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Abstract

We study markets with indivisible goods where monetary compensations are not possible.

Each individual is endowed with an object and a preference relation over all objects. When

preferences are strict, Gale’s top trading cycle algorithm finds the unique core allocation. When

preferences are not necessarily strict, we use an exogenous profile of tie-breakers to resolve

any ties in individuals’ preferences and apply Gale’s top trading cycle algorithm for the result-

ing profile of strict preferences. We provide a foundation of these simple extensions of Gale’s

top trading cycle algorithm from strict preferences to weak preferences. We show that Gale’s

top trading cycle algorithm with fixed tie-breaking is characterized by individual rationality,

strategy-proofness, weak efficiency, non-bossiness, and consistency. Our result supports the

common practice in applications to break ties in weak preferences using some fixed exogenous

criteria and then to use a “good and simple” rule for the resulting strict preferences. This

reinforces the market-based approach even in the presence of indifferences because always com-

petitive allocations are chosen.

JEL Classification: C78, D63, D70
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1 Introduction

Consider the problem of exchanging a number of indivisible goods (“houses” or “objects”) among

a group of individuals without monetary compensations. Each individual is endowed with one

object and consumes exactly one object. The individuals do not pay for the objects; neither is

any form of side payments between the individuals permitted. Clearly, this type of problem arises

when reallocating courses among professors, apartments among existing tenants (where rents are

∗I am grateful to William Thomson, Tommy Andersson, Vikram Manjunath and Lars-Gunnar Svensson for their
helpful comments and suggestions and to Lund University for its hospitality. I acknowledge financial support from
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regulated), offices among employees, tasks among workers, seats at public schools among students,

and time sharing slots of vacation apartments among their owners.1

The classical piece by Shapley and Scarf (1974) introduced this problem and uses the notion of

Edgeworthian exchange to solve it. The individuals are free to engage in multilateral negotiations

and exchange by using their allocation either individually or as part of a coalition to block proposed

allocations. The set of unblocked allocations is the core. In their classic paper Shapley and Scarf

(1974) use Gale’s “Top Trading Cycle” algorithm to establish the existence of the core of this

“housing market” (or market with indivisible goods). A number of subsequent “early” papers have

used this “exchange based” approach to investigate further the properties of cores of markets with

indivisibilities (see Roth and Postlewaite (1977), Wako (1984), and Ma (1994)) showing that in the

special case when preferences are restricted to be linear orderings, the core exists, is unique and

efficient, and corresponds to the unique competitive allocation of the housing market.

Recent literature over the past ten years regarded this problem where the indivisible goods are

commonly owned and no individual has a priori any right for any available object.2 Then all indi-

viduals have equal right to consume any of the houses. Several characterizations of certain classes

of mechanisms were obtained. All these mechanisms satisfy two basic properties, namely strategy-

proofness meaning that no individual can gain by misreporting his preference and non-bossiness

(Satterthwaite and Sonnenschein, 1981) meaning that no individual can change the allocation with-

out changing his assigned house. Using these two properties, Svensson (1999) characterized serial

dictatorships with “neutrality”, Pápai (2000) characterized hierarchical exchange rules with ef-

ficiency and “reallocation-proofness”, and Pycia and Ünver (2009) characterized “trading cycles

with brokers and owners” with efficiency. The last two characterizations used in addition efficiency

whereas in the first one efficiency is a consequence of the other properties. Except for Svensson’s

characterization, the other two results characterize large classes of mechanisms.3 It is also well

known that in house allocation with strict preferences, strategy-proofness and non-bossiness are

equivalent to group strategy-proofness (Pápai, 2000). Group strategy-proofness means that no

group of agents is able to manipulate the mechanism such that all members of the group become

weakly better off and some are strictly better off.

In most of the literature on house allocation, agents are assumed to possess asymmetric, also

called strict, preferences over the set of houses. In applications we cannot rule out that agents

may be indifferent between various objects. There are several reasons why this might occur. For

example, agents might have little information about the objects. Then we expect that they might

1The introduction in Pápai (2000) gives examples of other similar situations.
2For a survey, see Sönmez and Ünver (2009).
3Among others, Ergin (2002) and Ehlers and Klaus (2007) characterize mixed dictator-pairwise exchange rules.

Again this class of rules satisfies strategy-proofness, non-bossiness, and efficiency. Furthermore, these properties are
satisfied by the class of rules characterized by Sönmez and Ünver (2010): in house allocation with existing tenants
they provide a foundation of the you request my house-I get your turn mechanisms introduced by Abdulkadiroglu
and Sönmez (1999).
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not have the ability to distinguish among all objects. It is important to understand this case. In

contrast with the characterizations of large classes of rules for the strict domain, when indifferences

are allowed the results are less appealing. Ehlers (2002) shows that group strategy-proofness and

efficiency are incompatible on the weak domain whereas Bogomolnaia, Deb and Ehlers (2005) show

that basically only serial dictatorships4 satisfy strategy-proofness, non-bossiness, and efficiency.

Therefore, for the weak domain the equivalence of strategy-proofness and non-bossiness with group

strategy-proofness breaks down, and in conjunction with efficiency, we either end up with no rules

or only with basically serial dictatorships. Of course, in serial dictatorships individuals who choose

first have an advantage over individuals who choose later and these mechanisms treat individuals

unequally. Another consequence of these results is that in the housing market with indifferences,

individual rationality and efficiency are incompatible with either (strategy-proofness and non-

bossiness) or group strategy-proofness.

In the housing market with strict preferences, only very few characterizations were obtained. An

important paper by Ma (1994) showed that the top trading cycle algorithm is the only mechanism

satisfying individual rationality, strategy-proofness5, and efficiency. Miyagawa (2002) showed that

any mechanism satisfying individual rationality, strategy-proofness, non-bossiness, and anonymity

must be either the top trading cycle algorithm or the no-trade mechanism. However, so far no

characterization has been obtained in housing markets with indifferences. This is the purpose of

our study.

Two recent and important contributions by Alcalde-Unzu and Molis (2011) and Jaramillo and

Manjunath (2012) propose two distinct families of rules satisfying individual rationality, strategy-

proofness, and efficiency when indifferences are allowed. However, a foundation of the set of

rules satisfying individual rationality, strategy-proofness, and efficiency is missing. In addition,

as mentioned above, any rule satisfying these properties must be vulnerable to collusion because

they all violate non-bossiness6. Furthermore, these two families are computationally complex for

calculating the outcome.7

All characterizations in house allocation with or without indifferences share the following com-

mon feature: the characterized rules satisfy strategy-proofness and non-bossiness. Thus, we take as

a basic set of axioms individual rationality, strategy-proofness, and non-bossiness. Now of course

it is impossible for any such rule to be efficient and we can at most require weak efficiency : there

is no allocation which all agents strictly prefer to the chosen allocation. In addition, we require

consistency : if some group of agents are assigned only objects in this group, then we may remove

those agents with their allotments (or endowments) without changing the allocation of the other

4Svensson (1994) was the first one to define serial dictatorships for the weak domain.
5Roth (1982) was the first to show that for strict preferences the top trading cycle algorithm satisfies strategy-

proofness.
6See also Proposition 2 in Jaramillo and Manjunath (2012).
7In Alcalde-Unzu and Molis (2011) it is not clear whether their algorithm is NP-hard or not whereas the algorithm

by Jaramillo and Manjunath (2012) runs in polynomial O(|N |5) time (which tends to infinity very quickly).
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agents. This property is important in order to avoid appeals and the reallocation of the objects in

some group of agents does not depend on the allotments of the other agents.

Using these properties we characterize a set of rules which is frequently used in real life: given

a profile of weak preferences we break ties using some exogenously fixed tie-breakers. Then for the

obtained strict profile we simply apply Gale’s top trading cycle algorithm. We show that top trading

cycle rules with fixed tie-breakers are the only rules satisfying individual rationality, strategy-

proofness, non-bossiness, weak efficiency, and consistency. A byproduct of our result is that any

such mechanism chooses for each profile a competitive allocation. This reinforces the market-based

approach even in the presence of indifferences. Related characterizations of competitive rules with

fixed prices have been obtained by Barberà and Jackson (1995) and Miyagawa (2001) by using

properties similar to ours. Furthermore, the proof reveals that our result is true for any domain in

between the strict preferences and the weak preferences. Even if some indifferences are not allowed

or seem implausible, our characterization of top trading with fixed tie-breaking remains true in

those environments.

Our result supports a frequent practice in applications: exogenous fixed tie-breaking is applied

to the weak preferences and then “good” rules from the strict domain are used. Top trading with

fixed tie-breaking is simple and market designers may directly apply or implement it. Another

recent example of such practice is Abdulkadiroğlu, Pathak and Roth (2009): in school choice with

indifferences in priorities, equal priorities are broken according to fixed tie-breakers and then the

standard student-proposing deferred-acceptance algorithm is applied to the profile of reported strict

preferences and the obtained strict priorities. They defend such practice by the fact that no other

strategy-proof mechanism Pareto dominates the DA-algorithm with fixed tie-breaking.

Variants of the top trading cycle algorithm have been proposed in a number of applications,

for example for school choice by Abdulkadiroğlu and Sönmez (2003) and Kesten (2007, 2010) and

in house allocation with existing tenants by Abdulkadiroğlu and Sönmez (1999). This algorithm

plays also the important role in Pápai (2000), Larsson and Svensson (2005), and Ünver and Pycia

(2009). In all these papers preferences are strict. Our result suggests that when preferences are

weak, we break ties in a fixed manner and apply the corresponding variants of the top trading cycle

algorithm to the obtained strict profile.

The paper is organized as follows. Section 2 introduces markets with indivisible goods. Section

3 presents the main result. Section 4 contains the proof of the main result. Section 5 discusses our

main result.

2 House Exchange

Let N denote the finite set of potential agents. Agent i’s object (or endowment or house) is

denoted by i. Given N ⊆ N and i ∈ N , agent i is equipped with a (weak) preference relation Ri

on N . Any such relation is reflexive, complete and transitive (but not necessarily strict). Let Pi
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denote the strict relation associated with Ri and Ii the indifference relation associated with Ri. We

assume that agent i is never indifferent between his endowment i and any other object, i.e. for all

j ∈ N\{i}, we have jPii or iPij. This means agent i is able to distinguish his endowment from any

other object. Under this restriction any agent strictly prefers to keep his own object to any object

with the same characteristics (because i likes to avoid moving). In Section 5 we describe how to

adjust our main result when indifferences with the endowment are allowed.

Let RN
i denote the set of all such preference relations of agent i on N . A relation Ri ∈ RN

i is

strict when for all j, k ∈ N such that j 6= k, we have either jPik or kPij. Let PN
i denote the set

of all strict preference relations of agent i on N . Let RN = ×i∈NRN
i denote the set of all weak

preference profiles and let PN = ×i∈NPN
i denote the set of all strict preference profiles. Given

R ∈ RN and S ⊆ N , let RS = (Ri)i∈S denote the restriction of R to S and R−S = RN\S . For any

i ∈ N , let Ri|S denote the restriction of Ri to S, and let R|S = (Ri|S)i∈N denote the profile where

each agent i’s preference relation is restricted to S.

An economy consists of a finite set N ⊆ N and a profile R ∈ RN . Since agent i’s endowment

is denoted by i, an economy is for short a profile R ∈ RN . An allocation for N is a mapping

µ : N → N such that for all i, j ∈ N with i 6= j, µ(i) 6= µ(j). Under any allocation each agent

is receiving some object and no two agents receive the same object. Here µ(i) denotes the object

received by agent i. Let AN denote the set of all allocations for N . A(n allocation) rule is a

mapping

ϕ : ∪N⊆NRN −→ ∪N⊆NAN

such that for all N ⊆ N and all R ∈ RN we have ϕ(R) ∈ AN . Let ϕi(R) denote the object assigned

to i by ϕ for R.

Given R ∈ RN and two allocations µ, µ′ ∈ AN , we write µ ∼R µ′ if for all i ∈ N , µ(i)Iiµ
′(i). In

other words, all agents view µ and µ′ welfare equivalent. Given two rules ϕ and ϕ̂, we write ϕ ∼ ϕ̂
if for all N ⊆ N and all R ∈ RN we have ϕ(R) ∼R ϕ̂(R). Then the rules ϕ and ϕ̂ are equivalent.

We will be interested in the following axioms.

Individual rationality means that each individual should always weakly prefer the assigned

object to his endowment. If a rule is not individually rational, then agents are not necessarily

willing to reallocate their endowments.

Individual Rationality: For all N ⊆ N and all R ∈ RN , we have ϕi(R)Rii for all i ∈ N .

Strategy-proofness means that no individual can manipulate the mechanism to his advantage

by misreporting his preference. This incentive-compatibility condition ensures that agents report

truthfully and the allocation chosen by the rule is based on true preferences.

Strategy-Proofness: For all N ⊆ N , all R ∈ RN , all i ∈ N , and all R′i ∈ RN
i , we have
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ϕi(R)Riϕi(R
′
i, R−i).

Weak efficiency means that it is impossible to make all agents strictly better off through some

other allocation. Note that this requirement is very weak.

Weak Efficiency: For all N ⊆ N and all R ∈ RN , there exists no µ ∈ AN such that µ(i)Piϕi(R)

for all i ∈ N .

Non-bossiness means that no individual can change the allocation without changing his

assigned object. This property prevents collusion among agents because if a mechanism violates

this condition, then an agent may be bribed by others in order to change the allocation without

changing his assigned object.

Non-Bossiness: For all N ⊆ N , all R ∈ RN , all i ∈ N , and all R′i ∈ RN
i , if ϕi(R) = ϕi(R

′
i, R−i),

then ϕ(R) = ϕ(R′i, R−i).
8

Consistency requires that whenever for a profile some set of agents reallocates their endow-

ments, then we may remove these agents with their endowments from the economy without

changing the allocation chosen for the other agents. This property implies that the mechanism

is immune with respect to appeals where some set of agents may ask to reallocate their endowments.

Consistency: For all S ⊆ N ⊆ N and all R ∈ RN , if ∪i∈N\S{ϕi(R)} = N\S, then

ϕi(RS |S) = ϕi(R) for all i ∈ S.910

Note that this condition is much weaker than the property used in economies without individual

endowments where any set of agents can leave with their allotments.

3 Top trading with fixed tie-breaking

Given Ri ∈ RN
i and R′i ∈ PN

i , we say R′i is a strict transformation of Ri if for all j, k ∈ N , we have

jPik ⇒ jP ′ik. Given R ∈ RN , we say that R′ ∈ PN is a strict transformation of R if for all i ∈ N ,

R′i is a strict transformation of Ri. Let ST (R) denote the set of all strict transformations of R. Of

8Note that under this condition, if an agent changes his report from Ri to R′i and is assigned the same object,
then independently of his true preference relation agent i is indifferent between the two reports Ri and R′i (given
R−i) and all other agents are indifferent independently of their true preferences if the same allocation is chosen under
R and (R′i, R−i).

9Note that the part ∪i∈N\S{ϕi(R)} = N\S may equivalently be replaced by ∪i∈S{ϕi(R)} = S.
10Thomson (1992) proposes to use the name “separation independence”. For a survey of consistent allocation rules,

see Thomson (2009).
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course, for strict R we have ST (R) = {R}.
Note that in ST (R) ties can be broken arbitrarily. We will be interested in the case where

ties are broken in a fixed manner. Let �i∈ PNi denote a fixed tie-breaker. This tie-breaker will

be used to break ties in any weak preference relation of i in order to obtain a strict preference

relation. Given Ri ∈ RN
i , let �i (Ri) denote the strict transformation R′i ∈ PN

i of Ri such that for

all j, k ∈ N with j 6= k, if jIik and j �i k, then jP ′ik.

Let � = (�i)i∈N . For any R ∈ RN , let � (R) = (�i (Ri))i∈N . Obviously, if R ∈ PN , then

� (R) = R. For any strict R, let f(R) denote the outcome of Gale’s top trading cycles algorithm.

For a formal description of the algorithm we refer the reader to Pápai (2000). Informally, the

algorithm works as follows: for any N and any profile R ∈ PN , each agent points to his most

preferred object (or agent). Because N is finite, there must be at least one (top) cycle and for each

top cycle agents trade their endowments (as specified by the cycle). The objects of these trading

cycles are deleted from the preferences of the remaining agents and we apply the same procedure

to the remaining agents and their preferences restricted to the remaining objects (or agents), and

so on.

Given a profile of fixed tie-breakers �, let f� denote Gale’s top trading cycles algorithm with

fixed tie-breaking �: for all R ∈ RN we have

f�(R) = f(�(R)).

In other words, in any weak preference profile ties are broken according to � and then Gale’s top

trading cycles algorithm is applied to the resulting strict profile.

The following is our main result.

Theorem 1. (a) For any profile of fixed tie-breakers �, f� satisfies individual rationality,

strategy-proofness, weak efficiency, non-bossiness, and consistency.

(b) If a rule ϕ satisfies individual rationality, strategy-proofness, weak efficiency, non-bossiness,

and consistency, then there exists a profile � of fixed tie-breakers such that ϕ ∼ f�.

Theorem 1 gives a justification for the following common practice in real life: indifferences are

resolved using some fixed tie-breaking and the “good and simple” top trading cycle algorithm is

applied to the resulting profile of strict preferences. Of course, (b) of Theorem 1 says that any rule

satisfying our properties must be equivalent to a top trading cycle rule with fixed tie-breaking. It

must not necessarily coincide with such a rule because sometimes there are “many” indifferences

and another utility-equivalent allocation may be chosen without violating our conditions. In a

sense, this is not surprising because agents only care about their utilities and not about the exact

allocation. The following example gives a rule which satisfies all our properties but which does not

coincide with a top trading cycle rule with fixed tie-breaking.
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Example 1. Let N = {1, 2, 3, 4} and �= (�1,�2,�3,�4) be given by:

�1 �2 �3 �4

2 3 4 1

3 4 1 2

4 2 2 3

1 1 3 4

.

We define the rule φ: for all N ⊆ N and all R ∈ RN , (i) if N = N , f�(R) = (2, 3, 4, 1), and both

4 ∈ top(R1) and 2 ∈ top(R3) (where top(Ri) denotes the set of most Ri-preferred elements), then

φ(R) = (4, 3, 2, 1); and (ii) otherwise φ(R) = f�(R).

Note that φ ∼ f� and φ 6= f� because for profiles R of type (i), we have φ(R) = (4, 3, 2, 1)

whereas f�(R) = (2, 3, 4, 1). Since φ ∼ f�, from (a) of Theorem 1 it is obvious that φ satisfies

individual rationality, strategy-proofness, and weak efficiency.

In order to check that φ satisfies non-bossiness, let R ∈ RN , i ∈ N , and R′i ∈ RN
i be such

that φi(R) = φi(R
′
i, R−i). Now if both R and (R′i, R−i) are profiles of type (i) or both R and

(R′i, R−i) are profiles of type (ii), then non-bossiness is satisfied. Suppose that R and (R′i, R−i) are

not profiles of the same type. Then N = N and say R is a profile of type (i) and (R′i, R−i) is a

profile of type (ii).

First, suppose that i ∈ {2, 4}. Then φi(R) = f�i (R). We also have φi(R
′
i, R−i) = f�i (R′i, R−i)

because (R′i, R−i) is of type (ii). By φi(R) = φi(R
′
i, R−i), we now have f�i (R) = f�i (R′i, R−i).

Thus, by non-bossiness of f�, f�(R) = f�(R′i, R−i) = (2, 3, 4, 1). Since i ∈ {2, 4}, we now again

have 4 ∈ top(R1) and 2 ∈ top(R3) which means that (R′i, R−i) is of type (i), a contradiction.

Second, suppose that i ∈ {1, 3}, say i = 1 (the case i = 3 is similar). If 2 ∈ top(R′1), then

f�1 (R′1, R−1) = 2 6= 4 = φ1(R). Since (R′1, R−1) is of type (ii), we have φ1(R
′
1, R−1) = 2 which

contradicts the fact φ1(R
′
1, R−1) = φ1(R). Thus, 2 /∈ top(R′1). If 3 ∈ top(R′1), then f�(R′1, R−1) =

(3, 2, 4, 1). Then φ1(R
′
1, R−1) = 3 6= 4 because (R′1, R−1) is of type (ii). This contradicts the

fact φ1(R
′
1, R−1) = φ1(R). Thus, top(R′1) = {4}. But then f�(R′1, R−1) = (4, 3, 2, 1). Because

(R′1, R−1) is of type (ii), we now have φ(R′1, R−1) = f�(R′1, R−1). But now φ(R′1, R−1) = φ(R),

and φ satisfies non-bossiness.

In order to check that φ satisfies consistency, let R ∈ RN . If R is of type (ii), then this is obvious.

Let R be of type (i). But then we may remove only {1, 4} or {2, 3} from R and consistency is

satisfied.

Therefore, φ satisfies all the properties in Theorem 1 but φ 6= f�. Of course, there exists no

other profile of tie-breakers �′ such that φ = f�
′

because φ is welfare equivalent to f� and for

� 6= �′ we have f� 6∼ f�′ . �

Remark 1. Regarding the proof of Theorem 1, (a) follows straightforwardly from the fact that

the top trading cycles algorithm satisfies all the properties on the strict domain and ties are broken
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exogenously. In proving (b), we first show that any rule satisfying our properties must coincide with

the top trading cycles algorithm for strict preferences. Using this fact, then we show that for any

preference profile, the rule must choose the outcome of the top trading cycles algorithm for some

strict transformation of the profile. Then we construct for each agent i a tie-breaker �i and show

that for any profile and any top cycle of the top trading cycles algorithm with these tie-breakers,

all agents in this trading cycle must receive one of their most preferred objects. Then we show

that for any profile and any top cycle of the top trading cycles algorithm with these tie-breakers,

each agent in this trading cycle must receive an endowment of one of the agents belonging to the

trading cycle. This and the previous step are non-straightforward because of handling agents with

indifferences. Finally, using these two previous steps, then we can show (b) with consistency.

We relate Theorem 1 to the core and to the set of competitive allocations in a housing market.

Given R ∈ RN , T ⊆ N , and µ ∈ AN , if for some µ̄ ∈ AT , (i) for all i ∈ T , µ̄(i)Riµ(i), and (ii) for

some j ∈ T , µ̄(j)Pjµ(j), then we say that coalition T blocks µ under R. The core chooses for each

profile the allocations that are not blocked by any coalition.

Given a preference profile R ∈ RN , an allocation is called competitive when there exist prices

for all i ∈ N such that each agent maximizes his preference on the set of affordable objects and

the price of his assignment at µ equals the price of his initial endowment. We consider the solution

that chooses for each preference profile its set of competitive allocations, called the competitive

solution. Formally, given R ∈ RN , µ ∈ AN is a competitive equilibrium if there exists a price

vector (p(1), p(2), . . . , p(n)) ∈ RN such that for all i ∈ N , (i) p(µ(i)) = p(i); and (ii) for all j ∈ N ,

if p(j) ≤ p(i), then µ(i)Rij. Now a rule is competitive if it chooses for any profile a competitive

allocation.

When preferences are linear orders, the core contains exactly one allocation, which is the unique

competitive equilibrium (Roth and Postlewaite, 1977). When preferences are weak orders, the core

is always a subset of the competitive solution (Wako, 1984). Moreover, for each profile, the set of

competitive allocations is obtained by computing the cores of all its strict transformations (Shapley

and Scarf, 1974).11 Now of course, any top trading cycles algorithm with fixed tie-breaking chooses

for each profile a competitive allocation. This supports the market-based approach even when

preferences are weak, also because competitive allocations always exist whereas the core may be

empty.

Top trading with fixed tie-breaking can be seen as competitive rules with fixed tie-breaking. Of

course, those rules are not efficient12 (and therefore, the rules proposed by Alcalde-Unzu and Molis

(2011) and Jaramillo and Manjunath (2012) are not competitive) as the following example shows:

11Ehlers (2004) shows that the minimal monotonic extension of the core is the correspondence choosing for each
profile its set of competitive allocations. Recently, Klaus, Klijn and Walzl (2010) established on the domain RN

that the set of competitive allocations is the unique von Neumann-Morgenstern farsightedly stable set based on weak
dominance.

12Efficiency: For all N ⊆ N and all R ∈ RN , there exists no µ ∈ AN such that µ(i)Riϕi(R) for all i ∈ N , and
µ(j)Pjϕj(R) for some j ∈ N .
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let N = {1, 2, 3} and consider R ∈ RN

R1 R2 R3

2, 3 1 1

1 3 2

2 3

.

Now (2, 1, 3) and (3, 2, 1) are the competitive allocations under R whereas (3, 1, 2) and (2, 3, 1) are

the efficient allocations under R. Hence, there is no competitive rule is efficient in this example (and

no efficient rule is competitive). In a sense this is not surprising because our rules are competitive

with fixed tie-breaking. The same feature is shared in Barberà and Jackson (1995) where in classical

exchange economies competitive rules with fixed prices (or fixed proportions) are characterized

and in Miyagawa (2001) where with indivisible goods and monetary compensations competitive

rules with fixed prices are characterized. Interestingly, individual rationality, strategy-proofness,

and non-bossiness are common properties used in Theorem 1 and their characterizations. Note,

however, in our main result tie-breaking is fixed but not prices.

Remark 2 (Group Manipulations). Group strategy-proofness means that no group of agents is

able to manipulate the mechanism such that all members of the group become weakly better off

and some are strictly better off. Weak group strategy-proofness means that no group of agents is

able to manipulate the mechanism such that all members of the group become strictly better off.

Group Strategy-Proofness: For all N ⊆ N , all R ∈ RN , and all S ⊆ N , there exists no

R′S ∈ ×i∈SRN
i such that ϕi(R

′
S , R−S)Riϕi(R) for all i ∈ S with strict preference holding for some

j ∈ S.

Weak Group Strategy-Proofness: For all N ⊆ N , all R ∈ RN , and all S ⊆ N , there exists no

R′S ∈ ×i∈SRN
i such that ϕi(R

′
S , R−S)Piϕi(R) for all i ∈ S.

Pápai (2000) showed that under strict preferences, strategy-proofness and non-bossiness are

equivalent to group strategy-proofness whereas from Ehlers (2002) it follows that group strategy-

proofness and efficiency are incompatible on the domain RN when |N | ≥ 3. Furthermore, top

trading with fixed tie-breaking is not group strategy-proof 13 but is weakly group strategy-proof

(Bird, 1984).14 Therefore, in Theorem 1 strategy-proofness may be replaced by the stronger (or

more robust) non-manipulability notion of weak group strategy-proofness without altering its con-

clusions.

13In the above example, if 2 �1 3, then choose R′1 such that 3P ′12P ′11, S = {1, 3}, and R′3 = R3; and if 3 �1 2, then
choose R′1 such that 2P ′13P ′11, S = {1, 2} and R′2 = R2.

14It is not known whether the rules proposed by Alcalde-Unzu and Molis (2011) and Jaramillo and Manjunath
(2012) satisfy weak group strategy-proofness (or even whether individual rationality, efficiency and weak group
strategy-proofness are compatible).
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4 Proof of Theorem 1

We show (a) of Theorem 1. Let � be a profile of tie-breakers.

First, f� satisfies individual rationality : let R ∈ RN and i ∈ N ; since f satisfies individual

rationality on the strict domain PN , we have f�i (R) �i (Ri)i. Since �i breaks the ties in Ri, we

now also have f�i (R)Rii, the desired conclusion.

Second, f� satisfies strategy-proofness: let R ∈ RN , i ∈ N , and R′i ∈ RN
i ; since f satisfies

strategy-proofness on the strict domain PN , we have f�i (R) �i (Ri)f
�
i (R′i, R−i). Since �i breaks

the ties in Ri, we now also have f�i (R)Rif
�
i (R′i, R−i), the desired conclusion.

Third, f� satisfies weak efficiency : let R ∈ RN and µ ∈ AN ; if µ(i)Pif
�
i (R) for all i ∈ N ,

then µ(i) �i (Ri)f
�
i (R) for all i ∈ N (with strict preference holding for all i ∈ N). Obviously this

contradicts the fact that f satisfies weak efficiency on the strict domain PN .

Fourth, f� satisfies non-bossiness: let R ∈ RN , i ∈ N , and R′i ∈ RN
i be such that f�i (R) =

f�i (R′i, R−i); since f satisfies non-bossiness on the strict domain PN , we have fi(� (R)) = fi(�
(R′i, R−i)) implies f(�(R)) = f(�(R′i, R−i)). Thus, f�(R) = f�(R′i, R−i).

Fifth, f� satisfies consistency : let R ∈ RN and S ⊆ N be such that ∪i∈N\S{f�i (R)} = N\S;

since f satisfies consistency on the strict domain PN we have fi(� (R−S |N\S)) = fi(� (R)) for all

i ∈ N\S. Thus, f�i (R−S |N\S) = f�i (R) for all i ∈ N\S.

We prove (b) of Theorem 1 in a number of lemmas. Let ϕ a be rule satisfying individual

rationality, strategy-proofness, weak efficiency, non-bossiness, and consistency. The roadmap of

our proof is described in Remark 1.

We will often use the following convention: given N ⊆ N and distinct i, j, k, l ∈ N , Ri : j, k, l, . . .

means we choose some Ri ∈ PN
i such that jPikPil and lPih for all h ∈ N\{j, k, l}. Throughout,

let N ⊆ N .

For a given (trading) coalition S ⊆ N , a (trading) cycle is an allocation µ ∈ AS such that there

exists a relabeling (i1, . . . , i|S|) of the agents in S such that µ(il) = il+1 for l ∈ {1, . . . , |S| − 1}
and µ(i|S|) = i1. We then sometimes write for this cycle c = (i2, . . . , i|S|, i1) and call S the trading

coalition of c.

Obviously, any µ ∈ AN partitions N into cycles.

Lemma 1. For all R ∈ PN , we have ϕ(R) = f(R).

Proof. Let R ∈ PN and let c be a top cycle in f(R) with trading coalition C. Without loss of

generality, let C = {1, . . . , k} and c = (2, 3, . . . , k, 1) (where 1 receives 2, 2 receives 3,. . ., k receives

1). We show that ϕi(R) = fi(R) for all i ∈ {1, . . . , k}. If k = 1, then by individual rationality,

ϕ1(R) = 1 = f1(R), the desired conclusion.

11



Let k ≥ 2 and suppose that ϕk(R) 6= 1. Let R′k : 1, k, . . .. By strategy-proofness and ϕk(R) 6= 1,

we have ϕk(R′k, R−k) 6= 1. By individual rationality, ϕk(R′k, R−k) = k. Thus, ϕk−1(R
′
k, R−k) 6= k.

Note that c is still a top cycle under (R′k, R−k) and fk−1(R
′
k, R−k) = k. Similarly as above we may

replace Rk−1 with R′k−1 : k, k − 1, . . . and obtain the same conclusions.

Finally, we obtain the profile (R′{1,...,k}, R−{1,...,k}) where ϕi(R
′
{1,...,k}, R−{1,...,k}) = i for all

i ∈ {1, . . . , k}. Now by consistency, ϕi(R
′
{1,...,k}|{1,...,k}) = i for all i ∈ {1, . . . , k}, which is a

contradiction to weak efficiency becaus c ∈ A{1,...,k} and c(i)Pii for all i ∈ {1, . . . , k}.
Hence, we must have ϕi(R) = fi(R) for all i ∈ {1, . . . , k}. Now by consistency, we have for all

i ∈ N\{1, . . . , k} both ϕi(R−{1,...,k}|N\{1,...,k}) = ϕi(R) and fi(R−{1,...,k}|N\{1,...,k}) = fi(R). Now

by the same arguments as above any top cycle must be executed for R−{1,...,k}|N\{1,...,k} by both

rules ϕ and f .

Because N is finite, we must have ϕ(R) = f(R), the desired conclusion. �

Remark 3. Note that the proof of Lemma 1 establishes a new characterization of Gale’s top

trading cycles algorithm on the domain of strict preferences: f is the only rule satisfying individual

rationality, strategy-proofness, weak efficiency, and consistency. Note that in this characterization

consistency is independent from the other properties: let e ∈ AN be such that e(i) = i for all

i ∈ N ; now for all N ⊆ N and all R ∈ PN , (i) if for some i ∈ N , Ri : i, . . ., then φ(R) = eN (where

eN = (e(i))i∈N ), and (ii) otherwise φ(R) = f(R). It is easy to check that φ satisfies individual

rationality, strategy-proofness, and weak efficiency, and that φ violates consistency.

Lemma 2. For all R ∈ RN , there exists R′ ∈ ST (R) such that ϕ(R) = f(R′).

Proof. Let R′ ∈ ST (R) be such that for all i, j ∈ N , if ϕi(R) 6= j and ϕi(R)Rij, then ϕi(R)P ′i j.

It is easy to see from strategy-proofness and non-bossiness that we must have ϕ(R) = ϕ(R′). Now

R′ ∈ PN and by Lemma 1, ϕ(R′) = f(R′). Hence, ϕ(R) = f(R′), the desired conclusion. �

Next we define for any i ∈ N the tie-breaker �i. For any j, k ∈ N such that |{i, j, k}| = 3,

consider the profile R ∈ R{i,j,k} such that

Ri Rj Rk

j, k i i

i j k

k j.

(1)

Now by Lemma 2, we have [ϕi(R) = j and ϕj(R) = i] or [ϕi(R) = k and ϕk(R) = i]. Now if

ϕj(R) = i, then we set j �i k, and if ϕk(R) = i, then we set k �i j. Furthermore, we set both

j �i i and k �i i.

Obviously, �i is reflexive, complete, and strict. Now �i is a tie-breaker if �i is transitive.

Lemma 3. For all i ∈ N , �i is transitive.
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Proof. Let j �i k and k �i l. We need to show j �i l.

If i ∈ {j, k, l}, then by construction we must have l = i. By definition, we then have j �i i, the

desired conclusion.

Let i /∈ {j, k, l}. Consider the profile R ∈ R{i,j,k,l} such that

Ri Rj Rk Rl

j, k, l i i i

i j k l

k j j

l l k

.

Now by Lemma 2, we have ϕi(R) 6= i. Suppose that ϕi(R) 6= j. By individual rationality,

ϕj(R) = j. Now by consistency and k �i l, we must have ϕi(R) = k. Hence, ϕl(R) = l. Now

again by consistency, ϕi(R−l|{i,j,k}) = k and ϕk(R−l|{i,j,k}) = i. Note that R−l|{i,j,k} is identical to

the profile in (1) which was used for the definition of�i on {j, k}. This is a contradiction to j �i k. �

By Lemma 3, � = (�i)i∈N is a well-defined profile of tie-breakers.

We will use the following convention: whenever we write c is a top cycle in f�(R), then we

mean that c is a top cycle in f(�(R)).

The following is the first key to the proof of Theorem 1. In the proof of Lemma 4, we want to

show that for all R, if c is a top cycle in f�(R) with trading coalition C, then we have ϕi(R)Iif
�
i (R)

for all i ∈ C. When this does not hold, the difficulty here and in all subsequent lemmas is to handle

any agent i where ϕi(R)Iif
�
i (R) and ϕi(R) 6= f�i (R). This is because for any such agent we cannot

change his preference relation to a strict relation without losing the above indifference because our

axioms do not impose any requirement for such changes.

For any Ri ∈ RN
i , let top(Ri) denote the set of most preferred objects under Ri in N .

Lemma 4. For all R ∈ RN , if c is a top cycle in f�(R) with trading coalition C, then ϕi(R)Iif
�
i (R)

for all i ∈ C.

Proof. Let R ∈ RN and let c be a top cycle in f�(R) with trading coalition C. Without loss

of generality, let C = {1, . . . , k} and c = (2, 3, . . . , k, 1) (where 1 receives 2, 2 receives 3,. . ., k

receives 1). Note that for all i ∈ {1, . . . , k}, f�i (R)Riϕi(R). We show that ϕi(R)Iif
�
i (R) for all

i ∈ {1, . . . , k}.
We show Lemma 4 first for cycles of length one and length two, and then by induction for cycles

of length greater than or equal to three.

If k = 1, then by individual rationality and the fact that there is no i 6= 1 such that iI11,

ϕ1(R) = 1 = f�1 (R), the desired conclusion.

If k = 2 and f�i (R)Piϕi(R) for some i ∈ {1, 2}, say i = 2, then let R′2 : 1, 2, . . .. By individ-

ual rationality and strategy-proofness, ϕ2(R
′
2, R−2) = 2. Note that by consistency and individ-
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ual rationality, for R′1 : 2, 1, . . . we have ϕ1(R
′
1, R

′
2, R−1,2) = 1. Thus, by strategy-proofness,

ϕ1(R
′
2, R−2) ∈ top(R1) and |top(R1)| ≥ 2. Let c′ denote the cycle along which 1 trades in

ϕ(R′2, R−2), and let C ′ be this coalition. Now by consistency, we may suppose N = C ′ ∪ {2}. By

strategy-proofness and non-bossiness, we may suppose that for all i ∈ C ′\{1, 2}, Ri : ϕi(R), i, . . ..

Let ϕ1(R
′
2, R−2) = l. Note that l = 1 is impossible because 2P11 from the fact that (2, 1) is a top cy-

cle in f�(R′2, R−2) and from strategy-proofness, l ∈ top(R1). Let ϕl(R
′
2, R−2) = j and R′l : j, 1, l, . . ..

By strategy-proofness and non-bossiness, ϕ(R′2, R
′
l, R−2,l) = ϕ(R′2, R−2). Let R′′l : 1, j, l, . . .. Now

by ϕl(R
′
2, R

′′
l , R−2,l) = j, individual rationality and strategy-proofness, ϕl(R

′
2, R

′′
l , R−2,l) ∈ {1, j}.

If ϕl(R
′
2, R

′′
l , R−2,l) = j, then by non-bossiness, ϕ(R′2, R

′′
l , R−2,l) = ϕ(R′2, R

′
l, R−2,l). But c′ is not a

top cycle for any strict transformation of (R′2, R
′′
l , R−2,l) because 1, j ∈ C ′, which is a contradiction

to Lemma 2. Thus, ϕl(R
′
2, R

′′
l , R−2,l) = 1.

By individual rationality and construction, for all i ∈ C ′\{1, l}, ϕi(R
′
2, R

′′
l , R−2,l) = i.

Now by consistency, ϕl((R1, R
′
2, R

′′
l )|{1,2,l}) = 1. Let R′′′l : 1, l, 2. By strategy-proofness,

ϕl((R1, R
′
2)|{1,2,l}, R′′′l ) = 1. Note that profile ((R1, R

′
2)|{1,2,l}, R′′′l ) is identical to the profile in

(1) where i = 1, j = 2, and k = l (because 2I1l and 2P11). Now this contradicts the definition

2 �1 l (because (2, 1) is a top cycle in f�(R) and l ∈ top(R1), we cannot have l �1 2).

Let k ≥ 3 and suppose that 3P2ϕ2(R). Let R′2 : 3, 2, . . .. By strategy-proofness and ϕ2(R) 6= 3,

we have ϕ2(R
′
2, R−2) 6= 3. By individual rationality, ϕ2(R

′
2, R−2) = 2.

Note that c remains a top cycle under (R′2, R−2) and f�2 (R′2, R−2) = 3. Thus, without loss of

generality we may suppose that for all i ∈ {1, . . . , k}, if f�i (R)Piϕi(R), then Ri : f�i (R), i, . . ..

Furthermore, for all i ∈ {1, . . . , k} such that ϕi(R) = f�i (R), by strategy-proofness and non-

bossiness we may assume without loss of generality that Ri : ϕi(R), i, . . ..

Now if for all i ∈ {1, . . . , k}, |top(Ri)| = 1, then by construction and individual rationality,

ϕi(R) = i for all {1, . . . , k}. Now this contradicts consistency and weak efficiency.

Thus, there exists some i ∈ {1, . . . , k} such that |top(Ri)| ≥ 2 and therefore, ϕi(R) ∈ top(Ri)

and ϕi(R) 6= f�i (R), say i = 1.

First, suppose that agent 1 is the only agent i ∈ {1 . . . , k} with |top(Ri)| ≥ 2. Note that because

c is a top cycle in f�(R), we have 2 �1 j for all j ∈ top(R1)\{2}. Also note that 1 /∈ top(R1). Now

also by strategy-proofness and non-bossiness, without loss of generality, we may suppose that for

all i ∈ N\{1, . . . , k}, Ri : ϕi(R), i, . . . (if ϕi(R) 6= i) and Ri : i, . . . (if ϕi(R) = i).

Let ϕ1(R) = l. Note that l 6= 2 and 2 �1 l. Let R′2 : 3, 1, 2, . . .. Now note that under (R′2, R−2)

the cycle (2, 1) is not a top cycle for any strict transformation of R and for all i ∈ N\{1, 2},
iPi2. Thus, by Lemma 2, ϕ2(R

′
2, R−2) 6= 1. Now by individual rationality and strategy-proofness,

ϕ2(R
′
2, R−2) = 2. By non-bossiness, ϕ(R′2, R−2) = ϕ(R). Let R′′2 : 1, 2, . . .. Again by individual

rationality, strategy-proofness and non-bossiness, we obtain ϕ(R′′2 , R−2) = ϕ(R). Now (2, 1) is a

top cycle in f�(R′′2 , R−2) of length two. Above we have shown that Lemma 4 is true for top cycle

of length two, i.e. we must have ϕ2(R
′′
2 , R−2)I21. This contradicts the fact that ϕ2(R

′′
2 , R−2) = 2
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and 1P ′′2 2.

Second, suppose that 1 is not the only agent i ∈ {1 . . . , k} with |top(Ri)| ≥ 2. Recall that for

any i ∈ {1, . . . , k} such that |top(Ri)| ≥ 2 we have ϕi(R) ∈ top(Ri) and ϕi(R) 6= f�i (R). Let m

be the number of such agents in the cycle c. Above we have shown that the induction basis holds

for m = 1. By induction, now we may suppose ϕi(R)Iif
�
i (R) for all i ∈ {1, . . . , k} if the cycle c

contains m agents or fewer with |top(Ri)| ≥ 2.

Now suppose that we do not have ϕi(R)Iif
�
i (R) for all i ∈ {1, . . . , k} and there are m+1 agents

in the cycle c with |top(Ri)| ≥ 2. Note that for any i ∈ {1, . . . , k} such that f�i (R)Piϕi(R) we

have ϕi(R) = i. Now if |top(Ri−1)| ≥ 2, then ϕi−1(R) ∈ top(Ri−1). Otherwise top(Ri−1) = {i} and

ϕi−1(R) = i− 1. Thus, starting from i we will find eventually an agent j such that |top(Rj)| ≥ 2.

Now consider again agent 1 and agent 2 as above. Note that ϕ1(R) 6= 2 and ϕ2(R) = 2. Let

R′2 : 1, 2, . . .. Now (2, 1) is a top cycle under f�(R′2, R−2) and only for agent 1 we have |top(R1)| ≥ 2.

Now by the induction hypothesis, we must have ϕ2(R
′
2, R−2) = 1. Consider R′′2 : 3, 1, 2, . . .. Now

by strategy-proofness, we must have ϕ2(R
′′
2 , R−2) = 1. By Lemma 2, agent 3 must trade before

agent 2. Note that c remains a top cycle under f�(R′′2 , R−2).

Now if ϕ1(R
′′
2 , R−2) = 2, then let R′1 : 2, 1, . . .. By strategy-proofness and non-bossiness,

ϕ(R′1, R
′′
2 , R−1,2) = ϕ(R′′2 , R−2). Again by strategy-proofness, ϕ2(R

′
1, R

′′
2 , R−2) = 1, and R′′2 :

3, 1, 2, . . ., we have ϕ2(R
′
1, R−1) = 2. Note that c is a top cycle under f�(R′1, R−1). But now for

the top cycle c we have |top(R′1)| = 1 meaning that under the profile (R′1, R−1) there are m agents

i with |top(Ri)| ≥ 2. By the induction hypothesis, we now must have ϕ2(R
′
1, R−1)I2f

�
2 (R′1, R−1).

Since top(R2) = {3}, this contradicts ϕ2(R
′
1, R−1) = 2.

Thus, ϕ1(R
′′
2 , R−2) 6= 2, say ϕ1(R

′′
2 , R−2) = l. Let c′′ denote the cycle along which 1 trades in

ϕ(R′′2 , R−2), and let C ′′ be this coalition. Note that 1, 2 ∈ C ′′ and |C ′′| ≥ 3 because l 6= 2. Let

R̂C′′ = (R′′2 , RC′′\{2})|C′′ . By consistency, ϕi(R̂C′′) = ϕi(R
′′
2 , R−2) for all i ∈ C ′′. If 3 ∈ C ′′, then

by R̂2 : 3, 1, 2, . . . the cycle c′′ is not a top cycle for any strict transformation of R̂C′′ , which would

contradict Lemma 2.

Because c was a top cycle under f�(R), we have 2 �1 l. But now (2, 1) is a top cycle under

f�(R̂C′′) and both |top(R̂1)| ≥ 2 and top(R̂2) = {1} (by 3 /∈ C ′′). Note that c′′ may still be a top

cycle for some strict transformation of R̂C′′ .

Now by strategy-proofness and non-bossiness, we may assume without loss of generality that

for all i ∈ C ′′\{1, 2}, R̂i : ϕi(R̂C′′), i, . . .. Let R′l : 1, ϕl(R̂C′′), l, . . .. Now by strategy-proofness,

ϕl(R
′
l, R̂C′′\{l}) ∈ {1, ϕl(R̂C′′)}. Note that c′′ is not a top cycle for any strict transformation of

(R′l, R̂C′′\{l}). Hence, by construction, ϕl(R
′
l, R̂C′′\{l}) = 1. By individual rationality and 3 /∈ C ′′,

ϕ2(R
′
l, R̂C′′\{l}) = 2. Now this is a contradiction to our induction hypothesis because (2, 1) is a top

cycle under f�(R′l, R̂C′′\{l}) but f�2 (R′l, R̂C′′\{l})P2ϕ2(R
′
l, R̂C′′\{l}).

Therefore, we have shown by induction that for any top cycle c with coalition C in f�(R), we

have ϕi(R)Iif
�(R) for all i ∈ C. �

15



The following is the second key to the proof of Theorem 1. We show that for any top cycle in

f�(R) the members of its trading coalition cannot be assigned any object of an agent who does

not belong to the trading coalition.

Lemma 5. For all R ∈ RN , if c is a top cycle in f�(R) with trading coalition C, then

∪i∈C{ϕi(R)} = C.

Proof. Let R ∈ RN and let c be a top cycle in f�(R) with trading coalition C. Without loss of

generality, let C = {1, . . . , k} and c = (2, 3, . . . , k, 1) (where 1 receives 2, 2 receives 3,. . ., k receives

1). By Lemma 4, for all i ∈ {1, . . . , k}, f�i (R)Iiϕi(R). We show that ϕi(R) ∈ {1, . . . , k} for all

i ∈ {1, . . . , k}.
If k = 1, then by individual rationality and the fact that there is no i 6= 1 such that iI11,

ϕ1(R) = 1 = f�1 (R), the desired conclusion.

Let k ≥ 2. If for all i ∈ {1, . . . , k}, |top(Ri)| = 1, then by Lemma 4, ϕi(R) = f�i (R) for all

i ∈ {1, . . . , k}, the desired conclusion.

We now show that Lemma 5 is true for the cycle c if there is at most one agent in the cycle

whose set of most preferred objects contains more than one element.

Claim 1: Suppose that for exactly one l ∈ {1, . . . , k} we have |top(Rl)| ≥ 2 and for all j ∈
{1, . . . , k}\{l} we have |top(Rj)| = 1. Then for all i ∈ {1, . . . , k}, ϕi(R) = f�i (R).

Proof of Claim 1: Without loss of generality, let |top(R1)| ≥ 2. Now by Lemma 4, we have for all

i ∈ {2, . . . , k}, ϕi(R) = f�i (R) (because top(Ri) = {f�i (R)}). We need to show ϕ1(R) = 2. By

Lemma 4, ϕ1(R) ∈ top(R1). Let ϕ1(R) = l. Suppose that l 6= 2. Now we must have l /∈ {1, . . . , k}.
Let c′ be the cycle along which agent 1 trades in ϕ(R) with coalition C ′. By ϕk(R) = 1, we have

{1, . . . , k} ⊆ C ′. Let R′l : 2, ϕl(R), l, . . .. By strategy-proofness, ϕl(R
′
l, R−l) 6= l. If ϕl(R

′
l, R−l) =

ϕl(R), then by non-bossiness, ϕ(R′l, R−l) = ϕ(R). But now c′ is not a top cycle for any strict

transformation of (R′l, R−l) because 1, l ∈ C ′ and 1P ′lϕl(R). Thus, ϕl(R
′
l, R−l) = 2. But now

ϕ2(R
′
l, R−l) 6= 2 and by |top(R2)| = {f�2 (R)}, we have ϕ2(R

′
l, R−l) = f�2 (R). Similarly, we have

ϕi(R
′
l, R−l) = f�i (R) for all i ∈ {2, . . . , k}. In particular, the agents l, 1, 2, . . . , k belong to the same

trading cycle in ϕ(R′l, R−l). Let c′′ denote this cycle with coalition C ′′. Let R′′l : 1, 2, l, . . .. Now

if ϕl(R
′′
l , R−l) = 2, then by non-bossiness, ϕ(R′′l , R−l) = ϕ(R′l, R−l) which contradicts Lemma 2

since c′′ is not a top cycle for any strict transformation of (R′′l , R−l). Now by strategy-proofness,

ϕl(R
′′
l , R−l) = 1. By top(Rk) = {1}, we now have ϕk(R′′l , R−l) = k. Since c remains a top cycle

under f�(R′′l , R−l), this is a contradiction to Lemma 4. �

Suppose that k = 2 and both |top(R1)| ≥ 2 and top(R2) = {1}. By Lemma 4, ϕ2(R) = 1. By

Claim 1, ϕ1(R) = 2.

Finally suppose that both |top(R1)| ≥ 2 and |top(R2)| ≥ 2. Now if ϕ1(R) = 2 or ϕ2(R) = 1,

then we obtain from strategy-proofness and non-bossiness and Claim 1 the conclusion.
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Thus, suppose that ϕ1(R) 6= 2 and ϕ2(R) 6= 1. Let c1 and c2 denote the trading cycles for 1

and 2 with corresponding coalitions C1 and C2. By consistency, we may suppose without loss of

generality C1 ∪ C2 = N . By strategy-proofness and non-bossiness, we may suppose that for all

i ∈ N\{1, 2}, Ri : ϕi(R), i, . . .. Let ϕ1(R) = l and R′l : 1, ϕl(R), l, . . .. If ϕl(R
′
l, R−l) = ϕl(R), then

ϕ(R′l, R−l) = ϕ(R). Since 1, l ∈ C1, then c1 is not a top cycle for any strict transformation of

(R′l, R−l) (even after executing c2), a contradiction to Lemma 2. Thus, ϕl(R
′
l, R−l) = 1. Now for

any i ∈ C1\{1, l}, if Ri : 1, i, . . ., then ϕi(R
′
l, R−l) = i and we may apply consistency in order to

remove agent i from the economy.

Now if ϕ1(R
′
l, R−l) = 2, then we can use strategy-proofness and non-bossiness to derive a

contradiction using Claim 1.

Thus, ϕ1(R
′
l, R−l) 6= 2. Let R′′l : 2, 1, l, . . .. Suppose that ϕl(R

′′
l , R−l) = 2. Then ϕ2(R

′′
l , R−l) =

1 because agent 2 is the only agent i such that 1Pii and agent 1 cannot receive 1. Now again we can

derive a contradiction using Claim 1. But now by construction and individual rationality, object 1

can be only assigned to agent 1, a contradiction to Lemma 4.

Hence, ϕl(R
′′
l , R−l) = 1 and by non-bossiness, ϕ(R′′l , R−l) = ϕ(R′l, R−l). Note that by R′′l :

2, 1, l, . . . agents l and 2 cannot be part of the same trading cycle. Thus, ϕ1(R
′′
l , R−l) = l and again

c2 is a trading cycle under ϕ(R′′l , R−l).

Let j ∈ N be such that ϕj(R
′′
l , R−l) = 2. Note that j /∈ {l, 1, 2}. Let R′j : l, 2, j, . . ..

First, suppose that ϕj(R
′′
l , R

′
j , R−j,l) = 2. By non-bossiness, ϕ(R′′l , R

′
j , R−j,l) = ϕ(R′′l , R−l).

Now neither c2 nor (l, 1) is a top cycle for any strict transformation of (R′′l , R
′
j , R−j,l). This is a

contradiction to Lemma 2. Thus, ϕj(R
′′
l , R

′
j , R−j,l) = l. Then ϕ2(R

′′
l , R

′
j , R−j,l) = ϕ2(R

′′
l , R−l).

Also again ϕ1(R
′′
l , R

′
j , R−j,l) 6= 2 because otherwise we apply again the previous fact. Thus,

ϕl(R
′′
l , R

′
j , R−j,l) = 2. But then ϕ1(R

′′
l , R

′
j , R−j,l) = 1, a contradiction to Lemma 4.

Now let k ≥ 3. We make the following observation: by consistency, we may suppose that

for all i ∈ N\{1, . . . , k}, ϕi(R) 6= i (and the trading cycle ci with coalition i ∈ Ci we have

Ci ∩ {1, . . . , k} 6= ∅) and Ri : ϕi(R), i, . . .. Furthermore, by strategy-proofness and non-bossiness

we may suppose that for all i ∈ N\{1, . . . , k}, ϕi(R) ∈ {1, . . . , k}; suppose not, say there exists

i ∈ N\{1, . . . , k} such that ϕi(R) /∈ {1, . . . , k}. Note that Ci ∩ {1, . . . , k} 6= ∅. Without loss

of generality, 1 ∈ Ci and ϕ1(R) = i. Let R′i : 1, ϕi(R), i, . . .. If ϕi(R
′
i, R−i) = ϕi(R), then by

strategy-proofness and non-bossiness, ϕ(R′i, R−i) = ϕ(R). Since 1, i ∈ Ci, ci is not a top cycle for

any strict transformation of (R′i, R−i), a contradiction to Lemma 2. Thus, ϕi(R
′
i, R−i) = 1. Let

R′′i : 1, i, . . .. By strategy-proofness and non-bossiness, ϕ(R′′i , R−i) = ϕ(R′i, R−i). Now again for

some j ∈ {1, . . . , k}, ϕj(R
′′
i , R−i) /∈ {1, . . . , k}, and c remains a top cycle in f�(R′′i , R−i). Thus,

without loss of generality we may suppose that already Ri : 1, i, . . ..

We prove Lemma 5 by induction on the number of agents whose set of most preferred objects

contains two or more elements.

Induction basis: For any top cycle c in f�(R) with trading coalition C (where |C| ≥ 3), if there
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exists some l ∈ C such that for all j ∈ C\{l}, |top(Rj)| = 1, then for all i ∈ C, ϕi(R) ∈ C.

Obviously, Claim 1 establishes the induction basis.

Induction hypothesis: For any top cycle c in f�(R) with trading coalition C (where |C| ≥ 3), if

there exist l1, . . . , lm ∈ C such that for all j ∈ C\{l1, . . . , lm}, |top(Rj)| = 1, then for all i ∈ C,

ϕi(R) ∈ C.

Using the induction hypothesis we will prove the induction step. Again consider c =

(2, 3 . . . , k, 1) and suppose that there exist l1, . . . , lm+1 ∈ {1, . . . , k} such that for all j ∈
{1, . . . , k}\{l1, . . . , lm+1}, |top(Rj)| = 1.

Suppose that for some i ∈ {1, . . . , k}, ϕi(R) /∈ {1, . . . , k}, say ϕ1(R) = l /∈ {1, . . . , k}. Now

2, l ∈ top(R1) and |top(R1)| ≥ 2. By strategy-proofness and non-bossiness, we may assume without

loss of generality that for all i ∈ N\{1, . . . , k}, Ri : ϕi(R), i, . . ..

Let R′l : 1, ϕl(R), l, . . .. Since 1 and l belong to the same cycle in ϕ(R), similarly as in the proof

of Claim 1, we cannot have ϕl(R
′
l, R−l) = ϕl(R). Thus, by strategy-proofness, ϕl(R

′
l, R−l) = 1.

But now ϕk(R′l, R−l) 6= 1 and by Lemma 4 (since c remains a top cycle under f�(R′l, R−l)),

ϕk(R′l, R−l) ∈ top(Rk). Thus, |top(Rk)| ≥ 2.

Now we have for all i ∈ {2, . . . , k}, ϕi(R) 6= 1: otherwise, say for i ∈ {2, . . . , k}, we have

ϕi(R) = 1; now for i < k we have 1, i + 1 ∈ top(Ri) and for i = k we have |top(Rk)| ≥ 2.

Now let R′i : 1, i, . . .. By strategy-proofness and non-bossiness, we have ϕ(R′i, R−i) = ϕ(R). Note

that (2, 3, . . . , i, 1) is a top cycle under f�(R′i, R−i). Since ϕ1(R
′
i, R−i) = l and l /∈ C, this now

contradicts our induction hypothesis because top(R′i) = {1} and for the cycle (2, 3, . . . , i, 1) there

are m or fewer agents j ∈ {1, . . . , i− 1} with |top(Rj)| ≥ 2.

If ϕ1(R
′
l, R−l) = 2, then we can use strategy-proofness, non-bossiness, and the induction hy-

pothesis to derive a contradiction. Thus, ϕ1(R
′
l, R−l) 6= 2.

Furthermore, by ϕl(R
′
l, R−l) = 1, for all i ∈ N\{1, . . . , k}, ϕi(R

′
l, R−l) 6= 1. Thus, if Ri : 1, i, . . .,

then we may remove i using consistency without changing the allocation for the other agents. Thus,

we may assume that there exist no i ∈ N\{l, 1, 2, . . . , k} such that Ri : 1, i, . . ..

Let R′′l : 2, 1, l, . . .. We show that |top(R2)| ≥ 2 and ϕ2(R
′′
l , R−l) /∈ C. First, suppose that

ϕl(R
′′
l , R−l) = 2. Since iPi1 for all i ∈ N\{l, 1, 2, . . . , k}, there exists some j ∈ {2, . . . , k} such

that ϕj(R
′′
l , R−l) = 1. Now if j < k, then j + 1, 1 ∈ top(Rj) and |top(Rj)| ≥ 2, and if j = k,

then |top(Rk)| ≥ 2. Let R′j : 1, j, . . .. By strategy-proofness and non-bossiness, ϕ(R′′l , R
′
j , R−l,j) =

ϕ(R′′l , R−l). Now (2, 3, . . . , j, 1) is a top cycle in f�(R′′l , R
′
j , R−l) and the induction hypothesis

applies. This is a contradiction to ϕl(R
′′
l , R

′
j , R−l,j) = 2 (and l /∈ {1, 2, . . . , j}).

Thus, ϕl(R
′′
l , R−l) = 1. Next we show that we may assume without loss of generality that

ϕ1(R
′′
l , R−l) = l. Again ϕ1(R

′′
l , R−l) /∈ {2, . . . , k} because otherwise we use the induction hypothesis

to derive a contradiction. Suppose that ϕ1(R
′′
l , R−l) = h /∈ {l, 1, . . . , k}. Let R̃l : 1, l, . . .. By

strategy-proofness and non-bossiness, ϕ(R̃l, R−l) = ϕ(R′′l , R−l). Let R′h : 1, ϕh(R̃l, R−l), h, . . .. As

above we obtain ϕh(R̃l, R
′
h, R−l,h) = 1. By individual rationality, ϕl(R̃l, R

′
h, R−l,h) = l. Now again
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ϕ1(R̃l, R
′
h, R−l,h) /∈ {1, 2, . . . , k}. By consistency, we may remove l from the economy (R̃l, R

′
h, R−l,h)

without changing the allocation. Since N\{1, . . . , k} is finite, we eventually need to have that agent

1 receives the endowment of the agent who is receiving object 1.

Thus, ϕ1(R
′′
l , R−l) = l. Similarly as above, we cannot have ϕ2(R

′′
l , R−l) ∈ {1, 4, . . . , k}. Suppose

that ϕ2(R
′′
l , R−l) = 3. But now top(R2) = {3} because otherwise we obtain a contradiction using

the induction hypothesis. Now take the first agent j ∈ {3, 4, . . . , k} such that |top(Rj)| ≥ 2. Again

ϕj(R
′′
l , R−l) /∈ {j + 1, . . . , k}.

Thus, ϕj(R
′′
l , R−l) = h /∈ {1, . . . , k}. But now for j in the role of 1 and h in the role of l we

would obtain for R′h : j, ϕh(R′′l , R−l), h, . . . that ϕh(R′′l , R
′
h, R−l,h) = j. But now by top(Rj−1) = {j}

we now have ϕj−1(R
′′
l , R

′
h, R−l,h) = j− 1. Since c remains a top cycle for f�(R′′l , R

′
h, R−l,h), this is

a contradiction to Lemma 4.

Hence, ϕ2(R
′′
l , R−l) /∈ {1, . . . , k} and |top(R2)| ≥ 2. Now using the same arguments it follows

that |top(R3)| ≥ 2 and so on. Hence, |top(Ri)| ≥ 2 for all i ∈ {1, . . . , k}.
But now again as above, ϕi(R

′′
l , R−l) /∈ {1, . . . , k} for all i ∈ {1, . . . , k}: we know already

ϕ2(R
′′
l , R−l) /∈ {1, . . . , k}; if ϕ3(R

′′
l , R−l) = t ∈ {1, . . . , k}, then let R′3 : t, 3, . . .. By strategy-

proofness and non-bossiness, ϕ(R′′l , R
′
3, R−l,3) = ϕ(R′′l , R−3). But now (2, 3, t, t + 1, . . . , k, 1) (we

may have t = 2) is a top cycle in f�(R′′l , R
′
3, R−l,3) and the induction hypothesis applies. However,

this contradicts ϕ2(R
′′
l , R

′
3, R−l) /∈ {1, . . . , k}. The same applies for agent 4 and so on.

For all i ∈ {1, . . . , k}, let ϕi(R
′′
l , R−l) = hi /∈ {1, . . . , k}. Note that ϕl(R

′′
l , R−l) = 1 and for

all i ∈ N\{l, 1, 2 . . . , k}, there exists t ∈ {1, . . . , k} such that Ri : t, i, . . .. Now ϕi(R
′′
l , R−l) 6= i

for all i ∈ N because otherwise any such agent may be removed using consistency. Because

ϕi(R
′′
l , R−l) /∈ {1, . . . , k} for all i ∈ {1, . . . , k} and ϕi(R

′′
l , R−l) ∈ {1, . . . , k} for all i ∈ N\{1, . . . , k},

using consistency we may suppose that N = {1, . . . , k} ∪ {h1, . . . , hk}.
Recall that ϕl(R

′′
l , R−l) = 1, ϕ1(R

′′
l , R−l) = l, and ϕ2(R

′′
l , R−l) = h /∈ {1, . . . , k}. Now let R′′′l :

h, 1, l, . . .. Now if ϕl(R
′′′
l , R−l) = h, then let R̂l : h, l, . . .. By strategy-proofness and non-bossiness,

ϕ(R̂l, R−l) = ϕ(R′′′l , R−l). Let ϕh(R̂l, R−l) = t and R̂′l : t, h, l, . . .. Note that t ∈ {2, . . . , k}. If

ϕl(R̂
′
l, R−l) = h, then by strategy-proofness and non-bossiness, ϕ(R̂′l, R−l) = ϕ(R̂l, R−l). Now this

is a contradiction to Lemma 4 because the cycle in which l and h trade is not a top cycle for any

strict transformation of (R̂′l, R−l).

Thus, ϕl(R̂
′
l, R−l) = t and ϕh(R̂′l, R−l) = h (because Rh : t, h, . . .). But now we can remove h

from the economy and N\{h} contains fewer than 2k agents. But we may again apply the above

conclusions to N\{h}, a contradiction.

Thus, ϕl(R
′′′
l , R−l) = 1. By non-bossiness, ϕ(R′′′l , R−l) = ϕ(R′′l , R−l). Let R′h :

1, ϕh(R′′′l , R−l), h, . . .. Now if ϕh(R′′′l , R
′
h, R−l,h) = ϕh(R′′′l , R−l), then by non-bossiness,

ϕ(R′′′l , R
′
h, R−l,h) = ϕ(R′′′l , R−l). But now by Lemma 2, agent h must trade before agents 1 and l

because top(R′′′l ) = {h} and agent 1 must trade before agent h because top(R′h) = {1}. Obviously,

this is impossible. Thus, ϕh(R′′′l , R
′
h, R−l,h) = 1.
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If ϕl(R
′′′
l , R

′
h, R−l,h) = l, the we can remove l from the economy and N\{l} contains fewer than

2k agents. But we may again apply the above conclusions to N\{l}, a contradiction. Similarly, if

ϕl(R
′′′
l , R

′
h, R−l,h) = h, then let R̂l : h, l, . . . and R̂h : 1, h, . . .. Now by strategy-proofness and non-

bossiness we obtain ϕ(R̂l, R̂h, R−l,h) = ϕ(R′′′l , R
′
h, R−l,h). But now top(R̂l) = h and h /∈ {1, . . . , k}.

Now as above for R̂l : 1, h, l, . . . we obtain ϕl(R̂
′
l, R̂h, R−l,h) = 1 and ϕh(R̂′l, R̂h, R−l,h) = h. But

now we can remove h from the economy and N\{h} contains fewer than 2k agents. But we may

again apply the above conclusions to N\{h}, a contradiction. This finishes the proof. �

Using Lemma 5 we now show that ϕ ∼ f�.

Lemma 6. For all R ∈ RN , ϕ(R) ∼R f�(R).

Proof. Let R ∈ RN and let c be a top cycle in f�(R) with trading coalition C. By Lemma 4,

ϕi(R)Iif
�
i (R) for all i ∈ C. By Lemma 5, ∪i∈C{ϕi(R)} = C. Thus, we may remove C from the

economy R. By consistency,

ϕi(R−C |N\C) = ϕi(R) (2)

for all i ∈ N\C.

Since f� satisfies consistency and ∪i∈C{f�i (R)} = C, we also have

f�i (R−C |N\C) = f�i (R) (3)

for all i ∈ N\C.

Now let again ĉ be a top cycle in f�(R−C |N\C) with trading coalition Ĉ. Now by Lemma 4, we

have ϕi(R−C |N\C)Iif
�
i (R−C |N\C) for all i ∈ Ĉ. Thus, by (2) and (3), ϕi(R)Iif

�
i (R) for all i ∈ Ĉ.

Again by Lemma 5, ∪i∈Ĉ{ϕi(R−C |N\C)} = Ĉ. Thus, by (2) and (3), ∪i∈Ĉ{ϕi(R)} = Ĉ =

∪i∈Ĉ{f
�
i (R)}.

Now we may remove C ∪ Ĉ from the economy R and use the same argumentation as above.

Because N is finite, we obtain ϕi(R)Iif
�
i (R) for all i ∈ N . Thus, ϕ(R) ∼R f�(R), the desired

conclusion. �

5 Discussion

Indifferences with the endowment: If indifferences with the endowment are allowed, then Theorem

1 is not true. The reason is that ties in indifference classes containing the endowment may be

broken differently than ties in indifference classes not containing the endowment. More precisely,

we may have for agent 1 two tie-breakers �1 and �̃1 such that for any indifference class T with

1 /∈ T , ties are broken according to �1 whereas for any indifference class T with 1 ∈ T , ties are

broken according to �̃1.
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More formally, let R̃N
i denote the set of all weak preference relations on N and let R̃N =

×i∈NR̃N
i . Given two profiles of fixed tie-breakers � and �̃, we define f�,�̃ as follows: for all

N ⊆ N and all R ∈ RN , let R′ ∈ ST (R) be such that for all i ∈ N , for any maximal indifference

class15 T ⊆ N in Ri: R
′
i|T = �i |T if i /∈ T and R′i|T = �̃i|T if i ∈ T . Then we set f�,�̃(R) = f(R′).

Using the same arguments as in the proof of Theorem 1 and distinguishing between indifference

classes containing the endowment and indifference classes not containing the endowment, we obtain

the following variant of Theorem 1.

Theorem 2. Let indifferences with the endowment be allowed.

(a) For any two profiles of fixed tie-breakers � and �̃, f�,�̃ satisfies individual rationality,

strategy-proofness, weak efficiency, non-bossiness, and consistency.

(b) If a rule ϕ satisfies individual rationality, strategy-proofness, weak efficiency, non-bossiness,

and consistency, then there exist two profiles � and �̃ of fixed tie-breakers such that ϕ ∼ f�,�̃.

Domains: Instead of considering the full domain RN (and its full subdomains), we may consider

any domain DN (and its subdomains) in between the full domain and the strict domain, i.e. such

that PN ⊆ DN ⊆ RN . Theorem 1 remains unchanged for any such domain DN .

More formally, let PN ⊆ DN ⊆ RN . For all N ⊆ N , let DN = {RN |N : R ∈ DN }. Furthermore,

for all i ∈ N , let

Di = {j ∈ N : for some Ri ∈ DNi and k ∈ N\{j}, jIikPii}

denote the set of agents which agent i ranks indifferent and above his endowment for some preference

in the domain DNi .

Below we will just require that a tie-breaker �i is a strict and complete relation on Di and that

if for some Ri ∈ DNi and some triple j, k, l ∈ Di we have jIikIil, then �i |{j,k,l} is transitive.

Theorem 3. Let PN ⊆ DN ⊆ RN .

(a) For any profile � of fixed tie-breakers, f� satisfies individual rationality, strategy-proofness,

weak efficiency, non-bossiness, and consistency on DN and its subdomains.

(b) If a rule ϕ satisfies individual rationality, strategy-proofness, weak efficiency, non-bossiness,

and consistency on DN and its subdomains, then there exists a profile � of fixed tie-breakers

such that ϕ ∼ f�.

Here note that in Lemma 3 we only need to show transitivity of �i for j �i k and k �i l if

there is some preference Ri ∈ DNi such that jIikIil. Then, of course, the proof of Lemma 3 is valid

because Ri|{i,j,k,l} is the preference used in that proof.

15The set T ⊆ N is a maximal indifference class in Ri if (i) for all j, k ∈ T , jIik and (ii) for all j ∈ T and all
k ∈ N\T , jPik or kPij.
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If we never have jIikIil, then we never need to break a three-way tie. Now �i may not need to

be transitive, i.e. we may have j �i k �i l �i j. However, this does not create any problem because

for any Ri, then we have at most one tie in the set {j, k, l} (and the top trading cycle algorithm

with fixed tie-breaking f� is well-defined).

Independence of the axioms:

Not individually rational: Fix a profile of tie-breakers �. For each R, break ties according to

� and apply serial dictatorship to the resulting �(R) where agents with lower indices choose first.

Not strategy-proof : Fix a profile of tie-breakers �. For each R, break ties according to �. Then

the agent with the lowest index (say 1) chooses the set of his most �1 (R1)-preferred allocations

which are individually rational and weakly efficient, say M1. Observe that agent 1 receives the same

object (say l) under all those allocations. Now let agent l choose the set of his most �l (Rl)-preferred

allocations in M1, and so on.

Not weakly efficient: Fix an allocation µ ∈ AN such that µ constitutes a cycle for N . Now for

all N ⊆ N and all R ∈ RN , (i) if N = N and µ is individually rational under R, then ϕ(R) = µ,

and (ii) otherwise ϕi(R) = i for all i ∈ N .

Not non-bossy : Let N = {1, 2, 3}, �1: 3, 2, 1, �2: 1, 3, 2, and �3: 1, 2, 3. Let � = (�1,�2,�3).

For all N ⊆ N , (i) if N = N and both 2, 3 ∈ top(R1), 3P22 and 1 ∈ top(R3), then ψ(R) = (2, 3, 1),

and (ii) otherwise ψ(R) = f�(R). It is easy to check that ψ satisfies individual rationality, strategy-

proofness, and weak efficiency. Furthermore, we cannot use consistency to reduce economies of the

type (i) because ψ(R) is a trading cycle for N . Hence, ψ satisfies consistency. Finally, ψ violates

non-bossiness because for the profile R ∈ RN with

R1 R2 R3

2, 3 1 1

1 3 3

2 2

we have ψ(R) = (2, 3, 1). Let R′1 : 2, 3, 1. Note that (R′1, R2, R3) ∈ PN . Since ψ satisfies indi-

vidual rationality, strategy-proofness, weak efficiency, and consistency, from Lemma 1 we obtain

ψ(R′1, R−1) = f(R′1, R−1) = (2, 1, 3). Since ψ1(R
′
1, R−1) = ψ1(R) and ψ(R′1, R−1) 6= ψ(R), ψ

violates non-bossiness.

Not consistent: Let |N | ≥ 3 and � and �′ be two distinct profiles of tie-breakers. For all N ⊆ N
and all R ∈ RN , (i) if |N | is even, then φ(R) = f�(R), and (ii) if |N | is odd, then φ(R), f�

′
(R).

It is easy to verify that φ satisfies individual rationality, strategy-proofness, weak efficiency, and

non-bossiness. Obviously, φ violates consistency.
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Remark 4. Regarding the last example, fix N and for this remark, let ϕ : RN −→ AN be a

rule. Now one may wonder whether the following is true (for fixed N): if ϕ satisfies individual

rationality, strategy-proofness, weak efficiency, and non-bossiness, then there exists a profile of

fixed tie-breakers such that ϕ ∼ f�|RN . The following example shows that (b) of Theorem 1 is

not true for fixed N , i.e. consistency is necessary: Let N = {1, 2, 3, 4} and let � and �′ be two

distinct profiles of tie-breakers. For any R ∈ RN , let �̃(R) ∈ ST (R) be such that for all i ∈ N :

(i) if Ri contains a three-way tie, then �̃i(Ri) = �i (Ri), and (ii) otherwise �̃i(Ri) = �′i (Ri). For

all R ∈ RN , let ϕ̃(R) = f(�̃(R)). Using the same arguments as in the proof of (a) of Theorem

1 it can be seen that ϕ̃ satisfies individual rationality, strategy-proofness, weak efficiency, and

non-bossiness.16
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