds were diluted in differentiation 

medium at 1:1000 for a final concentration of 100 µM. To obtain, concentrations of 50 and 

25 µM, original aliquots were diluted at 1:2000 and 1:4000, respectively, and DMSO was 

added to maintain final concentration at 0.1 % in all conditions. 

 

Glucose uptake assay 

The effects of plant products on the rate of uptake of glucose by differentiated 

C2C12 skeletal myotubes were assessed with a 
3
H-deoxyglucose uptake assay as described 

previously [12][13][23][24]. Briefly, treatments or vehicle alone were applied for 18 h to 

6-day differentiated cells. Following the treatment period, cells were rinsed twice with 

Krebs-phosphate buffer (KPB; 20 mM HEPES, 4.05 mM Na2HPO4, 0.95 mM NaH2PO4, 

pH 7.4, 136 mM NaCl, 4.7 mM KCl, 1 mM CaCl2, 1 mM MgSO4, and 5 mM glucose) at 

37°C and allowed to equilibrate in this buffer for 30 min at 37°C. During this time, insulin 

(100 nM) was added to some wells. Following this, cells were washed twice with glucose-

free KPB at 37°C, and 0.5 µ Ci/mL 2-deoxy-D-[1-
3
H]-glucose (TRK-383, Amersham 

Biosciences, Buckinghamshire, UK) in this same buffer was applied for exactly 10 min at 
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37°C. Cells were then placed on ice and rapidly washed three times with ice-cold KPB, 

and lysed with 0.1 M NaOH for 30 min. The lysate was added to 4 mL of liquid 

scintillation cocktail (Ready-Gel 586601; Beckman Coulter, Fullerton, CA, USA) and 

radioactivity was measured in a liquid scintillation counter (LKB Wallac 1219; Perkin-

Elmer, Woodbridge, Ont., Canada). 

 

Western immunoblot 

The effects of plant products on the insulin and AMPK signaling pathways of 

C2C12 muscle cells or H4IIE hepatocytes were assessed by western immunoblot. 

Treatments or vehicle alone were applied for 18 h to 6-day differentiated C2C12 cells or to 

post-confluent H4IIE cells. Thirty minutes prior to the end of the treatment, insulin 

(100 nM) or aminoimidazole carboxamide ribonucleotide (AICAR; 1 mM) were added to 

some vehicle-treated wells as positive controls. Following treatment, cells were placed on 

ice and washed three times with ice-cold PBS (8.1 mM NaHPO4, 1.5 mM KH2PO4, pH 7.4, 

137 mM NaCl, and 2.7 mM KCl) and lysed in 250 µL of lysis buffer (25 mM Tris-HCl, pH 

7.4, 25 mM NaCl, 0.5 mM EDTA, 1% Triton-X-100, 1% sodium deoxycholate, and 0.1% 

SDS) containing a commercial cocktail of protease inhibitors (Complete Mini; Roche, 

Mannheim, Germany) supplemented with 1 mM phenylmethanesulfonyl fluoride, and a 

cocktail of phosphatase inhibitors (1 mM sodium orthovanadate, 10 mM sodium 

pyrophosphate, 10 mM sodium fluoride). Lysates were scraped into microcentrifuge tubes, 

kept on ice for 30 min with periodical vortexing, then centrifuged at 600×g for 10 min. 

Supernatants were decanted and stored at -80°C until analysis. Protein content was 

determined by the bicinchoninic acid method (Thermo Scientific Pierce, Rockford, IL, 

USA) standardized to bovine serum albumin. Lysates were diluted to a concentration of 

1.0 µg/µL total protein and boiled for 5 min in reducing sample buffer (62.5 mM Tris-HCl, 

pH 6.8, 2% SDS, 10% glycerol, 5% ß-mercaptoethanol, and 0.01% bromophenol blue). 

Briefly, 100 L of each sample were separated on 10% polyacrylamide full-size gels and 

transferred to polyvinylidene fluoride membrane (Millipore, Bedford, MA, USA). 

Membranes were blocked for 2 h at room temperature with 5% skim milk in Tris-buffered 
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saline (20 mM Tris-HCl, pH 7.6, and 137 mM NaCl) containing 0.1% Tween-20. The blots 

were then incubated overnight at 4°C on a mechanical shaker in blocking buffer with 

phospho- or pan-specific antibodies against Akt or acetyl-coA carboxylase (ACC) at 

1:1000 (Cell Signaling Technologies, Danvers, MA, USA). Membranes were washed five 

times with Tris-buffered saline Tween-20 followed by a 1.5 h incubation at ambient 

temperature with horseradish-peroxidase-conjugated secondary antibodies diluted 

1:100 000 (Jackson Immunoresearch, Cedarlane Laboratories, Hornby, Ont., Canada). 

Revelation was performed using the enhanced chemiluminescence method and blue-light-

sensitive film (Amersham Biosciences). Experiments were repeated on three different 

passages of cells, each passage containing all conditions in parallel. All samples from a 

given passage were separated and transferred simultaneously to a single membrane. 

Quantification of the integrated density of bands was performed using a flatbed scanner 

(ScanJet 6100; Hewlett Packard, Palo Alto, CA, USA) and NIH Image 1.63 software 

(National Institutes of Health, Bethesda, MD, USA). 

 

Respiration of isolated liver mitochondria 

The effects of the crude extract and of selected isolates on the function of 

mitochondria were assessed by oxygraphy. Mitochondria were isolated from the liver of 

male Wistar rats as per the method of Johnson and Lardy [25]. Surgery, isolation of 

mitochondria, and measurement of oxygen consumption were performed as described 

previously [26]. All animal manipulations were sanctioned by the animal ethics committee 

of the Université de Montréal and respected the guidelines from the Canadian Council for 

the Care and Protection of Animals. Briefly, rats obtained from Charles River (St. 

Constant, Que., Canada) and weighing between 200 and 225 g were anesthetized and 

laparotomized. The portal vein was cannulated and the hepatic artery and the infrahepatic 

inferior vena cava were ligated. The liver was flushed with 100 mL of Krebs-Henseleit 

buffer (25 mM NaHCO3, 1.2 mM KH2PO4, pH 7.4, 154 mM NaCl, 4.8 mM KCl, 2.1 mM 

CaCl2, and 1.2 mM MgSO4) at 22°C prior to excision. In total 2 g of tissue were 

homogenized on ice using a Teflon potter homogenizer in ice-cold isolation buffer (10 mM 
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Tris, pH 7.2, 250 mM sucrose, and 1 mM EGTA). The homogenate was centrifuged at 

600×g for 10 min at 4°C in order to remove cellular fragments and the resulting 

supernatant was centrifuged at 12 000×g for 5 min at 4°C. The pellet was delicately 

washed once with this same buffer and re-centrifuged. The pellet was then washed once 

with EGTA-free buffer and again re-centrifuged. The final pellet, containing viable 

mitochondria, was suspended in EGTA-free isolation buffer and kept on ice. Protein 

content of the mitochondrial preparation was determined by Lowry protein assay. O2 

consumption was measured at 25°C in a Hansatech Oxygraph apparatus (Norfolk, UK) 

with a 1 mL reaction chamber, as described previously [26]. Briefly, 1 mg of 

mitochondrial protein was added to respiration buffer (5 mM KH2PO4, pH 7.2, 250 mM 

sucrose (ultra pure), 5 mM MgCl2, 1 mM EGTA, and 2 µM of the complex I inhibitor 

rotenone) at 25°C in the reaction chamber, for a final volume of 990 µL. Mitochondrial 

respiration was initiated by the injection of 6 mM (final concentration) of the complex II 

substrate succinate, and the rate of basal oxygen consumption per milligram mitochondrial 

protein (the rate of basal oxygen consumption (RBOC) or state 4 respiration) was 

determined. In total 1 µL of 1000× concentrated plant extract or 1 µL of DMSO was then 

injected and its effect on RBOC was assessed. Basal respiration was allowed to proceed for 

at least 30 additional seconds. Oxidative phosphorylation (state 3 respiration) was induced 

by the addition of 200 µM (final concentration) ADP and the rate of ADP-stimulated O2 

consumption (RASOC) per milligram mitochondrial protein (RASOC) was determined. 

Extracts were tested in three different experimental sessions, with at least two replicate 

experiments per mitochondrial preparation. DMSO-vehicle control experiments were 

conducted at the beginning and end of each experimental session in order to establish the 

session-normal RBOC and RASOC and to ensure no loss in mitochondrial viability over 

the duration of the session, typically less than 4 h from the end of the isolation protocol. 

DMSO was confirmed to have no effect on the basal rate of O2 consumption. The effect of 

each plant extract was evaluated as: (i) the increase in the RBOC (a measure of the 

magnitude of the uncoupling effect); (ii) the decrease in functional capacity (FC) per 

milligram protein (a measure of the magnitude of the uncoupling effect plus any additional 

inhibitory effect), where FC was defined as the difference of the RASOC (maximal 
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functional rate of consumption) and the RBOC (rate of consumption driven by proton leak 

and not contributing to ATP synthesis). Calculations were as follows: the average FC per 

milligram protein of the vehicle control experiments for a given session was calculated by 

subtracting the average RBOC from the average RASOC. For (i) above, the absolute 

increase in RBOC measured in a given experiment was expressed as a percentage of the 

average control FC for the session. For (ii) above, the FC measured in a given experiment 

was expressed as a percentage of the average control FC for the session to give the 

percentage residual FC. 

 

Assay of cell culture rate of acidification 

A spectrophotometric assay of change in cell culture medium pH over time was 

developed based on similar assays [27], [28]. The assay medium consisted of Dulbecco's 

PBS containing Phenol Red as a pH indicator and modified for reduced buffering capacity 

while keeping other ion concentrations within physiological range (modified Dulbecco's 

PBS (mD-PBS) 1.5 mM Na2HPO4, 0.5 mM KH2PO4, 137 mM NaCl, 25 mM glucose, 

4 mM KCl, 2 mM CaCl2, 2 mM MgCl2, Phenol Red 0.1 mM, and deionized ultra-filtered 

water). This formulation resulted in a pH of 7.1, which was adjusted to 7.2 at ambient 

temperature with NaOH immediately prior to the assay using an Accumet pH meter with 

calomel electrode (Fisher Scientific). Absorbance of 100 µL samples of medium 

transferred to 96-well plates (Sarstedt, Montreal, Que., Canada) was measured at ambient 

temperature at 530 and 450 nm using a Wallac Victor 2 plate reader (Perkin-Elmer, St. 

Laurent, Que., Canada) and the ratio of A 530/A 450 was calculated. The relationship 

between pH and the log of this ratio was observed to be linear over the range of pH 6.4-7.2 

(Fig. 1A) and was modeled with the following function: pH=0.765×ln (A 530/A 450) 

+7.61 (R2
=0.99). The buffering capacity of mD-PBS was determined to be linear and equal 

to 1.075 mM equivalents per pH units between pH 6.3 and 7.1. Experiments were 

performed on 7-day differentiated C2C12 muscle cells and on 1-day post-confluent H4IIE 

liver cells grown in 12-well plates. On the day of the experiment, cells were gently rinsed 

twice with mD-PBS, and then allowed to equilibrate in exactly 1.0 mL of mD-PBS for 

http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#BIB27
http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#BIB28
http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#FIG1


47 

 

30 min at 37°C in a humidified air atmosphere. The assay was started by gently mixing 

pre-warmed 3× concentrated treatments in a 500 µL volume of mD-PBS to the 1.0 mL 

volume of mD-PBS already present, for a final volume of exactly 1.5 mL and treatments at 

their final working concentration. After the rapid addition of treatments to all the wells of a 

single plate, an initial 100 µL sample of medium, corresponding to time 0, was transferred 

to microtiter plate for spectrophotometric analysis. Cells were then incubated at 37°C in a 

humidified air atmosphere for the duration of the experiment. At times 20, 40, 60, 120, 

180, and 240 min, plates were stirred and a 100 µL sample of medium was transferred to a 

microtiter plate for analysis. Calculations of rate of acidification and cumulative secretion 

of acid equivalents over time accounted for the decreasing experimental volume with each 

sampling. As DMSO was observed to stimulate acidification, as noted by others [29], 

quercetin was solubilized in ethanol (final vehicle concentration of 0.08%). Carbonyl 

cyanide 4-(trifluoromethoxy)phenylhydrazone (FCCP; Sigma-Aldrich) solubilized in 

ethanol was used at 5 µM as a positive control. Results were expressed as cumulative 

secretion of acid equivalents (micromoles) for four to five replicates per condition per time 

point. 

 

Cytosolic ATP assay 

Total cytosolic ATP was measured in cell lysates by luminescence using the 

ATPlite assay kit (Perkin-Elmer, Waltham, MA, USA), as per the manufacturer's protocol. 

Briefly, C2C12 myotubes in 24-well plates or H4IIE hepatocytes in 96-well plates were 

treated in parallel for 1, 3, or 6 h with extract or DMSO. FCCP was used at 5 µM as a 

positive control. Results were expressed in % ATP content of vehicle-treated wells for one 

to two experiments of three to four replicates per condition per time point. 

 

Statistical analysis 

Results are reported as means ± SEM, with the number of replicates and number of 

independent experiments indicated. Data were analyzed by one-way analysis of variance 
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with a Fisher post-hoc test or by t-test when appropriate using StatView software (SAS 

Institute, Cary, NC). Statistical significance was set at p ≤ 0.05.  

Fractionation, isolation, and identification 

Fractionation of the ethyl acetate soluble fraction of V. vitis berry ethanol extract is 

shown in Fig. 1. Gel filtration chromatography of the ethyl acetate soluble fraction was 

performed using Sephadex LH-20 (Pharmacia, Uppsala, Sweden) as a stationary phase. 

Sephadex LH-20 (110 g) was soaked in methanol and loaded on a glass column 

(25×105 cm). The mobile phase (methanol 100%) was delivered by an HPLC pump 

(model 9012; Varian, Mississauga, Ont., Canada) at a flow rate of 3 mL/min. In total, 

150 mL fractions were collected using an automated collector (Dynamax FC-4; Varian). 

Fractions were analyzed and pooled based on the similarity of their HPLC profiles (Fig. 1) 

and tested for the stimulation of glucose uptake in an in vitro bioassay as described in 

Section 2.3 at a concentration of 200 µg/mL. 

The isolation and purification of compounds from sub-fractions of ethyl acetate 

soluble fraction of V. vitis was achieved on a 1200 series preparative HPLC system 

(Agilent Technologies, Santa Clara, CA, USA), equipped with an autosampler with a 2 mL 

loop, a binary pump (flow rate range 5-100 mL/min), DAD and a fraction collector. A 

Gemini C18 reversed phase column (4.6×250 mm, particle size 10 µm) (Phenomenex, 

Torrance, CA, USA) was used to monitor the fractionation process and for scaling up for 

the isolation of the compounds from target fractions on a preparative scale Gemini C18 

reversed phase column (21.2×250 mm, particle size 10 µm) (Phenomenex). Preparative 

scale isolation of the most active fractions was achieved by using a binary solvent system 

of solvent A (0.05% aqueous trifluoroacetic acid) and solvent B (100% ACN). The 

gradient elution program afforded a total of nine compounds from the two fractions. 

LC-MS analysis of the crude V. vitis berry extract, its fractions, and the isolated 

compounds was performed on an HPLC-DAD-atmospheric pressure chemical ionization 

(APCI)-MSD system (Agilent Technologies, model 1100) which consisted of an 

autosampler with a 100 µL loop, a quaternary pump (maximum pressure, 400 bar), a 

column thermostat, a DAD and APCI-MS. The separations were achieved on an YMC-
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ODS-AM, 100 mm×4.6 mm id, particle size 5 µm (YMC, Kyoto, Japan). The mobile-

phase system consisted of water (solvent A) and ACN (solvent B). The optimized elution 

conditions were a linear gradient of 5-100% B in 35 min, the column was washed for 5 min 

at 100% B, brought back to starting mobile-phase composition in 0.1 min and equilibrated 

for 7 min before next injection. The HPLC separations were monitored at 290, 325, and 

520 nm. 

Mass spectrometric characterization was performed in both positive and negative 

ionization modes. For positive ionization mode, the optimized spray chamber conditions 

were: drying gas flow rate of 6 L/min, nebulizer pressure of 40 psig, drying gas 

temperature of 300°C, vaporizer temperature of 400°C, capillary voltage of 3000 V, and 

corona current of 3 µA. For negative ionization mode, the conditions were: drying gas flow 

rate of 6 L/min, nebulizer pressure of 60 psig, drying gas temperature of 350°C, vaporizer 

temperature of 400°C, capillary voltage of -3000 V, and corona current of 15 µA. APCI 

was conducted at 300°C with the vaporizer at 400°C; nebulizer pressure, 40 psig; nitrogen 

(drying gas) flow rate, 6 L/min; fragmentation voltage, 20 V; capillary voltage, 3000 V; 

corona current, 3 µA. The MS was operated in scan mode within 100-800 amu with 

fragmentation voltages of 20 and -160 V for positive and negative ionization, respectively. 

The identification of the isolates was achieved by: (i) the comparison of UV 

absorption spectra against those from a custom metabolomics library consisting of 140 

pure reference phenolic compounds [20]; (ii) co-chromatography with reference standards; 

(iii) the confirmation of the presence of characteristic ions; (iv) the comparison of the 

recorded 1H and 13C-NMR spectra (Avance 400 MHz NMR spectrometer; Bruker 

BioSpin, Billerica, MA, USA) with published spectra. Isolates were quantified by 

generating five-point linear calibration curves on the basis of area under the peaks recorded 

at: 325 nm, reference off, bandwidth 4 for phenolics; 290 nm, reference off, bandwidth 4 

for procyanidins and catechins; 520 nm, reference off, bandwidth 4, for anthocyanins. 
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Results 

V. vitis berry extract stimulates glucose uptake in C2C12 myotubes 

An 18 h treatment with 200 µg/mL of the crude ethanol extract of V. vitis berries 

stimulated glucose uptake in C2C12 skeletal muscle cells by 31±7%, n=6 (Fig. 1). These 

results are comparable to those reported in the previous screening study in which an earlier 

collection of the same species was tested [13]. This stimulation of muscle cell glucose 

uptake was quantitatively similar to that obtained after 15 min treatment with 100 nM 

insulin (positive control; data not shown). 

 

Bioassay guided fractionation, isolation, and identification of active principles 

In order to identify its active principles, the V. vitis berry extract was fractionated 

using a multi-step approach guided by the enhancement of glucose uptake activity in 

C2C12 cells treated 18 h. The fractionation scheme and activity results obtained at every 

step are shown in Fig. 1. All fractions were tested at 200 µg/mL and all isolates at 100 µM. 

The crude ethanol extract was first fractionated into ethyl acetate-soluble and -insoluble 

fractions. Only the ethyl acetate-soluble fraction showed a significant stimulation of 

glucose uptake (41±5% above DMSO; n=3) and was selected for further fractionation on a 

Sephadex LH20 column. 

This yielded six subfractions pooled according to similar HPLC profiles (see 

Section 2). Of these, subfractions 2 and 3 showed significantly higher stimulation of 

glucose uptake than the original V. vitis berry extract and other fractions (37±3% and 

52±4%, respectively; n=6). These two fractions were selected for further fractionation. 

Using preparative HPLC chromatographic fractionation, five compounds were 

isolated from subfraction 2 (Figs. 2 and 3; Table 1): p-coumaroyl-D-glucose; p-

hydroxybenzoic acid; p-coumaric acid; benzoic acid; quercetin. Of these, only quercetin 

stimulated uptake when tested at 100 µM (37±9%; n=6). 
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Finally, seven compounds were identified from subfraction 3: quercetin-3-O-

galactoside; quercetin-3-O-glucoside; an unidentified quercetin-3-O-glycoside; catechin; 

epicatechin; cyanidin-glucoside; cyanidin-galactoside (Figs. 2 and 3, Table 1). The first 

five of these compounds were isolated and the three quercetin-3-O-glycosides were found 

to induce a significant enhancement of glucose uptake at 100 µM (59±2%, 38±4%, and 

24±3%, respectively; n=6). Cyanidin glycosides were also tested and found to be inactive 

(results not shown). 

The identity of the purified compounds was confirmed by a combination of LC-MS 

and NMR and by comparison of their physicochemical properties with those reported in 

the literature [30] or with those of reference compounds. The predominant phenolic acid 

present in the berries was p-coumaric acid (33.8±0.6 µg/g dry weight). The predominant 

flavonols present in the berries were quercetin-3-O-glucoside (19.2±1.2 µg/g dry weight) 

and quercetin-3-O-galactoside (15.9±0.4 µg/g dry weight) (Table 1). 

 

V. vitis crude extract and its active principles increase activity of the AMPK signaling 

pathway not of the insulin receptor pathway in C2C12 myotubes  

To understand the mechanism mediating the effect of V. vitis berry extract on 

skeletal muscle cell glucose uptake, we evaluated the activity of the two main signaling 

pathways that regulate rate of glucose uptake in this cell-type: the insulin-receptor pathway 

and the AMPK pathway. Following an 18 h treatment in C2C12 cells, there was no 

indication of increased phosphorylation of Akt (Fig. 4A), a marker of the former pathway. 

Stimulation with 100 nM insulin for 30 min produced a clear activation of this enzyme. In 

contrast, treatment with the extract increased the phosphorylation of the AMPK effector 

ACC (Fig. 4B). AICAR, an AMP mimetic and known activator of AMPK signaling, 

served as a positive control and also greatly enhanced phosphorylation of ACC. 

Concordant with the activity of the crude extract, treatment of C2C12 cells for 18 h with 

50 or 100 M quercetin, quercetin-3-O-galactoside or quercetin-3-O-glucoside did not 

increase phosphorylation of Akt (Fig. 4A) but increased phosphorylation of ACC (Fig. 

4B). Total content of ACC was not significantly altered by any treatment. 

http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#FIG2
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V. Vitis berry extract and quercetin, but not quercetin glycosides, inhibit respiration 

in isolated mitochondria 

AMPK is highly sensitive to metabolic stress such as that occurs when energy 

transduction is disrupted. To test whether V. vitis berry extract and its active principles may 

have caused such a disruption, we assessed the effect of these products on respiration of 

isolated mitochondria. Succinate-supported rates of basal and ADP-stimulated oxygen 

consumption were measured in rat liver mitochondria treated with vehicle, 200 µg/mL 

crude extract, or 25-100 µM of quercetin or quercetin glycosides. The crude extract had no 

stimulatory effect on the rate of basal O2 consumption but induced a mild inhibitory effect 

on the rate of ADP-stimulated O2 consumption (Fig. 5), reducing the capacity for ATP 

synthesis by 9±3%. This pattern of disruption of mitochondrial function is consistent with 

an inhibition of ATP synthase. The quercetin aglycone produced a similar, but more 

pronounced inhibitory effect: at 25 and 100 µM, capacity was inhibited by 40±10% and 

85±5%, respectively (Fig. 6A). The quercetin glycosides had much less effect than the 

aglycone, only decreasing capacity by 3-7% at 100 µM (Fig. 6B). 

 

Quercetin does not increase the rate of secretion of acid equivalents or reduce 

intracellular ATP  

Since quercetin powerfully inhibited respiration in isolated mitochondria, it was 

hypothesized that it would induce a compensatory increase in flux through anaerobic 

glycolysis and therefore an increase in the rate of secretion of acid equivalents. To test this, 

the pH of the culture medium of H4IIE hepatocytes and C2C12 muscle cells was 

spectrophotometrically assessed at several time points over a 4 h treatment with quercetin. 

Quercetin at either 25 or 100 µM did not significantly influence the rate of acidification of 

the medium of C2C12 or H4IIE cells (Fig. 7). In contrast, the positive control uncoupling 

compound FCCP greatly enhanced this rate. 

http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#FIG5
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Similarly, it was pertinent to verify if the metabolic stress induced by quercetin 

would negatively impact the intracellular ATP concentration. Again, neither 25 nor 

100 µM of quercetin induced a drop in ATP in H4IIE hepatocytes over a 6-h period (Fig. 

8); instead, cellular ATP was paradoxically increased after 3 h of treatment. FCCP used as 

a positive control transiently decreased content of ATP in H4IIE hepatocytes after 1 h of 

treatment. 

http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#FIG8
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Discussion 

Aboriginal populations worldwide are susceptible to metabolic disorders related to 

lifestyle changes. Indeed, the incidence of obesity and diabetes in these populations is the 

highest in the world [1][7][31]. When this predisposition is coupled with a cultural 

disconnection with modern pharmaceuticals, the rate of diabetic complications and the 

associated social costs can become staggering. In an effort to remedy the situation in 

Canadian aboriginal populations facing these problems, our team has been working 

towards identifying safe and efficacious alternative treatment options for diabetes based on 

these populations' own traditional medicine and associated pharmacopea. In collaboration 

with the Cree of Eeyou Istchee (James Bay area of Que., Canada), we have used a novel 

ethnobotanical approach [10] to identify relevant medicinal plant species used to treat 

symptoms of diabetes. Follow-up studies screening the antidiabetic activity of extracts of 

these species have revealed eight products capable of enhancing glucose uptake in skeletal 

muscle cells [12][13]. 

The effects of all seven products to emerge from the first screening project [12] 

were found to be mediated by AMPK as a response to metabolic stress resulting from a 

disruption of mitochondrial energy transduction [14], a mechanism similar to that of the 

biguanide oral anti-hyperglycemic drug Metformin [17]. The purpose of this study was to 

evaluate whether the effects of a new product identified in our second screening study [13], 

the extract of the berries of V. vitis idaea, are also mediated by such a mechanism and to 

simultaneously isolate and identify the compounds responsible for this activity using our 

phytochemical expertise with Ericacea species [20][21]. The identification of active 

compounds will be useful for standardizing the activity of different preparations of the 

plant product and may also provide insight into the activity of other small berries used for 

the treatment of diabetes in various parts of the world. 

AMPK is recognized as an important therapeutic target for diabetes [15][16]. 

Indeed, the effects of Metformin are mediated through this metabolic master enzyme and 

transducer of metabolic stress. Upon activation by an increase in the cellular ratio of AMP 

to ATP, AMPK serves to restore energy homeostasis by increasing flux through energy-
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producing pathways and decreasing energy-consuming processes [32]. Energy production 

is increased by simultaneous enhancement of uptake and oxidation of lipids and 

carbohydrates. Other tissue-specific effects include the insulin-like inhibition of hepatic 

glucose output and the translocation of Glut-4 glucose transporters in skeletal muscle, 

activities that contribute to a systemic anti-hyperglycemic effect [17][33-35]. In addition to 

acute actions for restoring energy homeostasis, the activation of AMPK produces long-

term adaptive effects, such as increased capacity for substrate uptake and oxidation, that 

confer protection against future metabolic stresses [36-38]. 

Many plant products are known to activate AMPK [39-48], including compounds 

isolated from Galega officinalis and from which Metformin is derived [49][50]. AMPK is 

not activated directly by these products, but rather as a consequence of the metabolic stress 

that they induce [39]. These compounds tend to be plant defensive metabolites that protect 

against microorganisms by disrupting well-conserved energy transduction pathways such 

as mitochondrial oxidative phosphorylation [18]. Several compounds of the flavonoid 

family are known to dissipate the mitochondrial proton gradient (i.e. uncoupling), while 

compounds such as metformin and oligomycin have been shown to inhibit electron 

transport or ATPsynthase respectively [18][42][51][52]. Our recent study of the 

mechanism of action of medicinal plant products, in which we demonstrated that the 

extracts of seven species all acted through AMPK, revealed both uncoupling- and 

inhibitory-type activities [14]; interestingly, in most cases both types of disruption were 

observed concurrently, perhaps suggestive of a combination of active principles. In this 

study, the extract of V. vitis berries also induced an activation of AMPK that can be 

explained by a disruption of mitochondrial function. This disruption was observed to be 

purely of the inhibitory type, resulting in a mild decrease in the rate of ADP-stimulated 

oxygen consumption in isolated mitochondria, with no effect on the rate of basal 

consumption. As with species tested in our previous study, V. vitis berry extract did not 

stimulate the insulin-signaling pathway. These results reinforce the notion that disruption 

of energy transduction and subsequent activation of AMPK is a simple mechanism that 

may explain the activity of several antidiabetic plant products used by cultures throughout 

the world. It is a mechanism that likely requires less molecular specificity than the 
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activation of the insulin receptor-signaling pathway. This pathway was found not to be 

stimulated by the extract of V. vitis berries, or by the plant products tested in our previous 

study. 

Fractionation of V. vitis berry extract guided by muscle cell glucose uptake resulted 

in the isolation of quercetin-3-O-glycosides as main active principles. At 50 µM, these 

compounds enhanced basal glucose uptake by up to 59% following an 18 h treatment, an 

effect significantly greater than that of 100 nM insulin. These compounds were observed to 

increase the phosphorylation of ACC, thereby confirming that their mechanism of action 

was the same as that of the crude extract. However, unlike the crude extract, the quercetin 

glycosides failed to inhibit mitochondrial respiration. In contrast, the aglycone of these 

compounds, a minor component of a less active fraction, was found to both stimulate the 

AMPK pathway and to potently inhibit the rate of ADP-stimulated oxygen consumption. 

Such an inhibitory effect of quercetin on ATP synthase has been reported by others and has 

recently been attributed to direct binding of quercetin to the F1-ATPase [53]. The sugar 

moiety of the glycosides reduces the lipophilicity of quercetin and may therefore prevent 

the compound from permeating the mitochondrial inner membrane. Indeed, it is widely 

accepted that flavonoids are often glycosylated in plants as a mechanism for facilitating 

their handling or sequestration. It is also possible that the hydroxyl group at position 3, 

replaced by the sugar moiety, is essential for the activity of quercetin. As the amount of 

quercetin aglycone contained in the extract is insufficient to account for the inhibition of 

mitochondrial respiration and the activation of AMPK, these findings suggest that 

quercetin-glycosides may be hydrolyzed to the aglycone form in order to become active. A 

less likely alternative is that quercetin glycosides may activate AMPK directly without 

inducing metabolic stress. In any case, the combined action of quercetin and its 3-O-

glycosides appear to underlie the majority of the action of V. vitis on muscle cell glucose 

transport. 

Quercetin does not appear to produce the dangerous side effects that can occur with 

powerful disruptors of oxidative phosphorylation. First, quercetin did not increase the rate 

of extracellular acidification, a marker of the contribution of anaerobic glycolysis to ATP 
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synthesis. Second, quercetin did not decrease cytosolic ATP concentration following 1 or 

3 h of treatment. Both observations support the notion that the metabolic stress induced is 

of low magnitude and short-lived, not affecting ATP concentration nor requiring a 

significant upregulation of glycolysis. Interestingly, ATP concentration was actually 

increased above normal by treatment with quercetin. This may be explained if the AMPK-

derived signal for increased ATP synthesis through lipid and carbohydrate oxidation is 

longer-lived than the metabolic stress itself, resulting in an overshoot of ATP content. This 

ATP surfeit may also account for the observed tendency towards a paradoxically reduced 

rate of flux through anaerobic glycolysis. Together, these results can also be taken to 

indicate that quercetin is an easily metabolized compound, a conclusion supported by 

pharmacokinetic studies [22]. 

 

Concluding remarks 

In summary, the results presented here demonstrate that quercetin and quercetin 

glycosides are active principles responsible for the enhancement of muscle cell glucose 

uptake by the extract of V. vitis berries. Quercetin and quercetin glycosides exert 

antidiabetic activity through the AMPK signaling pathway, activated as a response to the 

action of the quercetin aglycone on mitochondrial energy transduction. This mechanism 

concords with the anti-hyperglycemic activity of quercetin reported by others [54][55]. 

Quercetin and quercetin glycosides are found in the berries of other members of the 

Vaccinium family used against diabetes and are likely to be active principles in these 

species as well. Preparation of V. vitis berries hold good potential for the treatment of 

diabetes in Canadian aboriginal populations. 

 

 

  

http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#BIB22
http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#BIB54
http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#BIB55


58 

 

Acknowledgments 

This work was supported by a Team Grant from the Canadian Institutes of Health 

Research to PSH, JTA, and LCM. This work was conducted with the consent and support 

of the Cree of Eeyou Istchee (James Bay region of Quebec, Canada) and the Cree Board of 

Health and Social Services of James Bay. Very special thanks are due to Elizabeth Coon 

Come, Mable Gunner, Charlotte Husky Swallow, Johnny Husky Swallow, Ronny Loon 

and Girty Loon from the Cree Nation of Mistissini, to Eliza Kawapit, Abraham 

Mamianskum, Andrew Natachequan, Maggie Natachequan and John Petagumskum from 

Whapmagoostui First Nation, as well as to 54 other Cree Elders and healers of both nations 

who kindly agreed to be interviewed. They made this article possible by allowing us to use, 

for the purposes of this research, their knowledge relating to medicinal plants, transmitted 

to them by their elders. Their trust has also enabled a useful exchange between Indigenous 

knowledge and Western science. 



59 

 

References 

1 Hegele, R. A. (2001) Genes, environment and diabetes in Canadian aboriginal 

communities. Adv Exp Med Biol. 498, 11-20 

 

2 Yu, C. H. and Zinman, B. (2007) Type 2 diabetes and impaired glucose tolerance in 

aboriginal populations: a global perspective. Diabetes research and clinical practice. 78, 

159-170 

 

3 Maberley, D., Walker, H., Koushik, A. and Cruess, A. (2003) Screening for diabetic 

retinopathy in James Bay, Ontario: a cost-effectiveness analysis. Cmaj. 168, 160-164 

 

4 Lavallee, C. and Robinson, E. (1991) Physical activity, smoking and overweight among 

the Cree of eastern James Bay. Arctic Med Res. Suppl, 770-773 

 

5 Brassard, P. and Robinson, E. (1995) Factors associated with glycemia and 

microvascular complications among James Bay Cree Indian diabetics of Quebec. Arctic 

Med Res. 54, 116-124 

 

6 Maberley, D. A., King, W. and Cruess, A. F. (2000) The prevalence of diabetes in the 

Cree of western James Bay. Chronic Dis Can. 21, 128-133 

 

7 Young, T. K., Reading, J., Elias, B. and O'Neil, J. D. (2000) Type 2 diabetes mellitus in 

Canada's first nations: status of an epidemic in progress. Cmaj. 163, 561-566 

 

8 Kuzmina, E. and Dannenbaum, D. (2004) Annual update of the Cree diabetes 

information system. In Cree Board of Health and Social Services of James Bay. Public 

Health Report on Diabetes ed.)^eds.), Chisasibi, QC 

 

9 Kuzmina, E., Lejeune, P., Dannenbaum, D. and Torrie, J. (2008) Cree Diabetes 

Information System 2007 Annual Report, Chisasibi, QC 



60 

 

 

10 Leduc, C., Coonishish, J., Haddad, P. and Cuerrier, A. (2006) Plants used by the Cree 

Nation of Eeyou Istchee (Quebec, Canada) for the treatment of diabetes: A novel 

approach in quantitative ethnobotany. J Ethnopharmacol. 105, 55-63 

 

11 Fraser, M. H., Cuerrier, A., Haddad, P. S., Arnason, J. T., Owen, P. L. and Johns, T. 

(2007) Medicinal plants of Cree communities (Quebec, Canada): antioxidant activity of 

plants used to treat type 2 diabetes symptoms. Can J Physiol Pharmacol. 85, 1200-1214 

 

12 Spoor, D. C., Martineau, L. C., Leduc, C., Benhaddou-Andaloussi, A., Meddah, B., 

Harris, C., Burt, A., Fraser, M. H., Coonishish, J., Joly, E., Cuerrier, A., Bennett, S. A., 

Johns, T., Prentki, M., Arnason, J. T. and Haddad, P. S. (2006) Selected plant species 

from the Cree pharmacopoeia of northern Quebec possess anti-diabetic potential. Can J 

Physiol Pharmacol. 84, 847-858 

 

13 Harbilas, D., Martineau, L. C., Harris, C. S., Adiyiwola-Spoor, D. C., Hill, J., Saleem, 

A., Coonishish, J., Prentki, M., Johns, T., Bennett, S. A., Arnason, J. T. and Haddad, P. 

S. (2009) Evaluation of the anti-diabetic potential of extracts of selected medicinal plant 

species of the Canadian boreal forest used to treat symptoms of diabetes - Part II. Can J 

Physiol Pharmacol. in press 

 

14 Misra, P. (2008) AMP activated protein kinase: a next generation target for total 

metabolic control. Expert opinion on therapeutic targets. 12, 91-100 

 

15 Viollet, B., Lantier, L., Devin-Leclerc, J., Hebrard, S., Amouyal, C., Mounier, R., 

Foretz, M. and Andreelli, F. (2009) Targeting the AMPK pathway for the treatment of 

Type 2 diabetes. Front Biosci. 14, 3380-3400 

 

16 Zhou, G., Myers, R., Li, Y., Chen, Y., Shen, X., Fenyk-Melody, J., Wu, M., Ventre, J., 

Doebber, T., Fujii, N., Musi, N., Hirshman, M. F., Goodyear, L. J. and Moller, D. E. 



61 

 

(2001) Role of AMP-activated protein kinase in mechanism of metformin action. J Clin 

Invest. 108, 1167-1174 

 

17 Polya, G. (2003) Biochemical targets of plant bioactive compounds: a pharmacological 

reference guide to sites of action and biological effects. CRC Press, Boca Raton, FL 

18 Zazworsky, D., Nelson Bolin, J. and Gaubeca, V. B. (2005) Handbook of Diabetes 

Management. Springer, New York, NY 

 

19 Harris, C. S., Burt, A. J., Saleem, A., Le, P. M., Martineau, L. C., Haddad, P. S., 

Bennett, S. A. and Arnason, J. T. (2007) A single HPLC-PAD-APCI/MS method for the 

quantitative comparison of phenolic compounds found in leaf, stem, root and fruit 

extracts of Vaccinium angustifolium. Phytochem Anal. 18, 161-169 

 

20 McIntyre, K. L., Harris, C. S., Saleem, A., Beaulieu, L. P., Ta, C. A., Haddad, P. S. and 

Arnason, J. T. (2009) Seasonal phytochemical variation of anti-glycation principles in 

lowbush blueberry (Vaccinium angustifolium). Planta Med. 75, 286-292 

 

21 Bischoff, S. C. (2008) Quercetin: potentials in the prevention and therapy of disease. 

Current opinion in clinical nutrition and metabolic care. 11, 733-740 

 

22 Martineau, L. C., Couture, A., Spoor, D., Benhaddou-Andaloussi, A., Harris, C., 

Meddah, B., Leduc, C., Burt, A., Vuong, T., Mai Le, P., Prentki, M., Bennett, S. A., 

Arnason, J. T. and Haddad, P. S. (2006) Anti-diabetic properties of the Canadian 

lowbush blueberry Vaccinium angustifolium Ait. Phytomedicine. 13, 612-623 

 

23 Benhaddou-Andaloussi, A., Martineau, L. C., Spoor, D., Vuong, T., Leduc, C., Joly, E., 

Burt, A., Meddah, B., Settaf, A., Arnason, J. T., Prentki, M. and Haddad, P. S. (2008) 

Antidiabetic activity of Nigella sativa seed extract in cultured pancreatic beta-cells, 

skeletal muscle cells, and adipocytes. Pharmaceutical Biology. 46, 96-104 

 



62 

 

 

24 Johnson, D. and Lardy, H. A. (1967) Isolation of liver or kidney mitochondria. In 

Methods in Enzymology (Eastbrook, R. W. and Pullman, M. E., eds.), Academic Press, 

New York, NY 

 

25 Ligeret, H., Brault, A., Vallerand, D., Haddad, Y. and Haddad, P. S. (2008) Antioxidant 

and mitochondrial protective effects of silibinin in cold preservation-warm reperfusion 

liver injury. J Ethnopharmacol. 115, 507-514 

 

26 Schornack, P. A. and Gillies, R. J. (2003) Contributions of cell metabolism and H+ 

diffusion to the acidic pH of tumors. Neoplasia. 5, 135-145 

 

27 Yang, Y. and Balcarcel, R. R. (2003) 24-well plate spectrophotometric assay for 

preliminary screening of metabolic activity. Assay Drug Dev Technol. 1, 461-468 

 

28 Harborne, J. B. and Mabry, T. J. (1982) The flavonoids: advances in research. Chapman 

and Hall, New York, NY 

 

29 Brassard, P., Robinson, E. and Lavallee, C. (1993) Prevalence of diabetes mellitus 

among the James Bay Cree of northern Quebec. Cmaj. 149, 303-307 

 

30 Winder, W. W. and Thomson, D. M. (2007) Cellular energy sensing and signaling by 

AMP-activated protein kinase. Cell biochemistry and biophysics. 47, 332-347 

 

31 Viollet, B., Foretz, M., Guigas, B., Horman, S., Dentin, R., Bertrand, L., Hue, L. and 

Andreelli, F. (2006) Activation of AMP-activated protein kinase in the liver: a new 

strategy for the management of metabolic hepatic disorders. J Physiol. 574, 41-53 

 

32 Thong, F. S., Bilan, P. J. and Klip, A. (2007) The Rab GTPase-activating protein AS160 

integrates Akt, protein kinase C, and AMP-activated protein kinase signals regulating 



63 

 

GLUT4 traffic. Diabetes. 56, 414-423 

 

33 Cartee, G. D. and Wojtaszewski, J. F. (2007) Role of Akt substrate of 160 kDa in 

insulin-stimulated and contraction-stimulated glucose transport. Applied physiology, 

nutrition, and metabolism = Physiologie appliquee, nutrition et metabolisme. 32, 557-

566 

 

34 Winder, W. W. (2001) Energy-sensing and signaling by AMP-activated protein kinase 

in skeletal muscle. J Appl Physiol. 91, 1017-1028 

 

35 Reznick, R. M. and Shulman, G. I. (2006) The role of AMP-activated protein kinase in 

mitochondrial biogenesis. J Physiol. 574, 33-39 

 

36 McGee, S. L. and Hargreaves, M. (2008) AMPK and transcriptional regulation. Front 

Biosci. 13, 3022-3033 

 

37 Hayashi, T., Hirshman, M. F., Fujii, N., Habinowski, S. A., Witters, L. A. and 

Goodyear, L. J. (2000) Metabolic stress and altered glucose transport: activation of 

AMP-activated protein kinase as a unifying coupling mechanism. Diabetes. 49, 527-531 

38 Hwang, J. T., Park, I. J., Shin, J. I., Lee, Y. K., Lee, S. K., Baik, H. W., Ha, J. and Park, 

O. J. (2005) Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process 

via activating AMP-activated protein kinase. Biochem Biophys Res Commun. 338, 694-

699 

 

39 Zang, M., Xu, S., Maitland-Toolan, K. A., Zuccollo, A., Hou, X., Jiang, B., Wierzbicki, 

M., Verbeuren, T. J. and Cohen, R. A. (2006) Polyphenols stimulate AMP-activated 

protein kinase, lower lipids, and inhibit accelerated atherosclerosis in diabetic LDL 

receptor-deficient mice. Diabetes. 55, 2180-2191 

 

40 Lee, Y. S., Kim, W. S., Kim, K. H., Yoon, M. J., Cho, H. J., Shen, Y., Ye, J. M., Lee, C. 



64 

 

H., Oh, W. K., Kim, C. T., Hohnen-Behrens, C., Gosby, A., Kraegen, E. W., James, D. 

E. and Kim, J. B. (2006) Berberine, a natural plant product, activates AMP-activated 

protein kinase with beneficial metabolic effects in diabetic and insulin-resistant states. 

Diabetes. 55, 2256-2264 

 

41 Park, C. E., Kim, M. J., Lee, J. H., Min, B. I., Bae, H., Choe, W., Kim, S. S. and Ha, J. 

(2007) Resveratrol stimulates glucose transport in C2C12 myotubes by activating AMP-

activated protein kinase. Experimental & molecular medicine. 39, 222-229 

 

42 Lee, E. S., Uhm, K. O., Lee, Y. M., Han, M., Lee, M., Park, J. M., Suh, P. G., Park, S. 

H. and Kim, H. S. (2007) CAPE (caffeic acid phenethyl ester) stimulates glucose uptake 

through AMPK (AMP-activated protein kinase) activation in skeletal muscle cells. 

Biochem Biophys Res Commun. 361, 854-858 

 

43 Collins, Q. F., Liu, H. Y., Pi, J., Liu, Z., Quon, M. J. and Cao, W. (2007) 

Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic 

gluconeogenesis through 5'-AMP-activated protein kinase. The Journal of biological 

chemistry. 282, 30143-30149 

 

44 Liu, G., Grifman, M., Macdonald, J., Moller, P., Wong-Staal, F. and Li, Q. X. (2007) 

Isoginkgetin enhances adiponectin secretion from differentiated adiposarcoma cells via 

a novel pathway involving AMP-activated protein kinase. The Journal of 

endocrinology. 194, 569-578 

 

45 Ahn, J., Lee, H., Kim, S., Park, J. and Ha, T. (2008) The anti-obesity effect of quercetin 

is mediated by the AMPK and MAPK signaling pathways. Biochem Biophys Res 

Commun. 373, 545-549 

 

46 Mooney, M. H., Fogarty, S., Stevenson, C., Gallagher, A. M., Palit, P., Hawley, S. A., 

Hardie, D. G., Coxon, G. D., Waigh, R. D., Tate, R. J., Harvey, A. L. and Furman, B. L. 



65 

 

(2008) Mechanisms underlying the metabolic actions of galegine that contribute to 

weight loss in mice. Br J Pharmacol. 153, 1669-1677 

 

47 Witters, L. A. (2001) The blooming of the French lilac. J Clin Invest. 108, 1105-1107 

48 Cavaliere, C. (2007) Glucophage: Diabetic Drug Based on Traditional Herb Celebrates 

50 Years of Use. HerbalGram. 76 

 

49 Dorta, D. J., Pigoso, A. A., Mingatto, F. E., Rodrigues, T., Prado, I. M., Helena, A. F., 

Uyemura, S. A., Santos, A. C. and Curti, C. (2005) The interaction of flavonoids with 

mitochondria: effects on energetic processes. Chem Biol Interact. 152, 67-78 

 

50 Trumbeckaite, S., Bernatoniene, J., Majiene, D., Jakstas, V., Savickas, A. and Toleikis, 

A. (2006) The effect of flavonoids on rat heart mitochondrial function. Biomed 

Pharmacother. 60, 245-248 

 

51 Gledhill, J. R., Montgomery, M. G., Leslie, A. G. and Walker, J. E. (2007) Mechanism 

of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl 

Acad Sci U S A. 104, 13632-13637 

 

52 Vessal, M., Hemmati, M. and Vasei, M. (2003) Antidiabetic effects of quercetin in 

streptozocin-induced diabetic rats. Comp Biochem Physiol C Toxicol Pharmacol. 135C, 

357-364 

 

53 Anjaneyulu, M. and Chopra, K. (2004) Quercetin, an anti-oxidant bioflavonoid, 

attenuates diabetic nephropathy in rats. Clin Exp Pharmacol Physiol. 31, 244-248 

  



66 

 

Figure Legends 

Figure 1. Phytochemical fractionation of V. vitis berry extract guided by muscle cell 

glucose-uptake activity. Values in brackets represent activity expressed as percentage 

change in the rate of basal glucose uptake relative to the vehicle control (0.1% DMSO) 

following an 18 h treatment with respective fractions at 200 µg/mL or isolates (Fig. 2 and 

Table 1) at 100 µM. 

 

Figure 2. HPLC chromatograms of V. vitis berry crude extract (A), subfractions 2 (B) and 3 

(C) of its ethyl acetate-soluble fraction. Absorbance at 325 and 520 nm (milliabsorbance 

units) is plotted against retention time (in min). Twelve constituent compounds were 

identified using a metabolomics approach, as described in Section 2.1. The identity of 

these peaks is listed in Table1. 

 

Figure 3. Chemical structures of the 12 isolated constituents V. vitis berry ethanol extract. 

 

Figure 4. V. vitis berry extract and its active principles stimulate the AMPK signaling 

pathway but not the insulin receptor pathway. C2C12 skeletal muscle cells were treated for 

18 h with either 0.1% DMSO (vehicle), 200 µg/mL of V. vitis berry extract, or 50 and 

100 µM of quercetin, quercetin-3-O-glucoside or quercetin-3-O-galactoside. 

Phosphorylation of the insulin receptor pathway marker Akt (A) and of the AMPK effector 

ACC was measured by western immunoblot. Insulin (100 nM) and AICAR (2 mM) applied 

for 30 min served as positive controls. 

 

Figure 5. The V. vitis berry extract induces a mild instantaneous inhibition of respiration in 

isolated rat liver mitochondria, as illustrated by a representative oxygen consumption 

tracing. Mitochondria (1 mg mitochondrial protein) were treated with vehicle (0.1% 

DMSO) or 200 µg/mL of extract and the rates of succinate-supported basal and ADP-

http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#FIG2
http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#TBL1
http://www3.interscience.wiley.com/cgi-bin/fulltext/123244146/main.html,ftx_abs#TBL1
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stimulated oxygen consumption were measured. As compared to control, extract-treated 

mitochondria exhibited an unchanged rate of basal oxygen consumption but a mildly 

inhibited rate of ADP-stimulated oxygen consumption. Values represent rate of 

consumption in nmol O/min/mg protein. Experiments were repeated in three different 

mitochondrial preparations. 

 

Figure 6. Quercetin (A), but not quercetin-3-O-glycosides (B), induces an important 

instantaneous and dose-dependent inhibition of respiration in rat liver mitochondria, as 

illustrated by representative oxygen consumption tracings. Values represent rate of 

consumption in nmol O/min/mg protein. Experiments were repeated in three different 

mitochondrial preparations. 

 

Figure 7. Quercetin does not increase the rate of secretion of acid equivalents by C2C12 

(A) or H4IIE (B) cells. Acidification of the cell medium. The pH of the culture medium 

was assessed with a Phenol Red-based spectrophotometric assay at several time points. 

Change in pH was expressed as the cumulative secretion of acid equivalents. FCCP (5 µM) 

was used as a positive control. Quercetin treatment was not significantly different from 

vehicle (0.08% ethanol) in either cell line and at either concentration (25 and 100 µM). 

Data are mean±SEM for two experiments of four to five replicates per condition per time 

point. 

  

Figure 8. Quercetin does not reduce intracellular ATP concentration in H4IIE hepatocytes. 

Cytosolic ATP content was measured in H4IIE hepatocytes using a luminescent ATP 

assay. FCCP (5 µM) was used a positive control. Quercetin treatment was not significantly 

different from vehicle (0.1% DMSO) at either concentration (25 and 100 µM). Data are 

expressed as mean±SEM of two experiments of four to five replicates per condition per 

time point. 
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Figures 

Figure 1 

  

Values in brackets represent activity expressed as percentage change in the 

rate of basal glucose uptake relative to the vehicle control (0.1% DMSO). 
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Figure 2 
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Figure 3 
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Figure 4 

Figure 4A 

 

Figure 4B 
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Figure 5 
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Figure 6 
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Figure 7 
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Table 1 Yield of V. vitis berry extract constituents 

 
Compound Content

 

(µg /g dry weight of berries) 

1 
(+)-catechin 

2.8 ± 0.7 

2 
p-coumaric acid 

33.8 ± 0.6 

3 
cyanadin-glucoside 

30.4 ± 0.7 

4 
cyanadin galactoside 

34.4 ± 0.3 

5 
p-coumaroyl-D-glucose 

22.5 ± 0.4 

6 
epicatechin 

3.8 ± 1.4 

7 
p-hydroxybenzoic acid 

3.6 ± 0.2 

8 
benzoic acid 

35.1 ± 0.2 

9 
quercetin-3-O-galactoside 

15.9 ± 0.4 

10 
quercetin-3-O-glucoside 

19.2 ± 1.2 

11 
unknown quercetin-3-O-glycoside 

21.9 ± 1.3 

12 
quercetin 

2.3 ± 0.3 
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Abstract 

Caffeic acid phenethyl ester (CAPE) has recently been shown to potently stimulate glucose 

uptake in cultured skeletal muscle cells through the AMPK pathway and therefore to have 

anti-diabetic potential. We report here that CAPE increases glucose uptake in C2C12 

muscle cells by 225 ± 21% at 50 μM, and that activation of AMPK is a consequence of the 

metabolic stress resulting from an uncoupling-type disruption of mitochondrial function 

(complete uncoupling at 50 μM). We also observe that the therapeutic potential of CAPE is 

offset by its high potential for toxicity. The purpose of this study was therefore to identify 

other active caffeic acid derivatives, evaluate their ratio of activity to toxicity, and elucidate 

their structure–activity relationship. Twenty naturally occurring derivatives were tested for 

glucose-uptake stimulating activity in C2C12 cells following 18 h of treatment and for 

uncoupling activity in isolated rat liver mitochondria. Cytotoxicity was assessed in C2C12 

cells by the release of lactate dehydrogenase over 18 h. In addition to CAPE, four 

compounds were identified to be active, both stimulating glucose uptake and uncoupling 

isolated mitochondria. Activity required that the caffeic acid moiety be intact and that the 

compound not contain a strongly ionized group. Both activity and toxicity were found to be 

well-correlated to predicted lipophilicity. However, two compounds exhibited little to no 

toxicity while still stimulating glucose uptake by 65–72%. These results support a 

therapeutic potential for this family of compounds and provide the framework for the 

design of alternatives to Metformin with an optimized balance of safety and activity. 
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Introduction 

Insulin resistance is a major health concern throughout the world. It is a precursor to 

the diseases that make up the metabolic syndrome, including type II diabetes, 

cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to excess 

adiposity, sedentary lifestyle, poor dietary habits, and aging [1]. At the cellular level, the 

development of insulin resistance is caused in part by abnormal accumulation and 

metabolism of lipids, as well as by mitochondrial dysfunction [2] and [3].  

A key therapeutic target of pharmacological interventions for improving insulin 

sensitivity is the master metabolic regulatory enzyme AMP-activated protein kinase 

(AMPK) [4] and [5]. This enzyme is an extremely sensitive monitor of energy homeostasis, 

specifically of the concentrations of ATP and AMP. Upon activation under conditions of 

metabolic stress, AMPK triggers cytoprotective programs for acutely upregulating ATP 

production and downregulating non-essential energy expenditure, as well as transcriptional 

events that confer enhanced protection against future metabolic stress [6] and [7]. In the 

context of insulin resistance and compromised glycemic control, the activation of AMPK 

produces insulin-like effects that contribute to the normalization of hyperglycemia, namely 

the inhibition of glucose output by liver cells and the stimulation of glucose uptake by 

skeletal muscle cells. Furthermore, acute stimulation of fat oxidation and increased 

mitochondrial density are also AMPK-mediated effects that are relevant to the protection 

and restoration of insulin sensitivity in liver and muscle. 

AMPK mediates the actions of the successful insulin-sensitizer Metformin and of 

the other members of the biguanide family [8]. These compounds indirectly activate AMPK 

by inducing a partial and transient inhibition of mitochondrial energy transduction and 

thereby disrupting energy homeostasis. The biguanides are effective at inhibiting hepatic 

glucose production [9] and [10]. However, their effect on skeletal muscle, the major site of 

glucose disposal, is more limited [11]. Also, Metformin and the other biguanides are 

associated with a potential for toxicity in the form of lactic acidosis [12] since 

compromised aerobic metabolism must be compensated by upregulation of anaerobic 

glycolysis. It appears that this potential is proportional to activity and that safety can only 
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be improved at the cost of efficacy. Indeed, the more powerful biguanides have been 

removed from many markets, leaving only Metformin [9] and [10], a product requiring 

doses of multiple grams per day. 

There is an impetus to identify novel activators of AMPK that are at least as safe as 

Metformin but that are more potent and more efficacious at stimulating glucose uptake and 

inducing other therapeutically relevant AMPK-mediated effects in skeletal muscle. A 

starting point may be other types of compounds that also disrupt mitochondrial function but 

which do so through different mechanisms. Inhibitors of ATP synthase [13], [14] and [15] 

or dissipators of the mitochondrial proton gradient that drives conversion of ADP to ATP 

(i.e. uncouplers) are found in nature where they are used by many plant species to defend 

against predatory microorganisms [13] and [16]. While lactic acidosis will always remain a 

potential complication of any disruptor of aerobic metabolism, it may nevertheless be 

possible to identify in nature classes of compounds with a more favorable toxicity-to-

activity relationship, especially if focus is placed on small phenolic compounds presumably 

easily metabolized by higher organisms. Indeed, activity may be uncoupled from this type 

of toxicity if mitochondrial effects are short-lived and of no more than sufficient duration to 

promote the activation of AMPK. Of interest is the naturally occurring small phenolic 

caffeic acid phenethyl ester (CAPE). This compound has recently been observed to activate 

AMPK kinase and to robustly and potently stimulate glucose uptake in skeletal muscle cells 

[17]. The purpose of the present study was to assess whether this effect of CAPE is a 

consequence of disruption of mitochondrial function and to test related compounds for 

similar activity. The results indicate that CAPE is an uncoupler of oxidative 

phosphorylation, that other closely related derivatives also exhibit both uncoupling activity 

and glucose-uptake stimulating activity, and that some of these compounds such as caffeic 

acid ethyl ester (CAEE) and caffeic acid methyl ester (CAME) exhibit useful activity with 

little to no associated cytotoxicity. 
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Materials and Methods 

Source of compounds and reagents  

CAPE and other caffeic acid derivatives (summarized in Table 1 and Fig. 4) were 

purchased from Sigma–Aldrich (Oakville, ON), with the exception of caffeic acid methyl 

ester, dihydrocaffeic acid, rosmarinic acid, ferulic acid methyl ester and ferulic acid ethyl 

ester purchased from Indofine Chemical Co. (Hillsborough, NJ), caffeic acid n-octyl ester 

and ferulic acid phenethyl ester purchased from LKT Laboratories Inc. (St.-Paul, MN), and 

dihydrocaffeic methyl ester, 4-hydroxycinnamic methyl ester, ferulic acid methyl ester, 2,4-

dihydroxycinnamic acid methyl ester, and 4-(1-propenyl)-catechol synthesized as described 

in Sections Sections 2.2 and 2.3. Cell culture reagents were purchased from Invitrogen Life 

Technologies (Burlington, ON), unless otherwise noted. Other reagents were purchased 

from Sigma–Aldrich unless otherwise noted. Antibodies against phosphorylated (Ser 79) 

and pan-specific acetyl-CoA-carboxylase (ACC), phosphorylated (Ser 473) and pan-

specific Akt, and β-actin were purchased from Cell Signaling Technology (Danvers, MA). 

Secondary HRP-conjugated antibodies were purchased from Jackson Immunoresearch 

(Cedarlane Laboratories, Hornby, ON). 

 

Synthesis of methyl ester compounds 

Solutions of dihydrocaffeic acid, 4-hydroxycinnamic acid, ferulic acid, and 2,4-

dihydroxycinnamic acid (11.1 mM) in methanol (50 ml) were separately treated with a 

catalytic amount of concentrated H2SO4 and heated at reflux for 10 h. The reaction 

mixtures were cooled at room temperature and concentrated. The residues were dissolved 

in ethyl acetate and washed successively with water and brine. The ethyl acetate layers 

were dried over anhydrous MgSO4 and purified by column chromatography on silica gel to 

give dihydrocaffeic methyl ester (yellowish brown liquid), 4-hydroxycinnamic methyl ester 

(white powder), ferulic acid methyl ester (yellowish brown liquid), and 2,4-

dihydroxycinnamic acid methyl ester (white powder). The identity and purity of these four 

compounds were confirmed by mass spectroscopy and by 1H and 13C NMR spectroscopy 

(Avance 400; Bruker BioSpin Corp., Billerica, MA). 



83 

 

 

Synthesis of 4-(1-propenyl)-catechol 

4-(1-Propenyl)-catechol was synthesized according to a previously reported method 

[18]. Briefly, 3,4-dihydroxybenzaldehyde (7.24 mmol) and imidazole (2.3 equivalents) 

were dissolved in a 1:1 DMF/THF solution (10 ml). Teriary butyl dimethylsilyl chloride 

(2.2 equivalents) and 4-dimethylaminopyridine (trace) were added and the reaction mixture 

was stirred overnight at room temperature. The mixture was then diluted with distilled 

water (15 ml) and ether (25 ml) and then extracted with ethyl acetate (3 ml × 15 ml). The 

organic extracts were combined, dried over MgSO4, filtered, and evaporated under 

vacuum. The crude product was purified on a flash column. Elution with hexanes resulted 

in 1-(3,4-bis(tert-butyldimethylsilyloxy) benzaldehyde (compound 1) as a clear colorless 

oil. Ethylmagnesium bromide (3.0 M solution in THF; 1.5 equivalents) was added dropwise 

to a solution of compound 1 (1.09 mmol) in 10 ml of dry THF under nitrogen atmosphere 

at 0 °C. The resulting grayish solution was stirred for 30 min at 0 °C and left at room 

temperature for 1 h. The organic mixture was diluted with 10% HCl solution (2 ml) and 

extracted with ethylacetate (3 ml × 10 ml). The organic layers were combined, dried over 

MgSO4, filtered and concentrated under vacuum. The crude product was purified on a 

silica column. Elution with 15% ethylacetate in hexanes resulted in compound 2 as yellow 

oil. Compound 2 (0.75 mmol) was dissolved in methanol (5 ml) and few drops of 

concentrated HCl were added. The reaction mixture was refluxed for 2 h. The resulting 

yellowish mixture was diluted with distilled water and extracted with ethylacetate (3 ml × 

10 ml). The organic layers were combined, dried over MgSO4, filtered and concentrated 

under vacuum. The crude product was purified on a silica gel column. Elution with 50% 

ethylacetate in hexanes resulted in 4-(1-propenyl)-catechol as yellow solid at a purity of 

greater than 95%. The identity and purity of this compound was confirmed by mass 

spectroscopy and by 1H and 13C NMR spectroscopy. 

 

Estimation of pKa and log P 

The acid-dissociation constant (pKa) for each ionizable group and the octanol–water 

partition coefficient (P), a predictor of lipophilicity, were estimated using the Marvin 5.1 
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Academic Package (ChemAxon Kft., Budapest, Hungary). Structures were inputted 

manually into MarvinSketch. The Marvin Protonation calculator plug-in was used to 

calculate pKa at a temperature of 37 °C. The Marvin Partitioning calculator plug-in was 

used to calculate log P of the neutral molecular species at an ionic strength of 0.1 M/dm3 

Na+/K+ and 0.1 M/dm3 Cl−. Calculated log P and pKa were verified against published 

experimental values whenever these were available. 

 

Cell culture 

C2C12 murine skeletal myoblasts were obtained from the American Type Culture 

Collection (ATCC; Manassas, VA). C2C12 myoblasts were cultured in 6- or 12-well plates 

at 37 °C in a 5% CO2 environment in high-glucose Dulbecco's Modified Eagle's Medium 

(DMEM; Wisent, St-Bruno, QC) containing 10% fetal bovine serum and 10% horse serum 

(HS) and supplemented with antibiotics (penicillin 100 U/ml, streptomycin 100 μg/ml) as 

previously described [19], [20] and [21]. Upon reaching 80% confluence, serum content 

was reduced to 2% to induce differentiation into multinucleated myotubes over a period of 

7 days. On the 6th day of differentiation, compounds solubilized in dimethyl sulfoxide 

(DMSO) and mixed in culture medium to achieve a final concentration of 50 μM in 0.1% 

DMSO were applied for 18 h prior to glucose uptake, western immunoblot, or LDH release 

assays. 

 

3H-deoxyglucose uptake assay 

Differentiated C2C12 myotubes grown in 12-well plates were treated for 18 h with 

0.1% DMSO (vehicle control) or with 50 μM of CAPE or other caffeic acid derivative. The 

effects of CAPE resulting from a treatment of this duration have not previously been 

reported. The 50 μM concentration was selected for the testing of all compounds based on 

pilot studies indicating that 50 μM or below of a wide variety of naturally occurring small 

phenolics is typically well-tolerated by C2C12 myotubes over an 18 h period, with no 

effect on morphology and little to no effect on viability. Furthermore, a pilot dose–response 

study of CAPE indicated that glucose uptake following an 18 h treatment peaked at 50 μM 
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(not shown). Following treatment, cells were rinsed twice with Krebs-phosphate buffer 

(KPB; 20 mM HEPES, 4.05 mM Na2HPO4, 0.95 mM NaH2PO4, pH 7.4, 136 mM NaCl, 

4.7 mM KCl, 1 mM CaCl2, 1 mM MgSO4, 5 mM glucose, 0.5% BSA) at 37 °C and 

equilibrated in this buffer for 30 min. Some vehicle-control cells were treated during this 

time with 100 nM insulin to serve as a reference control. Following this, cells were washed 

twice in glucose-free KPB at 37 °C and then incubated for exactly 10 min in 0.5 μCi/ml of 

2-deoxy-d-[1-3H]-glucose (TRK-383; Amersham Biosciences, Baie d’Urfé, QC) in this 

same buffer. Cells were then rapidly placed on ice and rinsed three times with ice-cold 

KPB, before lysis and scraping in 1 ml of 0.1 mM NaOH. Lysates were added to 4 ml of 

scintillation liquid cocktail (Ready-Gel 586601; Beckman Coulter Inc., Fullerton, CA) and 

radioactivity was measured in a scintillation counter (LKB Wallac RackBeta; Perkin Elmer, 

Montreal, QC). 

 

Isolation of mitochondria from rat liver 

Mitochondria were isolated from the liver of male Wistar rats (Charles River, St-

Constant, QC) weighing between 225 and 250 g. Rats were anesthetized with an 

intraperitoneal injection of sodium pentobarbital (50 mg/kg body weight) and underwent 

laparotomy. All experimental procedures were approved by the Université de Montréal 

Animal Experimentation Ethics Committee and animals were treated in accordance with 

guidelines of the Canadian Council on the Care and Protection of Animals. The portal vein 

was canulated while the hepatic artery and the infrahepatic inferior vena cava were ligated. 

The livers were flushed with 100 ml of Krebs–Henseleit buffer (25 mM NaHCO3, 1.2 mM, 

KH2PO4, pH 7.4, 137 mM NaCl, 4.8 mM KCl, 2.1 mM CaCl2, 1.2 mM MgSO4) at 

ambient temperature and livers were removed and placed on ice. Mitochondria were 

isolated from 1 g of liver as described by Johnson and Lardy. Briefly, tissue was 

homogenized on ice using a Teflon potter homogenizer in ice-cold isolation buffer (10 mM 

Tris, pH 7.2, 250 mM sucrose, 1 mM EGTA). The homogenate was centrifuged at 600 × g 

for 10 min at 4 °C in order to remove cellular fragments. The supernatant was recovered 

and centrifuged at 12,000 × g for 6 min at 4 °C. The supernatant was discarded and the 

pellet was washed in ice-cold isolation buffer and recentrifuged. The pellet was then 
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washed in EGTA-free isolation buffer, and again recentrifuged. The final pellet containing 

viable mitochondria was resuspended in ice-cold EGTA-free isolation buffer and this 

preparation was kept on ice until respiration experiments. Protein content of the preparation 

was determined according to the Lowry method. 

 

Mitochondrial respiration assay 

O2 consumption was measured at 25 °C using a Clark-type oxygen microelectrode 

in a 1 ml volume temperature-controlled chamber with oxygen concentration sampled and 

recorded to a microcomputer at a frequency of 1 Hz (Oxygraph system; Hansatech 

Instruments, Norfolk, England) as previously described. Briefly, 1 mg of mitochondrial 

protein was added to 990 μl of respiration buffer (5 mM KH2PO4, pH 7.2, 250 mM ultra-

pure sucrose, 5 mM MgCl2, 1 mM EGTA). Mitochondrial respiration was initiated by 

addition of the complex II substrate succinate (5 mM final concentration). After reaching a 

stable rate of basal O2 consumption (RBOC; State 4 respiration), vehicle alone or a caffeic 

acid derivative solubilized in DMSO was injected to achieve a final concentration of 50 μM 

of experimental compound in 0.1% DMSO. An increase in RBOC per mg mitochondrial 

protein was considered an uncoupling effect. DMSO used at 0.1% did not affect RBOC. 

Basal respiration was allowed to proceed for at least 30 additional seconds before the 

induction of oxidative phosphorylation (State 3 respiration) by the addition of 200 μM 

(final concentration) ADP. Each experimental session consisted of 10–12 experiments from 

a single mitochondrial preparation, including 3–4 vehicle control experiments to determine 

baseline values for the session. The effect of each experimental compound was evaluated 

as: (1) the increase in RBOC per mg protein (a measure of the magnitude of the uncoupling 

effect); (2) the decrease in functional capacity (FC) per mg protein (a measure of the 

magnitude of the uncoupling effect plus any additional inhibitory effect), where FC was 

defined as the difference of the rate of ADP-stimulated O2 consumption (RASOC) per mg 

protein (maximal functional rate of consumption) and RBOC per mg protein (rate of 

consumption driven by proton leak and not contributing to ATP synthesis). Calculations 

were as follows: the average FC per mg protein of the vehicle control experiments for a 

given session was calculated by subtracting the average RBOC per mg protein from the 
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average RASOC per mg protein. For (1) above, the absolute increase in RBOC per mg 

protein measured in a given experiment was expressed as a percentage of the average 

control FC per mg protein for the session. For (2) above, the FC per mg protein measured 

in a given experiment was expressed as a percentage of the average control FC per mg 

protein for the session to give the % residual FC. All compounds were tested in at least two 

different mitochondrial preparations. 

 

Western immunoblot 

Differentiated C2C12 myotubes grown in 6-well plates were treated for 18 h with 

0.1% DMSO or with 50 μM of CAPE or of other caffeic acid derivative, and lysed for 

western immunoblot analysis. Some vehicle-control cells were treated with 2 mM 5-

aminoimidazole-4-carboxamide-1-b-D-rubofuranozide (AICAR; Toronto Research 

Chemicals, North York, ON), a positive control for activation of the AMPK pathway, for 

30 min immediately prior to lysis. Following treatment, plates were placed on ice and 

washed three times in ice-cold phosphate-buffered saline (PBS; 8.1 mM NaHPO4, 1.5 mM 

KH2PO4, pH 7.4, 137 mM NaCl and 2.7 mM KCl) and lysed in 250 μl of lysis buffer (25 

mM Tris–HCl pH 7.4, 25 mM NaCl, 0.5 mM EDTA, 1% Triton X-100, 1% sodium 

deoxycholate 0.1% SDS) containing a commercial cocktail of protease inhibitors 

(Complete Mini; Roche, Mannheim, Germany) supplemented with 1 mM 

phenylmethanesulfonyl fluoride, as well as a cocktail of phosphatase inhibitors (1 mM 

sodium orthovanadate, 10 mM sodium pyrophosphate, 10 mM sodium fluoride). Cells were 

allowed to lyse for 15 min on ice, and then scraped into microcentrifuge tubes, periodically 

vortexed, and centrifuged at 600 × g for 10 min at 4 °C. Supernatants were decanted and 

stored at −80 °C until further analysis. Protein content was assayed by the bicinchoninic 

acid method (Thermo Scientific Pierce Protein Research, Rockford, IL) standardized to 

bovine serum albumin. Lysates were diluted to a concentration of 1.25 mg total protein per 

ml and boiled for 5 min in reducing sample buffer (62.5 mM Tris–HCl pH 6.8, 2% SDS, 

10% glycerol, 5% β-mercaptoethanol and 0.01% bromophenol blue). 20 μg of protein of 

each sample were separated on 10% polyacrylamide mini-gels and electrotransferred to 

polyvinylidene fluoride membrane (Millipore, Bedford, MA) overnight under 330 mA of 
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current at 4 °C. Membranes were blocked for 2 h at room temperature with 5% skim milk 

in Tris-buffered saline (20 mM Tris–HCl, pH 7.6 and 137 mM NaCl) containing 0.1% 

Tween 20 (TBST). Membranes were then incubated overnight at 4 °C in blocking buffer 

with primary antibodies at a concentration of 1:1000. Membranes were washed 5 times 

with TBST and incubated 1.5 h at ambient temperature in TBST with appropriate 

horseradish peroxidase-conjugated secondary antibodies at 1:50,000–100,000. Revelation 

was performed using the enhanced chemiluminescence method (Amersham Biosciences, 

Buckinghanshire, England) and blue-light-sensitive film (Amersham Biosciences). 

Experiments were repeated on 3 different passages of cells, each passage containing all 

conditions in parallel. All samples from a given passage were separated and transferred 

simultaneously to a single membrane. Quantification of the integrated density of bands was 

performed using a flatbed scanner (ScanJet 6100; Hewlett Packard, Palo Alto, CA) and 

NIH Image 1.63 software (National Institutes of Health, Bethesda, MD). 

 

LDH release cytotoxicity assay 

Differentiated C2C12 myotubes grown in 12-well plates were treated for 18 h with 

0.1% DMSO or with 50 μM of CAPE or of other caffeic acid derivative. Medium was 

removed and kept on ice. Cells were rinsed in PBS and lysed in 1% Triton X-100. Lactate 

dehydrogenase (LDH) activity in medium and in lysates was assayed with the LDH-

Cytotoxicity Assay Kit II (BioVision, Mountain View, CA). Medium LDH activity was 

expressed as a percentage of total (medium + lysate) LDH activity. Experiments were 

performed in triplicate. 

 

Statistical analysis 

All data are reported as the mean ± SEM of the indicated number of experiments. 

Results were analyzed by one-way analysis of variance using StatView software (SAS 

Institute Inc., Cary, NC). Statistical significance was set at p ≤ 0.05. Non-linear regression 

analysis was performed by Prism 4.0 (GraphPad Software Inc., La Jolla, CA) using the 
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following sigmoidal dose–response equation: y = bottom + (top − bottom)/(1 + 10((x50 − 

x)* Hill slope)) where x = log P and x50 = log P resulting in half maximal effect. 
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Results 

CAPE increases glucose uptake following an 18 h treatment 

CAPE has recently been shown to induce an important AMPK-mediated stimulation 

of glucose uptake in skeletal muscle cells following a 1 h treatment [17]. A first objective 

of the present study consisted in testing the effect of CAPE on muscle cell glucose uptake 

following a longer treatment duration more conducive to the expression of AMPK-

mediated transcriptional effects. Our previous studies on natural products that enhance 

basal glucose uptake through AMPK have shown that in C2C12 muscle cells an 18 h 

treatment invariably results in a more important effect than a 1 h treatment [19], [20] and 

[21], presumably due to transcriptional effects of AMPK [6], [7], [22] and [23]. 

Differentiated C2C12 cells were therefore treated with CAPE (50 μM) or with vehicle 

(0.1% DMSO) alone for 18 h prior to performing a 3H-deoxyglucose uptake assay in the 

absence of insulin. CAPE was found to increase basal rate of uptake by 225% (Fig. 1). This 

effect was 5.7-fold greater than the effect of 100 nM of insulin applied to vehicle-control 

cells 30 min prior to the uptake assay. The effect of CAPE was also superior to that of 

Metformin, which typically only induces a 25–40% increase in uptake following an 18 h 

treatment in C2C12 muscle cells [19], [20], [21] and [24]. 

 

CAPE is an uncoupler 

The effects of CAPE on the respiration of isolated rat liver mitochondria were 

assessed in order to test the hypothesis that the reported activation of AMPK by CAPE [17] 

and the remarkable increase in basal glucose uptake observed above were the result of a 

metabolic stress induced by the disruption of energy transduction pathways. This 

hypothesis was appropriate in light of the known effects of several naturally occurring 

compounds on mitochondrial oxidative phosphorylation [13], [16], [25] and [26]. CAPE 

(50 μM) was observed to completely uncouple mitochondrial oxidative phosphorylation, 

whereby the rate of basal oxygen consumption in CAPE-treated mitochondria was 

increased approximately 4.5-fold, to the same rate as that achieved with ADP stimulation in 

vehicle-treated mitochondria, and the addition of ADP to CAPE-treated mitochondria did 
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not further increase oxygen consumption (Fig. 2). This uncoupling effectively abolished 

ATP synthetic capacity. 

  

Effect of caffeic acid derivatives on mitochondrial function and glucose uptake 

In order to assess whether other compounds related to CAPE possess similar 

activities and to elucidate a structure–activity relationship, twenty compounds were tested 

for glucose-uptake stimulating activity and for mitochondrial uncoupling activity. These 

compounds are illustrated in Fig. 4, functionally grouped to address discrete structural 

hypotheses. Activities of these compounds, in addition to some physicochemical properties, 

are summarized in Table 1. 

A first step consisted of testing the root compound, caffeic acid; it was found to be 

inactive in both assays. Next, a more closely related compound, CAME, was found to 

increase glucose uptake by 65% and to mildly uncouple oxidative phosphorylation by 7%. 

In light of this finding, other caffeic acid esters were tested, including CAEE, CAAE, and 

CAOE; all three were found to be active, increasing uptake by 72–230%, and uncoupling 

oxidative phosphorylation by 14–92%. 

Working from the active CAME, four closely related esters differing only in the 

number or position of hydroxyl substituents around the phenolic ring were tested. All were 

found to be inactive in either assay. Similarly, ferulic acid methyl ester was inactive. Still 

working from CAME, a related compound missing the characteristic double bond of caffeic 

acid, caffeic acid dihydro methyl ester, was found inactive; similarly, other caffeic acid 

dihydro esters were inactive. The compound propenyl catechol, a truncated caffeic acid 

devoid of the carboxylic acid ester, was also inactive. Finally, some free caffeic acids (i.e. 

carboxyl substituted), including rosmarinic and chlorogenic acid, were found inactive. 

 

Effect of active caffeic acid derivatives on cellular viability 

The four newly identified active caffeic acid derivatives were tested for CAPE-like 

cytotoxicity. CAAE, CAAE, and CAOE all decreased viability by 3–16% (Table 1). 

CAME, however, did not affect the release of LDH, as compared to vehicle alone. 
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Relationship between uncoupling of oxidative phosphorylation and stimulation of 

glucose uptake 

Of the 21 compounds in the test set, only the five caffeic acid esters were found to 

induce an uncoupling effect in isolated mitochondria. These five were also the only 

compounds to induce an important (>30%) enhancement of glucose uptake. A linear 

regression analysis of the 21 compounds supported that uncoupling activity, measured as an 

instantaneous effect, and stimulation of glucose-uptake following an 18 h treatment, were 

related activities (Fig. 5). However, the closeness of fit was slightly reduced by CAOE, 

equally potent to CAPE at stimulating glucose uptake but a less powerful uncoupler under 

the conditions used here. 

 

Stimulation of the AMPK pathway by active caffeic acid derivatives 

Western immunoblot analyses were performed in order to confirm that the four 

newly identified active caffeic acid derivatives activated the AMPK pathway, as has been 

reported for CAPE. The content of phosphorylated ACC, an effector of AMPK, was 

assessed in C2C12 cells treated with caffeic acid derivatives (50 μM) or with vehicle alone 

for 18 h. All four compounds and CAPE were found to induce a long-lived phosphorylation 

of ACC, although in all cases the content of phospho-ACC was inferior to that induced by 

the AMP mimetic AICAR (1 mM) applied to vehicle-control cells over the last 30 min of 

treatment (Fig. 6). 

 

Relationship between lipophilicity and effect on mitochondrial function 

An important physicochemical property that varied between the five active caffeic 

acid derivatives was lipophilicity. Non-linear regression analyses were therefore performed 

to assess whether lipophilicity was a predictor of activity. Lipophilicity, expressed as the 

log of the predicted octanol–water partition coefficient (P), was found to be well-related (r2 

= 0.99) to enhancement of glucose uptake by a sigmoidal dose–response function (Fig. 7A). 

Lipophilicity was also found to be well-related (r2 = 0.99) to the decrease of cellular 



93 

 

viability, again by a sigmoidal function (Fig. 7B). Finally, lipophilicity was well-related (r2 

= 0.99) to uncoupling over the log P range of 1.9–3.9, also by a sigmoidal function (Fig. 

7C); CAOE, the most lipophilic compound, induced less uncoupling than CAPE or CAAE 

under the conditions used here, as noted above and as discussed below. 

  



94 

 

Discussion 

Derivatives of caffeic acid, a subtype of cinnamic acid, are widely distributed in the 

plant kingdom and are found in coffee beans, wheat, oat, and several fruits and vegetables. 

They typically occur not as free acids, but as esters, amides, and glycosides, or as dimers 

and other more complex forms [27]. These compounds as a family have received much 

attention in recent years and a variety of activities, including anti-bacterial, anti-cancer, 

anti-inflammatory, anti-atherosclerotic, anti-oxidant, immunomodulatory and 

neuroprotective, have been ascribed to them [28], [29], [30], [31], [32], [33], [34], [35], 

[36], [37], [38], [39], [40], [41] and [42]. It has also been proposed that caffeic acid 

derivatives may possess anti-diabetic activities [43], [44], [45] and [46]. A particularly 

interesting member of this family is caffeic acid phenethyl ester (CAPE), best known as 

one of the main botanical components of honeybee propolis [47], a glue-like substance used 

in the making of beehives and which exhibits potent anti-microbial activity believed to 

contribute to the aseptic environment of the hive. CAPE has recently been observed to 

exhibit anti-diabetic activity in the form of potent AMPK-mediated stimulation of glucose 

uptake in skeletal muscle cells [17]. As AMPK is considered a key therapeutic target for 

metabolic diseases and current therapies for exploiting this target are limited, the present 

study was designed to probe the potential of CAPE and caffeic acid derivatives as novel 

activators of AMPK with glucose-uptake stimulating activity. Specifically, the aims of the 

study were to confirm the effect of CAPE, elucidate the mechanism by which it activates 

AMPK, identify other caffeic acid derivatives with similar anti-diabetic activity, elucidate 

the structural components and physicochemical properties essential to their activity, and 

evaluate the relationship between activity and cytotoxicity. 

Lee et al. [17] have recently shown that, following a 1 h treatment, CAPE induces 

an AMPK-mediated stimulation of glucose uptake in L6 skeletal muscle cells that is 

comparable to the effect of 100 nM insulin. In the present study, we report that a treatment 

duration of 18 h at 50 μM resulted in more than a 3-fold increase in basal (non-insulin-

stimulated) glucose uptake in C2C12 muscle cells, an effect approximately 6-fold that of 

100 nM insulin applied acutely. This larger effect magnitude relative to the Lee et al. study 

[17] may be due to our use of longer treatment duration and of a less insulin-responsive cell 



95 

 

line, both factors permitting a better appreciation of the contribution of transcriptionally 

mediated effects rather than effects only at the level of translocation and activation of 

glucose transporters. Indeed, increased expression of effector proteins, such as the glucose 

transporter GLUT4, appears a likely explanation for effects surpassing those achieved 

acutely with a pharmacological dose of insulin and presumably representing the system's 

maximal capacity. If a long-lived translocation effect contributed to some of the observed 

stimulation, as may be suggested by the finding that the AMPK effector ACC remains 

phosphorylated at the end of the 18 h treatment, this contribution would be expected to be 

on the order of the acute effect of insulin since AMPK-induced transporter translocation is 

mediated by signaling events that converge with the insulin receptor pathway. Similarly as 

shown by Lee et al. [17], a contribution of the insulin receptor pathway to the effect of 

CAPE was excluded by the demonstration that there was no increase in the phosphorylation 

of Akt, a downstream marker involved in glucose transporter translocation, coinciding with 

the enhancement of glucose uptake (not shown). The exceptionally large increase in 

glucose uptake can therefore best be explained by other mechanisms attributed to AMPK, 

namely an increase in maximal capacity for glucose uptake [6], [7], [22] and [23]. 

To test the hypothesis that CAPE activates AMPK by disrupting mitochondrial 

function and producing metabolic stress, CAPE was applied to isolated rat liver 

mitochondria and its effects on oxygen consumption were monitored. Our results 

demonstrate that CAPE at 50 μM induced complete uncoupling of liver mitochondria, 

whereby the rate of basal (i.e. State 4) oxygen consumption was immediately and 

irreversibly increased above that which can be achieved by ADP, and the addition of ADP 

had no further effect. These results will be further strengthened by assessing the effects of 

CAPE in skeletal muscle's two distinct mitochondrial populations. Because of the 

magnitude of CAPE's effect on mitochondrial function, its cytotoxicity was assessed by 

LDH assay in C2C12 cells; CAPE was observed to reduce viability by 14% following an 

18 h treatment at 50 μM (Fig. 3). Our finding that CAPE exhibits a potent uncoupling effect 

and can completely dissipate ATP synthetic capacity in isolated mitochondria concords 

with its use as an anti-microbial compound by plants and insects, and with other botanical 

components of propolis exhibiting uncoupling activity [16]. This finding is also in accord 
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with the activation of AMPK being the result of a metabolic stress [8] and [48]. Although 

the uncoupling-type disruption of mitochondrial function observed here is different from 

the inhibition of complex I of the electron transport chain that is induced by Metformin [49] 

and [50], the proposed mechanism of action by which CAPE indirectly induces the 

activation of AMPK is nevertheless analogous to that of Metformin. 

Caffeic acid esters closely related to CAPE were tested for glucose uptake 

stimulating activity and for mitochondrial uncoupling activity. These included caffeic acid 

methyl ester (CAME), caffeic acid ethyl ester (CAEE), caffeic acid diallyl ester (CAAE), 

and caffeic acid n-octyl ester (CAOE). All four were found to potently increase basal 

uptake by 65–230% when applied at 50 μM for 18 h. These same four were also found to 

uncouple mitochondria by 7–92%. Finally, these compounds were tested for cytoxicity and 

it was found that, with the exception of CAME, they reduced viability by 3–16%. 

Stimulation of glucose uptake and mitochondrial uncoupling have never been attributed to 

these well-known compounds, although CAOE, like CAPE has received attention for its 

anticancer activity [51], [52] and [53], a property that could be related to the effect on 

mitochondrial function and the subsequent activation of AMPK, observed herein; indeed, 

cellular proliferation is one of the many synthetic processes that are acutely inhibited by 

AMPK [54]. 

Sixteen other related compounds were selected to address specific structure–activity 

hypotheses. Of these, none exhibited uncoupling activity nor significantly stimulated 

muscle cell glucose uptake. The finding that caffeic acid and other related free acids were 

inactive suggests that a carboxyl group and perhaps other strongly ionizable substituents are 

incompatible with activity, possibly due to decreased membrane permeability of ionized 

compounds. The requirement for an intact catechol moiety was revealed by an absence of 

activity in compounds related to CAME but differing in the number or position of hydroxyl 

substituents. Similarly, absence of the caffeic acid double bond or of the carboxylic acid 

ester was also found to abolish activity. The structural elements occurring beyond the ester 

can therefore be considered as a single substituent not essential to activity but whose nature 

modulates activity. As such, it can be predicted that caffeic acid esters composed of a large 
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variety of ―substituents‖ not containing a strongly ionizable group should be active. This is 

summarized in Fig. 8. 

Uncoupling is defined herein as an increase in respiration (i.e. substrate oxidation) 

with no commensurate increase in the synthesis of ATP through oxidative phosphorylation. 

This increase in oxygen consumption is a reflection of an increase in the pumping rate of 

protons out of the mitochondrial matrix to compensate for an induced proton influx or 

―leak‖. The leak and the compensatory pumping of protons therefore amount to a futile 

metabolic cycle. The increase in oxygen consumption represents a portion of mitochondrial 

respiratory capacity diverted to countering the leak, and therefore a corresponding decrease 

in the maximal rate of ATP synthesis. AMPK can be expected to be activated as a result of 

the increased work performed pumping protons and of insufficient residual mitochondrial 

capacity to meet the cell's energy needs (i.e. metabolic stress). An uncoupling effect can be 

induced by any of a number of protonophoric mechanisms, the best studied of which 

involves the shuttling of protons across the inner mitochondrial membrane by lipophilic 

weak acids that diffuse into the mitochondrial matrix in neutral form, release a proton, and 

diffuse back to the mitochondrial intermembrane space (IMS) in ionized form [55] and 

[56]. Protons can be similarly shuttled by certain fatty acids that intercalate inner 

mitochondrial membrane phospholipids and exist there in both neutral and ionized forms 

[56] and [57]. The caffeic acid derivatives exhibiting uncoupling activity are unlikely to be 

acting as proton shuttles since, by virtue of their pKa on the order of 9.2, they are expected 

to exist predominantly in the neutral form at mitochondrial matrix pH (approximately 8.0), 

and almost exclusively in this form at mitochondrial IMS pH (approximately 7.4). These 

compounds may therefore be indirect protonophores rather than shuttles. One possibility is 

that the compounds interact with a transmembrane protein that can increase proton 

conductance. Such proteins include transporters like the adenosine nucleotide transporter, 

the aspartate/glutamate transporter, and the dicarboxylate carrier, either alone or as part of 

the mitochondrial permeability transition pore (MPTP) or another complex [56], [58] and 

[59]. The potential interaction of caffeic acid derivatives with a protein is supported by the 

observation that activity is conferred only by a very specific structure (i.e. the caffeic acid 

moiety) and that small deviations in this structure abolish activity, as discussed above. In 
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contrast, proton shuttles are not subject to such severe structural constraints, but rather to 

constraints at the level of their physicochemical properties [55] and [56]. The interaction of 

resveratrol and of quercetin with ATP synthase, recently elucidated by crystallography 

[15], constitutes a precedent for binding of naturally occurring small phenolic compounds 

to protein components of the oxidative phosphorylation system. Interaction with a protein 

of the MPTP, and subsequent proton conductance through the pore, has been proposed by 

others to explain the uncoupling activity of curcumin [60] and [61], a compound closely 

related to caffeic acid derivatives. Based on the structural constraints for activity, it can be 

speculated that the proposed interaction is mediated by the two hydroxyl substituents of the 

catechol moiety in addition to the carboxylic acid ester, that the ester must be coplanar with 

the phenolic ring by virtue of the double bond, and that the interaction occurs on the matrix 

side of the inner mitochondrial membrane, inaccessible to negatively charged compounds. 

The results demonstrate that whereas an intact caffeic acid moiety is essential for 

activity, the ―substituent‖, or structure occurring after the carboxylic acid ester, can assume 

a variety of forms. However, despite not being subject to stringent structural constraints, 

this portion can nevertheless greatly affect the properties of the entire compound. From a 

physicochemical perspective, the most important difference between the five active 

compounds tested here is their lipophilicity as the compounds span a predicted log P range 

of 1.9–5.0. Interestingly, this property was found to be a strong predictor of activity, with 

goodness of fit coefficients (r2) of ≥0.99 observed between log P and both glucose uptake 

and cytotoxicity when these relationships were modelled by sigmoidal dose–response 

functions. It can therefore be expected that the activity of other active caffeic acid esters 

will be found to be also predicted by lipophilicity. It must be noted that a strong sigmoidal 

relationship between lipophilicity and mitochondrial uncoupling activity was only observed 

within the log P range of 1.9–3.9. The most lipophilic compound, CAOE, exhibited less 

uncoupling activity than either CAPE or CAAE. Modest activity in highly lipophilic 

compounds could be explained by a decrease in effective concentration due to the 

phenomenon of membrane retention. However, in the present case, it may be explained by 

an underestimation of uncoupling activity, suggested by a significantly greater decrease in 

residual mitochondrial capacity than can be accounted for by the uncoupling effect alone. 
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Such concurrent inhibition of respiration has been suggested by others to be due to 

inhibition of the mitochondrial transport of succinate [62], [63] and [64], the substrate used 

in our isolated mitochondrial preparations. Interestingly, CAPE exhibits a similar effect at 

concentrations greater than the 50 μM used in the present study (data not shown). In whole 

cells, mitochondria oxidize other substrates in addition to succinate, and therefore 

respiration would not be expected to be severely compromised by a partial inhibition of 

succinate transport. It is therefore possible that the true uncoupling activity of CAOE may 

be similar to that of CAPE, just as the glucose-uptake stimulating activity of these 

compounds is closely matched. In this case, the relationship between lipophilicity and 

uncoupling activity would mirror the observed relationship between lipophilicity and 

stimulation of glucose uptake. 

While the disruption of mitochondrial function through which caffeic acid 

derivatives promote the activation of AMPK is slightly different from the inhibitory-type 

disruption induced by the biguanides, as discussed above, both mechanisms can potentially 

cause lactic acidosis. Therefore, as is the case for the biguanides, the safety of caffeic acid 

derivatives can only be maximized at the cost of activity. However, results indicate that 

some of the active caffeic acid derivatives identified here exhibit only a small potential for 

toxicity while still inducing significant stimulation of glucose uptake and prolonged 

phosphorylation of ACC. This is especially true of CAME as its small uncoupling effect 

(7% at 50 μM) translates into a useful increase in glucose uptake (65% at 50 μM; more than 

1.5-fold the effect of insulin), without negatively impacting cell viability. However, even 

the more powerful compounds of the test group that completely or almost completely 

compromise mitochondrial ATP synthesis, only reduced viability by up to 16%. One way 

to reconcile these findings is to suggest that their effect on mitochondria is short-lived. It is 

indeed known that phenolic compounds with hydroxyl substituents can undergo rapid 

glucuronidation [65]. In the case of active caffeic acid derivatives, such glucuronidation 

would likely render compounds inactive toward mitochondrial uncoupling. Whereas such 

short-lived mitochondrial activity would suggest equally short-lived metabolic stress and 

activation of AMPK, the downstream effects of AMPK, including its effects on gene 
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expression, are longed-lived. It may therefore not be necessary nor desirable to prolong 

metabolic stress. 

The very promising ratio of activity to cytotoxicity of CAME warrants further study 

into the potential of this compound and of other related derivatives as treatments for insulin 

resistance and suggests that activation of AMPK through disruption of mitochondrial 

function need not have a narrow margin of safety. 
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Figure Legends 

Figure 1. Caffeic acid phenethyl ester (CAPE) increased non-insulin-stimulated (basal) 3H-

deoxyglucose uptake in differentiated C2C12 skeletal muscle cells by more than 3-fold. 

Cells were treated with 50 μM of CAPE or with vehicle (0.1% DMSO) for 18 h. The effect 

of CAPE was 5.7-fold greater than that of 100 nM insulin applied acutely for the last 30 

min of the treatment in vehicle-treated cells. Data are expressed normalized to basal uptake 

of the vehicle control group. Data are presented as the mean of 3 experiments ± SEM, each 

experiment composed of 3–4 replicates per condition. * Indicates a significant (p ≤ 0.05) 

difference from the vehicle control group, as assessed by ANOVA.  

 

Figure 2. CAPE induced a powerful uncoupling effect in isolated rat liver mitochondria. 

Representative tracings of succinate-supported basal (State 4) and ADP-stimulated (State 3) 

O2 consumption, assessed at 25 °C with a Clark-type oxygen electrode. The uncoupling 

effect of CAPE at 50 μM (dark tracing) was complete in that the rate of basal O2 

consumption was increased to slightly more than the rate of ADP-stimulated O2 

consumption in vehicle-treated mitochondria (light tracing) and the addition of ADP did not 

further increase O2 consumption. Values represent rate of consumption in nmoles O2 per 

mg mitochondria per minute. 

 

Figure 3. CAPE induced cytotoxicity in C2C12 myotubes. Cytotoxicity was assessed by the 

release of lactate dehydrogenase (LDH) into the cell medium over an 18 h treatment with 

50 μM CAPE or vehicle (0.1% DMSO). Released LDH was expressed as a % of total LDH. 

Data are presented as the mean of 3 experiments ± SEM. * Indicates a significant (p ≤ 0.05) 

difference from the vehicle control group.  

 

Figure 4. Compounds selected to address specific structure–activity hypotheses. 

Compounds were initially selected based on a relation to CAPE. Further testing was 

performed on compounds more closely related to CAME. Each arrow represents a specific 

hypothesis. Arrows with crosses indicate that the respective derivatives, and any nested 

derivatives, are inactive.  
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Figure 5. The magnitude of stimulation of glucose uptake in C2C12 mytotubes induced 

following an 18 h treatment with caffeic acid derivatives is correlated to the magnitude of 

mitochondrial uncoupling activity induced by these compounds in isolated liver 

mitochondria. Data are presented as mean ± SEM.  

 

Figure 6. Active caffeic acid derivatives increased phosphorylation of ACC, an effector of 

AMPK, in C2C12 myotubes. Shown are representative immunoblots of cells treated for 18 

h with either vehicle (0.1% DMSO; lane 1) or 50 μM of the various compounds (lanes 3–

7). The upper blot was probed with anti-phospho-ACC. The lower blot was probed with 

anti-β-actin as a control. AICAR (1 mM) applied acutely for the last 30 min of the 

treatment in vehicle-treated cells was used as positive control (lane 2) for the activation of 

the AMPK pathway.   

 

Figure 7. The lipophilicity of active caffeic acid derivatives is a good predictor of their 

activity. The stimulation of muscle cell glucose uptake (A) as well as the negative impact 

on C2C12 viability (B) were well-related to estimated lipophilicity, expressed as log of the 

octanol–water partition coefficient (P). Mitochondrial uncoupling (C) was also well-related 

to lipophilicity, but only over a log P range of 1.9–3.9; the uncoupling activity of the most 

lipophilic compound CAOE was determined to be smaller than that of CAPE and CAAE 

and may have been underestimated due to concurrent inhibition of mitochondrial 

respiration.  

 

Figure 8. Structural constraints for bioactive caffeic acid derivatives. Activity requires that: 

(1) the catechol moiety be intact; (2) the double bond between the first and second carbons 

of the side chain be present; (3) the carboxylic acid ester be present; (4) the side chain not 

contain strongly ionizable groups. Beyond these constraints, the side chain can be 

composed of various structures, modulating activity in accordance with the lipophilicity 

that they confer upon the compound; within the log P range of 2–5, activity is linearly 

related to lipophilicity.  
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Table 1 Physicochemical parameters and measured activities of test compounds 
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Abstract 

Objective: Vaccinium vitis idaea (mountain cranberry) has been identified among species 

used by the Cree of Eeyou Istchee of northern Quebec to treat symptoms of diabetes. In a 

previous study, the ethanol extract of the berries was found to enhance glucose uptake in 

C2C12 muscle cells through stimulation of AMP-activated protein kinase (AMPK) 

pathway (Eid et al., 2010). In this study, we investigated the effect of this product on the 

translocation of insulin-sensitive glucose transporters GLUT4 in skeletal muscle cells in 

culture. To validate the effect of V. vitis in vivo, the extract was administered to diabetic 

animals. 

Methods:  L6 cells were treated with V. vitis (200 µg/ml) for 18 h. For the in vivo studies, 

V. vitis (1%) in drinking water was administered to KKA
y
 mice for 10 days.  

Results: V. vitis significantly increased glucose uptake and GLUT4 translocation to the cell 

membrane of L6 cells. The extract increased phosphorylation of AMPK and p38 MAPK 

with no indication of increased phosphorylation of Akt. V. vitis (1%) in drinking water 

administered to KKA
y
 mice for 10 days decreased glycemia by 32%. Cumulative food and 

fluid intakes and body weight were also significantly reduced by V. vitis. Moreover, V. vitis 

treatment increased expression of GLUT4 in skeletal muscle and stimulated the 

phosphorylation of ACC and increased the levels of PPAR-α in the liver of KKA
y
 mice.   

Conclusion: V. vitis may improve hyperglycemia by promoting GLUT4 translocation in L6 

skeletal muscle cells through an insulin-independent mechanism involving AMPK. The in 

vivo animal studies showed that V. vitis exhibited significant anti-hyperglycemic and anti-

obesity effects in diabetic KKA
y
 mice due to appetite reducing properties. The results of the 

present study confirm the potential of V. vitis berries for the prevention and treatment of 

obesity and diabetes. 
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Introduction  

Central obesity and insulin resistance are the cornerstones of the metabolic 

syndrome, a cluster of three or more abnormalities that includes central adiposity, 

hypertriglyceridemia, elevated low density lipoprotein, reduced high density lipoprotein 

cholesterol, glucose intolerance and hypertension (Cohn et al., 2001). The metabolic 

syndrome is more prevalent in females and certain ethnic groups, particularly aboriginal 

populations (Pollex et al., 2006). It is now well established that central obesity, measured 

notably by elevated waist circumference, increases the risk for development of type 2 

diabetes and cardiovascular disease (Haffner, 2006). Indeed, obesity generally leads to 

insulin resistance, a condition that describes the impaired ability of cells to respond to 

insulin in promoting its various biological actions. Insulin resistance affects glucose 

transport into skeletal muscle and other insulin sensitive tissues, a process mediated by the 

translocation of GLUT4 glucose transporter to the cell membrane. Insulin stimulates 

GLUT4 translocation in a phosphatidylinositol 3-kinase (PI3-K)-dependent manner (Wang 

et al., 1999). In addition, GLUT4 translocation is also regulated by the insulin-independent 

AMP-activated protein kinase (AMPK) pathway. AMPK acts as the intracellular energy 

sensor and is activated under conditions of metabolic stress (Holmes et al., 1999), (Kurth-

Kraczek et al., 1999), (Hayashi et al., 2000). 

As a consequence to decreased insulin-mediated glucose uptake in skeletal muscle 

and adipose tissue, a compensatory hyperinsulinemia develops to prevent the appearance of 

frank hyperglycemia. When β-pancreatic cells cannot maintain the amount of insulin 

required to overcome the resistance, type 2 diabetes develops. Several studies also reported 

that primary hyperinsulinemia rather than compensatory hyperinsulinemia might be the 

primary genetic defect in some ethnic groups with a high prevalence of diabetes, such as 

Native Americans, Mexican-Americans and Pacific Islanders (Weyer et al., 2000). 

Aboriginal populations are particularly at risk for developing type 2 diabetes mellitus and 

its complications. In Canada, the prevalence of diabetes for these populations is at least 

three times higher than that of the general population and is expected to increase three-fold 

over the next 20 years (Young et al., 2000).  
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Vaccinium vitis idaea is a medicinal plant used by Cree communities of Eeyou 

Istchee (CEI, Eastern James Bay region of the Canadian province of Quebec) to treat 

several symptoms of diabetes (Leduc et al., 2006), (Fraser et al., 2007). This plant was 

identified by our research team during a previous bioactivity screening study, as a part of a 

project aiming to provide culturally relevant alternative treatment options for Cree 

diabetics, whose disease prevalence is among the highest in Canada (Harbilas et al., 2009). 

The genus Vaccinium includes various members reputed to possess antidiabetic activity and 

are traditionally used for the treatment of diabetes by several cultures throughout the world, 

e.g. lowbush blueberry (V. angustifolium), American cranberry (V. macrocarpon) and 

European bilberry (V. myrtillus) (11).   

Since insulin resistance is a major cause of type 2 diabetes, there has been growing 

interest in insulin sensitizers for the treatment of this disease. The two most commonly used 

antidiabetic drugs are thiazolidinediones (TZDs) and biguanides. The main side effects of 

TZDs are weight gain and fluid retention. The biguanide metformin acts mainly on the liver 

to suppress hepatic glucose production and does not cause weight gain but might be 

associated with lactic acidosis (Baba et al., 2001), (Vasudevan and Balasubramanyam, 

2004), (Zangeneh et al., 2003), (Krentz and Bailey, 2005).  

In our previous study, V. vitis was found to increase glucose transport in muscle 

cells through the activation of AMPK as a response to metabolic stress resulting from a 

non-toxic disruption of mitochondrial energy transduction (Eid et al., 2010). The present 

study was carried out firstly to determine whether V. vitis increases GLUT4 translocation in 

skeletal muscle cells as suspected from enhanced glucose transport. We selected L6 

myocytes because they express more Glut4 proteins than our previous C2C12 cellular 

model and because tools exist to better ascertain Glut4 translocation to the plasma 

membrane. Secondly, our objective was to evaluate the antidiabetic activity of V. vitis in an 

in vivo model of type 2 diabetes. KKA
y
 mice are a cross between glucose-intolerant black 

KK female mice and yellow obese A
y
 male mice. They are characterized by hyperphagia, 

insulin resistance, hyperinsulinemia, diabetes, dyslipidemia and hypertension. Therefore, 

KKA
y
 mice are an excellent model for type 2 diabetes induced by obesity (Adachi et al., 

2006). This model was thus selected to evaluate the in vivo antidiabetic activity of V. vitis. 
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Materials and methods 

Plant material and extraction 

Berries of V. vitis were collected in Whapmagoostui, QC, Canada, and kept at -20°C 

until use. Botanical identity was confirmed by Dr. Alain Cuerrier (Institut de recherche en 

biologie végétale, Université de Montréal), plant taxonomist on our Team, and voucher 

specimens were deposited at the Montreal Botanical Garden herbarium (voucher # 

Whap04-21). The 80 % ethanolic extract was prepared as previously described (Eid et al., 

2010). 

 

Cell culture 

Rat L6 skeletal muscle cells were grown in minimum essential medium alpha (α-

MEM) supplemented with 10% (v/v) fetal bovine serum (FBS) in a 5% CO2 at 37°C and 

used as myoblasts when fully confluent. For differentiation into myotubes, cells were 

switched to a medium containing 2% FBS for 5–7 days. Cells transfected to stably 

overexpress GLUT4 harbouring a myc epitope on the first exofacial loop of the transporter 

(L6 GLUT4myc cells) were kindly provided by Dr Amira Klip (The Hospital for Sick 

Children, Toronto, ON, Canada). 

 

Measurement of glucose uptake    

L6-GLUT4myc cells were cultured in 12-well plates and were used after 5-7 days of 

differentiation. The cells were serum-starved for 4 h before being incubated with V. vitis 

(200 µg/ml) for 18 h or insulin (100 nM, 20 min). Cells were incubated in transport 

solution [140 mM NaCl, 20 mM HEPES-Na, 2.5 mM MgSO4, 1 mM CaCl2, 5 mM KCl, 

10 µM 2-Deoxy-Glucose and 0.5 µCi/ml 2-deoxy-D-[
3
H]glucose (pH 7.4)] for 5 min at 

room temperature. Cells were then lysed with 1 M KOH and aliquots were transferred to 

scintillation vials for 
3
H radioactivity counting and expressed as fold increase over control. 

Nonspecific uptake was measured in the presence of cytochalasin B (10 µM) and was 

subtracted from all values.  
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Determination of cell surface GLUT4 

Levels of GLUT4myc at the cell surface were measured by an antibody-coupled 

colorimetric assay (Niu et al., 2003). Briefly, L6 myoblasts were cultured in 24-well plates 

until confluence and serum-starved for 4 h before being incubated with either V. vitis (200 

µg/ml) for 18 h or insulin (100 nM) for 20 min. Cells were then quickly washed in ice-cold 

PBS and incubated with an anti-c-myc antibody (1:200 dilution; Santa Cruz Biotechnology, 

Santa Cruz, CA, USA) at 4°C for 60 min. After that, cells were washed and fixed in 3% 

paraformaldehyde for 3 min on ice. To neutralize the fixative, cells were incubated with 

10 mM glycine in ice-cold PBS for 10 min, and then blocked in 5% goat serum for 30 min. 

Horseradish peroxidase (HRP)-conjugated goat anti-rabbit IgG were then applied for 

60 min at 4°C (1:1,000 dilution; Cell Signaling Technologies, Danvers, MA). Cells were 

washed five times with ice-cold PBS and incubated with O-phenylenediamine 

dihydrochloride (OPD) reagent (1 ml/well) (Sigma-Aldrich, St. Louis, MO, USA) at room 

temperature for 30 min. To stop the reaction, 0.25 ml of 3 M HCl was added to each well. 

The supernatant was collected and its absorbance was measured at 492 nm. Absorbance 

associated with nonspecific binding (primary antibody omitted) was used as a blank. 

 

Western immunoblotting 

The effects of plant products on insulin and AMPK signaling pathways in L6 

muscle cells were assessed by western immunoblot. Cells were cultured in 6-well plates 

and treatments or vehicle alone (DMSO) were applied for 18 h to 5-7 day differentiated L6 

cells. Twenty minutes prior to the end of the treatment, insulin (100 nM) or aminoimidazole 

carboxamide ribonucleotide (AICAR; 1 mM) were added to some vehicle-treated wells as 

positive controls. Cells were
 
lysed in SDS sample buffer (62.5 mM Tris–HCl (pH 6.8),

 
2% 

w/v SDS, 10% glycerol, 50 mM DTT, 0.01% w/v bromophenol blue),
 
to wich protease and 

phosphatase inhibitors were added (1 µM Na3VO4,
 
1 µM leupeptin, 1 µM pepstatin, 1 µM 

okadaic
 
acid and 1 µM PMSF), and passed through a syringe several

 
times and heated (65 

°C) for 5 min. Cell lysates were then
 
centrifuged for 5 min (16 294 x g), and

 
approximately 

30 µg protein was separated on 10% SDS–PAGE
 
and transferred onto polyvinylidene 

fluoride (PVDF) membrane. Membranes were then blocked
 
with 3% BSA Tris-buffered 

saline (50 mM Tris–base,
 
150 mM NaCl, 1% Triton-X-100 and 1% NP-40) for 1 h. The 
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blots
 
were incubated overnight at 4

0
C with primary antibodies (1:1000) directed against the 

following proteins: phospho-AMPK, phospho-Akt, phospho-P38 and ß-actin (Cell 

Signaling Technologies, Danvers, MA).
 
Membranes were then washed four times with 

Tris-buffered saline for
 
15 min each at room temperature and then incubated with HRP-

coupled
 
secondary antibody (1:10 000 Jackson Immunoresearch, Cedarlane Laboratories, 

Hornby, ON) for 1 h. Membranes were washed
 
five times in wash buffer for 10 min each 

and proteins. Revelation was performed using the enhanced chemiluminescence and 

quantified by the
 
Scion Image program (Scion Corporation, Frederick, MD, USA).

 
 

 

Animals and in vivo experimental protocols 

Study #1: Effect of V. vitis on diabetic KKA
y
 mice 

KKA
y
 mice were derived from an in-house colony established using breeding pairs 

obtained from Jackson Laboratory (Bar Harbor, Maine, US). Mice weighing 26-33 g were 

housed individually and kept for 1 week on a 12 h light-dark cycle in a temperature 

controlled chamber and provided a regular laboratory chow and water ad libitum. The 

animals were divided into two groups containing seven mice each, as follows: Group 1 

diabetic mice received drinking tap water and served as controls; Group 2 diabetic mice 

were administered with 1% V. vitis in drinking water (equivalent to a dose of 4 g/ kg on the 

first day of treatment and 1.33 g/kg thereafter, due to a drop in fluid intake until the end of 

the experiment). During the ten days of treatment, the body weight, food intake, fluid intake 

and blood glucose level were determined on a daily basis. The non-fasting blood glucose 

concentration was measured using an Accu-Chek glucometer (Roche, Montreal, QC, 

Canada) by collecting blood from the tip of the tail vein. On the last day of treatment, the 

mice were anaesthetized, sacrificed and organs such as liver, skeletal muscle, kidney, 

epididymal fat pad, abdominal fat pad and dorsal fat pad were immediately removed and 

stored in a -80° C freezer until used. All experimental protocols were approved by the 

animal experimentation ethics committee of the University of Montreal and carried out in 

full respect of the guidelines from the Canadian Council for the Care and Protection of 

Animals. 
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Study #2: Pair-feeding effect in KKA
y
 diabetic mice   

Pair feeding was employed in order to investigate to what extent the blood glucose-

lowering effect observed with V. vitis in study #1 could be attributed to the observed 

reduction in food intake. Animals were allocated into two groups containing seven mice 

each as follows: Group 1 diabetic mice were administered with 1% V. vitis in drinking 

water; Group 2 diabetic mice received drinking tap water and were pair-fed to group 1 

mice. Pair feeding was carried by measuring the food intake of the ad libitum-fed V. vitis 

treated mice every 24 h and presenting this amount of food to the pair-fed treated mice with 

a one-day delay. Food consumption, fluid intake and body weight were recorded three 

times weekly. At the end of the study, the mice were sacrificed, blood samples were 

obtained and tissues were harvested as described above. 

 

Study #3: normal C57BL/6J mice 

To study the effect on V. vitis on blood glucose levels and food intake in normal 

animals, normal C57BL/6J mice were housed as described before and randomly divided 

into two groups containing seven mice. Group 1 mice received drinking tap water and 

served as control; Group 2 mice were administered with 1% V. vitis in drinking water. Both 

groups were fed regular laboratory chow ad libitum. The experimental protocol lasted for 

10 days and was performed as described above.  

 

Blood parameters 

Glycaemia was measured three times per week by collecting blood from the tail 

vein and using a commercial glucometer (Accu-Chek Roche, Montreal, Qc, Canada). 

Plasma insulin levels were determined by a radioimmunoassay kit (Linco Research, St-

Charles, MO). Plasma adiponectin and leptin were measured by RIA (Linco Research, St-

Charles, MO). The levels of serum triglycerides, cholesterol, HDL, LDL, creatinine, 

alkaline phosphatise, AST (Aspartate aminotransferase), ALT (Alanine aminotransferase) 

and LDH (lactate dehydrogenase) were measured by the Department of Biochemistry of 

Sainte-Justine’s Children Hospital (Montreal, Qc, Canada).  
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Western blot for proteins involved in glucose and lipid metabolism 

To study the role of V. vitis extract on the expression of GLUT4, muscles from 

individual mice were lysed in Tris buffer, pH 7.4 at 4°C, containing 20 mM Tris-HCl, 255 

mM sucrose, 1 mM EDTA. For ACC and PPAR-α western blot analysis, samples of liver 

were homogenized in 1 ml of RIPA lysis buffer (25 mM Tris-HCl pH 7.4, 25 mM NaCl, 

0.5 mM EDTA, 1% Triton-X-100, 0.1% SDS). For all samples, a protease inhibitor cocktail 

was added (Roche, Mannheim, Germany) as well as 1 mM phenylmethanesulfonyl fluoride 

(PMSF) and phosphatase inhibitors (1 mM sodium orthovanadate, 10 mM sodium 

pyrophosphate, 10 mM sodium fluoride). Cells were lysed for 30 min on ice and were 

centrifuged at 12000 x g for 10 min. Supernatants were then stored at -80
o
C until analysis. 

Protein content was assayed by the bicinchoninic acid method standardized to bovine serum 

albumin (Roche, Laval, QC). Lysates were diluted to a concentration of 1 mg/ml total 

protein and boiled for 5 min in reducing sample buffer (62.5 mM Tris-HCl pH 6.8, 2% 

SDS, 10% glycerol, 5% β-mercaptoethanol and 0.01% bromophenol blue). One hundred 

µL of each sample were separated on 10 % polyacrylamide full-size gels and transferred to 

nitrocellulose membrane (Millipore, Bedford, MA). Membranes were blocked for 2 h at 

room temperature with Tween-20 and 5% skim milk in TBS (20 mM Tris-HCl, pH 7.6 and 

137 mM NaCl). Membranes were then incubated overnight at 4ºC in blocking buffer with 

appropriate phospho-specific or pan-specific antibodies against ACC, GLUT4, PPAR-α and 

PPAR-γ at 1:200 to 1:1000. Membranes were washed 5 times and incubated 1.5 h at room 

temperature in TBS plus Tween 20 with anti-rabbit HRP-conjugated secondary antibodies 

at 1:50000 to 1:100000 (Jackson Immunoresearch, Cedarlane Laboratories, Hornby, ON). 

Revelation was performed using the enhanced chemiluminescence method and blue-light-

sensitive film (Amersham Biosciences, Buckinghanshire, England). 

 

Histological Analysis 

The dissected liver sections were placed in the 10% formalin solution and were 

stained with hematoxylin phloxine saffron (HPS) by the Institut de Recherche en 

Immunologie et en Cancérologie (IRIC), Department of Histology (Université de Montréal, 

Montreal, QC, Canada). Each stained liver section was analyzed for the severity of lipid 

accumulation in the hepatocytes and was then scored based on the percentage of 
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hepatocytes that contained macrovesicular fat: namely, grade 0 (0-5%), grade 1(5-33%), 

grade 2 (33-66%), and grade 3 (66-100%)(Brunt et al., 1999); (Kleiner et al., 2005).  

 

Statistical analysis 

In vitro results as well quantification of western blot data for in vivo studies were 

analysed by one-way analysis of variance (ANOVA) using StatView software (SAS 

Institute Inc, Cary, NC), with post-hoc analysis as appropriate. Area under the curve 

(AUC) were calculated by using PRISM software (GraphPad, San Diego).  For the in vivo 

studies, student t test for non-paired observation was used. Statistical significance was set at 

p≤0.05. Results are presented as the mean  SEM for the indicated number of 

determinations/animals.  
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Results  

V. vitis increases glucose uptake and GLUT4 translocation in L6 myotubes 

To confirm that V. vitis increases glucose uptake in L6-GLUT4myc myotubes as it 

did in C2C12 cells (Eid et al., 2010), cells were treated with 200 µg/ml V. vitis for 18 h or 

100 nM insulin for 20 min and tested for 2-deoxy-D-[
3
H] glucose uptake. V. vitis 

stimulated glucose uptake by 65 ± 5 % (Figure 1A). In comparison, treatment with 100 nM 

insulin (positive control) stimulated uptake by 75 ± 13 % (Figure 1A).  

Since GLUT4 translocation to the plasma membrane is an important step for 

glucose uptake into skeletal muscle (Zierath et al., 1996), we then examined the effect of V. 

vitis on GLUT4 translocation in L6 cells. The results of the OPD assay in L6-GLUT4myc 

myoblasts showed that V. vitis stimulated GLUT4 translocation in these cells by a factor of 

1.8, an effect that is similar to the maximal effect of insulin (1.75-fold) (Figure 1B).  

 

V. vitis increases the phosphorylation of AMPK and p38 MAPK in L6 myotubes 

L6 myotubes were treated with V. vitis (200 µg/ml) or AICAR (1 mM) for 30 min. 

Consistent with our previous observations in C2C12 myocytes (Eid et al., 2010), the 

phosphorylation of AMPK was significantly increased by V. vitis (Figure 2). The plant 

extract also caused a significant increase in the phosphorylation of p-38 MAPK (Figure 2), 

a downstream substrate of AMPK involved in GLUT4 translocation (Cheng et al., 2006), 

(Somwar et al., 2001). In contrast to what was observed with the insulin positive control, V. 

vitis did not increase the phosphorylation of Akt, a downstream substrate of PI3-K and 

mediator of insulin signaling and GLUT4 translocation (Figure 2). 

 

Effects of V. vitis on body weight, food intake, blood glucose, and fluid intake of 

diabetic and normal mice 

In order to investigate the cumulative effect of V. vitis on the different parameters in 

time, we calculated the area under the curve (AUC). The cumulative change in body weight 

(BW) was significantly lower in diabetic KKA
y
 mice administered with V. vitis than in 

control mice receiving only drinking water (Figure 3; p<0.05, n=7 per group). This was 

correlated with significant reduction in cumulative food intake (16%) in V. vitis- treated 

group compared to vehicle control animals (Figure 3; p<0.05, n=7 per group). Interestingly, 
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daily administration of V. vitis to these mice resulted in a significant decrease of glycemia 

as compared to controls (32%, Figure 3, p<0.05, n=7 in each group).  

Hence, to verify if the decrease in glycemia in this group is attributed to reduction 

of food intake, study #2 was carried out where controls were pair-fed with V. vitis-treated 

group. Both pair-fed and V. vitis-treated mice has similar loss in body weight, albeit pair-

fed animals had a tendency to exhibit slightly greater cumulative weight loss (Figure 4; 

N.S., n=7 per group). V. vitis and pair feeding have significantly lower blood glucose levels 

(Figure 4; p<0.05, n=7 per group). This suggests that the effect of V. vitis could be mainly 

mediated through loss of appetite that induces reduction of food intake, body weight and 

gylcemia. 

To test if V. vitis exerts the same effects in normal mice, study #3 was conducted in 

normal C57Bl/6J mice. In contrast to study#1 and study#2, no significant changes in body 

weight or glycemia were observed in V. vitis-treated animals as compared to vehicle 

controls (Figure 5; N.S., n=7 per group). Although, V. vitis-treated group of normal mice 

had a slightly higher tendency to lose weight than vehicle treated ones (Figure 5; N.S., n=7 

per group), this group actually exhibited a slight, albeit significant, increase in cumulative 

food intake (Figure 5B; p<0,05, n=7 per group). 

Cumulative fluid intake expressed was significantly reduced by V. vitis treatment in 

all the three studies as compared to their respective controls: by 44% in V. vitis-treated mice 

(study #1, Figure 3; p<0.05, n=7 per group), by 31% in pair-fed study (study #2, Figure 4; 

p<0.05, n=7 per group) and by 22% in normal mice (study# 3, Figure 5; p<0.05, n=7 per 

group).  

 

Effects of V. vitis on insulinemia, triglyceridemia, and circulating leptin or adiponectin 

levels 

V. vitis-treatment in KKA
y
 mice tended to reduce plasma insulin (by 46%) as 

compared to their control congeners (46 % decrease, Table 1; N.S., n=7 per group). In 

contrast, plasma triglyceride levels were decreased by 36% in the V. vitis-treated group, as 

compared to vehicle controls (Table 1, N.S., n=7 per group). However, because of data 

variability, these changes failed to reach statistical significance. Other blood lipid 

parameters including total Cholesterol, HDL-C and LDL-C, as well as plasma leptin and 
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adiponectin levels, and leptin/adiponectin ratio (Table 1) were not affected by V. vitis 

treatment.  

 

Effects of V. vitis on liver steatosis, as well as liver and kidney functions 

Liver lipid accumulation was assessed through histological analysis of hepatic tissue 

collected at sacrifice. In control KKA
y
 diabetic mice of study#1, only 1 out of 7 mice had 

grade 0 steatosis, in contrast to 3 out of 7 mice in V. vitis-treated group. On the other hand, 

5 control animals had grade 3 steatosis, in contrast to only 3 animals in V. vitis-treated 

group (Table 2; p<0.05 by Chi square test, n=7 per group). 

Interestingly, administration of V. vitis did not significantly affect liver or kidney 

function tests, albeit serum AST (liver), ALT (liver), creatinine (kidney) and LDH (muscle, 

kidney, and liver) levels in V. vitis treated diabetic mice all tended to be lower than 

corresponding values in control mice (Table 1).  

 

Effect of V. vitis on GLUT4 content in skeletal muscle, phosphorylated ACC and 

PPAR-α protein content in liver of KKA
y
 mice 

The skeletal muscle tissues of control, pair-fed and V. vitis treated mice were probed 

for their total content in GLUT4 protein. V. vitis- treatment tended to increase the total 

content of GLUT4 protein in soleus muscle compared to vehicle-treatment in study #1 and 

to pair-feeding in study #2 (Figure 6 A, B, N.S., n=7 per group).  

To investigate whether the AMPK pathway is involved in the effects of V. vitis in 

vivo, we compared levels of phosphorylation of the downstream enzyme ACC in muscles 

and livers harvested from control, pair-fed and V. vitis treated diabetic KKA
y
 mice from the 

first two studies. Immunoblots showed that phospho-ACC content in the liver was similar 

in vehicle control and V. vitis-treated diabetic mice. In contrast, phospho-ACC content 

tended to be higher in V. vitis treated animals when compared to pair-fed animals in study 

#2 (Figure 6 C, E; N.S, n=7 per group). In addition, there was no significant difference in 

the phosphorylation levels of ACC in the muscles of control, pair-fed and V. vitis-treated 

mice (blots are not shown). 

Consistent with decreased triglycerides content in the liver of V. vitis-treated 

animals, the content of PPAR- α in V. vitis treated groups in both studies tended to be 
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higher in comparison with control and pair-fed groups (Figure 6 C, D; N.S., n=7 per 

group). Due to small sample size, this difference did not reach statistical significance. 
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Discussion  

Aboriginal populations around the world are particularly at risk of developing 

metabolic disorders related to lifestyle changes (Brassard et al., 1993), (Young et al., 

2000),(Hegele, 2001). When risk factors like obesity and genetic predisposition entwine 

with the cultural disconnection of modern medication, the complications of diabetes can 

become debilitating and life threatening. To address this problem in Canadian aboriginal 

populations, our team has launched a project to explore potential antidiabetic plants 

stemming from Cree traditional medicine that could represent promising culturally relevant 

alternative and complementary treatment options for managing diabetes in these 

populations. In collaboration with the Cree Elders and healers of Eeyou Istchee (James Bay 

area of QC, Canada), we have identified the extract of the berries of Vaccinium vitis-idaea 

as a promising product that was capable of enhancing glucose uptake in skeletal muscle 

cells in culture (Harbilas et al., 2009). Subsequent bioassay guided fractionation studies on 

V. vitis resulted in the identification of quercetin and its glycosides, quercetin-3-O-

glucoside and quercetin-3-O-galactoside as the active principles responsible for the 

enhancement of glucose uptake in skeletal muscle cells (Eid et al., 2010).  

Skeletal muscle cells express two isoforms of facilitative glucose transporters, 

GLUT4 and GLUT1. The later resides mainly in the plasma membrane and is responsible 

for basal glucose transport. On the other hand, GLUT4 resides in intracellular vesicles and 

translocates to the plasma membrane in response to insulin stimulation (Mitsumoto et al., 

1991) (Giorgino et al., 2000). In accordance with previous observations (Harbilas et al., 

2009), (Eid et al., 2010), V. vitis significantly increased cellular glucose uptake. The effect 

of V. vitis on glucose uptake in L6 cells (65% increase) was more than double of that 

observed previously in C2C12 myotubes (31%; (Eid et al., 2010)). This could be attributed 

to the higher content of GLUT4 in L6 cells (Sarabia et al., 1990), (Mitsumoto and Klip, 

1992).  

V. vitis-treatment also lead to the activation of insulin-independent AMPK and 

p38MAPK pathways but not of insulin-dependent Akt in L6 myotubes. This is in 

accordance with previous studies implicating the AMPK pathway and mitochondrial 

inhibition in the mechanism of action of V. vitis and its active principles (Eid et al., 2010). 

The use of selective AMPK inhibitors such as compound C deems necessary to prove the 
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involvement of this enzyme in stimulation of glucose uptake by V. vitis extract and will be 

the subject of future research. 

This V. vitis-induced increase in glucose uptake could be the result of increased 

translocation of GLUT4 to plasma membrane. Therefore, the cell surface content of 

GLUT4 was measured in L6 cells expressing GLUT4 protein tagged with the myc epitopes. 

Results clearly confirm that V. vitis increases the translocation of GLUT4 to the plasma 

membrane of these cells. Interestingly, the extent of glucose transport stimulation and 

GLUT4 translocation induced by V. vitis administration was equivalent to that of an 

optimal dose of insulin in these cells.  

Based on these and other recent promising in vitro results (Eid et al., 2010), as well 

as on the previously reported in vivo antidiabetic activity of quercetin and quercetin-3-O-

glucoside (Kannappan and Anuradha, 2009), (Panda and Kar, 2007), (Shetty et al., 2004a), 

(Vessal et al., 2003), V. vitis was administered to diabetic KKA
y 

mice.  

V. vitis extract administration exerted immediate, considerable and persistent effect 

to lower food intake. As a result of reduced food intake, cumulative change in body weight 

and glycemia were significantly reduced. These results suggest that the plant may possess 

important weight, blood-glucose and appetite-reducing effects. This led us to carry out 

study #2, utilizing pair feeding to determine whether the reduction of blood glucose 

concentration by V. vitis could be attributed to reduced food intake. This study revealed that 

pair-fed animals exhibited significantly lower levels of blood glucose than V. vitis treated 

animals, despite a fully comparable pattern of weight changes. One possible explanation for 

this counter-intuitive result stems from the significant sugar content of V. vitis berries that 

can reach 8% of their fresh weight (Hjalmasson and Ortiz, 2001) and about 27% of their 

dry weight. The sugar that V. vitis administration may thus provide actually enhances the 

significance of the anti-hyperglycemic and weight-reducing actions observed with plant 

extract treatment in diabetic KKA
y
. Overall, these results therefore indicate that the 

antihyperglycemic effect of V. vitis is mediated, almost entirely, by the reduction of food 

intake. The underlying mechanisms remain to be elucidated, but they do not appear to 

involve the satiety hormone leptin whose circulating levels were not affected by V. vitis. 

Moreover, we found no evidence that the reduced food intake was related to any toxic 

action of the plant. Indeed, we did not observe any behavioral or external (e.g. fur, eyes) 
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changes indicating toxicity (not illustrated). In fact, several blood markers of toxicity 

(notably relating to liver and kidney function) actually tended to improve in V. vitis treated 

animals. Finally, the plant’s berries have been and continue to be consumed by the CIE and 

should thus be considered GRAS (generally regarded as safe).  

In contrast with KKA
y
, the administration of V. vitis to normal C57Bl/6J did not 

affect body weight or blood glucose levels. A possible explanation to the difference in 

response to V. vitis-treatment in the two mouse strains might be linked to the disruption of 

central melanocortin (MC) system in KKA
y 

mice. Central MC system is a component of a 

circuit within the central nervous system (CNS) that regulates feeding behavior and energy 

expenditure. MC is modulated by a number of peripheral and central systems that regulate 

energy balance (Nogueiras et al., 2007).  

The agouti (A) gene is normally expressed during the hair growth cycle in the 

neonatal skin where it functions as a paracrine regulator of pigmentation. KKA
y
 mouse 

model expresses dominant agouti alleles A
y
, which results in ectopic expression of the 

agouti peptide in the ventromedial nucleus of the hypothalamus (VMH). In VMH, the 

agouti peptide antagonizes the melancortin receptor 4 (MC4-R), resulting in the KKA
y
 

model phenotype of hyperphagia, hyperlipidemia, hyperleptinemia, maturity-onset obesity 

and diabetes (Nonogaki et al., 2006).  

Similar in size and genomic structure to the agouti peptide, the agouti related 

peptide (AgRP) is a neuropeptide normally produced in the hypothalamus and the adrenal 

glands of humans and mice. It has been shown to be an antagonist of MC3-R and MC-4 

which are directly linked to control of body weight (Einbond et al., 2004), (Ollmann and 

Barsh, 1999), (Havel et al., 2000). Therefore, the decrease in food intake observed in KKA
y
 

mice during treatment with V. vitis could be the result of agonistic activity of V. vitis on 

MC-4R or antagonizing the agouti peptide in the hypothalamus. This makes V. vitis an 

interesting therapeutic agent in humans with genetic defects in or upstream of AgRP or 

MC-4R. Further research is needed to study the effect of V. vitis on melanocortin system 

especially that the biochemical and histological analysis indicate absence of toxicity.  

In contrast with diabetic obese KKA
y
 mice, normal lean V.vitis- treated C57BL/6L 

mice had a slight but significant increase in food intake. This discrepancy of results may 

suggest that V. vitis treatment mimics the effect of chronic moderate to intense physical 
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activity. Regular moderate to vigorous exercise but not short light exercise performed by 

lean animals and humans, created a negative energy balance. This triggered a compensatory 

increase in food intake that did not affect body mass. Inversely, obese individuals did not 

change their food intake, probably due to their excess of energy storage (Mayer et al., 

1954), (Woo et al., 1982b), (Woo et al., 1982a), (Melzer et al., 2005), (Slentz et al., 2004).  

In the same way, V. vitis could create a negative energy balance by increasing energy 

expenditure. This probably would be the result of disruption of mitochondrial energy 

transduction or to induction of uncoupling proteins (UCPs) as a consequence of increased 

mitochondrial biogenesis secondary to chronic activation of AMPK (Putman et al., 2003). 

Interestingly, it was previously reported that AMPK activation mimicked some of the 

metabolic changes associated with chronic exercise training (Putman et al., 2003). 

V vitis-treatment had a remarkable ability to reduce water intake. Indeed, the plant’s 

extract reduced blood glucose level by 32% whereas fluid intake dropped 3-fold. Several 

factors may have contributed to this effect. On average, KKA
y 

mice drank about 15 ml of 

water daily versus an average of 5.5 ml in normal C57BL/6 mice. Treatment of KKA
y
 mice 

with V. vitis for ten days normalized fluid consumption to levels closely similar to that of 

normal mice. Through its significant effect to reduce blood sugar, V. vitis should diminish 

blood tonicity and polyuria, two important determinants expected to increase fluid intake in 

KKA
y
 diabetic mice. Moreover, the reduction in the consumption of the dry chow diet, 

induced by V. vitis-treatment, could also be accompanied by a reduction in fluid intake. 

Finally, it is possible that the presence of 1 % of V. vitis extract in the drinking water of the 

mice have represented an unpleasant organoleptic feature, given that the plant’s fruit, a 

close cousin of cranberries, shares its acidic and astringent properties. Another argument 

for the contribution of a taste related effect comes from study #2 carried out with pair-fed 

KKA
y
 mice. In this case, despite a reduction of blood glucose equivalent to that of V. vitis 

treated animals without consumption of the extract, pair-fed animals exhibited a much 

weaker drop in water intake, going roughly from 13 to 10 ml daily. Likewise, normal 

C57Bl/6 mice treated with V. vitis reduced water intake to 3.2 ml, from values of 5.6 in 

vehicle control normal mice, despite unchanged blood glucose concentrations. Hence, V. 

vitis likely reduces fluid intake by a combination of effects implicating reduced glycemia, 

diminished dry food intake and putative unpleasant organoleptic features.  
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Administration of V. vitis also tended to reduced liver steatosis in KKA
y
 and this 

may have contributed to the apparent improvement of insulin resistance. Indeed, hepatic 

steatosis is closely associated with obesity and insulin resistance, leading to exaggerated 

hepatic glucose production (Seppala-Lindroos et al., 2002). Peroxisome proliferator-

activated receptor α (PPAR-α), a member of the nuclear hormone receptor superfamily, is 

essential for the regulation of hepatic fatty acid metabolism, as illustrated by the fatty liver 

that develops in PPAR-α knockout mice (Ip et al., 2003). In the present study, V. vitis 

administration tended to increased hepatic PPAR-α-content, consistent with improved liver 

steatosis. 

Our in vitro results obtained in both C2C12 (Eid et al., 2010) and L6 muscle cells 

(herein) show that V. vitis increased the phosphorylation of  AMPK and ACC. It is also 

known that the activation of the AMPK pathway in skeletal muscle can lead to increased 

synthesis of GLUT4 (Ojuka, 2004), which  results in enhancing glucose transport capacity 

of skeletal muscle. The result of the present study thus show that V. vitis treatment in vivo 

tended to increases muscle GLUT4 content, thereby contributing to reduction in glycemia. 

In summary, the results of the present study clearly demonstrate that V. vitis reduces 

food intake and body weight without inducing any toxicity. Moreover, the combination of 

in vitro and in vivo results presented herein suggests that the stimulation of the AMPK 

pathway leads to mobilization of GLUT4 transporters in skeletal muscle. These effects, 

combined with reduction of liver steatosis, significantly reduced glycemia and improved 

insulin sensitivity. The strong anti-obesity and antidiabetic potential of V. vitis warrants 

further clinical studies, notably in the context of a culturally relevant approach to diabetes 

care in the CEI. 
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Figure Legends 

Figure 1: V. vitis increased non-insulin-stimulated (basal) 
3
H-deoxyglucose uptake and 

GLUT4 translocation in L6 GLUT4myc myotubes. Cells were treated with either 200 μg/ml 

of V. vitis, or with vehicle (0.1% DMSO) for 18 h. 100 nM insulin was applied for the last 

20 min of the treatment in vehicle-treated cells. (A) Glucose uptake: Data are expressed 

after normalization to basal uptake of the vehicle control treated cells. Data are presented as 

the mean of 3 experiments ± SEM, each experiment composed of 3–4 replicates per 

condition. * Indicates a significant (p ≤ 0.05) difference from the vehicle control group as 

assessed by ANOVA.  

(B) GLUT4 translocation: Cell surface GLUT4myc was detected by an enzyme-linked 

colorimetric assay. Cells treated with V. vitis showed a 1.8-fold increase of GLUT4myc at 

the cell surface as compared to cells treated with vehicle control, whereas cells treated with 

insulin revealed a 1.75-fold increase as compare to vehicle treatment. Results represent the 

means ± SEM of three independent experiments, and 3-4 cells were analyzed for each 

condition per experiment. * Indicates a significant (p ≤ 0.05) difference from the vehicle 

control group as assessed by ANOVA. 

 

Figure 2: V. vitis increased phosphorylation of AMPK and p-38MAPK but not of Akt in L6 

myotubes. Shown are representative immunoblots of cells treated for 18 h with either 

vehicle (0.1% DMSO) or 200 μg/ml of V. vitis. The lower blot was probed with anti-β-actin 

as a loading control. AICAR (1 mM) and insulin (100 nm) applied for the last 30 min of the 

treatment in vehicle-treated cells were used as positive controls for the activation of the 

AMPK pathway and for Akt phosphorylation, respectively. 

Figure 3: V. vitis reduced cumulative change in body weight, cumulative change in food 

intake, non-fasting blood glucose concentration, and cumulative change in fluid intake in 

KKA
y
 mice of study #1. The study lasted for 10 days. *denotes significantly different as 

compared to control group (p < 0.05) as assessed by non paired t test.   

  

Figure 4: Effect of 10 days V. vitis-treatment and pair-feeding on cumulative change in 

body weight, non-fasting blood glucose concentration, and cumulative change in fluid 
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intake in KKA
y
 mice of study #2. *denotes significantly different as compared to pair-fed 

mice (p < 0.05) as assessed by non-paired t test.   

  

Figure 5: V. vitis has no effect on cumulative change in body weight, cumulative change in 

food intake, and non-fasting blood glucose concentration. It significantly reduced 

cumulative change in fluid intake in normal C57BL/6 mice of study #3.   The study lasted 

for 10 days. All values are mean ± SEM (n=7), *denotes significantly different as compared 

to control mice (p < 0.05) as assessed by non-paired t test.   

 

Figure 6: Effect of V. vitis on GLUT4 levels in skeletal muscles, phosphorylation of ACC 

and PPAR-α levels in livers from diabetic KKA
y
 mice of study #1 (A) and study #2 (C). 

Samples of soleus muscles and liver tissues were obtained from control, V. vitis and pair-

fed diabetic KKA
y
 mice and analysed by immunoblotting with antibodies specific to 

phospho-ACC, Glut4 and PPAR- α. Quantification of GLUT4/β-actin (B), quantification of 

PPARα/β-Actin (D), and quantification of p-ACC/ β-actin (E). Immunoblots are 

representative of results obtained from seven animals in each group.  

 

 

 

  



149 

 

Table 1 Blood parameters of KKA
y
 mice from study #1 

 Control V. vitis 

AST (IU/L) 107.7 ± 14.5 92.0 ± 11.7 

ALT (IU/L) 64.5 ± 8.7 56.0 ± 10.4 

LDH (IU/L) 108.8 ± 9.4 71.5 ± 18.0 

Creatinine (IU/L) 1280.7 ± 340.2 832.7 ± 219.9 

Alkaline phosphatase 

(IU/L) 
112.4 ± 11.1 77.0 ± 7.9* 

Triglycerides (mmol/L) 4.5 ± 0.8 2.9 ± 0.5 

Cholesterol (mmol/L) 2.3 ± 0.14 2.12 ± 0.19 

HDL (mmol/L) 1.07 ± 0.09 1.09 ± 0.11 

LDL (mmol/L) 0.5 ± 0.2 0.5 ± 0.0 

Insulin (ng/ml) 35.32 ± 8.48 18.98 ± 4.22 

Leptin (ng/ml) 27.12 ± 1.7 23.9 ± 0.99 

Adiponectin (µg/ml) 18.17 ± 2.44 18.00 ± 2.2 

 

Measurements were obtained from plasma of mice treated for a period of 10 days with 

standard Chow diet with or without V. vitis in the drinking water (1 g%). All values are 

mean ± SEM (n=7). * denotes significantly different as compared to Control (p < 0.05) as 

assessed by non-paired t test.  
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Table 2 Histological scores of liver steatosis from control and V. vitis treated KKA
y
 

diabetic mice. 

Groups n 

Steatosis 

0 1 2 3 

Control 7 1 1 0 5 

V .vitis 7 3 1 0 3 

 

The scoring is based on the percentage of hepatocytes containing macrovesicular steatosis, 

grade 0: 0-5 %, grade 1: 5-33 %, grade 2: 33-66 %, grade 3: more than 66 % (Brunt et al., 

1999), (Kleiner et al., 2005).  

  



151 

 

DMSO Insulin V.vitis

0

1

2

F
o

ld
 i

n
c
re

a
a
e
 i

n
 G

L
U

T
4

 t
ra

n
sl

o
c
a
ti

o
n

(%
 o

f 
D

M
S

O
)

DMSO Insulin V.vitis

0

20

40

60

80

100

120

140

160

180

200

3
H

-D
eo

x
y
g
lu

c
o
se

 U
p
ta

k
e

(%
 o

f 
D

M
S

O
)

 

Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

* 
* 

* * 

A 

B 



152 

 

Figure 2 

 

 

  



153 

 

Figure 3 
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Figure 4 
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Figure 5 
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5. General discussion 

Due to the growing western interest in herbal medicine, and the increasing need for 

effective treatment for many diseases, medicinal plants have been the focus of intense 

research by industry and academia to validate the efficacy of traditional medicine and to 

assess their safety (Taylor et al., 2001). With many clinical trials being conducted and 

published every year, evidence-based herbal medicine continues to gain acceptance from 

health care providers. Nowadays, many international organizations and governmental 

agencies support projects and programs in this area (Sackett et al., 1996), (Yeh et al., 2003). 

Research into the scientific validation of Cree traditional plants used to treat symptoms of 

diabetes is the current focus of our project sponsored by the Canadian Institutes of Health 

Research (CIHR).  

In Canada, diabetes was unheard of in the Aboriginal populations in the first half of 

the 20
th
 century (Hegele, 2001). Over the few past decades, the age-adjusted rate of type 2 

diabetes in Aboriginal peoples has greatly increased to become 3 to 5 times higher than that 

in the general population. Due to the disproportionate high rates of complications, and the 

development of type 2 diabetes in young children and adolescent, diabetes is now 

considered the leading cause of morbidity and mortality in aboriginal communities 

throughout Canada (Brassard et al., 1993),(Young et al., 2000), (Hegele, 2001).  

The holistic nature of traditional aboriginal medicine makes it different from 

conventional western medicine. While western medicine focuses on the diagnosis and 

treatment of the disease with unconditional belief in science as the unique source for 

knowledge, traditional medicine through recognizing the social, emotional, spiritual and 

physical dimensions of wellness, is more concerned with the whole person rather than the 

symptoms of the disease itself (van Uchelen et al., 1997). This gap between the two 

approaches has created a condition of poor compliance of aboriginals to western medical 

advice and has called attention to the urgent need for culturally appropriate community-

based prevention and treatment programs to help slow down the diabetes epidemic 

(Macaulay and Ryan, 2003). In this context, it is important to note that traditional medicine 

is an integral part of Aboriginal culture, through its recognition and integration in the health 
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care system, the delivery of health services to Aboriginal communities can be markedly 

improved (Devanesen and Maher, 2003). 

In an effort to address this cultural disconnection of diabetes care, our team has been 

working on identifying safe and efficacious alternative treatments for diabetes based on 

these populations’ traditional medicine and pharmacopeia. In collaboration with the CEI 

(Eastern James Bay Cree), we have identified the medicinal plants used to treat symptoms 

of diabetes in four CIE communities. Two screening studies conducted in our laboratories 

revealed that eight products enhanced glucose uptake in skeletal muscle cells (Spoor et al., 

2006), (Harbilas et al., 2009).  In one of these screening studies, V. vitis was as potent as the 

biguanide oral anti-hyperglycemic drug metformin in promoting glucose uptake in C2C12 

myotubes (Harbilas et al., 2009).  

Generally speaking, antidiabetic plants, whose molecular and cellular targets of 

action have been investigated, fall into one or more of the four principal categories: insulin 

sensitizers, insulin mimetics, insulin secretagogues and inhibitors of intestinal carbohydrate 

digestion and absorption.  

Targeting mitochondrial energy transduction via inhibition of complex I of the 

respiratory electron transport chain and subsequent AMPK activation mediate the effect of 

the two popular insulin sensitizers biguanides and thiazolidinediones (Elia et al., 2006), 

(Brunmair et al., 2004). Interestingly, 7 plant products from the pharmacopea of the CEI as 

well as several naturally occurring compounds, including many flavonoids, exert their 

antidiabetic activity via either inhibition or uncoupling of mitochondrial oxidative 

phosphorylation (Martineau et al., 2009), (Polya, 2003). Similarly, the juice of Vaccinium 

angustifolium (blueberry native to eastern and central Canada), biotransformed with 

Serratia vaccinii, a new strain of bacteria isolated from blueberry fruits, was also reported 

to activate AMPK (Vuong et al., 2007). 

Insulin sensitizers also include products that regulate hepatic glucose and glycogen 

metabolism. Plants belong to this category include garlic (Allium sativum) and onion 

(Allium cepa), which decrease blood glucose levels by normalizing liver hexokinase and G-

6-Pase activities (Sheela et al., 1995). Similarly, Coccinia indica and Momordica charantia 
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were reported to normalize the activity of G-6-Pase (Singh et al., 1989), (Shibib et al., 

1993). Moreover, C. indica pectin stimulated glycogen synthetase and suppressed glycogen 

phosphorylase and hepatic fructose-1,6-bisphosphatase in normal rats (Kumar et al., 1993), 

(Shibib et al., 1993). 

Nigella sativa and Cinnamomon cassia (cinnamon) were suggested to have insulin 

mimetic properties, through enhancing insulin signaling pathway independently of insulin 

(Benhaddou-Andaloussi et al., 2008) (Qin et al., 2003). 

Gymnema sylvestre, N. sativa and M. charantia exert part of their anti-

hyperglycemic effect by inhibiting glucose absorption in the small intestine (Meddah et al., 

2009), (Persaud et al., 1999), (Matsuda et al., 1998). On the other hand, alkaloids of Morus 

alba (Asano et al., 1994), as well as the aqueous and ethyl acetate soluble fractions of 

Salacia oblonga inhibit glucose digestion by inhibiting α-glucosidase activity (Matsuda et 

al., 1998). 

Stimulation of insulin secretion constitute the most reported mechanism of action of 

many antidiabetic plants including cinnamon (Khan et al., 2003), N. sativa (Benhaddou-

Andaloussi et al., 2010), Acacia arabica (Singh et al., 1975), (Wadood et al., 1989), Aloe 

vera (Ajabnoor, 1990), Citrullus colocynthis (Abdel-Hassan et al., 2000), G. sylvestre 

(Asano et al., 1994), Morus alba (white mulberry) (Asano et al., 1994), (Singh et al., 1989), 

and Trigonella  foenumgraecum (Fenugreek) (Vats et al., 2003). 

In a previous study, V. vitis were reported to exert no effect on glucose stimulated 

insulin secretion by pancreatic β-cells in culture (βTC) (Harbilas et al., 2009). Moreover, in 

contrast with the strong in vitro inhibitory effect of on intestinal glucose uptake V. vitis, the 

extract failed to inhibit glucose absorption by the intestine of normal Wistar rat subjected to 

OGTT (Nistor et al., under publication).  

The findings of the present thesis show that V .vitis is an insulin sensitizer. Indeed, 

V. vitis increased glucose uptake in murine C2C12 and rat L6 muscle cells. This effect is 

the result of at least in part to activation of AMPK following the anabolic stress induced by 

inhibition of mitochondrial respiration. The use of selective AMPK inhibitors such as 

compound C deems necessary to prove the involvement of this enzyme in stimulation of 
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glucose uptake by V. vitis extract and will be the subject for future work. Rat L6 cells 

transfected with GLUT4myc displayed membrane localization upon treatment with this 

plant, indicating GLUT4 implication in V. vitis action. As with other species tested in a 

previous study (Spoor et al., 2006), V. vitis berry extract did not stimulate Akt 

phosphorylation suggesting that the insulin-signaling pathway is not involved in the mode 

of action of V. vitis in both cell lines. 

Identification of active compounds in medicinal plants allows the comparison of 

traditional preparations between communities during different seasons thus providing better 

quality control over geographical and temporal variations. For this purpose, fractionation of 

V. vitis berry extract guided by muscle cell glucose uptake was carried out and resulted in 

the isolation of quercetin and quercetin-3-O-glycosides as the main active principles 

responsible for the enhancement of glucose uptake. These compounds were found to 

stimulate phosphorylation of AMPK and ACC. In addition, V. vitis caused a mild inhibition 

of mitochondrial respiration, while quercetin was found to be a potent inhibitor. Such an 

inhibitory effect of quercetin was previously reported and was attributed to direct binding 

of quercetin to the F1-ATPase (Gledhill et al., 2007). Therefore, the same mechanism of 

action seems to be at the base of the antidiabetic activity of both the crude extract and its 

active compounds. Metabolic acidosis is a common side effect of powerful disruptors of 

oxidative phosphorylation and ATP lowering agents and was behind the withdrawal of 

drugs such as phenformin from the pharmaceutical marketplace. Interestingly, quercetin 

inhibition of mitochondrial respiration did not result in the increase of extracellular 

acidification rate or decreased cellular content of ATP. This metabolic and safety profile 

makes V. vitis and its active compound quercetin attractive antidiabetic agents. 

A derivative of caffeic acid, caffeic acid methyl ester (CAME), was also isolated 

during the biologically guided fractionation of V. vitis. This compound was later 

understood to be a by-product formed as a result of using methanol as the solvent during 

the fractionation process.  Among V. vitis sub-fractions and pure compounds tested for 

enhancing glucose uptake, CAME had the most pronounced effect in glucose uptake assays 

performed in C2C12. It was previously reported that another derivative of caffeic acid, 
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caffeic acid phenethyl ester (CAPE), exhibited anti-diabetic activity in the form of potent 

AMPK-mediated stimulation of glucose uptake in skeletal muscle cells (Lee et al., 2007).   

Our study attempted to elucidate the mechanism by which CAME and CAPE exert 

their anti-diabetic activity and to identify other caffeic acid derivatives with similar activity. 

We also evaluated the relationship between the activity and the cytotoxicity of these 

compounds on the one hand, and their molecular structure and physicochemical properties 

on the other hand.  

Along with CAME and CAPE, other closely related caffeic acid esters were tested 

for glucose uptake stimulating activity as well as mitochondrial uncoupling activity. These 

included caffeic acid ethyl ester (CAEE), caffeic acid diallyl ester (CAAE), and caffeic acid 

n-octyl ester (CAOE). All the tested compounds potently increased basal uptake through 

activation of AMPK in response to an uncoupling effect on oxidative phosphorylation, a 

mechanism analogous to that of the classical uncoupler 2,4-dinitrophenol (Bashan et al., 

1993). It was also reported that the disruption of ATP production in L6 skeletal muscle 

cells by DNP causes the efflux of calcium from the mitochondria. Calcium chelation and 

inhibitors of PKC inhibited DNP-mediated glucose uptake but not AMPK activation. It was 

thus concluded that calcium and cPKC partly mediate the stimulation of glucose uptake in 

L6 skeletal muscle cells by DNP (Khayat et al., 1998; Patel et al., 2001). The possibility 

that calcium plays a role in the increase of glucose uptake by caffeic acid esters requires 

further testing. 

As is the case with the biguanides, mitochondrial uncouplers can potentially cause 

lactic acidosis. Therefore, the safety of caffeic acid derivatives can only be maximized at 

the cost of activity. Sixteen other related compounds were selected to address specific 

structure–activity hypotheses. Of these, none exhibited uncoupling activity nor significantly 

stimulated muscle cell glucose. 

The results demonstrated that an intact caffeic acid moiety, devoid of strongly 

ionisable groups is essential for activity. Lipophilicity was also found to be a strong 

predictor not only of both uncoupling and glucose uptake stimulating activities but also of 

toxicity expressed as reduced cell viability. The best compromise, in this case, is CAME 
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which still exhibits an interesting increase in glucose uptake (65% at 50 μM), without 

negatively affecting cell viability. Due to its outstanding activity to cytotoxicity ratio, 

CAME appears promising and seems worthy of further studies investigating the potential of 

this compound and of other related derivatives as antidiabetic products. 

Finally, the antidiabetic activity of V. vitis was validated in a type 2 diabetic animal 

model, namely KKA
y 

mice. The results indicated that, despite the possibility of providing 

slight extra calories due to its sugar content (Hjalmasson and Ortiz, 2001), V. vitis exhibited 

potent and immediate antihyperglycemic, appetite- and weight-reducing effects. Indeed, the 

pair-feeding study suggested that the antihyperglycemic and antiobesity effects of V. vitis 

were mediated, to a great extent, by the reduction of food intake. Other effects such as 

improvement in insulin sensitivity, a tendency towards reduction of plasma and liver 

triglycerides, activation of AMPK, stronger expression of PPAR-α in the liver and a 

tendency to increase GLUT4 content in the muscle also contributed to the antidiabetic 

activity of V. vitis extract.   

On the other hand, the administration of V. vitis to normal C57BL/6J neither altered 

blood glucose levels nor reduced body weight, which suggests an activity of V. vitis on the 

defective melancortin system in KKA
y
 brain. Thus V. vitis could be an interesting 

therapeutic agent in humans with eating disorders related to central melancortin system. 

Further research is needed especially that the biochemical and histological analysis indicate 

absence of toxicity.  

The overall results of the in vivo study make V. vitis a valuable therapeutic agent in 

a culturally adapted approach to diabetes care of Cree communities who are not ready to 

give up their traditional preparations for modern pharmaceuticals dosage forms. By 

identifying the active principles, the target sites and the mode of action, this thesis provides 

tools for phytochemical analysis, standardization and quality control of the traditional 

preparations. A process that is necessary to ensure efficacy, safety and consistency in 

composition and biological activity of traditional preparations. 
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6. Conclusion and perspective 

The results of this thesis demonstrate that V. vitis berries extract possesses 

promising anti-hyperglycemic activities. Indeed, in vitro, V. vitis stimulated glucose uptake 

in murine C2C12 and rat L6 muscle cells in culture by promoting GLUT4 translocation to 

the membrane. These effects are thought to be downstreams of mitochondrial respiration 

inhibition and AMPK pathway activation. Interestingly, our in vivo studies showed that V. 

vitis exhibited significant anti-hyperglycemic and anti-obesity effects in diabetic KKA
y
 

mice due to appetite reducing properties on one hand. On the other hand, V. vitis tended to 

increase the content of GLUT4 in KKA
y
 muscle and to reduce hepatic triglyceride content 

(probably due to increased PPAR-α protein levels). Our study suggests that V. vitis has a 

potential clinical utility in treating diabetes. However, detailed understanding of the mode 

of action of V. vitis will be necessary for its appropriate use. Several key factors remain to 

be considered.  

As discussed earlier, treatment of type 2 diabetes revolves around controling 

circulating glucose levels (either through glucose production or utilization or through 

increasing insulin secretion and effectiveness) or by reduction of energy intake or 

increasing energy expenditure. Therefore, in addition to the mechanisms of glycemic 

control observed in this thesis, V. vitis effect could stem from the effect of this plant extract 

on other glucose transporters. We observed increased glucose uptake by C2C12 myotubes, 

although they do not sufficiently express GLUT4. GLUT1, hence might account for a 

significant portion of glucose transport in this skeletal muscle cell line (Nedachi and 

Kanzaki, 2006). In addition, the increase in GLUT1 mediated glucose uptake is reported to 

be associated with activation of AMPK (Barnes et al., 2002). It is thus conceivable that 

modulation of GLUT1 translocation and expression can be a mechanism that contributes to 

the antihyperglycemic effect of V. vitis in skeletal muscle and need to be investigated.  

Secondarily, it is well established that the liver plays an important role in promoting 

glucose homeostasis. Indeed, in type 2 diabetes, hepatic glucose production is the main 

cause of fasting and postprandial hyperglycemia (Postic et al., 2004). The liver was also 

reported to be the target of antidiabetic drugs such as metformin and TZDs. These two 
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drugs suppress hepatic glucose production by activating hepatic AMPK. Thereby, another 

potential mechanism of V. vitis would be the activation of AMPK in hepatic cells and the 

subsequent reduction of hepatic glucose output mediated by inhibition of gluconeogenic 

enzymes (such as G-6-Pase, PEPCK and fructose-1,6-biphsophate). Further studies are 

needed to assess this potential effect of V. vitis on the liver and its control of glucose 

homeostasis. 

Thirdly, reduction of energy intake is a very important strategy in diabetes and 

obesity management. The satiety-inducing effect of V. vitis could be attributed to inhibition 

of AMPK in the brain. Recent studies have shown that activation of hypothalamic AMPK 

increased food intake to restore energy balance (Kim and Lee, 2005).  In contrast to 

activation of AMPK in liver and skeletal muscle, metformin inhibits AMPK in the 

hypothalamus. This mechanism was proposed to be at the base of the anorexic effect of 

metformin (Han et al., 2005). Furthermore, appetite regulating hormones like leptin and 

ghrelin were reported to regulate hypothalamic AMPK (Gao et al., 2007b). Therefore, it 

would be interesting to investigate the effect of V. vitis on hypothalamic AMPK. If V. vitis 

inhibits hypothalamic AMPK, this might explain the decrease in appetite observed upon 

treatment with V. vitis. Another possible target of V. vitis in the hypothalamus is the AgRP. 

Neuropeptide Y (NPY) is another orexigenic peptide that is co-expressed with AgRP in the 

arcuate nucleus of the hypothalamus. Hence, it would be important to study the effect of V. 

vitis on the expression of these two neuropeptides and their regulation of the melanocortin 

system which is responsible for feeding behavior. 

Lastly, increasing energy expenditure is an important target in weight management 

strategies and control of diabetes. Mitochondria play a fundamental role, not only in energy 

production, but also in energy dissipation through thermogenesis. Uncoupling proteins 

(UCPs) are mitochondrial proteins involved in energy expenditure. UCP-1 is present 

exclusively in brown adipose tissue in rodents and is responsible for thermogenesis during 

cold exposure. Recent research has provided evidence that brown adipose tissue is also 

found in the upper part of the body of adult human (Nedergaard et al., 2007).  On the other 

hand, UCP-2 is found in white fat, while UCP-3 is highly skeletal muscle specific 

(Nordfors et al., 1998), (Zhou et al., 2000). It is worthy to note that expression of UCP-3 is 
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upregulated by chronic AMPK activation (Putman et al., 2003). Therefore, mediated by 

activation of AMPK, V. vitis could increase the expression of these thermogenic proteins. 

Indeed, upregulation of UCP-3 is a part of the response to enhanced mitochondrial 

biogenesis (Zhou et al., 2000).  The co-transcription factor, peroxisome proliferator-

activated receptor gamma coactivator-1 (PGC-1α) is an essential element in mitochondrial 

biogenesis and was shown to be regulated by factors such as activation of AMPK and 

calcium/calmodulin-dependent protein kinase IV (Atherton et al., 2005), (Liu et al., 2009). 

Recent studies showed that oxidative damage leading to decreased mitochondrial number 

and function is associated with a wide variety of diseases including insulin resistance, 

obesity and diabetes. Therefore, we hypothesize that V. vitis enhanced expression of PGC-

1α, UCP-3 and increased mitochondrial biogenesis as a major response to activation of 

AMPK in muscle (Liu et al., 2009), (McCarty et al., 2009). 

Our thesis has also shown that caffeic acid methyl ester (CAME) holds great 

potential for development as antidiabetic agents. Future work will be devoted to enable 

better understanding of the mechanism of the antidiabetic activity and the molecular targets 

of CAME and CAAE and to validate their antidiabetic properties in mouse model of type 2 

diabetes.  

Notwithstanding all the work still necessary, the present thesis represents a major 

contribution to the validation and understanding of the antidiabetic potential of V. vitis. 
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