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Abstract 

Growing evidence suggests that the small intestine may contribute to excessive 

postprandial lipemia, which is highly prevalent in insulin-resistantltype 2 diabetic 

individuals increasing the risk of cardiovascular disease. The aim of the present 

study was to determine the role of high glucose levels on intestinal cholesterol 

absorption, cholesterol transporter expression, enzymes controlling cholesterol 

homeostasis and the status of transcription factors. To this end, we employed highly 

differentiated and polarized intestinal cells, Caco-2 cells, plated on permeable 

polycarbonate filters. Four major technical approaches were used, 

immunocytochemistry in electron microscopy, western blot, RT-PCR and the 

assessment of enzymatic activities. The levels of cellular cholesterol uptake were 

measured by radio-Iabeling. 

In the presence of radiolabeled cholesterol, glucose at 25 mM stimulated its uptake 

as compared to 5 mM glucose. The high concentration of glucose enhanced the 

protein expression of the critical cholesterol transporters NPCILI and CD36 and 

concomitantly decreased SR-BI protein expression. No significant changes were 

observed for ABCAI and ABCG8, which act as efflux pumps favoring cholesterol 

export out of absorptive cells. At the same time, HMG-CoA reductase activity was 

significantly decreased, whereas ACAT activity remained unchanged. Finally, 

increments were noted in the transcription factors LXRa, LXRP, pp ARp and 

PPARy along with a drop in the protein expression of SREBP-2. 

Collectively, our data indicate that glucose at high concentrations may regulate 

intestinal cholesterol transport and metabolism, thus suggesting a potential influence 

on the cholesterol absorption process in type 2 diabetes. 

Key words: ABCAI, ABCG5/G8, SR-BI, CD36, NPCILl, PPAR, LXR, SREBP, 

ACAT and HMG-CoA reductase 
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Résumé 

Plusieurs évidences suggèrent que l'intestin contribue à l'hyperlipidémie 

postprandiale fortement répandue chez les individus souffrant de résistance à 

insuline et de diabète de type-2, augmentant ainsi les risques de développer des 

maladies cardio-vasculaires. Le but de notre étude fut de déterminer, au niveau 

intestinal, le rôle du glucose dans l'absorption du cholestérol, l'expression des 

transporteurs du cholestérol et celle des enzymes qui régulent l'homéostasie du 

cholestérol et le statut des facteurs de transcription. À cet effet, nous avons 

ensemencé des cellules intestinales différenciées et polarisées, des cellules Caco-2, 

sur des filtres en polycarbonate perméables. Quatre grandes approches techniques 

ont été utilisées, l'immuno-cytochimie en microscopie électronique, 

l'immunobuvardage, le RT-PCR, et la mesure des activités enzymatiques. Les 

niveaux d'absorption du cholestérol cellulaire ont été mesurés par radio marquage. 

En présence de cholestérol radio marqué, le glucose à 25 mM stimule l'absorption 

du cholestérol comparativement aux cellules supplémentées avec 5 mM de glucose. 

La concentration élevée de glucose accroît l'expression protéique des transporteurs 

NPCILI et CD36 et diminue l'expression de la protéine SR-BI. On n'a observé 

aucun changement significatif dans l'expression des protéines ABCAI et ABCG8, 

pompes d'efflux favorisant l'exportation du cholestérol hors des cellules intestinales. 

L'activité de l'enzyme HMG-CoA réductase diminue tandis que celle de l'ACAT 

demeure inchangée. Finalement, une augmentation des facteurs de transcription 

LXRa, LXR~, PP AR~ et PPARy et une baisse de l'expression protéique de SREBP-

2 ont été observées à fortes concentrations de glucose. 

En conclusion, nos données indiquent que le glucose à des concentrations élevées, 

peut moduler le transport et le métabolisme intestinal du cholestérol suggérant une 

influence potentielle sur le processus d'absorption du cholestérol dans le diabète de 

type 2. 

Mots clés: ABCAI, ABCG5/G8, SR-BI, CD36, NPCILI, PPAR, LXR, SREBP, 

ACAT and HMG-CoA réductase 
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Introduction 

Cholesterol is an essential component of cellular membranes, a precursor of steroid 

hormones, vitamin D and bile acids, and plays a crucial role in transcriptional gene 

regulation. Excessive cholesterol, however, is cytotoxic and may cause 

atherosclerotic lesions. Therefore, a balance must be maintained between 

cholesterol intake, absorption/excretion and synthesis. For its transport within the 

enterocytes, cholesterol requires a protein-dependent machinery, including SR-BI, 

NPCILI and CD36, involved in mediating intestinal cholesterol uptake. Other 

proteins such as ABCAI and ABCG5/ABCG8 favor the exit of cholesterol from the 

enterocytes into the intestinal lumen or through the basolateral membrane. Several 

of these cholesterol carriers influence intracellular cholesterol homeostasis and are 

controlled by transcription factors, including RXR, LXR, SREBP-2 and PPAR. 

Previous studies showed that lipid components exert a regulatory effect on intestinal 

fat uptake. However, the role 'of carbohydrates has barely been investigated. 

Therefore, we aimed to evaluate the effect of glucose on cholesterol transport and 

metabolism. Establishing this relation may contribute to find new alternative 

therapeutic treatments, which improve the conditions of metabolic glucose- and 

lipid-related diseases such as obesity, coronary heart disease and diabetes mellitus 

among others. 

In the present study, we show in an in vitro model closely resembling in situ 

intestinal cells that high glucose concentrations enhance cholesterol transport by 

upregulating the prote in expression ofNPCILI and CD36. In addition, we found a 

reduced SR-BI prote in expression and HMG-CoA reductase activity, a key enzyme 

in the cholesterol biosynthesis pathway, without altering the proteins ABCAI and 

ABCG8. Moreover, our studies document that the expression of particular 

transcription factors are regulated by glucose levels. Our data indicate that glucose 
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at high concentrations may regulate intestinal cholesterol transport and metabolism, 

thus suggesting a potential influence on the cholesterol absorption process in type 2 

diabetes. 
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1. Cholesterol 

Cholesterol belongs to the sterol family and is present in the membranes of most 

eukaryotic cells. The characteristic structure of those lipids is the steroid nucleus, 

consisting of fused rings, three with six carbons and one with five. Sterols fulfill 

several indispensable roles in all eukaryotic cells. In mammals, cholesterol is the 

most important one. It is amphipathic with a polar head group and a nonpolar 

hydrocarbon body (Figure l). Its hydrophobicity is responsible for the valuable 

property necessary to control cell membrane fluidity (Ohvo-Rekila et al., 2002). 

However, it makes it very difficult to handle in the aqueous environment of the 

body, both within and between cells. Therefore, sophisticated mechanisms exist to 

transport cholesterol to its numerous cellular destinations. 

Polar 
head 

Fig~re 1. Cholesterol structure 

Alkyl side 
chain 

Sterol 
nucleus 

Cholesterol is an integral part of cells as well as organelle membranes and is a 

precursor of important physiological molecules, like bile salts and steroid hormones 

and is thus essential for normal cell functioning (Maxfield and Tabas, 2005). 

Defects in cholesterol synthesis or transport can have harmful consequences. 

Furthermore, cholesterol and sterols that are ubiquitously present in the diet also 
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pose a potential danger. They are critically involved III the development of 

atherosclerosis. Rence, cellular cholesterol homeostasis and plasma cholesterol 

levels have to be strictly regulated. 

Cholesterol enters the lumen of the small intestine from 3 sources: diet, bile, and 

desquamated intestinal epithelial cells which are derived from the rapid turnover of 

intestinal cells. Although the entire length of the small intestine has the capability to 

absorb cholesterol from the lumen, the main sites of absorption are the duodenum 

and the proximal jejunum (Charlton-Menys and Durrington, 2008). In humans, 30-

50% of the luminal cholesterol is absorbed and returned to the liver, while the rest is 

eliminated with feces (Turley and Dietschy, 2003). The principal sites of cholesterol 

biosynthesis are the liver and the intestine. To maintain body cholesterol 

homeostasis, metabolic adaptations of endogenous de novo synthesis and/or 

catabolism are required in response to fluctuations in dietary intake of 

cholesterol.(Levy et al., 2007). 

The hydrophobicity of cholesterol is related to the main problems associated with 

increased plasma cholesterol concentrations, i.e., atherosclerosis. Atherosclerosis is 

at the origin for the majority of cases of coronary heart disease and represents the 

most prevalent cause of death in industrial countries (Ross, 1995). 

The development of atherosclerosis is a process starting already early in life, 

possible even in utero (Napoli et al., 1997). Lipids, such as cholesterol, transported 

from lipoproteins, accumulate in macrophages on vessel walls (Kruth, 2001). 

Macrophage cholesterol accumulation converts the macrofages into so-called foam 

cells and stimulates the macrophages to secrete proteases and tissue factor that 

contribute to plaque rupture and thrombosis (Zhao et al., 2006). 
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2. Intestinal Cholesterol Metabolism 

2.1. Intestine Generalities 

The intestine controls the uptake of water, electrolytes and nutrients as well as 

secretes ions, enzymes and mucus and excretes endogenous and exogenous 

compounds from the blood towards the lumen. The barrier function of the intestine 

is ensured by intestinal mucosa, with inc1udes the epithelial cells with the 

specialized tight-junction complexes that line the luminal surface. Intestinal motility 

and micelles cause mixing of the components and ensure absorption and transport 

along the tract (Scoville et al., 2008). 

The morphology of the small intestine influences the absorptive process given its 

anatomie and physiologie features. Among these are the considerable length of the 

small intestine (7 min humans and 90 cm in the rat) (Kaminsky and Zhang, 2003), 

the distribution of the metabolically competent epithelium as a mono layer of 

enterocytes and the amplification of the luminal surface by numerous finger-like 

projections of enterocyte-lined villi and, at their bases, buried crypts. Enterocytes 

have a very limited life span: after the division of stem cells at the base of the crypt, 

epithelial cells migrate up to the crypt surface, a process that takes 4 days in humans 

(3 in rodents). The cells then migrate to the villous tip, where they shed, a passage 

of 3 days in humans and 2 days in rodents (Kaminsky and Zhang, 2003). 

Each region of the intestinal tract consists of the same layers: serosa, muscularis, 

submucosa and mucosa. The mucosa is lined by a continuous layer of epithe1ial 

cells, consisting of enterocytes and goblet cells. Anatomically, the intestine is 

divided into duodenum, jejunum, ileum and colon. In each of these regions, the 

enterocytes display particular sets of enzymes and transporters that, as part of the 

homeostatic function of the intestine, are able to metabolize and transport 

endogenous and exogenous compounds (Doherty and Charman, 2002). 
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2.2. Cholesterol Biosynthesis and Esterification: HMG-CoA-reductase and 

AC AT 

Although the structure of cholesterol suggests a complex biosynthetic pathway, the 

entire formation starts with the acetate precursor. 

The first step in this pathway is the formation of 3-hydroxy-3-methylglutaryl-CoA 

(HMG-CoA) from acetyl-CoA and acetoacetyl-CoA, catalyzed by the enzyme 

HMG-CoA synthase. This is followed by the enzymatic action of HMG-CoA 

reductase to reduce HMG-CoA to mevalonate, wich represents the major rate­

controlling step in cholesterol synthesis. Currently, HMG-CoA reductase IS 

considered the rate-limiting key enzyme of the entire process. Mevalonate IS 

converted into isopentenyl-5-pyrophosphate, followed by condensation to squalene 

and conversion into lanosterol, which is an immediate precursor of cholesterol. To 

convert lanosterol into cholesterol, the entire process involves 19 reactions 

(Goldstein and Brown, 1990). 

In mammalians, HMG-CoA reductase is a glycoprotein of ~ 1 00 kDa. It shows an 

amino-terminal domain containing seven hydrophobic regions able to anchor the 

protein in the endoplasmic reticulum membrane, and a carboxy-terminal catalytic 

domain, which projects into the cytosol (Liscum et al., 1983). Virtually, every tissue 

and organ can synthesize cholesterol from acetyl-CoA (Dietschy and Siperstein, 

1967; Spady and Dietschy, 1983), but the liver and intestine are considered as the 

major sites (Taylor et al., 1960; Dietschy and Gamel, 1971; Turley et al., 1981). 
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Figure 2. Summary of cholesterol biosynthesis (Adapted from (Charlton-Menys and 
Durrington, 2008). Cholesterol is an essential molecule in many animaIs, inc1uding 
humans, but is not required in the mammalian diet. AlI cells can synthesize it from 
simple precursors. (Adapted from Lehninger et al., 2002) 

HMG-CoA reductase is subject to both short and long-tenn controls (Goldstein and 

Brown, 1990). Long-tenn effects are mediated through alterations in its rate of 

synthesis and degradation. Short-tenn actions involve allosteric effects and 

alterations in its state of phosphorylation. Expression of HMG-CoA reductase and 

other enzymes in the cholesterogenic pathway is transcriptionally controlled by the 

sterol regulatory binding protein SREBP-2. Both expression and activity of the 

enzyme are rapidly reduced under conditions of high intracellular sterol 

concentrations (Nakanishi et al., 1988). 



8 

After biosynthesis and/or uptake by the enterocyte, cholesterol is mainly esterified 

at C3 with fatty acids to form cholesteryl ester, a reaction catalyzed by acyl­

coenzyme A:cholesterol acyltransferase 2 (ACAT-2) (Joyce et al., 1999). Two 

ACAT genes (acat-l and acat-2) have been identified in mammals; the two 

enzymes may function in distinct and complementary manners (Chang et al., 1997; 

Farese, 1998; Chang et al., 2001; Rudel et al., 2001). In skin cells, macrophages, 

adrena1 cells and CHO cells, ACAT-1 is the major isoenzyme and constitutes 90% 

or more of the total cellular ACAT activity. In intestinal mucosal cells, ACAT -2 is 

the major isoenzyme. ACAT-2 may be allosterically regulated by cholesterol 

(Chang et al., 2000; Liu et al., 2005). 

The objective of cholesterol esterification is the storage of cholesterol as cholesteryl 

esters in cytoplasmic lipid droplets. Cholesteryl esters can be hydrolyzed when 

necessary and the esterification/hydrolysis cycle provides cells with short-term 

buffering capacity for cholesterol. In contrast to cholesterol, plant sterols being poor 

substrates for ACAT-2, are not efficiently esterified and remain in majority 

unesterified. (Field and Mathur, 1983; Joyce et al., 1999; Temel et al., 2003). This 

reflects the main difference between plant sterols and cholesterol in all reactions 

taking place in the enterocyte. Cholesteryl esters can subsequently be secreted into 

the lymph after their packaging into chylomicrons, to ultimately reach the liver 

(Chang et al., 2006). 

2.3. Cholesterol Biosynthesis Regulation: SREBP 

Cholesterol biosynthesis is controlled by a family of transcription factors of the 

helix-loop-helix family designated Sterol Regulatory Element Binding Proteins 

(SREBPs). SREBPs activate the expression of more than 30 genes required for the 

synthesis of cholesterol, fatty acids, triglycerides and phospholipids, and are thus 

considered key regulators of cholesterogenesis and lipogenesis (Brown and 

Goldstein, 1997; Horton and Shimomura, 1999; Edwards et al., 2000; Sakakura et 

al.,2001). 
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SREBPs are encoded by two genes, srebp-l and srebp-2. Alternative promoter 

usage and alternative splicing of SREBP-l drive the production of two isoforms, 

SREBP-Ia and SREBP-Ic. The 29 additional amino acids present in the SREBP-Ia 

NH2 terminus are enriched in acidic residues and might be responsible for the 

higher transcriptional activity of SREBP-I a, compared with that of SREBP-I c. 

SREBP-Ic was initially cloned in rats and called adipocyte determination and 

differentiation factor-l (ADD 1) (Rosen and Spiegelman, 2000). 

SREBP-I a has been mainly studied in celllines, showing a strong expression, while 

in animal tissues its expression is re1atively weak. SREBP-I c, highly expressed in 

liver, is the key regulator of lipogenesis and enhances transcription of genes 

encoding acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS), stearoyl-CoA 

desaturase 1 (SCD-l) and glycerol-3-phosphate acyltransferase (GPAT), all 

important enzymes in the lipogenic pathway. SREBP-2, predominantly expressed in 

celllines, is also present in the liver and adipose tissue, but overall has a rather weak 

expression in animal tissues. It activates cholesterol synthe sis by inducing 

expression of genes encoding enzymes that catalyze the various steps in cholesterol 

synthesis, including HMG-CoA reductase (Desvergne et al., 2006). 

SREBPs are synthesized as inactive precursors of ~125-kDa, bound to the 

endoplasmic reticulum (Hua et al., 1995). In order to reach the nucleus and act as 

transcription factors, their NH2-domains must be cleaved. One protein required for 

the transfer of SREBP to the nucleus is an escort protein designated SREBP 

cleavage activating prote in (SCAP). A schematic representation of SREBP 

activation is shown in Figure 3. 
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Figure 3. SREBP activation. Sterol regulatory element-binding proteins are 
embedded in the ER when first synthesized, in a complex with the protein SREBP 
cleavage-activating prote in (N and C represent the amino and carboxyl termini of 
the proteins). When bound to SCAP, SREBPs are inactive. When sterol levels 
decline, the complex migrates to the Golgi complex, and SREBP is cleaved by two 
different proteases in succession. The liberated amino-terminal domain of SREBP 
migrates to the nucleus, where it activates transcription of sterol-regulated genes. 
(Adapted from Lehninger et al., 2001) 

Low membrane cholesterol levels lead to the transport of SCAP/SREBP to the 

Golgi membrane where activation of the site 1 serine protease results in a first 

cleavage. A second enzyme, the site 2 metalloproteinase, completes the maturation 

of SREBPs and releases the 68-kDa NH2-terminal domain of SREBP from the 

membrane (Edwards et al., 2000). This fragment contains a basic helix loop helix 

(HLH) leucine zipper domain, which functions as a transcription factor upon 

translocation into the nucleus. The mature forms of SREBPs bind to elements 

initially characterized as featuring an enhancer sequence called E-box that is 

recognized by members of the HLH transcription factor family. SREBPs also bind 

to sites related to the direct repeat TCANCCAC (Horton et al., 2002). 

Deletion of SREBP-l (eliminating both SREBP-la and SREBP-lc) or SREBP-2 

leads to partial or fully embryonic lethality, respectively. In contrast, specific 

deletion of the SREBP-l c transcript is not lethal, suggesting an important role of 

SREBP-la and SREBP-2 in embryonic development. The SREBP maturation 
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process via membrane cholesterol sensing is consistent with their important role in 

cholesterol homeostasis (Sundqvist and Ericsson, 2003). SREBP-2 is mainly 

involved in cholesterol metabolism. SREBP-lc has an important implication in fatty 

acid synthe sis, whereas SREBP-l a is involved in cholesterol and fatty acid synthesis 

(Desvergne et al., 2006). 

3. Intestinal Cholesterol Transport 

Next to endogenous synthe sis, dietary intake provides the other main source of 

cholesterol in mammals. Only a fraction of dietary cholesterol is absorbed in the 

small intestine, with large interindividual variations in humans. Reported values 

range from 25% to 85% (Sehayek et al., 1998; Bosner et al., 1999). In contrast, only 

small amounts of plant sterols are absorbed (Lu et al., 2001b; Turley and Dietschy, 

2003). 

Recent studies suggest that cholesterol absorption is a protein-mediated process. In 

support to this hypothesis, cholesterol uptake by apical membranes in vitro follows 

a second-order reaction kinetics changing to a low-affinity first-order kinetics 

mechanism upon proteolytic digestion of proteins on the surface of the brush-border 

membranes (Thurnhofer and Hauser, 1990). The recent discovery of inhibitors (that 

selectively block cholesterol absorption at very low doses) and their binding to 

intestinal mucosa in a specific and saturable manner, supports the protein-mediated 

cholesterol absorption hypothesis (Hemandez et al., 2000). 

Various transporters, inc1uding fatty acid translocase/c1uster determinant 36 

(FAT/CD36), scavenger receptor c1ass B type l (SR-BI) and Niemann Pick Cl­

Likel (NPCILl) may be involved in cholesterol uptake, while the ATP Binding 

Cassette transporter family, inc1uding several cholesterol carriers (ABCAl, ABCBl, 

ABCG5/G8), may act as efflux pumps favoring cholesterol export out of absorptive 

cells into the lumen or basolateral compartments (Levy et al., 2007). 
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Intestinal cholesterol absorption consists on a multistep process that can be 

controlled at several leve1s. A schematic overview of the absorption process is 

shown in Figure 4. 

Cholesterol 

~~~8 >>>>>~8-' - Chol 
Qo-Ol),r ! 

HDL - Chol~ 

/ 
\ . ~ -1 .. ÀBCG5IG8 

denovo 
LDL ---... a Ldlrsynthesis .. 

Lrp 

Cholesterol 

Figure 4. Schematic overview of cholesterol transport in enterocytes. 
ABCAl/G5/G8, ABC-transporters Al,G5 and G8; ACAT2, acyl-coenzyme 
A:cholesterol acyltransferase-2; CE, cholesteryl ester; Chol, cholesterol; HDL, high 
density lipoprotein; LDL, low density lipoprotein; LDLr, LDL-receptor; LRP, LDL­
receptor related prote in; NPClLl, Niemann-Pick Cl like 1, CD36, c1uster 
determinant 36; SR-BI, scavenger receptor c1ass B type I. (Adapted from (Levy et 
al., 2007) 

After cholesterol is taken up by the enterocyte, it is esterified by the action of acyl­

coenzyme A:cholesterol acyltransferase 2 (ACAT2) (Lee et al., 2000). Cholesteryl 

esters are packed into chylomicrons and subsequently secreted via the lymph to the 

circulation (Wang and Carey, 2003). 

In addition, studies have shown that enterocytic cholesterol can also be transferred 

to lipid-poor apoA-I through the action of intestinal ABCAI (Brunham et al., 2006). 

The HDL partic1es are directly excreted into the circulation and contribute for 

approximately 30% to the steady-state plastna HDL pool in mice (Brunham et al., 



13 

2006). However, abcar/- mice do not show reduced cholesterol absorption 

(McNeish et al., 2000; Drobnik et al., 2001), indicating that this process is not of 

regulatory relevance for mass cholesterol absorption. Non esterified cholesterol and 

plant sterols can be excreted from the enterocyte back into the intestinal lumen. This 

process is facilitated by the ABC half-transporters ABCG5 and ABCG8 (Berge et 

al., 2000; Igel et al., 2003). Overexpression of these transporters in mice increases 

excretion of cholesterol into the lumen and limits net cholesterol absorption (Yu et 

al., 2002b). 

3.1. Cholesterol Transporters 

Considerable effort has been spent over the past several years on identifying the 

cholesterol transporter(s) in enterocyte membranes. This section focuses on recent 

progress and explanatory findings associated to various pro teins that are potentially 

involved in cholesterol transport. 

3.1.1. Scavenger Receptors CD36 and SR-BI 

Several cell surface glycoproteins, inc1uding CD36 and SR-BI are designated as 

scavenger receptors and contribute to the uptake of modified lipoproteins (Ades et 

al., 1992; Calvo et al., 1995; Acton et al., 1999; Nakata et al., 1999; Husemann et 

al.,2001). 

3.1.1.1. CD36 

FAT/CD36, (fatty acid translocase/c1uster determinant 36) an 88-kDa membrane 

glycoprotein, is found in several cell types, inc1uding platelets, monocytes, 

macrophages and endothelial cells where it facilitates cellular uptake of long-chain 

fatty acids. In humans and mice, CD36 is also expressed in intestinal epithelial cells. 

(Ohgami et al., 2001; Nicholson and Hajjar, 2004). 
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CD36 has been reported to be a multifunctional receptor recognizing severalligands 

inc1uding OxLDL (Nakata et al., 1999; Nozaki, 1999), thrombospondin (Simantov 

and Silverstein, 2003), collagen (Femandez-Ruiz et al., 1993; Kopprasch et al., 

2004), Plasmodium jalciparum-infected erythrocytes (Beeson and Brown, 2004) 

and anionic phospholipids (Ryeom et al., 1996; Bottcher et al., 2006). The 

importance of CD36 in fatty acid absorption is well established, since CD36 

deficiency leads to abnonnallipid processing in enterocytes. 

The potential role of CD36 in cholesterol absorption is reported in studies showing 

enhanced cholesterol uptake from micellar substrates by CD36-transfected COS-7 

cells compared to mock-transfected cells (van Bennekum et al., 2005). The CD36-

mediated cholesterol uptake properties in the transfected cells are similar to that 

observed with SR-BI-transfected cells as well as those observed with brush-border 

membrane vesic1es prepared from wild-type mice (van Bennekum et al., 2005). The 

importance of CD36 in mediating cholesterol absorption was demonstrated in a 

study that showed a significant reduction of cholesterol transport from the intestinal 

lumen to the lymph in CD36-null mice (Nauli et al., 2006). Interestingly, the CD36-

facilitated cholesterol uptake process is similar to that observed for SR-BI-mediated 

cholesterol uptake in their sensitivity to ezetimibe inhibition (van Bennekum et al., 

2005). 

3.1.1.2. SR-BI 

SR-BI, the scavenger receptor c1ass B type l, an 82-kDa protein, is highly expressed 

in the small-intestine brush border membrane where it facilitates the uptake of 

dietary cholesterol from either bile salt micelles or phospholipid vesic1es (Hauser et 

al., 1998). SR-BI is able to bind with fair but different affinities to HDL, LDL, and 

modified (acetylated or oxidized) LDL. On the other hand, HDL and LDL appear 

not to share the same binding sites (Gu et al., 2000). 
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The participation of SR-BI in cholesterol absorption was suggested by studies that 

showed that SR-BI cDNA-transfected cells displayed increased cholesterol uptake 

from micellar substrates compared with mock-transfected cells with low SR-BI 

expression (Altmann et al., 2002; van Bennekum et al., 2005). Moreover, the 

increase in cholesterol uptake by SR-BI-transfected cells showed a sensitive effect 

to ezetimibe inhibition in both of these studies. 

Despite the strong evidences suggesting that SR-BI may participate in cholesterol 

absorption on the surface of brush-border membranes, its role in cholesterol 

absorption in a physiological environment remains controversial. Since scarbr/­

mice, with a disruption of the sr-bi gene, efficiently absorbed cholesterol, in similar 

fashion to wild-type mice (Altmann et al., 2004), whereas cholesterol absorption 

was increased in transgenic mice with SR-BI-specific overexpression in the intestine 

(Bietrix et al., 2006). 

3.1.2. NPCILl 

Niemann-Pick Cl-like 1 prote in (NPClLl), a l5l-kDa prote in, is expressed 

predominantly in the gastrointestinal tract with peak expression in the proximal 

jejunum (Altmann et al., 2004; Davis et al., 2004). In situ hybridization and 

immunohistochemistry analysis of the jejunum revealed discrete NPClLl 

localization to the epithe1iallayer lining the luminal space along the crypt-villus axis 

(Altmann et al., 2004). Furthermore, our group (Sane et al., 2006) was able to assign 

NPClLl to the brush-border membrane with the use of cell fractionation and high­

resolution immunoelectron microscopy. The protein was also found to be located in 

subcellular compartments of the human enterocyte, inc1uding lysosomes and 

mitochondria (Sane et al., 2006). 

NPClLl has 50% ammo acid homology to NPCl, which is defective in the 

cholesterol storage disease Niemann-Pick type C (Carstea et al., 1997). A strong 

support for the essential role that NPC 1 L 1 plays in intestinal cholesterol absorption 
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lies in the following examples. Mice deficient in NPCILI lack the ability to absorb 

cholesterol and exhibit prevailing protection against the rise in plasma and hepatic 

cholesterol associated with the administration of high cholesterol diets (Altmann et 

al., 2004; Davis et al., 2004; Davis et al., 2007). Genetic modifications of NPCILI 

in cultured intestinal cells alter cholesterol uptake (Palmer et al., 1995; Yu et al., 

2006; Yamanashi et al., 2007). Reduced expression in NPCILI was found 

associated with reduced sterol absorption, low-density lipoprotein-cholesterol 

(LDL-C) levels (Cohen et al., 2006) and LDL-C response to ezetimibe therapy 

(Hegele et al., 2005; Simon et al., 2005; Wang et al., 2005). Inactivation ofNPCILI 

led to defects in cholesterol transport, variations in key regulatory sterol enzymes 

(HMG-CoA reductase and ACAT), and high gene expression of SREBP, which 

suggest key roles for NPCILI in cholesterol homeostasis (Sane et al., 2006). 

3.1.3. ATP-Binding-Cassette (ABC) Transporters 

ABC-transporters compnse a large family of membrane proteins that mediate 

transport of a variety of compounds across cellular membranes against 

concentration gradients at the cost of ATP. Most ABC-transporters contain two 

transmembrane and two ATP-binding domains. Genes that encode for the ABC 

transporters are conserved from bacteria to mammals. They play critical roles in the 

active transport of a wide range of molecules across cellular membranes. Each ATP­

binding domain contains the conserved Walker A and Walker B motifs that are 

involved in ATP binding and hydrolysis. Each transmembrane domain consists of 

six membrane-spanning a-helices. Sorne ABC-transporters contain only a single 

transmembrane and a single ATP-binding domain and are therefore called "half­

transporters". These half-transporters assemble either as homo di mers or 

heterodimers to create a functional transporter (Dean et al., 2001; Borst and 

Elferink, 2002; Tusnady et al., 2006). Three specific ABC transporters of relevance 

for this study are discussed below. 
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3.1.3.1. ABCAI 

ABCA1, a full-sized transporter, is probably the most extensively studied 

transporter of the ABC superfamily. ABCA1 is expressed in virtually aIl organs and 

tissues, with a high expression in hepatocytes, enterocytes and macrophages 

(Luciani et al., 1994; Wellington et al., 2002). The ABCA 1 protein is located on the 

basolatera1 surface of intestinal cells, indicating that this protein does not have a 

direct role in cholesterol absorption from the intestinal lumen. CUITent studies 

indicate that ABCA 1 expression in the basolatera1 membrane is crucial for intestinal 

secretion of HDL, which accounts for ~30% of HDL production in the body (Attie, 

2007). ABCA1 mediates the efflux of cholesterol and phospholipids ABCG5/G8 to 

lipid-poor apoA-I and to pre-p-HDL. Therefore, ABCA1 has a crucial role in HDL 

formation, as evidenced from the discovery of mutations in the ABCA 1 gene in 

Tangier disease (Bodzioch et al., 1999; Brooks-Wilson et al., 1999; Rust et al., 

1999). Tangier patients, as weIl as mice lacking ABCA1, are characterized by an 

almost complete absence of HDL and accumulation of cholesteryl esters in various 

tissues. 

However, it is important to note that ABCA1, present in other tissues promotes 

reverse cholesterol transport to the li ver for biliary excretion (Vaisman et al., 2001). 

Therefore, ABCA 1 may indirectly impact on cholesterol absorption through the 

modulation of lipid composition in bile and the intestinal lumen, as evidenced by the 

moderately lower cholesterol absorption in abcal-I
-) mice. 

3.1.3.2. ABCG5 and ABCG8 

Two groups (Berge et al., 2000; Lee et al., 2001) independently identified the two 

adjacent genes ABCG5 and ABCG8, in a head-to-head configuration that encode 

transporters, highly expressed in the liver and intestine. Unlike other ABC 

transporter genes that encode proteins with 12 transmembrane domains, ABCG5 

and ABCG8 separetely encode a protein with 6 transmembrane domains, and the 
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heterodimerization of the two encoded proteins is required for transport activity 

(Graf et a1., 2002). 

ABCG5 and ABCG8 are localized at the apical brush border membranes of 

enterocytes and the canalicular membranes of hepatocytes. These transporters 

constitute an efficient efflux pump system for cholesterol and plant sterols 

transporting out of intestinal cells back into the intestinal lumen and from 

hepatocytes into the bile. These efflux processes thus contribute to the regulation of 

intestinal absorption and biliary secretion of cholesterol and plant sterols (Yu et al., 

2002a; Yu et al., 2002b; Yu et al., 2003; Klett et al., 2004). 

Mutations in either one of these genes cause sitosterolemia, an error of metabolism 

characterized by the accumulation of plant sterols in the body due to a decreased 

ability for their hepatobiliary secretion (Berge et al., 2000; Lee et a1., 2001; Lu et 

a1., 2001a). Accordingly, mice deficient for ABCG5 and/or ABCG8 are 

characterized by accumulations of plant sterols in blood and organs. These mice 

have a reduced secretion and a clearly enhanced intestinal absorption of plant 

sterols, whereas absorption of cholesterol is not affected (Yu et a1., 2002a; Klett et 

aL, 2004; Plosch et al., 2004). 

However, overexpression of ABCG5 and ABCG8 in transgenic mice causes a poor 

fractional intestinal cholesterol absorption besides the increased hepatobiliary 

cholesterol secretion (Yu et aL, 2002b). These findings have established ABCGS 

and ABCG8 as key transporters that regulate excretion of cholesterol and plant 

sterols from the body. 

4. Transcription Factors 

One type of metabolic regulation relies on the transcriptional regulation mechanism, 

which affects the level of expression of key enzymes and/or proteins and is effective 

on a long time scale. Transcriptional control requires specific signaIs, called 
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transcriptional factors, to be transduced to the cell nucleus where defined sets of 

genes are targeted. 

Transcription factors are soluble proteins that are able to bind to DNA. Their 

binding to promoter sites of genes influences the transcription of these genes, 

leading to an up- or down-regulation of their expression. Sorne transcription factors 

need to be activated by ligands before they are targeted to the nucleus (Des vergne et 

al., 2006). A schematic model of this type of transcriptional regulation is given in 

Figure 5. 

Ligand 

Nucleus 

00 
Promoter reglon 

Figure 5. General schema of gene regulation by tranSCrIptIOn factors. TF, 
transcription factor. (Adapted from Bandsma et al., 2004) 

Several food components and derivatives thereof may act as ligands for specifie 

transcriptional factors, providing means to adapt gene expression patterns in 

response to environmental (i.e., dietary) signaIs. The distinct roles of certain factors 

important in transcriptional control of genes involved in cholesterol, lipid and bile 

acid metabolism made them highly interesting as potential phannacological targets 

for prevention or treatment of certain diseases. 
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Transcriptional factor proteins exhibit a characteristic structure with regions of 

conserved sequence and function (Figure 6A) (Francis et al., 2003). The proteins 

contain an NH2-terminal region that harbors a ligand-independent transcriptional 

activation function (AF-1). Adjacent is the DNA binding domain (DBD), containing 

two highly conserved zinc finger motifs that target the receptor to specifie DNA 

sequences. This is followed by a region that permits protein flexibility to allow 

simultaneous receptor dimerization and DNA binding. Close to the COOH-terminal 

region is the usually highly conserved ligand-binding domain, and the last part of 

the receptor contains a ligand-dependent activation function (AF-2) (Chawla et al., 

2001; Germain et al., 2006). Transcriptional factors can bind to DNA response 

elements in the promotor regions of their target genes as monomers, homodimers or 

as heterodimers with the Retinoid X Receptor (RXR) (Figure 6B) . 
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Figure 6. Schematic structure of transcriptional factors. (A) Organisation of a 
transcriptional factor. AF, activation function; DBD, DNA-binding domain; LBD, 
Ligand-binding domain. (B) Heterdimerization and DNA-binding of transcriptional 
factors. (Adapted from Edwards et al., 2000) 
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4.1. The Liver X Receptor (LXR) 

The liver X receptor is a major player in regulating cholesterol metabolism. Two 

LXR isotypes have been identified in mammals, i.e., LXRa (NRIH3), which is 

predominantly expressed in the liver, kidney, intestine, adipose tissue, and 

macrophages, and LXRp (NR 1 H2) with a more ubiquitous expression pattern 

(Willy et al., 1995; Peet et al., 1998). These two isotypes, LXRa and LXRP, share 

77% ami no acid identity in their DBD and LBD and are highly conserved between 

rodents and human. 

LXR endogenous activators are oxysterols, i.e., cholesterol metabolites (Janowski et 

al., 1996; Forman et al., 1997; Lehmann et al., 1997; Janowski et al., 1999). As 

such, they participate in the cholesterol sensing processes and regulate important 

aspects of cholesterol and fatty acid metabolism (Tontonoz and Mangelsdorf, 2003). 

LXRs heterodimerize with RXR to bind to their DNA response element, formed 

from a direct repeat of two hexamers related to the sequence AGTTCA, separated 

by four nuc1eotides. Mono-oxidized derivatives of cholesterol are strong LXR 

ligands. The most potent are 22(R)-hydroxycholesterol, 24(S)-hydroxycholesterol, 

and 24(S),25-epoxycholesterol, which activate both LXRa and LXRp. Little lS 

known about the sterol hydroxylases that produce th~se metabolites, but it lS 

assumed that oxysterol concentrations parallel those of cholesterol (Desvergne et al., 

2006). Importantly, oxysterols are found at micromolar concentrations in tissues that 

express high levels of LXRa or· LXRp. Activation of the heterodimer can also be 

triggered by RXR ligands (Field et al., 2004). LXRa and LXRp null mutant mice 

have been generated and confirm the important role of these receptors, and more 

particularly that of LXRa in cholesterol homeostasis. 

When LXRa becomes activated, the LXRalRXR complex induces transcription of 

target genes amongst which are ABCAl, ABCG5/G8. Activation of LXRa thus 

results in elevated levels of HDL-cholesterol, reduced intestinal cholesterol 
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absorption, increased hepatobiliary cholesterol secretion and increased neutral sterol 

10ss via the feces. In this way, LXR activation has anti-atherogenic actions, as has 

been substantiated in a mouse model that is susceptible to develop atherosclerosis 

(ldl-r -/) treated with a synthetic LXR agonist, T090131773 (Goodwin et al., 2008). 

However, besides stimulation of cholesterol disposaI, activation of LXR by 

synthetic ligands like T090 1317 also leads to increased lipogenesis, 

hypertriglyceridemia through the production of larger VLDL partic1es and hepatic 

steatosis in rodents (Grefhorst et al., 2002). Therefore, general LXRa activation can 

only be used as an atheroprotective therapy if the undesirable effects on lipogenesis 

can be eliminated by the development of selective LXR modulators. 

4.2. Peroxisome Proliferator-Activated Receptors (PP AR) 

pp ARs were the first nuclear receptors identified as "sens ors" rather than classic 

hormone receptors. They are molecules that control a variety of genes in several 

pathways of lipid metabolism (De Vos et al., 1995). Three mammalian peroxisome 

proliferator-activated receptors (PPARs) have been cloned in Xenopus, rodents, and 

humans: PPARa (NRIC1), PPARp/ô (NRIC2) and PPARy (NRIC3). Two PPARy 

isoforms, PPARyl and PPARy2, are splice variants in their NH2-terminal domain. 

They are aIl activated by polyunsaturated fatty acids and eicosanoids and are 

therefore considered to be fatty acid sens ors (Willson et al., 2000). AlI PP ARs play 

important roles in the control of lipid and glucose metabolism and have been 

involved in obesity-related metabolic diseases, such as hyperlipidemia, insulin 

resistance, and coronary artery disease. pp ARs, which recognize and bind a variety 

of fatty acids, regulate mcst of the pathways linked to lipid metabolism (Michalik et 

al., 2003). 

pp ARa is most highly expressed in tissue with high activity levels of lipid 

catabolism, e.g., liver, brown adipose tissue, and skeletal and heart muscle and was 

recognized to be responsive to fibrates, which are widely used drugs for treatment of 

hyperlipidemia (Issemann et al., 1993; Schonfeld, 1994). Activated PPARa 
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increases p-oxidation of fatty acids, thereby stimulating energy production and 

preventing lipid accumulation. Under the physiological fasting condition, pp ARa 

becomes activated by the free fatty acids re1eased from adipose tissue, after which 

hepatic p-oxidation is induced in order to provide energy to peripheral tissues 

(Kersten et al., 1999). 

PPARy is mainly expressed in the adipose tissue and is involved in adipocyte 

proliferation. PPARy1 is mainly expressed in adipose tissues but is also detected in 

the colon, spleen, retina, hematopoeitic celIs, and skeletal mùscle. PPARy2 has been 

found mainly in the brown and white adipose tissue. PPARy is critical for the 

maintenance of glucose homeostasis and is a molecular target of thiazolidinediones 

(TZDs), a class ofinsulin-sensitizing drugs (Ros en and Spiegelman, 2001). 

pp ARp has an ubiquitous expression pattern and appears to serve several functions. 

Besides its role in lipid metabolism, it is involved in skin biology, energy 

homeostasis and inflammatory processes (Michalik et al., 2003). pp ARp was 

reported as an important factor in the regulation of glucose metabolism and insulin 

sensitivity (Lee et al., 2006). 

The ligand binding pocket of pp ARs is much larger than that of the other nuclear 

receptors and relatively easily accessible. The DNA binding domain is extremely 

weIl conserved. The less conserved NH2-terminal region bears a ligand-independent 

activation domain, at least in PPARa and PPARy (Xu et al., 2001a; Xu et al., 

2001b; Xu et al., 2002; Xu et al., 2004). 

pp ARs bind to DNA as heterodimers with RXR, on pp AR response elements 

(PPRE) comprising direct repeats of two hexamers closely related to the sequence 

AGGTCA and separated by one nucleotide. The five nucleotides that flank the 5'­

end of this core sequence are also important for the efficiency of pp ARa:RXR 

binding (Desvergne et al., 2006). 
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The first molecules to be recognized as pp ARa activators, and later characterized as 

ligands, belong to a group of molecules that induce peroxisome proliferation in 

rodents, thus explaining the name of peroxisome proliferator activated receptor 

given to this receptor. This diverse group of substances includes, for example, sorne 

plasticizers and herbicides. More interestingly, various fatty acids, more particularly 

unsaturated fatty acids, and sorne eicosanoids mainly derived from arachidonic acid 

and linoleic acid, bind to PPARa, -~, and -y with varying affinities (Desvergne et al., 

2006). In addition to being activated by fatty acids, pp ARa responds to fibrates that 

are hypolipidemic drugs, and pp ARy responds to thiazolidinediones that are insulin 

sensitizers, demonstrating their potential as drug targets. In the process of 

transcriptional regulation, ligand-bound pp ARs recruit coactivators, most likely 

organized in large complexes (Surapureddi et al., 2002). Co factor recruitment may 

be pp AR isotype specifie and may ensure the specificity of target gene activation. In 

addition to pp AR ligand binding, pp ARs can also be activated by phosphorylation 

of serines located in the AlB domain, and the pp AR:RXR heterodimer can be 

activated by RXR ligands (Desvergne et al., 2006). 

4.3. The Retinoid X Receptor 

Retinoid X receptors (RXRs; NR2B 1) play an important role in nuclear receptor 

signalling, as they function as general partners for a variety of nuclear hormone 

receptors that bind as heterodimers to DNA. There are three isotypes of RXR, a, ~, 

and y, and several isoforms for each of them (Chambon, 1996). Each isotype and 

isoform has its specifie expression pattern. However, each single tissue contains one 

or several forms of RXR. 

Almost aIl the nuclear receptors are active as heterodimers with RXR. The 

important part that RXR may play is further emphasized by the fact that RXR is 

itself a nuclear receptor that can be activated by specifie ligands. PPAR:RXR and 

LXR:RXR are permissive heterodimers: RXR can bind its own ligand, in the 
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absence of a ligand for its partner and can thereby activate the transcription of the 

heterodimer target genes (Desvergne et al., 2006). 

In addition to the various heterodimers for which RXR is an obligatory partner, 

RXR can form homodimers. The in vivo relevance of these homodimers is still 

under study. RXR can be activated by 9-cis-retinoic acid, an isomer of all-trans­

retinoic acid (Heyman et al., 1992). Retinoids are used for treatment of 

dermatological disorders and certain cancers and a common side-effect of this 

treatment is dyslipidemia (Farol and Hymes, 2004), indicating that retinoids and 

RXR are involved in the regulation of lipid metabolism. 

Deletion of the RXRa gene in the liver allowed the identification of the most 

affected pathways (Wan et al., 2000). As expected, many PPARa-mediated 

functions were altered and the activity of LXR and FXR was also compromised, 

suggesting that the absence of RXRa cannot be compensated by RXR~ and RXRy 

in the liver. 

5. Glucose metabolism 

Carbohydrates are a main source of energy and can be stored in the form of starch in 

plants and glycogen in animaIs. Carbohydrates are also part of the structural 

framework of both DNA and RNA and form structural elements' in cell walls of 

bacteria and plants. An important group of carbohydrates comprises the 

monosaccharides of which glucose is an example. Glucose is primordial for the 

generation of energy. Monosaccharides are aldehydes or ketones with two or more 

hydroxyl groups, that can be described by the formula (CH20)n. Glucose 

metabolism is tightly regulated in humans and animaIs to guarantee a sufficient 

glucose supply to glucose-dependent organs. The brain is the organ that is most 

dependent on an adequate supply of glucose, since it can only use ketone bodies as 

an alternative energy source and this only to a limited extent. Carbohydrates are 

transported to and from various tissues through the blood compartment. Glucose can 
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enter the blood via two routes, i.e., dietary glucose derived from the intestine and 

glucose production by the liver and the kidney. During fasting, the organism will 

solely depend on the production of glucose, mainly by the liver. Glucose can be 

produced directly through gluconeogenesis from various substrates, such as certain 

amino acids, lactate and glycerol. The liver is also able to produce glucose indirectly 

through phosphorylation of glycogen, the storage form of glucose. This process is 

called glycogenolysis (Rothman et al., 1991; Hellerstein et al., 1997). Glucose can 

also be taken up first by the blood, phosphorylated by glucokinase to form glucose-

6-phosphate (G6P) and then be secreted again after dephosphorylation by glucose-6-

phosphatase (G6Pase). This process is called glucose cycling (Jens sen et al., 1990). 

5.1. Physiological interactions between carbohydrates and lipid metabolism 

Carbohydrate metabolism and lipid metabolism are linked in many ways. First of 

all, mammals are capable of tuming glucose into fat. Glucose is degraded, through 

glycolysis, into acetyl-CoA, which is the precursor for fatty acid synthesis. On the 

other hand, fat cannot be tumed into glucose by mammals, because the enzyme 

system for this conversion is lacking. Evidence was generated in the sixties by the 

group of Dr. Randle evidencing that fat oxidation inhibits glucose oxidation, by 

interference at multiple levels (Randle et al., 1963). The key enzyme in this 

inhibitory process is pyruv~te dehydrogenase, which catalyzes the oxidative 

decarboxylation of pyruvate leading to the formation of acetyl-CoA. It was found 

that free fatty acids (FF A) increase concentrations of acetyl-CoA as well as of 

citrate, important in the citric acid cycle (Randle et al., 1963). Acetyl-CoA was 

found to decrease pyruvate dehydrogenase allosterically and citrate was found to 

inhibit phosphofructokinase, an enzyme involved in glycolysis. This whole process 

came to be known as the glucose-fatty acid cycle or Randle cycle. More recently, 

the group of Dr. Robert Wolfe provided data to indicate the opposite phenomenon 

(Sidossis and Wolfe, 1996). Using a hyperinsulinemic-hyperglycemic clamp 

technique they found that elevated glucose concentrations inhibited fatty acid 
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oxidation. This effect might be due to increased intracellular malonyl-CoA levels. 

Malonyl-CoA is produced from acetyl-CoA and is the first step in fatty acid 

synthesis, i.e. de novo lipogenesis. Increased glycolysis produces more pyruvate 

leading to increased acetyl-CoA production, which in turn will lead to more 

malonyl-CoA. Malonyl-CoA is known for its inhibitory effect on carnitine­

palmitoyl transferase l, an enzyme catalyzing the binding of camitine to long-chain 

fatty acids, a necessary step for entry into mitochondria and subsequent oxidation. 

Lipids and carbohydrates do not only influence each other in terms of oxidation but 

also in their synthetic processes. It has been known for sorne time that glucose is 

capable of promoting de nova lipogenesis (Groen et al., 2001). However, a high 

glucose intake probably does not promote hepatic synthesis of quantitatively 

important amounts of fatty acids in humans with a western dietary lifestyle 

(Hellerstein et al., 1996). It was found that the regulation of hepatic de novo 

lipogenesis is, at least partly, controlled by specific transcription factors. Evidence 

however shows that SREBP-1 and 2 can partially compensate each other, as 

SREBP-l knockout mice showed elevated levels of SREBP-2 and increased 

cholesterol synthesis rates (Shimano et al., 1997). Glucose is able to induce 

lipogenesis indirectly by inducing insulin secretion. Insulin has long been known for 

its lipogenic activity (Beynen et al., 1979). Two groups separately found that insulin 

has an additional effect by enhancing SREBP-lc gene expression and the abundance 

of the protein in the endoplasmic reticulum (Moon et al., 1999; Shimomura et al., 

1999; Azzout-Marniche et al., 2000). The carbohydrate responsive element binding 

prote in (ChREBP) (Foufelle et al., 1998; Koo et al., 2001), is also involved in 

transcriptional regulation of lipogenesis. ChREBP is induced in situations 

characterized by high glucose concentrations (Koo et al., 2001; O'Callaghan et al., 

2001; Yamashita et al., 2001). ChREBP itselfwas found to activate gene expression 

of both pyruvate kinase and acetyl-CoA carboxylase (Kawaguchi et al., 2001; Koo 

et al., 2001; O'Callaghan et al., 2001; Yamashita et al., 2001). 

Hepatic very-low density lipoprotein (VLDL) secretion to plasma is also a process 

in which insulin is a primary factor. Insulin, after secretion in response to a rise in 
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plasma glucose concentration, regulates VLDL-triglyceride secretion, either directly 

by influencing the rate of apoB synthesis, or indirectly via its effect on the supply of 

FFA to the liver (Sparks and Sparks, 1994b; Aarsland èt al., 1996; Sidossis et al., 

1998). The acute effects of insulin on regulation of VLDL secretion differ from its 

chronic effects. Acutely, insulin inhibits hepatic VLDL secretion (Sparks and 

Sparks, 1994b), whereas chronic exposure to insu lin has an stimulatory effect 

(Zammit et al., 1999). In addition to the regu1ation of lipid synthesis and secretion 

by carbohydrates and insulin, lipids might also promote gluconeogenesis. FF A 

stimulate hepatic glucose production. However, fasting, a situation with increased 

FF A availability, is well-known to inhibit hepatic glucose production (HGP) 

(Rothman et al., 1991; Neese et al., 1995). 

Another level of metabolic regulation by FF A might be re1ated to the transcription 

factor pp ARa. pp ARa has also been suggested to induce phosphoenolpyruvate 

carboxykinase PEPCK gene expression (Kersten et al., 1999). pp ARa knockout 

mice suffer from fasting induced hypoglycemia, indicating a possible role in control 

of hepatic glucose production (Kersten et al., 1999). Apart from pp ARa, evidence 

exists that other transcription factors are involved in regulation of glucose 

metabolism. Glucokinase expression is activated by hepatic nuclear factor-4a 

(HNF-4a) (Roth et al., 2002). Glucose, through activation phosphorylationl 

dephosphorylation of ChREBP, influences transcription of pyruvate kinase 

(Kawaguchi et al., 2001). Glucose-6-phosphatase expression is also found to be 

mediated by transcriptional mechanisms as well as by breakdown of mRNA 

(Massillon, 2001). 

In summary, transcriptional regulation is a form of metabolic regulation that is 

important for all metabolic routes of glucose. One must realize that it is likely that 

more transcription factors playing an important role in carbohydrate metabolism 

will be found in the future. 
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5.2. Pathophysiology of carbohydrate and lipid metabolism in diabetes 

Diabetes means "excessive urination". The name diabetes mellitus was given to 

patients with excessive urine production in combination with a honey-flavored taste 

of the urine, caused by urinary glucose excretion. Diabetes mellitus today comprises 

a group of metabolic disorders characterized by chronic hyperglycemia. Currently, 

three types of diabetes mellitus are known: diabetes mellitus type 1, caused by an 

autoimmune-driven destruction of pancreatic ~-cells; diabetes mellitus type 2 

(DM2), or non-insulin dependent diabetes mellitus as it mistakenly is also known. 

The third group is called maturity-onset diabetes of the young (MODY), which is a 

group of genetic diseases caused by mutations in numerous genes such as 

glucokinase and insu lin promo ter factor 1 (McGarry, 2002). DM2 is the most 

common disorder, accounting for more than 90 percent of cases, whose incidence is 

still growing in the western world even in children. The development of DM2 is in 

almost all cases caused by an overconsumption of food in relation to the energy 

expenditure and has become an epidemic disease in western societies. The primary 

event leading to full-blown DM2 is the deve10pment of insulin resistance, although 

discussion remains. Fat accumulation in muscle, liver and other tissues have been 

thought to induce insulin resistance (McGarry, 2002). Sorne researchers consider 

defective insulin secretion by the pancreas, instead of insulin resistance, to be 

primary in the development of DM2 (Ferrannini, 1998). It is, however, clear that 

insu lin resistance can precede clinically detectable DM2 by more than ten years 

(Lillioja et al., 1988), underscoring the importance of insulin resistance in the 

etiology of this disease. DM2 is associated with hyperglycemia and hyperlipidemia. 

Hyperinsulinemia occurs in the early stages of the disease when the pancreatic ~­

cells try to compensate for the insulin resistance by increasing insulin secretion. As 

the disease progresses, pancreatic ~-cell failure develops giving rise to the full­

blown DM2 phenotype. 

DM2 is also characterized by hyperlipidemia, including hypercholesterolemia and 
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Hypertriglyceridemia (Yoshino et al., 1996). Increased levels ofVLDL particles and 

small, dense LDL particles and decreased levels of HDL particles are commonly 

found (Reaven et al., 1993), giving rise to an atherogenic lipid profile. 

Increased VLDL secretion might result from the decreased sensitivity to the 

inhibitory effects on this process of insulin directly as studies in animal models of 

diabetes and diabetic humans have shown (Lewis et a1., 1993; Sparks and Sparks, 

1994a; Bourgeois et al., 1995). Increased VLDL secretion in DM2 might also be 

caused by insu lin indirectly through modulation of the supply of FF A to the liver. 

Increased FF A flux by modulation of hormone sensitive lipase, which is observed in 

insulin resistant states, has been suggested to enhance VLDL secretion by the liver. 

A number of studies have shown a diminished ability of insulin to suppress FF A 

rate of appearance in DM2 patients (Lewis et al., 2002). There is strong evidence 

that elevated FF A levels are associated with increased VLDL production in healthy 

humans (Lewis et al., 1995; Lewis, 1997). Overall, consensus practically exists that 

increased FF A flux to the liver is an important cause of overproduction of VLDL 

triglycerides by the liver in DM2. Decreased clearance of triglycerides from the 

blood in DM2 patients is related to impaired lipolysis of VLDL-triglycerides. Since 

this process is mediated by lipoprotein lipase, which is an insulin-senstivie enzyme, 

insulin resistance can lead to decreased levels of lipoprotein lipase. Multiple studies 

have shown decreased triglyceride clearance (Kissebah et al., 1982; Howard et al., 

1983), although this has not been conclusive (Blades and Garg, 1995; Yost et al., 

1995). 



Objective of Study 

Whole body cholesterol balance is regulated by the net effects of dietary cholesterol 

absorption, de novo cholesterol biosynthesis and biliary excretion from the liver 

(Davies and Ioannou, 2006; Kruit et al., 2006). 

During the last decade, it has become c1ear that cellular cholesterol transport is a 

protein-mediated process, which in tum is regulated by certain nuc1ear receptors. 

Several transporters, inc1uding fatty acid translocase/c1uster de terminant 36 

(FAT/CD36), scavenger receptor c1ass B type 1 (SR-BI) and Niemann Pick CI-Like 

1 (NPCIL1) influence cholesterol uptake. ATP Binding Cassette transporter family, 

inc1uding sorne cholesterol carriers such as ABCAI and ABCG5/G8 act as efflux 

pumps facilitating cholesterol export out of absorptive cells. 

In vitro studies undertaken to characterize intestinal lipid absorption have revealed 

relationships between glucose levels and lipid uptake. High extracellular glucose 

concentrations significantly increase brush border membrane fluidity and 

permeability at tight junctions in hum an intestinal mucosa (Komissarchik et al., 

1993; D'Souza et al., 2003b). Those studies demonstrated that glucose may affect 

the transepithelial transport of nutrients (D'Souza et al., 2003a; D'Souza et al., 

2003b). 

Furthermore, in vivo studies confirm the hypothesis that there may be a regulation of 

intestinallipid uptake by dietary glucose. An inverse relationship between glycemic 

load and HDL cholesterol was described (Liu et al., 2001; Slyper et al., 2005). It 

was reported that women who consume cholesterol with a low carbohydrate intake 

have lower concentrations of low density lipoproteiri (LDL) than those with a high 

carbohydrate intake (Lofgren et al., 2005). 

Increased cholesterol absorption has also been described in patients with diabetes 

mellitus. The prevalence of diabetes is increasing worldwide and coronary heart 
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disease (CHD) is the leading cause of death in type 2 diabetes mellitus (T2DM) (Gu 

et al., 1998). Patients with T2DM are two to three times more likely to die from 

CHD than non-diabetic individuals (Garcia et al., 1974; Stamler et al., 1993). 

Therefore, considerable attention has been focused on the dyslipidemia 

accompanying diabetes and metabolic syndrome. Exaggerated very-Iow density 

lipoprotein production In the liver represents a major pathway of the 

hypertriglyceridemia that characterizes the diabetic condition. On the other hand, a 

significant relationship exists between intestinally-derived triacylglycol (TG)-rich 

lipoproteins and the progression of atherosc1erosis (Gylling et al., 2004; Lally et al., 

2006). 

Although numerous investigations have attempted to elucidate the abnormal 

mechanisms of intestinal cholesterol absorption process in diabetic dyslipidemia, 

they have not given full consideration to nutrients other than TG and cholesterol. 

However, changing the carbohydrate content of a mixed me al altered the 

postprandial accumulation of chylomicrons (Harbis et al., 2001). Furthermore, high 

glucose levels alter the expression of various genes involved in high-density 

lipoprotein (HDL) metabolism (Tu and Albers, 2001). 

Accordingly, the main objective of this study was to evaluate the effect of glucose 

on the transport and metabolism of cholesterol in intestinal cells. The specific ai ms 

were to evaluate the effect of a high glucose level on i) cholesterol absorption 

processes; ii) the expression of proteins that may influence cholesterol uptake (SR­

BI, NPCIL1, CD36) and those favoring cholesterol export (ABCA1, ABCG5/G8); 

iii) enzymes that control cholesterol homeostasis; and iv) the status of 

transcriptional factors involved in cholesterol regulation. 

Establishing the relation between glucose levels and cholesterol transport and 

metabolism, may contribute to find new alternative therapeutic treatments 

improving the conditions of glucose and lipid related diseases such as obesity, 

coronary heart disease and diabetes mellitus among others. 
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ABSTRACT 

Growing evidence suggests that the small intestine may contribute to excessive 

postprandial lipemia, which is highly prevalent in insulin-resistant/type 2 diabetic 

individuals and substantially increases the risk of cardiovascular disease. The aim of 

the present study was to de termine the role of high glucose levels on intestinal 

cholesterol absorption, cholesterol transporter expression, enzymes controlling 

cholesterol homeostasis and the status of transcription factors. To this end, we 

employed highly differentiated and polarized cells (20 days of culture), plated on 

permeable polycarbonate filters. In the presence of [14C]-cholesterol, glucose at 25 

mM stimulated cholesterol uptake compared to Caco-2/15 cells supplemented with 

5 mM glucose (p<0.04). Because combination of 5 mM glucose with 20 mM of the 

structurally related mannitol or sorbitol did not change cholesterol uptake, we 

conc1ude that extracellular glucose concentration is uniquely involved in the 

regulation of intestinal cholesterol transport. The high concentration of glucose 

enhanced the prote in expression of the critical cholesterol transporter NPC ILl and 

that of CD36 (p<0.02) and concomitantly decreased SR-BI protein mass (p<0.02). 

No significant changes were observed in the protein expression of ABCAI and 

ABCG8, which act as efflux pumps favoring cholesterol export out of absorptive 

cells. At the same time, HMG-CoA reductase activity was decreased (p<0.007), 

whereas ACAT activity remained unchanged. FinalIy, increases were noted in the 

transcription factors LXRa, LXR~, PPAR~ and PPARy along with a drop in the 

protein expression of SREBP-2. Collectively, our data indicate that glucose at high 

concentrations may regulate intestinal cholesterol transport and metabolism in 

Caco-2/15 celIs, thus suggesting a potential influence on the cholesterol absorption 

process in type 2 diabetes. 

Key words: ABCAI, ABCG5/G8, SR-BI, CD36, NPCILI, PPAR, LXR, SREBP, 

ACAT and HMG-CoA reductase 
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INTRODUCTION 

Elevated plasma cholesterol levels constitute a major risk factor for atherosclerosis 

and coronary heart diseases (CHD) (60). Whole body cholesterol balance is 

regulated by the net effects of dietary cholesterol absorption, de novo cholesterol 

biosynthesis and biliary excretion from the liver (21, 49). A vailable evidence 

supports the concept that several proteins are involved in mediating intestinal 

cholesterol transport. While vanous transporters, including fatty acid 

translocase/cluster determinant 36 (FAT/CD36), scavenger receptor class B type l 

(SR-BI) and Niemann Pick CI-Likel (NPCIL1) may influence cholesterol uptake, 

the ATP Binding Cassette transporter family, including several cholesterol carriers 

(ABCA1, ABCB1, ABCG5/G8), act as efflux pumps favouring cholesterol export 

out of absorptive ceUs into the lumen or basolateral compartment. Among aU the 

cholesterol transporters, the enriched NPCILI protein in the apical membrane of 

polarized cells is considered essential for intestinal cholesterol absorption. To 

provide only a few examples, (i) mice deficient in NPCILI lack the ability to 

absorb cholesterol and exhibit prevailing protection against the rise in plasma and 

hepatic cholesterol associated with feeding mice high cholesterol diets (5, 22, 23); 

(ii) genetic modifications of NPCILI in cultured intestinal cells alter cholesterol 

uptake (73, 88, 90); and (iii) variations in NPClLl were found associated with 

reduced sterol absorption, low-density lipoprotein-cholesterol (LDL-C) levels (17) 

and LDL-C response to ezetimibe therapy (41, 75, 84). Although, various aspects of 

NPC 1 LI, as a cell surface transporter or an intracellular cholesterol transport prote in 

needs clarification (43), intensive research is focused on drugs that interact with 

NPClLl given their potential to treat individu aIs with hypercholesterolemia and to 

reduce their risk of developing CHD. 

The prevalence of diabetes is increasing worldwide and CHD is the leading cause of 

death in type 2 diabetes mellitus (T2DM) (35). Patients with T2DM are two to three 

times more likely to die from CHD than non-diabetic individuals (31, 77). 

Therefore, considerable attention has been focused on the dyslipidemia 
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accompanying diabetes and metabolic syndrome. Elevated li ver very-Iow density 

lipoprotein production represents a major pathway of the hypertriglyceridemia that 

characterizes the diabetic condition. On the other hand, a significant relationship has 

been shown between intestinally-derived triacylglycol (TG)-rich lipoproteins and 

the progression of atherosc1erosis. Increased cholesterol absorption has also been 

described in patients with T2DM (36, 52). Although numerous investigations have 

attempted to elucidate the abnormal mechanisms of intestinal cholesterol absorption 

process in diabetic dyslipidemia, they have not given full consideration of nutrients 

other than TG and cholesterol. However, it has been reported that changing the 

carbohydrate conteJ;).t of a mixed meal altered the postprandial accumulation of 

chylomicrons (37). Furthermore, a high glucose level alters the genetic expression 

ofvarious genes involved in high-density lipoprotein (HDL) metabolism in HepG2 

cells, inc1uding human ABCAl, SR-BI and hepatic lipase (79). The aims of the 

present study were 1) to evaluate the effect of a high glucose concentration on 

cholesterol absorption and 2) to explore the influence of an elevated glucose level 

on the expression of genes regulating cholesterol synthe sis and absorption in a cell 

culture system. 
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MATERIALS AND METHODS 

Cell culture 

The Caco-2115 cellline was obtained from Dr. JF Beaulieu (Department of Cellular 

Biology, Faculty of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, 

Canada). This clone of the parent Caco-2 cellline (RTB37; American Type Culture 

Collection, Manassas, VA) has been extensively characterized (3, 6, 80) and was 

originally selected for expressing the highest level of sucrase-isomaltase among 

16 clones obtained by random cloning. Caco-2/15 cells were grown at 37°C with 5% 

COz in Dulbecco's Modified Eagle Medium (DMEM) (GIBCO-BRL, Grand Island, 

NY) containing 1% penicillin-streptomycin and 1% Glutamax (GIBCO-BRL) and 

supplemented with 10% decomplemented fetal bovine serum (FBS) (Flow, McLean, 

VA). Caco-2115 cells (passages 40-60) were maintained in T-75-cmz flasks 

(Coming Glass Works, Coming, NY). Cultures were split (1 :6) when they reached 

70-90% confluence, by use of 0.05% trypsin-0.5 mM EDTA (GIBCO-BRL). For 

individual experiments, cells were plated at a density of 1 x 106 cells/well on 24.5-

mm polycarbonate Transwell filter inserts with O.4-llm pores (Costar, Cambridge, 

MA), in DMEM (as described above) supplemented with 5% FBS. The inserts were 

placed into six-well culture plates, permitting separate access to the upper and lower 

compartments of the monolayers. Cells were cultured for various periods, including 

21 days, at which the Caco-2 cells are highly differentiated and appropriate for lipid 

metabolism (34, 54, 55, 61, 73). The medium was refreshed every second day. At 

day 21, Caco-2/15 cells were washed twice with phosphate buffered saline (PBS) 

(Invitrogen) and incubated in a serum-free supplemented DMEM (Invitrogen) (5 

mM or 25 mM glucose), added to the apical compartment, for 24 h. 

Cholesterol absorption by Caco-2/15 cells 

To study cholesterol uptake by the cells, a solution containing 0.113 /lCi [14C]_ 

cholesterol and 100 /lM cholesterol bound to albumin was prepared. The 

differentiated cells were incubated at 37°C for 30 min and 4 h in DMEM containing 

5 or 25 mM glucose, as well as cholesterol solution. At the end of the treatment, 
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cells were washed twice with PBS, scrapped in 1 mllysis buffer (5mM Tris, 15 mM 

NaCl, EDTA 5 mM, 0.1 % SDS, 1 % Triton X 100,0.5% sodium deoxycholate) and 

homogenized by sonication followed by a 5-min at 13800 g centrifugation to 

remove cell debris. An aliquot of 0.1 ml was placed in a scintillation vial with 

Ready Safe counting fluid (Beckman, Fullerton, CA). Radioactivity was measured 

by scintillation counting (LS 5000 TD, Beckman). Cell prote in was quantified by 

the Bradford method (BioRad). 

Acyl-Coenzyme A: cholesterol acyltransferase (ACAT) activity assay 

The activity of ACAT was determined at initial rates by adding 5 nmol of [14C]_ 

oleoyl-CoA (specific activity .... 167 Bq/nmol) to the mixture containing 190 ~g of 

cellular prote in to initiate the reaction in a buffer solution (pH 7.5) consisting of 

cholesterol, 0.04 M KH2P04, 50 mM NaF, 0.25 M sucrose, and 1 mM EDTA (73). 

After incubation for 10 min at 37°C, the reaction was stopped by adding 

ch10roform-methano1 (2: 1, v/v) followed by free cholesterol (FC) and cho1estery1 

ester (CE) as carriers. The FC and CE formed were isolated by TLC and counted. 

HMG-CoA reductase activity assay 

Enzymatic activity was assayed as described previously (19, 73). The reaction 

mixture contained 100 mM potassium phosphate (pH 7.4), 200 ~g of cellular 

protein, 20 mM glucose-6-phosphate, 12.5 mM dithiothreitol, 2.5 M NADP, and 1.2 

units of glucose-6-phosphate dehydrogenase. Initiation of the reaction was done by 

the addition of [14C]-HMG-CoA (200 Bq/nmol) for 30 min at 37°C. The e4C]­

mevalonate formed was converted into lactone by the addition of 10 N HCI, isolated 

by TLC, and counted using an internaI standard to correct for incomplete recovery. 

Western Blot 

To assess the presence ofNPClLl, SR-BI, CD36, ABCA1, ABCG8, ACAT, and 

HMG-CoA reductase, Caco-2115 cells were homogenized and prepared for Western 

blotting as described previously (56). The Bradford assay (Bio-Rad) was used to 

determine protein concentration. Proteins were denatured in sample buffer 
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containing SDS and p-mercaptoethanol, separated on a 7.5% SDS-PAGE gel, and 

blotted onto nitrocellulose membranes. Nonspecific binding sites of the membranes 

were blocked using 5% defatted milk proteins. Reactions took place by the addition 

of primary antibodies directed against targeted proteins. Reaction was revealed with 

species-specific horseradish peroxidase-conjugated secondary antibody. p-actin was 

used as an internaI control to confirm equalloading protein on SDS-PAGE. Blots 

were developed and proteins were quantified using a Hewlett-Packard scanner 

equipped with a transparency adaptor and UN-SCAN-IT (Silk Scientific 

Corporation) software. 

Immunocytochemical analysis 

Caco-2115 cells grown for 21 days and exposed to either low (5 mM) or high (25 

mM) glucose medium were fixed with 1 % glutaraldehyde in 0,1 M phosphate buffer 

for 2 hours and processed for embedding in Lowicryl at -30°C as described in 

details previously (7, 55, 58, 76). Thin sections were mounted on Parlodion-carbon 

coated grids and processed for the immunogold labeling. Various proteins were 

studied, name1y SR-BI, NPCILl, ABCAl, ABCG8 and CD36. The thin sections of 

the cells were first treated with a saturated solution of sodium metaperiodate for 10 

min, followed by 1 % ovalbumin and then incubated overnight at 4°C with the 

corresponding antibody. Grids were thoroughly rinsed with PBS and incubated with 

the prote in A-gold or an anti-rabbit IgG-gold complex for 30 min at room 

temperature. Upon counterstaining with uranyl acetate, the sections were examined 

with a Philips 410 electron microscope. The antibodies were used at the following 

dilutions NPCILI at 1:10; SRBI at 1:50; CD36 at 1:10; ABCAI at 1:10 and 

ABCG8 at 1: 10. In order to assess specificity on the labeling, control experiments 

were performed omitting the incubation with the primary antibody. Grids were only 

exposed to the prote in A-gold or the anti-rabbit IgG-gold complex for 30 minutes. 

For morphometrical evaluations, a large number of photographs were recorded at 

the original magnification of x14000; they were scanned and printed to the final 

magnification of x28000. The specific membrane domain was se1ected for 

morphometrical evaluation according to the specific localization of the transporters, 
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1.e. the apical membrane with its large number of microvilli or the basolateral 

membrane with its deep invaginations. First, the length of the membrane was 

measured and then the number of gold particles delineating the same membranes 

was counted. Results are expressed in number of gold particles per /lm (mean 

values ± SD). An image processing system (Videoplan 2, Carl Zeiss Inc. Toronto) 

was used. For each of the experiments and for each prote in studied, the length of 

apical membrane evaluated was in the range of ~800 /lm, while that of the 

basolateral membrane was in the range of ~250 /lm. The major difference in 

membrane length evaluated between apical and basolateral membranes is due to the 

presence of the large number of microvilli in the apical membrane. Morphometrical 

evaluations were also performed on the control experiments. 

RNA isolation 

Total RNA was isolated from Caco-2115 cells using the TRIzol reagent according to 

the manufacturer's instructions (Sigma Chemical Co.). Concentrations of RNA were 

determined by spectrophotometer analysis and the integrity of total RNA was 

assessed by electrophoresis. 

RT-PCR 

PCR experiments for transcription factors (LXRs, RXRs, PPARs, SREBP-2) genes, 

ACAT, and HMG-CoA reductase, as well as GAPDH (as a control gene) were 

performed using the mastercycler gradient (EPPENDORF®). Specific primers were 

designed to bind to regions with minimal homology, to span at least 1 intron for 

distinction from genomic DNA and to avoid nonspecific annealing (Table 1). All 

primers were Blast searched to confirm specificity for each individual isoform. 

Approximately 30-40 cycles of amplification were used at 95°C for 30 s,53-62°C 

for 30 s, and 72°C for 30 s. Amplicons were visualized on standard ethidium 

bromide-stained agarose gels. For all RT -PCRs, analysis of rnRNA expression was 

carried out during the exponential phase of the amplification, which was assessed in 

preliminary experiments for each pair of primers. 
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Statistical analysis 

Unless otherwise stated, aH values are given as mean values ± SD. Data were 

assessed by Student's two-tailed t-test. A p value <0.05 was considered statistically 

significant. 
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RESULTS 

Cholesterol absorption 

Following pre-incubation (24 h) of Caco-2115 cells with medium containing 5 or 25 

mM glucose, cholesterol uptake was determined at short-and long-term incubation 

times. As illustrated by Figure l, cells exposed to 25 mM glucose displayed a 

higher capacity to incorporate cholesterol compared with cells treated with 5 mM 

glucose (p<0.04). Furthermore, compared to control cells, the output of cholesterol 

at 6 h (23%, p<0.04) was also augmented at the long term incubation time (data not 

shown). 

To determine whether the influence of glucose on cholesterol transport could 

possibly be explained by the difference in the osmolarity of the 5 and 25 mM 

glucose solutions, we incubated Caco-2115 cells with mannitol and sorbitol 

combined to 5 mM glucose. The cholesterol uptake of cell monolayers maintained 

in 5 mM glucose plus 20 mM mannitol or sorbitol did not differ from cells 

maintained in physiological glucose (5 mM) media (Figure 2). We, therefore, 

conc1ude that extracellular glucose concentration is uniquely involved in the 

regulation of intestinal cholesterol transport. 

Protein expression of cholesterol transporters assessed by Western blot 

The enhanced cholesterol uptake exhibited by Caco-2/15 cells incubated with the 

high concentration (25 mM) of glucose may be due to differences in the expression 

of cholesterol transporters. To test this hypothesis, the prote in expression of 

cholesterol transporters present in intestinal epithelial cells was examined. We 

assessed NPCILI, CD36 and SR-BI that transport cholesterol into the enterocyte, 

as well as ABCA 1 and ABCG8 that are presumed to be involved in cholesterol 

efflux from the enterocyte toward plasma HDL or back into the intestinal lumen, 

respectively. Exposure to 25 mM glucose as compared to 5 mM glucose resulted in 

a significant increase in the protein expression ofNPCILI and CD36 along with a 

decrease in the prote in expression of SR-BI (Figure 3). On the other hand, the 
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prote in expression of both ABCA 1 and ABCG8 was not affected by the different 

glucose concentrations (Figure 4). 

Protein levels of cholesterol transporters assessed by high-resolution quantitative 

immunogold approach. 

Since Western blotting measures the total prote in mass without being able to 

distinguish the cellular localization of cholesterol transporters, we employed the 

Prote in A-gold immunocytochemical technique, to determine whether alterations in 

cholesterol transporters, as a function of glucose concentrations, were associated 

with their specific membrane domain. Electron microscopic immunocytochemical 

experiments mostly confirmed the findings obtained by Western blot. They revealed 

significant increases in immunogold labellings for NPCILI and CD36 in the 

luminal region of enterocytes, particularly associated with the apical plasma 

membrane lined by the microvilli (Figure 5). A representative illustration 

documents the immunochemical detection of CD36 in Caco-2/15 cells following 

exposure to different glucose levels (panel A: 5mM and panel B: 25 mM) (Figure 

6). However, the labelling of ABCAI by gold partic1es was decreased in the 

basolateral membrane following the addition of 25 mM glucose (Figure 5). 

Furthermore, no significant alterations were noted in the intensity of labelling of 

SR-BI and ABCG8 in the apical membrane (Figure 5). Importantly, under control 

conditions, the labeling was negligible and the few go Id partic1es present over the 

cells were rather randomly distributed. 

Involvement of NPC1Ll in cholesterol uptake 

In order to elucidate the specific contribution of NPCILI to cholesterol uptake in 

the presence of glucose, we employed ezetimibe, a selective hypocholesterolemic 

drug, which has been reported to bind NPCILI and substantially block cholesterol 

absorption. We could observe a lessened action of glucose when ezetimibe was 

added to the culture medium (Figure 7), highlighting the input ofNPCILI. 



45 

Regulatory enzymes of cholesterol metabolism 

Next, we detennined the impact of glucose on the regulatory sterol enzymes: HMG­

CoA reductase (EC 1.1.1.34), the rate-limiting step in cholesterol synthesis, and 

ACAT (EC 2.3.1.26), an integral prote in present in the rough endoplasmic reticulum 

(ER) that catalyzes the fonnation of CE from FC and fatty acyl-CoA. HMG-CoA 

reductase mRNA and prote in expression remained unchanged following increase of 

glucose to 25 mM glucose to Caco-2/15 cells (Figure 8). On the other hand, the 

higher glucose concentration led to a significant reduction in the enzymatic activity 

of HMG-CoA reductase (Figure 8). As to ACAT, no significant changes were 

recorded in the gene expression and activity after the exposure to 25 mM glucose 

(Figure 9). 

Transcription factors 

To approach the mechanisms triggered by glucose, we assessed the gene expression 

of several factors that affect the transcription of a variety of genes associated with 

lipid and cholesterol metabolism, inc1uding liver X receptors (LXRa, 13), 

peroxisome proliferator-activated receptors (PPARa, 13, y), retinoid X receptors 

(RXRa, 13), and protein and gene expression of sterol regulatory element binding 

protein-2 (SREBP-2). Data on Figures 10 to 12 illustrate how glucose at the high 

concentration of 25 mM impacted on the expression of the different nuc1ear and 

transcription factors in Caco-2/15 cells. It did not cause any significant variation on 

the mRNA levels of RXRa (Figure 10C), RXRj3 (Figure lOD), PP ARa (Figure 

lIA), and SREBP-2 (Figure 12A) gene expression, whereas it produced a 

significant enhancement in gene expression of LXRa (Figure 1 DA) and LXRj3 

(Figure lOB), as well as PPARj3 (Figure lIB) and PPARy (Figure IlC). Finally, 

when we explored the effect of glucose on SREBP-2 protein expression, we 

detected a significant reduction upon exp 0 sure to 25 mM glucose (Figure 12B). 
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DISCUSSION 

Numerous studies have dealt with the regulation oOntestinal fat absorption by lipid 

components (27, 57, 61, 70). However, the role of carbohydrates has bare1y been 

investigated. In the present paper, we showed that high glucose concentrations (i) 

enhance cholesterol tranSport in Caco-2/15 cells by upregulating the prote in 

expression of NPCILI and CD36; and (ii) reduce SR-BI prote in mass and HMG­

CoA reductase activity without altering ABCAI and ABCG8, involved in 

cholesterol efflux. A schematic diagram (Figure 13) depicts the major players in 

cholesterol transport and metabolism. Moreover, our studies document that 

particular transcription factors are glucose sensors, which may explain the impact of 

glucose on cholesterol absorption via its action on specific cholesterol transporters. 

In the present study, we have found a relationship between glucose and cholesterol 

assimilation. In order to clarify whether this observation could be explained by 

differences in the osmolarity of the 5 and 25 mM glucose solutions, we incubated 

Caco-2115 cells with 20 mM mannitol or sorbitol combined to 5 mM glucose. Our 

results indicate that the exposure of Caco-2/15 cells to high concentrations of 

glucose, but not to stiucturally re1ated compounds such as mannitol and sorbitol, 

increased cholesterol transport capacity. 

NPCILI is a critical protein for cholesterol absorption by the small intestine, since 

NPCILI knockout mice exhibited a reduction in intestinal cholesterol absorption and 

are insensitive to ezetimibe (5,23), a drug that lowers serum cholesterol by reducing 

cholesterol absorption. In addition, the use of genetically-modified intestinal 

epithelial cells and ezetimibe support the central role for NPCILI in intestinal 

cholesterol absorption (28, 31, 73, 90). The high glucose level used in our 

investigation raised not only cholesterol uptake but also the protein expression of 

NPCILI. Our results are in line with the findings in diabetic patients who displayed 

increased levels of NPCILI rnRNA in intestinal tissue (52). Increased cholesterol 

absorption has also been shown in streptozotocin diabetic rats (89), in which 

NPCILI mRNA was found to be increased (51). Altogether, these fmdings suggest 
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an important role for intestinal NPC 1 L 1 in the delivery of cholesterol to the blood 

circulation in the presence of high glucose levels. However, additional studies are 

needed to examine whether glucose may influence the absorption of cholesterol via 

non-mediated passive uptake of cholesterol or other intestinal transporters since 

residual cholesterol absorption persisted in NPCILI-deficient mice (5). 

In the present investigation, ,the prote in CD36 was highly expressed in intestinal 

luminal surface of enterocytes (82) and was found to be raised upon exposure to 

high glucose levels. Undoubtedly, CD36 does contribute to the intestinal transport 

of cholesterol since enterocytes isolated from Cd3ù/- mice exhibit reduced uptake 

of cholesterol (60%) (68). From the present experiments, we can deduce that 

elevated glucose-mediated cholesterol uptake is likely related to the up-regulation of 

NPCILI and CD36. Interestingly, the participation of NPCILI and CD36 was 

reinforced by the experiments with ezetimibe, although the former displayed more 

sensitivity to ezetimibe inhibition (32) than the latter (82). Of note is the mode st 

decrease in cholesterol uptake from the apical side, in line with the studies of Field 

et al. (23) probably because the glucuronidated form of ezetimibe is more potent 

than the native unmodified drug in inhibiting cholesterol absorption by binding more 

avidly to enterocyte brush-border membranes (83). 

SR-BI was originally identified as a novel scavenger receptor that mediates 

endocytosis of acetylated LDL (2). Subsequent studies revealed that SR-BI is a cell 

surface receptor that binds HDL with high affinity and mediates the selective uptake 

by liver and steroidogenic tissues of cholesterol esters without endocytic uptake of 

HDL apolipoproteins (1). Efflux of radiolabeled cholesterol on the cell surface to 

HDL partic1es is also promoted by SR-BI (45). Together, SR-BI accelerates reverse 

cholesterol transport by promoting cholesterol efflux from peripheral cells, 

inc1uding macrophages in vascular walls (16), and selective uptake of HDL-C by 

hepatocytes for excretion of cholesterol as bile acids. Therefore, SR-BI plays crucial 

roles in the atheroprotective functions of HDL (48). Additional investigations have 

reported that SR-BI is highly expressed in the luminal side of proximal small 
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intestine villi where the bulk of cholesterol absorption takes place and may be 

responsible for the cholesterol uptake by enterocytes (4, 39, 55). Nevertheless, the 

involvement of SR-BI in cholesterol absorption has been questioned since variable 

results were obtained with genetically-modified mice (8, 62). In the present 

investigation, glucose in high concentrations downregulates SR-BI prote in 

expression. This suppressive effect has also been reported in hepatocytes HepG2 

cells following exposure to high glucose concentrations (67). The use of inhibitors 

for select signal transduction pathways in HepG2 cells indicated that glucose 

suppression of SR-BI expression is partially mediated by the activation of the p38 

MAPK-Spl pathway (67). Further studies are needed to determine the detailed 

regulatory mechanisms of intestinal SR-BI expression. 

We reasonably hypothesized that increased NPCILl- and CD36-mediated 

cholesterol uptake would lead to reduced HMG-CoA reductase activity. Based on 

the data in Figure 8, this assumption tumed out to be true. However, ACAT was 

insensitive to the accumulation of intracellular cholesterol, probably because the 

latter did not exp and the fini te cholesterol substrate pool for ACAT and manifested 

a high-order dependence on ER cholesterol concentration (11, 14). 

The coordinated regulation of genes implicated in cholesterol homeostasis is 

govemed by the actions of several transcription factors, such as LXRs and pp ARs. 

AIso, SREBPs are transcription factors and crucial regulators of cholesterol 

synthesis and metabolism. In response to specifie effectors, LXRs form 

heterodimers with RXRs that regulate an integrated network of genes that control 

whole body cholesterol and lipid homeostasis assays (44, 53). In particular, LXR 

appears to serve as a safety valve to limit free cholesterol in tissues that are 

experiencing high cholesterol flux (20). Moreover, glucose activates LXR at 

physiological concentrations expected in the liver and induces expression of LXR 

target genes with efficacy similar to that of oxysterols, the known LXR ligands (66). 
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Therefore, since these nuclear factors act as glucose sensors (66) and exhibit anti­

diabetic effects (13, 50), we first measured their gene expression. LX~a and LXR~ 

mRNA were increased by the presence of 25 mM glucose in Caco-2/15 cells, but 

were not accompanied with the expected induction of ABCAI and ABCG8 protein 

expression. This may be due to the irresponsiveness of RXRs that work as partners 

withLXRs. 

The family of SREBP regulates the coordinated expression of genes involved in 

lipid synthesis and uptake (10). Three SREBP isoforms are known in mammals, 

SREBP-Ia, SREBP-lc and SREBP-2. While SREBP-Ic preferentially activates 

genes required for fatty acid (FA) synthesis and their incorporation into TGs and 

phospholipids, SREBP-2 preferentially activates the LDL- receptor gene and 

vanous genes required for cholesterol synthesis such as HMG-CoA reductase 

(EC1.1.1.34) (42). SREBP-la is an activator of both, the cholesterol and FA 

biosynthetic pathway, but it is present in much lower amounts (74). Since SREBP-2 

plays a more important role in the regulation of cholesterol synthesis in the intestine 

(25, 26), we measured the gene and protein expression of SREBP-2. Our results 

highlighted a decline in the prote in expression ofSREBP-2 without any alteration of 

SREBP-2 mRNA. Similarly, the gene and prote in expression of HMG-CoA 

reductase were not changed, but the activity was decreased, suggesting post­

transcriptional mechanisms for SREBP-2 and HMG-CoA reductase. 

pp ARs have been shown to regulate the expression of genes involved in a variety of 

biological processes, including lipid metabolism and insulin sensitivity (18, 81). 

PP ARa regulates numerous aspects of FA catabolism, whereas pp AR)' controls 

adipocyte differentiation, systemic glucose levels and lipid homeostasis (65, 87). 

PPAR& is also involved in development, lipid metabolism, and epidermal cell 

proliferation (59). The PPARs are ligand-dependent transcription factors that 

regulate target genes expression by binding to characteristic DNA sequences termed 

peroxisome proliferators response element (PPREs) located in the 5' -flanking 

region of target genes (33, 69). Each receptor binds to its PPRE as a heterodimer 
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with the receptor for 9-cis retinoic acid, the RXR. Upon binding a ligand, the 

conformation of a pp AR is altered and stabilized so that a binding cleft is created, 

and recruitment of transcriptional coactivators occurs. In the present study, 

treatment of Caco-2115 cells with 25 mM glucose enhanced the gene expression of 

PPARp and PPARy and concomitantly decreased the protein concentration of 

SREBP-2. Similarly, PPARy activation by troglitazone downregulated cholesterol 

synthesis in Caco-2 cells by a reduced concentration of SREBP-2 prote in (47). 

Glucose absorption in the small intestine is mediated by the combined action of two 

glucose transporters in the enterocytes: the sodium-dependent D-glucose co 

transporter SGLTI in the brush-border membrane and the sodium-independent 

glucose transporter GLUT2 in the basolateral membrane (40, 46). Dietary glucose 

significantly influences blood glucose concentration (63), as well as glucose and fat 

metabolism in the liver (15, 78). Apparently mammals deve10ped a highly complex 

regulatory network in which small intestinal sugar absorption steers the regulation of 

gastric and intestinal mobility (30, 71, 72), liver metabolism (9, 29) and insulin 

secretion (64, 86). Both, the glucose concentration in the small intestinal lumen and 

the activity of glucose uptake systems SGLTI and GLUT2, determine the D-glucose 

concentration in the small intestinal submucosa and the portal blood. In the present 

study, glucose was effective in regulating cholesterol uptake and intracellular 

processing. Since the excessive consumption of diets containing high levels of 

carbohydrates enhances the absorption of monosaccharides and influences the risk 

of developing insulin resistance and T2DM (24), we reasonably propose that 

glucose-mediated intestinal cholesterol may contribute to increasing circulating 

cholesterol and, consequently, the risk of developing CHD, a feature ofT2DM. 

In conclusion, our experiments provide evidence that the process of intestinal 

cholesterol uptake is regulated by glucose concentrations, which modify important 

cholesterol transporters and transcription factors. In fact, high glucose 

concentrations may presumably modify the transcription factors, which in tum 

altered the cholesterol transporters, and therefore cholesterol uptake. 
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TABLE 1. Sequences of the specifie primers, as confirmed by BLAST sequence 

analysis, designed to amplify human HMG-CoA reductase, ACAT-2, LXRs, 

pp ARs, RXRs and SREBP-2 isoforms by RT -PCR. 

Isofonn Direction 5'-3' Primer sequence 
Product 

Reference size (bp) 

hHMGCoA-R 
forward ACC CTT AGT GGC TGA AAC AGA TAC CC 

291 designed 
reverse AAC TGT CGG CGA AT A GAT ACA CCA CG 

hACAT-2 
forward CTC TAC TTC CTC TTC TGC CC 128 designed 
reverse GAT GAA GCA GGC ATA GAG CA 

hLXRa 
forward GCT GCA AGT GGA ATT CAT CAA CC 

166 (12) 
reverse ATA TGT GTG CTG CAG CCT CTC CA 

hLXR~ 
forward GGA GCT GGC CAT CAT CTC A 

132 designed 
reverse GTC TCT AGC AGC ATG ATC TCG ATA GT 

hPPARa 
forward CCA GGC TTC GCA AAC TT 

591 designed 
reverse CCC GTC TCC TTT GTA GTG CT 

hPPAR~ 
forward GCT TTG TCA CCC GTG AGT T 

354 designed 
reverse AGG TCT CGG TTT CGG TCT TC 

hPPARy 
forward AGA CAA CAG ACA AAT CAC CAT 

400 (91) 
reverse CTT CAC AGC AAA CTC AAA CTT 

hRXRa 
forward ATA AGC ATC ACA TTT TGG GG 

417 (85) 
reverse GAC ATG CAG ATG GAC AAG T 

hRXR~ 
forward ATT AAC TCA ACA GTG TCA CTC CC 

503 (85) 
reverse TT A GTC ACA GGG TCA TTT GG 

hSREBP-2 
forward ATG GTG TGA TTG TCC TGA GCG TCT 

341 designed 
reverse TTC GTC TTC AAA GCC TGC CTC AGT 

hGAPDH 
forward GTC CAC TGG CGT GTT CAC CA 

260 (38) 
reverse GTG GCA GTG ATG GCA TGG AC 
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FIGURE LEGENDS 

Figure 1 

Figure 2 

Figure 3 

Figure 4 

Effect of glucose concentrations on cholesterol uptake in Caco-2/15 

cells. Differentiated Caco 2/15 cells were cultured for 24 h in 

medium DMEM containing 5 or 25 mM glucose. At the end of this 

pre-incubation, cells were exposed to 100 IlM cholesterol containing 

250000 DPM [14C]-cholesterol in the presence of the same 

concentrations of glucose for 30 min. Results are expressed as 

nmoVmg cen protein. Mean values ± SD. n=4. *p<0.04 versus 5 mM 

glucose condition. 

Combinatory effect of glucose and· mannitol or sorbitol on 

cholesterol uptake in Caco-2/15 cens. Differentiated Caco 2/15 cens 

were cu1tured for 24 h in medium DMEM containing 5 mM, 5 mM 

glucose + 20 mM mannitol, 5 mM glucose + 20 mM sorbitol, or 25 

mM glucose. At the end of this pre-incubation, cens were exposed to 

100 J..lM cholesterol containing 250000 DPM [14C]-cholesterol in the 

presence of the same concentrations of sugars for 30 min. Results 

are expressed as nmoVmg cell protein. Mean values ± SD. n=4. 

*p<0.04 versus 5 mM glucose condition. 

Effect of glucose concentrations on the prote in expreSSIOn of 

transporters mediating cholesterol influx. Caco 2/15 cens were 

cultured for 24 h in DMEM containing 5 or 25 mM glucose. Western 

blot was used to analyze the prote in expression of NPCILI (A), 

CD36 (B) and SR-BI (C). Mean values ± SD. n=4. *p<0.02 versus 5 

mM glucose condition. 

Effect of glucose concentrations on the protein expreSSIOn of 

transporters mediating cholesterol efflux. Caco 2/15 cens were 

cultured for 24 h in DMEM containing 5 or 25 mM glucose. Western 

blot was used to analyze the prote in expression of AB CA 1 (A) and 

ABCG8 (B). Mean values± SD. n=4. 
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Immunocytochemical evaluation of cholesterol transporters 

following incubation of Caco 2/15 cells were cultured for 24 h in 

DMEM containing 5 or 25mM. Thereafter, cells were fixed with 1 % 

glutaraldehyde and embedded in Lowicryl. Immunogold labelings 

were carried out on thin sections. Immunogold labeling for NPC1L1 

(A), CD36 (B), SR-BI (C), ABCA1 (D) and ABCG8 (E) were 

quantified. For each of the proteins, the tota11ength of apical and 

basolateral membranes evaluated was in the range of 800 !lm and 250 

!lm, respectively. Under control conditions, the labe1ing was 

negligible with few go Id particles randomly distributed over the cells. 

For the 5 and 25 mM glucose experiments, the control prote in A-gold 

density (go Id particles/!lm) on apical membrane was 0.037± 0.006 

and 0.023 ± 0.012, respectively, and on basolateral region: 0.076 ± 

0.048 and 0.063 ± 0.012, respectively. For the control IgG gold, the 

density (gold particles/!lm) on the apical membrane was 0.021 ± 

0.005 and 0.015 ± 0.007 for 5 and 25 mM glucose, respectively, and 

on basolateral membrane 0.037 ± 0.018 and 0.050 ± 0.015, 

respectively. Mean values ± SEM. *p<0.05 

CD36 detection in Caco-2/15 cells as a representative illustration of 

the immunocytochemical detection. Prote in A-gold 

immunocytochemical technique was applied with the specific 

polyclonal antibody directed against CD36 to reveal it in the apical 

membrane. Panel A represents Caco-2/15 cells cultured with 5 mM 

glucose, whereas Panel B corresponds to Caco-2/15 cells cultured 

with 25 mM glucose. MV, microvilli. Bars= 0.5!lm. 

Interference of Ezetimibe with the uptake of cholesterol III the 

presence of glucose. In order to delineate the role ofNPC1L1 in the 

increased glucose-mediated cholesterol absorption, ezetimibe (100 

!lM) was added to the medium of Caco-2/15 cells cultured at the 

experimental conditions described in the legend of Figure 3. Results 



Figure 8 

Figure 9 

Figure 10 

Figure 11 

Figure 12 
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are expressed as % of controls. Mean values ± SD. n=3. *p<O.05 

versus 5 mM glucose condition. 

Effect of glucose concentrations on HMG-CoA reductase gene 

expression, prote in mass and activity. Caco 2/15 cens were treated 

as described in the legend of Figure 3 and tested for transcript levels 

(A) and prote in mass (B) by RT-PCR and Western blotting, 

respectively. Cell homogenates were assayed for HMG-CoA 

reductase activity (C). Mean values ± SD. n=4. 

*p<O.007 versus 5 mM glucose condition. 

Effect of glucose concentrations on ACAT gene expressIOn and 

activity. Caco 2/15 cens were treated as described in the legend of 

Figure 3 and tested for transcript levels (A) by RT-PCR. cen 

homogenates were assayed for ACAT activity (B). Mean values ± 

SD. n=4. 

Effect of glucose concentrations on the gene expressIOn of the 

nuclear receptors LXR and RXR. Caco 2/15 cens were treated as 

described in the legend of Figure 3. The transcript levels of LXRa 

(A), LXR~ (B), RXRa (C) and RXR~ (D) were assessed by RT­

PCR. Representative autoradiograms of the different amplicons are 

shown. Mean ± SD. n=5. *p<O.004 and **p<O.001 versus 5 mM 

glucose condition. 

Effect of glucose concentrations on the gene expreSSIOn of the 

nuclear receptors pp AR. Caco 2/15 cells were treated as described in 

the legend of Figure 3. The transcripts of PP ARa (A), PPAR~ (B) 

and PPARy (C) were assessed by RT-PCR. Representative 

autoradiograms of the different ampli cons are shown. Mean ± SD. 

n=5. 

*p<O.003 and **p<O.002 versus 5 mM glucose condition. 

Effect of glucose concentrations on the gene and prote in expression 

of SREBP-2. Caco 2/15 cens were treated as described in the legend 

of Figure 3. The levels of transcripts (A) and protein expression (B) 
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were determined by RT-PCR and Western blotting, respectively. 

Mean ± SD. n=5. *p<O.04 versus 5 mM glucose condition. 

Diagram of the main players influencing cholesterol transport III 

intestinal epithe1ial cells. Uptake of alimentary or biliary cholesterol 

is mediated by putative sterol transporters such as NPC 1 LI, SR-BI 

and FAT /CD36. Excessive cholesterol is secreted back to the 

intestinal lumen by the ABCG5/ ABCG8 heterodimer localized at the 

apical membrane of the enterocyte. Similarly, ABCAI promotes 

cholesterol efflux (through the basolateral membrane) to plasma 

apolipoprotein A-l, thereby enhancing the formation of nascent HDL. 

Key enzymes such as HMG-CoA reductase and AC AT contribute to 

cholesterol homeostasis by synthesizing and esterifying, respective1y, 

intracellular cholesterol. Most of the processes, involved in 

cholesterol metabolism, are controlled by transcription factors (RXR, 

LXR, SREBP-2 and PPAR. According to our data, glucose-mediated 

cholesterol uptake may be sensed by transcription factors, which in 

tum altered the cholesterol transporters and downregulated 

cholesterol biosynthesis. 
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Figure 4 
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Discussion 

Numerous studies have dealt with the regulation of intestinal fat absorption by lipid 

components. However, the role of carbohydrates has barely been investigated. In the 

present study, we showed that high glucose concentrations (i) enhanced cholesterol 

transport in Caco-2115 cells by upregulating the protein expression of NPCILI and 

CD36; and (ii) reduced SR-BI prote in expression and HMG-CoA reductase activity 

without altering ABCAI and ABCG8, involved in cholesterol efflux. Moreover, our 

studies documented that particular transcription factors are glucose sensors, which 

may explain the impact of glucose on cholesterol absorption via its action on 

specific cholesterol transporters. 

Intestinal cholesterol absorption is a multistep process that is regulated by multiple 

genes, and the absorption efficiency of cholesterol is most likely determined by the 

net effect between influx and efflux of intraluminal cholesterol molecules. 

NPCILI is an essential and a critical protein for cholesterol absorption by the small 

intestine, since NPCILI knockout mice exhibited a reduction in intestinal 

cholesterol absorption and are insensitive to ezetimibe (Altmann et al., 2002; Davis 

et al., 2004), a potent drug that lowers serum cholesterol by reducing cholesterol 

absorption. In addition, the use of genetically-modified intestinal epithelial cells and 

ezetimibe support the central role for NPCILI in intestinal cholesterol absorption 

(Garcia et al., 1974; Sane et al., 2006; Yu et al., 2006; Field et al., 2007). We found 

that the high glucose lev el employed in our investigation raises not only cholesterol 

uptake but also the expression ofNPCILl. Our results are in line with the findings 

in diabetic patients who displayed increased levels ofNPCILI rnRNA (Lally et al., 

2006). Increased cholesterol absorption has also been shown in streptozotocin 

diabetic rats (Young et al., 1988), in which NPCILI mRNA was found to be 

increased (Lally et al., 2007). Altogether, these findings indicate an important role 
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for intestinal NPC1L1 in the delivery of cholesterol to the blood circulation in the 

presence ofhigh glucose levels. 

CD36, a protein highly expressed on the luminal surface of enterocytes (van 

Bennekum et al., 2005) was found to increase following the administration of high 

glucose levels. Undoubtedly, CD36 must contribute to the intestinal transport of 

cholesterol since enterocytes isolated from the small intestines of cd3()/- mice, 

when compared with wild type counterparts, exhibited reduced uptake of cholesterol 

(60%) (Nassir et al., 2007). 

From the present experiments, we can deduce that the elevated glucose-mediated 

cholesterol uptake is likely related to the up-regulation of NPC1L1 and CD36. 

Interesting1y, the participation of NPC1L1 and CD36 was more reinforced by the 

experiments with ezetimibe, although the former displayed more sensitivity to 

ezetimibe inhibition (Garcia-Calvo et al., 2005) than the latter (van Bennekum et al., 

2005). Of note is the modest decrease in cholesterol uptake from the apical side, in 

line with the studies of Field et àl. (Field et al., 2001a) probably because the 

glucuronidated form of ezetimibe is more potent than the native unmodified drug in 

inhibiting cholesterol absorption by binding more avidly to enterocyte brush-border 

membranes (van Heek et al., 2000). 

SR-BI was originally identified as a novel scavenger receptor that mediates 

endocytosis of acetylated LDL (Acton et al., 1994). Subsequent studies revealed that 

SR-BI is a cell surface receptor that binds HDL with a high affinity and mediates 

the selective uptake by the liver and steroidogenic tissues of cholesterol esters 

without the endocytic uptake of HDL apolipoproteins (Acton et al., 1996). In 

addition, SR-BI may facilitate the initial steps of HDL-mediated cholesterol efflux 

in the arterial wall (Ji et al., 1997). Together, SR-BI accelerates reverse cholesterol 

transport by promoting cholesterol efflux from macrophages in vascular walls 

(Chinetti et al., 2000) and selective uptake of HDL-C by hepatocytes for excretion 
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of cholesterol as bile acids. Therefore, SR-BI plays crucial roles in atheroprotective 

functions ofHDL (Krieger, 2001). 

Additional studies, employing the high-resolution immunogold technique revealed 

that SR-BI may be responsible for the cholesterol uptake by enterocytes; they found 

SR-BI labeling mainly over microvilli of the enterocyte, where the bulk of 

cholesterol absorption takes place (Hauser et al., 1998; Altmann et al., 2002; Levy 

et al., 2004). Despite these results, the involvement of SR-BI in cholesterol 

absorption has been questioned since inconsistent results were obtained with 

genetically-modified mice (Mardones et al., 2001; Bietrix et al., 2006). 

In the present study, we showed that an increase in the concentration of glucose 

downregulates the prote in expression of SR-BI in Caco-2/15 cells. Such suppressive 

effect of glucose has also just been reported in hepatocytes HepG2 cells (Murao et 

al., 2008). The use of inhibitors for select signal transduction pathways in HepG2 

cells indicated that glucose suppression of SR-BI expression is partially mediated by 

the activation of the p38 MAPK-Sp1 pathway (Murao et al., 2008). Further studies 

are needed to determine the detailed regulatory mechanisms of intestinal SR-BI 

expressIon. 

Our hypothesis was that if NPC1L1 and CD36 mediate an increased cholesterol 

uptake, it is conceivable that the highly available cholesterol in Caco-2/1S cells 

would lead to reduced HMG-CoA reductase activity. Based on the data in Figure 7, 

this assumption turned out to be true. However, ACAT was insensitive to the 

accumulation of intracellular cholesterol, probably because the latter did not expand 

the limited cholesterol substrate pool for ACAT and manifested a high-order 

dependence on ER cholesterol concentration (Chang et al., 1997; Buhman et al., 

2000). 

The coordinated regulation of genes implicated in cholesterol homeostasis is 

govemed by the actions of several transcription factors, such as LXRs and pp ARs. 
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Also, SREBPs are transcription factors that are crucial regulators of cholesterol 

synthesis and metabolism. In response to specific effectors, LXRs form a 

heterodimer with the RXRs and regulate an integrated network of genes that control 

whole body cholesterol and lipid homeostasis assays (Lehmann et al., 1997; 

Janowski et al., 1999). 

In particular, LXR appears to serve as a safety valve to limit free cholesterol in 

tissues that are experiencing high cholesterol flux (Cummins and Mangelsdorf, 

2006). Since these nuclear factors act as glucose sensors (Mitro et al., 2007) and 

exhibit anti-diabetic effects (Cao et al., 2003; Laffitte et al., 2003), we first 

measured their gene expression. LXRa and LXR~ mRNA was increased by the 

presence of 25 mM glucose in Caco-2/l5 cells, but it was not accompanied with the 

expected induction of ABCAI and ABCG8 prote in expression. This may be due to 

the irresponsiveness of RXRs that work as partners with LXRs. 

The family of SREBP regulates the coordinated expression of genes involved in 

lipid synthesis and uptake (Brown and Goldstein, 1999). Three SREBP isoforms are 

known in mammals, SREBP-la, SREBP-lc and SREBP-2. While SREBP-Ic 

preferentially activates genes required for fatty acid (FA) synthesis and their 

incorporation into TGs and phospholipids, SREBP-2 preferentially activates the 

LDL- receptor gene and various genes required for cholesterol synthesis such as 

HMG-CoA reductase (ECl.l.1.34) (Horton et al., 2002). SREBP-la is an activator 

of both the cholesterol and FA biosynthetic pathways, but it is present in much 

Iower amounts (Shimomura et al., 1997). Since SREBP-2 plays a more important 

role in the regulation of cholesterol synthesis in the intestine (Field et al., 2001a, b), 

we therefore measured the gene and prote in expression of SREBP-2. Our results 

highlighted a decline in the prote in expression of SREBP-2 without any alteration of 

SREBP-2 mRNA. Similarly, the gene and prote in expression of HMG-CoA 

reductase were not changed, but its activity was decreased in a significant manner, 

suggesting post-transcriptional mechanisms for SREBP-2 and HMG-CoA reductase 

regulation. 
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pp ARs have been shown to regulate the expression of genes involved in a variety of 

biological processes, including lipid metabolism and insulin sensitivity (Vamecq 

and Latruffe, 1999; Corton et al., 2000). PPARu regulates numerous aspects of FA 

catabolism, whereas PPARy controls adipocyte differentiation, systemic glucose 

levels and lipid homeostasis (Michalik and Wahli, 1999; Willson et al., 2000). 

pp AR8 is also involved in deve1opment, lipid metabolism and epidermal cell 

proliferation (Lim et al., 1999). The pp ARs are ligand-dependent transcription 

factors that regulate target genes expression by binding to characteristic DNA 

sequences termed peroxisome proliferators response e1ement (PPREs) located in the 

5' -flanking region of target genes (Gearing et al., 1993; Palmer et al., 1995). Each 

receptor binds to its PPRE as a heterodimer with the receptor for 9-cis retinoic acid, 

the RXR. Upon binding a ligand, the conformation of a PP AR is altered and 

stabilized so that a binding cleft is created, and recruitment of transcriptional 

coactivators occurs. In the present study, treatment of Caco-2/15 cells with 25 mM 

glucose enhanced the gene expression of PPAR~ and PPARy and concomitantly 

decreased the protein concentration of SREBP-2. Similarly, PPAR activation by 

troglitazone downregulated cholesterol synthesis in Caco-2 cells by reducing the 

expression of SREBP-2 protein (Klopotek et al., 2006). 

All these data add new key e1ements to the complex relationship linking 

carbohydrate and cholesterol intestinal assimilation and metabolism. The complete 

mechanism involved in the glucose-induced regulation of uptake process is not yet 

fully identified and/or understood. An alteration of the physical properties of the 

enterocyte brush border, which in turn regulates the activity of membrane 

transporters, is probable, but other regulation pathways should also be considered. 

In conclusion, glucose at 25 mM stimulated cholesterol uptake by Caco-2 cells. The 

high concentration of glucose enhanced the protein expression of the critical 

cholesterol transporters NPCILI and CD36, and concomitantly decreased SR-BI 

protein expression. No significant alterations were observed in the prote in 
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expression of ABCAI and ABCG8, which act as efflux pumps favoring cholesterol 

export out of absorptive cells. At the same time, HMG-CoA reductase activity was 

significantly decreased, whereas ACAT activity remained unchanged. FinaIly, an 

increase was noted in the transcription factors LXRa, LXR~, PPAR~ and PPARy 

along with a drop in the protein expression of SREBP-2. 

Collectively, our experiments indicate that glucose at high concentrations may 

regulate intestinal cholesterol transport and metabolism in Caco-2 cells, modifying 

important cholesterol transporters and transcription factors, thus suggesting a 

potential influence on the cholesterol absorption process in type 2 diabetes. 

In our society, morbidity and mortality from cardiovascular diseases is becoming an 

increasingly severe problem. Overnutrition and a sedentary lifestyle lead to obesity 

and hypercholesterolemia already in a high percentage of children, who will be 

future patients with atherosclerosis-associated diseases (Ernst and Obarzanek, 1994; 

Gidding, 1999; Belay et al., 2004; Cruz and Goran, 2004). Certainly, preventive 

educational programs have to be developed to adjust and prevent this process. 

However, also therapeutic options have to be improved to ameli orate 

hypercholesterolemia. 

Clearly, intracellular handling of cholesterol needs more emphasis, as weIl as the 

regulation of cholesterol homeostasis during development. Evidently, the CUITent 

situation allows to identify promising targets for cholesterol-lowering therapies at a 

molecular level and to develop effective means to prevent cardiovascular disease in 

the future. 
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Annexe 

Reactives used: 

Company Dilution 
Antibodies 
SR-BI Novus 1/15000 
ê-actine Sigma 1/40000 
NPC1L1 Novus 1/500 
CD36 Santacruz 1/1000 
ABCA1 Novus 1/500 
ABCG8 Santacruz 1/500 
SREBP-2 Cayman 1/1000 
HMGCoA Upstate 1/1000 

Ezetimibe (Ezetrol) Schering-Plough 




