
 
Direction des bibliothèques 
 
 
 
AVIS 
 
Ce document a été numérisé par la Division de la gestion des documents et 
des archives de l’Université de Montréal. 
 
L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité 
ou en partie, par quelque moyen que ce soit et sur quelque support que ce 
soit, et exclusivement à des fins non lucratives d’enseignement et de 
recherche, des copies de ce mémoire ou de cette thèse.  
 
L’auteur et les coauteurs le cas échéant conservent la propriété du droit 
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le 
mémoire, ni des extraits substantiels de ce document, ne doivent être 
imprimés ou autrement reproduits sans l’autorisation de l’auteur.  
 
Afin de se conformer à la Loi canadienne sur la protection des 
renseignements personnels, quelques formulaires secondaires, coordonnées 
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien 
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant. 
 
NOTICE 
 
This document was digitized by the Records Management & Archives 
Division of Université de Montréal. 
 
The author of this thesis or dissertation has granted a nonexclusive license 
allowing Université de Montréal to reproduce and publish the document, in 
part or in whole, and in any format, solely for noncommercial educational and 
research purposes. 
 
The author and co-authors if applicable retain copyright ownership and moral 
rights in this document. Neither the whole thesis or dissertation, nor 
substantial extracts from it, may be printed or otherwise reproduced without 
the author’s permission. 
 
In compliance with the Canadian Privacy Act some supporting forms, contact 
information or signatures may have been removed from the document. While 
this may affect the document page count, it does not represent any loss of 
content from the document.  

 
 
 



Université de Montréal 

Statistical Methods for Insurance Fraud Detection 

par 

Mathieu Poissant 

Département de mathématiques et de statistique 

Faculté des arts et des sciences 

Mémoire présenté à la Faculté des études supérieures 

en vue de l'obtention du grade de 

Maître ès sciences (M.Sc.) 
en statistique 

décembre 2008 

© Mathieu Poissant, 2008 



Université de Montréal 
Faculté des études supérieures 

Ce mémoire intitulé 

Statistical Methods for Insurance Fraud Detection 

présenté par 

Mathieu Poissant 

a été évalué par un jury composé des personnes suivantes: 

Louis Doray 

(président-rapporteur) 

Jean-François Angers 

(directeur de recherche) 

Alain Desgagné 
(Université du Québec à Montréal) 

( co-directeur ) 

Alejandro Murua 

(membre du jury) 

Mémoire accepté le: 

15 décembre 2008 



III 

RÉSUMÉ 

Une fraude répandue à l'assurance automobile consiste à soumettre de fausses 

réclamations ou à exagérer les pertes reliées à un sinistre. La performance gran

dissante des systèmes informatiques et des capacités de stockage crée cependant 

de nouvelles possibilités pour contrer ce fléau. En effet, les méthodes de forage 

de données permettent maintenant à une compagnie d'assurance d'analyser une 

quantité impressionnante d'information afin de déceler les réclamations fraudu

leuses. Ce mémoire introduit plusieurs méthodes afin de les identifier. Parmi elles, 

on note l'analyse en composantes principales et l'analyse de classification. Ce 

mémoire présente aussi les grandes lignes d'une nouvelle méthode statistique de 

détection des fraudes, appelée PRIDIT. Les résultats obtenus suite à l'application 

des méthodes à un véritable jeu de données sont aussi présentés. 

Mots clés: fraude, assurance automobile, forage de données, classification, . 

composantes principales. 
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SUMMARY 

A common car insurance fraud is to submit false daims or to pad up the severity 

of an accident. The growing performance of both the information processing 

systems and the storage capacities however creates new possibilities to deal with 

this issue. Indeed, the methods of data mining now allow an insurance company 

to analyze an impressive quantity of information in order to detect fraudulent 

daims. This thesis introduces several methods to identify potential fraudulent 

activity. Principal component analysis and dus ter analysis are two methods that 

are discussed. This thesis also introduces an innovative statistical method to 

detect fraud. It is called the PRIDIT method. The results obtained following the 

application of those methods to a real data set are also presented. 

Keywords: fraud, car insurance, data mining, duster analysis, principal com

ponents. 
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INTRODUCTION 

This Master's thesis is different from most theses since it has a very strong applied 

nature. Of course, it introduces sorne theoretical notions from statistics and 

computer science. We however do not introduce them for their own sake but as 

a way to handle a precise practical application. The main challenge is therefore 

to combine business and statistical requirements to pro duce an academic work. 

More precisely, we want to identify fraudulent claims within a large data set 

of car insurance claims. Vve however do not have any information on previous 

fraudulent claims. 

This thesis has the following structure. The first chapter introduces the reader 

to main issues about insurance fraud. It also describes the most common car in

surance coverages and endorsements. The chapter ends with an overview of the 

framework of this project, namely, data mining. Statistical notions are first cov

ered in the second chapter. vVe introduce a useful cross-classification of the types 

of variables. The second chapter also dise us ses sorne useful data transformations 

that are going to be used in the following analyses. Among them, the RIDIT 

transformation is of particular interest. We then discuss principal component 

analysis to reduce the size of our data set. The chapter ends with an introduction 

to an innovative method to detect fraudulent claims called the PRIDIT algorithm. 

Unlike the two previous chapters, the third chapter covers a singlewide topic, that 

is, cluster analysis. This chapter is actually the main one of this thesis. Both hi

erarchical and nonhierarchical clustering techniques are introduced. Finally, the 

last chapter presents the results obtained by performing the previous methods. 

We also give sorne recommendations to improve the quality of further analyses 

and results. 



Chapter 1 

INSURANCE FRAUD IN A DATA MINING 

FRAMEWORK 

This first chapter introduces the reader to the insurance fraud framework of the 

project. It do es not indu de any statistical contents. Nevertheless, the reader 

shall read this chapter to understand the followingchapters. This chapter be

gins with a discussion of insurance fraud. Prevalence of insurance fraud, major 

areas. of potential fraud, and anti-fraud activities are among the covered topics. 

The chapter then introduces the province of Ontario laws and regulations about 

automobile insurance while this project deals with a data set of daims from pol

icyholders living in this province. The chapter next discusses the selection of 

statistical methods for identification of potential daims. This initial chapter fi

nally ends with an introduction to the main data mining concepts and techniques 

by explaining what is data mining and reasons why this is relevant to the current 

project. 

1.1. SPONSORING COMPANY 

TD Meloche Monnex Group (TDMMG) is a Canadian company that offers 

personal home and automobile insurance products in Canada. TDMMG also pro

vides, to a lesser extent, travel and small business coverage. TDGMM exploits 

two brands, namely, TD Meloche Monnex and TD Insurance. TDMMG insures 
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professionals, alumni, and affinity group members while TD Insurance insures in

dividuals as tradition al insurers do. The reader should note that a confidentiality 

issue prevents disclosure in this Master's thesis of sorne information. 

1.2. INSURANCE FRAUD 

Fraud is an important topic in most businesses. At any moment, sorne peo

ple try to exploit the failures of the system. Telecommunication fraud, credit 

card fraud, money laundering are aIl common problems in their respective fields. 

However, insurance fraud is different on one important aspect from other types of 

fraud. An insurance fraud in not discovered unless an investigation team found 

that a fraud occurred. A financial institution, for instance; usually knows credit 

card fraud, quite rapidly. This difference makes difficult the development of a 

statistical model for insurance fraud since claims do not have fraudulent or non

fraudulent labels, unlike credit card transactions. The current project is about 

insurance fraud, which is quite a vast field of study. Two major areas of potential 

insurance fraud are home and automobile insurance. Home insurance provides 

coverage against perils that may occur to the residence. Automobile insurance 

provides protection against loss to covered vehicles. Sorne possible perils are colli

sion, theft of v~hicle, and corporal damages due to an accident. The chapter later 

describes automobile insurance in details. This section introduces one common 

definition of fraud. This section is based on Viaene and Dedene (2004). 

The legal system defines a fraud as a combination of three components, that 

is, it involves material misrepresentations, there is intent to deceive, and the 

main objective is to gain an unjust advantage. Those three components are now 

discussed. 

(1) A fraudulent behavior involves material misrepresentations. First, fraud

sters may use concealment, which is the intentional dissimulation of im

portant facts. He can also use falsification, which is the modification of 

information for his own profit. Finally, a material misrepresentation may 
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simply consist of a lie. For example, a policyholder who says during un

derw~iting that his 16-year-old child never drives his car knowing that it 

is wrong is a kind of material misrepresentation. 

(2) A fraudulent behavior involves intent to deceive. This premeditation con

tribut es to make of an abuse of insurance a criminal activity. This Mas

ter's thesis do es not however.suppose fraud to be a criminal behavior. The 

next section on functional classifications of insurance fraud discusses this 

distinction. 

(3) A fraudulent behavior involves anaim of gaining an unauthorized benefit. 

For instance, a policyholder who says he lost five hundred compact discs 

during a robbery knowing that he had lost only one hundred of them 

is actually an unauthorized benefit. The possible unauthorized benefits 

are infinite and range from a few dollars to many millions dollars undue 

profits. 

The previous definition of fraud is used in most legal systems in the world. 

Although it is widely used, the insurance industry usually employs the word fraud 

to designate an abuse of insurance performed by a policyholder. The insurance 

literature makes a distinction between soft and hard fraud. This chapter later 

covers more precisely this distinction. 

This section defined the concept of fraud. The next section justifies resources 

devoted to controlling in surance fraud with a particular emphasis on automobile 

insurance fraud. 

1.3. PREVALENCE OF INSURANCE FRAUD 

Two major organizations concerned with insurance fraud in the United States 

are the Coalition Against lnsurance Fraud (CAlF) and the National lnsurance 

Crime Bureau (NICB). Those two organizations provide their own estimates of 

the prevalence of insurance fraud. The CAlF estimates at $80 billion each year 

the amount of insurance fraud in the United States. The NICB provides a quite 

different estimation of $20 billion each year in the United States. Although es

timates are very different, they show that fraud is an important problem in the 
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insurance industry. The Insurance Bureau of Canada (IBC) is the Canadian coun

terpart of the previous two organizations. The information on the prevalence of 

insurance fraud in Canada is however not accessible. The prevalence of insur

ance fraud varies not only among regions but also varies among lin es of business 

(Viaene and Dedene, 2004). 

The extent of fraud is also related to the image of the insurance industry. A 

survey conducted on a random sample of 1000 V.S. adults concluded that 25% of 

them consider acceptable to overstate the value of an insurance claim -(Coalition 

Against Insurance Fraud, 2003). Moreover, this same survey concluded that 10% 

of V.S. adults found acceptable to submit a claim for items not lost or damaged 

or for treatments not provided. This study also concludes that the extent of fraud 

depends on the economic climate and the context in which the fraud happens. 

Thus, during an economic recession, fraud costs are more important. On that 

issue, this survey finds that 66% of V.S. adults say they are more willing to 

commit an insurance fraud in an economic downturn than in an otherwise good 

economic vitality. Literature also shows that when a claim is part of a major 

catastrophe, fraud is more likely to happen (Viaene and Dedene, 2004). 

The main point is that different studies lead to very different estimates of the 

prevalence of fraud. The main reason is the absence of consensus on a precise 

definition of fraud. This makes the evaluation of this concept quite difficult, 

say, impossible. Previous estimates may therefore be largely underestimated or 

overestimated. Although estimates of the prevalence of fraud are questionable, 

insurance industry admits the importance of such a phenomenon. In addition, 

although large losses are incurred by insurers, they are usually reluctant to spend 

money and time for dealing with this problem. This chapter later discusses this 

issue. 

This section showed that insurance fraud is not a marginal phenomenon. The 

quantification of insurance fraud is however largely different between studies. The 

next section introduces the concept of insurance fraud by describing common 

functional classifications found in the literature. 
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1.4. FUNCTIONAL CLASSIFICATIONS OF INSURANCE FRAUD 

Insurance fraud is a general expression by itself. In fact, there are many 

types of insurance fraud making inappropriate the creation of a single category 

including aIl of them. This section presents common classifications of in surance 

fraud. Such a discussion is useful to better understand the scope of the project 

and to get a clear and precise situation of the problem. This section introduces 

the three classifications defined by Viaene and Dedene (2004). 

First, there is a distinction between an internaI and an external fraud. Those 

two terrns represent whether insiders or outsiders of the insurance industry com

mit a fraud. Insiders include insurers, agents, brokers, managers, insurer employ

ees or representatives. Outsiders include applicants, policyholders, and claimants. 

There is also a possibility, that outsiders collaborate with insiders to commit a 

fraudulent activity. Although TDMMG has an interest in both internaI and ex

ternal fraud, this project focuses on the latter. 

The second classification differentiates between an underwriting and a claim 

fraud. An underwriting fraud is committed at the underwriting stage of the insur

ance process. A policyholder who gives false information to the insurer about the 

uses of a covered vehicle to obtain a reduced premium commits an underwriting 

fraud. More precisely, a policyholder may say he drives ten kilometers to reach 

his working place while he actually drives fifty kilometers. The second type of 

fraud refers to claim occurring after a peril happens. For example, a policyholder 

may exaggerate the severity of a loss to gain undue advantage. The term fraud 

used alone usually indicates the latter type of fraud. 

The third classification differentiates between a hard and a soft fraud. This 

classification refers to the difference between the law connotation of fraud and a 

broad notion of fraud. Derrig and Krauss (1994) gives the following definition of 

an insurance claim hard fraud. 

Definition 1.1. An hard fraud is reserved for criminal acts, provable beyond a 

reasonable doubt, that violate statutes making the willful act of obtaining money 

or value from an insurer un der false pretenses or material misrepresentations. 
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According to Derrig (2002), possible hard insurance fraud in personal auto

mobile insurance are: 

• staged accident, 

• claimant not involved in accident, 

• duplicate claims for same injury, 

• bills submitted for treatment not given, 

• injury not related to accident, 

• fictitious injury, 

• misrepresentation of wage loss. 

Those fraudulent activities are criminal offenses and are therefore quite rare. 

Abuses of insurance are, by far, more common. Those abuses are what the in

surance industry calls soft fraud, which is the exaggeration of a legitimate claim. 

A hard fraud is usually a planned activity while a soft fraud is an opportunistic 

activity. The words planned and opportunistic are often used instead of hard and 

soft fraud. For the purpose of this Master's thesis, the term fraud will be used 

to designate an abuse of insurance (soft fraud) and not the legal meaning (hard 

fraud). 

The previous three classifications help to refine the scope of the project. 

Therefore, it can be reformulated as the study of external insurance fraud occur

ring at the claiming step of the insurance process such that behaviors of interest 

range from the exaggeration to organized fraud namely, soft fraudulent behaviors. 

1.5. REASONS FOR COMMITTING FRAUDULENT BEHAVIOR 

Fraudulent behaviors are not committed for their own sake but for sorne rea

sons which may be quite numerous. However, sorne reasons are surely more 

corr'nnon than others. This section introduces reasons why a policyholder might 

want to commit a fraudulent behavior. 

The analysis of behaviors is the nature of behavioral sciences like psychology. 

It would therefore be inappropriate to pretend being able to analyze such a broad 

and difficult issue in a single section. Nevertheless, Viaene and Dedene (2004) 

provide a simple but useful framework to fraudulent behaviors that will be used in 
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this project. They consider such behaviors as a product of two elements: motiva

tion and opportunity. While those two concepts may seem obvious, they are very 

far from being simple to understand and explain. This Master's thesis assumes 

the intuitive definition of those terms. A precise study of fraud motivations from 

a behavioral perspective is presented by Duffield and Grabosky (2001). 

The motivation of a policyholder to commit a fraudulent behavior may take 

several forms. According to Viaene and Dedene (2004), an economic motivation 

is present in most cases of insurance fraud, that is, fraudsters want to make undue 

profits. However, many other motivations might explain a fraudulent behavior as 

illustrated by the vast quantity of papers on the subject of motivation to defraud 

an insurance company. As an example, Dionne et al (1993) justify insurance 

fraud by causes like changes in morality, increased poverty, modifications in the 

behavior of. the intermediaries (medical doctors or mechanics for instance) and 

attitudes of insurers. Empirical evidence shows that changes in morality are quite 

important in explaining fraud. 

A fraudulent behavior against the interests of an insurer is committed when 

there is a difference in the possession of information in favor of the policyholder. 

This principle is called information asymmetry in the literature. A daim fraud 

would certainly not be committed if the insurer knows everything about the 

underlyingperil. However, if the policyholder has important information on the 

peril and the insurer do es not have it, a fraudulent behavior is more likely to occur. 

For example, there is an information asymmetry when a daimant exaggerates the 

severity of an injury because he hides sorne information to the insurer. 

1.6. PROBLEMS FACING AN INSURANCE COMPANY 

Up to this point, this chapter considered insurance fraud from the policyholder 

perspective. The main objective of the project is however to findways TDMMG 

may deal with insurance fraud. This section, based on Viaene and Dedene (2004), 

identifies six problems an insurer may encounter wh en dealing with fraud. 

(1) A major problem with insurance fraud is that it is not self-revealing. In 

fact, there is no way to know if a daim is actually fraudulent unless it is 
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discovered. Other types of fraud like the doning of a credit card are more 

than likely to be known by the financial institution since the victim shaU 

eventuaUy be aware of such a situation and will communicate with the 

institution. An insurance company has to consider a daim non-fraudulent 

unless a special investigation has proved otherwise. Furthermore, everyone 

would agree that it is easier to control something known and noticed over 

something unknown and unnoticed .. 

(2) An insurer may also have difficulties to prove that a daim is legaUy fraud

ulent. Moreover, a le gal action requires many financial and human re

sources, that is, money invested in suing potential fraudsters is usually 

more important than its potential benefits. 

(3) An insurer must also consider the dynamic nature of fraud, that is, fraud 

evolves with time and economy. Current fraudulent behaviors are quite 

different from those performed 30 years ago when, for instance, Internet 

was inexistent. Thus, fraud control is a continuo us process. This means 

that an insurer must be aware of economic evolution to update frequently 

its process. 

(4) An insurer faces the problem of the selection of an efficient method. This 

is a problem because there are a large number of methods and the choice of 

a method depends on many factors such as available data and computing 

resources. Many efforts have to be devoted to the selection of the method. 

(5) The expression used by Viaene and Dedene (2004) best describes and 

explains the fifth problem: News on fraud is always bad news. In most if 

not aU businesses, management is interested in concepts like investments, 

budgeting, and profits, not in a pessimistic concept like fraud. Work 

compensation of high-Ievel managers is dosely related to financial results 

outperforming a given threshold. No compensation is associated with 

the reduction of fraud by a given amount, that is, this is not a factor in 

assessing the performance of managers. 
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(6) A sixth problem facing insurers addresses the quantification of the fraud. 

As explained earlier, the task of defining the fraud concept makes it dif

ficult to measure its extent. It also makes difficult the assessment of 

financial impacts of fraud control measures because the validity of this 

measurement is more or less interesting. 

This section introduced 'the main problems facing an insurer on the issue of 

fraud control. Fortunately, the literature contains efforts to fight this threat. The 

next section summarizes actual developments on this subject. 

1.7. FIGHTING FRAUO 

This section provides a summary of common activities that cou Id improve the 

fight against fraud by insurers as highlighted by VÎaene and Dedene (2004). Anti

fraud activities are performed at both the community and the insurer-Ievel. At 

the community-Ievel, one main activity consists in the foundation offraud bureaus 

and creation of anti-fraud alliances. At the insurer-Ievel, fraud control consists in 

two approaches, that is, prevention and detection. This section introduces those 

activities. 

Community-Ievel anti-fraud activities are actions undertaken by the insurance 

industry to fight fraud. One activity is to found fraud bureaus and create alliances 

among insurance stakeholders. This includes governments, insurance companies, 

and sorne customers associations. For instance, the Coalition Against Insurance 

Fraud and the Insurance Bureau of Canada are two important associations of 

insurers aimed at fighting insurance fraud in Canada. This project do es however 

exclu de this type of activities. The reader interested in this large topic is referred 

to the discussion papers of the National Insurance Fraud Forum held in 2000. 

Fraud control at the firm-Ievel is possible using two approaches, namely, fraud 

. prevention and fraud detection. They are complementary approaches because 

each has its specific goals. This section introduces both approaches but puts 

emphasis on fraud detection. 

First, fraud prevention refers to actions made by the insurance industry before 

the fraud is made. Viaene and Dedene (2004) consider prevention as the best 
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way to fight fraud. Insurers devote large amount of money to prevent fraud. 

Advertisements of potential drawbacks of insurance fraud are an example of fraud 

prevention. 

Fraud detection identifies activities undertaken by an insurance company to 

identify policyholders committing fraud. According to Viaene and Dedene (2004), 

fraud detection is a three-step process. Identification of potentially fraudulent 

daims is the first step. ActualIy, TDMMG relies on a Special Investigation Unit 

(hereafter named SIU) to identify fraudulent daims. The SIU itself relies on pre

cise fraud indicators to achieve this step. Automobile fraud insurance indicators 

indude aggressive daimant, absence of witnesses at the time of loss, and a large 

number of days between two events, usually the loss and the daim. The second 

step consists of an investigation of identified daims. The SIU may perform ev

erything for a small phone calI to a complete investigation by a daim adjuster. 

The third step is about decisions taken by the insurer on fraudulent daims. On 

one hand, the insurer may act unilaterally according to any of the following ac

tivities. At this step of the fraud detection, the insurer can do nothing against 

the fraudulent policyholder. The insurer may also decide to dis miss compensa

tion to the policyholder. To a lesser extent, insurer may simply reduce allowed 

compensation. Finally, the insurer may press charges against the policyholder. 

On the other hand, the insurer may negotiate with the fraudulent policyholder. 

This way, insurer may want the daimant to drop his daim. The daimant may 

also decide to reduce his daim. 

The current project is about increasing the efficiency of the identification step 

of the detection fraud process. The actual SIU performs essentially manual work 

in identifying potential fraud. Despite the good work performed by the SIU, 

manu al work is influenced by things such as the analyst's mood and workload. 

Furthermore, it takes a lot of time and many resources. The implementation of 

an automatic proces's would be preferable. More precisely, an algorithm able to 

identify a potential fraudulent daim as it is received by the daims department 

allows a rapid dispatch of those threats to the SIU. 
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Community and insurerlevel activities are complementary. An insurer should 

devote resources at both levels to fight fraudulent behaviors. The literature how

ever considers insurer-Ievel activities as more efficient in fighting fraud (Vi,aene 

and Dedene, 2004). Proximity of fraud explains this recommendation. This is 

the objective of the current project. 

By now, this chapter has introduced main aspects on insurance fraud espe

cially related to the automobile fraud insurance. The next section gives a: precise 

description of the automobile insurance system in Ontario. 

1.8. AUTOMOBILE INSURANCE SYSTEM IN ONTARIO 

This project considers personal automobile insurance fraud and policyholders 

whose principal residence is located in Ontario. In fact, great differences in leg

islation between provinces require us to study only one province. However, our 

statistical methods would certainly be applicable to other provinces after sorne 

adjustments. Two reasons explain the choice of Ontarian policyholders as the 

framework for this project. The nature of the automobile regime in Ontario is a 

first reason, where private insurance companies are responsible for both corpo

ral and material damages. In sorne other provinces, private insurance companies 

are responsible for the latter only. For instance, in Québec, a public organiza

tion called Société de l'assurance automobile du Québec is responsible for corporal 

damages. It is therefore possible to perform statistical analyses on a data set with 

both types of daims (corporal and material). The large volume of data available 

for Ontario policyholders also explains this choice, that is, a larger volume of data 

means potentially more useful information. 

In Ontario, laws require any driver to purchase four coverages while sorne 

others are optional. This section, provided by courtesy of the Insurance Bu

reau of Canada (2006), introduces those compulsory coverages and main option al 

coverages. 
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1.8.1. Mandatory coverages 

First, every driver must have a Liability coverage of at least $200,000 while 

an higher amount is largely recommended. Liability coverage protects the pol

icyholder for corporal damages (injury or death) caused by his negligence to 

someone else. It covers the damage amount, costs for processing the daim and 

defense costs. 

Every driver must purchase an Accident Benefits coverage. It covers injuries 

and death that might happen to the policyholder caused by a vehide accident. 

This coverage does not depend on who caused the accident. Minimum coverage 

requirements depend on the type of injury. The reader is referred to the Insurance 

Act of Ontario for a description of aIl requirements. 

By law, each driver must have an Uninsured Motorists coverage. It covers 

costs related to corporal damages incurred by the policyholder (injury or death) 

in case of an accident for which an uninsured mot orist or a hit-and-run driver is 

held responsible. The regulation requires a minimum coverage of $200,000. In 

addition, each driver must have such coverage for damages caused to the poli

cyholder's automobile. In this case, regulation requires a minimum coverage of 

$25,000. 

Finally, any driver must purchase a Direct Compensation - Property Damage 

coverage. This last mandatory coverage provides benefits in case of damages 

to the policyholder's vehicle due to someone else's faùlt. It covers also vehicle 

contents. There is no precise minimum coverage requirement. 

1.8.2. Optional coverages . 

Whereas the previous four coverages are mandatory, the following coverages 

are optional, but are usuaIly included in an automobile insurance contract. Due to 

their optional nature, they are not subject to any minimum or limit requirements. 

In addition, a policyholder has to choose only one of them. This section introduces 

those four optional coverages. 
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First, insurers commonly offer Collision Coverage. It covers damages to the 

policyholder's vehicle in two situations, namely, when the policyholder is at-fault 

or when his vehicle is damaged by an unidentified object or vehicle. 

A second common coverage, called comprehensive coverage, covers the policy

holder against damages to his vehicle caused by perils that do not fall un der the 

previous coverage. In other words, it covers the policyholder against fire, theft, 

and vandalism. 

A policyholder might want to select the previous two coverages. If so, the 

all perils coverage is available. It is a package deal including both collision and 

comprehensive coverages. Although this coverage provides benefits to the poli

cyholder against most perils, sorne are still not inclusIed. The insurance contract 

specifies those exclusions. 

A poli~yholder may want coverage for selected perils. For that reason, insurers 

usually offer a specified perils coverage. 

1.8.3. Cornrnon endorsernents 

An insurance contract usually includes sorne additions (endorsements) to the 

standard policy. Insurers commonly offer the following two endorsements. 

First, a policyholder may add a loss of use endorsement to his insurance 

contract. This endorsement allows the policyholder to rent a vehicle free of charge 

following a covered peril for the time the policyholder's vehicle is out of use. This 

endorsement is subject to a limit amount that depends on the insurance contract. 

Second, insurers usually offer a waiver of depreciation endorsement. In case 

of damages to a vehicle purchased for less than a predetermined amount of time 

when the loss occurs, the policyholder is entitled to a compensation equivalent to 

the value of the vehicle at the time of the purchase. Fraud related to this specific 

endorsement has already been studied by Dionne and Gagné (2002). In their 

article, they show that policyholders having this endorsement in their insurance 

contract have a higher probability of theft near the end of the coverage period. 

Unfortunately, this information is not available in the current project. 
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Insurers offer other endorsements to their policyholders. The websites of in

surers usually provide plenty of information on their products. 

This section introduced the reader to the automobile insurance reglme III 

Ontario. The next section discusses business and statistical constraints to the 

current project. 

1.9. SELECTION OF A STATISTICAL METHOD 

One challenge of the project is to conciliate both business and statistical 

perspectives. This section discusses the selection of an appropriate statistical 

method in the actual business framework. 

From a business perspective, the selected method must 

• be applicable while requiring minimal resources, 

• be able to predict future incoming daims on their fraud likelihood. 

From a statistical perspective, the selected method must 

• take into account the lack of available information about the outcome . 

variable (fraud), 

• be efficient with a large volume of data. 

There are two statistical approaches to ide'ntify potentially fraudulent auto

mobile daims. On one hand, there are methods designed in an insurance fraud 

framework. They are common statistical methods with sorne modifications for 

a better use in insurance. They are found in insurance and risk journals. An 

example is the Kohonen's self-organizing feature map as Brockett et al. (1998) 

applied to insurance. Those methods are however not appropriate in aIl situa

tions. Kohonen's self-organizing feature map is not appropriate because it requires 

many resources mostly computation al. Most economical and statistical models 

are usually not appropriate because they require much information about previ

ous fraudulent daims. Brockett et al. (2002) propose a method, called principal 

component analysis of RIDITs. This last method seems to respect the four cri

teria previously exposed. The. second chapter covers this method. On the other 

hand, there are general statistical methods. Among them, the duster analysis 

respects the previous four criteria. The third chapter introduces this statistical 
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analysis. Before discussing any statistical analysis, let us introduce the reader'to 

the main framework of the current project, that is, data mining. 

1.10. DATA MINING 

The increasing power of today's comput ers allows businesses to gather a large 

volume of data. Businesses store most of their operational transactions in a 

system. TDMMG manages three such systems called AS-400, the staging, and 

the datawarehouse. Such a large volume of data opens the way to the use of data 

mining techniques. There are many subfields with different objectives inside the 

large data mining field. Among them, the subfield of data clustering encompasses 

both clustering and data mining techniques to explore large data sets. This is 

actually the framework of the project. This section introduces the main concepts 

of data mining. The third chapter covers the cluster analysis issue. 

There are different definitions of data mining in the literature. Sorne authors 

consider data mining as a step toward a general process called Knowledge discov

ery in databases (KDD) while others do not make that distinction and consider 

both concepts as equivalent (Han and Kamber, 2006). This Master's thesis uses 

the latter interpretation as expressed by the following definition of data mining 

(Berry and Linoff, 2004) [pA]. 

Definition 1.2. Data mining is the exploration and analysis of large quantities 

of data in order to discover meaningful patterns and rules. 

This definition highlights three aspects of data mining. First, data mining is 

a process performed on a large ·amount of data. Moreover, large volume of data 

also means large amount of noisy data. A data cleaning must therefore precede an 

. data mining tasks. Second, it is an exploration tool. In other words, data mining 

is not an end by itself but a way to obtain new information for further analyses. 

A predictive result is usually possible with appropriate subsequent analyses. This 

is completely different from common statistical tools such as hypothesis testing. 

Thirdly, data mining implies the automatic detection of patterns using computa

tional resources. 

The data mining process consists of seven steps: 



(1) data cleaning, 

(2) data integration (combination of multiple sources), 

(3) data selection, 

(4) data transformation, 

(5) data modeling, 

(6) evaluation of patterns, 

(7) knowledge presentation. 
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The previous process is adapted from Han and Kamber (2006). It is important 

to note the dynamic nature of this process. For instance, data cleaning may be 

performed at different times during the data mining process sin ce typing errors 

may be found later in the process. This project is concerned with aU steps of the 

process. 

Hastie et al. (2001) categorizes data mining techniques as either supervised or 

unsupervised methods. On one hand, supervised methods require the company to 

possess information about the outcome variable for aU claims or at least a sample 

of it. In the current project, the company would have to know if claims are either 

fraudulent or non-fraudulent: Due to unavailability of that out come variable, this 

project do es not cover those types of methods. On the other hand, unsupervised 

methods do not require the company to have that information about the out come 

variable. However, it is difficult to draw strong conclusions from those methods. 

This section introduced the reader to the main data mining concepts. It first 

gave a formaI definition of data mining. The typical data mining pro cess was 

then introduced. FinaUy, the section made a distinction between supervised and 

unsupervised methods. 

1.11. USES OF DATA MINING 

This section introduces six main uses of data mining concepts and techniques: 

classification, estimation, prediction, association, clustering, and profiling . 

• Classification: Classification is one of the most important objectives in 

data mining and in an sciences in general. Classification requires the out

come variable to be qualitative with categories already determined. For 
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instance, an insurer may want to classify its policyholders as good or bad 

drivers. In that last situation, the categories good or bad are determined 

prior to classification. Classification also requires availability of infor

mation about the outcome variable. Therefore, a supervised method is 

necessary to achieve classification. 

• Estimation: Whereas the previous task assumed qualitative variables, the 

present task is about quantitative variables. The determination of this 

year's number of claims for a population of policyholders given this infor

mation for a sample of policyholders is an example of an estimation task. 

There are two reasons why one would like to estimate a value. First, it 

allows observations to be ranked based on its estimated value. For exam

pIe, classes may be ranked based on the estimation. Second, estimation 

allows the classification of observations into different groups (range of val

ues) based on its estimated value. For instance, policyholders may be 

classified as having many or no claim. Note the emphasis on obtaining 

actual information and not future information. Like the previous task, a 

supervised method is necessary for estimation purposes. 

• Prediction: Prediction is similar to estimation. The emphasis is however 

on obtaining information relating to a future period .. The determination of 

next year's number of claims for a given policyholder is an example of pre

diction. As classification and estimation, prediction requires a supervised 

method due to its need of information about an outcome variable. 

• Association: The association task is also called affinity analysis or market 

basket analysis by sorne authors (Larose, 2005). Data mining may allow 

the generation of rules, which is defined as a relation between two or more 

variables. Determining the proportion of male policyholders that have a 

sport car is an example of an association task. In that case, the gender 

of a policyholder and his car's model are associated. The generation of 

rules may also be appropriate, in sorne situations, to predict future obser

vations. This predictive ability mainly depends on the context. It would 

not make sense to predict the car's model of a policyholder based on its 
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gender. It would however make sense to predict the driving ability based 

on the age of the policyholder. Association rules are often formulated 

as if-then clause. Unlike previous tasks, the creation of rules do es not 

however require information on the out come variable. Association is thus 

performed by an unsupervised method . 

• Clustering: Clustering is defined as the creation of groups (or clusters) in 

minimizing the similarity between groups while maximizing the similarity 

inside those groups. Unlike classification, clustering does not require pre

determined classes. The analyst obtains groups that are statistically dif

ferent but not necessarily according to the out come variable. It is therefore 

important that a knowledgeable person observes the results. Clustering is 

usually performed at the beginning of the data mining process. Results 

obtained are then used in subsequent statistical analysis to provide new 

and more precise knowledge of a data set. Clustering is an unsupervised 

method because it do es not require information on the out come variable . 

• Profiling: Profiling is also called description by sorne authors (Larose, 

2005). An insurer may want to know more about data and discover new 

things that may be appropriate for further analysis. Profiling is thus seen 

as giving to the company's executives new interesting issues to consider 

by unveiling otherwise unknown situations. In sorne ways, profiling is 

similar to fishing. The analyst is not sure if something will come out of 

his exploration of the data. Furthermore, if something is observed, it is 

not sure if it would be interesting or useful to the company. However, it 

may reveal important facts that would require further investigation. Both 

supervised and unsupervised methods can perform profiling. 

The available data set suggests to use an unsupervised statistical method be

cause the data set contains no information on whether or not a claim is fraudulent. 

Thus, three tasks may be performed in this project, namely, affinity grouping, 

clustering, and profiling. However, clustering is chosen for business reasons as the 

main objective of the project in a data mining framework. We will create groups 
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(or clusters) of similar claims in order to highlight the characteristics shared by 

most fraudulent claims. Clustering techniques are covered in Chapter 3. 

Data mining is, an appropriate framework to deal with the current project 

about fraud detection. Other interesting points about data mining include current 

applications of data mining, reasons for the development of that field of study and 

methodologies associated with it. However, it is beyond the scope of this project. 

The interested reader is referred to Berry and Linoff (2004) for an overview of 

data mining applied to business context. Many other references are also available 

for other fields of study. 

This chapter first provided the reader with a knowledge of insurance and fraud 

concepts. Sorne covered topics were the prevalence of insurance fraud and func

tional classifications of reasons for committing fraudulent behaviors. This chapter 

then discussed the laws and regulations of the automobile insurance system in 

Ontario. It then discussed the selection of an appropriate statistical method for 

the detection of fraud. This chapter ended with an introduction to the main data 

mining concepts and techniques. 



Chapter 2 

STATISTICAL NOTIONS, PRINCIPAL 

COMPONENT ANALYSIS, AND THE PRIDIT 

METHOD 

This chapter begins with a discussion on the statistical aspects necessary to subse

quent reading. The chapter is broadly divided in three parts. First, it introduces 

the reader to sorne statistical notions. Among other things, it proposes a potential 

classification of variables, discusses data standardization and RIDIT transforma

tion. This chapter then introduces principal component analysis (PCA). The 

PCA is used here to obtain a smaUer data set given a very large number of vari

ables. The third part introduces the reader to the principal component analysis 

of RIDITs method (PRIDIT). Broadly, it is a method designed by Brockett et al. 

(2002) to classify incoming claims according to their fraud likelihood. 

2.1. CLASSIFICATION OF VARIABLES 

Statistical analyses generaUy involve a relatively smaU number of variables 

and few different types of variables compared with data mining. From a data 

mining perspective, a data set however contains many variables of different types. 

This would not be a problem if one could use the same statistical method for aU 

variables. Unfortunately, this is not the case. Any data mining task requires a 

thorough understanding of the available variables. Therefore, there is a necessity 

to introduce the reader to the type of variables classification that will be used for 

the remainder of this thesis. This is the topie of this section. 
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There are various schemes to classify variables according to their type. It 

would be great to have a single classification appropriate for aIl data sets. Un

fortunately, the issue is by far more complex. GeneraIly, in statistic, a single 

classification is sufficient. For example, one may describe aIl variables in terms 

of nominal, ordinal, interval, and ratio variables. Due to the large number of 

different types of variables in a data mining task, this classification is not suffi

cient. Anderberg (1973) proposes a very interesting cross-classification of vari

ables. This book actually provides one of the best discussions on this issue. It 

classifies a variable according to both its scale of measurement and its range. 

On one hand, one may classifya variable according to the size of its range set. 

In other words, a variable is either a continuous, a discrete, or a binary variable. 

Those categories are assumed mutually exclusive. 

Anderberg (1973) gives the following definition of a continuous variable. 

Definition 2.1. A continuous variable is a variable having an uncountably infi

nite range set. 

We find the expression uncountably infinite redundant because an uncount

ably range set is, by definition, infinite. In an insurance framework, a common 

continuous variable is the time interval between two events like an accident and 

a claim. Note that the observed time interval between two events is no more a 

continuous but a discrete variable. In fact, the limited number of decimals of a 

continuous variable makes it a discrete variable. A common mistake is to define 

a discrete variable as a variable that may take only integer values. This is often 

but not always the case. 

Anderberg (1973) also gives this definition of a discrete variable. 

Definition 2.2. A discrete variable is a variable having a finite, or at most 

countably injinite range set. 

An example of a discrete variable is the indemnity given to a policyholder. 

This variable is discrete because an amount of money takes a limited number of 

decimals (two). However, such a variable is often considered as continuous in 

order to use a particular statistical method. 
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Finally, Anderberg (1973) considers a binary variable as a special case of a 

discrete variable. 

Definition 2.3. A binary variable is a discrete variable which may take on only 

two values. 

The driver's gender is an example of a binary variable. A binary variable 

is also called a dichotomous variable. Sorne authors do not make a distinction 

between a dis crete and a binary variable. We however do make this distinction in 

this thesis because we later introduce sorne similarity measures that are specifie 

to binary variables. Note that a binary variable is usually coded as either zero or 

one. 

Sorne authors consider two sub-types of binary variables, that is, a binary 

variable may be symmetric or asymmetric (Han and Kamber, 2006). Symmetric 

means that the two possible values on a variable are given the same importance. 

For example, the driver's gender is a symmetric binary variable because it does not 

matter whether the male or the female value is coded as zero or one. Obviously, 

asymmetric means that two values on a variable are givendifferent importance. 

The more important outcome is now coded as one while the other is coded as 

zero. For instance, assume a variable that indicates if a car accident caused death. 

A car accident with death is less probable but more severe than a car accident 

without death. Therefore, a death value should be coded as one while a no-death 

value should be coded as zero. This distinction is subtle and it is not necessary for 

this project. This distinction is however used by many authors when discussing 

similarity measures such as the Jaccard coefficient in cluster analysis. 

On the other hand, we may classify a variable according to its scale of measure

ment. A variable is either a nominal, an ordinal, an interval, or a ratio variable. 

Those categories are assumed mutually exclusive. 

Suppose XA and XB are values for objects A and B on variable X. 

Definition 2.4. A nominal variable satisfies one of the following relations: 

(i) XA = XB, 

(ii) XA i= XB· 



24 

The driver's gender is an example of a nominal variable. The only thing we 

know is whether an observation is different from another on this variable. 

Definition 2.5. An ordinal variable satisfies one of the following relations: 

(i) XA = XE, 

(ii) XA < XE, 

(iii) XA > XE. 

In an insurance framework, an ordinal scale variable may be the risk category 

of a policyholder. For instance, an insured may be classified as a low-risk or a 

high-risk policyholder. VVe know that an observation is identical or different from 

another on this variable but also that a high-risk policyholder is riskier to insure 

than a low-risk policyholder. 

Definition 2.6. An interval variable satisfies one of the three relations of an 

ordinal variable. H owever, X A - XE is now defined. 

In that case, it is possible to say that an observation is greater or lower than 

another observation on that variable while the difference between them is also 

meaningful. The accident year of a claim is an example of an interval variable. 

An accident that occurred in 2006 is more recent than an accident that occurred 

in 2005. Furthermore, we can say that there is a one-year difference between both 

events. 

Definition 2.7. A ratio variable satisfies one of the three relations of an ordinal 

variable. However, XA/XE is now defined. 

A ratio variable may be the annual premium for a policyholder. In that case, 

we know that an observation is greater or lower than another, while their ratio 

has a useful meaning. For instance, we may say that the annual premium of 

policyholder A is twice the annual premium of policyholder B. 

The difference between an interval and a ratio scale in this thesis has mainly 

an educative purpose. In fact, no clustering techniques benefit from additional 

information given by a ratio scale over an interval scale variable (Anderberg, 

1973). 



25 

TAB. 2.1. Cross-classification of variables in our data set. 

Il Continuous 1 Discrete 1 Binary 1 

Ratio NIA Available NIA 
Interval Rare Available NIA 
Ordinal Rare NIA NIA 
Nominal Aberrant Available Available 

Anderberg (1973) combines those two classifications to obtain a cross-classifi

cation that may be illustrated by a contingency table. Note that it is impossible to 

have a nominal-continuous variable. Moreover, ordinal-continuous and interval

'continuous variables are rare in practice. Table 2.1 indicates the types of variables 

available in our data set immediately after the data selection stage. 

This table shows that the data set contains four types of variables but no con

tinuous variables. Moreover, the data set do es not contain any ordinal variables 

and binary variables are aIl nominal. The next section discusses sorne ways to 

transform ratio-discrete, interval-discrete, nominal-discrete, and nominal-binary 

to solve sorne issues. 

2.2. DATA TRANSFORMATION 

In Chapter 1, we introduced the reader to a typical data mining process. The 

current project supposes the completion of the first three steps (data cleaning, 

data integration, and data selection) of this process. The fourth step is about 

transforming the data in order to perform subsequent statistical analyses. An

derberg (1973) ovèrviews a wide range ofmethods to transform variables. For 

instance, he identifies several methods to obtain a nominal variable from an ordi

nal one, an ordinal from a nominal, and so on. We give here sorne transformations 

relevant to our project. 

The previous cross-classification shows a hierarchy between each type of vari

ables. For instance, a ratio variable gives more information than a nominal 

variable. It is usually preferable to have an high-information variable than a 

low-information variable, but it is not always true. For example, it is sometimes 

necessary to transform a continuous variable into a discrete variable because a 

particular statistical method works only with the latter type. This transformation 
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process is called discretization. However, this section only considers transforma

tions used to upgrade the level of information. Explanations on discretization are 

provided only when required. 

2.2.1. Ratio-discrete and interval-discrete variables 

Except for ratio variables, interval variables give the highest level of infor

mation. One important issue to consider with those variables is the possible 

difference between the units of the variables. For instance, a data set that con

tains two variables such that one variable is expressed in US dollars and the other 

in Yen is difficult to manage. A way to solve this problem is to transform those 

two variables on a same scale. This type of transformation is called standardiza

tion. There are two common ways to standardize variables. The first common 

method is to use the Z-score standardization. This transformation is given by the 

following equation: 

Xi - f-L 
Zi = , 

cr 

where Xi is the value of observation i on variable X, f-L is the mean of X, and cr 

is the standard deviation of X. This method is analogous to the transformation 

of an arbitrary normal distribution with mean f-L and variance cr2 into a standard 

normal distribution with me an 0 and variance 1. We usually expect IZil ~ 3 for 

most observations. Furthermore, values outside this range are usually considered 

outliers. 

A second common method, called min-max normalization, 1S given by the 

following equation: 

X* = Xi - min {X} 
t 6x ' 

where Xi is the value of observation i on variable X, min {X} is the minimal 

value on variable X, and, 6x is the range of values on variable X. Unlike the 

previous transformation, this method maps aIl values on a [0,1] scale. Note that 

this method works if all Xi are finite. 
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2.2.2. Nominal variables 

The Z-score standardization and the min-max normalization are inappropri

ate transformations for nominal variables. For example, it do es not make sense 

to standardize the policyholder's gender variable. This subsection on nominal 

variables discusses two approaches to handle nominal variables. 

A first common way to deal with a nominal variable with two categories is to 
\ 

transform it on a binary 0-1 scale. For example, we can code the policyholder's 

gender variable such that a female value is coded as zero and a male value is 

coded as one. However, this coding is very arbitrary. One may code without 

any difficulties a male value as 0.5. Wh en prior information on the variable is 

available, it is possible to find an appropriate value. Most of the time, however, 

one uses data mining to explore a data set with no prior information or knowledge. 

This method is not a problem for statistical analyses like regression because they 

are invariant to any binary transformations. Cluster analysis does not have this 

property. Therefore, another method is usually preferred. 

Another approach is to transform a nominal variable into an ordinal variable. 

A common way to do this ls to use a reference variable. Suppose again the poli

cy.holder's gender variable. Clearly, all we can say is that a policyholder is similar 

or different from another, that is, a male or a female. Now, suppose we know 

that a male policyholder has usually a higher premium than a female policyholder 

does. VVe may now rank the policyholders using this reference variable. Only the 

perspective is changing. 

This section introduced sorne common transformations to deal with interval 

and nominal variables. From now on, we consider the min-max normalization for 

the interval variables and the reference variable method for the nominal variables. 

We use this last method because it allows us to use the RIDIT transformation, 

which is the subject of the next section. 

2.3. RIDIT 

RIDIT, a concept introduced by Bross (1958), stands for Relative to an Identi

fied Distribution unIT. It is a linear transformation that gives empirical values to 
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the categories of an ordinal variable. In other words, it may be used to obtain an 

interval variable from an ordinal variable using its empirical distribution. Bross 

(1958) gives the following definition of a RIDIT. 

Definition 2.8. Suppose X is a discrete-ordinal variable with k possible values. 

Let Px = (PXl, PX2, ... ; PXk) denote the vector of observed proportions for the k 

possible values of variable X. The RIDIT score for the category i of variable X 

is given by the following tmnsfor'mation: 

Brockett et al. (2002) use a slightly different definition of a RIDIT. 

Definition 2.9. Suppose X is a diserete-ordinal variable with k possible values. 

Let Px = (PXl,PX2,'" ,PXk) denote the vector of observed proportions for the 

k possible values of variable X. The modified RIDIT score for the category i of 

variable X is given by the following tmnsformation: 

BXi = LPXj - LPXj 
j<i j>i 

= 2 LPXj -1 + PXi 
j<i 

= 2 (L:PXj + ~PXi) -1 
J<~ 

= 2Rxi - 1. 

The modified RIDIT is used throughout this thesis. 

Example 2.1 

Suppose X is the degree of satisfaction of a policyholder toward its insurance 

company. Table 2.2 shows the empirical distribution of a random sample of 100 

observations. 

For instance, the RIDIT value for the Satisfied (i = 2) is computed as follows: 
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TAB. 2.2. Data set for Example 2.1 

1 i 1 Category 1 ni 1 PXi 1 
1 Very satisfied 25 0.25 
2 Satisfied 59 0.59 
3 U nsatisfied 15 0.15 
4 Very unsatisfied 1 0.01 

Total 1100 11.00 1 

B X2 = LPXj - LPXj, j = 1,2,3,4. 
j<2 j>2 

= PX1 - PX3 - PX4 

= 0.25 - 0.15 - 0.01 

= 0.09 

Table 2.3 gives the RIDIT values of the four categories after the transformation. 

TAB. 2.3. RIDIT values for Example 2.1 

1 i 1 Category 1 BXi 1 
1 Very satisfied -0.75 
2 Satisfied 0.09 
3 Unsatisfied 0.83 
4 Very unsatisfied 0.99 

The RIDIT transformation has three properties. First, a RIDIT transforms aIl 

variables into a [-1, 1] scale. It allows variables with different number of categories 

to be included into the same analysis. It also allows the comparaison of variables 

with different scales and units. Second, a RIDIT is relative to an empirical 

distribution. The analyst does not have to suppose a theoretical distribution. 

This is particularly useful when the identification of a theoretical distribution is 

difficult or impossible. Third, a property of the RIDIT transformation is that the 

mean of aIl BXi equals 0, that is 2:7=1 BXiPXi = O. This property ensures that 
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aIl RIDIT values are included in the [-1, 1] interval. U sing the data of Example 

2.1, we have 

k 

L BXi'ÎJXi = B X1 PXl + B X2 PX2 + B X3PX3 + B X4PX4 

i=l 

= -0.75 x 0.25 + 0.09 x 0.59 + 0.83 x 0.15 + 0.99 x 0.01 

=0. 

This section on the RIDIT transformation ends our discussion on the types 

of variables and their related issues. Vve return to the concept of RIDIT in 

Section 2.5. 

2.4. PRINCIPAL COMPONENT ANALYSIS 

A large number of variables is usually a problem when using data mining 

because it makes difficult the interpretation of the results. Several methods exist 

to reduce the number of dimensions in a data set. Among aIl the reduction 

techniques, principal component analysis (PCA) is one of the most common in 

the literature. This is the topic of this section. First, it introduces the concept of 

principal components. It then introduces two of the main issue wh en performing 

PCA, namely, the selection of the input matrix, and the determination of the 

number of principal components. 

A PCA may be used for various purposes but two of them are more common 

(Jolliffe, 2002). As mentioned earlier, PCA is often used to reduce the number 

of variables in a data set. This is why we use PCA in this project. Another 

common use of PCA is to transform a set of correlated variables into a new set of 

uncorrelated variables. Other applications of the PCA exist but are less common. 

The data set used for this project has initiaIly more than sixt Y variables. 

Performing an analysis using aIl those variables could be quite difficult or even 

impossible. An interesting solution would be to have fewer variables without 
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losing too mu ch information. Before continuing, we define the concept of total 

univariate variance. 

Definition 2.10. Let ~ denote a covariance matrix of order p associated with 

a n x p data set, denoted by X, where n is the number of observations and p is 

the number of variables. The total univariate variance of X, denoted by T [X], is 

given by the trace of~, which is the sum of the p diagonal elements of~. 

In the previous definition, we can replace ~ by P in case of a correlation 

matrix. The reader should note that the notation T [X] is used instead of V [X] 

in order to make a clear distinction between the variance of X and the univariate 

variance of X. 

The idea behind PCA is that sorne variables are less important than others 

in explaining the total univariate variance of a data set. For instance, a variable 

with only one possible value do es not explain any proportion of this total variance. 

Therefore, this variable may be deleted without changing the total variance. That 

is the extreme case. Sorne variables may contribute to a lower degree to the total 

univariate variance of a data set and therefore deleting them would result in losing 

little information and gaining effectiveness. A PCA reduces this dimensionality 

by determining new variables that are called principal components. We give a 

definition of the kth principal component. 

Definition 2.11. For each k = 1,2; ... ,n, let V [Zk] denote the variance of the 

kth principal component Z k. Let a~ = (akX l' akX2' ... , akXp ) den ote the vector 

of coefficients of the original variable Xi where i = 1,2, ... ,p for Zk' The kth 

principal component Zk is a linear combination of the p original variables: 

P 

Zk = a~X = LakXiXi (2.4.1) 
i=1 

such that V[Zk] is maximal, Cov [Zk, Zk-1] = 0 for k = 2, ... ,p and a~ak = 1. 

The last condition ensures that the coefficients of a are finite. 

It can be shown that the solution to equation (2.4.1) is ak = ek where ek is 

the kth eigenvector of :E such that À 1 2: À2 2: ... 2: Àk 2: 0 and e~ek = 1 (or 

Ilekll = 1) for aIl k = 1,2, ... ,p (see Jolliffe (2002)). Therefore, the first principal 

component is Z1 = e~ X, the second principal component is Z2 = e;X, and so on. 
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Note that the kth principal component is not necessarily unique because there 

may be multiple solutions of the variance of Zk. 

The most common measure to assess the importance of the kth principal 

component is to compute the proportion of the total univariate variance T [X] 

that is explained by V [Zk]. From the previous section, we know that the trace 

of a covariance matrix is equal to the sum of aIl its eigenvalues. Therefore, this 

measure may be given by: 

This measure is often used to choose the appropriate number of principal 

components. This issue is covered later in this section. 

It is easy to show that V [Zk] = Àk for k = 1,2, ... ,p and that COy [Zk, Zk-l] = 

o for k = 2, ... , p. Before doing this, the reader should know that e~ek = 1 for 

k = 1,2, ... , p and that e~ek-l = 0 for k = 2, ... , p. Furthermore, the following 

proposition is needed. 

Proposition 2.1. Let X and Y denote two random matrix. Let a and b denote 

two scalar vectors. Then, 

• V[aX] = a'V[X] a, 

• Cov[a'X, b'Y] = a'Cov[X, Y] b, 

• Cov[X,X] = V[X]. 

We now prove that V [Zk] = Àk for k = 1,2, ... ,p. 

PROOF. 

= e~V [X]ek 



Then, we prove the identity COy [Zk, Zk-l] = 0 for k = 2, ... ,p. 

PROOF. 

COy [Zk, Zk-l] = COy [e~X, e~_IX] 

= e~Cov [X, X] ek-l 

= e~ V [X] ek-l 

=0 
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In practice, the covariance matrix ~ is usually unknown. Therefore, the 

covariance matrix :E has to be estimated. A common estimator of :E is given by 

the sample covariance S. Here is its definition. 

Definition' 2.12. Let x' = (Xl' X2,' .. ,xn ) denote a random sample of n obser

vations. Let x denote the sample mean of x. The sample covariance matrix S is 

defined by: 
S = L~=l (Xi - X)(Xi - X)'. 

n-l 

If the correlation matrix P is used instead of the covariance matrix, a common 

estimator of P is given by the sample correlation matrix R. This estimator is 

usually computed using the following identity: 

Here is an example of a principal component analysis using a random sam pIe 

and an unknown correlation matrix. 

Example 2.2 

Consider three variables Xl, X 2 , and X 3 generated from a normal distribution 
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with me an 0 and variance 1 where P X 1X2 = -0.9, PX1X3 = -0.5 and P X 2X 3 = 0.5. 

We assume that the correlation matrix P is unknown. We obtain the following 

sample correlation matrix: 

( 

1.0000 

R = -0.9013 

-0.5141 

-0.9013 -0.5141) 

1.0000 0.4764 . 

0.4764 1.0000 

The three eigenvalues of R are the solutions to the characteristic equation. Most 

statistical softwares have the capability to solve this matrix equation. A possible 

solution is À 1 = 2.2836, À2 = 0.6189, and À3 = 0.0976. Those eigenvalues give the 

following eigenvectors, (0.6248 -0.6165 -0.4791)', (0.3069 -0.3703 0.8768)' 

and (0.7180 0.6948 0.0422)'. Therefore, the three principal components are: 

Zl = 0.6248X1 - 0.6165X2 - 0.4791X3 , 

Z2 = 0.3069X1 - 0.3703X2 + 0.8768X3 , 

Z3 = 0.7180X1 + 0.6948X2 + 0.0422X3 · 

(2.4.2) 

(2.4.3) 

(2.4.4) 

Note that sorne softwares (like R) give the standard deviations of the principal 

components instead of their eigenvalues. To obtain those values, we square the 

standard deviations. AIso, the proportion of the total univariate variance that is 

explained by Zl is given by: 

Àl 2.2836 

L:=l Ài 2.2836 + 0.6189 + 0.0976 

= 0.7612 

= 76.12%. 

Similarly, we find that the second and third principal components explain 20.63% 

and 3.25%, respectively. Equation 2.4.2 shows that the first principal component 

Zl explains most of the variation of both X 2 and X 3 while equation 2.4.3 shows 
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that the variation of X3 is largely explained by the second component Z2. Such 

conclusions are drawn by comparing the coefficients of the two equations. 

An important issue when using PCA to reduce the number of variables is to 

determine an appropriate number of principal components. 

> 2.4.1. Number of principal components 

A PCA performed on a data set of 20 variables gives 20 principal components. 

The objective of PCA is to reduce the number of variables, that is, it makes no 

sense to replace 20 variables with 20 principal components. Unfortunately, there 

are no clear rules to determine an appropriate number of principal components. 

The literature proposes three methods to do this (Timm, 2002). A first method 

is to select the principal components with eigenvalues higher than one. Using 

this rule of thumb, we would select one principal compone nt in Example 2.2. 

Secondly, one may select the principal components that explain at least 70% of 

the total variance of the data set. Using this criterion, we would also select one 

principal component in the example. A third method is to use a scree plot. A 

common ru le of thumb is to select the first principal components until a large 

decrease in variances (or eigenvalues) occurs. For instance, Figure 2.1 suggests 

one principal component. In this case, aIl three methods suggest to cnoose one 

principal component, that is, Zl. 

a 
N 
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C 
ID 
.~ 0 

> .-' 
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FIG. 2.1. Scree plot for Example 2.2. 
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AIl principal components share sorne properties. A first property is that 

aIl principal components are uncorrelated, namely, Cov [Zk, Zk-l] = 0 for k = 

2, ... ,p. This property was shown earlier in this chapter. A second property 

is that aIl principal cornponents are orthogonal. From linear algebra, we know 

that aIl eigenvectors are orthogonal. Since the coefficients of a principal compo

nent form an eigenvector, aU their coefficients are also orthogonal and their scalar 

product is zero. Using the principal components Zl and Z2 of Example 2.2, we 

have 

3 

0:~ 0:2 = L 0:1i0:2i 

i=l 

= 0.6248 x 0.3069 - 0.6165 x (-0.3703) x -0.4791 x (0.8768) 

= O . 

. In the same manner, it is possible to show that Zl and Z3 are orthogonal and 

also that Z2 and Z3 are orthogonal. A second important issue to consider with 

PCA is the selection of an input matrix. This issue is now covered. 

2.4.2. Input matrix 

PCA first requires the selection of an input matrix. This section covers the two 

most common input matrices, that is, the covariance matrix and the correlation 

matrix. 

A covariance matrix may be used as the input matrix for PCA. This input 

rnatrix gives different weights to variables with different variances. More precisely, 

a covariance rnatrix gives to a variable with a large variance a greater importance 

than a variable with a smaIl variance. This result is not surprising because it 

uses directly the definition of a covariance between two variables. A correlation 

matrix is also commonly used as the input matrix for PCA. However, the use of 

a correlation rnatrix gives equal weights to aIl variables. We obtain this result 

directly from the definition of a correlation, that is, an values are transformed 
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on a same [-1,1] scale. The choice of an input matrix depends on the context of. 

study and a priori information. 

This section introduced the principal component analysis as a way to reduce 

the number of variables in a data set. This statistical method may also be used 

as an iterative pro cess to detect fraudulent claims. This is the subject of the next 

section. 

2.5. PRINCIPAL COMPONENT ANALYSIS OF RIDIT 

Brockett et al. (2002) propose an innovative method to detect fraudulent 

claims and identify variables that are the best indicators of fraud. They caU 

it the Principal Component Analysis of RIDITs method or sim ply the PRIDIT 

method. The name clearly states the nature of the method. It uses both concepts 

of principal component analysis and RIDIT. This section overviews the original 
1 

article of Brockett et al. (2002). More precisely, it discusses its goals, its assump-

tions, and the corresponding algorithm. We also give a complete ex ample of its 

use. 

The PRIDIT method has two main uses. First, the PRIDIT method gives an 

overaU suspicion score for each daim. Those scores may then be used to rank an 

daims based on their likelihood of fraud. The daim department may investigate 

only the daims ab ove a given suspicion score. The PRIDIT method may therefore 

help reduce the costs of investigating the incoming daims. Second, the PRIDIT 

may be used to assess the discriminatory power of each variable. 

The PRIDIT method makes one important assumption, that is, it assumes 

that aU variables are of a ranked-order categorical nature. Using the terminol

ogy introduced at the beginning of this chapter, the variables are assumed to be 

discrete-ordinal. Moreover, aU categories of a variable must be ordered in a de

creasing likelihood of fraud suspicion. Consider, for example, the driver's gender 

variable after we transformed it into an ordinal variable using fraud suspicion as 

a reference variable. The reader is referred to Section 2.2 for a definition of a 

reference variable. There are evidences that a man is more likely to commit a 

fraudulent daim th an a woman is. Therefore, a man must have a lower value 
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. than a woman must on the variable. An example would be to give a value of zero 

to a man and a value of one to a woman. 

The PRIDIT method is an easy-to-understand procedure composed of two 

preliminary steps and an algorithm. The first preliminary step is to compute a 

RIDIT score for each category of an variables. For instance, three binary variables 

require the computation of six RIDITs. The second step is to replace each value 

of the data set by its corresponding RIDIT value. This "new" data set, denoted 

by F, is a n x m matrix where n is the number of daims and m is the number of 

variables. Once those two steps are completed, the PRIDIT algorithm begins. 

Let fit denote the RIDIT score of daim i on variable t (i = 1,2, ... , n and 

t = 1,2, ... , m). In addition, let W(O) denote a m x 1 vector consisting only 

of one. A first n x 1 vector of suspicion scores, denoted by S(O) is given by the 

pro du ct of the matrix F and the vector W(O), that is: 

S(O) is the vector of suspicion scores when an variables have the same weights. 

However, sorne variables are better indicators of fraud. A vector of nones may 

therefore be inappropriate. According to Brockett et al. (2002), a better vector 

of weights may be given by: 

F'S(O) 
W (1) - .,-------:--,-,-

- IIF'S(O)II' 

where IIF'S(O)II is the Eudidean norm of F'S(O). Then, this new vector may be 

used to obtain a more precise vector of suspicion scores by the following elemen

tary operation: 

By repeating those steps, we obtain W(2), S(2), W(3), and so on. The process 

may be repeated until convergence is reached. In practice, we repeat the pro cess 

q times. When q is reached, we obtain the two vectors S(q) and W(q). The 

component Si(q) of the n x 1 vector S(q) is the suspicion score for daim i. In other 
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words, a suspicion score for daim i is given by Si = 2:::;:1 fitWt. The component 

Wi(q) of the m x 1 vector W(q) is the weight to give to variable t. As any other 

consistency measure, a high value indicates a high consistency while a low value 

indicates a low consistency of variable t with respect to the suspicion score. Here is 

an ex ample of how the PRIDIT method works with a random data set. Appendix 

provides our R version of the PRIDIT algorithm. 

Example 2.3 

Consider the data set of Table 2.4. The categories of the three variables are 

ranked such that a higher category is related with a lesser degree of fraud. For 

instance, a value of 0 on variable X3 means a high likelihood of fraud while a 

value of 3 means a low likelihood of fraud. Table 2.5 gives the RIDIT values for 

the categories of those three variables. Table 2.6 shows how we transform the 

values of daim i = 1 into RIDIT values. 

TAB. 2.4. Data set for Example 2.3 

1 1 1 3 
2 1 2 3 
3 1 2 3 
4 0 0 1 
5 1 0 2 
6 1 1 3 
7 1 1 0 
8 1 2 3 
9 1 1 1 
10 1 0 2 

TAB. 2.5. RIDIT values for each category of Example 2.3 

1 Category 1 Xl 1 X2 1 X3 1 

0 -0.9 -0.7 -0.9 
1 0.1 0.0 -0.6 
2 - 0.7 -0.2 
3 - - 0.5 
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TAB. 2.6. RIDIT transformation of daim i = 1 for Example 2.3. 

We now replace aIl values of the data set with their corresponding RIDIT values 

to obtain the RIDIT matrix: 

0.1 0.0 0.5 

0.1 0.7 0.5 

0.1 0.7 0.5 

-0.9 -0.7 -0.6 

0.1 -0.7 -0.2 
F= 

0.1 0.0 0.5 

0.1 0.0 -0.9 

0.1 0.7 0.5 

0.1 0.0 -0.6 

0.1 -0.7 -0.2 

Once F is computed, we begin the PRIDIT algorithm. First, we compute S(O) = 
FW(O). 

The next step is to compute the vector W(1). 

0.6 

1.3 

1.3 

-2.2 

-0.8 

0.6 

-0.8 

1.3 

-0.5 

-0.8 



0.2816 

0.6899 

0.6669 
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After, we compute S(1), W(2), S(2) and so on until convergence is reached. In 

practice, we usuaIly set a fixed number of iteration of the process. For example, 

we obtain after 10 iterations: 

and 

selO) = FW(lO) = 

(

0.2261) 
0.6992 

0.6783 

0.3617 

0.8512 

0.8512 

-1.0999 

-0.6025 

0.3617 

-0.5878 

0.8512 

-0.3843 

-0.6025 

After 10 iterations, this algorithm gives us the discriminatory ability of the three 

variables which is given by W(lO). In this example, variables t = 2 and t = 3 are 

good indicators of fraud with values of 0.6992 and 0.6783 while variable t = 1 is 

a poor indicator with a value of 0.2261. This algorithm gives also the suspicion 

scores for the 10 daims. For instance, the suspicion score for daim i = 1 is 0.3617. 

In other words, this daim is more suspicious than a daim with a 0.8512 value 

but less suspicious than a daim with a value of -1.0999. 

As mentioned earlier, the PRIDIT algorithm may be used to dassify aIl daims 

based on their suspicious scores. Table 2.7 shows the suspicion scores for the 10 



42 

daims in a decreasing order of fraud likelihood. Brockett et al. (2002) propose 

to select the negative values as the fraudulent daims and the positive values as 

the non-fraudulent daims. Therefore, five daims may be considered as fraudulent 

and the same number as non-fraudulent. The insurance company should therefore 

investigate the five daims with negative values (i = 4,5,7,9,10). 

TAB. 2.7: Claims of Example 2.3 in a decreasing order of fraud likelihood. 

1 Claim 1 Suspicion score 1 

4 -1.0999 
5 -0.6025 
10 -0.6025 
7 -0.5878 
9 -0.3843 
1 0.3617 
6 0.3617 
2 0.8512 
3 0.8512 
8 0.8512 

Brockett et al. (2002) show that the PRIDIT algorithm converges, that is, 

the two sequences {W(i)}~l and {S(i)}~l converge. We however do not discuss 

this convergence property in this thesis. In fact, this property uses the concept 

of unique variance which is covered in factor analysis. Although factor analysis 

is similar to peA, a discussion of this method is beyond the scope of this thesis. 

This method has many interesting properties. We now discuss four of them. 

First, PRIDIT is an unsupervised method as discussed at the end of Chapter 1. 

Therefore, it may be used when there are no outcome variables. Second, it works 

with discrete-ordinal variables, which are usually the most common variables in a 

data set of daims. Third, one may indude many variables with varying number 

of categories within the same analysis because aIl variables are transformed onto 

a [-1, 1] scale. Finally, the PRIDIT method is simple and easy to implement in 

a business context, which is a more than important point to any company. A 

mathematically complex technique would not be applicable. 
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This chapter covered three main topies. It began with a discussion on the 

types of variables usually found in a data set. We exposed the cross-classification 

proposed by Anderberg (1973), which combines two common classifications into a 

sin'gle classification. The chapter then discussed sorne ways to transform a given 

variable into another type. An emphasis was given to the RIDIT transformation. 

Third, we highlighted main issues on principal component analysis. The chapter 

ends with an overview of the PRIDIT method to detect fraudulent claims. This 

method is interesting because it helps the company to allocate its limited re

sources (financial and human) to the investigation of the most suspicious claims. 

Chapter 4 shows that this method works with real data, 



Chapter 3 

CLUSTER ANALYSIS 

This chapter covers the broad field of cluster analysis. Unlike the principal com

ponent analysis of RIDITs method (PRIDIT) introdJced in the second chapter, 

a cluster analysis is not specifically designed to detect insurance fraud. They are 

general methods to obtain new knowledge when no previous information on a 

dependent variable is available. 
o 

The idea behind cluster analysis is simple. Given a data set, it creates clusters 

of observations in a way to both maximize the similarity of observations of a 

cluster or group and maximize the dissimilarity of observations between different 

clusters or groups. For instance, an insurer may group aIl its policyholders in 

a way that similar policyholders are included in the same cluster and dissimilar 

policyholders are in distinct clusters. In that case, there are no predefined classes 

of policyholders such as high-risk and low-risk policyholders. In other words, 

obtained clusters have no label attached to them. This last task pertains to 

classification methods and not to clustering techniques. This issue was exposed 

in the first chapter. 

The use of dustering techniques in this project on fraud detection is subject 

to the following warning. A clustering technique identifies patterns when no 

information on a dependent variable (fraud status) is available. However, those 

patterns are not necessarily caused by differences between fraudulent and non

fraudulent daims. Therefore, a daim adjuster (or any other knowledgeable person 

in insurance fraud) must interpret the results. Among other things, he has to 

assess the relevance to insurance fraud of the dusters. 
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This chapter has the following structure. The first section gives an overview 

of the main concepts on cluster analysis. Then, it discusses the quantification of 

the proximity between two observations. It also briefly introduces clustering of 

variables and common classifications of clustering techniques. Next, it introduces 

the two main types of clustering techniques, that is, agglomerative hierarchical 

clustering techniques and nonhierarchical techniques through the k-means algo

rithm. The chapter ends with a discussion on the determination of the number 

of clusters and the relation between principal component and cluster analyses. 

3.1. DEFINITIONS AND USES OF CLUSTER ANALYSIS 

This section overviews the main concepts underlyihg cluster analysis. First, 

it gives a common definition of cluster. It then discusses sorne possible uses of a 

cluster analysis. Finally, it makes a distinction between crisp and fuzzy clustering 

techniques. 

Everitt (1980) gives the following definition of a cluster. 

Definition 3.1. A cluster is defined as a group of contiguous elements of a sta

tistical population; for example, a group of people living in a single house, a 

consecutive run of observations in an ordered series, or a set of adjacent plots in 

one part of a field. 

A cluster analysis is therefore performed to obtain clusters. More precisely, 

a cluster analysis is a tool to explore a large data s~t. Its main objective is 

the discovery of new knowledge by the generation of new hypotheses for a more 

precise study or by the identification of patterns in the data. A cluster analysis is 

also useful to create classification schemes like those commonly found in zoology 

and other biological sciences. Although the main function of a cluster ana~ysis 

is not to predict but to discover new patterns, it is however possible to perform 

predictive analyses. For example, if a claim adjuster finds the clusters relevant to 

the prediction of the fraudulent status of a claim, he may classify future claims 

based on those last clusters. Finally, Jobson (1992) uses the cluster analysis as a 

data reduction technique. 
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There is a wide variety of clustering techniques. Broadly, the literature on 

computational pattern recognition identifies two types of cluster analyses. On 

one hand, a crisp cluster analysis creates mutuaIly exclusive clusters. In other 

words, a given observation is included into a unique cluster. On the other hand, a 

fuzzy cluster analysis allows the observations to be in two, three, or more clusters. 

We performed both types of methods. However, this Master's thesis presents only 

the results obtained by common crisp clustering techniques. 

This section introduced sorne fundamentals of cluster analysis. A definition 

of both cluster and clustering concepts and the possible uses of a cluster analysis 

were the covered concepts. 

3.2. PROXIMITY MEASURES 

Any cluster analysis needs to quantify the proximity between two objects in 

a p-dimensional space. The quantification of the proximity between two objects 

is made through two different types of measures. On one hand, there are dissimi

larity measures. This type of measures quantifies the difference (or dissimilarity) 

between two objects. Therefore, two dissimilar objects are given a high value of 

dissimilarity while two similar objects are given a low value of dissimilarity. On 

the other hand, there are similarity measures. This type of measures quantifies 

the similarity instead of the dissimilarity between two objects. Wh en using this 

type of measures, two similar objects are given a high value of similarity while 

two dissimilar objects are given a low value of similarity. Those two types of mea

sures are both part of a more general type of measures referred to as proximity 

measures, According to this classification, this section is divided in two parts. 

The first one covers dissimilarity measures while the second part covers similar

ity measures. Note that most clustering techniques use a dissimilarity measure. 

However, a similarity me as ure is often needed wh en sorne or aIl variables are bi

nary. This section also gives sorne approaches to handle a data set with different 

types of variables. 
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3.2.1. Dissimilarity measures 

Let p denote the number of variables. Let r, s, and q denote three objects in 

the p-dimensional space. Let drs den ote the distance between rand s. Here is 

the definition of a dissimilarity measure. 

Definition 3.2. A dissimilarity measure satisfies the following three axioms: 

drs 2: 0, Vr, s, 

drs = 0 {::} r = s, 

Those three axioms are called positivity, refiexivity, and symmetry, respec

tively. A measure satisfying those last three axioms is. also called a semi-metric 

by sorne authors (Timm, 2002). 

It is possible to add a fourth axiom to the previous definition to obtain a 

metric. Here's its definition. 

Definition 3.3. A metric satisfies the following four axioms: 

drs 2: 0, Vr, s, 

drs = 0 {::} r = s, 

This fourth axiom is called the triangle inequality. Furthermore, it is possible 

to replace this last axiom by a new one to obtain an ultrametric. A formaI 

definition of this term is now given. 

Definition 3.4. An ultrametric satisfies the following four axioms: 

drs 2: 0, Vr, s, 

drs = 0 {::} r = s 
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The foUowing proposition is useful to identify the type of measure. 

Proposition 3.1. A measure that satisfies all four axioms of an ultrametric is 

also a dissimilarity measure (semi-metric) and a metric. 

The literature proposes many dissimilarity measures for continuous variables. 

The Minkowski distance (or Lp - norm) is however used to derive most popular 

measures. Its definition is now given. 

Definition 3.5. Let Yr and Ys denote two objects of the p-dimensional space. The 

Minkowski distance is given by: 

1 

drs = (t IYrj - ySjl>'):;;, À > O. 
J=l 

Note that p ~ 1. It is easy to show that the Minkowski distance satisfies 

the four axioms of an ultrametric. Two common special cases of the Minkowski 

distance are the Euclidean and the Manhattan distances where À = 2 and À = 1, 

respectively. In the literature, the former me as ure is, by far, the most frequently 

used. Its intuitive simplicity and relation to classical geometry might be one of 

the reasons. As it will be seen later, the most popular do es not me an being the 

most efficient in aU circumstances. To state things properly, the definition of the 

Euclidean distance is now given. Note that it is obtained by setting À = 2 in the 

previous definition. 

Definition 3.6. Let Yr and Ys denote two objects of the p-dimensional space. The 

Euclidean distance is given by: 

p 

drs = 2:)Yrj - Ysj)2. 
j=l 

Since the Euclidean distance is a special case of the more general Minkowski 

measure, it is an ultrametric. By using Proposition 3.1, the Euclidean distance 

is also a dissimilarity measure and a metric. It is often convenient to express the 

Euclidean distance in a matrix form. 
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Definition 3.7. Let y r and Ys denate twa abjects in the p-dimensianal space. 

The Euclidean distance is given by: 

The Euclidean distance is not always appropriate because of an important 

scale-unit problem. Suppose the foUowing two variables. The first variable is 

the indemnity given to a claimant and the other is the age of this claimant. The 

former variable may range between $0 and $200,000, while the latter variable may 

range between 15 and 85. Obviously, more weight is given to the former than the 

latter variable when computing the distance between the data for two claimants. 

We say that the Euclidean distance is not invariant in scale unit. Fortunately, 

there are many solutions to solve this scaling problem. The main solution is to 

standardize variables, as explained in the second chapter. This scaling problem 

affects aU Minkowski-based distances at sorne degree. In fact, a high value for À 

increases the importance of the problem while a lower value decreases it. 

A second special case of the Minkowski distance, wh en À = 1, is caUed the 

Manhattan distance. Sorne authors prefer the use of city-black or taxi-cab distance 

(Timm, 2002). Here is the formaI definition. 

Definition 3.8. Let Yr and Ys denate twa abjects af the p-dimensianal space. The 

Manhattan di8tance i8 given by: 

p 

drs = L IYrj - YSjl· 
j=1 

Since the Manhattan distance is a special case of the more general Minkowski 

distance, the Manhattan distance is an ultrametric. By Proposition 3.1, we find 

that the Manhattan distance is also a me tric and a semi-metric. The Manhattan 

distance is more robust to outliers than the Euclidean distance. Intuitively, the 

exponent À = 2 associated with the Euclidean distance gives outliers more weight 

than the À = 1 associated to the Manhattan distance. 

The previous measures are aU derived from a more general measure, that is, 

the Minkowski distance. They therefore share sorne characteristics. As explained 

before, aU Minkowski-based measures share the scale unit problem. Second, the 
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distance between two observations on a variable do es not affect its counterpart on 

another variable. Therefore, aIl those measures assume independence of variables. 

Other dissimilarity measures are found in the literature. While most of them 

are metric measures, there are also nonmetric measures. They differ by not 

satisfying the fourth axiom of a metric. The attention is however restricted in this 

Master's thesis to me tric measures. Those interested in nonmetric dissimilarity 

measures for interval variables may read Anderberg (1973). 

Dissimilarity measures are one type of proximity measures. They are usually 

designed to deal with continuous variables and most discrete variablés. Binary 

variables and discrete variables with few categories are usually best handled with 

similarity measures. However, a particular emphasis is given here to binary vari

ables. 

3.2.2. Similarity measures 

As mentioned earlier, there are two types of proximity measures: dissimilar

ity and similarity measures. This second part of the section covers similarity 

measures. They are sometimes called correlation-type measures because they are 

smaller or equal, in absolute value, to one (Jobson, 1992). Here is the definition 

of a similarity measure. 

Definition 3.9. Let rand S denote two objects in the p-dimensional space. Let 

Srs den ote th~ similarity measure between rand s. A similarity measure satisjies 

the following three axioms: 

ISrsl ::; 1, \fr, s, 

Srs = 1 {:} r = s, 

The following proposition is the link between dissimilarity and similarity mea-

sures. 

Proposition 3.2. The relation between a similarity measure and a dissimilarity 

measure is given by: 
1 

Srs = ----:--
1 + drs · 
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The most common similarity measure is the Pearson correlation coefficient, 

which is now defined. 

Definition 3.10. Let Yr and Ys denote two objects of the p-dimensional space. 

The Pearson correlation coefficient is given by: 

where Y- = 2:;-1 YTi and y- = 2:;-1 Ysi • 
~ p s. p 

A similarity measure is most of the time transformed into a dissimilarity mea-

sure since most clustering techniques use this last type of measure. Moreover, 

most statistical softwares, like the SAS®CLUSTER procedure, use dissimilarity 

measures. Therefore, similarity measures are usually less important than dissim

ilarity measures. The situation is however different when a data set contains at 

least one binary variable. This issue is now considered. 

3.2.3. Discrete variables 

In an insurance context, available variables are usually discrete or even binary 

variables. This section first introduces common similarity measures used when 

the. data set contains binary variables. It then discusses similarity measures for 

nominal and ordinal variables. This section assumes that a binary variable is 

coded as one if a given characteristic is present and zero if it is absent. The 

reader may refer to Section 2.1 for an explanation of the differences between the 

types of discrete variables. There is a wide range of similarity measures for binary 

variables. However, they are all based on Table 3.1. 

TAB. 3.1. Contingency table for the similarity coefficients 

1 0 Total 
1 a b a+b 
0 c d c+d 

Total a+c b+d q=a+b+c+d 

Using this contingency table, a similarity measure may be obtained for each 

pair of variables. Timm (2002) introduces nine similarity measures to handle 
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binary variables. They differ by the weights associated to each variable of a pair. 

In this Master's thesis, we consider only the simple matching measure. Here is 

the definition. 

Definition 3.11. Let a, b, c, d, and q be frequencies as represented in Table 3.1. 

The simple mat ching measure is given by 

a+d 
q 

This similarity measure gives equal weights to pairs with (0 - 0) matches. 

Using the relation between- a similarity and a dissimilarity measure and the defi

nit ion of a metric, it is easy to show that the dissimilarity measure corresponding 

to the simple mat ching coefficient is actually a metric. An example of the use 

of dustering with binary variables and the simple matching coefficient is now 

exposed. 

Example 3.1 

Consider the two daims of Table 3.2 such that X 1 ,X2 ,X3 , and X 4 are four binary 

variables. 

TAB. 3.2. Data set for Example 3.1 

1 

1 ~ 1 ~ 1 ~ 1 ~ 1 2 

Those data may be arranged using the contingency table shown in Table 3.1. 

Table 3.3 shows a similar contingency table for this example. 

TAB. 3.3. Contingency table for Example 3.1 

1 0 Total 
1 1 1 2 
0 1 1 2 

Total 2 2 q=4 

In this simple example, a = b = c = d = 1 and q = 4. Therefore, the similarity 

coefficient between both daims is ~. 
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A data set more than likely contains sorne nominal variables. Xu and Wunsch 

II (2005) propose two strategies to handle such variables. A first strategy is to 

transform aIl nominal variables as binary (or dummy) variables and to apply the 

previous procedure. For example, one may transform the type of insurance (car, 

moto, or home) variable into three new dummy variables. A second strategy is 

to use the mat ching criterion: 

1 p 

5rs = - L 5rsi , 
p i=l 

where 5rsi = 1, if rand s match and 5rsi = 0 if rand s do not match. Here is an 

example that illustrates the use of this second strategy. 

Example 3.2 

Consider the two claims of Table 3.4 where i = 1 den ote the policyholder's lan

guage, i = 2 denote the model of the insured vehicle, and i = 3 denote the 

policyholder's gender. This information is typically found in an insurance com

pany data set of claims. 

TAB. 3.4. Data set for Example 3.2 

The similarity measure between claims 1 and 2 is 

1 
512 = 3(5121 + 5122 + 5123 ), 

1 
= 3(1 + 0 + 1), 

2 

3 

Finally, a data set may contain ordinal variables. Xu and Wunsch II (2005) 

propose to use a dissimilarity measure, like the Euclidean distance, to handle 
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this type of variables. AIso, Sokal and Sneath (1963) propose a particular cod

ing of ordinal variables in binary variables. FinaIly, the RIDIT transformation 

introduced in Chapter 2 is an alternative. 

3.2.4. Data set with different types of variables 

From a data mining perspective, a data set usually contains many different 

types of variables. Many approaches are found in the literature to deal with 

this issue. This section discusses three of them. A first -approach is to perform 

a separate cluster analysis for each type of variable available in the data set 

(Anderberg, 1973). A second approach is to transform aIl variables into a same 

type of variables (Anderberg, 1973). Since conversion of types should be restricted 

to a minimum, variables should be transformed into the dominant variable type. 

Finally, Gower (1971) proposes to use the following Gower's similarity coefficient: 

where Sr si is the similarity measure between rand s in the ith dimensional space, 

where i = 1,2, ... ,p, and <5rsi = 0 if i is missing for either r or sand, <5 = 1 

otherwise. 

This section introduced common proximity measures. A dissimilarity me as ure 

is mainly used with continuous variables while a similarity measure is usually used 

with binary variables. This section finally discussed approaches to deal with a 

data set that contains many different types of variables. 

3.3. CLUSTERING OF VARIABLES 

There are two types of objects that may be grouped in clusters, namely, vari

ables and observations. It is the reason why we referred to objects and not to 

observations in the previous sections. We wanted ta emphasize the fact that vari

ables can also be clustered. The main objective of a cluster analysis on variables 

is to reduce its number. \Ve prefer the use of a principal component analysis. The 

reader interested in the clustering of variables is referred to Anderberg (1973). 

This chapter now discusses sorne clustering classifications. 
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3.4. CLUSTERING CLASSIFICATIONS 

The field of cluster analysis involves algorithms developed in various fields of 

study including biology, psychology, and sociology. There is an impressive number 

ofthem so that making a review of aIl clustering techniques is fastidious. In fact, 

comparisons of aIl existing algorithms may be a research subject by itself. Fortu

nately, many classifications of cluster analysis techniques exist depending on the 

technique used to construct the clusters. However, sorne classifications and cat

egories overlap because the distinction between them may be unclear. Cormack 

(1971) proposes a five-category classification: hiemrchical, optirnization, density 

or rnode-seeking, clurnping, and other techniques. According to this author, hier

archical clustering techniques may be further divided between agglornemtive and 

divisive techniques. Sorne authors, like Timm (2002), propose a two-category 

classification that makes a distinction between agglornerative hierarchical cluster

ing and nonhierarchical methods. The reader must also be aware that different 

techniques are not mutually exclusive but rather complementary. For instance, 

Timm (2002) suggests following hierarchical clustering with nonhierarchical clus

tering to refine or validate the results. 

3.5. HIERARCHICAL CLUSTERING TECHNIQUES 

This section introduces hierarchical clustering techniques. They are first con

sidered because of their importance in the literature on data mining and mul

tivariate analysis. AIl hierarchical clustering techniques follow the same idea. 

Given N objects, one merges or splits them in clusters that are themselves fur

ther merged or split, and so on. This series of successive mergers or splits stops 

when a stopping criterion is satisfied. This criterion usually depends on the num

ber of clusters denoted by k. Therefore, depending on the direction (mèrges or 

splits) of the process, there are two classes of hierarchical clustering techniques: 

agglornerative and divisive hierarchical clustering techniques. Note that Gordon 

(1987) considers two other classes of hierarchical clustering techniques: construc

tive and direct optimization. They are however not discussed in this Master's 

thesis. 
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An agglomerative hierarchical clustering technique typically st arts with N 

objects and N clusters Cl, ... ,CN such that Ck =1- 0, k = 1, ... ,N. The two most 

similar clusters are merged to obtain N - 1 non-empty clusters. This step is then 

repeated until either the initial N objects are grouped in a single cluster or a 

stopping criterion is met. 

A divisive hierarchical clustering technique is similar but uses splits instead 

of merges. One starts with one cluster containing N objects. This cluster is then 

divided into two clusters according to one of the 2N -1 - 1 possible splits. One 

cluster therefore contains t objects while the other contains N - t objects. A 

similar split is performed again on those two clusters obtaining this time three 

clusters. One repeats this pro cess until the initial N objects are divided in N 

clusters Cl, ... ,CN such that Ck =1- 0, k = 1, ... ,N or a stopping criterion is met. 

This Master's thesis covers only the former type of methods, that is, ag

glomerative hierarchical clustering techniques. The reader interested in divisive 

hierarchical clustering techniques may read Seber (1984). 

While not necessary to determine clusters, interpretation of hierarchical clus

tering results is greatly simplified by using a dendrogram. It is also called a tree 

diagram. Figure 3.1 shows a typical dendrogram. Its use is quite simple. The 

tree illustrates successive splits or merges at each step of the selected pro cess 

whether agglomerative or divisive. The distance between clusters is indicated on 

the y-axis. Note that such a tool may not be appropriate when dealing with a 

large amount of objects. Gordon (1987) p'rovides a good discussion on that topic 

by comparing many types of dendrograms and giving mathematical foundations 

of them. 

According to Anderberg (1973), agglomerative hierarchical clustering tech

niques may be themselves further divided. For instance, those- methods may be 

classified as linkage, centroids, and err·or sum of squares or variance methods. 

AlI methods may be used for clustering observations. However, onlya linkage 

method clusters variables. This section first introduces the three common linkage 

methods, namely, single linkage, complete linkage, and average linkage methods. 

Note that the three linkage methods differ only by the way the distance between 
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'" 

FIG. 3.1. A dendrogram 

two clusters is calculated. It then introduces the reader to the centroid method. 

It finally ends with the Ward's method, which is the more common error sum of 

squares or variance method. 

3.5.1. Single linkage 

The single linkage method has many other appellations. A common but dif

ferent name is nearest neighbor method (Everitt, 1980). Let d(R)(S) denotes the 

distance between the clusters Rand S. The single linkage distance is given by 

the following equation: 

d(R)(S) = min drs , 
rER,sES 

where drs den otes the distance between the objects rand s. An example will help 

to understand how it works. 

Example 3.3 

Consider the following lower triangular distance matrix D. 
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1 2 3 4 5 

1 

2 3.16 

D 5X5 = 3 3.61 4.12 

4 7.07 8.94 5.00 

5 2.23 1.00 4.00 8.54 

First, we merge the two closest items (2 and 5). We denote this cluster (2;5). We 

then compute the distances between (2;5) and the three remaining items: 

d(2;5)1 = min(d21 , d 51 ) = min(3.16, 2.23) = 2.23, 

d(2;5)3 = min(d23 , d 53 ) = min(4.12, 4.00) = 4.00, 

d(2;5)4 = min(d24 , d 54 ) = min(8.94, 8.54) = 8.54. 

The lower triangular distance matrix is now reduced to: 

(2;5) 1 3 4 

(2;5) 

1 2.23 
D 4x4 = 

3 4.00 3.61 

4 8.54 7.07 5.00 

We again select the two most similar items, (2;5) and 1, merge them, and so 

on. We repeat this process until aIl objects are in the same cluster. Figure 3.2 

illustrates the final structure on a dendrogram. The method first merges the 

items 2 and 5. It then merges successively the items 1 and 3 to this new cluster. 

The method finally merges the item 4. 

The single linkage method has two main problems (Anderberg, 1973). First, 

this method is usually unable to separate close clusters. Second, this method 

tends to create ellipsoidal clusters. Therefore, two observations located at both 
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FIG. 3.2. Dendrogram for the single linkage example. 

extremities of an ellipsoidal cluster tends to be in the same cluster even if they 

are distant. This drawback of the single linkage method is called the chaining 

property. This property is sometimes an advantage instead of a disadvantage. 

For instance, Johnson and Wichern (2007) considers this method as one of the 

few clustering methods that can delineate non-ellipsoidal clusters. 

3.5.2. Complete linkage 

The complete linkage method, often called furthest neighbor method, is very 

similar to the single linkage method. As stated earlier, the two methods differ 

only by the way they define the distance between two objects. The distance 

between clusters Rand S is now defined by: 

d(R)(S) = max d rs , 
rER,sES 

where drs denotes the distance between the objects rand s. Here is an example. 

Example 3.4 

Consider the lower triangular distance matrix D of the previous example. By 

merging the items 2 and 5, we obtain the same (2;5) cluster. The distance between 

this cluster and the three remaining items are: 



d(2;5)1 = max(d21 , d 51 ) = max(3.16, 2.23) = 3.16, 

d(2;5)3 = max(d23 , d 53 ) = max(4.12, 4.00) = 4.12, 

d(2;5)4 = max(d24 , d 54 ) = max(8.94, 8.54) = 8.94. 

Therefore, the following 4 x 4 lmver triangular distance matrix is obtained. 

(2;5) 1 3 4 

(2;5) 

1 3.16 
D4x4 = 

3 4.12 3.61 

4 8.94 7.07 5.00 
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We repeat this pro cess until aIl items are in the same cluster. Figure 3.3 illustrates 

the clustering process on a dendrogram. The merging pro cess is exactly the same 

as the previous example but the distances between successive clusters are different. 

N 

CJ 
N .lt'l 

FIG. 3.3. Dendrogram for the complete linkage example. 

This result is however not surprising because both single and complete linkage 

methods are invariant to monotonie transformations of the proximity measures 
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(Anderberg, 1973). This property describes the fact that the structure of a den

drogram do es not change when one uses either the former or the latter method. 

Johnson (1967) discusses this property. 

3.5.3. Average linkage 

Anderberg (1973) identifies two average linkage methods. The first method 

computes the distance of the items within the new cluster. The second method 

computes the distance of items between merged clusters. This section introduces 

the latter method only. Everitt (1980) caUs it the group average method. The 

reader interested by the first method can see Anderberg (1973). The distance 

between Rand Sis now given by the following expression: 

d 
. LrLsdrs 

(R)(S) = , 
nRnS 

where drs denotes the distance between the objects rand s. An example can 

make things clearer. 

Example 3.5 

Reconsider the lower triangular distance matrix D of the previous examples. We 

first merge the two most similar items, namely, 2 and 5. We again denote this 

new cluster (2;5). The distances between this cluster and the items 1, 3, and 5 

are: 

d = LiE{2,5} LjE{1} dij = 5.39 = 2 695 
(2;5)1 2 x 1 2·' 

d. = LiE{2,5} LjE{3} dij = 8.12 = 4 06 
(2,5)3 2 x 1 2· , 

d = LiE{2,5} LjE{4} dij = 17.48 = 8 74 
(2;5)4 2 x 1 2· , 

Those new distances allow the computation of a 4 x 4 lower triangular distance 

matrix. 
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(2;5) 1 3 4 

(2;5) 

1 2.695 
D 4x4 = 

3 4.06 3.61 

4 8.74 7.07 5.00 

Again, we repeat this pro cess until an items are in the same cluster. Figure 3.4 

illustrates the clustering pro cess on a dendrogram. The merging process is exactly 

the same as the previous examples. 

N 

FIG. 3.4. Dendrogram for the average linkage example. 

Jobson (1992) proposes to use the average linkage method when the data set 

contains extremes and outliers. He describes this method as less sensitive (more 

robust) to those observations than the single and complete linkage methods. 

3.5.4. Centroid method 

The centroid method is different from the previous three methods. U nlike 

the linkage methods, the centroid method computes the distance between two 

clusters using their centroids (or means). This pro cess is best explained by an 

example. 
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Example 3.6 

Consider the data set of Table 3.5. The three variables Xl, X 2 , X3 are ran

domly generated from three independent normal distributions with mean 0 and 

variance 1. 

TAB. 3.5. Data set for Example 3.6 

1 Observation 1 Xl 1 X2 1 X3 1 

1 0.19 1.11 0.22 
2 -0.43 -0.28 -1.05 
3 0.91 1.02 -0.29 
4 1.79 0.05 0.48 
5 1.00 1.58 -1.22 

The first step is to compute the distance matrix from the data set. It gives the 

following lower triangular matrix: 

1 2 3 4 5 

1 

2 1.98 

D 5x5 = 3 0.89 2.02 

4 1.94 2.72 1.52 

5 1.72 2.35 1.09 2.42 

Again, we select the two most similar items. Therefore, we merge the items 2 

and 3 to obtain the cluster (2;3). Unlike the linkage methods, we now consider a 

reduced data set as shown on Table 3.6. 

TAB. 3.6. Reduced data set for Example 3.6 

1 Observation 1 XII· X 2 1 X 3 1 

(2;3) 0.24 0.37 -0.67 
1 0.19 1.11 0.22 
4 1.79 0.05 0.48 
5 1.00 1.58 -1.22 
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Using this reduced data set, we obtain the following lower triangular distance 

matrix: 

(2;3) 1 4 5 

(2;3) 

1 1.16 
D4x4 = 

4 1.96 1.94 

5 1.53 1.72 2.42 

We repeat this pro cess until all items are in the same cluster. This pro cess gives 

the dendrogram of Figure 3.5. 

ID 
ci 

N 

FIG. 3.5. Dendrogram for the centroid method example. 

3.5.5. Ward's method 

Ward's method is neither a linkage method nor a centroid method. This 

method differs from previous methods because it does not use a dissimilarity 

matrix. Moreover, this well-known method uses the concept of sum of squares, 

not used previously. The first step of the Ward's algorithm is to compute the 

within sum of squares for all possible merges. Then, the two items that result in 

the smallest increase in the within sum of squares are merged. Then, the centroid 

of this new cluster is computed. This process is repeated until aIl observations 
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are in a single cluster. Note that an agglomerative method begins with N clusters 

of only one observation. Therefore, the initial within sum of squares is 0 for aIl 

clusters. Let us give an example. 

Example 3.7 

Consider the initial data set introduced in the previous example on the centroid 

method. First, we compute the within sum of squares associated with all possible 

merges. Since the data set contains five observations, we must compute 10 sums 

of squares. Table 3.7 gives those sums of squares. Note that the incremental 

within sum of squares equals the within sum of squares at the first iteration. 

TAB. 3.7. IncrementaI within sums of squares for Example 3.7 

1 Merge 1 IncrementaI sum of squares 1 

( 1 ; 2 ) 1.9647 
( 1 ; 3 ) 0.3933 
( 1 ; 4 ) 1.8756 
( 1 ; 5 ) 1.4753 
( 2 ; 3 ) 2.0316 
( 2 ; 4 ) 3.6891 
( 2 ; 5 ) 2.7667 
( 3 ; 4 ) 1.1541 
( 3 ; 5 ) 0.5933 
( 4 ; 5 ) 2.9275 

Among all sums of squares, merging the items 1 and 3 gives the smallest increase 

in the within sum of squares (0.3933). Again, we compute aIl possible within sums 

of squares and merge the two items with the smallest increase. This procedure 

is repeated until aIl items are in a single cluster. The dendrogram of Figure 3.6 

illustrates the complete clustering structure. 

3.5.6. Computational issues 

The previous examples use only a small volume of data. The computation of 

a dissimilarity matrix requires large resources when the data set contains thou

sands of observations and variables. To solve this problem, softwares usually 

compute the distances and sums of squares using the Lance-Williams recursive 
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FIG. 3.6. Dendrogram for the Ward's method example. 

formula (Lance and Williams, 1967): Note that Jambu and Lebeaux (1978) give a 

more general formulation a decade later. The Lance-vVilliams formula is however 

sufficient to generate the five hierarchical methods introduced in this chapter. 

Proposition 3.3. Let d(Ci , Cj) denote the distance between clusters Ci and Cj. 

Let ai, (3, and 'Y denote the parameters specifie to a method. The Lance- Williams 

formula is given by: 

This formula allows the construction of most agglomerative hierarchical clus

tering techniques by replacing each parameter by an appropriate value. For a 

complete list of them, the reader may refer to Gordon (1987). Table 3.8 shows 

the parameters needed to obtain the five methods introduced in this chapter 

(Everitt, 1980). In this table, ni denote the number of objects in the cluster Ci. 

There are other common agglomerative hierarchical clustering techniques like 

the vVard's method and those obtained by the general Lance-Williams formula. 

However, they will not be introduced in this thesis. The interested reader is 

referred to Everitt (1980) or to any textbooks on multivariate analysis. 

Hierarchical clustering techniques (agglomerative and divisive) are designed 

for the analysis of relatively small data sets because of their high requirements of 

computational resources. In insurance fraud detection, a cluster analysis has ta 

be performed on a large volume of data. Therefore, hierarchical techniques are 



TAB. 3.8. Parameters needed to compute aU five methods from the 
Lance-Williams formula. 

Method (3 

Single Link 1 1 0 -1 
"2 2 ""2 

Complete Link 1 1 0 1 
2" 2" 2" 

Average Link ~ --.!!:L 0 0 
ni+nj ni+n · 

Centroid Method ~ --.!!:L -CtiCtj 0 
ni+nj ni+n · 

Ward's Method n~+nj nk+ni -n& 0 nk+ni+nj nk+ni+nj nk+ni+nj 
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not appropriate for the purpose of the current project. Description of hierarchical 

techniques was nevertheless necessary since it is fundamental in any discussion 

on cluster analysis. 

There are three main advantages from using general hierarchical clustering 

techniques. First, it is a flexible tool about the level of granularity. In other 

words, clustering aUows analysis on a ch os en level of precision represented by the 

stopping criterion. Second, linkage methods provide an easy way to handle dif

ferent types of proximity measures. Thirdly, it is applicable to any type of data 

and/or variables. In the same clustering process, it is possible to consider both 

continuons and discrete data using appropriate proximity measures. Four short

comings are however worth noting. Difficult issues arise in choosing the number 

of clusters, that is, sorne effort must be made in determining a stopping crite

rion. In addition, hierarchical clustering techniques do not allow reassignment 

of elements. Once an object is allocated to a cluster, it is impossible to include 

it in a different cluster. Furthermore, hierarchical clustering algorithms are not 

robust in the sense that they do not handle outliers weIl. Finally, they are not 

appropriate when there is a large volume of data. 

As a solution to sorne of the previous drawbacks, in particular to deal with 

large data sets, many algorithms have been designed. Among them, the algo

rithms BIRCH (Zhang et al., 1996), CURE (Guha et al., 2001), ROCK (Guha 

et al., 2000), and Chameleon (Karypis et al., 1999) are widely used. Due to length 

restrictions, those algorithms are not covered here. 
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3.6. NONHIERARCHICAL CLUSTERING TECHNIQUES 

This section covers the second main type of clustering techniques. They are 

called nonhierarchical clustering techniques They are also called partitioning or 

optimization clustering techniques. The idea behind these techniques is the divi

sion of a data set into several subsets. 

All nonhierarchical clustering techniques share at least four properties. First, 

nonhierarchical clustering techniques are appropriate for clustering observations 

and not variables (Timm, 2002). Second, they may work with a fixed number k 

of clusters or may allow k to be determined during the clustering pro cess (Ander

berg, 1973). Third, nonhierarchical methods do not require the computation of a 

dissimilarity matrix making it possible to deal with a larger volume of data than 

hierarchical clustering techniques. In fact, the clustering is performed directly 

on the data matrix Y nxp. Finally, nonhierarchical clustering techniques allow 

the reassignment to a new cluster of an observation previously included into a 

different cluster. 

Nonhierarchical clustering techniques typically follow a five-step process (Timm, 

2002). 

(1) Selection of the initial k seed points or an initial partition of items in k 

groups. 

(2) Assignment of each observation to the nearest seed point. 

(3) Computation of the centroid of the cluster where the observation is added. 

(4) Reassignment of each observation to one of the k clusters. 

(5) Return to step 2 if there is no possible reassignment or a convergence 

criterion is attained. 

There is an impressive number of variants of this process. For example, some 

authors prefer to compute the centroids of the clusters after the assignment of 

each observation to a cluster. 

This section has the following structure. First, it introduces the k-means 

algorithm. Then, it gives possible alternatives to the original method as proposed 

by MacQueen (1967) and an example to show how this method may be applied 

to a data set. 
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3.6.1. k-Means algorithm 

The most common nonhierarchical clustering technique is called k-means algo

rithm (MacQueen, 1967). However, this is more a generic name for a wide range 

of algorithms than the name of a unique method. Moreover, different statistical 

softwares more than likely use different k-means algorithms. One must therefore 

give great care to this issue before using any statistical software for a cluster anal

ysis. This section introduces a modified instance of the original algorithm. On 

one hand, MacQueen (1967) proposes to calculate the centroids of a cluster each 

time an observation is added to it. On the other hand, the algorithm used in this 

Master's thesis computes the centroids once aIl assignments are made. Moreover, 

MacQueen (1967) proposes a single pass through the data set. In other words, 

the original algorithm exclu des the fifth step of the process. Before giving an ex

ample, this section discusses one possible way to adapt the original method, that 

is, through the selection of the initial seeds. Note that the Euclidean distance is 

used in this section. 

MacQueen (1967) proposes to select the first k observations of the data set to 

be the seeds. There are however many possible alternatives (Anderberg, 1973). 

The choice of the initial seeds is known to give very different results. A second 

approach is to randomly select k complete observations to be the initial seeds. A 

third approach is to select the first observation of the data set to be the initial 

seed. Then, one selects the second seed based on its distance with the first 

seed. If the distance between them is greater than a specified radius, then the 

former observation is now the second seed. The distances between the following 

observation and the previous two seeds are then computed. If both distances 

are greater than the radius, th en this observation is the third seed. Other seeds 

are selected the same way. This pro cess is repeated until the specified k seeds 

are chosen. It is also possible to perform seed replacement based on tests like 

hypotheses testing. 

To make things clear, let us summarize the steps of our modified k-means 

algorithm. First, we select k data points to be the initial seeds. The last chapter 

compares the three ways to select the initial seeds with a data set. We then assign 
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each observation to the closest seed based on the Euclidean distance. The new 

centroids are computed once all observations are assigned to a seed. Then, those 

centroids become themselves seeds for the next iteration of the algorithm. The 

algorithm is repeated until a convergence criterion is satisfied. The more common 

criterion is to compare the distances between each observation and its centroid 

to a fixed value of the within sum of squares (Timm, 2002). If the distances 

are aIl smaller than the fixed value, then we assume that convergence is reached. 

Anderberg (1973) gives main steps to prove that this k-means algorithm satisfies 

a convergence property. Fortunately, SAS®CLUSTER procedure has the ability 

to compute aIl previous variants of the k-means algorithm. An example of the 

application of this algorithm is introduced. 

Example 3.8 

Consider the data of Example 3.6. We assume k = 2 and that the observations 1 

and 3 are the initial seeds for clusters Rand 5, respectively. Then, we compute 

the distances between aIl remaining observations and the two centroids. Table 

3.9 gives those distances where dij is the difference between the observation i and 

the seed j. 

TAB. 3.9. Distances for Example .3.8 

1 Observation 1 d iR 1 diS 1 

2 3.93 4.06 
4 3.75 2.31 
5 2.95 1.19 

Next, we look for the smallest distances to assign the observations to either cluster 

R or 5. Therefore, the observation 2 is assigned to cluster R while the observations 

4 and 5 are assigned to cluster 5. vVe then compute the centroids for both clusters. 

Table 3.10 gives those new centroids. 

To see if this reassignment occurs, distances have to be computed again. The 

pro cess continues until there are no possible reassignments. 
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TAB. 3.10. New centroids for Example 3.8 

1 Cluster 1 Xl 1 X 2 1 X 3 1 

1 R 1-
0

.
12

1 0.
42

1-
0

.421 
S l.23 0.88 -0.34 

This section introduced the reader to nonhierarchical clustering techniques. 

It discussed the common k-rneans algorithm and potential alternatives. For in

stance, one may use different methods to select the initial seeds. One rnay also 

change when the reallocation is made in the process. 

3.7. CHOOSING THE NUMBER k OF CLUSTERS 

One of the most important issues in both hierarchical and nonhierarchical clus

tering techniques is the choice of the number k of clusters. This section introduces 

sorne methods to determine it. As expressed by Everitt (1980), it is important to 

note' that no completely satisfactory solution is available. This review is restricted 

to common criteria generated by the SAS®CLUSTER procedure. 

A first criterion is defined by the following expression: 

R2 _ SST - L:k SSWk 

k - SST ' 

where k is the number of clusters, SST is the total sum of squares, and SSWk is 

the within sum of squares for cluster Ck. This criterion is sirnilar to the coefficient 

of deterrnination found in regression analysis. For this reason, it is also denoted 

R%. Broadly, this criterion indicates the proportion of variance explained by the 

difference between the clusters. A high value of R% suggests better clusters than a 

low value. Sorne authors propose to choose the clusters that explain at least 70% 

of the total variance (SAS Institute Inc., 2004). Other authors propose to observe 

if there is a large decrease in R%. The reader should note the similarity between 

this last rule of thumb and the seree plot rnethod presented in the section on 

principal component analysis. A similar criterion is to take the expected value of 

the previous criterion under the null hypothesis of a single uniform cluster (SAS 

Institute Inc., 2004). Again, sorne authors propose the 70% rule of thumb and 

the seree plot method. 
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Another approach to determine k uses hypotheses testing. The principle is ex

actly the same as any t-test used to compare the means of two samples. However, 

it now compares the difference of two centroids to a critical value. Unlike the 

previous criteria, those methods need sorne assumptions, that is, the n p-vectors 

are assumed independent and normally distributed. When a data set does not 

satisfy the two assumptions, we calI them pseudo tests. 

A third criterion is given by the following statistic: 

d 
2 _ [SSWT - (SSWR + SSWs)](nR + ns - 2) 

pseu 0 t - SSWR + SSWs ' 

where SSWT is the within sum of squares of the new cluster CT, SSWR is the 

within sum of squares of cluster CR, and nR is the number of observations in 

cluster CR' One then compares this value to a Fisher distribution with p and 

p(nR + ns - 2) degrees of freedom (SAS Institute Inc., 2004). However, it is 

widely accepted that performing many t-tests to compare more than two means 

is inappropriate unless the a level is adjusted. One usually prefers to use the 

principles of the analysis of variable and the associated F-test. Therefore, a 

fourth criterion is given by the expression: 

(SST - L~=l SSWz)/(k - 1) 
pseudo Fk = (L~=l SSWl)/(n - k) , 

where k is the number of clusters, n is the total number of observations, SST is 

the total sum of squares, and SSWl is the within sum of squares for cluster Ck . 

This observed value is then compared to a Fisher distribution with p(k - 1) and 

p(n - k) degrees of freedom (SAS Institute Inc., 2004). 

We introduced in this section four criteria to choose a number of clusters. More 

precisely, we discussed the R% criterion along with its expectation value. We also 

discussed the common t-test and F-test statistics as alternatives to them. We 

finally explained why they are called pseudo criteria. 

3.8. PRINCIPAL COMPONENT ANALYSIS AND CLUSTER ANALYSIS 

The current project involves a large number of variables. It would surely be 

a good idea to reduce this number of variables before applying any clustering 
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analysis. The principal component analysis is selected for this purpose. There 

are however two issues to care about when using a principal component analysis 

before a cluster analysis, that is, scaling and weighting. 

First, Jobson (1992) indicates that a correlation matrix is usually more ap

propriate than a covariance matrix to a principal component analysis because of 

the scaling problem. It was also argued in a previous section that standardization 

needs to be performed prior to any cluster analysis when there are various scales 

of measurements. We gave an example between U.S. dollars and Yen. It would 

be redundant to do the same standardization twice. Jobson (1992) proposes to 

use the correlation matrix along with principal component analysis before any 

cluster analysis in most situations. However, if the proximity measure is of a 

correlation type, then the covariance matrix should be used instead, which also 

prevents redundancy. 

Furthermore, sorne variables may be highly correlated. This is a problem for a 

cluster analysis because a dimension (or a factor) may be given too much impor

tance. The use of a principal component analysis helps to reduce the dimension 

of a data set while preserving important information. However, as Jobson (1992) 

points out, using principal component analysis prior to a cluster analysis makes 

outliers less detectable by a cluster analysis. Therefore, special care has to be 

given to outliers when using both techniques. 

Most clustering techniques require the computation of a proximity matrix 

which can be either a similarity or a dissimilarity matrix. To obtain such a 

matrix, one needs to select a measure to quantify the distance between two ob

jects. Among those discussed in this chapter, the Euclidean and the Manhattan 

distances are commonly found in the literature. Each has its own advantages 

and disadvantages. There are two main types of clustering techniques. Hierar

chical techniques were first introduced with an emphasis on five agglomerative 

techniques. Then, nonhierarchical techniques were introduced whlle a particular 

emphasis was given to the k-means algorithm. Two important issues were then 

discussed at the end of the chapter, that is, the determination of the number 

of clusters and the relation between principal component analysis and cluster 
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analysis. By now, aIl theoretical notions have been described. The next chapter 

provides thè reader with the analysis of the TDMMG fraud data. 



Chapter 4 

STATISTICAL RESULTS 

This chapter presents, the results obtained using the various methods discussed 

previously. It first introduces the data set and sorne other basic issues. It then, 

discusses the reduction of the data set through a principal component analysis. 

The PRIDIT results are also described at that point. The chapter next introduces 

the dustering techniques results. Both agglomerative hierarchical and k-means 

techniques are extensively discussed. It ends with the presentation of sorne rec

ommendations for subsequent analyses. 

4.1. DATA 

The data set contains 38,043 observations on 63 variables. Each observation 

represents a daim received by TD Meloche Monnex Group (hereafter named 

TDMMG) between June lst, 2006 and May 10th, 2007. The data set therefore 

spans approximately a one-year period. More than one observation can identify 

the same daim. For instance, a daim with both corporal and material damages 

is entered in two observations. One observation represents the corporal damage 

part of the daim while the other represents the mate rial damage part of the daim. 

The reader is also aware that one policy usuaIly insures more than one driver. For 

example, a policy can insure aIl members of a family or both members of a couple. 

In those cases, we consider the driver appearing first on the policy contract as the 

main policyholder. AlI daims are dosed by the time of the extraction. AlI data 

are extracted from the three information systems (AS-400, datawarehouse, and 
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datastagging). Note that TDMMG do es not use the usual meaning of the word 

datawarehouse (Berry and Linoff, 2004). We use SAS@8.02 for most analyses. 

An important step in the data mining pro cess is the selection of the variables 

as introduced in the first chapter. The original data set contains more than sixt Y 

variables. Many variables are however irrelevant to data mining. The identifi

cation key variables are not useful in any data mining task. Furthermore, sorne 

variables in the data set. are redundant because they give the same information 

as other variables. AlI those variables are therefore exduded from the analyses. 

Sorne variables have values entered in a free format text. Due to time restriction, 

those variables are exduded from the analyses. Sorne variables are exduded from 

analyses because they are not valid or are sim ply irrelevant to the detection of 

fraud. Other variables are also exduded because they require time-consuming 

transformations. According to the literature and to a daim adjuster, the model 

of the vehide is relevant to the detection of fraud (Brockett et al., 2002). A code 

uniquely identifies each model in the data set. The large number of arbitrary 

codes makes however impossible the consideration of this variable in the project. 

The affinity group of a policyholder is àlso potentially relevant to the detection 

of fraud. The situation is similar to the previous variable with more than two 

thousands different unordered codes. 

The selection of variables reduces the data set from more than sixt Y variables 

to eighteen variables. Those selected variables may be grouped in four categories. 

First, the daim variables give information on the daim. The loss variables give 

information on the loss incurred by the policyholder. The policyholder variables 

give information on the main policyholder and its interaction with TDMMG. 

FinalIy, the vehide variables give information on the vehide associated with the 

daim. Table 4.1 lists the selected variables along with their definition. A sharp 

sign indicates a binary variable. 

A major advantage of this project over other similar academic projects is the 

availability of a daim adjuster throughout the project. His expertise provides 

dues to obtain better results. He identifies nine risk factors to car insurance 

fraud. According to his knowledge, a daim is more likely to be fraudulent when: 
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TAB. 4.l. Description of the selected variables 

1 Name 1 Description 

1 Claim variables 

Expenses 
Indicates the expenses incurred by TDMMG to 
manage the daim. 

Indemnity 
Indicates the indemnity given to the policy-
holder. 
Indicates the number of days between the first 

Opening time and the last financial transaction associated with 
the daim. 

Inforee policy 
Indicates the number of days between the effec-
tive date of the policy and the date of the loss. 

Time interval before report 
Indicates the number of days between the date 
of the loss and the date of the daim. 

Recovery Indicates the amount recovered by TDMMG. 

1 Loss varIables 

Catastrophe (#) Indicates if the loss occurred at the time of a 
catastrophe. 

Policyholder's liability 
Indicates the policyholder's liability (in %). The 
possible values are 0, 25, 50, 75, and 100%. 
Indicates the season wh en the loss occurred. The 

Season of the loss possible values are spring, summer, winter, and 
autumn. 

Time of the loss (#) 
Indicates if the loss occurred during either the 
night or the day . . 

1 Pohcyholder varIables 

Claim free 
Indicates the number of consecutive years with-
out any daim from the main policyholder. 

Client since 
Indicates the number of consecutive months the 
main policyholder is insured by TDMMG. 

Policyholder's age Indicates the main policyholder's age. 
Policyholder's gender (#) Indicates the main policyholder's gender. 

Indicates the socio-economic level of the main 
policyholder's residenee. The possible values 

Policyholder's residenee 
range between 100 and 900. A value of 100 in di-
cates a vicinity with a high socio-economic level. 
A value of 900 indicates a vicinity with a low 
socio-economic level. 

. 
1 Vehlcle varIables 

Age of the vehide Indicates the age of the vehide. 
Ownership (#) Indicates if the vehide is either rented or bought. 
Price of the vehide Indicates the priee of the vehide. 

(1) the associated loss occurs at night, 

(2) the associated loss occurs at the time of a catastrophic event, 



(3) the car is rented (in opposition to bought), 

(4) the policyholder's last daim was filed lately, 

(5) the associated loss occurs in the autumn, 

78 

(6) there is a large number of days between the date of the loss and the date 

it is reported to TDMMG, 

(7) the daim file is opened for a long time, 

(8) the daimant is a recently insured policyholder, 

(9) the car is expensive. 

This a priori information helps to interpret the results of the duster analyses 

and to identify potential fraudulent daims. That information is however based 

on his intuition and not on scientific facts. Therefore, we cannot blindly rely 

on that expertise. A good approach is to use this useful knowledge along with 

statistical methods. A challenge of this project would be to combine both sources 

of information. 

4.2. COVERAGES 

From Chapter 1, it is dear that the type of coverage has to be used as the 

grouping variable, that is, we have to divide the data set in smaller data sets based 

on that variable. In fact, there is great evidence that risk factors are different 

across coverages. For example, it is inappropriate to indude collision daims and 

third-party liability daims ln the same analysis because intuitively the risk factors 

are different. Table 4.2 presents the distribution of the daims by type of coverage. 

The reader is referred to the first chapter for a compl~te description of coverages 

offered to Ontarian policyholders. 

TAU. 4.2. Distribution of the daims by type of coverage 

1 Coverage 1 Frequency 1 Percent 1 

Collision 16,153 42.46 
TPL - Property damage 13,593 35.73 
Comprehensive 4,897 12.87 
Other 3,399 8.94 

1 Total 38,042 100.00 
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Table 4.2 indicates three major types of daims. Collision daims are the 

most frequent type with 16,153 daims (42%). Third-party liability for property 

damages are the second most frequent type of daim. The data set contains 13,593 

(38%) daims of this type. With 4,897 daims (13%), comprehensive coverages are 

the third type of daim in importance. The Other category contains the four 

remaining types of daims, that is, third-party liability for corporal damages, 

medical and disability coverages, and direct compensation. The reader is referred 

to Chapter 1 for a description of those coverages. We analyzed aIl types of daim 

but only collision daims are presented in this thesis. Collision daims also have 

the highest average severity. The average indemnity for a collision daim is $3,938 

while the average indemnity for aIl other daims is $3,568. The selection of this 

type of coverage is therefore justified. 

Table 4.3 presents main descriptive statistics for the collision daims (mean, 

standard deviation, first and third quartiles). From now on, we assume that those 

variables are continuous. Note that this table exdudes the four binary variables 

and the Season of the loss variable. A good approach to understand the data is to 

compare the mean on a variable with its standard deviation. On one hand, sorne 

variables have a standard deviation smaller than its mean. For instance, a vehide 

is, in average, 5.73 years old with a standard deviation of 3.57 years old. On the 

other hand, sorne variables have a standard deviation much larger than its mean. 

For example, the standard deviation of the time interval before report variable 

is more than three times larger than its mean. On other variables, the standard 

deviation may be similar to the mean. The important point here is to note the 

large differences between the standard deviations of the various variables. This 

observation willlater be important when discussing standardization. Tables 4.4, 

4.5, 4.6, 4.7, and 4.8 give the distribution of collisions daims based on the five 

discrete variables. 

4.3. PRINCIPAL COMPONENT ANALYSIS 

A principal component analysis (PCA) sometimes helps to reduce the number 

of variables in a data set. The second chapter covered the theory of this data 
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TAB. 4.3. Descriptive statistics for the 16,153 collision daims 

1 Variable 1 Mean 1 St. Dev. 1 QI Q3 
Age of the vehide (years) 5.73 3.57 3 8 
Claim free (years) 2.33 2.65 0 3 
Client since (years) 7.15 6.83 2 10 
Expenses $358 $324 $240 $277 
Indemnity $3,938 $5,019 $882 $5,247 
Opening time (days) 68.86 61.35 25 95 
Policyholder's age (years) 43.47 Il.94 34 51 
Policyholder's liability 39.9% 48.2% 0% 100% 
Policyholder's residence 565 259 344 786 
Price of the vehide $22,956 $14,606 $13,000 $30,700 
Recovery $102 $619 $0 $0 
Inforce policy (days) 175.4 lO5.5 83 266 
Time interval before report 

3.93 lO.62 0 3 
(days) 

TAB. 4.4. Distribution of the collision daims on Catastrophe variable 

1 Catastrophe 1 Frequency 1 Percent 1 

Not part of a catastrophe 16,136 99.89 
Part of a catastrophe 17 0.11 

1 Total 16,153 100.00 

TAB. -4.5. Distribution of the collision daims on Season of the loss variable 

1 Season of the loss 1 Frequency 1 Percent 1 

Spring 1,507 9.33 
Summer 4,973 30.79 
Autumn 4,909 30.39 
Winter 4,764 29.49 

1 Total 16,153 1 100.00 1 

TAB. 4.6. Distribution of the collision daims on Time of the loss variable 

1 Time of the loss 1 Frequency 1 Percent 1 

15,572 96.40 
581 3.60 

1 Total 16,153 100.00 

reduction technique. Briefly, a principal component is a linear combination of the 

original variables such that its variance is maximized. For sorne business reasons, 
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TAB. 4.7. Distribution of the collision claims on Gender variable 

1 Policyholder's gender 1 Frequency 1 Percent 1. 

1 Female 5,712 35.47 
Male 10,390 64.53 

1 Total 16,102 100.00 

TAB. 4.8. Distribution of the collision claims on Ownership variable 

1 Ownership 1 Frequency 1 Percent 1 

Bought car 12,717 
1 

78.73 
Rented car 3,436 

1 
21.27 

1 Total 16,153 1 100.00 1 

only nine of the 13 continuous variables and no discrete variables are included in 

the analysis. Table 4.9 lists the nine variables that are included in the PCA. 

TAB. 4.9. List of the variables included in the PCA analysis 

Inforee policy 
Time interval before report 

Policyholder's liability 
Claim free 

Client since 
Policyholder's age 

Policyholder's residence 
Age of the vehicle 

Priee of the vehicle 

The choice of an appropriate input matrix is a major consideration in a PCA. 

The previous section, which provided a description of the variables, indicates that 

there are large differences between the variances of the variables. The correlation 

matrix is therefore an appropriate choiee. We use the SAS@FACTOR procedure 

to perform the analysis. Table 4.10 presents the eigenvalues of the correlation 

matrix. 

An important point in a PCA is the selection of an appropriate number of 

principal components. As exposed in the second chapter, there are many rules of 

thllmb to de termine this number. A ~rst rule of thumb is to select the principal 

components with an eigenvalue larger than 1. This rule suggests the retention of 
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TAB. 4.10. Eigenvalues of the correlation matrix 

1 PC 1 Eigenvalue 1 Proportion 1 Cumulative 1 

1 2.0439 0.2271 0.2271 
2 1.6132 0.1792 0.4063 
3 1.0489 0.1165 0.5229 
4 1.0014 0.1113 0.6342 
5 0.9599 0.1067 0.7408 
6 0.7811 0.0868 0.8276 
7 0.7019 0.0780 0.9056 
8 0.4402 0.0489 0.9545 
9 0.4094 0.0455 1.0000 

four principal components. A second mIe uses a seree plot which is a graph of the 

eigenvalues versus the number of principal components. It is common to select 

the number of principal components that corresponds to an elbow in the plot. 

Figure 4.1 presents the seree plot for the collision daims. This seree plot suggests 

the retention of three principal components because an elbow occurs between the 

second and the third principal components. A third mIe of thumb is to select the 

principal components that explain 70% of variance. This last mIe suggests the 

retention of five principal components. Three mIes give three different solutions. 

The business context however suggests to use no more than two or three principal 

components. The retention of three principal components however explains only 

53% of the total variance. It is therefore inappropriate to use this technique with 

the data given by TDMMG. 

2·'1-~~,,"","";~-~'"----'-------------""""'" .,': .. 

Humber of pflncip,ol I:omponellts 

FIG. 4.1. Seree plot of the eigenvalues of the correlation matrix 
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The previous results indicate that a PCA is not useful to reduce the number 

of variables in our data set. While a PCA does not give satisfying results, the 

PRIDIT method actually gives interesting results. They are presented in the 

following section. 

4.4. PRINCIPAL COMPONENT ANALYSIS OF RIDIT 

Brockett et al. (2002) propose an innovative unsupervised method to detect 

potential fraudulent daims at the screening level of the daiming process. The 

second chapter provided an overview of this method while the current section 

presents the results. This method requires simple matrix operations. However, 

the Base SAS system does not have such capabilities. The SAS/IML module 

allows such mathematical operations but was not available by the time of this 

project. This section therefore presents results conducted with the open software 

R. 

The second chapter introduced the concept of RIDIT,which is a linear trans

formation performed on an ordinal variable in order to obtain an interval variable. 

More precisely, a RIDIT maps an ordinal variable into a [-1,1] scale. However, 

our data set mostly contains interval variables. To handle this issue, we discretize 

the interval "ariables into ordinal variables. We choose to discretize all interval 

variables into five-category variables such that all categories are of equallengths. 

This method however results in a 10s8 of information. Nevertheless, it allows us 

to use the RIDIT transformation in order to perform a PRIDIT analysis. 

In Chapter 2, we mentioned that the PRIDIT method requires input variables 

that have categories ranked in a decreasing likelihood of fraud. To have such 

a data set, we use the a priori information given by the daim adjuster. For 

example, the daim adjuster told us that fraudulent daims are more likely to 

occur in autumn but gave no precise information on the other seasons. Hence, 

we give the lowest value to the "Autumn" category. In addition, we group the 

three remaining seasons into a same category and give it the highest value. In 

this section, the Season of the loss variable is therefore binary. Unfortunately, we 

do not have such a priori information for all variables. The daim adjuster gave 
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us information on nine of them. Only those variables may therefore be included 

in a PRIDIT analysis. Table 4.11 gives the RIDIT values for the nine selected 

variables. 

TAB. 4.11. RIDIT values for the nine variables included in the 
PRIDIT analysis 

1 t 1 Variable 
1 Catastrophe -0.9989 0.0011 - - -

2 Season of the loss .,0.6961 0.3039 - - -

3 Time of the loss -0.9640 0.0360 - - -

4 Ownership -0.7873 0.2127 - - -
5 Claim free -0.3603 0.4620 0.7251 0.8558 0.9530 
6 Time interval before report -0.9998 -0.9989 -0.9962 -0.9875 0.0096 
7 Opening time -0.9883 -0.9396 -0.8244 -0.5028 0.3703 
8 Client since -0.2686 0.6338 0.8969 0.9944 0.9999 
9 Priee of the vehicle -0.9998 -0.9976 -0.9737 -0.6587 0.3172 

Using the RIDIT values, the PRIDIT algorithm gives the following vector 

after 10 iterations: 

(10) _ F'S(9) 
W - IIF'S(9)11 

-0.0005 

0.0722 

0.0046 

0.1175 

0.7804 

-0.0029 

0.1899 

0.5705 

-0.1018 

This vector is very interesting. The Claim free and Client since variables both 

have large positive values (0.7804 and 0.5705). Those two variables are therefore 

good indicators of fraud. In other words, a policyholder who have submitted its 

last claim a long time ago is not likely to submit a fraudulent claim. Moreover, a 

loyal policyholder is not likely to submit a fraudulent claim. Those results may 

seem obvious but they give credibility to the PRIDIT method to detect insurance 
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fraud. Other variables are not significant. For obvious reasons, the vector of 

suspicion scores 8(10) is not 'presented here. 

4.5. HIERARCHICAL CLUSTER ANALYSIS ON RELEVANT VARIABLES 

This section presents a comparative study of the various hierarchical clustering 

methods introduced in the third chapter. The large number of claims is however 

a major problem because aIl hierarchical methods require huge computational re

sources. AIl attempts to perform a single link method on most available resources 

was still running more than two hours after it started. A solution to this problem 

is to select a random sam pie of k claims. This option is appropriate because 

the data set shows no meaningful order of observations. We therefore randomly 

select a sam pie of 100 claims without replacement. The analyses include the nine 

continuous variables. However, they exclude the five discrete variables because 

their inclusion gives pOOl' results. In fact, our analyses show that using various 

types of variables is in efficient in the current context. We apply the transforma

tion ~~}in{Xlx} on the included variables. The traditional transformation X-JL max -rnln a 

gives poor results. We perform the analyses using the SAS®CLUSTER proce-

dure. Note that the analyses use a dissimilarity matrix of Euclidean distances. 

Although the analyses consider only 100 claims, a dendrogram is inappropriate 

due to the still large number of claims. 

There are many criteria to determine the number of clusters in a cluster 

analysis. The third chapter introduced four of them. Table 4.12 reports the 

number of clusters obtained by using those criteria along with the five hierarchical 

methods also introduced in Chapter 3. 

TAB. 4.12. Number of clusters chosen using the four criteria along 
with the five hierarchical methods 

1 Method 1 R2 
1 Expected R2 

1 F 1 t2 
1 

Single link 31 15 14 13 
Complete link 14 15 2 2 
Average link 17 15 3 2 
Centroid 21 15 5 4 
Ward 13 15 2 3 



86 

The second and third columns report the number of clusters chosen with the 

R2 statistic and the expected R2 statistic, respectively. The common way to use 

those statistics is to select the sm aller number of clusters that explains at least 

70% of the total variance. This rule gives a too large number of clusters for 

both statistics with values that range between 13 and 31. This rule is therefore 

, inappropriate for our data set. The fourth and fifth columns report the number of 

clusters chosen with the pseudo-F statistic and the pseudo-t2 statistic. A general 

rule for those statistics is to select the number of clusters that corresponds to a 

peak in the F and t2 values. This last rule suggests the existence of an average of 

three dusters. The existence of two and four dusters are also good assumptions. 

From now on, we assume the existence of four clusters. Note that this rule is 

inappropriate when using the single link method since this algorithm tends to 
\ 

truncate the tails of the distribution (see Timm (2002)). This is clearly the case 

with results of 13 and 14 clusters. Those results suggest the use of the pseudo

F statistic and the pseudo-t2 statistic to identify the number of clusters among 

collision daims. It also suggests the use of one of the three last methods (average 

link, centroid, and Ward) for clustering those daims. 

We still have not identified the best method to cluster the collision daims. To 

do so, we compare the solutions given by the clustering algorithms. We exclu de 

the single link algorithm because it gives poor results. Tables 4.13, 4.14, and 4.15 

report the number of claims by duster for the four methods under the assumptions 

of two, three, and four clusters, respectively. 

TAB. 4.13. Number of daims for the four methods un der the as
sumption of two clusters 

1 Cluster 1 Complete 1 Average 1 Centroid 1 Ward 1 

1 43 98 99 43 
2 57 2 1 57 

The complete link and Ward methods give identical results under the as

sumption of two dusters. They however provide different results under the other 



TAB. 4.14. Number of daims for the four methods under the as
sumption of three dusters 

1 Cluster 1 Complete 1 Average 1 Centroid 1 Ward 1 

1 20 43 98 43 
2 57 55 1 45 
3 23 2 1 12 

TAB. 4.15. Number of daims for the four methods under the as
sumption of four dusters 

1 Cluster 1 Complete 1 Average 1 Centroid 1 Ward 1 

1 20 41 95 18 
2 49 55 3 45 
3 23 2 1 25 
4 8 2 1 12 
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assumptions. Both methods have a high discriminative power because they cre

ate relatively large dusters. U nlike the previous methods, the average link algo

rit hm gives conservative results because it discriminates only the two most distant 

daims under the first assumption (two dusters). This method provides conser

vat ive results under the other assumptions with small dusters having as low as 

two daims. The centroid method also provides conservative results because it 

discriminates only the most different daims. This method discriminates only one 

daim under the assumption of two dusters, two daims under the assumption of 

three dusters and five daims under the last assumptioh. 

No method outperforms the other. The four methods can be ordered on a scale 

based on their discriminative power with the complete link being the most dis

criminative method and the centroid method being the most conservative method. 

The ideal method depends on the resources allocated to investigate the potential 

fraudulent daims. The centroid method should be used with small resources and 

the Ward's method when large resources are available. This business decision is 

up to TDMMG. 

It is interesting to note the hierarchicai structure of the results. For exam

pIe, the centroid method gives one duster containing 99 daims and another one 

containing one daim un der the assumption of two dusters. Therefore, this last 
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claim remains into a different cluster under the two other assumptions. In other 

words, when one observation is clustered into a different cluster, it will remains 

clustered whenever a larger number of clusters is assumed. This observation does 

not apply to the Ward's method. 

From now on, we assume the choice of the Ward's method and the existence 

of four clusters. A useful step is to compute descriptive statistics for each cluster. 

They are presented in Table 4.16 for the continuous variables. Tables 4.17, 4.18, 

4.19, and 4.20 presents the frequencies for four out of the five discrete variables. 

The random sample do es not contain any claim part of a catastrophie event. 

Although the discrete variables were excluded from the analyses, it is interesting 

to see their distributions. 

The most distant cluster is thecluster D. It is however not clear that this 

cluster actually contains the fraudulent claims. We can compare the descriptive 

statistics with the risk factors provided by the claim adjuster. The claim adjuster 

identified a high-valued car as a potential risk factor. The average price of the 

vehicles included into cluster D is clearly higher than the average priee in the 

other clusters. The claim adjuster also identified a large number of days between 

the date of the loss and the date it is reported as a risk factor. Cluster D contains 

claims reported in average five days after the loss, which is higher than the time 

interval for the other clusters. The results are unfortunately not all in concordance 

with the a priori information given by the claim adjuster. For instance, the claim 

adjuster identified a recently insured policyholder as a potential risk factor for 

fraud. The claims in the cluster D are submitted by a polieyholder insured for 

an average of 20 years while the other clusters have lower values on this variable. 

The same observation is also valid for the number of years without any claim for 

the policyholder. 

This section introduced the results obtained from the most common hierar

chieal clustering methods performed on a sample of 100 collision claims. The 

five covered methods were the single, complete, and average link methods, the 

centroid m~thod, and the Ward's method. We first compared four common rules 

to determine thenumber of clusters in the sample. On one hand, the results 
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TAB. 4.16. Average values for the four dusters using the Ward's method 

1 Variable· A B c D 

Age of the vehide 5.11 5.96 7.20 4.42 
Claim free 0.44 1.73 1.96 3.92 
Client since 2.94 5.27 7.52 20.0 
Expenses 371 339 473 432 
Indemnity 6,233 2,924 3,098 1,615 
Opening time 84.2 69.7 67.8 62.5 
Policyholder's age 35.3 41.9 48.9 56.2 
Policyholder's liability 100.0 1.1 100.0 4.2 
Policyholder's residence 820 601 384 364 
Priee of the vehide 19,192 22,795 20,091 38,485 
Recovery 122 0 76 0 
Inforce policy 188 161 142 187 
Time interval before report 2.22 2.78 4.00 5.00 

1 Number of observatIOns 18 45 25 12 

TAB. 4.17. Distribution of the collision daims on Season of the 
loss variable by dusters 

1 Season of the loss 1 A 1 Ble 1 D 1 Total 1 

Spring 3 3 3 1 10 
Summer 4 15 4 1 24 
Autumn 6 17 9 4 36 
Winter 5 10 9 6 30 

1 Total 118 1 45 1 25 112 1 100 1 

TAB. 4.18. Distribution of the collision daims on Time of the loss 
variable by dusters 

1 Time of the loss 1 A 1 Ble 1 D 1 Total 1 

94 
6 

1 Total 118 1 45 1 25 112 1 100 
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suggest the existence of two, three or four dusters. On the other hand, they sug

gest the use of a specifie method based on the available resources at TDMMG. If 

we assume that the most distant duster contains the fraudulent daims and the 

existence of four dusters, about 12 daims are potentially fraudulent. However, 

the results do not dearly indicate that those daims are fraudulent. Nevertheless, 

a particular attention has to be given to those cIaims. 



TAB. 4.19. Distribution of the collision daims on Gender variable 
by clusters 

1 Policyholder's gender 1 A 1 Ble 1 D 1 Total 1 
1 Female 

Male 
44 
55 

1 Total 118 1 44 1 25 112 1 99 

TAB. 4.20. Distribution of the collision claims on Ownership vari
able by clusters 

Bought car 
Rented car 

1 Total 

4.6. NONHIERARCHICAL CLUSTER ANALYSIS 
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The second main type of clustering methods is the nonhierarchical cluster 

analysis. Unlike hierarchical cluster analysis, those methods require a known 

number of clusters. In addition, they require less computational resources and 

reallocation of objects is now possible. The reader is referred to the previous 

chapter of this thesis for a discussion on the popular k-means algorithms. Both 

SAS@Enterprise Miner™(EM) and SAS@FASTCLUS procedure were used to 

generate nonhierarchical clusters. Since EM uses the FASTCLUS procedure to 

generate results, we have expected the same results with both softwares. Surpris

ingly, this is not the case. By the time of the project, documentation of what 

EM is actually doing was inaccessible and largely incomplete. In this section, 

we therefore briefiy introduce EM. We prefer to emphasize on the FASTCLUS 

procedure. 

EM is a software desigried to perform most data mining tasks. The reader is 

referred to the first chapter for a discussion on data mining. While the FAST

CLUS procedure may perform most nonhierarchical cluster analyses, the CLUS

TER node of EM provides additional capabilities. One interesting addition to 

the basic procedure is the option of selecting the initial seeds using the principal 

components. In addition, the CLUSTER node may automatically determine the 
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number of dusters. EM also gives the relative importance of the variables entered 

in CLUSTER node. However, the official documentation of EM gives no dues on 

this ambiguous concept of relative importance. 

As mentioned in Chapter 3, an important issue to consider with k-means 

algorithm is the selection of the initial seeds. A good approach is to compare 

results obtained from different methods of selecting those seeds. We compare 

the three methods introduced the previous chapter. We however do not consider 

seed replacement in this thesis. Table 4.21 gives the number of daims for each 

duster with the first two methods and the third method with different radius, 

that is, 0.75, 1, and 1.25. The table shows very different results. The best we 

can say in this project is that there is no meaningful order of observations in 

the data set. This makes therefore aU methods acceptable. We consider the 

simple random sampling method to be consistent with the previous section on 

hierarchical duster analysis where a sample of 100 daims was selected. Using 

the results on the hierarchical methods and the results obtained with EM, we 

assume the existence of four dusters. We standardize the values with the min

max normalization. As the previous duster analyses, we exdude the five discrete 

variables. 

TAB. 4.21. Number of daims for the four dusters using three meth
ods of selecting the initial seeds 

1 Methods A B c D 

First k complete daims 6,255 3,392 3,279 3,227 
Random sampling 2,967 3,473 5,123 4,590 
Radius (0.75) 3,035 4,581 5,000 3,537 
Radius (1) 6,255 3,615 4,614 1,669 
Radius (1.25) 3,473 5,124 4,589 2,967 

Table 4.22 gives the average values for the 13 continuous variables. It is 

interesting to compare this table with Table 4.16. We can see that the vVard's 

method and the k-means algorithm give largely different results. Those differences 

tell us that we actually need more information of a daim adjuster in order to 

darify the characteristics of a fraudulent daim. The effectiveness of any statistical 
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method depends on the quality of its interpretation. Unfortunately, we do not 

have sufficient information for an adequate interpretation. For Tables 4.23, 4.24, 

4.25, 4.26, and 4.27 give the distribution of the five dis crete variables by clusters. 

TAB. 4.22. Average values for the four clusters using the k-means algorithm 

1 Variable A B c D 

Age of the vehicle 6.00 5.90 5.61 5.55 
Claim free 2.35 2.38 1.49 3.23 
Client sinee 7.97 6.43 4.62 9.99 
Expenses 387 370 341 347 
Indemnity 4,715 4,619 3,457 3,458 
Opening time 70.8 70.7 68.7 66.3 
Policyholder's age 44.4 43.3 39.2 47.8 
Policyholder's liability 97.9 98.4 1.3 1.2 
Policyholder's residenee 548 579 773 338 
Price of the vehicle 22,388 21,967 21,048 26,201 
Recovery 147 144 59 87 
Inforce policy 275 88 178 175 
Time interval before report 4.15 4.68 3.29 3.93 

TAB. 4.23. Distribution of the collision claims on Catastrophe vari
able by clusters 

1 Catastrophe 

TAB. 4.24. Distribution of the collision claims on Season of the 
loss variable by clusters 

1 Season of the loss 1 A B C D 1 Total 1 

Spring 301 279 486 441 1,507 
Summer 884 1,011 1,658 1,420 4,973 
Autumn 846 1,054 1,615 1,394 4,909 
Winter 936 1,129 1,364 1,335 4,764 

1 Total 1 2,967 1 3,473 1 5,123 1 4,590 1 16,153 1 



TAB. 4.25. Distribution of the collision claims on Time of the loss 
variable by clusters 

TAB. 4.26. Distribution of the collision claims on Gender variable 
by clusters 

A B c 
Female 
Male 

1 Total 

TAB. 4.27. Distribution of the collision claims on Ownership vari
able by clusters 

A B c D 

1 Total 
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Cluster D is the most distant cluster using the Euclidean distance. However, 

there is no clear evidence that the claims belonging to the cluster D are actually 

fraudulent. For instance; claims of the cluster D are submitted by policyholders 

insured for an average of 10 years by TDMMG. Nevertheless, those results give 

an implicit segmentation of collision claims. Therefore, we expect them to be 

useful in sorne following statistical analyses. For example, it will be possible to 

select better samples for more precise statistical analyses of insurance fraud. 

4.7. NEXT STEPS ... 

In this project, we considered two broad categories of methods to obtain new 

knowledge on insurance fraud, that is,· methods based on the PCA and those 

based on the concept of cluster. The traditional PCA does not help to reduce the 

number of variables of the ~ata set provided by TDMMG. The PRIDIT method 

is however promising. Since the objective of this thesis was to explore and to 
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describe various methods to detect in surance fraud, a small portion of it was 

voluntarily devoted to the PRIDIT method. Our analysis show that the two 

variables Claim free and Client since are good indicators of a fraudulent claim. 

Further analyses should be performed on more potentially important indicators. 

The assumption that the most distant cluster contains the fraudulent claims 

is maybe too restrictive. Since we had no information on previous fraudulent 

claims, unsupervised methods were the only possible methods to use and they re

quire this assumption. TDMMG should therefore take the problem from another 

perspective. An interesting approach is to consider supervised methods instead 

of unsupervised methods. For example, TDMMG might select a sample of recent 

claims, depending on their resources, in order to create a data set that contains 

this variable. Logistic regression seems particularly interesting. 

This thesis covered four methods to detect fraudulent claims and most of the 

results were presented in this chapter. Main PCA results were first introduced. 

We find PCA not efficient to reduce the data set. In fact, it seems afterward 

that PCA is not an appropriate method when mining data. This conclusion is 

drawn from our experience with many of the TDMMG data sets. Second, we 

discussed the innovative PRIDIT method as proposed by Brockett et al. (2002). 

This method seems to be the best one to detect insurance fraud. The chapter 

then covered agglomerative hierarchical clustering results. More precisely, we 

studied the usefulness of those techniques to detect fraudulent claims. Those 

methods require large computational resources and may therefore prevent TD

MMG from using them. Fortunately, some algorithms are developed to deal with 

this problem. The BIRCH and the CURE algorithms are two algorithms that use 

the ideas of the hierarchical methods but that reduce the required computational 

time. TDMMG should consider using those algorithms. This chapter ended with 

the k-means algorithm and its corresponding results. We however do not have the 

actual expertise to assess the potential value of those clusters. TDMMG should 

consult different daim adjusters and other daim staff members for interpretation. 



CONCLUSION 

Let us recall what we have seen in this Master's thesis. The first chapter in

troduced the reader to the main issues of insurance fraud. We also discussed 

the car insurance regime in Ontario. We conduded this first chapter with an 

overview of data mining. The presentation of statistical concepts began with the 

second chapter. We first described the types of data framework used in this Mas

ter's thesis. We next introduced the concept of RIDIT, which is simply a linear 

transformation of ordinal variables. Before introducing the innovative PRIDIT 

method, we discussed principal component analysis in order to understand this 

method. The third chapter covered the vast field of clustering techniques. This 

chapter began with an explanation of how to measure the proximity between two 

objects. We then considered two major types of clustering techniques. On one 

hand, we explained main hierarchical clustering techniques. On the other hand, 

we discussed non-hierarchical clustering techniques. We concluded our chapter 

on cluster analysis with a discussion on the choice of an appropriate number of 

clusters. The last chapter presented the data set given by Meloche Monnex and 

the results obtained when performing the methods introduced in the second and 

third chapters. 

The main idea of this project was simple. Given a large data set of car 

insurance claims, is it possible to identify the fraudulent claims? However, we were 

facing an important problem since we had no information on previous fraudulent 

claims. We therefore choose an unsupervised method; which restrict largely the 

range of appropriate methods. Given a data set of claims, we first performed a 

principal component analysis to reduce the dimensionality of our data set. We 

then performed a PRIDIT analysis to identify the suspicious daims and the most 
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relevant variables. Vve finally used various clustering techniques to create clusters 

of fraudulent claims. 

This thesis provides quantitative results obtained by various statistical meth

ods. At first glance, the PRIDIT method seems to be a good option to detect 

fraudulent claims while the various clusters seem irrelevant to insurance fraud. It 

is maybe true but it may also be false. We tried to give to them the best interpre

tation we could. However, an in-depth interpretation of the results and clusters 

is beyond the scope of this thesis. In fact, we do not have the experience to do 

this. A claim adjuster should interpret the results. We frequently mentioned that 

in this thesis, but we feel it is not a sufficient but a necessary option to consider. . 

The main point is that any statistical method depends on the data set and 

there are unfortunately no magical algorithms. AlI statistical methods covered in 

this thesis showed to be efficient on examples and literature gives many examples 

of appropriate applications. By now, there is therefore no reason to discard those 

methods for subsequent analyses. 

From now on, there are two options to get better results. They are not mutu

ally exclusive but complementary to each other. The best is therefore to perform 

both options. First, TDMMG may continue with the unsupervised methods in

troduced in this thesis. The in-depth interpretation is necessary to precise the 

direction to take. Second, TDMMG may consider using a supervised method 

on a sample of claims already investigated. A logistic regression seems to be 

particularly interesting to us. 

FinalIy, we would like to point out that this project has been completed during 

a major restructuring of the activities of TDMMG. In other words, the priority 

given to this project has dramatically decreased near the end of the project. It 

largely explains why a reader may find that the results are incomplete. Never

theless, the results have, in practice, a great business value to TDMMG. 
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APPENDIX 

# By: Mathieu Poissant 
# Date: August 12th, 2008 
# This program computes the PRIDIT a~gorithm. 

# The data set is entered here. 
# V1 c(1,1,1,0,1,1,1,1,1,1/ 
# V2 = c(1,2,2,0,0,1,1,2,1,0J-
# V3 = c(3,3,3,1,2,3,0,3,1,2) 
# Data = cbind (V1, V2, V3) 

# Use this part if the data set is a de~imited fi~e. 

Data read.table(IPRIDIT.data", header=T) 

Data as.data.frame(Data) 
attach (Data) 

# Sets the number of iterations of the PRIDIT a~gorithm. 
nb.iterations = 10 

# Determine the number of categories for each variab~e. 

k = matrix(, nrow = ncol(Data), ncol = 1) 
foret in l:ncol(Data)) 
{ 

k[t] = length(unique(Data[,t])) 
} 

# Compute the RIDIT value for each category. 
B matrix (, nrow = max (k [t]), ncol = ncol (Data)) 
for (t in l:ncol(Data)) 
{ 

} 

for (i in O:k[t]-1) 
{ 

} 

B[i+l,t] = sum(Data[,t]<i)/length(Data[,t])-sum(Data 
[,t]>i)/length(Data[,t]) 

# Compute the F matrix. 
F = matrix(, nrow = nrow(Data), ncol ncol (Data)) 



for (t in l:ncol(Data)) 
{ 

} 

for Ci in 1:nrow(Data)) 
{ 

} 

Value = Data[i,t] 
F[i,t] = B[Value+1,t] 

# The PRIDIT algorithm. 
S matrix(,nrow = nrow(Data), ncol = 1) 
W matrix(1, nrow = ncol(Data), ncol = 1) 
S F %*% W # SO 

for (j in (1:nb.iterations)) 
{ 

} 

W (t(F)%*%S) / sqrt(sum«t(F)%*%S)-2)) 
S F %*% W 

detach(Data) 

li 


