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RÉSUMÉ 

Dans les cellules cardiaques, la fonction première des mitochondries est la 

production d'énergie, processus crucial pour la contraction et le bon fonctionnement du 

cœur. Dans des conditions physiopathologiques telles que l'ischémie et/ou le rejet des 

cœurs transplantés, l'analyse de l'état métabolique mitochondrial chez les patients ainsi que 

dans les modèles animaux permettrait donc de déceler les signes précoces de dysfonctions 

mitochondriales par conséquent de dysfonction cardiaque. Dans cette étude, nous 

examinons dans les myocytes cardiaques, la fluorescence endogène ou auto fluorescence 

(AF) du nicotinamide adénine dinuc1éotide (phosphate), ou NAD(P)H, le principal donneur 
~ 

d'électrons dans la respiration mitochondriale, responsable de la production d'ATP. Le 

NAD(P)H est étudié comme un marqueur non invasif pour sonder la fonction 

mitochondriale et ainsi leur état métabolique. Notre objectif est d'étudier l'état du 

métabolisme oxydatif des mitochondries dans les myocytes cardiaques isolés de rats adultes 

ou de patients pédiatriques ayant subi une transplantation cardiaque. Pour réaliser cette 

étude, nous utiliserons une nouvelle méthode de spectroscopie avec résolution temporelle, 

afin d'établir les spectres d'émission et les caractéristiques dynamiques du temps de vie des 

molécules NAD(P)H. La fluorescence de NAD(P)H a été enregistrée dans les myocytes 

suite à l'excitation par un laser UV pulsatile et les spectres ainsi que les durées de vie de 

fluorescence ont été enregistrés de manière simultanée. Nous avons évalué l'AF en fonction 

de la modulation de la production de NADH et/ou de la respiration mitochondriale. Nous 

avons comparé les conditions physiopathologiques, telles que l'ischémie et/ou les stades 

différents de rejet des cœurs transplantés dans le but de trouver de nouveaux outils 

permettant d'établir le diagnostic précoce de ces conditions et ainsi d'améliorer le pronostic 

de ces patients. 

Nos résultats montrent qu'un modèle de décomposition triexponentielle de durée de 

vie de fluorescence, notamment 0.4-0.7ns, 1.2-1.9ns et 8.0-13.Ons, a été nécessaire pour 

décrire la fluorescence de NAD(P)H dans les myocytes cardiaques dans la gamme spectrale 
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de 42û-56ûnm. L'augmentation de la production mitochondriale de NADH par des corps 

cétoniques a renforcée l'intensité de l'AF, sans pour autant induire un changement 

significatif de sa durée de vie. La roténone, l'inhibiteur du Complexe 1 de la chaîne 

respiratoire mitochondriale, a augmenté l'intensité de l'AF, tout en raccourcissant sa durée 

de vie moyenne. Le dinitrophénol (DNP), un agent découplant la phosphorylation 

oxydative des mitochondries a provoqué une diminution de l'intensité de l'AF et une 

augmentation de sa durée de vie moyenne. Ces effets, comparables à ceux induits par 

l'augmentation de la concentration de NADH et/ou de ses taux de déshydrogénation in 

vitro, ont été également examinés dans des conditions qui imitent l'ischémie. 

Cette étude est aussi la première à montrer les caractéristiques dynamiques de la 

fluorescence de NAD(P)H dans les cellules cardiaques humaines isoJées d'une biopsie 

endomyocardique des patients pédiatriques qui ont subi une transplantation cardiaque. La 

fluorescence endogène de NAD(P)H a été retrouvée significativement plus faible dans les 

cœurs humains par rapport à ceux des rats isolés dans les mêmes conditions. La roténone a 

augmenté l'intensité de fluorescence dans les cellules cardiaques humaines, les rendant 

ainsi comparables aux modèles expérimentaux chez le rat. Nous avons aussi observé une 

corrélation entre les changements de l'intensité de la fluorescence avec le stade de rejet des 
) 

cœurs transplantés. En effet, l'intensité de fluorescence a augmentée de manière 

significative en cas de rejet léger (RI), par comparaison au stade sans rejet (Rû). Ces 

résultats suggèrent que les cellules cardiaques humaines sont métaboliquement plus actives 

que celles des rats dans les mêmes conditions, alors que cette activité (par conséquent la 

production de l'ATP) semble baisser au cours de processus de rejet. 

La méthode spectrométrique avec la résolution temporelle représente un outil 

prometteur pour analyser le NAD(P)H mitochondrial des cardiomyocytes. Cette approche 

permettra d'améliorer les connaissances sur le métabolisme oxydatif et/ou son 

dysfonctionnement au niveau cellulaire. Il pourrait éventuellement constituer un nouvel 

outil diagnostique pour évaluer les changements métaboliques associés au rejet des cœurs 

transplantés. Dans le futur, cette approche pourrait se révéler utile pour la détection précoce 
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des cas bénins ou de rejet, notamment dans le cadre de résultats histologiques douteux, et 

donc dans la prise de décision pour débuter le traitement adéquat. Ainsi, ce travail pourrait 

donc avoir un impact direct sur la prise en charge des enfants avec des cœurs transplantés et 

qui risquent le rejet. 

Mots-clés: NAD(P)H, auto fluorescence (AF), spectroscopie avec résolution temporelle, 

mitochondrie, myocytes cardiaques, rejet des cœurs transplantés 
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ABSTRACT 

The primary function of cardiac mitochondria is the production of ATP to support 

rhythmic contraction of the heart. Examination of the mitochondrial redox state in patients 

and experimental animaIs is therefore crucially important to sensitively detect early signs of 

mitochondrial function in pathophysiological conditions, such as ischemia and/or the 

allograft rejection of heart transplantations, a major cause of death of transplanted patients. 

ln this study, we monitor cellular fluorescence of nicotinamide adenine dinuc1eotide 

(phosphate), or NAD(P)H, the principal electron donor in mitochondrial respiration 

responsible for vital ATP supply of cardiomyocytes. Here, NAD(P)H is studied as a marker 

for non-invasive fluorescent probing of the mitochondrial function. Our objects are to study 

fmgerprinting of mitochondrial metabolic oxidative state in living cardiomyocytes by 

spectrally-resolved time-correlated single photon counting (TCSPC) to report dynamic 

characteristics of NAD(P)H fluorescence decay in living rat cardiomyocytes, as well as in 

human cardiac cells from pediatric patients with transplanted hearts. NAD(P)H 

fluorescence is recorded in living cardiomyocytes following excitation by UV -pulsed laser 

diode and detection by spectrally-resolved TCSPC, based on the simultaneous 

measurement of the fluorescence spectra and fluorescence lifetimes. Modulation ofNADH 

production and/or mitochondrial respiration is tested and pathophysiological conditions are 

compared to search for new diagnostic tools for early detection ofrejection oftransplanted 

hearts and therefore to improve the prognosis in this population ofpatients. 

Our results show that at least a 3-exponential decay model, with 0.4-0.7ns, 1.2-1.9ns 

and 8.0-13.Ons lifetime pools is necessaryto describe cardiomyocyte autofluorescence (AF) 

within 420-56Onm spectral range. Increased mitochondrial NADH production by ketone 

bodies enhanced the fluorescence intensity, without significant change in fluorescent 

lifetimes. Rotenone, the inhibitor of Complex 1 of the mitochondrial respiratory chain, 

increased AF intensity and shortened the average fluorescence lifetime. Dinitrophenol 

(DNP), an uncoupling agent of the mitochondrial oxidative phosphorylation, lowered AF 
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intensity, broadened the spectral shoulder at 520 nm and increased the average fluorescence 

lifetime. These effects, comparable to the changes in the concentration and in the rate of 

dehydrogenation of NADHin vitro, were also examined under ischemia-mimetic 

conditions. 

Furthermore, we report for the fust time dynamic characteristics of NAD(P)H 

fluorescence decays in living human cardiac cells, isolated from one endomyocardial 

biopsies (EMB) of pediatric heart transplanted patients with different rejection grades. 

NAD(P)H fluorescence in human hearts was found significantly lower in comparison to rat 

. ones in same conditions. Rotenone increased the fluorescence intensity in human cardiac 

cells, making them more comparable to experimental rat model. We observed a correlation 

between changes in steady-state NAD(P)H fluorescence spectra and rejection grades, 

namely significantly increased fluorescence intensity in mild rejection (RI) vs. no rejection 

(RO). These results suggest that human cardiac cells are more metabolically active than the 

rat ones in the same conditions, while this activity (and thus ATP production) seems 

lowered during rejection pro cess. 

Spectrally-resolved fluorescence Iifetime technique provides promising new tool for 

analysis of mitochondrial NAD(P)H fluorescence in living cardiomyocytes. This approach 

will enhance our knowledge about cardiomyocyte oxidative metabolism and lor its 

dysfunction at a cellular Ievel. It Can eventually become a new diagnostic tool for 

evaluation of oxidative metabolism changes in transplanted hearts. In the future; this 

approach can prove helpful in the detection of early or mild cases of rejection, particularly 

in the case of doubtful histological results and hence in the decision-making for rapid 

initiation of the necessary treatment. It may therefore have a direct impact on the care of 

children with transplanted hearts that are at risk of rejection. 

Keywords: NAD(P)H, auto fluorescence (AF), spectrally-resolved fluorescence lifetimes, 

mitochondria, living cardiomyocyte, rejection ofheart transplantation. 
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1. INTRODUCTION 

1.2. Oxidative metabolism in cardiomyocyte mitochondria 

1.2.1. ATP generation for heart functional activities 

Life critically depends on the heart functional activities. The most important function 

of the heart is to pump blood to supply the body with oxygen and substrates. The heart 

increases its output to adapt to constantly changing demand of blood and energy through 

three major mechanisms: (1) the force-frequency relationship \ (2) the Frank-Starling 

mechanism 2, (3) and the sympathetic activation 3. In order to support myocardial 

contractile activity to adapt the varying workload, the heart requires a continuo us supply of 

energy, which tight coupling mechanisms are essential to maintain cellular pools of 

adenosine triphosphate (ATP), phosphocreatine (PCr) and' nicotinamide adenine 

dinuc1eotide (NADH). An energy-releasing process is the hydrolysis of ATP to adenosine 

diphosphate (ADP), when the ATP converts to ADP, it is usually immediately recycled in 

the mitochondria where it is recharged and cornes out again as ATP. Almost aIl (>95%) of 

ATP is produced in mitochondria, which take up ~30% of cellular volume and are located 

in close vicinity to the main sites of energy consumption, i.e., the myofilaments, the 

sarcoplasmic reticulum (SR) and t-tubules 4-7. Approximately 60-70% of ATP generation 

contribute to myocardial contractile, and remaining 30-40% is primarily used for the SR 

Ca2+-ATPase (SERCA) and other ion pumps 8,9. 

Cardiac contraction and relaxation are based on the process of excitation-contraction 

(EC) coupling 6, 10 which consumes vast amounts of energy (Fig. 1). Briefly, when a 

cardiomyocyte is depolarized during an action potential (AP), voltage-gated Na+-channels 

are activated and the inward Na+-current (INa) induces a rapid depolarization of the cell 

membrane, facilitating voltage-dependent opening ofL-type Ca2+-channels (Ica,L). The Ca2
+ 

influx triggers the opening ofthe ryanodine receptor (RyR2 subtype), inducing the release 
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Figure 1: Processes of excitation-contraction coupling and mitochondrial energetics. 

SR, sarcoplasmic reticulum; SERCA, SR Ca2+ AIPase; Mito, mitochondria; ICA, 

tricarboxylic acid cycle; RC, respiratory chain; Ô \If m, mitochondrial membrane potential; 

NCE, mitochondrial Na+/Ca2+-exchanger; NHE, mitochondrial Na+IH+-exchanger; NKA, 

sarcolemmal Na+IK+-ATPase; NCX, sarcolemmal Na+/Ca2+-exchanger; RyR2, ryanodine 

receptor type 2; mCU, mitochondrial Ca2+ -uniporter; INa and ICa, currents of voltage-gated 

Na+- or Ca2+-channels, respectively. (Adapted from Maack, C. et ali 



3 

of even greater amounts of Ca2+ from the SR, a process termed Ca2+ -induced Ca2+ -release 

(CICR). The increasing cytosolic Ca2+ binds to the myofilaments such as troponin C, and 

induces the contraction of the cardiomyocyte. Binding of Ca2+ to the troponin C induces a 

conformational change of troponin C with exposes the binding site of the actin filaments 

for myosin head, that are able to bind to the myosin ATPase located on the myosin head. 

This binding results in ATP hydrolysisthat supplies energy for a conformational change to 

occur in the actin-mY0sin cross bridge formation. The result of these changes is a 

movement ("ratcheting") between the myosin heads and the actin filaments, such that the 

actin and myosin filaments slide past each other thereby shortening the sarcomere length. 

Relaxation is initiated by the diffusion of Ca2+ from the myofilaments back to the cytosol, 

then Ca2+ actively being removed from cytosol. The main mechanisms removing Ca2+ from 

the cytosol are the SR Ca2+-ATPase, the sarc0 lemmal Na+/Ca2+-exchanger and the 

plasmalemmal Ca2+-ATPase (Fig. 1). The myosin ATPase of the contractile filaments, the 

SR Ca2+-ATPase, and the plasmalemmal Na+/K+-ATPase are the main cellular energy 

consumers in the process of EC coupling 5. The processes of excitation-contraction 

coupling and mitochondrial bioenergetics are highly interrelated, defects in EC coupling 

may directly translate into defects in mitochondrial bioenergetics in pathological situations, 

and may trigger altered supply ofthe respiratory chain with NADH. 

1.1.2. Substrates for cardiomyocyte metabolism 

In cardiomyocytes, to convert the potential energy in various metabolic substrates into 

ATP is the main function of mitochondria. These organelles are able to use a wide variety 

of circulating substrates, inc1uding fatty acids, glucose, lactate and ketone bodies. Under 

normal physiological conditions, fatty acids and glucose are main sources for intracellular 

ATP production, lactate and ketone bodies are used to a lesser extent Il, 12. The heart 

utilizes these highly reduced metabolic substrates to produce energy from electrons by 

dehydrogenation reactions. However, electrons from the fuel molecules are not directly 

transported to the final electron acceptor oxygen; instead substrates are oxidized into 

reduced forms of NADH and flavin adenine dinucleotides (F ADH2) as electron carriers. 
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Bach of these molecules contains two electrons, and will release energy upon oxidation. 

Metabolic substrat es convey reducing equivalents (NADH and F ADH2) to the 

mitochondrial respiratory chain via three interconnected pathways, (1) the fatty acid ~­

oxidation pathway, (2) the citric acid cycle (Krebs' cycle), which is also known as 

tricarboxylic acid cycle (TCA cycle), (3) and to a lesser extent from the pyruvate 

dehydrogenase reaction and glycolysis (Fig. 2) Il. Vnder physiological conditions, glucose 

is transformed to pyruvate, which enters mitochondria and is converted to acetyl-coenzyme 

A (CoA) by pyruvate dehydrogenase (POH). Fatty acids are activated to fatty acyl-CoA in 

the cytosol and transported into mitochondria via the carnitine-acyltranslocase. Acetyl-CoA 

from both decarboxylation of pyruvate and fatty acid ~-oxidation enters the citric acid 

cycle, resulting in the formation ofNADH and FADH2. In the well-perfused heart, 060-

90% of the acetyl-CoA cornes from ~-oxidation of fatty acids, white 10-40% cornes from 

the oxidation of pyruvate tOOt is derived in approximately equal amounts glycolysis and 

lactate oxidation Il, 13, 14. Acetyl-CoA metabolized through the citric acid cycle yields 3 

NADH, 1 FADH2, and 1 guanosine triphosphate (GTP) 15. The reducing equivalents 

(NADH and F ADH2) that are either generated by the dehydrogenases of glycolysis, the 

oxidation of lactate, pyruvate and fatty acid ~-oxidation, or the citric acid cycle, deliver 

electrons to the mitochondrial respiratory chain, resulting in ATP formation by oxidative 

phosphorylation. 

The regulation of the Krebs' cycle is largely determined by substrate availability, 

product inhibition and competitive feedback inhibition mechanisms. Fuel enters the Krebs' 

cycle primarily as acetyl-CoA. The generation of acetyl-CoA from fatty acid ~-oxidation 

and from pyruvate oxidation is, therefore, a major control-point of the Krebs' cycle. The 

rate of acetyl-CoA production in the heart is strictly coordinated with the rate of acetyl­

CoA utilization by Krebs' cycle. The reaction of the POH complex serves to interconnect 

the metabolic pathways of glycolysis, gluconeogenesis and fatty acid synthe sis to the 

Krebs' cycle. The POH activity is inhibited by NADH, acetyl-CoA and ATP, and activated 

bypyruvate, NAD+, non-acetylated CoA (CoASH), ADP, Ca2+ and Mg2+ 16-20. Regulation 



NADH, acctyl-CoA and A T~,.,,~~~ 
(inbibitors) 

ADP, ClIl-r and M:,:2+ 
C\timulator\) 

Ketone bodies (BHB/AcAc) 

5 

Octanoate 

Figure 2: Pathways and regulatory points of myocardial substrate metabolism. The 

reducing equivalents are produced primarily in the fatty acid ~-oxidation pathway, the citric 

acid cycle, and to a lesser extent from the pyruvate dehydrogenase reaction and glycolysis. 

CPT -l, carnitine palmitoyltransferase-1; FAT, fatty acid transporter/CD36; G 6-P, glucose 

6-phosphate; GLUT, glucose transporters; MCT, monocarboxylic acid transporters; PDH, 

pyruvate dehydrogenase; SR, sarcoplasmic reticulum; CoASH, non-acetylated CoA; BHB, 

~-hydroxybutyric; AcAc, acetoacetic. (Adapted from Stanley, W. C. et al. )11 
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ofthe flux and activity ofPDH are therefore detennined by alteration ofthe NADHlNAD+, 

acetyl-CoAiCoASH and ATP/ADP ratio. NADH ~d FADH2 produced from the acetyl­

CoA are strongly dependent on appropriate balance of fatty acids, carbohydrates and ketone 

bodies utilization. Pyruvate is one important metabolite. Under anaerobic conditions, 

pyruyate is fermented into lactate or alcohol to regenerate NAD+. Under aerobic conditions 

pyruvate is converted into acetyl-CoA by pyruvate dehydrogenase. Zhou et al. 21 studied 

myocardial substrate metabolism and showed that an elevation in arterial lactate 

concentration greatly increased the cytosolic NADH/NAD+ ratio but had a lesser effect on 

the mitochondrial NADH/NAD+ ratio. On the other hand, stimulation of diabetic conditions 

reduced pyruvate oxidation and the cytosolic NADH/NAD+ ratio but did not effect 

mitochondrial NADH/NAD+ ratio. The ratio of NADH/NAD+ in the mitochondria is 

comparatively stable. Octanoate is another crucial substrate. This medium chain fatty acid 

is not regulated by the camitylpalmitoyl transport system in cardiomyocytes 22-24, but is 

completely oxidized through the mitochondrial ~~oxidation and respiration pathways 25,26. 

It induces both, the NADH generation by the Krebs' cycle following dehydrogenation of 

octanoyl-CoA 27 and an uncoupling effect 28. Ketone bodies consist of the molecules ~­

hydroxybutyrate (BHB), acetoacetate (AcAc) and acetone, which are produced from fatty 

acids, the heart extracts and oxidizes ketone bodies in a concentration-dependent manner. 

The concentration ofketone bodies in the arterial plasma is normally very low, and a minor 

contribution of substrates for the myocardial metabolism. However, during starvation or 

poorly controlled diabetes, plasma ketone body concentrations are elevated, and become a 

major substrate for the myocardial metabolismll
, 17. BHB is oxidized into AcAc and NADH 

is produced dependently on the BHB/AcAc ratio 29. Oxidation of glucose and lactate are 

inhibited by elevated plasma ketone bodies 17, 30, e1evated rates of BHB and AcAC 

oxidation could inhibit fatty acids ~-oxidation by increasing the intramitochondrial 

NADH/NAD+ ratio 26,31. 
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" ..1.1.3. Structure and function of NAD(P)H molecule 
1 

Nicotinamide adenine dinucleotide phosphate (NADPH) and NADH (Fig. 3) are two 
,,' 

of the most important coenzymes in the cardiac cell. Both molecules are synthesized,from 

riic.ot~namide. NADH consists of two nucleotides joined by a pair of bridging phosphate 

groups, white NADPH is NADH with a third phosphate group attached to the hy'droxyl 

'group( -OH) on the position of 2' carbon in the ribose sugars. Because of the positive charge 

on the nitrog~n atom in the nicotinamide ring (upper right), the oxidized forms of these 

redox reagents are often depicted as NAD+ and NADP+ respectively. The contribution of 

°NADH and NADPH intrinsic fluorescence signal response to UV excitatioùare,much:i~ss 

clearly identified in living cell 32 (see also Appendix -1)33 when both c.oenzyineS are 
, . ' 

discussed, they are therefore referred to collectively as NAD(P)H. Each molecule ofNAD+ 

(or NADP+) can acquire two electrons to be reduced (equation 1); ho~€!vér,,:only one proton 

accompanies the reduction. The other proton produced as two hydrôgen: ~toms'afe removed 

. from the molecule which being oxidized and is liberated mto-the surr(jlm4i~g.in~dium. The 
l:", 

reaction is thus: 

NAD+ + 2H +2e-+-+ NADH + W (1) 
',- " 

Both coenzymes play crucial roles in most bioenergetic and biosynthetic processes as 

irltracellular carriers of reducing equivalents and participànts in both metabolic redox 

reaction, as weil as in cell signaling 34-36. NADH ana NADPH are distinct in their 

biochemical roles: NADH is employed to generate proton motive force that can drive the 
'-:. 

synthesis of ATP. NADPH is not used for ATP synthesis but its electrons provide the 

energy for certain biosynthesis reactions. Furthermore, NADPH is an important co-factor 

for several enzymes, sorne involved in antioxidant processes put in place to counteract the 

generation of reactive oxygen species (ROS) by oxidative respiration and/or oxidative 

stress 37. NADH is the predominant reduced pyridine nucleotide, and it has been found that, 

in isolated heart mitochondria, the concentration of NADH is greater than that of NADPH 

by a factor of - 10 38-41. The balance between the reduced and oxidized forms ofNAD(P)H 



H 0 H 11 
le ' C 
~ ' 11 _ + Nil 

O-C~H. 0 '1 
1 f H H 

O=P-O H H 

~ OH OH 

1 ~ 
O~P-û (N~~ 

1 NY 
O-~H •. o 1 

H H 
H 

OH OH~ 

ln NADP' this hydroxyl voup 
;8 es~rified with phOliphate. 

(a) 

Ade.nine 

_ 1. 
1 

Et A .ide 

NADH 

OT 

NADU 
(roduœd) 

H 

/ -' 

N 
1 
k B 9ide 

:0" 

!J. + 

H t ij H 
C C· li 

H ~ C H + 2 e' + W 
~ . 

H \ 
R 

8 

Figure 3: Structure of NAD (Pt and NAD(P)H molecules. Left, Oxidized form ofNAD+ 

(Ieft), reduced form of NADH (upper right), NAD PH is NADH with a third phosphate 

group attached at the bottom (lower left). Oxidation of NADH to NAD+ removes two 

electrons and hydrogen atoms from NADH (right lower), (Adapted from Biochemistry) 15 
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is called NAD(P)HlNAD(Pt ratio, which can be regarded as an indicator of cellular redox 

status. The NADP+ INADPH ratio is - 200 times lower than the NAD+ INADH ratio 42,43, 

these different ratios reflect the different metabolic roi es ofNADH and NAD PH. 

1.1.4. Mitochondrial respiratory chain 

As mentioned in previous section (1.1.2), energy sources such as glucose and fatty 

acids are initially metabolized in the cytoplasm, converted to acetyl-CoA in TCA cycle and 

the products of NADH and F ADH2 are then imported into rnitochondria. Electrons from 

these donors are passed through a series of redox reactions protein complexes called the 

electron transport chain (ETC) 4, 7, located in the rnitochondrial inner membrane, and are 

delivered to oxygen, forrning water. By definition, O2 consumption at the electron transport 

system is known as respiration; the protein complex that carry it out are known as the 

respiratory chain. Electrons from NADH and F ADH2 are transported via the respiratory 

chain as follows: 

NADH ---+ Complex 1 ---+ Q ---+ Complex III ---+ cytochrome C ---+ Complex IV ---+ 02 

i 
Complex II 

Complexes l, III and IV are proton pumps, while Q and cytochrome C are mobile electron 

carriers. Complex II is not a prot~n pump, it serves to funnel additional electrons into the 

qui none pool (Q) by removing electrons from succinate and transferring them (via F ADH2) 

to Q. The electron acceptor is molecular oxygen. The redox reactions catalyzed by 

Complex 1 and Complex III exist roughly at equilibrium. This means that these reactions 

are readily reversible, simply by increasing the concentration of the products relative to the 

concentration of the reactants (for example, by increasing the proton gradient). ATP 

synthase is also readily reversible. Thus ATP can be used to make a proton gradient, which 

in turn can be used to make NADH. 

In cardiomyocytes, the primary electron source for the mitochondrial respiratory 
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intermembrane space 

2 H+ 

matrix 

NADH + H· 

Figure 4: Complex 1 of the mitochondrial respiratory chain. Electrons and protons from 

NADH oxidation on their way from FMNH2 to UQH2 are translocated across the inner 

mitochondrial membrane, from the matrix to the intermembrane space in the Complex 1 of 

the mitochondrial respiratory chain. (Adapted from Biochemistry) 44 
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chain is the NADH, which accounts for 95% of ATP generation via dehydrogenation of 

NADH to NAD+ by Complex 1 of the mitochondrial respiratory chain 45,46. Binding of 

NADH to Complex 1 results in oxidation of NADH to NAD+, electrons and hydrogen 

atoms are removed from NADH, reducing flavin mononuc1eotide (FMN) to FMNH2 in one 

two-electron step (equations 2). The next electron carrier is a Fe-S cluster which can only 

accept one electron at a time to reduce the ferric ion into a ferrous ion. The electron then 

travels from the Fe-S c1uster to the oxidized a coenzyme Q (UQ) to give the free-radical 

(semiquinone) form ofUQH2 (equation 4), eventually the electrons flow through aH three 

on their way from FMNH2 to UQH2, involving the uptake of two protons as UQ is reduced 

to UQH2 due to the transferring of 2 electrons from the aforementioned iron-sulphur c1uster 

(Fig. 4). The equations of the reaction at Complex 1 as foHows: 

NADH + H+ + FMN => NAD+ + FMNH2 (2) 

FMNH2 => FMN + 2e- + 2W 

UQ + 2e-+ 2W => UQH2 

(3) 

(4) 

NADH feeds electrons into the respiratory chain at Complex l, and succinate enters via 

F ADH2 at Complex II (Figure 5). As the electrons are shuttled through the inner membrane 

to generate the flow of electrons (L\p) consisting of membrane potential (L\\jI) (negative 

inside), four protons (H+) are concomitantly translocated from the matrix to the 

intermembrane space located between the inner and outer mitochondrial membranes, 

establishing a proton gradient (L\pH) (alkaline inside), eventually constituting the proton 

motive force (L\/lH). The electrons that travel down the respiratory chain by sequential 

redox reactions at complexes I-IV are eventually transferred to 02 (Fig. 5), molecular 

oxygen is thereby reduced to water, and a large amount of stored energy is liberated for 

ATP synthesis when W gradient reduced across the mitochondrial inner membrane17
• 

Protons return down their gradient either via a proton leak (as is the case during uncoupling 

effect) or via the ATP synthase. At complex V(the F]Fo-ATPase) of the respiratory chain, 

proton motive force provides the free energy for the generation of ATP from ADP via 

oxidative phosphorylation 11,47. 
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Figure 5: Mitochondrial respiratory chain and its inhibition points. Rotenone, 

inhibition of NADH-CoQ reductase at Complex 1; Antimycin, inhibition of electron 

transfer from cytochrome b to cytochrome cl at Complex III; Cyanide, inhibition of 

cytochrome oxidase at Complex IV; Dinitrophenol (DNP) , Carbonyl cyanide m­

chlorophenyl hydrazone (CCCP) and Carbonylcyanide-p-trifluoromethoxy phenyl 

hydrazone (FCCP), both are uncoupling agents, uncoupling oxidative phosphorylation by 

carrying protons across the mitochondrial membrane, leading to a rapid consumption of 

energy without generation of ATP, hence stimulating NADH dehydrogenation. (Adapted 

from Biochemistry) 15. 
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Respiration 

inhibitor 

Respiration 

inhibitor 

Respiration 

inhibitor 

Uncoupling agent 

Uncoupling agent 

Phosphorylation 

inhibitor 

12 

Site of action Effects on oxidative phosphorylation 

NADH-CoQ reductase at Inhibition of NADH oxidation. NADH becomes reduced; substrates 

ComplexI such as succinate that enter via FADHz is still oxidized and make 2 

ATPs/mol. 

electron transfer from Ali intermediates before and in cluding cytochrome a will be in the 

cytochrome b to cytochrome reduced state; ail intermediates after and including cytochrome cl will 

cl at Complex III 

Cytochrome oxidase at 

ComplexIV. 

transmembrane Ir carrier at 

complexIV 

transmembrane Ir carrier at 

complexIV 

ADP phosphorylation at 

complex V 

be in the oxidized state. It therefore prevents the oxidation of both 

NADH and succinate. 

Blocks transfer of electrons to Oz, prevents both coupled and uncoupled 

respiration with aU substrates, including NADH and succinate. 

Disrupt the proton gradient by carrying protons across the membrane. 

This uncouples proton pumping from ATP synthesis. 

It uncouples oxidative phosphorylation by carrying protons across the 

mitochondrial membrane, leading to a rapid consumption of energy 

without generation of ATP. 

Inhibition of ADP phosphorylation. Does not inhibit uncoupled 

oxidations. 

Table 1: Inhibitors of oxidative phosphorylation 
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The described pathway of electron flow through the ETC, together with the unique 

properties of the proton motive force, have been determined using a number of drugs and 

toxins, which inhibit oxidative phosphorylation (Fig. 5 and Table 1) 48-51. Sorne of these 

agents are inhibitors of electron transport at specific sites in the ETC, while others stimulate 

electron transport by discharging the proton gradient. For example, Rotenone inhibits the 

transfer of electrons from Fe-S c1uster to UQ at the Complex 1. The oxidation of substrates 

that generate NADH pathway is, therefore, blocked. However, substrates thatare oxidized 

to generate FADH2 (such as succinate or a-glycerol phosphate) can still be oxidized and 

generate ATP. Furthermore, cyanide inhibit cytochrome oxidase at Complx IV, blocks both 

site ofNADH and FADH2 oxidation 49. On the other hand, 2,4-Dinitrophenol (DNP), an 

uncoupling agent, which can deplete the proton gradient and collapse the proton motive 

force leading to less efficient ATP synthe sis, thus stimulating NADH dehydrogenation by 

drive oxidative phosphorylation 50. 

1.1.5. Oxidative phosphorylation and ATP synthesis 

Oxidative phosphorylation is defmed as complex and multi-step pro cesses in which 

ATP is produced by an electron transport chain, using oxygen as the fmal electron acceptor 

(Fig. 5). As mentioned in section 1.1.4., cardiomyocyte mitochondria produce an electrical 

chemical gradient by accumulating hydrogen ions in the intermembrane space. This 

generates an electrochemical gradient, composed of membrane electrical potential and pH 

difference across the mitochondrial inner membrane, while creating a proton motive force, 

which will be used by the F1Fo-ATPase complex to make ATP via oxidative 

phosphorylation. The ETC and oxidative phosphorylation are coupled by a proton gradient 

across the inner mitochondrial membrane, as Dr. Peter D. Mitchell (Nobel Prize in 

Chemistry winner, 1978) described in his chemiosmotic coupling hypothesis 52-54. 

The F1Fo-ATPase located in the inner mitochondrial membrane uses the free energy 

charge provided by proton motive force to synthesize ATP from ADP and inorganic 

phosphate (Pi) in the matrix space. The Fo component of ATP synthase acts as an ion 
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channel for return of protons back to mitochondrial matrix. As their return, the free energy 

produced during the generation of the oxidized fonns ofNAD+ and FAD is released. This 

energy is used to drive ATP synthesis, catalyzed by the FI component of the complex 55. 

The Pi for phosphorylation is imported into the mitochondria by the phosphate translocator, 

and ATP is subsequently exported to the cytosol in exchange for ADP by the adenine 

nucleotide translocator. ATP synthase catalyses the following reaction: 

(5) 

Components of this remarkable enzyme rotate as a part of its catalytic mechanism. It 

acts as revolving doors, resembling a molecular water wheel that harnesses the flow of 

hydrogen ions in order to build ATP molecules 56. Each NADH molecule contributes to 

proton motive force to generate 2.5-3.0 ATP, while each F ADH2 molecule is worth 1.5-2.0 

ATP. Alltogether, when glucose is completely oxidized to C02 and H20 during cellular 

respiration, produced 10 NADH and 2 F ADH2 molecules theoretical yield of 36-38 ATP 

molecules (Table 2). However, such conditions are generally not achieved due to losses 

such as proton leakage across the membrane, cost of ATP for moving pyruvate, phosphate, 

and/or ADP into the mitochondria, resulting in reduced efficiency of the whole process 

with the maximum yields c10ser to 28-30 ATP molecules 15,57. 

1.1.6. Control of mitochondrial respiration and ATP syn~hesis 

Control of mitochondrial respiration and ATP synthesis allows the cell to adjust its 

energy metabolism to demands of cellular ATP-utilizing reactions that can fluctuate 

rapidly. Such demands inc1ude not only ATP production, but also various biosynthetic 

activities of mitochondria, regulation of cellular calcium levels, etc. The demand for ATP 

by various tissues is dependent on the specific task of each organ. Nevertheless, the 

stimulation of mitochondrial function is common in all tissues in the body. The heart can 

almost instantaneously modulate its rate of ATP production and oxygen consumption over 

at least a 5-fold range in response to different workloads with only relatively minor changes 

in the concentration of the various intermediates involved in the oxidative pathway 17,58. 

Control mechanisms responsib1e for matching energy supp1y with high energetic demands 
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remain controversial. There are no simple answers to question: ''what controls the pro cess 

of oxidative phosphorylation?" For decades biochemists have investigated enzymes with 

the view to determine binding constants for substrates, products and inhibitors, turnover 

rates, feed-back control, allosteric mechanisms and the relevant ligands, regulation of 

activity by protein modifications, etc. Ideas such as rate-limiting enzymes4 evolved, for 

example,. from assumption that NADH and 02 are present in abundance, through high 

levels of NADH in mitochondria are present in limiting amounts, to its activity being 

subject to feed-back mechanisms. Feedback inhibition of PDH and a-ketoglutarate 

dehydrogenase activity can shut down the Krebs' cycle, thus reducing NADH production. 

The cellular regulation of oxidative phosphorylation is a very complex pro cess control 

network, with numerous potential rate-limiting steps affected by a variety of signaling 

molecules, including ADP, Pi, PCr, Ca2+ and Mg2+ 59-63. Many studies observed that the 

level of energy-rich adenine intermediates can be remarkably constant as the metabolic rate 

changes 58, 59, 64. Several hypotheses have been put forward to explain the control of 

oxidative phosphorylation. The classical respiratory control hypothesis of Chance and 

Williams 65 implies that the rate of respiration is regulated by the availability of ADP to the 

FIFo-ATPase. The study has shown that the activation ofmitochondria by increased ADP is 

coupled with oxidation of NADH, resulting in decreased NADH levels in isolated 

mitochondria. Bose et al.63 have shown that oxidative phosphorylation is activated by Pi at 

three levels: (1) the generation of NADH, (2) the distribution of free energy throughout the 

cytochrome chain, (3) and as a substrate for ADP phosphorylation at the FIFo-ATPase. As a 

result, Pi is capable of increasing the ATP generation. However, a series of experiments in 

isolated rat hearts or instrumented dogs by Katz et al. 66 67 have shown enhanced cardiac 

workload that increased oxygen consumption, but without change in ADP, ATP, Pi or PCr. 

They concluded that respiration is regulated up-stream by the availability of electrons to the 

respiratory chain, i.e., the redox state ofNADHlNAD+, rather than ADP. 

Consequently, mitochondrial respiration and ATP synthesis are controlled by the 

mitochondrial NADH/NAD+ ratio, the phosphorylation potential, and the effectors of 
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cytochrome oxidase, such as pH or oxygen. ADP or Pi -dependent, as well as Ca2+_ 

dependent regulatory mechanisms are activation in parallel, adjusting ATP production 

from resting conditions to increased cardiac workload 5,21,58,60,63,64,68,69. Such parallel 

activation of the respiratory chain and mitochondrial dehydrogenases by either Ca2+ or Pi, 

together with very rapid response in the NADH production and oxidation process virtually 

eliminate transients in metabolite levels during changes in work 63, 69. ADP and Ca2+ are 

two principal regulatory factors. Since NADH production is activated by Ca2+ stimulation 

of the Krebs' cycle dehydrogenases (PDH, isocitrate- and a-ketoglutarate dehydrogenase), 

Ca2+ also activates the FIFo-ATPase 70,71. Changes in ATP/ ADP in the cytoplasmic and 

mitochondrial compartments mediate rapid changes in the mitochondrial NADHlNAD+ 

ratio to regulate oxidative phosphorylation, primarily reflecting the effects of Ca2+ on the 

rate of NADH production by Krebs' cycle. As a result Ca2+ rather than ADP regulate 

cellular respiration and ATP production. But any mechanism that increases the rate of 

NADH oxidation concomitantly activation ofNADH production. 

1.1. 7. Change in respiration and oxidative metabolism in pathophysiological 

conditions 

It is well known that cardiac mitochondrial dysfunction following mitochondrial 

respiration and/or oxidative metabolism disorder is involved in many pathophysiological 

conditions, such as ischemia, hypoxia, stroke, hypertension, diabetes, cardiomyopathy, 

heart failure, and in the myocardial apoptotic process 4,7, II, 13,31,34,36,37,72. Ischemia is 

described as an inadequate flow of blood and oxygen delivery to an organ, caused by 

constriction or blockage of the blood vessels supplying it. Insufficient blood supply causes 

tissue to become hypoxic, or anoxic (if no oxygen is supplied at all). This can cause tissue 

necrosis (i.e. cell death). In very aerobic tissues such as heart, over 90% of ATP fonnation 

cornes from oxidative phosphorylation, with remaining 10% being derived from glycolysis 

and GTP fonnation in nonnoxic conditions II. Hypoxia or ischemia are induced following 

reduction in coronary blood flow, and result in a series of detrimental biochemical reactions 
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in cardiac cells. After seconds to minutes of ischemia, lack of oxygen delivery to the 

respiratory chain blocks the Krebs' cycle. As aerobic ATP formation from oxidative 

phosphorylation are insufficient to support the energy demand for heart functional 

activities, the cell immediately switches to anaerobic metabolism, with the productiop. of 

anaerobic ATP and lactic acid by glycolysis, to maintain ATP levels. This leads to a lesser 

use of NADH by oxidative phosphorylation, hence accumulation of cytoplasmic NADH, 

and is accompanied by accumulation oflactate and W in the cell 72-74. 

Cell functions are gready disrupted by the decrease in pH and ATP. ATP-linked ion 

transport pumps fail, causing the cell depolarization, poor ion homeostasis, and Ca2
+ 

accumulation in the cell. Resulting excess of calcium entry overexcites cells and leads to 

generation of harmful chemicals, such as free radicals, reactive oxygen species (ROS) and 

stimulation of ca1cium-dependent enzyme, resulting in mitochondrial damage, myocardial 

apoptosis and necrosis 13,72. Many researchers have identified Complex 1 as a major site of 

damage to the respiratory chain in ischemia 75,76. They observed a reduction in oxidation 

rate for NADH-linked substrates by up to 60%, however, oxidation rates with succinate 

were unchanged, suggesting that damage was restricted ta Complex 1. Simultaneously, 

NADPH is involved in antioxidant pro cess put in place to counteract the generation of ROS 

by oxidative respiration and/or oxidative stress 37. 

Paradoxically, however, the major damage to ischemic cells cornes from the re­

introduction of oxygen (reperfusion). During reperfusion, the cells typically undergo 

further contraction (hypercontracture) and membrane damage, followed by cell death 77,78. 

It is widely acknowledged that ischemia and reperfusion lead to mitochondrial, as well as 

cellular damage in cardiac cells 79-81. Because of the high oxidative metabolism, cardiac 

cells have a high oxidative cap acity, demonstrated by their ultrastructure: 25-35% of total 

cardiomyocyte volume is occupied by mitochondria 82. Cardiomyocyte apoptosis has been 

identified as an early event during ischemia-reperfusion injury 83 84. NADH fluorescence 

has long been considéred as a tool to study cardiac ischemia 46,85 and NADH changes were 

proposed to play a crucial role in ischemia/reperfusion injury 86. The production of ROS, 
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such as superoxide, by Complex l of mitochondrial respiratory chain is a major cause of 

cellular oxidative stress and contribute to ischemia reperfusion injury 87-92. The 

NADHlNAD+ ratio determine the rate of superoxide formation 87,90,91. 

Based on what we know, the changes in mitochondrial respiration and oxidative 

metabolic state can also contribute to deterioration of the heart in specific cardiac 

pathologies, inc1uding the process ofrejection oftransplanted hearts. The allograft rejection 

is the most important cause of death of heart transplanted patients. Search for new 

diagnostic tools is therefore crucial· to insure its early detection and hence efficient 

prevention. Rejection ofheart transplantation inc1udes hyperacute rejection, acute rejection 

and chronic rejection. The risk ofrejection, highest in the frrst three post-operative months, 

decreases six month following transplantation mainly thanks to routine rejection 

surveillance and adequacy of immunosuppressive therapy. Acute rejection is defmed as 

lymphatic inflarnmatory infiltration with associated damage and/or necrosis of cardiaé ceUs 

93. Alteration of coronary vascular regulation during acute rejection may induce graft 

dysfunction and promo te the occurrence of coronary atherosc1erosis in transplant recipients 

94. Moreover, ischemia-reperfusion injury was also proposed to be an important 

alloantigen-independent factor 95 observed during cardiac rejection and leading to hypoxia 

of cardiomyocytes. After six months of transplantation, the main problems of the heart 

transplant recipients inc1udes acute allograft rejection, cardiac allograft vasculopathy and 

infections, which can occur at anytime in several years after the operation 93,96. In these 

conditions, the coronary arteries develop progressive and diffuse focal (scattered and spread 

out) narrowing throughout their entire length. Such type ofnarrowing is different from the 

fatty or caIcified plaque that typicalIy causes atherosc1erotic coronary artery disease, but 

can, as welI, result in nutrient and oxygen deprivation of the heart and lead to the failure of 

normal function of cardiac ceUs. For these reasons, in the presence of rejection, cardiac 

ceUs can be in a state of hypoxia or ischemia, and celI death with impaired rnitochondrial 

respiration and oxidative metabolic state. 
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1.2. NAD(P)H fluorescence in cardiomyocyte 

1.2.1. Physics of fluorescence 

In physics, fluorescence is an optical phenomenon describing the fact that absorption 

of a photon by certain molecules triggers the emission of another photon with a longer 

wavelength O.')' Such molecule is called fluorophore. The energy difference between the 

absorbed and emitted photons ends up as molecular vibrations or heat. As the emitted 

photon has always less energy than the excited one (Eem < Eex), in regard to the equation 6, 

the emitted wavelength is always longer than the eXcited wavelength O"em >Àex). Usually, 

when the absorbed photon is in the ultraviolet (UV) range, the emitted light is in the visible 
1 

range. Fluorescence occurs when a fluorophore molecule relaxes to its ground state (So) 

after being electronically excited (equation 7). When a fluorophore molecule absorbs a 

photon, it goes into its fust excited state (S1') from electronic ground state (So) (process 1 at 

Fig. 6), vibrational energy is lost thermally after excitation within pico seconds and the 

molecule drop to the ground vibrational state (S1) of the excited electronic state, the 

molecule then returns back to the level of So (equation 8) accompanied by the emission of 

the photon (process 3 at Fig. 6) and by converting the absorbed energy intemally (process 2 

at Fig. 6), or by transferring the energy to the environment after a short period ofthe order 

of nanoseconds (ns) (Fig. 6) 97. The process of fluorescence can be described following 

equations: 

- c 
Photon energy: E = h v = h­

Â 

Excitation: So + h v ~ S~ 

Emission: SI ~ So + h v 

(6) 

(7) 

(8) 

where hv is a generic term for photon energy where: h = Planck's constant and v = ~, is 
Â 

frequency of light, c is speed of light. State So is called the ground state of the fluorophore 

and S1' is an excited vitrarational state of the [Ifst (electronically) excited state (Fig. 6). 
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Figure 6: General scheme of the fluorescence process. Fluorophore absorbs a photon, 

which go es into an excited state (SI) from a ground state (Sa) (process 1). It can then return 

to the ground state either by the emission of the photon (process 3), by internai conversion 

(process 2), or by transferring the energy to the environment. hVEx, energy of the absorbed 

photon; hVEM, energy of the emitted photon. (Adapted from Subcellular Biochemistry) 97 
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When an ensemble of fluorophores are excited by a pulsed laser, their fluorescence 

returns to So state with a characteristic kinetics that can be defmed as an exponential decay 

(equation 9) and described by parameter of fluorescence lifetime, which therefore reflect 

the characteristic time that molecules spend in the excited state before emission of photon, 

which is specific for different molecular conformations. 

Fluorescence typically follows fust-order kinetics as: 

(9) 

where [Sd is· the concentration of excited molecules at time t, [Sl]O is the initial 

concentration and "'t" is the decay rate or the inverse ofthe fluorescence lifetime. 

1.2.2. Endogenous fluorescence of living cells 

Endogenous fluorescence means that the cells contain intrinsic fluorescent molecules, 

namely reduced NAD(P)H and/or oxidized flavins, which naturally emit fluorescence when 

excited by UV, or visible light. This intrinsic property of the cells is also called 

auto fluorescence (AF) to be distinguished from fluorescent signaIs obtained by adding 

exogenous probe. Bulk of endogenous fluorescence emitted after excitation with UV or 

visible light in living cardiomyocytes originates from NAD(P)H and/or flavins, about 80% 

of AF measured after UV light excitation that originates from NADH 98-103. Fluorescence 

spectroscopy has been proven to be a powerful tool with high sensitivity to study the 

distribution and function of biological endogenous fluorophores. Changes occurring in the 

cells and tissues during physiological and/or pathological processes result in modifications 

of the mitochondrial state, in combination with the amount and distribution of endogenous 

fluorophores and chemico-physical properties of their microenvironment. Therefore, 

analytical techniques based on AF monitoring can be applied in order to obtain information 

about physiological metabolic state of cells and tissues. Moreover, AF analysis can be 

performed in real-time because it does not require any treatment, fixing or staining of the 

specimens. As a results, in the past few years, numerous spectroscopic and imaging 
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techniques have been developed for different applications in both basic research and 

diagnostics 104. 

AF is not only characterized byemission spectrum, but also by characteristic lifetime, 

as discussed in the previous section 1.2.1 and equation 9. Fluorescent lifetime is 

particularly useful to distinguish fluorescence components of endogenous fluorophore 

mixture in cells, or to monitor changes of the same fluorophore in different environments. 

lndeed, distinct fluorescence components have often poorly distinguishable spectra but 

c1early distinguishable lifetimes 105 106. Besides, natural fluorophores have often several 

decay components in different molecular states and variable local environments may 

therefore change the lifetime of these states in a specific way. As a result, there can be 

several fluorophore components in the same part of a ceIl, a single component being 

quenched with non-uniform efficiency, or there can be quenched and unquenched 

molecules in the same part of the cell 107. Thus, in multi-compartment, complex systems 

(such as cells) the observed fluorescence is often described by multi-exponential decays, 

even if in in vitro conditions, the studied molecule is expected to have single-exponential 

characteristics. As a result, time-resolved fluorescence spectra give unique precise insight 

into the real behavior of fluorescing molecules. Moreover, the fluorescence lifetimes can 

also be a direct indicator of the energy transfer rate from the excited molecules to the local 

environment or to other fluorophores. An efficient energy transfer process is Forster 

resonant energy transfer (FRET). FRET occurs if' two different fluorophores are present 

with the emission band of one fluorophore overlapping the absorption band of the other; the 

donor fluorophore is able to transfer its excited-state energy to the acceptor fluorophorelOS
-

\12. When the energy is transferred, the actual fluorescence lifetime is less than in the 

natural state. Taking in consideration that in cell, endogenous fluorescence reflects their 

metabolic states, multi-parametric AF assays could, therefore, pro vide rapid and non· 

invasive measurement ofthe metabolic state directly in living cells. 
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1.2.3. Spectral characteristics ofNAD(P)H fluorescence 

Since the disco very of optical properties ofNADH early in the 1950s 65,113,114, a lot of 

research has been carried out in organs, such as the liver, heart, brain, and kidneys, from 

animal m~dels to human studies 115. The pioneering work of Chance and collaborators 65, 

113 1ed to development and establishment of unique measurement technology and 

theoretical conceptualization of mitochondrial function based on NADH redox state 

monitoring in vitro as well as in vivo. Endogenous fluorescence of NADH, induced 

following excitation with the UV light, has long been used for non-invasive fluorescent 

probing of oxidative phosphorylation changes 46 and has been an extremely use fuI tool for 

monitoring of energy metabolism in heart 116. The absorption and fluorescence spectra of 

NAD(P)H have been well characterized at different levels of organization, namely, in 

solutions 117, 118, in the mitochondria 65,116,119, in the cell suspensions 38, in the surface of 

intact blood perfused myocardium 103,120,40, and in the organs in vitro and in vivo 41,117,119, 

121-124. According to these results, the spectra of this molecule in most tissues are 

considered the same, although there are sorne small changes in the shape and maxima of 

the spectra in different environments andmeasurement conditions 125. In the heart, the 

intrinsic NAD(P)H fluorophore absorbs UV light at 320-380nm and emits a broad-band 

blue fluorescence at 420-480nm range. Spectra analysis showed that there is a ~ 20nm 

blue-shift for the protein-bound coenzyme (400-460nm) in cells 38,103,119. AF intensity is 

proportional to the concentration of mitochondrial NAD(P)H; an increase in the 

fluorescence intensity indicates a more reduced state of NAD(P)H and of the rest of the 

mitochondrial ETC 115. After donation of electrons to the ETC, the oxidized 

NAD(Pt molecule does not absorb or emit significant fluorescence at these wavelengths 

range. 

In living cardiac cells, the fluorescence signaIs from cytosolic and mitochondrial 

NAD(P)H can not be distinguished. However, previous biochemical studies have estimated 

that the blue fluorescence observed in the heart originates predominantly from NAD(P)H in 

mitochondria, but with a negligible contribution of cytoplasm 38,41,120. NADH is expected 
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to have as much as a four-fold greater fluorescence yield than NADPH in isolated heart 

mitochondria, at least 80% of the AF is essentially considered from NADH alone 38,39, 116, 

126-128. Besides, the fluorescence profile of NADPH is practically indistinguishable from 

that of NADH 32, 33. As there is no photophysical means to discriminate NADH from 

NADPH in living cells, we defined AF measured following UV excitation as that of 

NAD(P)H, a combined effect of both nuc1eotides. 

Estimation ofNAD(P)H concentration and their redox ratio in the tissues, whole cells 

andJor its subcellular compartments is rather complicated, depending on the species, tissue 

(brain, heart, liver etc.), enzymatic pathways involved, calculation chosen, as well as patho­

physiological. Condition in rat liver, the total amount of NADH is approximately IJlnlol 

per gram ofwet weight, about 10 times the concentration ofNADPH in the same cells 129. 

The actual concentration of NADH in cell cytosol is harder to measure, with recent 

estimates in animal cells of about 0.3mmol/L 130, 131. Over 80% of NADH corresponds to 

molecules bound to proteins, the concentration of free NADH in cell therefore is much 

lower 132. Data for other compartments in the cells are limited: one study showed that in the 

mitochondrion, the concentration of NADH is similar to that in the cytosol 130. Since the 

NADH cannot diffuse across membranes, it is carried into the mitochondrion by a specific 

membrane transport protein133
• Other study identified NADH concentration ranging from 1-

100JlnlolIL in mitochondria isolated from rat liver 126. A measurement of NADHlNAD+ 

ratio that reflects both the metabolic activities and the pathophysiological state of cells 134. 

The effects of the NADHlNAD+ ratio are complex, controling the activity of several key 

enzymes, including glyceraldehyde 3-phosphate dehydrogenase and pyruvate 

dehydrogenase 43. In healthy mammalian tissues, estimates of the NAD+/NADH ratio range 

from 0.05 (rat he art) to 4 (mice liver) 43,134,135. In contrast, the NADP+/NADPH ratio is 

normally about 0.005, around 200 times lower than the NAD+/NADH ratio, indicating that 

NADPH is the dominant form ofthis coenzyme in cells 42, 134. 

Endogenous flavins are also significant contributor to cellular AF 99,102, which emits 

AF at maximum 520nm, but after excitation with visible light (450-488nm). F AD is almost 
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exc1usively bound, as F AD-dependent dehydrogenase enzymes use a system of molecules 

(electron transport flavoprotein (ETF) and ETF dehydrogenase) to transport hydrogen 

atorns to Cornplex II of the respiratory chain. Flavins are involved in oxidation-reduction 

reactions with NAD(P)H. Both reduced NADH and oxidized F AD are significantly 

fluorescent molecules in cardiomyocyte rnitochondria and these two signaIs respond 

oppositely to changes in mitochondrial metabolic state. The redox state of its F AD cofactor 

is in direct equilibrium with the rnitochondrial NADHlNAD+ pool, as indicated by the 

sirnplified reaction mechanism below: 

LipDH (F ADH2) + NAD+ ~ LipDH (F AD) + NADH + H+ (10) 

1.2.4. NAD(P)H fluorescence Iifetime pools in mitochondria 

In heart tissue, a substantial fraction of the cellular NAD(P)HlNAD(Pt pool (about 

75% in cardiomyocytes) is compartmentalized within the rnitochondria 136,36. Mitochondrial 

NADH levels and NADHINAD+ ratio were described to be much higher than NADPH ones 

and, therefore, the fluorescence signal in cells is considered to be essentially resulting from 

mitochondrial NADH 38, 39, 116, 126-128. The NAD(P)HlNAD(Pt ratio reflects the balance 

between oxidative and reductive processes within the rnitochondria: oxidation ofNAD(p)H 

is leading to reduced rnitochondrial NAD(p)HINAD(Pt ratio. The total NAD(P)H pool in 

the matrix is constant due to its compartmentation in the matrix. Physiological 

perturbations are usually due to changes in the NAD(p)HlNAD(Pt ratio rather than 

changes in the total concentration of either [NAD(P)H] or [NAD(Ptl 

The blue AF is dependent on the rnitochondriai redox state, on the conformation of 

molecule, and on the environrnent of the coenzyme 40, Fluorescence lifetime is specific for 

different moiecular conformations and is also sensitive to interactions of the fluorescing 

molecule with its surroundings. It can therefore he used as a sensitive probe to detect 

NAD(P)H binding. NAD(P)H binds to protein cofactors resulting in enhancement of 

fluorescence decay time and/or aiteration of the maximal emission wavelength 40, 132. 

Furthermore, NAD(P)H fluorescence lifetirne was shown to be strongly dependent on the 

microenvironrnent 45,103.127, spanning from 0.3-0.5 ns in distilled water to 3-8 ns in viscous 
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and non-polar solutions 137. The pronounced dependence of NAD(P)H fluorescence on 

microenvironment leads to multi-exponential fluorescence decay kinetics in most solvents, 

due to the effect of dynamic quenching related to the formation ofnon-fluorescent transient 

species from the frrst excited state 137, 138. In addition, NAD(P)H forms complexes with 

several enzymes, which makes the interpretation of the NAD(P)H signaIs from intact 

tissues particularly difficult in living cells. Thus, any change in molecular conformation, 

binding to surrounding molecules and/or change of chemical compartments results in 

modification ?f1ifetimes ofthe observed multi-component fluorescence decays. 

Previous studies confirmed the existence of different pools of NADH ID the 

mitochondrial matrix, which are distinguished by based on their characteristic fluorescence 

lifetimes 126,132,139. To evaluate the contribution of different compartments to the overall 

cellular NAD(P)H fluorescence signaIs, a number of methodologies have been used, 

inc1uding spectra analysis 38,140,45,128, microimaging 38,141,142, and fluorescence lifetime 

measurement 126,139. Out of all ofthese methods, the fluorescence lifetime pro vides the best 

quantitative measurement to distinguish between different NAD(P)H fluorescence pools. 

The steady-state kinetics ofNADH fluorescence study by Blinova et al. 132 identified three 

pools of NADH fluorescence in isolated porcine heart intact mitochondria: a pool with a 

short lifetime of 0.4 ns, this component was consistent with free NADH, the intermediate 

(1.8 ns) and a long (5.7 ns) lifetime pools have a blue-shifted emission spectra, proposed to 

result from protein binding ofNADH. The intermediate and long lifetime pools make up 0 

35% of the total NADH contributing to almost 80% of the fluorescence emission. The 

steady-state kinetics for the NADH interaction with these sites results in an essentially 

linear relationship between NADH fluorescence and matrix [NADH]. The relative size of 

these pools also suggested that the majority of the steady-state fluorescence collected is 

dominated by the immobilized pool, due to the bound form ofNADH, which contributes to 

major fluorescence emission 139. As a general approach, most authors used 2- to 4-

exponential decay models to de scribe the NADH fluorescence kinetics in mitochondria or 

in cells, ascribing different lifetime pools to bound forms of NADH in subcellular 
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compartments. Vishwasrao used a 4-exponential decay model to question the rotational 

mobility offree vs~ bound NADH populations in neuronal tissues 40, two short lifetime pool 

have been referred to free fonn of NADH, other two pools have been used to de scribe 

bound fonns ofNADH. 

1.2.5. Latest experimental approaches for monitoring cellular autofluorescence 

Recently, promising new fluorescence techniques have been implemented m 

combination with light microscopy for biological research, such as spectrally-resoived and 

time-resolved fluorescence microscopy with either single-photon or two-photon excitation 

99, 143, 144. while spectrally-resolved confocal microscopy is used together fluorescence 

spectra images 99, time-resolved microscopy is also capable of identifying fluorescence 

lifetimes 143-145. The advantages of two-photon microscopy are deep and continuous 

imaging oflive cells for several minutes with no effect on cell viability or function. 

The advanced time-correlated single photon counting (TCSPC) is used to study 

fluorescence lifetime characteristics 146. This technique is based on the detection of single 

photons of a periodical light signaL The measurement of the detection times of the 

individual photons allows reconstruction of the wavefonn from the individual time 

measurements 147. The spectrally-resolved fluorescence lifetime detection technique was 

already achieved on the basis of multi-dimensional TCSPC, with either single-photon or 

two-photon excitation 106,107,148. This approach allows fast and reproducible measurement 

of complex patterns of spectrally and time-resolved fluorescence decay directly in living 

cardiac cells. It provides a promising tool with necessary' sensitivity to detect the low­

intensity intrinsic fluorescence signaIs, as weIl as the temporal and spectral resolution that 

can lead to identification of the individual fluorescence components in living cardiac cells. 

This technique, in combinat ion of 2-photon confocal microscopy, allows spectral and 

fluorescence lifetimes to be resolved 106, 108, 148. However, this approach requires high 

fluorescent yield from studied fluorophores. Classic TCSPC has been recently improved to 

multi-detector TCSPC 106. This more advanced technology is an expansion of classic 

TCSPC for operation with several detectors. The photons of aIl detectors are combined into 
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a common timing pulse line. Simultaneously, a detector number signal is generated that 

indicates in which of the detectors a particular photon was detected. The combined photon 

pulses are sent through the normal time-measurement procedure of the TCSPC device. The 

detector numbers are used· as a channel (or routing) signal for multi-dimensional TCSPC, 

routing the photons from the individual detectors into different waveform memory sections. 

Multi-detector TCSPC can be used to simultaneously obtain time- and wavelength 

resolution, or record photons from different locations of a sample. 

1.3. Aim of present stndy 

The aim of our study is to apply spectrally-resolved TCSPC to simultaneously measure 

NAD(P)H fluorescence spectra and lifetimes in living cardiac cells. Presently, there is a 

lack of precise knowledge of NAD(P)H fluorescence kinetic properties in intact living 

cardiomyocytes and their sensitivity to changes following metabolic modulation by 

TCSPC. Our aim is therefore to evaluate the feasibility and advantages of this new 

approach, to achieve efficient fingerprinting of metabolic oxidative state and its changes in 

pathophysiological state at the level of living cardiomyocytes, as well as early and sensitive 

detection of changes in cardiomyocytes mitochondrial metabolic oxidative state relevant to 

pathophysiological conditions. To achieve this goal, we propose 

1. To study the dynamic characteristics of NADH fluorescence including concentration­

dependence of NADH fluorescence decay kinetics, pH-dependence of NADH 

fluorescence decay kinetics, and changes of NADH fluorescence decay kinetics 

following binding ofNADH to its enzymes such as LipDH in v,ifro. 
( 

2. To determine kinetics of NAD(P)H fluorescence with spectral and temporal 

characteristics directly in rat living left ventricular cardiomyocytes, an ideal model to 

study the heart metabolic modification. More specifically, NAD(P)H fingerprinting by 

spectrally-resolved lifetime spectroscopy will be investigated together withchanges of 

the AF intensity and its lifetimes following the modulation of NAD(P)H production 
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and/or the respiratory chain, wbich may reflect the early and subtle change of 

mitochondrial dysfunction. 

3. To examine effects of NAD(P)H fluorescence decay kinetics ID ischemia-mimetic 

conditions studied in rat living cardiomyocytes. 

4. To investigate possible applications of spectrally-resolved TCSPC technique to study 

NAD(P)H fluorescence in human living cardiomyocytes obtained from one additional 

biopsy samples of pediatrie heart transplant patients. Endomyocardial biopsy (EMB) 

with cardiac catheterization is currently accepted as the "gold standard" for the 

diagnosis of rejection 149. Using tbis method, an international grading system has been 

established for cardiac allograft rejection by International Society for Heart and Lung 

transplantation (ISHLT) 93, 150 However, this approach does not always have the 

sufficient sensitivity to detect mild cases of the rejection at their early stages. 

Application of latest fluorescence technique therefore represents a new method with 

bigher sensitivity for early detection of cardiac allograft rejection is a new challenge, at 

the present state oflack ofrelevant knowledge and reports in this area. As mentioned in 

the section 1.1.7., cardiac cells can be in a state of hypoxia or ischemia following 

rejection oftransplanted heart, suggesting possible changes in mitochondrial respiration 

and oxidative metabolic state. We will therefore employ AF and examine spectral and 

lifetime NAD(P)H kinetics in human cells, which will be compared 1) to rat cardiac 

cells isolated in same conditions, 2) and with different rejection grades. In this way will 

be able to test our hypothesis: metabolic oxidative state changes in mitochondria occur 

at different level of the cardiac allograft rejection. 

5. Complementary analytical approaches, namely decay-associated spectra (DAS) and the 

time-resolved emission spectra (TRES), will be tested to precisely separate individual 

components of NAD (P)H related to specifie conformational state. 
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2. MATE RIAL AND METHODS 

2.1. Material 

2.1.1. Isolation of left ventricular myocytes from rat hearts 

The work was done on living cardiac cells, isolated from 13-14 week old adult 

Sprague-Dawley female rats (Charles River, St. Constant, Qc, Canada). Rats were 

sacrificed by decapitation. All procedures were performed in accordance with the Canadian 

Council on Animal Care (CCAC) guidelines and were evaluated by the local committee, 

"Comité Institutionnel des Bonnes Pratiques sur les Animaux en Recherche" (CIBP AR), 

accredited by the CCAC. 

Left ventricular myocytes were isolated following retro grade perfusion of the heart 

with proteo lytic enzymes by Langendorff instrumentation 82, 99. Briefly, the heart was 

removed from body and c1eared of blood 'by perfusion with Hepes-buffered physiological 

salt solution containing 0.75mmollL CaCh (see 2.1.3. for description of solution). This was 

followed by 5min perfusion with Ca2+-free Hepes-buffered physiological salt solution 

containing O.lmmoVL EGTA and then with the enzyme solution containing 0.5mg/ml 

collagenase type II (Worthington) and 0.03mg/ml protease type XXIV (Sigma) in 50~moVL 

of CaCh. The left ventric1e was dissected free, sliced into smaller fragments and agitated in 

the enzyme solution supplemented with 1.0% bovine serum albumin (BSA, Sigma). 

Aliquots of myocytes were harvested at 5-min intervals by filtration of the digest through 

250~m mono filament nylon c10th followed by gentle centrifugation of the filtrate (100 x g 

for 2min). The pellets of myocytes were re-suspended in enzyme-free isolation solution 

containing 0.75mmoVL CaCh. Cardiomyocytes were maintained in a storage solution at 

4°C until used. Only cells that showed c1early defmed striations (Fig. 7 A) were used in up 

to 10 hours following isolation. 

Fragments of cardiac tissues were also used to isolate ventricular myocytes by the 

same approach as described for human myocytes (see 2.1.2. for the description of isolation 

and Fig. 7B for examination of isolated cell). 
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A B 

Figure 7: Transmission images of living cardiomyocytes. A: Cardiomyocytes isolated 

from left ventricular of rats by Langendorff instrumentation, B: cardiomyocyte isolated 

from fragments of rat cardiac tissues by the same approach as described for human 

myocytes (Isolation Approch 1), C: cardiomyocyte isolated from an additional EMB of 

pediatrie heart transplanted patients by Isolation Approach l, D: cardiomyocyte isolated 

from an additional EMB of pediatrie heart transplanted patients by Isolation Approach II. 

Illuminated spot corresponds to defocused laser illumination. 
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2.1.2. Isolation of eardiomyoeytes from endomyoeardial biopsies of pediatrie heart 

transplanted patients 

Pediatrie heart transplanted patients for 2 to 12 years, aged from several months to 18 

years (mean age of 10 years) has been chosen in the present studies. AlI procedures were 

performed in accordance with Institutional Ethical Committee. Parental consent was 

obtained from subjects aged 2-12 years. Additionally, informed consent was obtained from 

older children who could understand the nature of the procedure. Cardiomyocytes were 

isolated from one additional biopsy sample of pediatrie heart transplanted patients (when 

biopsy was performed because of clinical suspicion of rejection) at Cardiac Sciences 

Service of CHU Sainte-Justine during the regular rejection surveillance, cardiac tissue was 

taken from the right ventricle using cardiac catheterization, performed by pediatrie 

cardiologist (Dahdah D., Poirier N. and Miro J., Department of Pediatries Cardiac Sciences 

Service, CHU Sainte-Justine, Université de Montréal). Isolated cardiomyocytes were used 

within 2-5 hours after isolation. 

To achieve appropriate isolation of cardiomyocytes from human biopsies, the isolation 

method has been tested and finally performed in two ways using different solutions. First, 

we have used Isolation Approach 1; cardiac cells were isolated using a procedure adapted 

from Guinamard et al. 151. Briefly, one biopsy sample weighting 1 to 5 mg, bulk of 1 to 2 

mm3 piece, was taken from right ventricle of patient, then promptly immersed into the 

isolation solution A (Krebs buffer, see section 2.1.3.) under oxygenation with 5% CO2 and 

95% 02 (using a portable device) and taken to the lab (in the same building), where the 

tissue was washed and finely minced with a scalpel. Cardiomyocytes were then isolated by 

enzymatic digestion with collagenase Type V (Sigma) and protease type XXIV (Sigma). 

Tissue was digested by 4IU/ml protease and 160IU/ml collagenase for 15min. A further 

two to four 10 min steps in the presence of 320IU/ml collagenase alone were then 

performed. The cell suspension was filtered with 250llm pore size and centrifuged for 2 

minutes at 100 x g. The pellet were gradually rinsed and resuspended in solution A. AlI 

processes were done in the presence of 30mmolIL 2,3-butanedione monoxime (BDM) and 
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in the absence of calcium in order to prevent aU contractions. Isolated cardiac cells were 

identified by their rod-like shape and c1ear cross-striations (Fig. 7C). 

Second, we have applied Isolation Approach II, the method adapted from Peeters et 

a.l152
• This approach was comparable to Isolation Approch I, but the solution was modified 

to the solution B (Tyrode solution, see section 2.1.3.). Furtherrnore, the fust digestion was 

perforrned with 3IU/ml protease type XXIV alone for 15min, while the second digestion 

was perforrned with 1.5IU/ml protease type XXIV and 0.5mglml (200IU/ml) coHagenase 

type V for 10min. The pro cess of digestion was done in the presence of 50!lmollL of 

calcium. A further three 6min steps were perforrned in the presence of 1.0mglml 

(400IU/ml) collagenase type V alone. 30rnrnollL ofBDM was present the whole pro cess to 

prevent aH contraction ofcells. An example ofisolated cell is at Fig. 7D. 

2.1.3. Solutions 

1. The isolation and storage solution (Hepes-buffered physiological salt solution) for rat 

cardiomyocytes isolation contained (in rnrnol/L): NaCl, 130.0; KCI, 5.4; MgCh.6H20, 

1.4; NaH2P04, 0.4; creatine, 10.0; taurine, 20.0; glucose, 10.0; and HEPES, 10.0; 

titrated to pH 7.30 with NaOH. 

2. Basic external solution for study of cardiomyocyte AF contained (in mmollL): NaCl, 

140;0; KCl, 5.4; CaCh, 2.0; MgCh, 1.0; glucose, 10.0; HEPES, 10.0; adjusted to pH 

7.35 with NaOH. 

3. Basic intracellular solution for study of free NADH fluorescence in vitro contained (in 

rnrnol/L): KCI, 140.0; NaCI, 10; glucose, 10.0; HEPES, 10.0; adjusted to pH 5.40, 7.25 

or 9.80 with NaOH. 

4. Ischemia-mimetic solution contained (in rnrnol/L): NaCl, 135.0; KCl, 8.0; MgCh.6H20, 

0.5; CaCh, 1.8; NaH2P04, 0.33; Na+-Iactate, 20.0; HEPES, 5.0; titrated to pH 6.8 with 

NaOH and deoxygeI).ated with 100% N2 for 5 min. 

5. Two solutions for isolation ofhuman cardiac cells: 
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(1) Isolation solution A (Krebs buffer) contained (in mmoIlL): NaCl, 35.0; KCl, 7.7; 

Na2HP04, 16; NaHC03, 25; KH2P04, 1.2; sucrose, 134.0; glucose, 10.0; and HEPES, 

10.0; titrated to pH 7.30 with NaOH. 

(2) Isolation solution B (Tyrode solution) contained (in mmoIlL): NaCl, 120; KCl, 5.0; 

Na2HP04, 5.0; KH2P04, 0.5; MgCh, 0.5; taurine, 20.0; sodium pyruvate, 5.0; 

glucose, 20.0; and HEPES, 10.0; titrated to pH 7.25 with NaOH. 

2.1.4. Reagents 

1. In vitro reagents: NADH, NADPH and lipoamide dehydrogenase (LipDH) (from 

porcine) were purchased from Sigma-Aldrich (Canada) and used as such without 

further purification. NADH was added to basic internaI solution in concentrations 

ranging from 1 to 40)lmoIlL, while LipDH was added to this solution in the 

concentration of 1 to 2 IU/)lL, and NADPH was used at 20)lmoIlL, respectively. 

2. Modulators of AF in living cardiac cells: 1 )lmollL of Rotenone, 4mmol/L of cyanide 

and 50 IlmollL of 9,10-dinitrophenol (DNP) were added to cells in basic external 

solution for 5-25 min prior recording. 3mmollL of 3-~-hydroxybutyrate (BHB) and 100 

)lmollL of pyruvate were prepared freshly, while 150)lmol/L or 1.5mmollL of 

acetoacetate (AcAc) was added from 250mmollL stock solution. 1mmollL of Lactate 

and 1mmollL of Octanoate were each added to the basic external solution from the 

100mmollL stock-solution, where pH was carefully adjusted to 7.25 82. 9,10-

diphenylanthracene (DPA) was studied at 1O-8mo1lL in ethanol (stock solution at 10-2 

mollI in cyc10 hexane ), while 1, l' -diethyl-2,2' -carbocyanine iodide (DCI) was used at 

10-4mo1lL in ethanol. 30mmollL of 2,3-butanedione monoxime (BDM) was used in 

human cardiomyocytes isolation. All chemicals were from Sigma-Aldrich (Canada), 

except DP A, which was from Fluka (Canada). 
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2.2. Methods 

2.2.1. Confocal microscopy 

Confocai microscopy is an opticai irnaging technique used to increase micrograph 

contrast and/or to reconstruct three-dimensional images by using a spatial pinhole to 

eliminate out-of-focus light or flare in specimens that are thicker than the focal plane 153. 

Only the light within the focal plane can be detected, the image quality is therefore much 

better than that ofwide-field images. In laser-scanning confocal microscopy only one point 

is illuminated at a time so that, 2D or 3D imaging requires scanning over a regular raster 

(i.e. a rectangular pattern of parallei scanning lines) in the specimen. The thickness of the 

focal plane in confocal microscopy is detined mostly by the wavelength of light, index of 

refraction and confocal pinhole diameter, and is inversely proportional to the square of the 

numerical aperture ofthe objective lens. In the present study, images ofNAD(P)H AF were 

taken by confocallaser scanning head LSM-51 0 Meta on Axiovert 200 inverted microscope 

(both Zeiss, Canada) and recorded with a PlanNeofluar 63x /1.3 oil objective, using tunable 

femtosecond oscillator (Coherent Chameleon) at 777 nm excitation (two-photon 

excitation), HFT KP 700/488 dichroic filter and 435-485 nm spectral range for emission 

detection. To avoid alteration of the AF spectral shape by photobleaching, spectral data 

were always recorded from the tirst scan of each ce Il. 

2.2.2. Spectrally-resolved time-correlated single photon counting 

TCSPC is based on the detection of single photons of fluorescence, excited by a 

periodicallight signal. The measurement of the time delay between excitation and detection 

of the individual photons allows reconstruction of the waveform from the individual time 

measurements 147. The principle of the c1assic TCSPC is ~hown in Fig: 8. The detector 

signal consists of a train of randomly distributed pulses due to the detection of the 

individual photons. There are many signal periods without photon, other signal periods 

contain one photon, periods with more than one photons are very rare. When a photon is 

detected, the time delay between the detector pulse and the corresponding detector pulse 



De:~ Signal: 
~.o::t 

Pero<: : 

Perce: l 

perœ .. 

Pertle , 

Per"CICl7 

Perir:Id • 

P~cct 

PerIcol tl 

Result ilfter 
~ingmilny 

Photon.s 

38 

Optical Waveform 

.. 
THTle 

Figure 8: Principle of classic TCSPC measurement. Upper: the reconstruction of the 

original optical waveform trom the individual time measurements. Middle: detector signal 

in periods trom 1 to N. Lower: histogram of the detection time after accumulation of many 

photons detection event in the memory (Adapted from Advanced Time-Correlated Single 

Photon Counting techniques) 106. 
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Figure 9: The spectrally-resolved time-correlated single photon counting (TCSPC) 

instrumentation. A: Pico second laser diode with emission of 375 nm, B: Axiovert 200M 

inverted fluorescence microscope, C: imaging spectrograph, D: 16-channel photomultiplier. 
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that is measured. The measured times are used to address a histogram memory in which the 

events are accumulated. After acquiring a large number ofphotons the intensity distribution 

versus time builds up in the memory 106. 

Multi-dimensional TCSPC which includes spectral detection lS based on the 

excitation of the sample by a high-repetition rate laser and the detection of single photons 

of the fluorescence signal in one or several detection channels in the sample located on an 

inverted microscope. In this approach, each photon can be characterized by several 

parameters, such as its average time within the laser period, its number of detector channel, 

its wavelength and its time from the start of the experiment. This approach is simultaneous 

recording of time-resolved fluorescence in several wavelength channels that allows 

increased resolution of complex multi-exponential decays due to additional spectral 

coordinate, and cap abi lit y to detect fast transient effects such as changes in the fluorescence 

lifetime, spectra and intensity in living cells. In addition to multi-wavelength detection 

capability, spectrally resolved TCSPC provides near-idea1 counting efficiency and 

picosecond (ps) time reso1ution 106,145. 

Measurement of the NAD(P)H fluorescence that are presented in this thesis are carried 

out using a new1y-designed experimental spectrally-reso1ved TCSPC setup (Fig. 9), which 

is based on combinat ion of inverted microscope with single-photon excitation by a 

picosecond diode laser arid multi-dimensional TCSPC instrumentation. This approach 

allows fast and reproducible measurement of complex patterns of spectrally and time­

resolved fluorescence decay directly.in living cardiac cells (see original recording at Fig. 

10). It provides an extreme1y promising too1 with necessary sensitivity to detect the low­

intensity intrinsic fluorescence signaIs, as well as the temporal and spectral resolution 

allowing identification ofthe individual fluorescence components in living cardiac cells 148. 

2.2.3. Recording of spectrally-resolved autofluorescence data in living cardiac cells 

Cells and/or solutions of NADH molecules were mounted on an inverted microscope 

(Axiovert 200M, Zeiss, Canada) and studied at room temperature in 4-well chambers with 

UV -proof coverslip-based slides (LabTech, Canada). Background was monitored at the 



/ 

t 
41 

blank area next to the cells. Picosecond laser diode with emission of 375 nm (BDL-375, 

Becker&Hickl, Boston Electronics, V.S.A.) was used as an excitation source with output 

power -1 m W. !ts pulse width was typically 60 ps at 20 MHz repetition frequency ra~e. 

The laser beams were combined by dichroic filters and reflected to the sample through 

epifluorescence path of inverted microscope to create slightly defocused elliptical spot at 

the objective focus, reaching typically 10x20 ).lm (inset in Fig. IIC). The size of the spot 

was chosen in regard to the average width (20-30 ).lm) of one rat cardiomyocyte 82. The 

emitted fluorescence was spectrally separated from the laser excitation using standard 

dichroic filter cubes (395 nm dichroic and 397 nm long-pass filters for excitation at 375 

nm) located in the microscope filter turret. A polarizer in a "magic-angle" orientation was 

fitted in front of the detection system at the microscope output port, to avoid distortions of 

decay kinetics due to depolarization effects in the microscope optics. Data were acquired by 

a 16-channel multi-anode photomultiplier array (PML-16, Becker&Hickl, Boston 

Electronics, V.S.A), after spectral decomposition via a 100 mm imaging spectrograph 

(Solar 100, Pro scan, Germany). The PML-16 detector was running in the photon-counting 

regime and fed the TCSPC interface card SPC 830 (Becker&Hickl, Boston Electronics, 

U.S.A) comprising of the discriminators, pulse-formation electronics, time-to amplitude 

converter (TCA) , and analogue-to-digital converter, aU driven by SPCM_95 software 

(Becker&Hickl, Boston Electronics, U.S.A). The card was synchronized-electrically by the 

laser diode driver in the reversed regime. To ensure a sufficient time-window (50ns) for 

observed fluorescence kinetics,. 20 MHz pulse repetition rate of the excitation laser was 

selected. Fluorescence decays were measured simultaneously at 16 spectral channels with 

25 ns TAC time-base sampled by 1024 points, leading to the temporal resolution of 24 

ps/channel. Decay kinetics were measured for 30 s, with the .number of photon cOUnts at 

each channel reaching maximum intensity of about 500-5000 counts and the typical 

background noise of 10-100 counts per channel, present mostly due to ambient light. 

To image the whole visible emission spectrum to the PMT array, the spectrometer was 

fitted with a grating (600 line-pairs/mm), providing the dispersion of 18 nmlmm. Since 
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Figure 10: Original recording of spectrally and tirne-resolved fluorescence decay. Xl­

axis: spectrally resolved fluorescence decay, X2-axis: time-resolved fluorescence decay, Y­

axis: fluorescence intensity. 
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the channel width of the used PMT array was 1 mm, the value of 18 nm also corresponds to 

the rough spectral resolution of our system. The spectrometer was calibrated using the 

emission maxima of known reference dyes, such as DPA and the water Raman peak 148. 

After calibration, we estimated the spectral range of our system to -390-680 nm (channel 

mid-point values), with 16 equidistantly spaced spectral intervals 18 nm wide. The 

influence of higher orders of diffraction on the spectrograph linear dispersion was 

minimized using the dichroic and long-pass emission filters in the microscope, blocking 

completely the wavelengths below 400 nm from entering the spectrograph and the detector. 

Thus, we avoided the physical overlay of the signal from higher-order responses «350 nm) 

over the fust-order wavelength detection range (385-675 nm). We have not corrected our 

data for spectral sensitivity of the detector, nor for the spectral properties of the grating or 

dichroic filters. Therefore, the spectral profiles presented hereafter should be regarded as 

uncorrected emission spectra. 

The half-width of instrument response function (IRF) of our setup was 0.2-0.25 ns, 

according to the measurement of the Raman scattering peak of water 148. Due to the 

absorption characteristics of the microscope filter cubes, the IRF of our setup could not be 

measured directly by laser-light scattering. For the estimation of instrument response 

profile colleagues in the lab have thèrefore used the fluorescence of DCI at 10-4mo l/L in 

ethanol. This dye has reported a short excited state-lifetime of -10 ps 154, with the emission 

peak at 625 nm. The typical width of the IRF using the 375 nm laser and the PML detector 

(Fig. l2A) was -200 ps full width in half-maximum (FWHM) , slightly exceeding the 

typical specifications of the convolved response functions of the detector itself(180 ps), the 

laser (60 ps) and the TCSPC electronics (8 ps). A mono-exponential fluorescence decay 

with a lifetime of 40-60 ps after deconvolution was assigned to the DCI probe at 440 nm 

following 375 nm excitation (Fig. 12A) 148, which is in good agreement with other authors 

155. To test the precision of the setup in measurements at the ns scale, fluorescence kinetics 
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Figure Il: Original recording of AF decay. A: Background-corrected fluorescence 

spectrum, B: fluorescence decay, C: original recording of spectrally-resolved decay of AF 

gathered at 16 channels. In inset: laser excitation of elliptical spot in a single emitting 

cardiomyocyte, typically 10x20 !lm. 
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Figure 12: Analysis of fluorescence decay. A: single-exponential fluorescence decay of 

DPA in ethanol in one selected spectral channel detected by the P:ML-16 detector after 

excitation with 375 nm pico-second laser 148 Instrument response function (grey lineon A 

and green line on B) was estimated using DCI. B: 3-exponential mode for analysis of 

fluorescence decays in living cardomyocyte (Adapted from D. Chorvat Jr et al.) 148 
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of the fluorescence lifetime standard DPA in ethanol (10-8 moVL) have been recorded in the 

lab following 375 nm excitation. The observed decay was single exponential, with the 

estimated value of the fluorescence lifetime of6.42 ± 0.12 ns, correspondingto the reported 

values of DPA lifetime ~ 6.1 ns 156. This result suggests that rapid lifetime kinetics can be 

conveniently recorded by our setup. 

2.2.4. Definitions of terms and derived quantities 

Spectrally and time-resolved TCSPC data were recorded from each cell (Fig. lIA, B 

and C). Steady-state AF spectra were evaluated as total photon counts for each spectral 

channel (see equation Il). Each lifetime pool was assessed by.examining its fluorescent 

lifetime ('ri) and relative amplitude (ai), accordingly to equation 12. At least a 3-exponential 

model was used for analysis of exponential decay of NADH AF, chi-square values (X2
) 

<1.2 was considered as acceptable (Fig.12B). In our experiments, we typically collected a 

photon-counting histogram of spectrally-resolved AF decay P(Àj, tk). The histogram was 

measured simultaneously OIi 16 spectral channels (18 nm wide) denoted as Àj, and on 1024 

temporal channels denoted tk, equidistantly spaced by 24.4 ps. The steady-state AF spectra 

S(Àj) were ca1culated as a total photon count for each spectral channel: 

(11) 

The fluorescence decay kinetics were analyzed using a sum of three exponential terms, 

according to the model 1 (Âj, t) with the functional form: 

3 

I(À j ,t) = Ibaseline + Iaj,j x exp( -(t - to)lrj,j) (12) 
j 1 = 

where (ta) is the variable zero-time shift, Ibaseline fits the background intensity, and the 

amplitude (ai) represents the fractional population of molecules associated with each decay 

component i. The sum of these fractional populations for each selected wavelength equals 

100%: 

3 "a .. = 100 ~ l,i 
j 1 = 

(13) 



47 

In the fitting procedure (nonlinear least-squares minimization routine implemented in 

SPCImage by Becker&Hickl), the parameters of the model function I(Àj, t) were iteratively 

changed, while being convolved with the IRF to best fit the measured photon histogram 

P(Àj, tk). Thus, each lifetime component i was assessed by examining its estimated 

fluorescent lifetime 'tjj and relative amplitude ajj, both being dependent on the emission 

wavelength Àj. For simplicity, we provide the results either fi the form where these 

parameters are plotted against wavelength coordinate, or we specify the particular emission 

wavelength used, omitting the second index U). 

Once the fitting parameters have been obtained, the following deri~ed quantities were 

calculated: 

1) the average fluorescence lifetime <'t>; 

3 
(14) 

= ~:)ai x ri )1100 
i=1 

2) the relative intensity of each species aj'tj ; 

3) the relative fraction rj of the fluorescence generated by each species i, with respect to the 

total fluorescence; 

(15) 

Furthermore, the decay associated spectra (DAS) were computed as a fraction of the 

total fluorescence emission for each lifetime pool, using the quantities rj and S defined 

above: 

(16) 

The time-resolved emissi6n spectra (TRES) were constructed as described previously 

148 by summing the photons registered over a chosen number of consecutive time channels 

tk after a temporal delay 8t: 
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(17) 

where kmax corresponds to channel with maximal detected photon counts, i.e. the peak 

of the excitation impulse, Àj to emission wavelength, P(Àj, tk) to the photon-counting 

histogram of spectrally-resolved AF decay. We have used the TRES interval width ot of 

lns (in regard to the instrument response width) leading to the time interval expressed in 

channel numbers as kE(~t, ~t+ ot), where 1 channel- 24 ps. 

2.2.5. Data analysis 

Data were analyzed using SPCImage software (Becker&Hickl, Boston Electronics, 

V.S.A). An data were corrected for· the systematic wobble of the temporal-shift in the 

detected photon histogram at different channels of the PMT array 106 using custom 

procedures for data correction and analysis written in C++. A home-made database was used 

for appropriate data management. Data are shown as mean ± standard error of the mean 

(SEM), as our main focus was to compare different populations of cells in specifie 

experimental conditions. However, we are aware that this is not sufficient to reflect 

variations around an average value. Standard deviation (SD), which is a measurement of 

dispersion in original units, reflects more precisely a natural accuracy of the measuring 

system rather than SEM, and can be calculated from equation 18: 

SD r 
SEM = .Jn or SD = SEM X" n (18) 

where n is the number of experiments. For example, in the case of cardiomyocyte AF in 

control condition (discussed in Table 4), its fluorescence can be described as follow (means 

± SD): photon counts = 23200 ± 6600; Pmax =1550 ± 570; al = 69.3 ± 8.4, Tl = 690 ± 92; 

a2 = 27.6 ± 8.4, Û = 2030 ± 440; a3 = 3.1 ± 1.7, T3 = 12700 ± 6500. 

Data analysis was performed using Origin7.0. Comparison between means was 

made at spectral maximum of 450 nm and at 504 nm (to account for observed red-spectral 

shift), using one-way analysis of variance (ANOVA), followed by Tukey post-test. 
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3. RESULTS 

3.1. Recording of NADU llurescence in vitro 

Part of this study has been published in ANEBA S., CHENG Y, MATEASIK A., 

COMTE B., CHORVAT D. JR, CHORVATOVA A., 2007: Probing of cardiomyocyte 

metabolism by spectrally-resolved lifetime detection of NAD(p)H fluorescence. The 

Computers in Cardiology. 39:349-352. See attached Appendix 1. 

3.1.1. Kinetics offree NADH fluorescence decay 

To understand the characteristics of free NADH endogenous fluorescence, we have 

studied steady-state spectra and lifetimes of intrinsic NADH fluorescence in vitro in 

intracellular media-mimicking solutions (pH 7.25). Steady-state spectra measured 

simultaneously at 16 acquisition channels were determined as the total photon counts on 

each spectral channel. Fluorescence lifetime pools were assessed by examining their 

fluorescent lifetimes (ri) and relative amplitudes (ai) by 3-exponential decay (see methods 

2.2.4.for detail). The results showed that NADH AF had (1) spectral patterns with 

maximum emission between 450-470 nm after UV light excitation (Fig. 13 A). (2) At the 

maximum emission wavelength of 450 nm, we' resolved (20llmollL, n= 1 0) fluorescence 

lifetimes "rI = 0.4±0.1 ns (with relative amplitude of 69.9±1.0 %), 't2 = 1.5±0.1 ns 

(20.5±0.8 %) and "r3 = 8.1±0.1 ns (9.8±0.2 %) (See Table 3 for number of experiments). 

3.1.2. Concentration-dependence ofNADH fluorescence decay.k.inetics 

To understand changes of NADH fluorescence decay kinetics with its concentration, 

we studied concentration-dependence of NADH fluorescence kinetics in vitro. These 

experiments are important to comprehend changes of NADH kinetics resulting from 

modification in NADH/NAD+ ratio (in response to demand for ATP production) in 

different workloads of the heart, and/or in pathological condition. Concentrations ranging 

from 1 to 40llmollL were used to question the dose dependence of spectral and lifetime 

properties of the NADH fluorescence. Spectrally- resolved free NADH fluorescence 

intensity was concentration-dependent with a linear correlation between the numbers of 
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photon counts and NADH concentration (Fig. l3A and C), as described previously 132. 

Normalized spectra superimposed perfectly for NADH concentrations between 1 to 

40llmol/L (Fig. 13B), confuming the same molecular origin. Neither resolved lifetimes, nor 

their relative amplitudes were dependent on the NADH concentration at spectral maximum 

(see examples for 450 nm fluorescence decay at Fig. 13D, Table 3 for number of 

experiments) or in the range of emission wavelength (between 420 and 560 nm; Fig. 14A­

F). These results suggest that a change of the fluorescence intensity correlates with 

modification of free NADH concentration. In addition, we also found 20JlmollL ofNADH, 

with its appropriate fluorescence yield an ideal concentration for further study of free 

NADH kinetics. 

3.1.3. pH-dependence ofNADH fluorescence decay kinetics 

Next, we questioned whether intracellular solutions with modified pH are able to affect 

the kinetics of free NADH fluorescence decay. Since metabolic acidosis or alkalosis may 

occur in many pathological conditions, such as ischemia, these experiments help to 

understand potential changes of NADH fluorescence kinetics with pH. Fluorescence 

characteristics offree NADH recorded in intracellular solution with modified pH (5.4, 7.25, 

or 9.8) showed slightly increased intensity of NADH in the presence of pH 5.40, but no 

change in the presence ofpH 9.80, when compared to pH 7.25 ones. Fluorescence spectral 

shape, re~olved lifetimes and their relative amplitudes were not significantly different (Fig. 

15A-H, table 3 for number of experiments). These results indicated that free NADH in 

different pH alone is not likely to significant affect the intrinsic NADH fluorescence decay 

kinetics. 

3.1.4. Binding ofNADH to lipoamide dehydrogenase 

We then tested changes in kinetics of NADH fluorescence decay in the presence of 

lipoamide dehydrogenase (LipDH) in vitro in intracellular media-mimicking solutions (pH 

7.25). LipDH was found in several2-oxo acid dehydrogenase multi-enzyme complexes 157. 

It is a disulfide oxidoreductase, comparably to the fust protein of multi-enzyme Complex 1 
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of the mitochondrial respiratory chain. The experiment was designed to understand changes 

ofNADH fluorescence kinetics by binding. dehydrogenation ofNADH to NAD+ by LipDH 

can mimic binding ofNADH to enzymes of the Complex 1. LipDH in the concentration of 

2 U/J..IL but not in thel U/J..tl was capable of decreasing NADH fluoresence (20J..lmollL). 

while LipDH itself did not present any background AF (Fig. 16A). The decrease in the 

fluorescence intensity of NADH in the presence of 2 U/J..IL LipDH was accompanied by a 

slight spectral broadening of about 10 nm towards red spectral region. as demonstrated by 

normalized emission spectra (Fig. 16B). Resolved fluorescence lifetime pools and their 

relative amplitudes showed tendency to decrease in the 1 st lifetime pool and increase in the 

2nd and 3rd lifetime pools after binding (Fig. 17 A. B and C. Table 3 for the number of 

performed experiments). NADH fluorescence decays were prolonged by binding to LipDH 

(as illustrated at Fig. 16C and D) due to a significantly increased 2nd lifetime pools (at 504 

nm wavelength. 1'2 was prolonged from 1.8±0.1 ns to 2.7±0.2 ns. p<0.05. See Table 3 for 

number of experiments), leading to increased average lifetime. Interestingly. the 

fluorescence lifetime of the intermediate pool increased in a spectrally-dependent manner; 

the lifetime prolongation was mainly observable at emission wavelengths that were longer 

than the emission spectral maximum of NADH (>450 nm) (Fig. 17D). These data 

demonstrate sensitivity of the 2nd fluorescence lifetime pool to change in NADH binding to 

LipDH enzyme. 

Fluorescence characteristics of binding of NADH (20J..lmoI/L) to LipDH (2 U/J..Il) 

recorded in intracellular solution with modified pH (5.4. 7.25. or 9.8) gone similar results 

as observed from free NADH molecule (Fig. 18A-H). indicating that no significant changes 

in NADH fluorescence kinetics can be attributable to change in pH. 

Our data demonstrated that the NADH content is principally correlated with the overall 

fluorescence intensity at 450 nm (spectral maximum), while average fluorescence lifetime 

is more sensitive parameter to change in NADH binding to its enzymes. Surprisingly. 

NADH fluorescence was not significantly affected in intracellular solution with different 

physiological pH. 
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Figure 13: NADH fluorescence spectra and lifetimes in vitro. A: NADH fluorescence 

spectra at concentrations ranging from 1 to 40!lmollL. B: Normalized background­

corrected NADH fluorescence spectra. C: A linear correlation between the number of 

photon counts and NADH concentration at spectral maximum of 450nm. D: NADH 

fluorescence decays in concentrations ranging from 5 to 40!lmollL at 450nm. 
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Figure 14: Concentration-dependence of NADH fluorescence lifetimes and their 

relative amplitudes in vitro. [NADH] ranging from 5 to 40!lmollL was recorded on 

emission wavelength from 420 to 560 nm. A, C; and E: lifetime pool relative amplitudes 

(al, a2, and a3, respectively). B, D and F: fluorescence lifetimes (-rI, Û and -r3, 

respectively). 
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Figure 15: pH-dependence of NADH fluorescence decay kinetics in vitro. Spectrally-resolved fluorescence lifetime pool characteristics 

ofNADH recorded in intracellular solution with modified pH (5.40, 7.25, or 9.80) on emission wavelength from 420 to 560 nm. A: Steady­

state fluorescence spectra, B: Normalized spectra. C, D and E: lifetÎme pool relative amplitudes (al, a2,and a3, respectively), F, G, and H: 

fluorescence lifetimes (d, t2 and t3, respectively). 
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Figure 16: Spectral and fluorescence lifetime characteristics of N ADH after binding to 

LipDH in vitro. LipDH (1 U/J.ll or 2 U/J.ll) in the absence or presence of NADH 

(20J.lmol/L). A: Steady-state fluorescence spectra. B: Normalized spectra. C: NADH 

fluorescence decay at 450 nm of emission wavelength. D: NADH fluorescence decay at 

504 nm of emission wavelength. *p<0.05 vs. NADH 20J.lmol/L. 
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Figure 17: Fluorescence Iifetimes and their relative amplitudes after binding ofNADH 
. .. 

to LipDH in vitro. LipDH (2 U/~) in the presence of NADH (20llmol/L) compared to 

NADH alone on emission wavelength from 420 to 560 nm. A, C, and E: component 

amplitudes (al, a2, and a3, respectively). B, D and F: fluorescence lifetime (tl, t2 and t3, 

respectively). * p<0.05 vs. NADH 20llmol/L. 
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Figure 18: pU-dependence of NADU fluorescence decay kinetics after binding to LipDU in vitro. LipDH (2 U/!-tL) in the presence of 

NADH (20llmoVL) and 20llmol/L ofNADH were compared in intracell~lar solution with modified pH (5.40, 7.25, or 9.80) on emission 

wavelength trom 420 to 560 nm. A: NADH fluorescence spectra. B: Normalized spectra. C, D and E: component amplitudes (al, a2, and a3, 

respectively). F, Gand H: fluorescence lifetime (tl, t2 and t3, respectively). 
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Photon a, T, a2 T2 a3 T3 l 
counts [a.u] r ps] r ps] [ps] 

Fm., aIT) r) a2T2 r2 a3T3 r3 <T> 
r a.u·1 r ns ] r ns] r ns] 1 ns Il 

NADH 5J1M (5) 25900±130+ 68.4±J.6 398±32 22.0±1.5 1490±40 9.6±O.J 9630±55 1.00 

980±J3+ 27.2±1.0 0.J8±0.OJ 32.6±J.4 0.2HO.OJ 92.8±J.7 0.6 HO.OO J.53±0.03 
NADH 7J1M (5) 31300±360+ 68.0±2.1 397±8.6 22.6±1.7 J600±103 9.4±O.5 9420±260 1.0J±O.01 

1270±J7+ 27.0±J.5 0.J8±O.OJ 35.6±J.3 0.24±O.OJ 88.2±3.5 0.58±O.OJ J.5HO.04 
NADH 10J1M (5) 37600±1300+ 73.8±1.1 443±25 17.4±J.J 1760±89 8.8±O.4 9700±340 1.01±O.OJ 

J520±69 32.7±2.0 0.22±0.OJ 30.3±1.7 0.2HO.OJ 84.6±2.2 0.57±0.02 J.48±0.02 
NADH 20J1M pH 5.4 (5) 73800±3JO 68.0±2.1 396±28 22.2±J.3 J520±41 JO.O±O.7 8JOO±]]0 1.03±O.02 

3460±32 27.0±J.5 0.J9±0.02 33.3±J.7 0.24±0.00 8J.8±5.8 0.57±0.01 1.42±0.06 
NADH 20J1M (10) 63400±570 69.9±1.0 389±9.0 20.5±O.8 J460±54 9.8±O.2 8120±73 J.03±O.OJ 

2920±45 27.2±1.0 0.20±0.OJ 29.6±0.5 0.22±0.00 79.3±1.3 0.58±0.OJ 1.36±0.02 
NADH 20J1M pH 9.8 (5) 63400±1700 70.9±J.1 373±7.7 19.6±1.0 1390±52 9.2±O.2 8240±84 1. 0 2±O.01 

3010±92 26.5±0.9 O. 20±0. 0 1 26.9±0.5 0.21±0.00 76.1±J.7 0.59±0.OJ J.30±0.01 
NADH 40J1M (5) 106JOO±J80+ 69.0±1.4 360±]] 21.2±1.2 1310±64 9.8±O.J 7960±JJO J.09±O.02 

5130±32+ 25.0±J.3 0.19±0.01 27.5±0.5 0.21±0.00 78.3±O.6 0.60±0.00 J.31±0.01 
NADH20J1M +LipDH 2u pH 65300±420 59.6±1.6 382±27 26.6±1.1 J480±98 J4.0±0.5+ 7780±130 1.02±O.OJ 

5.4 (5) 
2410±34 23.0±2.2 0.13±0.OJ 38.7±0.5 0.23±O.OJ 1J0.0±2.9 0.64±0.OJ 1.71±0.04 

NADH 20J1M +LipDH 2u (5) 53800±320+ 59.4±1.6 345±22 27.2±J.2 J430±82 J3.2±O.5+ 8050±2JO 1.01±O.OJ 

2040±35 20.6±1.8 O. J 2±O.OJ 38.7±1.4 0.23±0.01 J JO.O±J.9+ 0.64±0.01 1.65±0.032 
NADH 20J1M +LipDH 2u pH 51600±540+ 62.6±1.5 361±15 25.0±1.5 1500±77 12.4±O.2 8260±36 1.00 

9.8 (5) 
1 970±42 22.7±J.5 0.14±0.01 37.2±0.8 0.23±0.01 102.9±2.2 0.63±0.01 1.62±0.02 

NADH 20J1M +LipDH J u (5) 69600±520 66.8±O.8 374±13 22.2±O.6 1470±22 lI.HO.4 8100±62 J.01±0.00 

3010±83 32.7±2.0 0.17±0.01 32.5±0.4 0.22±0.01 90.0±3.5 0.61±0.OJ 1.48±0.04 
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Table 3: Fluorescence parameters of NADH in the absence and in the presence of LipDH in intracellular solutions (ÂexlÂem = 375 

nm/450 nm). Total photon counts, fluorescence lifetimes (d to 't3) and their relative amplitudes (al to a3) offree NADH in the absence and 

in the presence of IU/IJ.L to 2 U/IJ.L LipDH, or in intracellular solution with modified pH (5.40, 7.25, or 9.80). In grey, maximum AF 

emission (Pmax; time-resolved at ~t = 0 ns), calculated relative intensities and relative fractions for each component, as weil as average 

lifetime. Data are shown as mean ± SEM, the number of experiments shown as (number of samples); P < 0.05: + vs NADH 20 IJ.mollL. 

Definitions of Terms and Derived Quantities (See methods, section 2.2.4. for details) 
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3.2. Study of NAD(p)H fluorescence in living cardiomyocytes 

This work is a part of study, which is a subject ofpaper in preparation by CHORVAT 

JR. D., CHENG Y., MATEASIK, A., BASSIEN-CAPSA V., ZANG W-J., AND 

CHORVATOVA A. entitled: Component analysis ofNAD(P)H autofluorescence resolved 

by multi-wavelength fluorescence lifetime spectroscopy in living rat cardiomyocytes. 

3.2.1. Distribution of NAD(P)H fluorescence 

We studied endogenous NAD(P)H fluorescence directly in living cardiomyocytes. 

Mitochondrial distribution of the AF in myocytes was fust verified by confocal 

microscopy. Images of NAD(p)H fluorescence were recorded by confocallaser scanning 

microscope (See methods. section 2.2.1. for details.) using excitation at 777 nm and 435-

485 nm spectral range for emission detection. We observed that the emission AF of 

cardiomyocyte was principally distributed in stripes (Fig. 19), corresponding to 

cardiomyocyte mitochondria 99. This result suggests that NAD(P)H fluorescence recorded 

in living cardiac cells has mainly mitochondrial origin. 

3.2.2. Spectral and lifetime cbaracteristics of NAD(P)H fluorescence 

Spectrally and time-resolved NAD(P)H fluorescence decays were then recorded by 

TCSPC in living left ventricular cardiomyocytes bathed in basic external solutions (see an 

original recording at Fig. Il), following excitation of an elliptical spot (20 x 10 llm) of the 

cell (inset of Fig. 12C) by the 375 nm picosecond laser diode. Steady-state spectra of the 

cardiomyocyte AF, determined from the total photon counts on each spectral channel, had 

spectral maximum at 450 nm (Fig. 21A control). Gathered data were comparable to our 

previously published observations ofNADH and lor NADPH fluorescence in intracellular 

solutions (see section 3.1.1 and Appendix 1) 33. Normalized emission spectra of the 

cardiomyocytes showed a ~2Onm blue-spectral shift when compared to NADH in vitro 

(Fig. 20A), while being closer to those of NADPH (Fig. 20B). Analysis of exponential 

decay of cardiac myocytes AF for different lifetime pools showed acceptable chi-square 

values 
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(x,2<1.2) and flat plot of weighted residuals when using at least a 3-exponential model. 

Three fluorescence lifetime pools were resolved at 450 nm: 1:1 ;::: 0.7±0.1 ns (69.3±1.0%), 

1:2 = 2.0±0.1 ns (27.6±0.9%) and 1:3;::: l2.7±0.1 ns (3.1±0.2%) (See Table 4 for data at Àem= 

450 nm, and for number of experiments). Maximum AF emission (Pmax), calculated the 

average lifetime (1:), relative intensity (ai1:i) and relative fraction (ri) for each lifetime pools 

were also assessed using mathematical analysis (see methods, section 2.2.4. for details, and 

Table 4 for ca1culated values). The gathered values were comparable to previous studyof 

the steady-state kinetics of NADH fluorescence lifetime pools in cardiac mitochondria by 

Blinova et al. 132 

Estimated lifetimes were dependent on emission wavelength within the 420-560 nm 

spectral range (Fig'. 22). Both, the 1 st the 2nd lifetime pool exhibited a slight decrease, while 

that of the 3rd one presented a slight increase at longer wavelengths (Fig.22 B, D and F, 

control). Besides, aU three lifetime pools and their relative amplitudes were prolonged at 

spectral channels with low intensity of detected light (data not shown). Therefore, we 

evaluated data only for spectral channels which intensity reached threshold of 500 counts in 

maximum, i.e. within the spectral range of 420 nm to 560 nm. In control conditions, the 

relative amplitudes of all three lifetime pools changed only slightly in the analyzed spectral 

region (within 10 % fraction ofthe total population, Fig. 22A, C and E, and Table 4). 

3.2.3. Inhibition of the mitochondrial respiratory chain 

We next tested spectral and lifetime characteristics of cardiomyocyte AF following 

inhibition of the mitochondrial respiratory chain activity. NADH is the main electron donor 

necessary for creation of the electrochemical gradient in cardiac mitochondria, used in the 

process of oxidative phosphorylation for ATP formation. As this process is initiated by 

dehydrogenation of NADH at the Complex 1 of the mitochondrial respiratory chain, we 

have therefore analyzed whether inhibition of Complex 1 activity is capable of affecting 

fluorescence spectral and/or lifetime éharacteristics of steady-state NAD(P)H fluorescence 

in cardiomyocytes. Application of Rotenone (IJlmollL for 5-20 min), the inhibitor of the 
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Complex 1 of the mitochondrial respiratory chain 51,59,158, induced a significant increase in 

the steady-state cardiomyocyte AF intensity (Fig. 21A), in accordance with the rise in free 

mitochondrial NADH content following restriction of the respiratory chain. Normalized AF 

spectra in control conditions and in the presence of Rotenone were identical (Fig. 21B), 

suggesting same molecular contributors. Rotenone significantly shortened fluorescence 

lifetimes of the 1 st and 2nd lifetime pool in living cardiomyocytes (See original recording at 

Fig. 21 C and D, 22B and D, as well as assessed values in Table 4), while having tendency 

to increase the relative amplitude of the 1 st and lowering the one of the 2nd lifetime pool 

(not significant) (Fig.22A and C, Table 4). Each lifetime pool was also assessed by 

examining its relative intensity, as well as relative fraction (gray in Table 4, see Methods, 

section 2.2.4. for details). This assessment revealed a significant decrease in the relative 

intensity of the 2nd lifetime pool in the presence of Rotenone, leading to reduced average 

lifetime (see Table 4, L and a2L2 for Rotenone). However, relative fractions of all three 

components remained unchanged. 

To insure that NAD(P)H, accumulated after application of Rotenone, is not used by 

other dehydrogenases of the respiratory chain, we have also questioned the effect of Na­

cyanide, an inhibitor of the complex IV of the respiratory chain 49. Both Rotenone and 

cyanide are inhibitors of respiratory chain. But while Rotenone inhibits NADH 

dehydrogenase at Complex l, cyanide, on the other hand, blocks cytochrome oxidase at 

Complex IV. This prevents both coupled and uncoupled respiration with all substrates, 

inc1uding NADH and succinate that can reduce the F AD fluorescence, induced in living 

cardiomyocyte by visible light 99. Addition of Na-cyanide (4mmoVL) to cells alone, or in 

the presence ofRotenone, had no significant effect on the AF dynamics when compared to 

Rotenone (Fig. 21E and F, Table 4). This result indicates that accumulation of NADH 

following inhibition of Complex 1 by Rotenone is not significantly affected by other 

dehydrogenases of the respiratory chain. The effect of Rotenone in cardiomyocytes was 

comparable to that observed in the presence of cyanide by other authors38
• This effect is in 

agreement with the shortening of fluorescence lifetimes identified in adipocytes 159 
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although no change in fluorescence decays was found in liver mitochondria 126 following 

application of the inhibitor. Therefore, the application ofRotenone is an appropriate means 

to isolate events related to the Complex I activity in cardiomyocytes. 

3.2.4. Stimulation ofNADH dehydrogenation by uncoupling of ATP synthesis 

To promote NADH dehydrogenation to NAD+ by the Complex I, we have used DNP. 

DNP is an uncoupling agent, which uncouples oxidative phosphorylation by carrying 

protons across the mitochondrial membrane, thereby destroying the proton gradient that 

drives oxidative phosphorylation. This leads to rapid consumption of enérgy without 

generation of ATP 50,98. Application ofDNP (50).ID1oVL) was intended to stimulate NADH 

dehydrogenation to NAD+ by Complex I of the respiratory chain. As expected, DNP 

significantly decreased the steady-state AF intensity in cardiomyocyte (Fig. 2IA), in 

accordance with higher NADH dehydrogenation rate. Interestingly, after normalization, 

spectral broadening towards red spectral region of about 20 nm was observed in the 

presence of the uncoupler (Fig. 2IB). The spectral broadening recorded in cardiomyocytes 

after application ofDNP was comparable, but broader than the one observed for NADH in 

the presence ofLipDH in vitro (Fig. 16B). At spectral maximum of 450 nm, both the value 

of l st fluorescence lifetime pool and the relative amplitude of the 3rd one were significantly 

increased in the presence of the DNP when compared to control conditions or the presence 

ofRotenone, leading to significantly increased relative intensities and average lifetime (Fig. 

21C, 22Band E, Table 4). Furthermore, the relative fractions of the 2nd and 3rd lifetime 

pools were also modified by DNP (Table 4). At 504 nm, we have also found significantly 

increased fluorescence lifetime ofthe 2nd pool (Fig. 22D). When compared to Rotenone, all 

fluorescence lifetimes were prolonged, resulting in higher relative intensities and thus 

increased average lifetime (Figures 22B, D and F, Table 4). 

Effects of DNP on spectral amplitude, determined as total photon counts, was 

comparable to that ofFCCP, an uncoupling agent, described previously in cardiac tissue 38. 

Both ofDNP, CCCP or FCCP are uncoupling agents. CCCP and FCCP are very powerful 

mitochondrial uncoupling agent, a tiny amount ofthem can catalyze the movement ofhuge 
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numbers of protons, and short-circuit the respiratory chain, leading to lower fluorescence 

signaIs, and decreased in the signal/noise ratio 38. We have opted for DNP in the present 

studies, but recording of changes following application of FCCP or CCCP should be also 

tested in future. 

3.2.5. Modulation of NADH production in living cardiomyocytes 

As mentioned in previous chapters (see section 1.1.2.), substrates availability is able to 

modulate the rate of acetyl-CoA production in TCA cycle, leading to change in the 

production of mitochondrial and/or cytosolic NADH. Fatty acid ~-oxidation and pyruvate 

oxidation are two major sources of acetyl-CoA formation in TCA cycle. Modulation of 

these two control points therefore alters the NADH/NAD+ ratio in the cells. 

NADH is known to be produced by mitochondria in the TCA cycle. To promote 

NADH production in cardiomyocytes, we have administered BHB (3mmol/L) in basic 

extracellular solution in the presence of different concentrations of AcAc: 150)lmol/L (ratio 

20:1) to favor NADH production and 1.5mmol/L (ratio 2:1), c10ser to physiological 

conditions 29. In cardiac tissue, NADH used by the respiratory chain is produced from the 

acetyl-CoA formed by the fatty acid oxidation entering the citric acid cycle and is strongly 

dependent on appropriate balance of fatty acids, carbohydrates and ketone bodies utilization 

17. BHB oxidized into AcAc is producing NADH dependently on the BHB/AcAc ratio 29. 

As expected, the BHB/AcAc ratio of 2:1 induced no significant change in AF of 

cardiomyocytes when compared to control conditions (Fig.23A). However, increasing the 

ratio to 20: 1, . condition favorable to NADH production, led to significant rise in the 

cardiomyocyte AF intensity (Fig. 23A), in accordance with the higher in free NADH 

concentration in cardiomyocyte mitochondria. This effect did not affect the emission 

spectral shape (Fig. 23B), or fluorescence lifetime pools (Fig. 24 A-F and Table 4). 

We have also tested effect of NADH utilization by promoting fatty acid ~-oxidation. 

Octanoate (4mmo1JL), a medium chain fatty acid is completely oxidized through the 

mitochondrial ~-oxidation and respiration pathways 25, 26. Surprising, application of 
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Octanoate did not significantly affect the steady-state emission spectra or the lifetimes of 

cardiomyocyte AF (Fig. 23C and D, Table 4). 

Application of lactate and pyruvate, which activate PDH activity by rising acetyl-CoA 

production in TCA cycle, are capable of inducing cytosolic NAD(P)H redox changes, 

hence elevating cytosolic NADH level, as weil as cytosolic NADH/NAD+ ratio. This 

experiment was designed to confirm preferential mitochondrial contribution of AF. 

Addition of lactate (lmmol/L) in the presence ofpyruvate (lOOjlmollL), should therefore 

not significantly affect the steady-state emission spectra or the lifetimes of cardiomyocyte 

AF. Indeed, these were exactly gathered results (Fig.23E and F, table 4), indicating that the 

cytosolic NADH is not likely to significantly contribute to the recorded fluorescence signal. 

Instead, the observed AF signal is primarily resulting from mitochondrial NAD(P)H. 
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20J..lm 

Figure 19: Confocal image of NAD(P)H fluorescence in one cardiac cell. Two-photon 

excitation with 777 nm emission laser, HFT KP 700/488 dichroic filter and 450-470 nm 

spectral range for emission detection. 
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Fig. 20: NAD(P)H fluorescence spectral characteristics in living cardiomyocytes. A: 

Normalized emission spectra of cardiac cells compared to NADH (20!lmollL) in the 

absence and in the presence ofLipDH (2U/ml) in vitro. B: Normalized emission spectra of 

cardiac cells compared to NADH (20!lmollL) and NADPH (20!lmollL) in vitro. 
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Figure 21: Steady-state NAD(P)H fluorescence in living cardiomyocytes following 

application of the modulators of respiratory chain. Steady-state (A) and normalized (B) 

fluorescence spectra and fluorescence decay (C: À = 450 nm, D: À = 504 nm) following 

application ofRotenone (1!lmol/L) or DNP (50!JlllollL), respectively. E-F: Steady-state and 

normalized AF spectra following application of Na-cyanide (5mmol/L) al one, or in the 

presence ofRotenone (1 !Jlllo lIL) , *p< 0.05 vs. control, #p<0.05 vs. Rotenone. 



\ 
69 

A B 
90 

-.-Rotenone 
--control '" -.-DNP 1000 

~!-~ 
_&~~p:~ t l f-~~_I 

~6O ~-"~i 'iii' -- l - l e:::. Co "';-~~-~ .... 
500 .... J. .... 

CU .. ............----=:: 

30 0 
450 500 550 450 500 . 550 

C 
Emission wavelength [nm] 0 

Emission wavelength [nm] 

60 3000 

'" 
!-!-~Y~~-I 

.... ~ i 1500 
;~-.--,--! -:J 

~30 "'# ~-. .... _1:--1 
('II ('II 
CU .. 

O~--.---~--.---~-r- O+---.---~--.--~-~ 

450 500 550 450 500 550 

E Emission wavelength [nm] F Emission wavelength [nm] 

20 30000 

î 15000 

<';J 

450 500 550 
O+---.---~--.---~--~ 

450 ,500 550 

Emission wavelength [nm] Emission wavelength [nm] 

Figure 22: NAD(P)H fluorescence Iifetimes and their relative amplitudes following 

application of Rotenone and DNP. A, Band C: Lifetime pool relative amplitudes (al, a2 

and aJ, respectively), D, E and F: fluorescence lifetimes ('tl, 't2 and 1:3, respectively) 

estimated in control condition and in the presence of Rotenone (lllmollL) or DNP 

(50llmol!L), *p< 0.05 vs. control, #p<O.05 vs. Rotenone. 
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Figure 23: Steady-state NADH fluorescence spectra in living cardiomyocytes following 

application of metabolic substrates. A-B: Steady-state and normalized spectra following 

application of BHB/ AcAc (2: 1) and BHB/ Ac Ac (20: 1). C-D: Steady-state and normalized 

spectra following application of Octanoate(4mmol/L). E-F: Steady-state and normalized 

spectra following application of pyruvate (lOOllmol/L) and lactate (lmmollL), *p<0.05 vs. 

control. 
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Figure 24: NAD(P)H fluorescence lifetimes and their relative amplitudes following 

application of BHB/AcAc (2:1) and BHB/AcAc (20:1). A, C and E: Lifetime pools 

relative amplitudes (al, a2 and a3, respectively), B, D and F: fluorescence lifetimes (rI, 1"2 

and 1"3, respectively). 



Control 
(70/13) 

Rotenone 
(28/6) 

Cyanide 
(10/2) 
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Photon al Tl aZ TZ a3 T3 "l 
coonts [a. o.] [ps] [ps] [ps] 

Pmax alTI ri a2T2 rz a3T3 r3 <T> 
[ a.o.] [a.o.] [*103] [a.o.] 1*103] [ a.o.] [*103] [ ns] 

23200±790 69.3±1.0 690±11 27.6±1.0 2030±52 3.1±O.2 12700 ±780 1.02±O.01 

1550±68 48.0±l.3 0.36±O.01 53.6±1.0 0.40±O.01 32.7±1.7 0.24±O.01 1.34±O.03 
58900±1800* 71.0±1.6 560±10*+ 26.3±1.5 1700±57* 3.0±O.2+ 8800±650 1.05±O.01 

3570±160* 40.5±l.5 0.36±O.02 42.5±l.O*+ 0.40±O.01 23.1±l.l 0.22±O.01 1.06±O.01* 
55400±7000* 68.8±1.3 486±13*+ 28.8±L2 1600±55*+ 2.5±O.2+ 9400±1300 1.01±O.01 

3640±470* 33.6±1.4* 0.33±O.01 45.2±1.3 0.45±0.01 21.7±l.O+ 0.22±0.01 1.00±0.02* 
Rotenone/cyanide 55600±3600* 72.3±l.8 556±16 25.0±1.6 1690±91 2.7±O.3 8500±700 1.05±O.02 

(10/2) 
3760±230* 40.4±2.1 0.39±0.02 41.0±O.7* 0.40±O.01 2l.2±1.4 0.21±O.02 1.03±O.01 * 

DNP 10800±990*# 67.3±1.7 901±55*# 27.1±l.7 2160±120# 5.6±O.8*# 15800±1800# 1.01±O.01 
(15/3) 

770±95*# 60.5±3.7*# 0.32±O.02 59.1±5.2# . 0.31±O.02*# 74.6±7.2*# 0.38±O.02*# 1.94±O.12*# 
BHB 32000±3100*& 64.0±4.2 526±78* 33.0±3.5 1580±200* 3.2±O.9 10100±2700 1.00±O.01 
(9/1) 

1970±550$ 33.7±6.0* 0.29±0.04 51.8±5.2 0.45±0.03 30.5±7.1 0.26±0.04 1.16±0.04 
BHB/AcAc (20:1) 29300±1600*& 66.3±1.6 598±22 31.1±l.5 1800±65 2.8±O.3 12600±1400 1.01±O.01 

(27/4) 

BHB/AcAc (2:1) 
(26/4) 

Lactate/pyrovate 
(15/3) 

Octanoate 
(14/3) 

1980±95$ 40.1±2.20 0.32±O.02 54.4±1.3 0.44±0.01 30.1±1.2 0.24±0.01 1.24±O.02 
21500±1100 65.0±2.0 658±22 31.4±1.9 1860±65 3.7±O.3 10900±680 1.00 

1390±74 43.6±2.6 0.32±O.02 55.7±2.1 0.41±O.02 37.5±1.8 0.27±O.01 1.37±O.02 
24100±1900 65.7±2.7 656±24 30.9±2.3 1890±120 3.6±O.5 10400±2000 1.01±O.00 

1480±93 43.8±3.0 0.34±O.02 55.2±1.5 0.43±O.01 30.5±2.7 0.23±O.02 1.29±O.02 
22600±4400 68.8±1.7 649±21 28.1±1.8 1910±71 3.2±0.4 14400±1700 1.00 

1400±71 45.0±2.4 0.33±O.02 53.1±3.2 0.39±O.02 37.7±1.4 0.28±O.01 1.36±O 
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Table 4: Fluorescence parameters of rat cardiomyocytes AF (J,.ex/Àem = 375 nrn/450 nm). Total photon counts, fluorescence lifetimes 

(d to 1"3) and their relative amplitudes (al to a3) of single cardiomyocytes in control conditions and in the presence of 1J.lmoVL Rotenone, 

4mmoVL cyanide, 50J.lmoVL DNP, 3mmoVL BHB with 150J.lffioVL or 1.5mmoVL AcAc (ratio 20:1 and 2:1 respectively), lactate (1 

mmoVL) in the presence ofpyruvate (100J.lffioVL) or Octanoate (1mmoVL). In grey, maximum AF emission (Pmax; time-resolved at ~t = 0 

ns), ca1culated relative intensities and relative fractions for each component, as well as average lifetime. Data are shown as mean ± SEM, the 

number of experiments shown as (number of cells/number of animaIs); *p<0.05 vs. control, #p<0.05 vs. Rotenone, &p<0.05 vs. BHB/ AcAc 

(ratio 2:1) 



3.2.6. NAD(P)H fluorescence in cardiomyocytes under ischemia-mimicking 

conditions 

74 

As mentioned in introduction (section 1.1.7.), myocardial ischemia is a pathological 

condition resulting in reduced ATP formation from oxidative phosphorylation, and 

altematively promotes the production of anaerobic ATP and lactic acid by glycolysis to 

maintain ATP level. This leads to accumulation of cytoplasmic NADH with the 

NADHINAD+ ratio increasing several-fold, accompanied by accumulation of lactate and 

H+ in the cell 72-74. Ischemia is also known to induce a rise in NADH fluorescence in 

cardiac tissue 160 at a rapid (minute-based) scale. To test the sensitivity of cardiomyocyte 

AF parameters to ischemia-like metabolic changes, we have therefore compared kinetics of 

NAD(p)H fluorescence in living cardiomyocytes in normoxic conditions (control) to 

ischemia-mimicking ones, induced at physiological temperatures by reducing ceU pH and 

oxygen content (see 2.1.3. ischemia-mimetic solutions for details) 161. After exposure of 

cardiomyocytes to these conditions for 5-10 min. steady-state AF was significantly 

increased (Fig. 25A), while no change was observed in normalized spectral shape (Fig. 

25B). Fluorescence lifetimes and their relative amplitudes were not significantly affected 

(Table 5) when compared to control normoxic conditions. 

Inhibition of the mitochondrial respiratory chain with Rotenone induced comparable 

changes of AF in ischemia-mimicking con4itions as in normoxia (Fig. 25C and D, 26A-F), 

except that it failed to significantly modify the fluorescence lifetimes (Fig.25B, D and F, 

Table 4). This result can be also related to lower number of experiments performed in 

control vs. ischemia-mimicking conditions. Despite this fact, the average fluorescence 

lifetime was significantly decreased as a result of concerted changes of several parameters 

(Table 5). In the presence ofDNP, the fluorescence intensity failed to decrease (Fig. 25E) 

and the spectral broadening was no longer present (Fig. 25F). This result can be due to 

modification in the mitochondrial membrane structure during ischemia, preventing the 

binding of the uncoupler. 1 st and 3rd fluorescence lifetimes were significantly prolonged in 

ischemia-mimetic solution in the presence of DNP, leading to a significant increase in 

average lifetime (Fig. B and F, Table 5). 
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Furthermore, we have estimated the percentage of nucleotides that have capacity to 

be oxidized in cardiac cells using the effect of modulators of mitochondrial respiratory 

chain described in chapter 1.1.4. Considering that the cell is working in fully-reduced 

conditions in the presence of Rotenone and in fully-oxidized ones in the presence ofDNP, 

or in other words that cardiomyocyte is working close to its maximum (100%) capacity in 

the presence of DNP and minimum (0%) capacity in the presence of Rotenone, we have 

estimated the percentage in the nucleotides that have capacity to be oxidized at a specific 

moment oftime from the total photon count as: 

S oxidized = (S Jully _reduced - S) I(S Jully Jeduced - S Jully _oxidized) 

= (S rotenone - S control) 1 S rotenone - S DNP ) 

(19) 

Using t~is equation at spectral maximum of 450 nm, our data indicate that in control, 

normoxic conditions, the mitochondrial respiratory chain oxidizes about 82 % of total 

available NADH, while this activity is lowered to about 43 % in ischemia-mimetic 

solutions, in agreement with expected inhibition of the respiratory activity in this condition. 

Our results indicate, in accordance with observations in hypoxic neuronal tissues 40, 

that increase in the NADH concentration inside mitochondria, rather than modification in 

the dehydrogenation rate is responsible for higher fluorescence values under ischemia­

mimicking conditions. However, the limit of this experiment is that used solutions do not 

completely mimic the ischemia condition in the heart. To improve this experiment in the 

future, we need to expose cells to ischemia condition at different time-scale (extending to 

an hour-exposure, for example) induce ischemia using external perfusion at physiological 

temperatures and/or provoke ischemic insult directly in the whole heart. 
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Figl;lre 25: Steady-state NAD(P)H fluorescence spectra of cardiomyocytes under 

ischemia-mimickingcondition. A, C and E: Steady-state emission spectra compared 

between normoxic and ischemic conditions in control, and in the presence of Rotenone 

(1!J,molJL) or DNP (50!lffiolJL), respectively. B, D and F: normalized spectra in the studied 

condition. * p<O.05 vs. normoxia. 
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Figure 26: NAD(P)H fluorescence Iifetimes and their relative amplitudes in ischemia­

mimicking conditions. A, C and E: Relative amplitude (al, a2 and a3, respectively). B, D 

and F: Fluorescent lifetimes (t!, T2 and -r3, respectively) following application ofRotenone 

(1~) orDNP (1~). * p<O.OS vs. control. 



Control 
(25/4) 

Rotenone 
(14/3) 

DNP 
(11/3) 

Total photon al TI az Tz a3 
connts [a.n.] [ ps 1- [ps] 

Pmax aiT, ri azTz rz 
[ a.n.] [a.n.] [*103] [a.n.] [*103] 

49500±1400* 68.0±O.9 651±17 28.7±O.8 2120±55 3.4±O.3 

201O±81 44.5±1.6 0.31±O.OI 60.1±1.4 0.42±O.01 
70000±3700$ 74.4±O.5 570±6 22.8±O.3 1930±44 2.9±O.3 

3800±1200$ 42.4±O.6 0.38±O.00 43.8±O.9$ 0.39±O.01$ 
25100±1300$ 69.2±1.4 979±85$ 25.6±2.0 2220±140 5.4±1.0 

743±69$ 68.5±6.7$ 0.32±O.02 57.7±6.3 0.29±O.04$ 
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T3 "l 
[ps] 

a3T3 r3 <T> 
1 a.n.] l*103] [ OS ] 

12500±1300 1.01±O.01 

40.0±4.9 0.26±O.02 1.45±O.05 
9300±560 1.09±O.04 

25.3±O.9 O.23±O.OI l.12±O.Ol$ 
19600±2600$ 1.03±O.02 

86.3±13$ 0.39±O.03$ 2.12±O.16$ 

Table 5: Fluorescence parameters of cardiomyocytes AF in ischemia-mimetic solutions (ÀexlÀem = 375 nml450 nm). Total photon 

counts, fluorescence lifetimes ("Cl to '[3) and their relative amplitudes (al to a3) of single cardiomyocytes in control conditions and in the 

presence of 1 J-lmollL Rotenone, or 50llmoVL DNP. In grey, maximum AF emission (Pmax; time-resolved at .M = 0 ns), ca1culated relative 

intensities and relative fractions for each component, as weIl as average lifetime. Data are shown as mean ± SEM, the number of 

experiments shown as (number of ceIls/number of animaIs); **p<O.05 vs. control in normoxia (Table 4), #p~O.05 vs. Rotenone, $p<O.05 vs. 

control in ischemia-mimetic conditions. 



3.3. Investigation of N AD(P)H fluorescence in living cells from human 

endomyocardial biopsies 
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Parts of this study have been published in CHENG Y., DAHDAH N., POIRIER N., 

MIRO J., CHORVAT D. JR., CHORVATOVA A., 2007: Spectrally and time-resolved 

study ofNADH auto fluorescence in cardiomyocytes from human biopsies. Proceedings of 

SPIE, the International Society for Optical Engineering Vol. 6771, Advanced Photon 

Counting Techniques II: 677104-1 to 677104-13, see attached Appendix II. 

3.3.1. Isolation of living cardiac cells from endomyocardial biopsies 

Isolation of cardiac cell from living human tissue is still rather rare procedure. We 

therefore :tirst needed to establish an appropriate isolation procedure to gather living human 

cardiomyocytes. We initially used modified procedure from Guinamard et al. 151(Approach 

l, see section 2.1.2 for details). However, using this approach, the yield of the isolated 

cardiomyocytes was not sufficient, about 2-10 cells/isolation, and sometimes the procedure 

failed completely. Cell morphology was not sustained, less than 5% rod-shaped and cross­

striated cells were found. We believe that this can be due to the fact that this procedure was 

originally designed for electrophysiological measurements. In our experimental conditions, 

in the absence of voltage-clamp, the ionic strength applied to the cell is therefore likely to 

depolarize it. This may have resulted in hypercontraction, despite the presence of BDM in 

the external media. Furthermore, we also advance that lack of calcium in isolation solution 

hampered enzymatic activity of the collagenase. In order to increase cardiomyocyte yield 

and viability and minimize cell damage, and therefore improve the quantity and the qua lit y 

of isolated cells, we have applied the Approach II, which was a modification of the 

procedure from Peeters et al. 152. This solution is based on Tyrode solution which is 

designed for contraction studies. In this case, 50l-lmollL of calcium was presented in the 

dissociation media to enhance the proteolytic activity ofthe enzyme. Using this method, we 

were capable to isolate 10-20 cardiomyocytes/isolation,. which were rod-shaped and with 

clearer striations. 

We noted following main factors due to which isolation of cardiomyocytes can lead 
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to low yield of isolated rod-shaped and cross-striated cells: (1) variability of the obtained 

biopsy fragment due to patient's condition variation. This was the case when the biopsy 

sample was taken from cardiac papillary muscles or tendons. It was also the case when the 

biopsy was not taken deep enough, in which case the color of the sample was white, 

meaning that not enough myocardium available in the specimen. However, tbis part of the 

procedure is fully dependent on the operation and on the surgeon, and constitutes therefore 

limitation of the study. (2) The severe cardiomyocytes damage that occurred during cell 

isolation process is thought to be caused by prolonged exposure of the cells to protease and 

lack of calcium for enzymatic activity of collagenase. However, collagenase itself caused 

minimal cell injury. Over-digestion decreases the yield of viable cells and increases the 

number ofseverely damaged cells. Choice ofright protease and collagenase concentrations, 

slicing the biopsy fragment into thin sections, as weIl as presence of low concentration of 

calcium reduced over-digestion process of superficial myocardial and speeded the 

dissociation process, wbich resulted in minimization of cells damage. (3) Selection of 

medium was also crucial in the isolation of human cardiomyocytes. High potassium salt 

solution (Approach I) produced lesser yield of cardiomyocytes, in agreement with previous 

fmding 152. 

InterestiIigly, steady-state spectra of human cardiomyocytes AF (Fig. 27 A), 

normalized spectral shape (Fig. 27B), as weIl as fluorescence lifetime (data not show) were 

not significantly different between the two cardiomyocyte isolating procedures, suggesting 

that cells isolated by both procedures are viable materials. 

3.3.2. NAD(P)H fluorescence in human cells: comparison to rat 

After gathering spectrally and time-resolved data of AF decay in human cells, we 

intended to make their comparison to models that are more commonly used for studyof 

metabolic activity of cardiac cells, such as the rat one. When compared to ventricular 

cardiomyocytes of rats, which were isolated from fragments of heart tissue by the same 

experimental approach as used for human biopsy (see section 2.1.2.), we found 

significantly smaller total photon counts in human cardiomyocytes (Fig. 27C). 
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Fluorescence decay was slower in human than in rat ceUs. This result was accompanied by 

significantly smaller relative amplitude of the 1 st lifetime pool, against significantly higher 

relative amplitude of the 2nd lifetime pool (Fig. 28A and C). We also noted that the 2nd and 

3rd lifetimes have tendency to increase in human ce Us, but this change was not significant 

(Figs. 28D and F, Table 6). We hypothesize that this result can be related to lower amount 

of NAD(P)H present in human ceUs due to higher metabolic activity of mitochondrial 

respiration and thus to more substantial ATP production. As expected, application of 

Rotenone increased the total photon counts of the human cells (Fig. 27C), while modifying 

fluorescent decays (Fig. 27E) by significantly rising amplitude of 1 st lifetime pool and 

decreasing the 2nd one. Rotenone had also tendency of decreasing the amplitude of 3rd 

lifetime pool (Figs. 28A, C and E, Table 6)~ These data point to possible higher metabolic 

activity in control conditions in human ceUs, when compared to commonly used rat model. 

However, a more profound study of human cardiomyocytes AF is needed in the future to 

avoid differences due to signal dependence on the ceU size. 

3.3.3. Stndy of NAD(P)H fluorescence in heart transplanted patients with different 

rejection grades 

Once we recorded spectral and lifetime characteristics of human cardiomyocyte AF in 

control conditions, we wantedto estimate whether the developed method is also sensitive to 

its changes with different rejection stages. In accordance to classification of allograft 

rejection stages for heart transplantation (lSHLT) 93, 150, the allograft rejection of heart 

transplantation are classified on a scale of 4 histological grades, namely Grade OR-no 

rejection; Grade IR-mild rejection; Grade 2R-moderate rejection; and Grade 3R-severe 

rejection. Estimation of histological grade of rejection in our studies had been done using 

endomyocardial biopsy by pathologists at CHU Sainte-Justine. We have correlated 

gathered results with the rejection grade from total of 14 patients: 6 cases presented no 

rejection (RO), 4 cases showed mild rejection (RI), while grade of remaining 4 cases was 

not known. Therefore, NAD(P)H fluorescence of human cardiomyocytes was compared 
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between RO and Rl grade. Comparison of human cardiomyocyte AF between RO and Rl 

showed significantly increased fluorescence intensity (Fig. 29A), with no change in the 

spectra shape (Fig. 29B). Neither the fluorescence intensity, nor the normalized spectra 

shapes in responses to Rotenone were significantly modified between RO and Rl (Figs. 

29C and D). Fluorescence decays were not significantly changed between RO and Rl, or in 

response to Rotenone (Fig. 29E). Fluorescence lifetime pools and relative amplitudes ofRl 

when compared to RO, remained unchanged (Table 6). This result can be comparable to the 

effect of ischemia-mimic conditions, points to possible lesser metabolic activity in the 

presence of rejection. However, further study is needed to fully understand limits of this 

approach and it possible use for rejection diagnostics. 
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Figure 27: Steady-state NAD(P)H fluorescence of human cardiomyocytes isolated 

from EMB of pediatrie heart transplanted patients. A-B: Steady-state and normalized 

spectra recorded in cardiomyocytes isolated by the two isolation methods, C, steady-state 

spectra, D, normalized spectra and E, fluorescence decays, recorded in human cells in 

control condition (RO) or in the presence ofRotenone (1llmollL), and/or in rat cells isolated 

in the same conditions. *p<O.05 vs. rat cells. 
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Figure 28: NAD(P)H fluorescence Iifetimes and relative amplitudes in human cells. 

Ruman cells in ·control conditions (Ra) or in the presence ofRotenone (illmol/L) compared 

to rat cells isolated by the same approach. A, Band C: relative amplitudes (al, a2 and a3), 

D, E and F: mean spectrally-resolved fluorescence lifetimes (-cl, 't2 and -c3), *p< 0.05 vs. 

rat cells, #p< 0.05 vs. human cells in control condition. 
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Figure 29: Steady-state NAD(P)H fluorescence of human cardiomyocytes with 

difTerent grade of rejection (ISHLT). A) steady-state spectra and B) normalized spectra . 

compared between RO and RI. C: Steady-state and D) normalized spectra compared 

between RO and RI in the presence of Rotenone (llJ.mollL). E: Fluorescence decays 

compared in different experimental conditions, *p<O.05 vs. RO group. 
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Total photon Pmax a) T) a2 T2 a3 T3 

counts [a.u.] [a.u] [ps] [ps] [ps] 

Human+RO 8500±590 680±29 58.1±O.7 621±17 35.8±O.9 2180±63 6.4±O.7 15900±960 

(control) (51/6) 

Human+R1 12700±1200* 850±39 55.9±O.7 589±16 39.7±O.9 2420±82 5.8±O.8 12100±840 

(30/4) 

RO + Rotenone 17400±1600*# 1040±110* 65.4±O.9# 543±18 31.7±O.8*# 2130±150 3.6±O.8 12400±1000 

(7/2) 

RI + Rotenone 16800±2690* 950±95 67.0±1.5*# 616±25 - 28.2±1.2*# 1990±200 5.2±O.7 10800±1400 

(4/1) 

Rat cells 25200±2500*# 1650±370* 70.4±O.6* 649±13 26.3±O.8* 1980±75 3.6±O.6* 9300±930* 

(8/1) 

Table 6: Fluorescence parameters of buman cardiomyocytes AF (ÀexlÀem = 375 nml450 nm). Total photon counts, fluorescence 

lifetÏmes Cd to 't3) and their relative amplitudes (al to a3) in human cardiomyocytes, or in the presence ofRotenone between rejection grade 

RO and RI, and in the rat cardiomyocytes isolated using same approach as used in EMB. Data are shown as mean ± SEM; the number of 

experiments shown as (number of cells/ samples); *p<O.05 vs. human cells in control condition (RO), #p<O.05 vs. human cells present 

rejection RI. 
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3.4. Perspectives 

Despite advantages of simultaneous recording of fluorescence spectra and lifetimes, 

the achieved work has a limitation that our current analysis of fluorescent decays is not able 

to precisely separate individual components in the recorded AF data. In perspective, to 

overcome this limit, we therefore propose to se arch for better separation of individual 

lifetime components (instead oflifetime pools), applying methods such as decay-associated 

spectra (DAS) and time-resolved emission spectra (TRES). In a prospective study, we have 

tested the feasibility of such analyses. 

3.4.1. Decay associated spectra of NAD(P)H fluorescence 

To precisely analyze spectra related to specifie lifetime pools, decay associated spectra 

(DAS) can be estimated as a fraction of total fluorescence emission for each lifetime pool. 

These spectra serve to understand the relative contribution of the lifetime pools in studied 

experimental conditions. We attempted this approach and DAS were constructed for each 

lifetime pool as a product ofwavelength-dependent fraction of the fluorescence emission of 

each lifetime pool with respect to the total fluorescence, multiplied by total photon counts 

(see section 2.2.4.) 132. Constructed DAS data (Fig. 31) showed that, in control conditions, 

the 1 st and 3rd lifetime pool had spectral amplitude around 470 nID, while the 2nd lifetime 

pool is comprised of a blue-shifted peak with the maximum around 450 nm and the red­

shifted shoulder at 490 nm. This result suggests presence of spectrally-distinct populations 

of NADH molecules. Rotenone increased the intensity of all three DAS lifetime pools, 

while DNP mainly affected the DASI and the DAS2, as did the changes of BHB/AcAc 

ratio. 

However, DAS analysis is only relevant when single fluorescence lifetime value can 

be assigned to specific lifetime component and when tbis value is constant, e.g. unchanged 

in studied experimental conditions. Apparently, this is not our case, as both the change in 

lifetimes of the fluorescence pools, as well as the mixed-character of the intermediate 

lifetime pool (like1y involving the emission from various forms ofNAD(P)H) point to non­

specificity ofidentified lifetime pools and indicate that analysis of the fluorescence decays 



88 

alone is failing to assign estimated values to precise molecular states and/or conformations. 

Instead, additional analytical approaches such as TRES, are required ,to c1early distinguish 

between individual NAD(P)H states. 

3.4.2. Analysis of time-resolved emission spectra of NAD(P)H fluorescence 

To consolidate the analysis of the spectral and temporal distribution of AF intensity, 

a complementary approach to the exponential decay analysis by applying TRES 

representation 147 can be used. In brief, photons counted in several consecutive time 

channels were summed to minimize the inherent photon shot-noise and the spectra of 

NAD(P)H were construCted at different time intervals after the excitation by the laser pulse 

(Fig. 32A). We attempted this approach (see full description in section 2.2.4.) to resolve 

time-dependent changes in NAD(P)H spectra (Fig. 32B). TRES analysis revealed two 

peaks at 456 nm and 496 nm in control conditions. In contrast to the second peak, the [IfSt 

(456 nm) peak rapidly faded in the [IfSt couple of nanoseconds, suggesting a process with a 

corresponding lifetime of 1-2 ns or less. At ~t = 0 ns (Fig. 32C and D), we observed 

significant changes in spectral profiles with Rotenone and DNP, which were present, but 

less pronounced at ~t = 4 ns (Fig. 32E and F). Gathered data corroborated findings from the 

. steady-state spectra (total photon counts in different spectral channels). This result suggests 

that the modulators of respiratory chain mainly affect the fust, rapid-lifetime component. 

This result showed the feasibility of future use of the TRES approach in the future for 

isolation of principal components of NAD(P)H fluorescence. In such context, TRES 

analysis can be emp10 yed, after estimation of reference spectra of principal NAD(P)H 

components by principal component analysis (PCA), followed by linear unmixing. This 

approach was already tested and achieved in the lab for spectral separation of flavin 

components in multispectral microscopy images 162 TCSPC data 143, as well as in 

separation of calcium-probes fluorescence signal from AF 144. 
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Figure 30: Decay-associated spectra (DAS) of NAD{p)H fluorescence in 

cardiomyocytes. A: DAS for the 1 st lifetime pool, B: DAS for the 2nd lifetime pool, and C: 

DAS for the 3rd lifetime pool, in control conditions and in the presence of IJ..lmollL 

Rotenone, 50J..lffioVL DNP, or following application ofBHB/AcAc (ratio 20:1 or 2:1). 
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Figure 31: Time-resolved emission spectroscopy (TRES) of NAD(P)H fluorescence in 

cardiomy~cytes. A. Construction of TRES from representative original recording. B. 

Example of TRES of cardiomyocyte AF resolved with 0.5 ns resolution (At 0.5 ns) in 

control conditions. Emission spectra (C, E) and normalized spectra (D, F) resolved at At 0 

ns (C, D) and at At = 4 ns (E, F). Number of cells is as in Table 4; *p<O.05 vs. control, 

#p<O.05 vs. Rotenone, &p<O.05 vs BHB/AcAc (ratio 2:1). 
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4. Discussion 

ln the present contribution, we have demonstrated the following original fmdings: 

(1) NAD(P)H fluorescence fingerprinting, achieved by spectrally-resolved lifetime 

spectrometry technique, is a useful tool for stùdy of modifications in the mitochondrial 

oxidative metabolism in living cardiomyocytes. 

(2) At least 3 different NAD(P)H fluorescence lifetime pools are present to describe 

its free and bound conformational states in living cardiac cells. Spectral and temporal 

characteristics of cardiomyocyte NAD(P)H fluorescence are sensitive to the modulation of 

NADH production and/or the respiratory chain. Steady-state fluorescence intensity of 

NAD(P)H Îs increased and fluorescence lifetimes and average fluorescence lifetimes are 

shortened in the presence of Rotenone, the inhibitor of the Complex 1 of the respiratory 

chain. On the other hand, the fluorescence intensity is significantly lowered and 

fluorescence lifetimes and average fluorescence lifetime prolonged after application of 

DNP, an uncoupler of ATP-synthesis. The stimulation of NADH production by 

modification of the BHB/ Ac Ac ratio is correlated with a rise in fluorescence amplitude, 

without changes in fluorescence lifetimes. These effects corroborate our in vitro findings. 

Ischemia-mimicking conditions caused increase in the amount of NAD(P)H in 

cardiomyocytes, indicating altered initochondrial energy balance. 

(3) We aIso evaluated, for the first time, spectrally-resolved lifetime characteristics of 

NAD(P)H fluorescence in living cardiac cells isolated from human endomyocardial 

biopsies of pediatric heart transplanted patients with different rejection grades. NAD(P)H 

fluorescence was found significantly lower in human than in rat cardiomyocytes. Rotenone 

increased the fluorescence in human cardiac cells, making them more comparable to 

experimental rat model. Steady-state NAD(P)H fluorescence spectra were significantly 

increased in human hearts with rejection stage RI when compared to healthy transplanted 

heart. These results suggest that human cardiac cells are more metabolically active than rat 

cells in the same conditions and this activity seems decreased during rejection process. 
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(4) In perspective, new analytical approaches were tested. DAS analysis revealed 

presence of 4 spectrally-distinct populations of NADH molecules in cardiomyocytes with 

spectral maximum at 470 nm for short-lifetime component, and ernission peaks at 450,470 

nm and 490 nm for intermediate and long-lifetime components. TRES analysis revealed 

two peaks at 456 nm and 496 nm in control conditions. In contrast to the second peak, the 

frrst (456 nm) peak rapidly faded in the fust couple of nanoseconds, suggesting the 

presence of the pro cess with a corresponding lifetime of 1-2 ns or less. These findings 

corresponds conformational states of NADH molecule. Precise separation of these 

components ofNADH fluorescence will be attempted in the future. 

4.1. Fingerprinting of metabolic oxidative state in living cardiomyocytes 

In the heart, endogenous blue fluorescence is well known to result from the reduced 

mitochondrial NAD(P)H following excitation with the UV light 98,100,103. At fluorescence 

spectral emission wavelength of 450 nm, where the maximum fluorescence intensity was 

recorded, at least 3 exponential components were needed to achieve acceptable X2 values 

«1.2) during analysis of cardiomyocyte AF decays 147. As the fluorescence lifetimes 

indicate typical decay times of the excited state of the molecule, possibly m sorne 

conformation-specific state, the presence ofthree lifetime pools could indicate the existence 

ofthree different states ofNAD(p)H molecules with distinct fluorescence kinetics in single 

cells. However, this is only true under the condition where each molecular conformation is 

linked to a single lifetime value, which is not the case for NAD(P)H in most physical and 

chemical conditions; instead the fluorescence decay of NADH is mostly bi-exponential 

with the lifetime values spanning from 1 ns (the short lifetime pool) to 7 ns (the long 

lifetime pool) 138. Such simplification may therefore not be appropriate for NAD(P)H 

fluorescence ernission in cardiac cells. The most relevant analysis of such complex system 

would. be the spectrally-resolved lifetime distribution analysis by maximum entropy 

method, followed by spectral unmixing of the DAS. Nevertheless, as this procedure 

requires vast computational and experimental resources that are not readily available, we 
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have opted for its simplified variant, which involves the same formalism as used by 

Blinova et al. 132, This approach de fines three observable lifetime pools, covering the short, 

the intermediate and the long-lifetimes as representative intervals where several species can 

be observed simultaneously. To spectroscopically examine possible molecular origins of 

the fluorescence components, we analyzed their changes in response to modulation of 

cardiomyocyte metabolic state. Obviously, the chosen approach does not aIlow to separate 

the stacked vs. opened conformations of free NADH in solution, reported by other authors 

in solvents 137, 163, or in ceUs 40, Nevertheless, fluorescence lifetimes resolved in multi­

exponential analysis in single cardiomyocytes were weIl comparable to those gathered for 

NAD(p)H in isolated heart mitochondria by Blinova et al. 132, where three NAD(P)H 

fluorescence lifetime pools were found: the free pool (with a lifetime of 0.2-0.4 ns), the 

intermediate pool (I -2 ns) and t~e long lifetime pool (3-8 ns). The intermediate and the 

long lifetime pools were ascribed to protein binding ofNAD(P)H, which make up 035% of 

the total NADH while contributing almost 80% ofthe fluorescence emission, Our analysis 

in single cardiac cells corroborated these fmdings in mitochondria, inc1uding the fact that 

the relative amplitude ofthe 1 st lifetime pool is the most abundant. 

We have also confirmed a blue-shift of the steady-state fluorescence spectral 

maximum of NAD(P)H in cardiomyocytes vs. free NADH in vitro, already reported in 

cardiomyocyte mitochondria 132. The emission spectra of NAD(P)H in most tissues have 

been demonstrated to be blue-shifted by 10-20 nm as compared to free NADH in solution 

38,103,164, or following binding to dehydrogenases 38. According to the derived DAS, DAS2 

of the cardiomyocyte AF was blue-shifted when compared to DAS 1 in control conditions. 

Besides, rise in the NADH by increased BHB/ Ac Ac ratio shifted the spectrum of the 3rd 

lifetime pool towards blue spectral region in cardiomyocytes (Fig. 31). These findings 

indicate that NADH binding to enzymes can underlie observed blue-shift, as proposed 

previously for cardiac tissue 38,132. Furthermore, our experiment with lactate and pyruvate 

corroborates findings by others 21, 38, 41, 120 that AF of cardiomyocytes results from 

mitochondrial, rather than cytosolic NADH as elevation of lactate and pyruvate 



94 

concentration greatly increased the cytosolic NADHI NAD+ ratio but had a lesser effect on 

the mitochondrial NADHI NAD+ ratio. These results indicate that pro cesses described for 

cardiomyocyte AF in this contribution can be assigned primarily to sub-mitochondrial 

pools. 

Free NADH in water solution was proposed to exist in two conformations: folded 

(NADH with stacked dinucleotide and adenine moiety) with the lifetime of 350 ps and 

extended (open form) with the lifetime of760 ps. When existing as a mix in water solution, 

the average lifetime of the free NADH was described in the range of 400-500 ps 40,126, 

which is in agreement with the lifetime resolved for the 1 st lifetime pool, suggesting that it 

can be attribut able to such free forms. In single celI, the NADH is generated in the.process 

of Krebs' cycle, acetyl-CoA from fatty acid ~-oxidation and from pyruvate oxidation are 

two major sources for NADH production by Krebs' cycle in the heart. Resolved 

components were therefore tested for higher levels of mitochondrial NADH in 

cardiomyocytes using BHB in the presence, of AcAc 29. Low concentrations of AcAc, the 

condition favorable to NADH production, led to an increase in the fluorescence intensity 

without change in fluorescence lifetimes (as defined using the lifetime-pool model) when 

compared to more physiological concentrations of AcAc. The effect of higher BHBI Ac Ac 

ratio in cardiomyocytes is in agreement with changes provoked by rise in NADH 

concentrations in vitro. Overall, no modification in the lifetime pools or in their relative 

amplitudes was observed in relation to increased NADH concentration in vitro (for the 

range of tested concentrations between 1 to 100 JlIllollL). This is in agreement with 

previously published data 126, but in contrast with calculated estimations 40, which could be 

explained by smaller (/lmol!L vs. mmollL) concentrations tested. It is noteworthy that our 

results point to lower NADH concentrations in cardiomyocyte mitochondria (in order of 10 

to 100/lmollL) than previously estimated in cardiac trabeculae 165. This result is, however, 

strongly dependent on assumption that linear concentration-dependence of NADH 

fluorescence observed in vitro is applicable in the cellular environment. Our data indicate 

that rise in NADH concentration in cardiomyocytes is primarily translated into increased 
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amplitudes of DAS of an three lifetime components without modification in the average 

lifetime. 

uv -excited AF in cardiac ceUs is considered originate primarily from the endogenous 

fluorescence ofNADH, rather than NADPH, due to high mitochondrial NADH levels. At 

least 80% of the AF is essentially considered to be from NADH alone 38,39,116,126-128. 

Nevertheless, our studies of NADH and NADPH molecule fluorescence in intracellular 

media-mimicking solutions (see Appendix 1) 33 demonstrated that NADH and NADPH had 

close spectral profiles, the spectral characteristics of NADH and NADPH make them 

indistinguishable from fluorescence signaIs in biological samples, such as cardiomyocytes. 

These results were in agreement with previously studies 117,126,132,166. Curiously, we have 

identified difference in their lifetimes. This can be due to distinct kinetics of the two 

molecules, or the presence of impurities; kinetics of further purified molecules needs to be 

done in the future. As there is no known photophysical means to discriminate NADH 

fluorescence signaIs from that ofNADPH in living ceUs 12632, we term the measured AF as 

that ofNAD(P)H fluorescence. 

In living cells, NAD(P)H forms complexes with several enzymes, which makes the 

interpretation of the NAD(P)H signaIs from intact tissues particularly difficult. We have 

applied modulators of the respiratory chain to further characterize fluorescence lifetime 

species related to NADH. Namely, we have used Rotenone, the specific inhibitor of the 

Complex 1 of the respiratory chain 59,158 and DNP, an uncoupler of ATP synthe sis 50,167, 

stimulating NADH dehydrogenation. Effects ofRotenone and DNP on spectral amplitudes, 

determined by total photon counts, were comparable to those of cyanide and FCCP 

respectively, described previously in cardiac tissue 38. Rotenone induced significant 

increase in the cardiomyocyte AF intensity, in accordance with the rise in NADH content 

inside mitochondria following inhibition ofthe mitochondrial respiration. The inhibitor also 

significantly decreased the average lifetime, but without affecting the relative fractions of 

the lifetime pools. The effect of the Rotenone in cardiomyocytes is in agreement with the 

shortening of fluorescence lifetimes identified in adipocytes l59
, although no change in 



96 

fluorescence decays was found ID liver mitochondria 126 following application of the 

inhibitor. 

DNP uncouples oxidative phosphorylation by carrying protons across the 

mitochondrial membrane, thereby destroying the proton gradient that drives oxidative 

phosphorylation. This leads to stimulation of NADH dehydrogenation to NAD+ by 

Complex l in mitochondrial respiration, and a rapid consumption of energy without 

generation of ATP 50,98. Application of DNP induced significant decrease in the steady­

state AF intensity. This effect was accompanied by spectral broadening of emission 

wavelength by about 20 nm towards red region, as weIl as by an increase in the 

fluorescence lifetimes when compared to control conditions, which became even more 

pronounced when compared to Rotenone. Analysis of DAS pointed to the fact that the 

effect of DNP primarily results from the spectral change of the 1 st and 2nd lifetime pools. 

Such behavior is in agreement with the one observed after NADH binding to LipDH in 

vitro, associated with the decrease of the emission amplitude, the red spectral shoulder, as 

weIl as the prolongation of the 2nd fluorescence lifetime. At low temperatures, NADH 

fluorescence decay in most solutions was reported to be two-exponential 137, depending 

upon solvent polarity and viscosity. The nature of the intermediate lifetime pool, although 

not interpreted with certainty, was mostly linked to sorne form ofbound NADH 40,132 and 

our experiments with DNP corroborate these findings. The two-exponential fluorescence 

kinetics ofNADH were described to follow the dynamic quenching ofNADH fluorescence 

via formation of non-fluorescent transient species from the fust excited state 137, 138. 

Therefore, the same pattern is likely to exist for the bound state of NADH in cellular 

environment, leading to the mixed-character of the intermediate lifetime pool involving the 

emission from various bound forms of NADH. This fact is supported by the character of 

the DAS2, where at least two distinct spectral peak:s (450 and 490 nm) could be observed. 

In addition, TRES analysis of the long lifetime component revealed a new emission peak: 

appearing at 470 nm after stimulation with RotenOJie over the blue-shifted spectra ofbound 

forms ofNADH (440-470 nm). Whether this peak can be related to the increased NADH 
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production, manifested by the rise in the 470 nm-peak in the DAS of the short component, 

remains unclear. 

The 3rd lifetime pool could not be associated with a single molecular species. The long 

lifetime pool covering the lifetimes of -5-10 ns was described to be related to bound state 

of NADH, supported by the fluorescence anisotropy decay analysis, used as a 

complementary assay probing the rotational mobility of the resolved molecular populations 

40. NADH binding to enzymes mostly involves non-covalent electrostatic interactions 

between the protein and NADH, which adopts a rotationally immobile (at the nanosecond 

scale), "opened" conformation 40. Thus, one can expect that the fluorescence kinetics of 

such astate would be similar to those of NADH in very viscous environments. Our data 

indicate that the 3rd fluorescence lifetime pool is sensitive to overall dynamics between 

NADH dehydrogenation and its production in cardiac cells. Indeed, upon metabolic 

modulation by DNP, the 3rd fluorescence lifetime was increased when compared to those 

by Rotenone and had also an increasing tendency with higher. BHB/AcAc ratio. 

Furthermore, the 3rd lifetime pool was also enhanced after application of Octanoate 

(lmmollL), a medium chain fatty acid that is not regulated by the· carnitylpalmitoyl 

transport system in cardiomyocytes 22-24,· but is completely oxidized through the 

mitochondrial ~-oxidation and respiration pathways 25, 26. Octanoate induces both, the 

NADH generation by the Krebs cycle following dehydrogenation of octanoyl-CoA 27 and 

an uncoupling effect 28, suggesting additive and/or multiple origins of the 3rd fluorescence 

lifetime pool, perhaps in a specific sub-mitochondrial environment. 

Multiple efforts were made to distinguish free vs. bound states ofNADH molecules in 

living tissues. Our observations suggest the presence of several populations of fluorescing 

molecules in cardiac mitochondria, excitable with UV light. We propose that the flYst 

lifetime species with 0.6 ns lifetime and spectral maximum around 470 nm seem to 

correlate with free (both folded and unfolded) conformations, whereas two other groups of 

species with the longer lifetimes and 450-490 nm spectral maxima rather correspond to 

enzyme-bound NADH conformations. Our data indicate that in living cardiomyocytes, the 
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modification in the mitochondrial NADH content is mainly correlated with the fluorescence 

intensity at 450 nm without changes in fluorescent lifetimes and that NADH binding to 

LipDH enzyme leads to significant modification of the average lifetime. 

Altogether, our data point to the existence of at least 3 spectrally-distinct populations 

ofNADH molecules in cardiomyocyte mitochondria, corresponding to both free and bound 

conformational states. In addition to relatively well-resolvable free NADH with short (sub­

ns) fluorescence lifetimes and the ~470 nm emission peak:, we pro vide evidence of species 

having nanosecond lifetimes and fluorescence spectra shifted towards blue, as well as to red 

wavelengths. Both, TRES and DAS analysis suggest that spectral broadening towards 

wavelengths longer than the emission maximum ofNADH molecule in solution can be due 

to modification in the relative presence of these spectrally-different NADH populations in 

single cells. One of the candidates responsible for the change in the presence of distinct 

NADH populations is the LipDH. The LipDH flavoprotein served as example to investigate 

NADH dehydrogenation. Observed increase in the lifetime kinetics can be related to 

conformational changes of NADH induced by the enzyme. Indeed, upon dehydrogenation, 

the oxidized form of the protein promotes the binding of the neutral dihydro-nicotinamide 

moiety of NADH 168, in addition to the formation of negatively charged charge-transfer 

complexes between transiently bound NAD+ and covalently bound F AD co factor. In this 

reduced form, nicotinamide moiety is in a different conformation from uniformly ordered 

structure of NADH juxtaposing nicotinamide and isoalloxazine flavin ring systems and is 

not proximal to FAD 168, which can be reflected in the change of fluorescence kinetics. 

Overall, following the binding to LipDH, NADH molecule can therefore exist in at least 

two different conformational states. Our results are in favor for a possible switch from one 

NADH conformation to another. 

In addition to this explanation, the decrease of the NADH intensity following binding 

of NADH to LipDH, the increase of the 2nd fluorescence lifetime pool and the appearance 

of the red-spectral shoulder can also have another interpretation. The normalization of 

emission steady-state spectra of cardiomyocyte in the presence of DNP revealed the red-
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spectral shoulder was broader than the one observed free NADH in the presence ofLipDH 

in vitro. This may be due to part of the AF originate from endogenous flavins, which emits 

green F AD fluorescence with maximum around 500-520nm after visible light excitation 

(420-460 nm) 99,102,162,169, and is involved in oxidation-reduction reactions with NADH. 

Possible contamination of our recordings with the fluorescence arising from LipDH-bound 

FAD following excitation at 375 nm is improbable, as no fluorescence additional to 

background could be identified in vitro for LipDH alone, in the absence of NADH. 

Decrease in the emission fluorescence at 450 nm, spectral broadening towards 520 nm, as 

weIl as spectraIly-dependent change of the 2nd lifetime pool in vitro are aIl in favor with 

possible Forster resonant energy transfer (FRET) to LipDH-bound FAD. As the LipDH­

binding domain for NADH is in close proximity to F AD+ -binding one168
, 170 and the 450 nm 

emission maximum of NADH corresponds exactly to an absorption peak: of the F AD+ 

moiety, this fulfils the prerequisites for the FRET between NADH and F AD+ molecules. 

Considering that the C4 atom of the nicotinamide base is aligned for hydride transfer with 

N5 of the FAD at an average distance of 0.3 nm 168 and that the most efficient FRET is 

known to occur between two molecules which are closer than 2-7 nm 171, it is conceivable 

that excitation of NADH would induce a FRET with FAD+ molecules. However, we 

previously discussed 33 (see Appendix 1) the lack of FRET in enzyme-stimulated NADH 

dehydrogenation in intracellular solutions and, comparably, we found no proof of possible 

FRET between NAD(P)H and flavins in cells: namely lack of 'Cl shortening of the 

NAD(p)H donor (see Table 4, conditions where dehydrogenation is affected such as 

application ofDNP) is discussed in relation to condition where the rate of dehydrogenase is 

increased, such as application of DNP, is arguing against an eventual energy transfer. A 

further study is needed to fully understand significance of changes in NAD(P)H 

fluorescence following its binding to enzymes in living cells. 

Nevertheless, precise distinction of individual NAD(P)H fluorescence component 

requires additional approaches. Use of the PCA followed by spectral linear unmixing 

techniques, which were aIready successfully attempted for free and bound flavin 
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fluorescence in the rat in cardiomyocytes 143,162, is a suitable strategy to be ernployed in the 

future to clearly elucidate separate roles of individual lifetirne species of NAD(P)H. This 

approach allows more advanced separation of the spectral and lifetirne components in 

NAD(P)H fluorescence than previously achieved. 

4.2. Changes of metabolic oxidative state in living cardiomyocytes under 

pathophysiological conditions 

Our studies clearly demonstrated that metabo lic state can be deterrnined directly in 

living cardiac cells with good reproducibility via measuring their naturally occurring 

NAD(P)H fluorescence by spectrally and time-resolved ernission spectroscopy approach. 

We have therefore tested use ofthis technique to study rnitochondrial oxidative metabolism 

changes in pathophysiological conditions. 

The heart is a pump converting chemical energy into mechanical work and the power 

for this work is gathered almost entirely from oxidation of carbon fuels and to a great 

extent these fuels are provided by coronary (myocardial) blood flow. Such oxidative 

metabolism is prirnarily the function of mitochondria in the process of oxidative 

phosphorylation. Because of the high oxidative metabolism, heart célls have elevated 

oxidative capacity, demonstrated by their ultrastructure: 25-35% of total cardiomyocyte 

volume is occupied by mitochondria 82. Myocardial ischemia occurs following a reduction 

or restriction in coronary blood flow result in a series ofbiochemical reactions occurs in the 

cardiac cells. When oxygen delivery to the myocardium is abnormally low, the Krebs' cycle 

is blocked, the rate of oxygen consumption and aerobic ATP formation from oxidative 

phosphorylation are insufficient to support the required cardiac power for a given heart rate, 

arterial blood pressure, and inotropic state. The cell therefore turns to anaerobic metabolism 

and accelerates production of anaerobic ATP and lactic acid, in addition to suffering from 

oxygen deprivation 172 to maintain ATP level by glycolysis. This leads to accumulation of 

cytoplasrnic NADH, with the NADHINAD+ ratio increasing several-fold, and accompanied 

accumulation of lactate and H+ in the cell 72-74. Many researchers have identified Complex l 
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as a major site of damage to the respiratory chain in ischemia 75,76 and observed a reduction 

in oxidation rate for NADH-linked substrates by up to 60%. Oxidation rates with succinate 

were unchanged, suggesting that the damage was restricted to Comp1ex L Th~refore, 

difference in redox states of NADHlNAD+ pools during ischemia could reflect ATP 

generated by anaerobic metabolism. 

NADH changes were proposed to play crucial role in ischemia/reperfusion injury 86, 

Exposure of cardiomyocytes to ischemia-mimetic conditions, namely reducing cell pH 

(6.8) and oxygen content (deoxygenated with 100% NÛ for 5-10min, lead to significantly 

increased NAD(P)H fluorescence intensity, while flu~rescence lifetime pools and their 

relative amplitudes were not significantly affected when compared to control normoxic 

conditions. As we have demonstrated no sensitivity of fluorescence kinetics to change in 

pH alone, this result is more likely to be related to lack of oxygenation and/or reduction in 

ATP production due to inhibition ofrespiratory chain during ischemia. Accumulation ofthe 

NADH content inside mitochondria, with increasing NADHINAD+ ratio under ischemia­

mimicking conditions, is in agreement with biochemical changes in ischemia 13,36,72,74. In 

regard to the effect of the Rotenone and DNP on the steady-state AF, we have estimated 

percentage of oxidized nucleotides to about 82 % in control normoxic conditions. In 

ischemia-mimicking conditions, this percent age was lowered to 42%, while cardiomyocyte 

AF related to NADH was increased. This effect was comparable to the one observed in 

neuronal tissues following hypoxia 40 and suggests that changes in ischemia-mimicking 

conditions are rather related to modifications of NADH content than to change in the 

NADH binding to enzymes of the respiratory chain. Our data gathered in ischemia-mimic 

condition therefore point to modification in the NAD(P)H content rather than binding to 

enzymes of the respiratory chain. 

We then evaluated, for the first time, spectrally-resolved lifetime characteristics of 

- NAD(P)H fluorescence in living cardiac cells isolated from human endomyocardial 

biopsies of pediatric patients. Rejection of transplanted hearts is still the principal reason 

for death of transplanted pediatric patients. Organ rejection of transplants includes 
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hyperacute rejection, acute rejection and chronic rejection. Hyperacute rejection appears 

shortly after operation and is often easily recognized, as the patients are well monitored in 

this period. This is usually due to immune system changes that may occur after the 

transplantation. However, more problems are encountered conceming the recognition and 

the diagnosis of acute and chronic rejections, as well as cardiac allograft vasculopathy, or 

the graft coronary artery disease (GCAD). This type of rejection can occur at anytime after 

the heart transplantation, often several years after the operation 93,96. In these conditions, 

the coronary arteries develop progressive and diffuse (scattered and spread out) narrowing 

throughout their entire length, which result in nutrients and oxygen deprivation of the heart 

and lead to the failure of normal cardiomyocyte function. Acute rejection is defined as 

lymphatic inflammatory infiltration with associated damage and/or necrosis of cardiac cells 

or cardiac tissue 93. Alteration of coronary vascular regulation during acute rejection may 

induce graft dysfunction and promote the occurrence of coronary atherosclerosis in 

transplant recipients 94. Moreover, ischemia-reperfusion injury was also proposed to be an 

important alloantigen-independent factor 95 observed during cardiac rejection and leading 

to hypoxia in cardiomyocytes. Such modifications, which also inc1ude alterations in the cell 

oxidative metabolism, often develop rapidly. Sorne observations suggest that cardiac cells 

undergo changs in their oxidative state with the progression of cardiac rejection 84, 83, 

namely as a result of cell hypoxia, following oxidative modification of cardiac cells. 

Precise evaluation of the oxidative metabolism can therefore serve as an early indication of 

the rejection oftransplanted hearts. 

In human cardiomyocytes, a comprehensive study on the contribution of changes in 

NAD(P)H is largely missing. Our data show good reproducibility ofresults and comparison~ 

with commonly used models, such as the rat one. Our results indicate that the use of 

spectrally-resolved TCSPC method can improve the analysis of the metabolic state of 

isolated cardiac cells and suggest that human cells are more metabolically active than the 

rat ones in the same conditions. AF spectroscopy has been widely used in the early 

detection of different types of cancers 173 174 and was also attempted in examination of 
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transplanted tissues. In the heart, a strong correlation was found between changes in AF 

spectra and the rejection grade in rat heart allograft model 175, but more difficulties were 

encountered ùsing human tissues 176, possibly due to use offrozen fractions, as weIl as lack 

of analysis of dynamic parameters of the recorded fluorescence. Our results of NAD(P)H 

fluorescence in paediatric heart transplanted patients with different rejection grades 

demonstrated higher steady-state NAD(P)H AF in RI when compared to RO rejection 

grade. Significant increase in the fluorescence intensity in RI may indicate lesser metabolic 

activity and thus ATP production during rejection process. This result, observed in the 

absence of fluorescent lifetime modification is comparable to changes induced in ischemia­

mimetic condition. These preliminary experimental data therefore gave us sorne promising 

direction, however, precise understanding of the pro cesses that take place during rejection 

still needs recruitment of more cases with specific rejection grades and precise separation 

of individual components. 

Based on data gathered in this contribution, we therefore propose to use the spectrally­

resolved TCSPC approach as an interesting new multiparametric tool that can be applied to 

freshly-isolated cells from human biopsies, and eventually Iead to new diagnostic 

approaches for early detection of allograft rejection. In addition to its higher sensitivity than 

conventional techniques, another advantage of tbis method is the possibility of its 

combination to multiphoton confocal micr6scopy, which, in the future, can result in the 

adaptation ofthis approach directly to tissue biopsy without the necessity ofcell isolation. 



104 

5. Conclusions and Perspectives 

In summary, in this contribution, we present the use of fluorescence spectral analysis 

coupled to fluorescence lifetime detection as a new sensitive tool to examine modifications 

of the oxidative mitochondrial metabolism in living cardiomyocytes. NAD(P)H 

fingerprinting is achieved by spectrally-resolved lifetime spectrometry approach. 

We demonstrate that spectrally-resolved TCSPC recordings of cardiomyocyte AF 

lifetimes allow fast and reproducible measurements of NAD(P)H-based fluorophores and 

complex patterns oftheir spectra and lifetimes. Resolved fluorescence spectra and lifetimes 

of NAD(P)H are sensitive to regulation of mitochondrial respiration, as well as metabolic 

substrate availability in living cardiac cells. Changes in NAD(P)H fluorescence decay 

clearly corre1ated with modifications of mitochondrial oxidative metabolic states, indicator 
1 

of mitochondrial functions. We also tested responses of NAD(P)H fluorescence when 

cardiomyocyte underwent ischemia-like condition. Accumulation of the NAD(P)H inside 

. mitochondria corroborated biochemical changes in ischemia found previously. 

Furthermore, we report spectrally-resolved lifetime characteristics of NAD(P)H 

fluorescence in living human cardiac cells, isolated from endomyocardial biopsies of 

pediatric heart transplanted patients. We have analyzed the kinetics of cellular NAD(P)H 

fluorescence in samples ofpatients with different rejection grades. We observed that human 

cells are more metabolically active than the rat ones in the same conditions, and that 

metabolic activity and thus ATP production decreased during rejection process. In 

perspective, we project to' examine more subjects with different rejection grades of their 

transplanted hearts. In order to precisely identify specific fluorescence component and thus 

separate distinct populations of NADH molecules in living cells, we will also further 

examine application of advanced analytical methods. 

Data gathered using this approach will bring an important insight into understanding of 

physiological regulation of NAD(P)H in cardiomyocytes, thus opening new horizons for 

the fluorescence lifetime analysis as a diagnostic tool of pathophysiological conditions, 

including ischemia, diabetes, or rejection oftransplanted hearts. 
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Abstract 

NAD(P)H, crucial in effective management of cellular 
oxidative metabolism and the principal electron donors _ 
for enzymatic reactions, is a major source of 
auto fluorescence induced in cardiac cells following 
excitation by UV light. Spectrally-resolved time­
correlated single photon counting was used to 
simultaneously measure the fluorescence spectra and 
fluorescence lifetimes of NAD(P)H, following excitation 
by a pulsed picosecond 375 nm laser diode. Spectra, as 
weil as fluorescence lifetimes of NIJDH and NADPH 
molecules were investigated in solution at different 
concentrations Effects of their respective 
dehydrogenation by lipoamide dehydrogenase (LipDH) 
or glutathione reductase (GR) were also questioned. 
NAD(P)H auto fluorescence recorded in vitro was 
compared to the one measured infreshly isolated cardiac 
cells. We observed a good comparability between 
NAD(P)H parameters recorded in solution and in cells. 

1. Introduction 

Endogenous fluorescence of NAD(P)H, induced 
following excitation with the UV light, is long used for 
non-invasive fluorescent probing of metabolic state. Blue 
autofluorescence of rat cardiac myocytes was 
demonstrated to correlate with metabolic changes and 
was mostly ascribed to mitochondrial NADH and 
NADPH [2]. Adenosine trisphosphate (ATP), produced 
in the process of mitochondrial oxidative 
phosphorylation, is the primary molecular energy source 
for the contraction of cardiac myocytes. This process is 
coupled to oxidation of reduced NADH, the principal 
electron donor for the electrochemical gradient 
indispensable for oxidative energy metabolism. The first 
step in this process, which accounts for 95% of A TP 
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generation needed for cardiomyocyte contraction, is the 
dehydrogenation of NADH by Complex 1 of the 
mitochondrial respiratory chain. NADH consumption rate 
is long investigated using fluorescence techniques in 
tissues and isolated mitochondria. On the other hand, 
NADPH is an important cofactor for several enzymes 
involved in different metabolic pathways (i.e. pentose 
phosphate pathway, Krebs cycle) and is essential for 
antioxidant processes in the glutathione reductase (OR) 
reaction. This enzyme allows the recycling of glutathione 
by converting its· oxidized form (OSSO) into reduced 
glutathione. Oxidative stress can modulate the cellular 
NADPH content through the release of peroxides and 
various by-products that has been shown to decrease the 
activity of several enzymes, such as the NADP-isocitrate 
dehydrogenase (NADP-ICDH) [1]. Here, we investigate 
NAD(P)H fingerprinting by spectrally-resolved lifetime 
spectroscopy. More precisely, we characterize 
fluorescence spectra and fluorescence lifetimes of NADH 
and NADPH in intracellular-like solutions and compare 
resolved data with spectral and temporal char~cteristics 
of endogenous NAD(P)H fluorescence, directly in living 
cardiomyocytes. 

2. Methods 

2.1. Cardiomyocyte isolation 

Left ventricular myocytes were isolated from Sprague­
Dawley rats (13-14 weeks old, Charles River, Canada) 
following retrograde perfusion of the heart with 
proteolytic enzymes [4]. AlI procedures were performed 
in accordance with Institutional Committee accredited by 
the Canadian Council for the Protection of AnimaIs 
(CCPA). Myocytes were maintained in a storage solution 
at 4°C until used. Only cells that showed c1early defined 
striations were used in up to 10 hrs following isolation. 

Computers in Cardiology 2007;34:349-352. 



2.2. TCSPC 

We have used time correlated single photon counting 
(TCSPC) setup based on inverted microscope (Axiovert 
200M, Zeiss, Canada) [4J. In brier, a picosecond diode 
laser with emission line at 375 nm (BHL-375, Becker­
Hickl, Boston Electronics, USA) was used as an 
excitation source (output power -1 m W, repetition rate 
20 MHz, pulse widths typically < 100 ps). The laser 
beams were combined by dichroic filters and reflected to 
the sample through epifluorescence path ofAxiovert 200 
inverted microscope to create slightly defocused elliptical 
spot (10-20 f.!m). The emitted fluorescence was spectrally 
decomposed by 16-channel photo multiplier array (PML-
16, Becker-Hickl, Boston Electronics, USA), running in 
the photon-counting regime and feeding the time­
correlated single photon counting interface card SPC 830 
using SPCM software (both Becker-Hickl, Boston 
Electronics, USA), attached to the imaging spectrograph 
(Solar 100, Proscan, Germany). Fluorescence decays 
were measured for 30 s with 25 ns TAC time-base 
sampled by 1024 points. Cells were studied at room 
temperatures in 4-well chambers \Vith UV-proof 
coverslip-based si ides (LabTech). 

2.3. Solutions, drugs and data analysis 

The basic extemal solution contained (in mM): NaCl, 
140; KCI, 5.4; CaCh, 2; MgCI2, 1; glucose, 10; HEPES, 
10; adjusted to pH 7.35 with NaOH. Basic intracellular 
solution contained (in mM): KCI, 140; NaCI, 10; glucose, 
10; HEPES, 10; adjusted to pH 7.25 with NaOH. LipDH 
(porcine;·2 U/f.!L), NADH or NADPH in concentrations 
ranging from 1 to 20 f.!M were added to basic internai 
solution. NADPH was also produced from NADP-ICDH 
(3.9 UlmL) by reaction of Isocitrate (89 mM) and NADP 
(0.5 mM) with or without GSSG (50 nM) and GR (0.5 
UlmL or 1 UlmL). Chemicals were from Sigma-Aldrich 
(Canada). Data were analyzed using SPClmage software 
(Becker-Hickl, Boston Electronics, USA), Origin 7.0 
(OriginLab, USA) and custom-written procedures for 
data correction and analysis written in C++. Home-made 
data base was used for appropriate data management. Data 
are shown as means ± standard errors (SEM). 

3. Results 

3.1. NADH and NADPH in vitro 

Fluorescence spectra and fluorescence Iifetimes of 
intrinsic NADH and NADPH fluorescence were recorded 
in vitro in intraceIJular media-mimicking solutions. 
Steady-state emission spectra measured simultaneously at 

350 

16 acquisition channels were determined as the total 
photon counts on each spectral channel. Concentrations 
ranging from 1 to 20 f.!M were used to question the dose 
dependence of spectral and Iifetime properties of the 
NADH and NADPH fluorescence. Spectral intensity of 
NADH fluorescence followed Iinear concentration­
dependence (Fig. lA), as described previously [2]. 
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Figure 1. Emission spectra of NADH in vitro in intracellular 
solutions at concentrations mnging from 1 to 20 flM (n=5 
samples each) (A). Concentration-dependence of the NADH 
and NADPH auto fluorescence at spectral peak of 450 nm (H). 

Normalized spectra superimposed perfectly for NADH 
concentrations between 1 to 20 f.!M (data not shown), 
confirming the same molecular origin. Free NADPH and 
NADH had autofluorescence with spectral maximum at 
450 and 470 nm respectively in intracellular solution 
(Fig. 4). The spectral intensity of NADPHINADH was 
linearly dependent on their concentration, as iIlustrated in 
Fig. lB at 450 nm. Quantum yield of NADPH was 
smaller than that of NADH, as previously reported [2]. 
Normalized fluorescence intensity recorded in intra 
cellular medium showed slight shift of about 20 nm 
between NADPH and NADH (Fig. 4). At the fluorescen­
ce maximum wavelength of 450 nm we have resolved 
three fluorescence lifetimes for NADH (20 f.!M, n= 1 0 
samples): ri = 0,39±O.01 ns (with relative amplitude of 
69.9±1.0%), r2 == 1.46±0.05 ns (20.5±0.8%) and r3 = 
8.12±0.07 ns (9.8±0.2%), but only 2 significant ones for 



NADPH (20 /lM, n=5 samples): Tl = O.3l±O.Ol ns (74.6 
±2.4%) and 1'2 0.75±0.02 ns (25.3±2.9%). Resolved 
lifetime parameters were independent on the studied 
emission wavelength, or concentrations (data not shown). 

3.2. NADPH regulation by GR and NADH 
regulation by LipDH 

NADPH produced in vitro from NADP-ICDH had 
same spectral and Iifetime characteristics as NADPH in 
intracellular solution (data not shown). In .the presence of 
GSSG, GR lowered (0.5 V/mL) or nearly completely 
abolished (l V/mL) NADPH autofluorescence produced 
by NADP-ICDH (Fig. 2A), in agreement with 
dehydrogenation of NADPH by GR. Normalized and 
blank-corrected spectra showed no difference of NADPH 
spectral properties in the presence or absence of GR with 
GSSG and our data revealed no modifications of NADPH 
Iifetime kinetic properties by GR (data not shown). 
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Figure 2. Normalized, background-corrected steady-state 
emission spectra of ICDH-produced NADPH in the absence and 
presence of GR (0.5 or 1 V/mL, n=5 samples each) (A) and of 
20 !lM NADH (n=lO) in the absence and presence of 2 U/J.,lL 
LipDH in intracellular solution (n=5) (B). 

On the other hand, dehydrogenation of NADH (20 
IlM) to NAD+ by LipDH (at 2 V/ilL) - a disulfide 
oxidoreductase which is a part of the multienzyme 
Complex 1 - decreased fluorescence intensity (Fig. 2B). 
The effect was accompanied by a spectral broadening of 
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about 10 nm towards red spectral region, as demonstrated 
by normalized emission spectra (Fig. 3A). NADH 
fluorescence decays were prolonged by LipDH (Fig. 3B) 
due to a significantly increased lifetime of the component 
2 (at 504 nm, t2 was prolonged from 1.84±0.12 ns to 
2.74±O.18 ns, p<0.05). 
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Figure 3. Comparison of normalize).!, background-corrected 
steady-state emission spectra ofNADH (20 !lM; n=JO samples) 
in the absence or presence LipDH (2 V/J.,lL) in intracellular 
solution (n=5) (A). NADH normalized fluorescence IifetÎmes 
(20 !lM) at 504 nm with orwithout LipDH (2 UlJ.,tL) (B) . 

3.3. Endogenous NAD(P)H in eardiae eells 

To investigate the endogenous fluorescence of 
NAD(P)H in living cardiomyocytes, spectrally and time­
resolved autofluorescence decays were recorded in celIs 
bathed in basic external solutions. Normalized steady­
state emission spectra of the cardiomyocyte auto 
fluorescence had spectral maximum at 450 nm (Fig. 4) 
and showed a slight blue-spectral shift when compared to 
NADH in vitro, while being closer to those of NADPH. 
Analysis of exponential decay of cardiomyocyte 
autofluorescence showed acceptable chi-square values 
(x2<1.2; n=70/13 animais) and flat plot of weighted 
residuals when using at least a 3-exponential model, 
namely tl = 0.69±0.01 ns (69.3±1.0%), t2 = 2.03±0.05 
ns (27.6±0.9%) and 1'3 = 12.68±0.08 ns (3.1±O.2%). 



4. Discussion and conclusions 

Although spectra of intrinsically fluorescing 
substances are now weIl characterized in cardiac tissue, 
the fluorescence lifetimes, considered to provide better 
quantitative measurement of different NAD(P)H 
conformations and/or molecular complexes contributing 
to the UV-excited autofluorescence of biological 
sampI es, are much less cIearly identified in living cells. 
Here we demonstrate that NAD(P)H autofluorescence 
can be measured in living cardiomyocytes by time­
resolved emission spectroscopy approach with good 
reproducibility. Recorded autofluorescence kinetics were 
comparable to already published data in cardiac 
mitochondria [2J. As expected, comparison with NADH 
and NADPH kinetics in vitro pointed to the NAD(P)H 
origins of the autofluorescence. While our data confirmed 
close spectral characteristics of NADH and NADPH 
molecules, curiously, we have identified differences in 
their Iifetimes. This can be due to distinct kinetics of the 
two molecules, or the presence of impurities; kinetics of 
further purified molecules need to be done in the future. 

1.0 -.-NADPH 

! -0-NADH 
::1 -0- cardlac cells 
8 
c: a 
0 0.5 
i. 

J 
1\1 

Ë 0.0 
0 c: 

400 500 600 
wavelenglh (nm] 

Figure 4. Nonnalized, background-corrected emission spectra, 
detennined as total photon counts of NAD(P)H 
autofluorescence of single cardiac cells, compared to NADH 
and NADPH (both 20 IlM) in basic extracellular solution. 

The LipDH flavoprotein served as example to 
investigate NADH dehydrogenation. Observed increase 
in the Iifetime kinetics can be related to conformational 
changes of NADH induced by the enzyme. Indeed, upon 
dehydrogenation, the oxidized form of the protein 
promotes the binding ofthe neutral dihydro-nicotinamide 
moiety of NADH [3 J, in addition to the formation of 
negatively charged charge-transfer complexes between 
transiently bound NAD+ and covalently bound flavin 
adenine dinucleotide (F AD) cofactor. In this reduced 
form, nicotinamide moiety is in a different conformation 
from uniformly ordered structure of NADH juxtaposing 
nicotinamide and isoalloxazine flavin ring systems and is 
not proximal to FAD [3], which can be reflected in the 
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change of fluorescence kinetics. On the other hand, 
appearance of the red-spectral shoulder points to possible 
presence of Fôrster resonant energy transfer (FRET). 
Being a flavoprotein, excitation of LipDH by visible Iight 
(420-460 nm) results in green FAD-autofluorescence 
with emission maximum around 500 nm [4]. As the 
LipDH-binding domain for NADH is in close proximity 
to FAD+-binding one [3] and the 450 nm emission 
maximum ofNADH corresponds exactly to an absorption 
peak of the FAD+ moiety, this fulfils the prerequisites for 
the FRET between the two molecules. Nevertheless, 
since no decrease in NADH lifetime(s) was observed, 
further study is needed to fully understand significance of 
changes in NADH fluorescence following its binding to 
enzymes in living cells. Failure to observe lifetime 
kinetic changes following NADPH dehydrogenation by 
GR can be due to much faster kinetics of the NADPH 
molecule and/or much lower signal recorded in these 
experiments. Gathered data demonstrate the robustness of 
the TCSPC approach for NAD(P)H autofluorescence 
study directly in living cells. This approach brings an 
important insight into the understanding of metabolic 
state(s) of the heart in pathophysiological conditions. 
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Abstract 

Rejection oftransplanted hearts remains an important reason for death oftransplanted children. Finding diagnostic tools 
for its detection can therefore improve the prognosis in this population of patients. Endomyocardial biopsy (EMB) by 
cardiac catheterization is currently accepted as the "gold standard" for the diagnosis of rejection. Here, we investigate 
new approach to monitor mitochondrial metaboIic state of cardiac celIs using spectrally-resolved autofluorescence 
lifetime detection of nicotinamide adenine dinucleotide (phosphate), or NAD(P)H, the principal electron donor in 
mitochondrial oxidative energy metabolism responsible for vital A TP supply of cardiomyocytes. NAD(P)H 
autofluorescence is long used for non-invasive fluorescent probing the metabolic state of the heart. In this contribution 
we report dynamic characteristics of NAD(P)H fluorescence decays in living human cardiomyocytes from EMB, 
following excitation by UV-pulsed laser diode and detection by spectrally-resolved time-correlated single photon 
counting. At least a 3-exponential decay model, with 0.5-0.7 ns, 1.9-2.4 ns and 9.0-15.0 ns Iifetimes, is necessary to 
describe cardiomyocyte autofluorescence in human cells. When gathered data were compared to those recorded under 
same conditions in rats, autofluorescence in human hearts was found significantly lower in comparison to rat ones. 
Rotenone, the inhibitor of the Complex 1 of the respiratory chain, increased the fluorescence in human cardiac cells, 
making them more comparable to experimental rat model. These results suggest that human cardiac ce Ils are more 
metabolically active than the rat ones in the same conditions. Presented work proposes a new tool for evaluation of 
oxidative metabolism changes in transplanted hearts. 

Keywords: TCSPC, NAD(P)H Autofluorescence, Human Cardiac Biopsy. 

1. INTRODUCTION 

Rejection of transplanted hearts is the most important cause of death of transplanted children [11,13]. Search for new 
diagnostic tools is therefore crucial to insure its early detection and hence efficient prevention. The risk of rejection, 
highest in the first three postoperative months, decreases six month following transplantation mainly thanks to routine 
rejection surveillance. In this period, the main problem of the heart transplant recipients includes acute allograft 
rejection, cardiac allograft vasculopathy and infections which can occur at anytime after the transplantation, often several 
years after the operation [17,22]. In theseconditions, the coronary arteries develop progressive and diffuse (scattered and 
spread out) narrowing throughout their entire length. Such type of narrowing is different from the fatty or calcified 
plaque that typically causes atherosclerotic coronary artery disease, but can, as weil, result in nùtrients and oxygen 
deprivation of the heart and lead to the failure of normal function of cardiac cells. Coronarography is used to monitor the 
presence of vascular rejection. Acute rejection is defined as Iymphatic inflammatory infiltration with associated damage 
and/or necrosis of cardiac cells and this cardiac tissue [22]. Endomyocardial biopsy (EMB) with cardiac catheterization 
is currently accepted as the "gold standard" for the diagnosis ofthis type of rejection [18]. This method helps to estimate 
and grade the presence of rejection, but it does not always have the sufficient sensitivity to detect mi Id cases of the 
rejection at their early stages. At the same time, recently, new technologies were developed to monitor oxidative 
metabolic state of cardiac cells by measuring their endogenous fluorescence. We hypothesize that oxidative changes of 
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cardiac cells occur at early stages of rejection of transplanted hearts and thus can serve as a diagnostic tool for its early 
detection. 

Our goal is to investigate possible applications of the latest technologies at the level of living cardiomyocytes obtained 
from one additional endomyocardial biopsy, in the aim to better understand mechanisms underlying cardiac rejection and 
to propose new approaches for its diagnostics. We search for a new tool to improve the detection of rejection in its early 
stages and in this study, we investigate the possibility to study oxidative metabolic state of cardiac cells isolated from 
EMB of transplanted pediatric patients by analyzing their autofluorescence using spectrally-resolved fluorescence 
lifetime detection. We analyze mitochondrial oxidative metabolic changes of cardiomyocytes obtained from one 
additional biopsy during catheterization and EMB ofpediatric patients with transplanted hearts. We characterize spectral 
and temporal characteristics of endogenous NAD(P)H fluorescence directly in living cardiomyocytes using simultaneous 
detection of their fluorescence spectra and fluorescence lifetimes. NAD(P)H fingerprinting by spectrally-resolved 
lifetime spectroscopy is investigated in cells isolated from human biopsies, together with changes of the autofluorescence 
intensity and its lifetimes following the modulation of NAD(P)H respiratory chain by rotenone. Gathered results are 
compared to data obtained in cells isolated using similar approach from hearts of rat experimental mode!. 

2. MATE RIAL AND METHODS 

Cardiomyocyte Isolation from Human Biopsies 

Cells were isolated from one additional biopsy during catheterization and EMB of pediatric patients with transplanted 
hearts (elective or triggered by a clinical or echocardiographic suspicion or rejection), performed routinely by the 
Cardiac Sciences Service at Sainte Justine Hospital during the regular check of patients. Cardiac tissue was obtained by 
the pediatric cardiologist (N.D., N.P. or J.M.) from the right ventricular EMB sample of children with cardiac 
transplantation using cardiac catheterization. Biopsies from transplanted children aging from several months to 18 years 
(mean age of 10 years) were used. The tissue ofa weight of 1 to 5 mg, bulk of 1 to 2 mm3 piece was promptly immersed 
in the isolation medium [14] (in mmol/L: NaCI, 35.0; KCI, 7.7; Na2HP04, 16; NaHC03, 25; KH2P04, 1.2; sucrose, 
134.0; glucose, 10.0; and HEPES, 10.0; titrated to pH 7.30 with NaOH) under oxygenation with 5% CO2 and 95% O2 
(using a portable device) and taken to the lab (in the same building), where the tissue were washed and cells isolated 
following enzymatic digestion with collagenase (Type V) and protease (type XXIV) for 20-50 min. Ali chemicals were 
from Sigma-Aldrich (Canada). The cell suspension was filtered with 250 Ilm pore size, centrifuged for 2 minutes at 100 
x g and the pellet rinsed and resuspended in the isolation solution and used immediately after isolation (success rate of 
about 5%; see the right panel of the Fig. 1 for illustration of representing isolated cells from human biopsies). Ali 
procedures were performed in accordance with Institutional Ethical Committee and with the patient's (or their parent's) 
consent. 

Cardiomyocyte Isolation from Rat Hearts 

Sprague-Dawley rats (13-14 week old, Charles River, Canada) were sacrificed by decapitation. Ali procedures were 
performed in accordance with Institutional Committee accredited by the Canadian Council for the Protection of Animais 
(CCPA). Ventricular myocytes were isolated from chunks of tissue by same approach as described for human myocytes 
(success rate of about 10 %). Only cells that showed clearly defined striations were used. 

Recording of Cardiomyocyte Autofluorescence by Spectrally-Resolved Time-Correlated Single Photon Counting 
(TCSPC) 

To record kinetics ofNAD(P)H autofluorescence in cardiac cells, we have used TCSPC setup on Axiovert 200 inverted 
microscope, as previously described [8]. In brief, picosecond laser diode with emission of 375 nm (BDL-375, 
Becker&Hickl, Boston Electronics, U.S.A.) was used at 20 MHz repetition rate as an excitation source with output 
power -1 mW. The emitted fluorescence was spectrally separated from the laser excitation using standard dichroic filter 
cubes (395 nm dichroic and 397 nm long-pass filter for excitation at 375 nm) located in the microscope filter turret. Data 
were acquired by a 16-channel photomultiplier (PML-16, Becker&Hickl, Boston Electronics, U.S.A), after spectral 
decomposition via an imaging spectrograph (Solar 100, Proscan, Germany). The TCSPC card (SPC 830, Becker&Hickl, 
Boston Electronics, U.S.A), driven by SPCM_95 software (Becker&Hickl, Boston Electronics, U.S.A), was 
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synchronized by the laser diode driver, Fluorescence decays were measured simultaneously at 16 spectral channels with 
25 ns Time-to-Amplitude Converter (TAC) time-base sampled by 1024 points, leading to the temporal resolution of 24.4 
ps/channel. Decay kinetics were measured for 30 s, with the number of counts at each channel reaching maximum 
intensity of about 500-5000 counts and the typical background noise of 10-100 counts per channel, present mostly due to 
ambient light. Cells were mounted on an inverted microscope and studied at room temperature in 4-well chambers with 
VV-proof coverslip-based slides (LabTech, Canada). Rotenone (1 JlmollL) was added to cells for 5-25 min prior 
recording. 

Data Analysis 

Data were analyzed using SPClmage software (Becker&Hickl, Boston Electronics, V.S.A). All data were corrected for 
the systematic wobble of the temporal-shift in the detected photon histogram at different channels of the PMT array [3] 
using custom procedures for data correction and analysis written in C++ [8]. Home-made database was used for 
appropriate data management. Steady-state auto fluorescence was evaluated as total photon counts for each spectral 
channel. Bach lifetime component was assessed by examining its fluorescent lifetime (fi) and relative amplitude (3;); see 
Chorvat et al., 2006 [8] for details on definition ofterms and derived quantities. Data are shown as mean ± standard error 
(SEM). Comparison between means was made at spectral maximum of 450 nm, using one-way analysis of variance 
(ANOV A), followed by Tukey post-test. 

3. RESULTS 

NAD(P)H Autofluorescence in Human Cardiomyocytes 

To investigate endogenous fluorescence of NAD(P)H, spectrally and time-resolved autofluorescence decays were 
recorded in living human cardiac myocytes (see an example of an original recording from one cell at the left panel of the 
Fig. 1 and Methods for details), following excitation of an elliptical spot (20 x 10 Jlm) by the 375 nm picosecond laser 
diode (see an example of the cell illumination at the Fig. 1, right panel). To study endogenous fluorescence in living 
cardiac cells we have used a newly-designed micro-spectrometer [8], based on the combination of inverted fluorescence 
microscope with TCSPC instrumentation. Steady-state emission spectra of the cardiomyocyte auto fluorescence, 
determined from the total photon counts on each spectral channel (Fig. 2, left panel), had a spectral maximum at 450 nm, 
as illustrated by normalized spectra (Fig. 2, right panel). Exponential decay of cardiomyocyte autofluorescence (Fig. 3) 
showed acceptable chi-square values (;(2<1.1) and flat plot of weighted residuals when analyzed using at least a 3-
exponential model (see Table 1 for data at 450 nm emission wavelength). Fluorescence lifetimes were therefore 
estimated as a 3-exponental decay. We evaluated data only for spectral channels which intensity reached threshold of 
500 counts in maximum, Le. within the spectral range of 420 nm to 550 nm (Fig. 4). Wh en illustrated in regard to 
emission wavelength between 420-550 nm, the lifetime of both the first and the second components exhibited a slight 
decreaSe, while that of the third component presented a slight increase at lpnger wavelengths within the assessed spectral 
range (Fig. 4, right panel). The relative amplitudes of all three lifetime components changed only slightly in the analyzed 
spectral region (within 10 % fraction of the total population, Fig. 4, left panel). 

Comparison ofNAD(P)H Autofluorescence in Human vs. in Rat Cardiomyocytes 

The above data are, to our knowledge, first spectrally and time-resolved data recorded in human heart celIs. We therefore . 
wanted to make their comparison to models that are more commonly used for study of metabolic activity of cardiac cells, 
such as the rat one. When compared to cells isolated by the same experimental approach from rat hearts, we have found 
significantly smaller total photon counts in human cells. This result was accompanied by significantly smaller relative 
amplitude of the component 1, against significantly higher relative amplitude of the component 2. We also observed a 
tendency of the lifetime of the component 1 and 3 to increase in human celIs, but this change was not significant. We 
hypothesized that this result can be related to a lower amount of NAD(P)H present in human cells due to higher 
metabolic activity of the respiratory chain and thus more substantial ATP production. NADH is weil known main 
electron donor necessary for creation of the electrochemical gradient in cardiac celIs, used in the process of oxidative 
metabolism for ATP generation. This process is initiated following dehydrogenation ofNADH by the Complex 1 of the 
respiratory chain. To account for the hypothesis ofhigher metabolic activity, we have therefore analyzed AF inhuman 
cells in the presence of rotenone, an inhibitor of the Complex 1 of the respiratory chain [1,10]. As expected, rotenone 
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increased the total photon counts of the human cells (Fig. 2), white modifYing fluorescent decays (Fig. 3) by rising the 
relative amplitude of the first component and decreasing the second one (Fig. 4). In the presence of rotenone, human 
cells were therefore more comparable to rat ones. These data point to possible higher metabolic activity in control 
conditions in human cells, when compared to the commonly used rat mode!. However, a more profound study of 
autofluorescence using confocal microscopy is needed in the future to avoid differences due to signal dependence on the 
cel! size. 

4. DISCUSSION 

In the present contribution, we evaluated for the first time spectrally-resolved lifetime characteristics of NAD(P)H 
autofluorescence in living cardiac cells isolated from human endomyocardial biopsies of pediatric patients. We have 
analyzed the kinetics of cell NAD(P)H autofluorescence and its responsiveness to rotenone, the inhibitor of the Complex 
1. Our data indicate that the use of spectrally-resolved TCSPC method greatly improves the analysis of the metabolic 
state of isolated cardiac cells and suggest that human cells are more metabolically active than the rat on es in the same 
conditions. 

Rejection oftransplanted hearts is still the principal reason for death oftransplanted pediatric patients. Organ rejection of 
transplants includes hyperacute rejection, acute rejection and chronic rejection. Hyperacute rejection appears shortly 
after operation and is often easily recognized, as the patients are weil monitored in this period. This is usually due to 
immune system changes that may occur after the transplantation. However, more problems are encountered conceming 
the recognition and the diagnosis of acute and chronic rejections, or the Graft Coronary Artery Disease (GCAD). This 
type of rejection can occur at anytime after the transplantation, often several years after the operation. In these 
conditions, the coronary arteries develop progressive and diffuse (scattered and spread out) narrowing throughout their 
entire length. Su ch type of narrowing is different from the fatty or calcified plaque that typically causes atherosclerotic 
coronary artery disease, but can, as weil, result in nutrients and oxygen deprivation ofthe heart and lead to the failure of 
normal cardiomyocyte functioil. Su ch modifications, which also include alterations in the cell oxidative metabolism, 
often develop rapidly. Sorne observations suggest that cardiac cells undergo modifications in their oxidative· state with 
the progression of cardiac rejection [23,24], namely as a result of cell hypoxia, following oxidative changes of cardiac 
cells. Precise evaluation of the oxidative metabolism can therefore serve as an early indication of the rejection of 
transplanted hearts. 

The heart is a pump converting chemical energy into mechanical work and the power for this work is gathered almost 
entirely from oxidation of carbon fuels and to a great extent the se fuels are provided by coronary (myocardial) blood 
flow. Such oxidative metabolism is primarily the function ofmitochondria in the process of oxidative phosphorylation. 
Because of the high oxidative metabolism, heart cells have elevated oxidative capacity, demonstrated by their 
ultrastructure: 25-35% of total cardiomyocyte volume is occupied by mitochondria [2]. During hypoxia or ischemia, the 
supply of O2 to the respiratory chain fails, leading to blocking of the tricarboxylic acid cycle and no energy being 
available from oxidative phosphorylation. This results in an accumulation of cytoplasmic NADH which is accompanied, 
in ischemia, by an accumulation of lactate and a decrease in cytoplasmic pH (5.5-6) [21,25]. Many researchers have 
identified Complex 1 as a major site of damage to the respiratory chain in ischemia [4,15] and observed a reduction in 
oxidation rate for NADH-Iinked substrates by up to 60%. 

ln recent years, new technological approaches were developed to investigate oxidative metabolic changes in tissues and 
cells. Our previously obtained data in rat cardiomyocytes [7-9] clearly demonstrated that metabolic state can be 
determined directly in living cardiac cells by monitoring their naturally occurring autofluorescence. Bulk of AF, 
generated after excitation with UV or visible light is loca/ized in mitochondria and is mainly resulting from 
mitochondrial oxidized flavins (FADo) and reduced NAD(P)H [20], principal endogenous indicators of cellular oxidative 
metabolism. These molecules exist in their free forms, or as cofactors in enzymes of inner mitochondrial membrane and 
are involved in the mitochondrial respiratory chain and in the fatty acid oxidation. A TP, produced in the process of 
mitochondrial oxidative phosphorylation, is the primary molecular source of energy for the contraction of cardiac cells. 
This pro cess is coupled to oxidation of reduced NADH, the principal electron donor for electrochemical gradient 
necessary for oxidative energy metabolism which accounts for 95% of A TP generation in cardiomyocyte mitochondria. 
Endogenous fluorescence of NADH, induced following excitation with the UV light, is long used for non-invasive 
fluorescent probing of metabolic state [5] and has been an extremely useful tool for monitoring of energy metabolism 
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[6]. Blue autofluorescence of rat cardiac myocytes was demonstrated to correlate with metabolic changes and was 
ascribed to mitochondrial NADH [12]. 

In human cardiomyocytes, a comprehensive study on the contribution of changes in NADH is largely missing. Our data 
show good reproducibility of results and comparison with commonly used models, such as the rat one. Autofluoresence 
spectroscopy has been widely used in the early detection of different types of cancers [16,27] and was also attempted in 
examination of transplanted tissues. In the heart, a strong correlation was found between changes in autofluorescence 
spectra and the ~ejection grade in rat heart allograft model [19], but more difficulties were encountered using human 
tissues [26], possibly due to use of frozen fractions, as weil as lack of analysis of dynamic parameters of the recorded 
fluorescence. Fluorescence Iifetimes reflect the characteristic time that the molecule spends in the excited state and are 
specific for different molecular conformations. They are also sensitive to interactions of the fluorescing molecule with its 
surroundings. Thus, in multi-compartment complex systems such as in cells, the observed fluorescence is often described 
by multi-exponential decays, even if in in vitro conditions the studied molecule has single-exponential characteristics. 
Based on data gathered in this contribution, we therefore propose to use the spectrally-resolved TCSPC approach as an 
iriteresting new multiparametric tool that can be applied to freshly-isolated cells from human biopsies. ln addition to its 
higher sensitivity than conventional techniques, another advantage of this method is the possibility of its combination to 
multiphoton confocal microscopy, which, in the future, can result in the adaptation of this approach directly to tissue 
biopsy without the necessity of cell isolation. 

5.SUMMARY 

Spectrally-resolved fluorescence lifetime detection was tested as a promising new tool for quantitative analysis of 
intrinsic cellular autofluorescence signaIs in living cardiomyocytes and hence for assessment of changes in oxidative 
metabolism in the heart of transplanted patients. This work is the first study evaluating the lifetime characteristics of 
NAD(P)H fluorescence and thus the cardiac metabolic state in cells from human biopsy. In the future, this approach will 
be tested to compare oxidative metabolic state of human cardiac myocytes at different stages of rejection, to improve the 
detection of early or miId cases of rejection, particularly in the case of doubtful histological results and hence in the 
decision-making for rapid initiation of the necessary treatment. Using the described method will not only enhance our 
understanding of mechanisms underlying the rejection of transplanted hearts in pediatric patients, but it may eventually 
also improve the diagnostics of cardiac transplant rejection by supplementing the currently used histological analysis. 
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LEGENDS 

Fig. 1. Representative original recordings oftime- and spectrally-resolved auto fluorescence of single human cardiomyocyte in control 
conditions measured simultaneously at 16 acquisition channels (recorded for 30 s with 25 ns TAC time-base and sampled by 1024 
points), following excitation with 375 nm pulsed laser (left). Example of the recorded cells (right). 

Fig. 2. Steady-state (left) and normalized (right), background-corrected auto fluorescence emission spectra of human cardiomyocyte 
auto fluorescence determined as total photon counts, recorded in the control conditions and in the presence of 1 IlM rotenone. 

Fig. 3. Normalized fluorescence decays at 450 nm of autofluorescence in human cardiomyocyte in control conditions and in the 
presence of 1 IlM rotenone, compared to fluorescence decays gathered in rats. 

~ 

Fig. 4. Relative amplitudes al, a2 and a3 (left panel) and mean spectrally-resolved fluorescence lifetimes t 1, t2 and t3 (right panel). 

Table 1. Fluorescence pararneters of cardiomyocyte auto fluorescence (}'",cimtionlemission = 375 nm/450 nm). Data are shown as mean ± 
SEM (number of cells); *p<0.05 vs. control human cells. 
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Fig. 1. Representative original recordings oftime- and spectrally-resolved autofluorescence of single human cardiomyocyte in control 
conditions measured simultaneously at 16 acquisition channels (recorded for 30 s with 25 ns TAC time-base and sampled by 1024 
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Fig. 2. Steady-state (Ieft) and nonnalized (right), background-corrected autofluorescence emission spectra of human cardiomyocyte 
auto fluorescence detennined as total photon counts, recorded in the control conditions and in the presence of 1 IlM rotenone. 
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Table 1. 

Total photon a. T. al Tl aJ TJ 
counts la.u.] I(!s] I(!S ] I(!s] 

Ruman llO22±1961 56.04±1.56 612.54±22.49 37.84±1.16 2324.75±73.83 6.23±O.63 13634.98±1l39.30 
(25) 

Ruman + 15194±2324 64.60±2.09* 596.44±25.56 31.60±1.44* 2076.53±195.19 4.02±O.66 14658.67±3987.45 
Rotenone 

(5) 

Rat 25175±2489* 70.38±O.56* 649.30±13.03 26.25±O.80* 1979.27±74.67 3.59±O.61 9337.82±928.39 
(8) 

I!.!!.!L!. Fluorescence parameters of cardiomyocyte auto fluorescence (l'excitation/omission = 375 nm/450 nm). Data are shown as mean ± 
SEM (number of cells); *p<O.05 vs. control human cells. 
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