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RÉSUMÉ 

Cette thèse s'intéresse à la reconstruction stéréoscopique dans des environnements 

contenant des objets transparents, comme la couronne solaire. Les données pour ce 

projet, images stéréoscopiques du soleil, ont été fournies par la NASA grâce à la mis­

sion STEREO. Ce mémoire propose une nouvelle méthode de rectification sphérique 

ainsi qu'un nouvel algorithme pour la reconstruction dense sans aucune hypothèse 

préalable sur la forme ou la transparence des objets dans la scène. 

Premièrement, les paramètres des caméras sont estimés, et une étape de raffine­

ment suit pour obtenir un alignement presque parfait entre les images. Dans l'étape 

suivante, les images sont rectifiées pour réduire l'espace de recherche de trois à deux 

dimensions. Les densités le long des lignes épipolaires sont ensuite estimées. 

La reconstruction des scènes transparentes est encore une problème ouvert et il 

n'y a pas de méthodes générales pour résoudre la transparence. Les applications 

pour cet algorithme sont nombreuses, comme la reconstruction des traces de fumée 

en soufflerie, le design optimal des chambres à combustion, la realité augmentée, etc. 

Mots clés: vision par ordinateur, rectification, stéréoscopie, transparence, esti­

mation de profondeurs multiples, soleil, physique solaire 



ABSTRACT 

This thesis concentrates on the stereoscopic reconstruction of environments con­

taining transparent objects. The data used to test the algorithms is graciously pro­

vided by NASA through the STEREO mission. This thesis proposes a new spherical 

rectification technique as well as a dense reconstruction algorithm without making 

any prior assumptions on the shape or transparency of objects inside the scene. 

Firstly, the camera parameters are estimated, following a refinement step to get 

seamless alignment between images. In the next step the images get rectified in order 

to be able to restrict the search space to 2D rather than the full 3D. Afterwards the 

density at along each epipolar line gets estimated. 

The reconstruction of transparent scene is stilllargely an open problem and there 

are no general methods to deal with transparency. The applications of such an algo­

rithm are numerous, ranging from reconstruction of smoke trails inside wind tunnels, 

optimal design of combustion chambers, augmented reality, etc. 

Keywords: computer vision, rectification, transparency, stereoscopy, multiple 

depth estimation, Sun, solar physics 
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Chapter 1 

INTRODUCTION 

The field of machine vision aims at developing algorithms that mimic functions of 

the human visual system. U sing d!1ta from sensors (imaging, range scanners, etc.), the 

algorithms are trying to get information about the surrounding physical world. Each 

of the sensors observes merely just a "projection" of the real world so this information 

must be merged to recover the world coordinates. Out of the machine vision problems, 

the one that received most of the attention is 3D reconstruction. Applications are 

numerous, ranging from metrology, navigation and adaptive multimedia systems. 

In this thesis we attempt to develop a reconstruction scheme for solar cororial 

loops using extreme ultraviolet images taken by the STEREO mission, while making 

just standard smoothnessjsparsity assumptions. For the first time we have simulta­

neous satellite images from two vantage points using identical instruments. Previous 

attempts at reconstruction used single vantage' point images spaced in time, using 

the solar rotation to provide different views of the features. 

The STEREO mission will provide an important tool to validate the theoretical 

models of magnetic fields and plasma flows on the Sun. The holy grail of solar physics 

is the accurate prediction of the space weather, which has a strong influence on our 

day to day activities. The coronal loops have a major influence on this phenomena. 

The loops on the surface of the Sun sometimes erupt outside the corona and escape the 

Sun's gravity. This creates the aurora Borealisj Australis and disrupts satellites and 

radio communications. Prediction of such phenomena relies on accurate 3D models 

of such loops, which is the main concern of this thesis. 
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There are multiple approaches to the 3D reconstruction problem. The simplest 

of which, uses pixel matching techniques along epipolar lines and together with the 

projection model, one can triangulate the world 3D position of each pixel. In this 

meth6d one chooses a reference view and the resulting reconstruction is from this 

point of view. An alternate, but similar method, is volumetrie reconstruction. The 

reconstruction volume 'gets discretized into volume elements, and the value at each 

voxel is dietated by an average of the pixel values from all views where the voxel 

is visible. This can accommodate an arbitrary number of views. U sually a voxel 

is either fully transparent or opaque leading to a single depth for a pixel inside the 

images. The success of this method is strongly infiuenced by our occlusionjvisibility 

modelling. 

Another family of methods, used commonly in medical imaging, is the tomographie 

reconstruction. Given a large number of projections of the object one can reconstruct 

the object with low error. Normally we will settle for a few hundred projections in 

order to obtain good results. This method used certain properties of the Fourier 

transform of the projections to perform the reconstruction. Usually an orthographie 

projection model is assumed. 

The current algorithms cannot reconstruct reliably transparent env'ironments un­

less an unreasonable number of input images is used or an a priori knowledge of the 

shape of objects is available. We will have to cope with as 1ittle as two or three images 

(if we use SOHO images as well). The solar loops are short lived phenomena, thus 

preventing us from using images taken at different instances of time. 

The method proposed in this thesis is a hybri~ between the volumetrie and to­

mographie reconstructions: like the tomographie reconstruction we are looking for a 

certain "matter density" inside each voxel, but the original rectified images are used 

directly rather than the Fourier transform of its projection. The problem poses itself 

as a constrained minimization problem. The constraints are provided by the avail­

able views together with the corresponding projection models. The function to be 
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Figure 1.1. Coronal loops captured by the TRACE mission 284A. 

minimized, provides sorne kind of regularization, helping us to impose certain prop­

erties of the solution. The problem is massively underconstrained: given a uniform 

discretization of n in each dimension, our reconstruction volume has n3 cells (vox­

els ) with O(n2
) equations given by the views). This algorithm will be applied on 

solar coronal loops captured by STEREO (Fig. 1.1). The problem of transparent 

stereo matching is extremely challenging and there exists no current solution which 

is satisfactory. Because of this the results presented here are far from perfecto 

A secondary contribution of this project is a rectification scheme named spherical 

rectification, which has all the good properties of state of the art rectification methods 

such as the ability to rectify any camera configuration outputting a finite image size, 

but is particularly useful for objects which are on spheres. 
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1.1 Outline 

The thesis is organized as follows: in chapter 2 we present a brief history of solar 

observation, sorne current open research topics and a bit of physical background 

that will be useful in the later parts. In chapter 3 we introduce the standard 3D 

reconstruction toolkit. Chapter 4 introduces the fundarnentals of rectification as well 

as sorne srnall results of our own rectification rnethod. In chapter 5 we introduce the 

standard. rnethods to reconstruct transparent environrnents and our proposed rnethod. 

Chapter 6 presents sorne results of our reconstruction with both synthetic and read 

data, and in chapter 7 we suggest sorne future irnprovernents. 



Chapter 2 

ASTRONOMICAL AND SOLAR IMAGING 

The Sun has been a source of fascination for mankind before the dawn of his­

tory. Numerous historical discoveries stand witness that prehistoric people had basic 

knowledge of solar system planetary cycles. 

Tt was not until' arouhd the year 1600 that the first Earthbound solar telescope was 

built by Galileo Galilee. He was the first to observe the solar dark spots. During the 

19th cent ury, the German astronomer Heinrich Schwabe observed that the number of 

spots increases and decreases with time. He was the first to observe that the period 

of this solar act}vity oscillation is about Il years. 

Probably the greatest contribution to solar observations was brought by George 

Ellery Hale in the 20th cent ury. He discovered that the sunspots were cooler than the 

surrounding matter, and thus darker (the magnetic field inside the sunspots is strong 

enough to prevent convection, so hot matter from the inner Sun cannot reach the 

surface). Another important contribution was the observation that every 11 years 

the solar magnetic poles get reversed, giving birth to a'more fundamental solar cycle 

of 22 years[2]. 

Since the beginning of the space age, the knowledge about the Sun has increased 

exponentially. This was powered by both recent theoretical physics and technological 

developments. Using airbornejspaceborne observatories has improved the quality of 

data by removing the effects of the atmosphere that could corrupt the data. Ob­

servations of certain 'wavelengths, such as X rays, are impossible inside the Earth's 

atmosphere because of its high absorption rate. 

The motivation for the special interest in the Sun is fairly straightforward: it is 

our only source of high resolution data of the physical processes inside stars. The 
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activity on the Sun has a strong influence on our day to day activities as well, giving 

us more pragmatical reasons for its study. High energy particles ejected by the Sun 

into outer space - the solar wind - change on a global scale the Earth's climate, 

the most visible effect being Aurora Borealis/ A ustralis. Other bad effects include 

disruption of geostationary satellites, pipelines, electrical power grids and increased 

levels of radiation. The generation of solar wind follows an extremely complicated 

mechanism, not entirely known. 

The Sun provides a lot of information about processes that are not easily repli­

cated by man made experiments. In elementary particle and nuclear physics the 

benefits were numerous. With the help of solar data, about 30 years ago the neutri­

nos were discovered. Up until the year 2002 there was a major discrepancy between 

the predicted and observed neutrino amounts. Finally two new types of neutrinos 

have been discovered (with muchlower probability of interaction). 

The bulk part of the solar energy is generated thorough the eND cycle (Carbon, 

Nitrogen, Oxygen), in which stars convert through fusion Hydrogen into Helium, a 

phenomenon which is still not totally understood. 

In the field of plasma physics the most important contributions were wave prop­

agation and magnetic field generation. 

One of the largely open problems is the coronal heating problem. The solar corona 

is the outer most atmosphere. This extends from Rsun to about 2 - 3 solar radii. 

The mystery behind the corona pertains to its heating mechanism. It is about 200 

times hotter than the photosphere - the next inner layer. The temperature of the 

corona rises from 5 0000 K to about 1 000 0000 K within 200 000 Km. There is 

still no generally accepted theory regarding the energy transfer mechanisms from the 

photosphere to the corona. The two most prevalent theories are the wave transport 

theory and the magnetic reconnection theory. The second one has the greater support 

and we will base our investigations on it. In short this theory claims that the heating 

is due to the magnetically induced electrical currents. When magnetic fields change 
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Figure 2.1. The 4 waveIengths captured by STEREO 

topology (they merge or divide) a certain amount of energy gets released. In our 

project we will try reconstructing these field lines. 

Because of the extreme temperature most of the matter is ionized. This is fortu­

nate since this matter will gather around the magnetic field. The equation of motion 

for a charged particle inside magnetic field is given by the Lorentz equation: 

--+ --+--+ 
F=q·VxB (2.1) 

where q is the particle charge, V is its velocity and B is the magnetic field. Since 

there is a cross product, the particle will follow a helical motion around the field line. 

These particles provide an outline of the magnetic field, otherwise invisible (Fig 1.1). 

For more detailed information on solar and stellar phenomena please refer to [3-6]. 
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2.1 STEREO mission 

In Deeember 2006, NASA launched its third Solar Terrestrial Probe called STEREO 

(Solar TErrestrial RElations Observatory). The mission consists of two identieal 

probes orbiting around the Sun, one in front and the other trailing behind the Earth, 

providing the first true stereoscopie view of the Sun. 

The whole mission was designed to provide data for a period of 5 years with 

its main scientific objective being the better understanding of CMEs (Coronal Mass 

Ejections). CMEs are important to study since they have a direct impact on our day 

to day life. Onee they escape the solar gravitational field they turn into solar wind 

and can disrupt satellites orbiting Earth, telecommunieations, and even the terrestrial 

electrical power grids. 

The mission carries a broad range of instruments. This project will be using 

the instruments contained in the SECCHI package (Sun Earth Connection Coronal 

and Heliospheric Investigation). Each satellite contains a EUV (extreme ultra violet) 

imager that takes images in the wavelengths of 171, 195,284 and 304 Â. Sinee different 

emission lines get formed at different temperatures, different images provide insight 

at different depths inside the Sun (Fig. 2.1), ranging from Rsun, up to approximately 

2Rsun· 

. The satellites orbit -in a helioeentric trajectory (around the Sun), allowing the 

satellites to separate more and more as time passes, since one is closer to the Sun 

and thus moving faster. The current separation between the satellites is about 25° 

and growing by a rate of about 6° per month. The satellites are situated about 109 

meters away from the Sun. The field of view of the satellites is around 1.5°, so the 

projection model being close to an orthographie camera model. 

The'data cornes in the FITS format. This is a general purpose format used in Solar 

and stellar astronomy, that can handle time series, images, or multidimensional data. 

The FITS files also contain a header where one can accomodate ancillary information 
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Figure 2.2. Image of the Sun as seen by STEREO-B in the 195J1. 

about the conditions in which the data was recorded. SECCHI provides its data as 

16bit integer 2D images, (Fig. 2.2). 

A more detailed mission description can be found in [7,8]. 

2.2 Coordinate systems 

In order to represent the positions of far astronomical bodies, they are considered as 

belonging to a sphere of infinite radius - the celestial sphere. In such a system, the 

parallax is virtually zero. The position of objects in such a system is fully determined 

by two angle parameters, the right ascension and declination (or galactic latitude 

and longitude). This sphere has its center located at the center of the Earth and its 

equator in the same plane as Earth's equator - the celestial equator. In a similar fash­

ion coordinates on the surface of Earth are represented by two coordinates, latitude 
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FIIpWe 23. Sun seen from the Iwo STEREOs 

ailld longituclle. 

Since t.he Sun 1S close enough and the resolution off the observat~ons permits us 

to resolve sm aller features, jjt is crucial to introduce a thiFcl! coordinate to accurntely 

describe the pheno,rnena occurring on the Sun. As we will see in the chapter' about 

camera models (chapte:r 3), the t.hird coo:rdinat.e gets lost due ta proj.€ction onto the 

imaging senS0r. Because of this, at least two views a:re needed ta recover the wnole 

3D geometry .of phenomena. 

Anot.her difficulty in positioning objects onto the Sun is caused by the fact that 

there are no stationary points that coul!d serve as re:Derence. The Sun t.ums at dif­

:lferent rates at different latitudes bec-ause of ceNtrifuga] and! magnetic forces. Sorne 

coo.rdinate systems will he rotating with respect ta. each other, t.hus it is nec-eS8airy to 

take also t.jjme into consideration. 

2.2.11 World' coordinate sy:stems 

Sinee the S'J1S.REO is observi:ng from two very different vantage pOlnts it is neeessary 

to ineorporate t.he instrument vl€'W])ofullit (3D position) 1111to the coor-dinate system 

(fig. 2.3}. 

'Fo be able to :pass from 3D wmldl cooFd1nates to pixeL coordin8ites iim:sidJe images 

we need to pass thro1!l:gh two leve]s of comdi]}j8ite systems. FjjFS.t]y, the 3;])1 positions 
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and orientations of the satellites have to be known (in total 6 parameters, 3 for 

translations and 3 for rotations). These are the "external" parameters. After this we 

have to establish a set of 2D transformations that map the coordinates of the Sun to 

pixel coordinates of the sensors (the "internaI" parameters). 

In order to represent the 3D world position of the satellites, the FITS headers 

provide coordinates in a multitude of coordinate systems. To uniquely define a coor­

dinate system we have to pinpoint its origin as well as choose two axes (the third is 

derived from these axes since we assume a right handed coordinate system). We use 

heliocentric coordinate systems, so the origin is at the center of the Sun. The most 

useful orientations of the axes are: 

1. Heliocentric Aries Ecliptic 

• X axis points towards the First Point of Aries 

• Z axis points towards the ecliptic north pole 

2. Heliocentric Earth ecliptic 

• X axis points towards the Earth 

• Z axis points towards the ecliptic north pole 

The ecliptic plane is the plane in which the Earth rotates around the Sun. The 

ecliptic north pole direction is perpendicular to the ecliptic plane. 

The first point of Aries, Fig 2.4, is the point in space where galactic longitude is 

considered O. This is one of the points where the celestial (Earth's) equator plane 

intersects the ecliptic plane. Whenever the Sun is in one of these two points, an 

equinox occurs. The first point of Aries has been chosen as the vernal equinox that 

occurred in 1950. This points towards somewhere in the Pisces constellation. The 

first point of Aries moves at a constant rate of about one degree every 71 years. This 
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Figure 2.4. Celestial aoo ecliptic planes togetœ,. with the equinaxes 

movement is small enough to be considiered €([j,llstant €onsiclering the typical timeseaIe 

of observed. solar phenomena, which dœs not usuaIly go o;ver 6 months. 

Roth these coordinate systems have the origin at the centere>f the Sun, thus the 

name - neliocentric. These coordinate systems are used to represent the 3D p'Ûsition 

of the satellites. The satellites are designed to look towards the center of the Sun, 

making the remaining 3 rotatie>n parameters known. Details on how te> compute them 

will be given in chapter 4. 

2.2.2 Image coordinate systems 

Ne:>..'t we have to deal with conversion from 3D world coordinates to 2D pixel coordi­

nates. This is accomplished by using the helioprojective system. Even though they 

are full 3D systems, they are not very useful to express real 3D world point as they 

are mostly tied to the Sun, thus changing fairly rapidly with time. Another charac­

teristic that makes then unsuitable for this task is the fact that the observer point 

of view is not incIuded in the system, making it impossible to compare two images 

taken from two different locations. 

While not being used in practice, the helioprojective cartesian coordinat es pro-
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Figure 2.5. Heliocentric cartesian coordinate system 

vide the background necessary for the other coordinate systems (Fig. 2.5). In this 

coordinate system the Z-axis is defined as the observer-Sun line pointing towards the 

observer. The X-axis is defined perpendicular to the plane defined by Z and the Solar 

North pole (point around which the Sun rotates). The Y-axis is defined as the cross 

product between the other two. 

2.2.3 Helioprojective coordinate systems 

Stars are usually considered far, fiat, virtually positioned at infinity. This is not the 

case for the Sun, therefore we need a more specialized (accurate) coordinate system 

to express positions on the surface of the Sun (a sphere). 

These coordinate systems mimic the heliocentric coordinates with the difference 

that their distances are replaced bi angles. The origin of this coordinate system is 

located at the Sun's center. The Y-axis points towards the solar North pole and the 

X-axis towards the west solar limb. The solar north/south poles direction is defined 
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similarily to Earth as the direction perpendicular to the plane of solar rotation. We 

could define the Z-axis to be the vector product between Y and X, giving us a left 

handed coordinate system. In practice the third coordinate is fairly useless. 

The conversion between heliocentric Earth equatorial and helioprojective cartesian 

coordinates is one to one: 

x ~ D (1;00 ) <Px 

y ~ D (1;00 ) <PY 

(2.2) 

(2.3) 

(2.4) 

where x and y are the heliocentric coordinates, <Px and <py are the two helioprojective 

coordinates, D is the distance from the observer to solar center. The system assumes 

implicitly the observation is carried out from Earth. This system is nothing more 

than a spherical coordinate system analogous to one on the Earth. The system can 

be extended by adding the 3rd coordinate ç = D - d, where d is the distance between 

the feature and the observer. In the vicinity of the Sun we can consider that ç ~ z. 

In practice in order to convert from pixel coordinates to helioprojective system 

and other way around, we need three extra parameters: the center of the Sun in 

pixels, a rotation around the satellites Z-axis (the yaw angle) needed to bring the 

solar north to the top of the picture, and a scale, the number of degrees/pixel. 

The only place where the helioprojective coordinate system is used is in solar 

observations. The astronomers prefer most of the time to replace the true angles by 

some pseudoangles. The pseudoangles are defined as the projection of a feature onto 

the z = 0 plane expressed in angles. The pseudoangles vary with the tangent of the 

real angle. Since the apparent angular size of the Sun, from Earth is around 10
, the 

pseudo and true angles differ only at the fifth decimal place. 

This approximation is also used when one is observing a spherical surface with a 

fiat sensor and is called the TAN projection model. 

More informations about common coordinate systems used in astrophysics can be 
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found in [9]. 

2.3 Influence of magnetic field 

The magnetic field is of paramount importance for both theoretical understanding 

of and data processing. Once we have a model of the magnetic field which is simple 

enough, we could use it to help us identify features inside the images provided by 

STEREO. 

The full dynamics of matter under magnetic and electric fields is described by a 

system of 8 coupled partial differential equations called the magneto-hydrodynamic 

equations (MHD). Since these equations are fairly hard to resolve, an acceptable 

subset of equations chosen to model the magnetic fi~lds in the corona are the 4 

Maxwell equations (the hydrodynamics is considered negligible as the density insidè 

the corona is minimal): 

v·E - 41fPE (2.5) 

v·B 0 (2.6) 

VxE 
1aB (2.7) 
c at 

vxB 
1aE 
-- +41fj 
c at (2.8) 

where E and B are the electric and magnetic fields, PE is the electric charge den­

sity, c is the speed of light and j is the electric current density. We can introduce 

further simplifications. Since we consider the fields as being in equilibrium, the time 

derivative terms are negligible. 

If we consider that the magnetic field is a potential field, it can be written in terms 

of gradient of another field B = V cp. We get the potential field approximation of the 

field: V x V . cp = 0 where B = V . cp, '1 2
. B = o. Standard methods on how to solve· 

such equations are described in [10]. The solution to the potential field approximation 

of the problem is the lowest energy configuration possible. This approximation ho Ids 
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only inside regions on the Sun where activity is very low [11]. 

For regions with stronger activity, the model of choice is the linear force free 

model. The equation of this model is 

\] x B = aB (2.9) 

With sorne further approximations this becomes \]2 . B + a 2 B = 0, known as the 

Helmholtz equation. The parameter a can give us a measure of how unstable the 

region is (likelihood of a solar fiare for example). For a = 0 we are back to our 

potential field model. 

The widely available magnetic data that is available from the MDI mission (Michelson­

Doppler Interferometer) provides us with just the normal componentof the magnetic 

fields on the surface of the Sun. Note however that the magnetic field is a vector 

function B = (Bx, By, Bz) each component depending on (x, y, z). The data avail­

able from MDI is BAx, y, Rsun ). We need to propagate the information we have 

. throughout the whole volume of interest (extrapolate the field) in order to use it at 

a later stage. In Fig 2.6 we have an example of a magnetogram provided by MDI. 

Red patches represent fields that exit the surface of the Sun and green patches where 

fields enter the Sun. 

Fourier space methods recently developed in [12-14] provide very efficient ways to 

extrapolate linear force free magnetic fields. It can be shown that the solution of the 

Helmholtz equation can be expressed in terms of the Fourier transform of the normal 
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Figure 2.6. Magnetogram provided by MDI 

component: 

~ Cmn [7rn (7rmx) (7rny) L..; --exp(-rmnz )· a-sin -- cos --
m,n=l Àmn Ly Lx Ly 

(2.10) 

7rm (7rny) (7rmx)] -rmn-sm -- cos --
Lx Ly Lx 

By(x, y, z) = ~ Cmn [7rn (7rmx) (7rny) ~ --exp(-rmnz)· a-cos -- sin --
m,n=l Àmn Ly Lx Ly 

(2.11) 

-rmn-cos -- sin --7rm (7rny) (7rmx)] 
Lx Ly Lx 

00 ( ) ( ) 

7rmx 7rny L Cmn exp( -r mn z ) . sin ---y;; . sin L 
m,n=l y 

(2.12) 

with Àmn = 7r 2 (m2 
/ L; + n2 

/ L;) and r mn = JÀmn - a, and image sizes are Lx and 

Ly. We can find the coefficients Cmn by choosing z = 0 in the Bz formula and taking 

the FFT of Bz(x, y, 0) (our image provided by MDI). In practice we have to do an 

antisymmetric mirroring of Bz before computing the FFT to get the identical formula: 

Bz( -x, y) 

Bz(x, -y) 

-B(x, y) 

-B(x,y) 
(2.13) 

(2.14) 
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Fig 2.7 contains an input image and a few traced lines from the resulting extrapolated 

magnetic field by the method developed by [14]. Also notice that lines which start 

very close to the edge of the image exit outside the frame due to periodicity of the 

dis crete Fourier transform. 

Since the coronal loops follow the magnetic field lines, we could use the extrapo­

lated field lines to perform a feature based reconstruction of loops. 
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Chapter 3 

3D GEOMETRY AND RECONSTRUCTION 

This chapter will introduce sorne essential tools used in computer vision that will 

be used in the chapt ers to come. For a more in-depth introduction refer to [15,16]. 

3.1 Homogeneous coordinates 

The equation of a line in two dimensions is given by: ax + by + c = 0, different choices 

for a, band c generate different lines. It is also possible to rewrite thisequation by 

using inner product: 

x 

(a b c). y =0 

1 

(3.1) 

The point (x, y, 1) T on the line· is said to be the homogeneous representation of the 

2D point (x, y). Clearly if such a point (x, y, If belongs to the line, so will the point 

(kx, ky, kf. Thus we have an equivalence relation between all points that satisfy the 

equation of the line (a, b, c), (x, y, 1) (kx, ky, k), 'ï/k 1:- O. The concept of homoge­

neous coordinates, which are also called projective coordinates, can be expanded in a 

similar fashion to spaces of higher dimensions. The conversion between homogeneous 

and Euclidean points is straightforward: just multiply the point by constant such that 

the last coordinate bec?mes 1 and drop it:(x, y, k) t'V (x/k, y/k, 1) -----+ (x/k, y/k). 

It is important to note that even though the 2D homogeneous coordinates have 3 

components, the dimension of the space is still two. One advantage of using the 

homogeneous coordinates is the ability to represent points and lines at infinity. This 

is simply done by letting the sc ale factor k tend to O. 
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Another advantage of using this representation is the ability to represent the 

rotation and translation of a coordinate system as a linear operator. In case of 3D 

homogeneous coordinates this looks like: 

Pc R(Pw T) (3.2) 

Xc ru r12 r13 ta; X w 

Yc r21 r22 r23 ty Yw 
(3.3) 

Zc r31 r32 r33 tz Zw 

1 0 0 0 1 1 

3.2 Camera models 

In most computer vision applications the data used is produced by cameras. Therefore 

it is crucial to be able to model the image formation. Throughout this section we 

will gradually develop the model for a perspective camera. 

In its purest form, a camera consists of a focal point where alllight rays intersect 

and a focal (imaging) plane where the image is formed, lying at a certain distance 

(focal length) (see Fig. 3.1). 

The center of projection is called camera center. A line of sight is selected as the 

principle axis, that contains the camera center. Usually it is perpendicular to the 

image plane. The intersection of the principle axis with the imaging plane is called 

the princip le point. 

There are three coordinate systems tied to cameras that present importance 

(world, camera and i~age coordinate systems). The first one is the world coordi­

nate system. To pass from the wor Id system to the camera coordinate system we use 

the external parameters. The internal parameters allow us to pass from the camera 

system to the image coordinate system. The image coordinate system has the origin 

in the bottom left corner of the image (unlike image processing softwares that con­

sider the origin in the top left corner). The Y axis is increasing upwards and the X 
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Figure 3;1. Pinhole camera projection model 

from left to right. By convention the camera is observing the world in the negative 

Z direction. 

Under this model, a point in the world Pw= (x, y, Z)T is mapped to a point on 

the image Pi that lies at the intersection of the line defined by the camera center and 

the point in the world, and the image plane. It is easy to notice that the point in 

the world (x, y, Z)T 1---+ (Jx/ z, jy/ Z, f)T under the previous projection. If we .exclude 

the last coordinate we get: (Jx/z,jY/Z)T. Defining depth as being d = l/z we get 

jdx,jdy. 

If the world and image points are expressed in projective coordinates we can write 
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the mapping as: 

X X 
fX f 0 

y y 
----+ fY f 0 (3.4) 

Z Z 
Z I 0 

I I 

This is a mapping from 3D projective to 2D projective space. The result we get is 

the same as before (fx, fy, zf '" (fx/ z, fy/ z, If· 
.. 

The previous projection model assumed that the origin of the coordinates in the 

image plane coresponds to the principle point. A more general form of the mapping 

is (x,y,zf -t (fx/z + Px,fy/z + pyf, with (Px,Py) being the coordinates of the 

central point. In matrix form this becomes: 

X X 
fX f Px 0 

y y 
----+ fY f Py 0 

Z Z 
(3.5) 

Z I 0 
I I 

The matrix: 
f Px 

K= f Py (3.6) 

1 

is called internaI parameter matrix. This matrix captures intrinsic properties of the 

camera like the field of view and the position of the sensor with respect ta the principle 

line (given by the optics). In mathematical terms this simply does a rescaling and 

shift of the points. 

This projection model assumes that the world reference frame in which 3D points 

in the world are expressed coincides with the coordinate system of the camera. In 

general this is not the case so we are forced to do another transformation to align the 

coordinate systems. This transformation is described in equation (3.3). The rotation 
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and translation that are needed to align the camera with the world reference frame 

are called the external parameters matrix M. 

Putting all these transformations together from world to the image we obtain: 

·1 Px 0 

Pc = 1 Py 0 

1 0 

Pc = KMPw 

rll r12 r13 tx 

r21 r22 r23 ty P w 

r31 r32 r33 tz 

(3.7) 

(3.8) 

It is worth noting that a rotation around the Z camera axis is in fact a 2D transfor­

mation and can be perceived as being an external parameter or an internaI one (a 

physical rotation of the CCD sensor). In this project we have considered this rotation 

as part of the internaI parameters matrix. In this case the internaI parameters matrix 

K becomes 

a b Px 

K = c d Py 

o 0 1 

The upper 2x2 block does a Z-rotation and a scaling. 

3.3 Radial distorsion 

(3.9) 

The assumptions so far were that the linear camera projection model is accurate. 

This remains valid for high-end lens with large focal lengths. When this is not the 

case, radial distorsion becomes apparent. This manifests itself by rendering straight 

lines in the world as curved, as illustrated in Fig. 3.2. 

The position where the 3D points are projected gets affected by a non-linear 

function L, which depends only on the distance to a certain distorsion center. In 

camera coordinates (before applying the internaI parameters) the distorsion model 

looks like this: 

(3.10) 
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FIgUre 3.2. Racfaal dIStorsion [1] 

where x, y are the coordinates fiawed by radial distorsion and X, f) are the coordinates 

of the linear camera and r is the distance to the distorsion center. This takes advan­

tage of the fact that the optical center (and most of the time distorsion center) has 

the coordinates (0,0). In pixel coordinates the relation becomes: 

x = Xc + L(r)(x - xc) 

y = Yc + L(r)(f) - Yc) 

(3.11) 

(3.12) 

with Xc, Yc being the distorsion centers. If the aspect ratio of the images is not 1, 

we need to multiply one of the coordinat es by a scalar to bring it to 1, apply inverse 

distorsion and multiply by the inverse. 

The radial distorsion function is defined only for positive values of rand L(O) = 1 

such that the distorsion center does not get affected by the transformation. The 

function L(r) is generally unknown (unless we have sorne prior knowledge about the 

optical system of the camera). An approximation to this is given by the Taylor 

expansion: L(r) = L:~l kir i . In practice three or four terms are enough to achieve 

good enough results. We consider the even expansion of the radial distorsion function 
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for negative values (since the distance is always positive). This means that if we 

consider only even power of r we will achieve same accuracy but with less parameters 

to estimate. In a similar fashion once could take odd powers if we consider the 

function to be odd. 

The easiest way to estimate the parameters k i for the radial distorsion is to mini­

mize sorne cost based on derivation of sorne linear operator like a homography between 

a planar scene and an image. If we need to compute the distorsion centers as well Xc 

and Yc, we need to iterate between finding the distorsion center and reestimating the 

ki's. 

3.4 Planar homographies 

A homography is a general planar (two dimensional) projective transformation. Ho­

mographies are extremely useful in practice as they enable us to rectify images such 

that they have certain properties like fronto-parallelism (views that differ just by a 

translation), useful for planar panorama making and for stereoscopic reconstruction. 

Also given enough homographies of the same camera with different planes one can 

compute most camera parameters (like internaI parameters, essential matrix, etc.). 

Formally a homography is defined as a linear transformation: H : JP'2 ---+ JP'2 that takes 

a point Pi to point p~, p~ = Hpi. In this formulation vectors which have the good 

orientation but differ in magnitude do not obey the equation as they should (since 

we are dealing with projective vectors). An alternative formulation of a homography 

is: p~ X HPi = o. This leads to a set of linear equations that can be easily solved. 

Specifics can be found in [15]. 

3.5 Stereoscopie reconstruction 

The general problem of stereoscopie reconstruction can be posed as: given a set of 

images of the same scene, taken from different positions, recover the 3D information 
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Figure 3.3. Triangulation 

of each pixel in the image. 

As you have noticed in the chapter 3.2, the only unknown for each pixel in the 

image is the Z coordinate of the 3D world point that generated the images. Therefore 

knowing the projection model for each camera (camera matrices) and the position of 

the cameras with respect to each other and pixel correspondences, 'one can calculate 

the missing coordinate by using triangulation. 

As illustrated in Fig. 3.3, once we have managed to establish that the 3D world 

point P corresponds to point x in the reference image A and x' in image B it is 

fairly straightforward to solve the problem. If we know that a pixel in the first view 

corresponds to another pixel in the second view we can compute the position of the 

point in the wor Id using triangulation. In order to obtain the pixel coordinates inside 

a camera with matrix M of a 3D projective point, we sim ply multiply the point 

with the matrix and divide by the third coordinate. Similarily to deproject an image 

point at depth d we simply multiply this point by the inverse camera matrix. The 

3D projective coordinates of a pixel (ix, iy) in an image at depth d are: (ix, iy, 1, d). 

The third coordinate of a pixel inside an image is equal to 1 since by convention the 

imaging plane is at z = 1 in the camera coordinate system. 
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In stereo, we pick x in the first image and by associating different depths d and 

reprojecting into the second view at x' and see if we have a good match. 

The process of deprojecting a camera pixel (i x , iy) at depth d and reprojecting in 

a second image is called triangulation. Given a point in the first camera and that two 

camera matrices the deprojecting and reprojecting is done by computing: 

'lx 

Mb' M;:l 
'ly 

(3.13) 
1 

d 

We choose the depth of the pixel as being the one that minimizes the distance 

between our expected position and the actual position in the second image. 

The correspondence estimation problem is far from being a trivial one. Besides the 

fact that noise can very quickly degrade our solution, we might encounter occlusions. 

In Fig. 3.4 you have an example of occlusion. Point B is visible from both camera, 

whereas because of the depth difference, point C is occluding A. Other complications 

include specularity and transparency of surfaces (which this project was aimed to 

deal with). 

3.5.1 Epipolar geometry 

The epipolar geometry between two views is the geometry that describes the relative 

positions of two cameras. It essentially describes for a point x in one image, the 

potentiallocations of matches in the second image. Observe in Fig. 3.5 that the two 

image points and camera cent ers are coplanar with the world point P. Similarly the 

backprojected rays that pass through x and x' are coplanar and intersect at P. This 

last property is of paramount importance to the correspondence problem as it limits 

the matches along a line. When epipolar lines are horizontal, the stereo process is 

greatly simplified to ID horizontal searches. In this thesis a method is presented for 

rectification of solar images such that the epipolar lines are horizontal. 
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Figure 3.4. Occlusions: A is partially occluded. B is fully visible and C is an 
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Figure 3.5. Epipolar geometry 
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The epipolar geometry is governed by the following parameters: 

• The epipole e, e' is the intersection of the baseline AB with the two image 

planes. 

• The epipolar plane is the plane that contains the baseline. This has one free 

parameter, the angle. 

• The epipolar lines are the intersection of the epipolar plane with the two 

imaging planes. This gives correspondences between Hnes. 

The method how to der ive formulas for the epipolar planes will be given in the 

chapter 4. 

3.5.2 Establishing correspondences 

In order to match pixels along an epipolar Hne, we define the similarity of two pixels 

in terms of a co st function. Common choices for cost functions are: 

c 

c 

L Il Vi - Vr lin 

L Il Vi -V lin 

(3.14) 

(3.15) 

where Vi is the pixel intensity value in the ith camera, Vr is the reference pixel value 

and V is an average pixel value. Il . lin is the Ln norm. Common choices for n are 1 or 

2. In order for such co st functions to work one has to make the following assumptions: 

• The objects are opaque 

• Constant intensity in all views (a world point projects to the same intensity 

value in both images) 

• Lambertian l surface 

1 Lambertian surfaces refiect light the same way regardless of the viewing angle 
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2 

x x' 

Figure 3.6. Correspondence of X and x' on an epipolar line 

• No ocel usions 

The sim plest method is to choose one pixel in the first image and search inside an 

interval in the second image for the best match according to our cost function (Fig. 

3.6). This approach was proposed by Kanade [17]. This method calculates correspon­

dences of each pixel independent, giving a noisy estimate. In practice neighboring 

pixels usually have the same value, depth (not considering discontinuities) and adding 

a smoothing cost will greatly improve solution. 

Since real world surfaces tend to be smooth we can inelude a smoothing cost by 

matching two who le epipolar lines together. The new energy function will be of the 

following form: 

(3.16) 

The first term, Ec, is the correspondence cost, defined earlier. The second term, Es, 

penalizes the difference of depth between neighboring pixels along an epipolar line. 

This can be again sorne norm of the difference between the disparity of the current 

pixel and that of its neighbors. Such problems can be easily solved using Dynamic 

Progmmming (see Fig. 3.7). The cost Cost(x, d), of the pixel x in the first image to 
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Figure 3.7. Dynamic programming 

Figure 3.8. Tsukuba dataset: Left - direct search. Right - dynamic programming 

match at x + d in the second one is: 

Cost(O, d) 

Cost(x, d) 

= c(O, d) 

= min [c(x, d') + Cost(x - 1, d') + S(d, d')] 
d' 

where c(x, d) is the correspondence co st and S(d, d') is a smoothing cost. 
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(3.17) 

(3.18) 

In Fig. 3.8 xou can observe the resulting depth map of the two algorith~s on 

the famous Tsukuba dataset. The direct search method result is much noisier than 

the dynamic programming one. Vou can observe sorne "streaks" in the dynamic 

programming solution, as the smoothing is imposed only along horizontal epipolar 

lines. 
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3.5.3 Volumetrie reconstruction 

The approach that was outlined, goes by the name of stereoscopie reconstruction. A 

reference view was chosen and the scene was reconstructed from the point of view 

of this camera. However this becomes impractical as the number of views grows. 

Because of the occlusions, this method works only if all cameras are situated on the 

same side of the object. Also this method breaks down if two cameras are facing each 

other. 

To get rid of these limitations the problem can be approached from a siightly 

different angle. Instead of choosing a reference view, we discretized the 3D recon­

struction space into voxels. Each voxel can be projected in each camera. The color 

of each voxel can be taken as the average of the colors in the cameras that see this 

voxel. Occlusions can cause a lot of problems since the views are often very separated. 

One of the most popular volumetrie reconstruction algorithms is the space carvzng 

algorithm proposed in [18]. 

3.6 Satellite camera calibration 

In this section we will present how the two satellite camera matrices are computed. 

In order to calibrate the external parameters of the camera, we need to find the 

three translation components and the orientation information (rotation with respect 

to the world coordinate system). For the internaI parameter matrix we need one 

focallength, two values for the optical center (in pixels) and one parameter which is 

the rotation around the camera Z axis (the Z rotation can be considered as either 

internaI or external parameter as it is a two dimensional transformation). Since all 

parameters provided by the mission, contain a fair amount of error we will introduce 

an extra matrix that corrects the value for alllinear acting parameters. Additionally 

we want to calibrate for radial distorsion so 3 extra parameters are needed (more 

parameters do not introduce significant improvements). Since radial distorsion is not 
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linear in nature, it is impossible to express it as a matrix operator. 

3.6.1 External parameters 

We choose the HAE (Heliocentric Aries Ecliptic) system as the world coordinate 

system. The reason for this is that this system is most stationary of the ones given 

by the NASA and most other spaceborne missions have their coordinates in this 

system as weIl. This system has its origin at the center of the Sun, the X axis points 

at the first point of Aries, Z towards the ecliptic north pole, and the Y axis is defined 

as a cross product of the other two to end up with a right-handed coordinate system. 

The three components of translation are given aIready in the header of the images 

as HAEX_OBS, HAEY_OBS, HAEZ_OBS. 

From the mission description we know that the satellites are looking approximately 

towards the center of the Sun (origin). To find the rotation we will procede by 

a constructive approach. Since the camera looks towards the negative Z axis, the 

camera Z axis should be equal to normalized translation vector. We have computed 

the camera coordinate system up to a rotation around the Z axis. We choose the 

camera X axis to be perpendicular to the plane formed by the world Z and camera 

Z axis. The camera Y axis is just the cross product between the camera Z and X 

axes. 

Once we have the new coordinate system, the rotation matrix between the stan­

dard (canonical) coordinate system and an arbitrary one is just a stacking of the axis 



vectors. 

T 

Cx - Cz X [0,0,1] 

R 
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(3.19) 

(3.20) 

(3.21) 

(3.22) 

where T is the translation, cx , cy, Cz are the camera coordinate system axis and R 

is our rotation matrix. With these parameters computed, the external parameter 

matrix is simply M = [R 1 T]. 

3.6.2 Internal parameters matrix 

AH parameters for the internaI matrix are given in the FITS headers, but in a form 

which is not really usable for computer vision. The internaI parameter matrix nor- . 

mally pro duces a shift and rescale between the image and camera coordinate system. 

Additionally, in case of STEREO camera there is an extra rotation around the optical 

axis. The location of the optical center is given by the CRPIXI and CRPIX2 header 

keywords. The image sc ale is given in arcseconds/pixel is given by the CDELTI and 

CDELT2 keywords. This value has to be multiplied by 360;180 in order to get ra­

dians/pixel. The Z rotation matrix components is also given as PCLl, PCL2, 

PC2_1, PC2_2. With this the internaI parameters matrix is [9]: 

,B 

-PC2_1/a PCL2/a CRPIXl-l 0 

PC2_1/,B PCLl/,B CRPIX2-1 0 

o 0 0 1 

CDELTI (PCL2 . PC2_1 - PCLI . PC2_2) 

CDELT2 (PCL2 . PC2_1 - PCLI . PC2_2) 

(3.23) 

(3.24) 

(3.25) 
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The upper 2x2 block does the rotation and scaling and the other two entries the 

shift. The matrix has this complicated form since all parameters given in the header 

perform the conversion from image to camera coordinates, but the internaI parameter 

matrix is supposed to perform the conversion in the other direction. 

3.6.3 Corrections matrix 

The STEREO B satellite is assumed to have accurate internaI parameters. We are to 

find the corrections to the internaI parameters for the STEREO A images such that 

the alignment fits best. Note that the radial distorsion is assumed to be the same for 

both images. We introduce the following linear correction parameters: 

• two parameters for the optical center 

• one parameter for the scale factor 

• one rotation angle around the Z axis 

We have also tried optimizing for rotations around the X and Y axis, but the 

effect is almost totally explainable by the shift of optical center since the field of view 

is very small. 

With this new matrix, the projection model becomes: 

(3.26) 

where ~ is a point in the image, Pw is a 3D world point, Mint internaI parameter 

matrix, M ext external parameter matrix, Mscale matrix adds a multiplier to the cal­

culated Jocallength and Mshift changes the position of the optical center. In' all that 

follows Rx and Ry are considered identity because of their insignificant effect. 
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We can group aH the non-identity matrices into one M corr = MshiftMscaleRz: 

1 0 0 dx 

Mshift (dx, dy) 0 1 0 dy (3.27) 

0 0 0 1 

sx 0 0 0 

Mscale (sx, sy) - 0 sy 0 0 (3.28) 

0 0 0 1 

cose sine 0 0 

- sine cose 0 0 (3.29) 

0 0 0 1 

(3.30) 

We notice that aH correction parameters are linear Euclidean two dimensional trans­

formations. The chosen objective function is the me an squared sum of differences 

between the two images inside a patch in the 304A wavelength (orange images). 

These images provide a view of the surface of the Sun. At this depth there are not 

many proeminences, and the rectification is made in such a way that objects at RSun 

will not exhibit any parallax. 

The radial distorsion is not a linear transformation giving a very different effect 

from a scale/shift transformation. For this reason the problem is easily optimized 

(the cost function does not have valleys if one considers any pair of variables). This 

co st function contains 7 variables (2 for shift, 1 for scale, 1 for Z rotation and 3 for 

radial distorsion). 

The deformation model for the radial distorsion is taken as in [19]: 

(3.31) 



This correction is applied in the end: 

x = Xc + L(f)(x - xc) 

y = Yc + L(f)(y - Yc) 
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(3.32) 

(3.33) 

with ~ = [x, y, 1, a]T, previously defined and r = JX2 - y2, where r is taken as the 

distance to a distorsion center, the center of the image in our case. 

In the next chapter we introduce a method to rectify images taken by the STEREO 

mission where structures on the surface of the Sun are situated on the zero disparity 

surface (there is no motion parallax). This is particularly useful to align the two 

available views (that observe the surface of the Sun). 

To compute the parameters for the correction matrix and radial distortion we try 

~o minimize the sum of square differences between pixels of the 2 views taken in the 

304A. This wavelength gets formed very close to surface of the Sun, thus carrying 

very litt le depth information. 

There are times when the minimization algorithm do es not converge to the global 

minimum since the cost function might become very noisy because of the non-linear 

parameters (radial distorsion or Z-rotation). When this occurs we will perform the 

minimization in two steps: first start minimize the linear parameters setting the non­

linear ones to O. In the second step we set the linear term to the optimal values and 

minimize the non-linear terms. This ensures that the starting point for non-linear 

parts is close to the true solution. 

An alternative is to minhnize all variables at once and use sorne probabilistic 

minimization algorithm like simulated annealing, but this is extremely slow. 
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RECTIFICATION 

4.1 Related work 

In section 3.5 we introduced the concept of epipolar geometry. This makes it possible 

to reduce the stereo search space from two dimensions to one. Since matching along 

horizontal epipolar lines is very desirable, we will rectify the solar images. All rec­

tification methods require that the cameras to be calibrated (internaI and external 

parameters), w hich was described in the previous chapter. 

The first rectification method we will be presenting is introduced in [20] and is 

by far the simplest method but does not work for all camera configurations. Next 

we will present a brief introduction to the cylindrical rectification method [21] which 

resolves the previously mentioned problems. In the end we will present a rectification 

scheme that is specifically adapted to the case of spherical objects. 

The rectification can be characterized in general terms as a succession of following 

operations: 

• rotation of a pencil plane around an axis (baseline) and intersection with the 

two imaging planes 

• mapping of an epipolar line onto a surface with a specific discretization 

4.2 Planar rectification 

The planar rectification is also known as rectification with homographies. The goal of 

rectification is making all epipolar lines parallel to each each other and aligned with 

one axis of the image (see Fig. 4.1). In order for the lines to be parallel the epi poles 
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Figure 4.1. Original and reCtified epipolar lines 

have to be mapped at infinity. This is being realized by remapping the images onto 

two fronto-parallel views (two planes that differ just by a translation). 

Without loss of generality we assume the following: 

• R, T and principle point fOr both cameras are known (camera matrices). 

• the origin of the image coordinate system is at the principal point of the right 

camera. 

• both cameras have focal length f. 

The algorithm consists of finding the rotation matrix such that the epipoles in both 

cameras go to infinity horizontally. Next we compute a second rotation, between the 

two cameras and align them to be fronto-parallel. As a last step we have to adjust 

the scales of the images. 

In order to find the rotation matrix to make the views fronto-parallel we have to 

find 3 mutually orthogonal vectors el, e2, e3. This problem is underconstrained so we 

have to make an arbitrary choice for vectors. The vector el is given by the epipole, 

which is actually the translation between cameras: 

(4.1) 



41 

We choose e2 as being perpendicular to el (we have one degree of freedom). For this 

we can take the cross product between the optiéal axis of one camera and the vector 

el' This gives the vector e2 perpendicular to the plane formed by the optical axis 
i 

e2 = y'T21 T2 [-Ty Tx 0] T 
x + y 

; (4.2) 

The third vector e3 is simply the normalized cross product of el and e2, e3 = el x e2. 

Once these vectors are computed, the rotation, R,.ect, that makes the epipolar lines 

go to infinity is: 

R,.ect = 

The rectification algorithm in short follows the following steps: 

• compute Rrect from equation 4.3. 

• compute the rotation matrices for le ft and right cameras Rz 

RR,.ect, where R is the rotation matrix of the le ft camera. 

(4.3) 

• multiply each pixel p = [x, y, f]T from the left and right images by the appro­

priate rotation matrices, Rr, Rz, Rz? = [x', y', z']. 

• rescale le ft and right images according to p; = f / z' [x' , y', z']. 

The pixel coordinates obtained through rectification will probably not be integer. 

In order to maintain the image quality it is better to perform the rectification the 

other way around: for each pixel in the final rectified image, one should apply the 

inverse transformation and end up with fractional coordinat es in the original image, 

which can be interpolated. 
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One problem when rectifying images is that the image bounds will not be the 

same. If the original and final images have to have the same size, one can change the 

scale applied to the image. 

There are certain camera configurations that are impossible to rectify by this 

method. One is if one camera can "see" the other camera's optical center inside the 

image (the translation in the camera Z direction is significant). In such a case the 

epipolar lines are radial around a point called the focus of expansion (FOE). In this 

case rectified images have infinite size. There is no rotation matrix that can rectify 

such pairs of images. Also the distorsion of images through the rectification process 

is a concern when the cameras are approaching this degenerate configuration. 

4.3 Cylindrical rectification 

The previous rectification method remaps images onto two fronto-parallel planes. 

While this is a very simple and efficient method as all operations are linear 2D pro­

jective, it has sorne problems. The method proposed by [21] and slightly modified by 

[22] employs 3D projective transformations. We will just provide the outline for the 

methods as they are more complicated. 

As the name suggests this method remaps the images from image planes to a unit 

radius cylinder that has its axis aligned with the baseline (the line defined by the two 

camera optical cent ers ). The method proceeds in a similar fashion as for the planar 

rectification. The rectification is done in three steps: 

• each epipolar line gets rotated to be get parallel with the baseline. 

• a translation is applied to change the reference system from each camera to the 

cylinder. 

• a scaling is applied to bring the line to the unit radius cylinder. 
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While the planar rectification applies a global linear transformation, the cylin­

drical rectification method needs one linear transformation per epipolar line. This 

method guarantees that the final image will be of finite size regardless of the camera 

configuration. The resulting image is of minimal size such that there is no loss of 

information through the transformation. The length of the epipolar lines is preserved 

but unfortunately the straight lines which are not parallel with the epipolar lines are 

not preserved. 

This method can handle arbitrary camera geometries, but not panoramic cameras 

that have a viewing angle of 1800 or more. 

4.4 Spherical rectification 

An equally good rectification surface would be a sphere. Besides being able to handle 

an arbitrary camera configuration and keeping rectification images bounded it adds a 

few useful properties when the observed object is spherical. Unfortunately no straight 

lines inside the images will be preserved after rectification, unless they are the epipolar 

lines themselves. However the transformation is totally reversible. 

This new rectification scheme has the following properties: 

• zero disparity surface should be on the Sun . 

• voxels that are induced by the rectification, that are further from the Sun should 

always project inside the images on integer pixel coordinates. 

As you will see in chapter 5 the second property will be very useful when com­

puting each voxel contribution to an image pixel. 

The rectification is illustrated in Fig. 4.2 for two cameras observing a spherical 

object. 

If we discretize the common visible surface of the Sun and the cast the rays that 

join each point on the Sun with the two cameras, we obtain a mesh that satisfies 
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A B 

Figure 4.2. Epipolar line with spherical rectification 

the first requirement: if aH matter is concentrated on the surface of the Sun (no 

transparency on top) the stereo algorithm will match pixel i in the first image with 

pixel i in the second image (first ray cast from camera A will intersect first ray from 

camera B). In order to satisfy the second requirement we define the grid at height k 

as being the place where of intersection between ith ray from camera A and (i - k yh 

ray from camera B. Since the grid is defined by the rays from the surface of the Sun to 

the two cameras, aH higher voxels will project to the point on the images. In Fig. 4.2 

you can clearly see the five levels of the mesh, corresponding to the 5 disparities. One 

can easily notice that this way of building the mesh has two unwanted properties: 

• the kth level has k less voxels than the zero height (surface of the Sun). 

• voxels close to the middle of the gr id exp and faster near the side. 

In order to avoid the use of an unstructured grid we can repeat k times the first 
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point to be able to keep the number of voxels constant for all layers. 

The second unwanted property can be easily fixed by choosing a non-uniform 

discretization (we introduce more points in the middle). 

In order to rectify the images we will rotate a pencil plane around the baseline 

and intersect it with the sphere. There are two basic geometric problems that we 

will encounter multiple times throughout this rectification scheme: equation of the 

circle that is generated by intersecting a sphere with a plane and tangent lines to the 

sphere that are contained inside a plane. 

4.4.1 Intersection of a plane with a sphere 

First we have to find out the center of the circle. If the plane is defined by its normal, 

the center of the circle is simply the position on the plane where the normal passes 

through the center of the sphere. Notice in Fig. 4.3 that a right triangle is formed by 

the center of the sphere, center of the circle and any point on the circle. From this 

triangle we can find the radius of the circle. Now to generate a circle we just have to 

rotate around the plane normal vector: 

Circle = Center + R * [cos a, sin a, 0]· [nx, ny, nzlT (4.4) 

where [nx, ny, nzl is the plane normal and a spans [-71",71"]. The basics are illustrated 

in Fig. 4.3. 

4.4.2 Tangent line ta a sphere 

We need to find the angle at which a line contained inside a plane becomes tangent 

to the sphere. The plane has the normal parallel to the Z axis. Consider the problem 

of finding the angle a at which a line becomes tangent to the circle shown in Fig 

4.4. There are two coordinate systems that are important: given an X axis (which is 

the baseline in our case), one coordinate system has Y pointing towards the center of 

the sphere - CSI(P, Xl, YI) and another that differs by a rotation around the Z axis, 
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C 8 2 (Pr:Eh Y2). En Fig 4:'41 yOu! C3J]l see the 2]) prob]em we have to solve (the phne 

diefined by C82 ). 

The angle a rnside the C81 coorcl!Ina te system iis· j ust given by eo,s-l { :g), w here' 

AC IS the radius of the c~Fde resulting from iinteFS€ctiFlJg the spneFe with the plane 

cl!enned by C 8 2 , The vectors '111 = RJ!l1 and! V2 = RT Jill wil] becorne co]]illear wiith 

PA, PB resp.ectively ~R is the rotation matrix awtlincl! the axis z by a}. l'ne angles 

of tangency inside C~ are given by: tan-l f J
l'Y2) and tan- l ("'2'Y2) respec1Lively. Note 

"'1-X2 "'2 'X2 

that geneTaillYr the two angles of talIl.gency are equal Inside C SI r but not insiide Cz. ]t 

iis important to enSl!ll]"e that al] relmmed ang]es 3iI'e mside the in tervaJl [-7T' r 7T' J. 
]n order to rectiify wilth this metho,dI we have to go through the following stages: 

• :fiFlJcl! the CŒnmon visib]e regiûn fro·ID the two views ~latitUide ooglles) and diis-

cretiz'8. 

• for each generatedi plane nnd the co·romon 10ngittllde angles and discretize. 

• p.roject limages orato tfue the discretizedi spheFe (latitude 3Jud longitude). 
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Figure 4.4. Two dimensional circle larJEenl problelD. 

FÏI:,we 4.5. Sol.- tedikaliun. ScdeIiite A and B wilh tbe hidJest and loIuesI 

epipoI;w planes. (1aIIpIs to the Sun) 
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4.4.3 Common latitude range 

We consider the following coordinate axis for the plane: x-axis is· pointing along 

the baseline from satellite A to B, Z axis is perpendicular to the plane formed by 

the x-axis and the translation of satellite A and Y perpendicular to the other two. 

The Y-axis is the perpendicular to the baseline and passes through the center of the 

sphere. 

With this coordinate system, the problem of finding the latitude range amounts 

to finding the tangents to the sphere that are contained in the Y Z plane and can be 

carried out by the above mentioned method. We can place the origin of the coordinate 

system anywhere onto the baseline without changing the result. 

4.4.4 Common longitude range 

We will have to solve for the range of latitude angles to remain onto the sphere for 

both satellites. Afterwards we compute the overlapping interval. We have to compute 

this range for each latitude angle. 

The coordinate system differs from the previous one sim ply by the fact that it is 

rotated around the x-axis by the chosen latitude. The origin is chosen in turn at the 

position of satellite A and B. 

The problem is simply to find the two tangents to the sphere that are inside the 

XY plane. 

In Fig. 4.5 the two satellites are shown together with the Sun and the common 

latitude. The thick line on the Sun represents the intersection of a pencil plane that 

rotates around the baseline and the Sun (one epipolar line). To rectify the whole 

image the plane sweeps the whole interval of common latitude. 
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-1.0 -0.5 0.0 0.5 10 

Figure 4.6. Cartesian discretization of a circle 

4.4.5 Discretization of angle ranges 

The easiest way to subdivide the angle range is select points with an uniform arc 

spacing. There are however sorne disadvantages to this. We have observed in Fig. 

4.2 that points which are doser to the middle of the angle range move much faster 

away from the Sun when we increase the grid layer. This is inconvenient, since we 

will have a very low resolution inside Olir reconstruction grid for the center points 

(the resolution is limited by the fastest moving point). A simple solution is to sample 

flner towards the center of the interval. Such sampling functions will generally have 

discontinuities at the ends of the interval. Consider the cartesian representation of 

the positive half of a unit cirde: y = .JI - x 2 , shown in Fig. 4.6. 

Notice that points at the sides are spaced very far away if we look at the ardength 

even though the original grid was uniform. The behavior is captured by the derivative 

of such function: 

~.Jl- x2 = x 
dx .JI - x2 

( 4.5) 

This function dearly has discontinuities at ± l. 

Since our angle range are not from -1 to 1, we start with the uniformly spaced 
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interval (-1,1). Afterwards we apply our resampling function (the derivative of the 

the circle) and rescale the result to (-l, 1) since the first and last points will tend to 

infinity. Next we simply rescale these points to the interval [ŒI' Œ2] (the two tangent 

angles). 

We can choose the amount of "non-uniformity" by starting with the interval 

(-k, k), k < 1 rather than (-1,1). If k is very small we end up in the uniform 

sampling case as the circle does not vary very much around o. 

4.5 Sorne results 

In Fig. 4.7 you can see some images resulting from rectification using k = 0.7. 

Notice that in the case of uniform sampling the edges are extremely stretched. 

This is due to the fact that pixels which are close to the sides of the Sun have the 

same size as pixels in the center, which is not backed by the observation model. For 

an example of both le ft and right images refer to Fig. 6.8 

For other spherical rectification models check [23,24] 



Figure 4.7. Top: original image, Middle: uniform sampling, Bottom: non uni­

form sampling 
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Chapter 5 

RECONSTRUCTION OF SEMI-TRANSPARENT 

VOLUMES 

While there are a lot of algorithms that provide excellent reconstruction meth­

ods for objects that are opaque and Lambertian, the problem of transparency or 

specularity is still largely open. As is the case with most inverse problems, it is ill 

posed. 

5.1 Related work 

The problem of estimating multiple depths inside transparent scenes has been widely 

studied. The main contributions come from the fields of medical imaging, atmo­

spheric science and combustion. Most algorithms designed to handle transparency 

were conceived to use large number of views or make a lot of assumptions about 

the shape of the objects being reconstructed. We want to develop an algorithm that 

can provide satisfactory results with just two or three views and make only minimal 

assumptions about the observed objects. 

5.1.1 Medical imaging 

The problem of 3D reconstruction of transparent objects received most interest in 

the context of computerized tomography. There are methods that work with as few 

as two images but they produce just binary segmentation maps rather than a full 

reconstruction [25-27]. In order to obtain full reconstructions, the number of views 

needed ranges from tens to hundreds views. Even with additional regularization 

assumptions the problem still becomes unsolvable when a very small number of views 
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is available . 

. In [28] a method to reconstruct plasma (aurora Borealis/ Australis) is given. It was 

conceived to work with images from the IMAGE mission (Imager for Magnetopause­

to-Aurora Global Exploration), a mission that was supposed to provide insight into 

the connections between the solar and earth magnetic fields. The method presented 

in [28] uses a version of the tomographie reconstruction method, with additional 

symmetry assumptions on the solution. The input consists of images from a single 

satellite that are separated in time. 

5.1.2 Computer vision 

Probably the article that pioneered the study of transparency in the context of com­

puter vision was [29]. The algorithm iterates between the following steps: initial 

disparity is estimated, visibility /transparency map is updated and last the color in­

formation at each depth gets updated. The algorithm works in a 4D space, the 

dimensions being x and y (image coordinates), d (number of disparities), k (number 

of available views). 

To compute the initial disparities, the 4D space gets populated with color inten-

sities: 

(5.1) 

with Ck( U, v) the k-th image, Wf ( 0; H k ) is a linear operator that rectifies each image 

from the point of view of a virtual/reference camera, Hk + tk [0,0, d] is a homography 

that maps from camera k onto the d-th homography plane and c(x, y, d, k) is the 

pixel color projected onto the 4D space. Next we can compute sorne statistics on 

color distribution such as /1, (J2 over the k-dimension for each (x, y, d). If we just 

choose for each x, y, the d that minimizes the (J2 we are replicating the direct search 

algorithm presented in the introductory chapter, however visibility is not being taken 

into account and neither is transparenc:y, thus the results will be disappointing. 
·t. 
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Now we consider that each of the input images is formed by stacking d semi­

transparent layers. For this we apply the inverse mapping Wb from the virtual camera 

back to the input image k. 

(5.2) 

where êk = [T, g, b, af is the coloI- information at (x, y, d) and C is the color informa­

tion in the k-th camera coordinate system and a is the corresponding transparency. 

Next we have to compute Ck(U, v), the composite of the "transparent sheets" into 

each view k and compare with the original data. For this we need to define the 

visibility of each pixel Vk(u, v, d): 

Vk(U, v, d)(l - a(u, v, d)) (5.3) 
dmax 

II (1 - ak(u, v, dl)) (5.4) 
d'=d 

where ak is the opacity of Ck(U, v, d). Initially all visibilities Vk( u, v, dmax ) = 1 and 

they are propagated from front to back. The moment one pixel becomes fully visible 

(Vk = 1), it will obstruct all pixels behind it. Now we have an easy way to composite 

images for each view k: 

dmax 

Ck(U,V) = L ck(u,v,d)Vk(u,v,d) (5.5) 
d=dmin 

As a last step we have to update the color information (see how far away are we 

from the k input images). This problem can be posed as a non-linear minimization 

problem with 3 terms: 

Cl = L Wk(U, V)PI (Ck(U, v) - Ck(U, v)) 
(u,v) 

(5.6) 

with Wk being a weighting function that gives more importance to certain cameras 

depending on their proximity to the virtual reference camera. 

C2 = L Pl (l::::.êk (x, y, d) ) 
(x,y,d) 

(5.7) 
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with l::::.êk(x, y, d) being the Laplacian of the color and transparency information. This 

enforces smoothness. 

C3 = L cp (a(x, y, d)) (5.8) 
(x,y,d) 

In the above formulas Pl,P2 are quadratic or robust penalty functions. The function 

cp increases sparsity of the solution preferring solutions where matter is fully opaque 

or transparent cp(x) = x(l - x). The total cost function is: 

(5.9) 

which can be easily solved with a conjugate gradient-like algorithm. 

This whole algorithm provides acceptable results but the fact that we have to fill 

in initially the whole 4D space makes it very expensive in practice. We are also unable 

to make sure that the reprojected colors and opacities êk(x, y, d) in the k available 

views, c( u, v) are consistent with the images. Also the fact that for each voxel ~n the 

4D space we compute both a color and alpha information makes the problem very 

hard to minimize as the model is too flexible. In fact we can always exchange a pixel 

with certain color and alpha by another one with lower color value and higher alpha 

or vice-versa. 

Another important contribution from the field of computer graphics, and the 

inspiration for our approach, is introduced by [30]. A method is developed for re­

constructing flames from as few as two views. The solution provided by the method 

exhibits sorne nice properties: 

1. concentrates matter along continuous surfaces 

2. is photoconsistent 

3. most spatially compact distribution 

The reconstruction problem is reduced to finding a convex combination of sheet-like 

densities derived from the two input views. The method assumes a linear image 
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Figure 5.1. Density sheet reconstructions generated by two orthogonal views 

formation mode: 

1= 1 D(z)dz 
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(5.10) 

The observed intensity l is the integral along the line of sight of aH densities. The 

method makes sorne implicit assumptions. Negligible scattering, means that only 

line of sight voxels contribute to the intensity. Constant emissivity assumes that each 

voxel emits a constant amount of light and a higher intensity implies more matter. 

Also each voxel just emits light and does not absorb it. 

The two initial sheets are ch os en to be monotonous curves in the (h,12 ) space 

(Fig 5.1). 

We compute the density sheets for each pair of orthogonal views. With this the 

problem becomes: 

/m(P) = L w(r, c,p)D(r, c) (5.11) 
r,c 

where the unknown is w and D is a density sheet. This is equivalent to fin ding the 

solution in terms of the basis formed by aH the density sheets and w represents the 

size of the projection of the solution onto the corresponding element. Stacking aH 

these equations together we are left with a problem of the kind: 

minimize Il Fx - l Il 
subject to 2:x = 1, x ~ 0 
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The density sheet basis can be extended leading to a better reconstruction, but the 

number of such basses increases exponentially with the number or views. 

Other more exotic approaches include [31], in which a mat ching operator is defined 

for the standard stereo match problem. This operator gets generalized for matching 

multiple disparities for each pixel. The problem gets transformed into findirig the 

roots of the operator, one root for each layer that is sought. This problem becomes 

very fast ill conditioned and is unsolvable in practice for anything more than three 

sheets. 

A filter response method is proposed in [32]. The method uses a combination 

between the images response to certain quadrature filters and canonical correlation 

analysis. The filter's phase caries the information on the multiple depths at each 

pixel. In the end, the problem is equivalent to finding the peaks of the filters. While 

this method is suitable for finding a small number of layers, like images that contain 

semitransparent mirrors or views taken through a glass window, but fails for larger 

numbers of depths. 

5.1.3 Results from physics 

There have been sorne attempts in physics to reconstruct solar coronal loops in three 

dimensions. All approaches pro duce sparse reconstructions (depths are estimated just 

. for phenomena and not for background or inactive regions). All these methods use 

multiple EUV images of the Sun separated in time and sorne use magnetic information 

as weIl. They st art by detecting the loops through sorne image processing method, 

like specialized edge detection filter [33]. Since the output is extremely noisy, a stage 

of "cleanup" follows usually involving magnetic field modelling. In [34] after applying 

an edge detection filter, an iterative method that eliminates pixels deemed a~ being 

noise and joinsjsplits features based on the magnetic field magnitude in the region 

(in principle close to the Canny edge detector). In [35] an extension is presented that 

takes into account sorne physical constraints such a curvature together with mat ching 
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temperatures of loops. 

In [36--'-38], after applying standard image processing methods, the extrapolated 

magnetic field is used as a proxy to match features from the two images. A two step 

minimization method is employed. First stage the features are matched and in second 

the parameters for the magnetic field get updated (namely the free a constant in the 

linear, force free model). 

The approach presented in [39] does not use any magnetic field information. The 

method assumes the coronalloops are characterized just by footpoint positions (where 

the loops disappear inside the photosphere) as well as the vertical and azimuthal 

angles. Solely image processing techniques are employed, but a full image formation 

model using all 4 EUV is needed. 

The method presented in [40] thresholds the input images as a first stage to 

distinguish features from static regions. The active parts of the images get reprojected 

in 3D and intersected in 3D. This approach is similar to the silhouette reconstruction 

algorithm presented in [4:1.]. 

5.2 Image formation model 

We briefiy presented in the previous chapter a linear formation model in the context 

of reconstruction of fire. While we will use something similar, in our implementation 

it is important to show the connections with the full emissivity model as given by. 

plasma physics. 

5.2.1 Plasma emissivity model 

In order to be able to pass from the pixel intensity values in the four available EUV 

images to the quantities pertinent to physics, one has to establish an image formation 

model. We have to model how is the passing done from the physical quantities to 

the luminous energy and then the conversion from energy to pixel values (done by 
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the sensor j optical filters). The first part of the problem is ill posed. We can assume 

that the camera model is linear since the images are calibrated by the mission team. 

From physics, the observed intensity is given by the plasma radiative transfer law: 

I(x, y, À) = J J A(T)A(NE;(X, y, z), T(x, y, z), À)NE;(X, y, z)NH(x, y, z)dTdz (5.12) 

z T 

where l is called observed intensity in wavelength À. A(T) is called the elèment 

abundance relative to hydrogen. A (NE;(x, y, z), T(x, y, z), À) is called the radiative loss 

function of the plasma and it contains the statistical information, the probabilities 

to emit light at this certain wavelength given the temperature T, hydrogen density 

NH and electron density NE;' Given the extreme temperatures inside the coronal, one 

could consider N H ::::::: NE;' 

In order to be able to compute the intensity observed at a certain wavelength, 

we need to reconstruct in 3D both the electronjhydrogen density and temperature 

profile. The function A does not have an analytical form and needs to be computed 

experimentally. Through a lot of experimentation, the behavior of our four available 

wavelengths with respect to density and temperature can be computed. This function 

acts like a convolution kernel on the (z, T) dimensions of NE; and T. Through various 

deconvolution techniques we are able to retrieve from I(x, y), T(x, y) and NH(x, y), 

the integrals along the line of sight. Notice that the initial problem is.not linear where 

as the last one is. Usually, the quantity of interest is NH . 

Like in the case of fire, matter only emits light and does not absorb, thus having 

negligible opacity. Also the scattering is negligible as we are computing only along 

the line of sight (there are more complicated models that take into account also 

scattering). Unlike the fire model there is no constant self-emissivity as the energy 

emitted due to high density or high temperature. 

For more details on the plasma emissivity and ways to perform the deconvolution 

refer to [10,42-44] 
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5.2.2 Linear model 

Since the previous model is fairly complicated to implement, contains another ill 

posed problem and the convolution kernel's accuracy is still being debated, we will 

settle for a simpler model. We assume a purely additive linear model in which we 

have transparent matter in front of an opaque background. 

I(x, y) = J D(x, y, z)dz + hg (5.13) 

z 

The assumptions made are the usual constant emissivity and transparency and neg­

ligible scattering. 

5.3 Problem statement 

We have two or more views of a 3D volume of matter which is represented by its 

density D(x, y, z). The image formation model is that outlined above and the cameras 

are looking along the z axis. Our goal is to compute this 3D density distribution such 

that it projects into our views consistently with the images (photoconsistency). If 

we discretize the reconstruction volume as a cube with the side of length N, we have 

N 3 unknowns and only N 2 constraints. Since the images are rectified in a convenient 

matter we can take one epipolar line at a time in each image (corresponding to an 

epipolar plane in 3D) and we have N 2 unknowns with N constraints per image. 

This means that there are a lot of density distributions that projected give the same 

images, but not all are equally good reconstructions. For this we will also test different 

constraints like smoothness, sparsity and layer distribution. 

5.4 Reconstruction volume 

The choice for the shape of the zero disparity surface and the rectification scheme 

dictates the shape of the reconstruction volume. Normally the zero disparity surface 

(infinite Z) is a plane fronto-parallel to the reference view and the reconstruction 
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Fl&llre 5.2.. Reconstruction volume 

surface is a uniformly sampled cube. This does not work in the case of the Sun 

because of its spherical shape. The zero disparity surface we wish to obtain 1S the 

surface of the Sun. The reconstruction volume that we obtain is shown in Fig. 5.2. 

Since we rectified the images béorehand we ean take one epipo.lar line at a time. In 

Fig. 5.3 you can see the grid generated by two epipolar lines. 

Wben we rectified the images. we sard that points on the surface of the Sun are 

defined by the intersection of ray i from STEREO-A and ray i; from STEREO-B,. 

eorresponding to a disparfty of zero. The pO>Ïnts whleh a:re k layers above the surface 

are defined by the intersection between ray i from STEREO-A with my i - k from 

STIREO-lB, k < i. This means that the valid reglon of reconstruction (on and aboiVe 

the surface of the Sun) 1S given by the lower half of the square (shown as the shaded 

region in Fig .. 51.3). H each epip0w line has '(,/; points, there are rll POlints on the full 

grid and n(n + 1)/2' in the shaded region. 
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2 3 3 4 

Figure 5.3. Reconstruction grid. Gray is valid region. 

Note that the diagonal represents a line on the surface of the Sun and each line 

parallel to it is further and· further from the Sun. The point labeled as 4 has the 

largest distance from the Sun and is potentially very far. Since the region of interest 

does not span further than 2Rsun it does not make sense to reconstruct thewhole 

possible volume so we will just take up to sorne maximum distance from the Sun. 

The new reconstruction grid is shown as light gray in Fig. 5.3. 

5.5 The minimization problem 

The satellite images lA and lB, represent the constraints to the problem. They are 

the sums along columns and rows of the reconstruction grid. If we collect aH the 

points in the grid in the vector x = (Xl) X2, •.. , xn ) we can represent our constraints 
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as two matrix equations, Browx = LA and Bcolx = LB: 

0 0 0 0 0 

0 0 0 0 

0 0 0 
Brow In (5.14) 

In-l 0 0 
In-2 

In-3 0 
12 

1 

1 ... 1 0 ... 0 0 ... 0 
~ 

n 

0 ... 0 1 ... 1 0.,.0 
Beol ~ (5.15) n-l 

0 ... 0 0 ... 0 1 

where Brow and Beol do a sum along rows and columns of our grid and LA, LB are the 

epipolar lines in our two views. If we stack Brow and Bcoi on top of each other into A 

and also stack LA and LB into B we get our cons~raints in the form: Ax = B. The 

matrix has size 2n x n(n + 1)/2, giving an underconstrained problem. 

With this we can express the reconstruction as a constrained optimization prob­

lem: 

minimize f (x) 

subject to Ax = B, x > 0 

The second positivity constraint, x > 0 cornes from the fact that all the light 

gets transmitted and never absorbed. The function f(x) penalizes certain unwanted 

features of the solution like: low sparsity, high spatial discontinuity, etc. 

In practice the problem might be unfeasible (the constraints cannot be satisfied) 

since the images contain noise and the image formation model is not ideal. In this 
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case we have two choices: eliminate bad constraints or loosen the constraints. To 

eliminate the unsatisfiable constraints we do a first stage optimization: 

minimize Il t Il 
subject to Ax = B + t, x> 0 

The new variable t is a vector with 2n entries. We remove one by one columns 

from A that correspond to the greatest entry in t until the equation Ax = B has a 

solution. In practice this is not very desirable since we are loosing constraints to an 

otherwise weakly constrained problem. We can however loosen the constraints and 

modify the minimization problem: 

minimize f(x) + TI(lltll) 
subject to Ax = B + t, x > 0 

ll(x) = { : 
x=o 
x~o 

The indicator function, TI makes it very costly to break the constraints. 

5.6 Cost functions 

(5.16) 

Next we have to investigate possible cost functions. If the cost function is convex, 

there are a lot of very efficient methods for solving these minimization problems. For 

a proper background in convex optimization refer to [45]. One of the most popular 

choice for cost functions are norms. These functions have nice continuity properties 

and most importantly, they are convex. The convex cost functions will be minimized 

in practice with the CVX package for Matlab [46]. 

5.6.1 Choosing the norm 

Any function f IRn ---+ IR that has two properties can be considered as a norm 

function: 
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• Positive scalability f(ax) = Ilallf(x) 

• Triangle inequality f(x + y) ::; f(x) + f(y) 

As a consequence of the previous two properties, follows that f(x) = 0 Hf x = 0 and 

f(x) > 0, Vx E lR~. Common choices for norm functions are: 

• lp norm defined as: lp(x) = IxlP 

• deadzone-linear with deadzone width a > 0 

q,(x) ~ { 

• log barrier with limit a > 0 

q,(x) ~ { 

o 
Ixl-a 

00 

Ixl ::; a 

Ixl > a 

Ixl ::; a 

Ixl > a 

(5.17) 

(5.18) 

In Fig. 5.4 you can see the lI, l2 norms, the deadzone linear with a = 0.25 arid the 

log-barrier with a = 1. These cost functions express the penalties we wish to impose 

on the current errors. Note that if we scale these functions, the final error will be 

scaled itself, but the solution towards which it converges is identical. The ratio of the 

penalty for large to small errors gives us the behavior of the cost function. 

For residuals in (-1, 1) the II function penalizes more than the l2 norm. This 

means that large errors on certain components of x are accepted more than small 

errors. On the other hand the l2 norm penalizes a lot large errors compared to small 

ones. The deadzone error function penalizes just errors that are bigger than sorne 

amount linearly. The log-barrier function is similar to the quadratic error for small 

errors, but has infinite penalty for values larger than a (errors larger than a are 

unacceptable) . 
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Figure 5.4. Norm functions 

5.6.2 Increasing sparsity 

Generally we prefer solutions where the matter is as packed as possible and still obey 

the constraints, meaning we prefer the solution with a high sparsity pattern. 

A corn mon praetiee for learning algorithms where sparsity is a must, is to use 

the 10 norm defined as Li x? and define 00 = O. This is just a measure of number 

of non-zero elements of x. ls is an abuse of language ealling it norm since it is not 

positive sealable. Also this funetion is not eonvex. 

Another way toenforce sparsity is by minimizing the Il norm. Sinee it "dislikes" 

small errors, it is likely to put small residues to zero and aceept large ones. However 

this is not the optimal solution sinee medium errors are still accepted. To improve 

we eould employ an iterative minimization scheme of a weighted h norm: 

1. initialize W = .l.. xo 

2. minimize IWxl with constraints 

3. W= l x 



67 

with Xo being an initial solution which we want to increase sparsity (can be with 

initial weights all being 1). We iterate between steps 2 and 3 until the sparsity does 

not improve anymore. We consider a component as being zero when it drops below 

a certain threshold. Notice that components which are small in the solution will 

co st a lot and will be eliminated in the next iteration if possible since their weight 

will be quite high. This iterative scheme does not guarantee that the co st for the 

solution drops continuously from one iteration to another, but it is guaranteed that 

the sparsity of the solution will always increase. 

An alternative is to maximize the infinity norm Zoo = max(xi) with constraints. 

This is a concave function. We generally choose our cost function as a sum of convex 

functions. The sum of convex and concave functions is not convex, creating a very 

hard minimization problem. 

There exists also an analytical form for the sparsity of a vector, introduced in 

[47,48], sp: [-1, 11~ -----7 [0,1]: 

(5.19) 

This function has the value a for a constant vector. For a vector with a single non-zero 

entry equal to 1 the function equals 1. This function has quite a few drawbacks. It 

is neither convex, nor concave, so our simple and efficient methods do not work and 

it has a discontinuity in on. 
There are other choices for co st functions that are known to increase sparsity like 

p-norms with p < 1 (including negative p's), Shannon and Gaussian entropy. For a 

comparison of these functions please refer to [49,50]. 

o These basic functions provide inspiration but cannot be used directly with our 

"flattened" grid since there should be no interaction between certain elements (even 

though they are neighbors in the "flattened" grid as they are not adjacent in our 

original 2D grid). We will use as cost function the sum of costs for each row in our 

2D grid. 



Chapte.r 6 

RESULTS 

In this section we will present sorne practical results using the theoretical concepts 

developed in the previous chapters. We will start by validating the reconstruction 

techniques using sorne synthetic examples where the ground truth is known. As a 

second step we will test the reconstruction on synthetically generated images to be 

able to reproduce certain situations one would encounter on the Sun. As a last step 

we will test the reconstruction on real solar images after they have been rectified. 

6.1 Synthetic results 

6.1.1 K nown ground truth 

For the synthetic examples with known ground truth we will test the following cost 

functions based on: l2 norm, iterative minimization with II norm, and non-convex 

optimization of the sparsity function from equation 5.19. If we were ta apply the 

previous cost functions directly on our one dimensional fiattened grid, there would 

be an "interaction" between nodes that are adjacent in the fiattened grid but not 

in the original triangular one (for example node 4 and 5 in Fig. 5.3). One simple 

modification meant to exclude the non-existing interaction between nodes is to con­

sider the sum of cost functions applied to each row in the triangular 2D grid. Since 

the sparsity measure is defined just for vectors with elements smaller than 1, we will 

add this extra constraint. Also note that the new analytical sparsity measure takes 

values in the range [0, r], where r is the number of rows (the function is the sum of 

row sparsities each taking values in the range [0,1]). 
i 

The first synthetic example with known ground truth is shown in Fig. 6.1. The 
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Figure 6.1. Ground truth. Sparsity of 1.31 
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Figure 6.2. l2 norm minimization. Sparsity of 3.28 
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first step is getting a solution to our problem that obeys the constraints, which will get 

refined in the next steps. In Fig. 6.2 you can see the solution when we minimize with 

the l2 norm. This solution respects the constraints but has very low sparsity (matter 

is very spread). We take this solution and we iteratively minimize the weighted h 

norm to increase sparsity. After 4 iterations the result is shown in Fig. 6.3. Notice 

that this has exactly the same sparsity measure as the ground truth (number of 

non-zero entries), but the solution is different, but equivalent since the problem is 

underconstrained. Next we will minimize the sparsity function directly with a non­

convex minimizer. The result is shown in Fig. 6.4. Notice that this solution satisfies 

the same constraints as the true solution and its sparsity is even higher than ground 

truth's. 
{, 
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Figure 6.3. Iterative minimization with the weighted h norm. Sparsity of 1.31 
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Figure 6.4. Minimization with the non-convex sparsity measure. Sparsity of 0.74 
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It is easy to observe that the current sparsity enforcement model cannot impose a 

certain sparsity structure, nor the amount of sparsity each solution has .. There exist 

a lot of equivalent solutions (that obey the same constrains) since the problem is 

underconstrained, even sparser than the ground truth. In order to improve on this 

reconstruction, one needs to make more assumptions on the solution (smoothness, 

structure, etc). 

6.1.2 The torus datas et 

The next synthetic data experiment is on a synthetically generated half torus against 

a fiat background~ as illustrated in Fig. 6.5. This is interesting as it tests the possi­

bility of reconstructing discontinuities, holes inside the semi-transparent object. The 

minimization problem for this dataset will have the following form: 

minimize alltll + (3f(x) 

subject to Ax = B + t, x > 0 

The addition of t makes the problem much easier to minimize, as constraints are 

not always satisfiable. If the parameter a is much bigger than (3 the final effect is 

the same without using t, but convergence is faster. The non-convex minimization 

problem using directly the sparsity me as ure is prohibitively slow making it useless 

for any image larger than 20 pixels. 

We test the results using the l2 norm and iterated minimization with weight II 

norm (the non-convex optimization using the analytical sparsity measure will be 

omitted). 

The results of the l2 co st function can be se en in Fig. 6.6. As one might expect 

the solution has extremely low sparsity. There is no need to impose any smoothing 

conditions as the solution is extremely smooth to start with. Notice that the "hole" 

inside the half torus cannot be reconstructed as it introduces an strong discontinuity. 

Next we will try to iteratively minimize with the II norm. Since this pro duces 

extremely sparse solutions and highly discontinuous at the same time, we need to 
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Figure 6.5. Torus dataset: top - the two input views. bottom - sideways view 

Figure 6,.6. Torus reconstruction with l2 norm 
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Figure 6.7. Torus reconstruction with iterative minimization 

impose as well sorne smoothing constraints. The lack of smoothing will pro duce 

solutions that look very much alike clouds of points. With smoothing, the individual 

points will be joined together as much as possible. A simple smoo thing criteria 

includes the sum of diffcrence bet\i\llx~n neighbors along the rows and columns inside 

our 2D grid. The results can be seen in Fig. 6.7. It is obvious that this solution is 

much sparser than the previous one. The algorithm converges towards the filiform 

structures due to the combination of smoothness/sparseness. The vertical and oblique 

streaks one can observe outline the rays casted from the cameras. In both Fig. 6.6 

and 6.7 the reconstruction yields a triangular structure rather th an a full torus since 

it is generally more compact (higher sparsity). The combination of smoothness and 

sparsity leads to a hysteresis behavior. 

6.2 Solar images 

In order to test our reconstruction methods on real solar data we will choose a pair 

of images from STEREO from the 2Sth July 2007 taken in the 171;1 bancl. Sin CE: the 

images are fairly big, we will reconstruct just a 200 pixel wide window that con tains 

activity. At this time, the separation was about 22°. This dataset pro duces the best 
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Figure 6.8. Left: STEREO A, Right: STEREO B 

results we have obtained to date. We will also try another dataset from the lOth 

October 2007 to test the effect of bigger separations between satellites. The original 

images from the STEREO pass through the following stages to yield a reconstruction: 

1. compute the camera and correction matrices for internal parameters 

2. rectify images 

3. reconstruct in 3D a region of the rectified image 

6.2.1 Reconstruction 

The rectified images are shown in Fig. 6.8. You can notice in the lower part of the 

image a solar filament that joins two regions thC1t are close together. For solar data 

we will use the cost function based on the II norm. The iterative minimization is 

not very suitable as it produces a solution that is too sparse considering the smooth 

nature of the real data and so far we have not been able to control the degree of 

sparseness or a certain sparsity pattern of the resulting solution. 

In Fig. 6.9 you can see the reconstruction using the h norm. While the top view 

looks remarkably good, you can notice that the loops are reconstructed as columns. 
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FiBure 6.9. Top and ohIMp- Yiews 01 the reconstruction 

Rather than having roops that are connected to the solaT surface only at the endporntsy 

we obtrun a solution which is comprised! of vertical structures that span the whole 

hight of the loop. The '"'"hole'" inside the torus-like loops represents a discontinuity 

which is impossible to obtaÏn unless the shape of the structures gets modeled. 

We also tried to recoustroct a dataset from the lOth October 2001. At this point 

the separation between the satellites lS aJimost 40,0. For this dataset we also tried 

a li8Constructiolll! using 3:t tbe same time all three wavelengths tbat get formedi hjjgh 

enough inside the soEar atmosphere to show some motion parallax. To do this we just 

stacked the three eprpolaL" Enes on the right hand si de of our system and replicated 

three times the matrix A from equation 5.5 .. From a physics sta:ndpoint this does Il!ot 

make a lot of sense sin ce the same feature might have different apparent displacements 

oetween the two views depe]}ding on the temperature of the feature. We dio this in 

hope to enforce three tirnes more constraints on the problem. ]n Fig. 6.10 you can 

see t1e rectiffi:ed images ID the three wavelengths. 

ln Fig. 6 .. 11 you C3:E. se€ the resuJts from the newer dataset u:sing the h norrn. Ft 

is apparent that this reconstruction is not as good as the plievious one. One of the 
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Figure 6.10. left: STEREO A, Right: STEREO B 
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'F.,e 6.11. Top and oblique view of the reconstnJction 

reasons is that the bigger separation made 1t IDuch harder to match regions. Actual1y 

one of the reasons for whïch the satellites were placed on different orbits 1S to try out 

different separation angles to detennine the optimal' angles for reconstrncti0n. This 

dataset is more comp]icatedi than the previous one since there Me a 1:ot of features 

under the 100ps. The reconstruction ba:rely resembles the input iimages even when 

regMded from the most favorable angle. 

6.2.2 M of1ùm se§J,menllîl,tiJon 

Another interesting application of this project iis to segment the featured from the 

background so that another more speciaIi:zed reconstruction method can be appliedi as 

a second stage. ]f you remember om reconstructio,n grid from Fig. 5.3r the diagonal: 

represents the matter on the surface of the Sun. ])'U!e to our rectification ass1illmptiol11s,. 

feature on the surface of the Sun should not exnibit any para:llax. ]f we substract 

]rom ~mages of the sateJ.tliites A and Br the image of the stationaœy backgroUillcl,. we 

sholllild be able to, have just the feata:re frOID tfue two views. l'his is shown Ln Fig. 

tUZ 



c 

Figure 6.12. left: Reconstruction of the surface of the Sun. Right: STEREO A 

minus the surface showing just the moving parts 
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There is no simple measure of "goodncss of fit". One possible visual estimate 

of the quality of the reconstruction can be 0 btained by comparing the two rectified 

views to identify the moving parts and compare it with our segmention results. 



Chapter 7 

DISCUSSIONS AND CONCLUSIONS 

The mam contributions of this project included a rectification/high precision 

alignment method for satellite imagery and a stereoscopie reconstruction method 

designed for transparent objects. 

The reconstruction method is guaranteed to rectify any camera configuration and 

always giving finite output images. Since the rectification surface is a sphere, the 

straight lines do not get preserved. The reconstruction grid induced by the rectifica­

tion method has two important properties: 

1. the zero disparity surface is a sphere with radius RSun-

2. the reconstruction grid is given by the intersection of rays cast from each view. 

A consequence of the first property is that objects on the surface of the Sun 

do not exhibit any motion parallax in the rectified images. The second property 

guarantees that an grid points inside the reconstruction volume always project onto 

image pixels, without the need to interpolate. This makes density computations very 

easy to handle. 

The reconstruction method proposed can work with arbitrary transparent images 

that have been rectified in a similar fashion (objects with motion parallax above an 

immobile zero disparity surface). The reconstruction volume is limited to one side of 

the zero disparity surface (with a modified reconstruction grid one can reconstruct 

both sides), since the zero disparity surface is assured to be opaque. 

The method gives a dense reconstruction and makes no assumptions on the shape 

of reconstructed objects. All a priori information can be introduced in a natural way 
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as constraints or cost function. Images that are taken at different times can be used 

to provide extra constraints on the solution. 

The method is fairly fast. The Matlab implementation using 100xlOO images takes 

less then 3 minutes to reconstruct using the h norm. 

7.1 Furtber developments 

The generality of the algorithm hinders the quality of the solutions. One of the 

ways to improve the solutions would be to fit sorne physical model to the data such 

as magnetic field extrapolation. This would however most likely not produce dense 

reconstructions as just the modeled phenomenon would be reconstructed. 

To provide extra constraints to the problem one could add more images. of the 

two satellites taken at different times. For this the algorithm would require two small 

modifications: 

• due to the rotation of the Sun around its own axis the features will change 

position over time. We could estimate the amount of rotation for a region and 

update the translation of the satellites such that the surface of the Sun remains 

static. 

• one could replacé the 4 input raw images by reconstructed electron and temper­

ature densities. While intensity values in original images change quickly as there 

are bursts of activity, the temperature and electron density does not change as 

fast. This would greatly improve the robustness of the reconstruction. 

An extra constraint could be provided by a third view given by SOHO. Unfortu­

nately it is impossible to rectify triplets of images at the same time unless they share 

the same baseline. This is unfortunately not the case for SOHO, but the method could 

be modified to accept two rectified pairs (SOHO/STEREO A and SOHO/STEREO 

B). 



81 

AH smoothing so far is applied only along epipolar lines. In order to smooth 

between epipolar lines one would need to iterate between a stage of constrained . , 

minimization and inter epipolar line smoothing. 
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