

Direction des bibliothèques

AVIS

Ce document a été numérisé par la Division de la gestion des documents et
des archives de l’Université de Montréal.

L’auteur a autorisé l’Université de Montréal à reproduire et diffuser, en totalité
ou en partie, par quelque moyen que ce soit et sur quelque support que ce
soit, et exclusivement à des fins non lucratives d’enseignement et de
recherche, des copies de ce mémoire ou de cette thèse.

L’auteur et les coauteurs le cas échéant conservent la propriété du droit
d’auteur et des droits moraux qui protègent ce document. Ni la thèse ou le
mémoire, ni des extraits substantiels de ce document, ne doivent être
imprimés ou autrement reproduits sans l’autorisation de l’auteur.

Afin de se conformer à la Loi canadienne sur la protection des
renseignements personnels, quelques formulaires secondaires, coordonnées
ou signatures intégrées au texte ont pu être enlevés de ce document. Bien
que cela ait pu affecter la pagination, il n’y a aucun contenu manquant.

NOTICE

This document was digitized by the Records Management & Archives
Division of Université de Montréal.

The author of this thesis or dissertation has granted a nonexclusive license
allowing Université de Montréal to reproduce and publish the document, in
part or in whole, and in any format, solely for noncommercial educational and
research purposes.

The author and co-authors if applicable retain copyright ownership and moral
rights in this document. Neither the whole thesis or dissertation, nor
substantial extracts from it, may be printed or otherwise reproduced without
the author’s permission.

In compliance with the Canadian Privacy Act some supporting forms, contact
information or signatures may have been removed from the document. While
this may affect the document page count, it does not represent any loss of
content from the document.

Université de Montréal

SCIL Processor

A Common Intermediate Language Processor for Embedded

Systems

par

Tongyao Zhou

Département d'informatique et de recherche opérationnelle

Faculté des arts et des sciences

Mémoire présenté à la Faculté des études supérieures

en vue de l'obtention du grade de Maître ès sciences (M. Sc.) en Informatique

Mai, 2008

cg Tongyao Zhou, 2008

o 3 JUIl. 2008

Université de Montréal

Faculté des études supérieures

Ce Mémoire intitulé:

SCIL Processor

11

A Common IntermediateLanguage Processor for Embedded

Systems

présenté par:

Tongyao Zhou

a été évaluée par un jury composé des personnes suivantes:

Max Mignotte

président-rapporteur

El Mostapha Aboulhamid

directeur de recherche

Abdelhakim Hafid

membre du jury

III

Abstract

Embedded systems and their applications are becoming ubiquitous and transparent.

Nowadays, the designers need to implement both hardware and software as fast as they can

to face the competition. Hence tools and IPs became an important factor of the equation. In

this work, we present a synthesisable softcore processor similar to the micro-architecture of

Tanenbaum's IJVM processor. The processor implements a subset of Microsoft's Common

Intermediate Language. We seek to accelerate the development of the embedded software

by providing a platform onto which the whole .NET Framework (C#, Visual Basic.NET ...)

(along with its object-oriented approach) could execute. We used a Xilinx Virtex Il PRO as

the prototyping platform.

Kcywords: Embedded processor, Softcore, CIL, SCIL Processor, Embedded System,

.Net language

IV

Résumé
Les Systèmes embarqués et leurs applications sont omniprésents et transparents

actuellement. Afin d'affronter des compétitions, des designers ont besoin d'implémenter

des matériels et des logiciels le plus vite possible. Des outils et des IPs donc deviennent un

facteur important. Dans ce pr~jet, nous présentons un processeur sollcore dont

l'architecture est inspirée par l'architecture de l'IJVM processeur de Tanenbaum. Le

processeur est synthétisable et implémente un sous ensemble de CIL (Microsoft's Commoll

Intermediate Language). Parce que CIL est le plus bas niveau langage dans Microsoft .Net

Framework, toutes les .Net langages, comme C# et Visual Basic.NET, peuvent être utilisés

pour les systèmes embarqués. Nous souhaitons que cette nouvelle plate-forme puisse

accélérer le développement des applications logicielles embarquées.

Mots de clés: Processeur embarqué, Softcore, CIL, SCIL processeur, Système embarqué,

.Net langage

v

Index

Chapter 1 Introduction .. 1

Introduction .. 1

Embedded processors ... 2

Motivation of project ... 4

Introduction ofMicroinstruction .. 5

Introduction ofCommon Intermediate Language .. 6

Introduction of SCIL processor .. 8

Outline ofthesis ... 9

Chapter 2 Related work .. 10

picoJava processor ... 10

(~o-Designed JVM processor ... 1 J

Lightfoot processor .. 14

IBM System z Application Assist Processor (zAAP) .. 16

T anenbaum 's IJVM processor ... 1 8

Additional Comments .. 19

Chapter 3 CIL vs. SCIL .. 22

CIL: high level machine language ... 22

SCIL: Simplifying CIL .. 24

Metadata ... 24

Regrouping Instructions ... 25

Absolute address .. 27

Three types of SCIL instructions ... 31

SCIL compiler .. 32

A SCIL example ... 33

Chapter 4 SC IL Processor .. 34

Data flow .. 34

Six-stage pipeline ... 37

Microinstructions for SCIL Processor ... 39

Notation of Microinstructions for SCIL Processor .. 39

Vl

ImpIement SCIL instructions with Microinstructions ... 40

Architecture of SClL Processor ... 42

TFU (Instruction Fetch Unit) .. 43

Architecture of IFU .. 43

Fetch SCIL instructions ... 44

Actions ofIFU ... 47

Decode SCIL instruction code ... 48

Compare with IJVM processor .. 50

MTU (Microinstruction Unit) ... 51

Control IFU .. 51

Data Dependency ... 55

Forwarding ... 56

FIFO Buffer .. 57

Treating microinstructions ... 58

ALU ... 61

Local Memory .. 63

Read and Write Registers ... 64

Predictor ... 67

Instruction Memory and Data memory .. 69

Chapter 5 Experinlents ... 71

Design Flow ... 71

A MicroBlaze System .. 73

Clock Rate and LUTs usages ... 76

Benchnlarks .. 77

Fibo .. 77

CRC32 .. 78

BSort .. 78

QSort .. 78

Discussion .. 79

Chapter 6 Conclusion and Future works ... 80

Reference .. 82

VII

Appendix .. 84

List of Supportable CIL Instructions ... 84

'fable of Microinstructions ... 87

VIII

List of Tables
Table 1: Various Java processors ... 20

Table 2: Various CIL loading instmctions ... 26

Table 3: Three types SCIL instmctions ... 32

Table 4: Length and Jlxed places of command signais sets ... 40

Table 5: One line of Microinstmction Table ... 52

Table 6: Command signal CMD ALU .. 62

Table 7: Command signal CMD_A ... 66

Table 8: Cornmand signal CMD_B .. 66

Table 9: Command signal CMD REG .. 67

Table 10: Command signal CMD MEM ... 67

Table 11: Number of stalls caused by branch .. 69

Table 12: LUTs utilization on the Virtex II PRO .. 77

Table 13: Cycle util ization for the benchmark Fibo .. 77

l'able 14: Cycle utilization for the benchmark CRC32 .. 78

Table 15: Cycle utilization for the benchmark BSort .. 78

Table 16: Cycle utilization for the benchmark QSort .. 79

IX

List of Figures

Figure 1: Xilinx MicroBlaze [20] .. 4

Figure 2: Common Language Runtime .. 7

Figure 3: 810ck-diagram ofSCIL processor. .. : 8

Figure 4: 810ck-diagram ofpicoJava-I processor [12] .. 11

Figure 5: PicoJava-I processor's four-stage pipeline [12] ... 12

Figure 6: 810ck-diagram of Lightfoot processor [16] .. 15

Figure 7: zAAP Technical Overview [35] ... 17

Figure 8: An example of zAAP [35] .. 18

Figure 9: Tanenbaum's IJVM processor [1] .. 19

Figure 10: Convert PE file to SCIL file ... 32

Figure 11: Data flow of SCIL processor .. 37

Figure 12: Six-stage pipeline ... 37

Figure 13: Architecture of SCIL Processor. ... 42

Figure 14: Architecture of IFU .. 43

Figure 15: State machine for six data registers .. 46

Figure 16: Relationship between two tables .. 49

Figure 17: Registers, Data buses and Data Memory .. 65

Figure 18: Architecture of one-bit predictor .. 67

Figure 19: Design flow .. 72

Figure 20: ChipScope Pro Analyzer .. 73

Figure 21: Virtex-II Multimedia FF896 Development Board ... 74

Figure 22: 810ck-diagram of MicroBiaze System ... 75

Figure 23: HyperTenninal .. 76

x

Table of Acronynls

ALU Arithmetic Logic Unit

BRAM Block Random Access Memory

CIL Common Intermediate Language

CLI Common Language Infrastructure

CLR Common Language Runtime

CP Conventional Processor

CPI Cycles Per Instruction

DSP Digital Signal Processor

FPGA Field-Programmable Gate Array

GPIO General Purpose Input/Output

HDL Hardware Description Language

ICF Integrated Coupling Facility

IFL Integrated Facility for Linux

IFU Instruction Fetch Unit

IP Intellectu~l Property

ISA Instruction Set Architecture

.JVM Java Virtual Machine

LMB Local Memory Bus

MIU MicroJnstruction Unit

OEM Original Equipment Manufacturer

PCI Peripheral Component Interconnect

PE Portable Executable

PLD Programmable Logic Device

RISC Reduced Instruction Set Computer

SCIL Simple CIL

SoC System on Chip

VHDL VHSJC Hardware Description Language

VLSI Very Large Scale Integration

XI

Remerciements

.le tiens à remercier mon directeur El Mostapha Aboulhamid pour sa direction et son

support tout au long de ma maîtrise . .le tiens aussi à remercier Luc Charest qui a passé

beaucoup de temps à me montrer comment rédiger un mémoire, j'en avais bien besoin.

Je dois aussi remercier mes parents et ma copine pour leurs encouragements et leur appui

dans les moments difficiles.

Chapter 1 Introduction

Introduction

With embedded systems used more and more widely, new design methods and new

hardware development too1s are introduced and commercialized. However, embedded

system designers continue to demand complete solutions to build and complete quickly their

hardware and software designs. To satisfy such demands, many manufacturers provide their

embedded processors and corresponding integrated embedded development environments,

such as Xilinx's MicroBlaze [20] and Xilinx Platform Studio [33], as weil as Altera's Nois!!

[II] and QuartusII Development Software [34]. By using these design tools, the embedded

system designers can develop a SoC (System On Chip) starting at a relatively high level. On

the hardware side, the designers choose the embedded processor and construct the embedded

sub-system implementations under the development environments; on the software si de, the

designers develop software applications and then convert them to embedded processor

instructions, which can be executed by the embedded system implementations. Aller that,

the designers use the functionalities integrated in the development 100ls to modify the

optimal design features, improve the design performance, and optimize area and cost of the

design system. In this way, the developers can craft embedded systems quickly and easily.

ln this work, we introduce a new softcore processor, SeIL Processor, which implements a

subset of Microsoft's Common Intermediate Language (CIL) [2]. This processor makes il

possible to use aIl primary .NET language in embedded system designs to develop software

applications. In our design, because it is hard to directly implement the CIL on hardware, we

consider a subset of the CIL as a simpler intennediate language, and th en implement this

new language on hardware.

2

Embedded processors

An embedded system is a special purpose computer system designed to perform one or a

few dedicated functions, and it is usually embedded as part of a complete device inclllding

hardware and mechanical parts [3]. In order to shorten the period of embedded system

development, almost ail designers use the CPU platform. The CPU platform uses the

special-purpose embedded processors, which can be purchased as part of the chip design,to

construct the embedded system. By using the CPU platform, it is easy and quick for the

designers to develop a chip (SoC) and create the complex embedded systems. A SoC

consists of the hardware and the software. The hardware inc1udes embedded processor,

DSP (Digital Signal Processor) cores, peripherals and interfaces; and the software which is

the pro gram loaded into the memory controls operations of the hardware. The design flow

for a SoC aims to develop hardware and software in parallel. The SoC designs can program

on field-programmable gate array (FPGA) with ail the logic, inc1uding the embedded

processors.

There are two kinds of embedded processors: microprocessors (!lp) and microcontrollers

(!lc). Microprocessor are the single VLSI chip that has a CPU and may also have some

other units such as caches, floating point processing arithmetic unit, and super-scaling units.

Microprocessors support their particular instruction sets. Microcontrollers are the single

chip VLSI unit, which has built-in peripherals together with sorne microprocessors on the

chip. The use of microcontrollers can reduce the size of embedded systems because it

redllces the size of control programs. Since the first microprocessor Intel 4004 [4], which

requires external memory and support chips, was used in embedded systems, many

microprocessors have been developed and commercialized in this field. Furthermore, in

contrast to the personal computer (PC) market where only limited CPU architectures are

used, there are many different CPU architectures used for embedded designs such as ARM

[5], MIPS [6], Atmel AVR [7], Zilog Z80 and Z8 [8], Renesas H8 and M32R [9], PIC [10],

as weil as PowerPC.

Embedded processors can also be divided into hardcore processors and softcore processors.

A hardcore processor is a fabricated integrated circuit that may or may not be embedded

3

into additional logic, and usually it has a fixed unchangeable construction. A softcore

processor is a microprocessor core described in a HDL, and that can be implemented using

logic synthesis. It can be implemented via different semiconductor devices containing

programmable logic such as FPGA. The softcore processor can be configured based on

factors such as schedule, unit cost, space constraints, product lifetime, toolset, and

llexibility needs. Although usually the hardcore processors can achieve better performance

than that the softcore processors, the softcore processors are widely llsed because not ail

embedded applications need the high speed performance. In practice, many applications

require expanded functionality and flexibility. Softcore processors usually provide a

substantial amount of flexibility through the configurable nature of FPGA. The flexibility

allows embedded system designers to create a custom system that contains only the needed

functionalities. Furthermore, it is easy for the softcore processor systems to modify the

CUITent designs to meet future needs. Therefore, softcore processors may be used not only

in a simple system, where the only functionality is limited to a simple GPIO (General

Purpose Input/Output), they may also fit a complex system, where an operation system is

incorporated and includes many peripherals or any other custom IP. Moreover, these

softcore processors can be implemented in a much shorter amount of time than hardcore

processors cano Therefore softcore processors can shorten time-to-market. At present, the

most popular used softcore processors are Xilinx's MicroBlaze and Altera's NiosIl.

The MicroBlaze [20] is a softcore processor optimized for Xilinx FPGAs. The MicroBlaze

is based on RlSC architecture. It features a 3-stage or 5-stage pipeline, with an instruction

completing in each cycle. Both instruction and data words are 32 bits. The MicroBlaze can

reach speeds of up to 210 MHz on the virtex-5 FPGA family. The processor can

communicate via the LMB bus for a fast access to local memory, which is normally the

BRAM inside FPGAs. The size of the BRAM is flexible and can change based on the

demands of target systems. With the configurable definition, the MicroBiaze can be

customized to the applications in many aspects such as: cache structure, peripherals, as weil

as interfaces. In addition, the MicroBlaze can add or rem ove hardware implementation l'or

certain operations including multiplication, division, and floating-point arithmetic. [n

Figure l, we present the base architecture of the MicroBlaze, and show its 3-stage pipeline.

Xilinx MicroBlaze
Ins/nlc1ioll-side
bus interface

Bus
IF

Program
Couilter

instruction
Buffer

i"';cI~'

111','1 1 1,'11'111 1
1

h>I(:11

il \..,.1 1 ~ l' 'lt' 'II l.

11 I~rl (If Illl11:1

1

1

1

Inslruction
Decode

I~':.;dt, ::!

1)('('(~,J(~

h'ld]

cre":· ~~

F,o;;:,·t;lit"

1.\'(u\I~·

h>lLlI

Figure 1: Xilinx MicroBlaze [20]

Motivation of project

AddiSub

ShiftiLogical

Regisler File
32 X 32b

cyl, .. j

L"\1.'lIk 1
L;~:i.u\h

1

Data-side
hlls illiedocc

cyd.·:;

],XPCUI'.'
1

4

Nowadays Xilinx lnc and Altera Corp dominate the whole PLO (Programmable Logic

Device) market. Based on a business report [38], Xilinx and Altera accounted for a

combined 83.4 percent market share of the PLO market in 2005. Xilinx is the PLO market

leader with a 50.3 percent market share and second-place Altera captures 33.1 percent or

the PLD market. The other small corporations are so far down the two giants so that almost

nobody ever hears of them. As a result when people develop embedded systems, they

naturally choose the product from Xilinx and Altera. Because both PowerPC and

MicroBlaze from Xilinx and NiosII from Altera focus on C/C++ programs, currently C and

c++ are the main programming languages which are used in embedded system designs. On

the other hand, a number of researches have been to develop hardware implementations for

Java. In fact, there exist many Java processors, which can support .IVM or dedicated .lava

instructions. Hence, it is possible to use Java as the embedded system developing language

with these Java processors.

5

However, there are few attempts to create .NET language processors and use the .NET

languages in embedded system designs although .NET languages are used widely at present.

Therefore, we try to develop an embedded processor for .NET language and aim at the

language CIL. Because the CIL is the lowest-levellanguage in the .NET Framework and ail

primary .NET languages, including C#, Visual Basic .NET, C++/CLl and .1#, can compile

to the language CIL, the new processor can execute ail .NET programs. In this way, we can

use ail .NET languages as programming languages in embedded system designs with our

processor.

With such an embedded processor for .NET language, the designers can use the existing

programs, which are written in .NET languages, for the target applications instead of

translating them to the programs in C or Java. In addition, as an Ir or a co-processor,

the .NET processor would be used as a dedicated unit, which is responsible for

executing .NET programs, in one system. Finally, we can use this new processor to do

some tests and benchmarks in multiprocessor systems. It is interesting to compare the

execution resuIts of different languages.

Introduction of Microinstruction

"Microinstruction is an instruction that controls data 1l0w and instruction-execution

sequencing in a processor at a more fundamental level than machine instructions. A series

of microinstructions is necessary to perform an individual machine instruction." [21:1

Microinstructions help the designers to find a simple and easy method to develop the

control logic for a processor. OriginalIy, people implemented machine instructions directIy

in circuitry which provided fast performance. However as instruction sets became more and

more complex, the corresponding circuitries became more difficult to design and needed

too many hard resources. In 1951 Maurice Wilkes described using microinstructions in

cru design for the first time. By using Microinstructions, cru design engineers can write

a microprogram to implement a machine instruction rather than design a circuitry for il. It

is more flexible to use microinstructions than use circuitries. Even late in the design process,

6

designers can easily modify the context of microinstructions to adapt the changeable

CPU demands. Moreover, it is possible to reaJize very compJex instruction sets with

microinstructions. The CPU designers can use microinstructions to implement many

abstract and high level machine instructions. The famous CPU that uses microinstructions

is the IBM System360.

The microprograms with microinstructions exist on a lower conceptual level th an other

familiar programs. As one single high level language statement is compiled to a series of

machine instructions, one machine instruction is implemented by a series of

microinstructions in the processor using microinstructions. The microinstruction exists

usually in a special read-only memory instead of the main system memory.

Microinstructions control the action of the processor at a very low level. For example, a

single typical microinstruction might specify which register should be updated or which

operation of ALU should be done in one single cycle. Microinstructions can be thought as

the combination of command signais for ail parts of the processor. In Example l, we show

several standard microinstructions. There are four microinstructions from MO to M3. These

four microinstructions are to implement the instructionfetch. The processor has to execute

the four microinstructions in turn for each instructionfetch.

MO: PC_out, MARjn
Ml: read, pcincr
M2: MDR_out,IRjn
M3: decoding opcode in IR

Example 1: The sequence of microinstructions for the instruction fetch

Introduction of Corn mon Intermediate Language

CIL (Common Intermediate Language) is the Jowest-Jevel human-readable programming

language in the CU (Common Language Infrastructure) of Microsoft's .NET Framework.

Ali primary .NET languages, including C#, Visual Basic .NET, C++ and .1#, are compiled

to the CIL before .NET program execution. The CIL is a CPU-independent and platform

independent instruction set, and it can be executed in any environment supporting the .NET

framework. Like .lVM (Java Virtual Machine), the CIL has a stack-based architecture and

uses bytecode instructions. Moreover, the CIL is an object-oriented language.

7

During execution of a .NET assembly, its CIL codes are passed through the CLI's .lIT

(Just-In-Time) compiler. The .lIT compiler translates bytecode instructions to native codes

that are immediately executable to the CPU. The procedure of compilation is performed

gradually during the whole program's execution. Moreover, in a CIL program, except for

CIL instructions, there are many Metadata. A .NET language compiler generates Metadata

and assembles them with CIL instructions. A Metadata in CIL file begin with a "point". For

example,

.maxstack 2

Metadata contain the information about compiled classes and sorne additional attributes.

Metadata can be thought as the complementary descriptions for CIL instructions. For

example, Metadata used for a method usually contain the information about the class name,

the type of the return value and the type of the method parameter. The information ensures

that the method can be invoked. The lIT compiler reads these Metadata during the .lIT

compilation. In Figure 2, we show the basic process ofCLR (Common Language Runtime) .

. NET Source

.NET

Complier

PEfiie

(.exe)

CI L + Metadata

Just-in-time

(J ITer)

OS

Hardware

Figure 2: Common Language Runtime

.NET Class libraries

(.NET Framework)

The .NET compiler firstly translates a .NET programs to a PE (portable executable) file

[23]. The PE file is a collection of CIL instructions and Metadata. When the PE file is

executed, a .lIT compiler compiles CIL instructions and Metadata to native language

8

instructions. During the compilation, the JIT compiler refers to .NET class libraries.

Finally, these new instructions can be executed on sorne special hardware environment with

sorne special OS.

Introduction of SCIL processor

The SCIL processor is a synthesizable softcore processor which implements a subset of the

CIL. lt is a little-endian processor. The processor supports 32 bits integer calculation, and it

cannot execute floating-point operations. The processor does not support object-oriented

concepts at present.

---~·--1 , , ,

,
Instruction 1

TvlemOl-y , m",",,§~

Data
IVI~lnory :

CMIHFU

COI re,1 --.llrecilcholl

/
PC T&NT

IFlT Predictor f-----+I

Index Addr."

OPD

z
BUSC

Registers ALU

Cl\ID-ALU

1

BUf>A J
BUS B

~--~~-'-- '''' -, ---'--------' C~ID-REG

CMD-l\IEl\i

Figure 3: Block-diagram of SCIL processor

IVIIlT

In Figure 3, we present the block-diagram of the SCIL processor. The processor consists of

the following functional units: Instruction Fetch Unit (IFU), Microinstruction Unit (MIU),

9

ALU, Predictor and Registers (local memory). The IFU fetches SOL instruction data

From memory and then decodes the SCIL instruction code; the MIU picks out

mÎcroinstructions and converts them to command signaIs; the ALU does the basic

arithmetic operations and determÎnes whether the processor takes condition branches; the

Predictor is a one-bit predictor with 128 different addresses for branch prediction; and the

local memory consists of nine 32-bit registers. Furthermore, we can find three data buses

(BUS A, BUS B and BUS C) and five command signal sets (CMO_A and B, CMD_ALU,

CMD_REG, CMD_MEM, and CMD IFU) which control the operations ofdifferent units.

In addition, the SCIL processor directly connects two BRAMs. One is as the instruction

memory and the other is as the data memory.

Oufline of thesis

The remainder of the thesis is organized as follows. We will introduce the related work in

nex! chapter. In chapter 3, we will discuss the CIL and the new language SCIL. Then in

chapter 4, we will present the detailed SCIL processor architecture. We will explain the

functions and characteristics of each unit of the processor. After that in chapter 5, wc will

show sorne ex peri ment results, and we will compare and discuss the performance between

the SCIL processor and the MicroBlaze processor. Finally, we will present the conclusion

and future works in chapter 6.

10

Chapter 2 Related work

Currently most embedded processors, which target a specific programming language, focus

on Java or JVM. These pro cess ors are usually called Java processors. In this chapter, we

present several typical Java processors. We introduce three JVM based processors: SUN's

picoJava processor, Co-Designed Java Virtual Machine processor developed by University

of New Bunswick and Tanenbaum's IJVM processor. Moreover, we introduce the

Lightfoot processor, which supports the instruction set interpreted from JVM. Furthermore,

we introduce IBM System z Application Assist Processor (zAAP), which is unique Java

processor used in large-scale commercial field.

picoJava processor

SUN's picoJava processor [12] may be the most famous Java processor although picoJava

only appears in research papers and this processor is never released as a product by SUN.

Now SUN provides the full Verilog code under an open source license [13]. The first

version picoJava core, picoJava-I, was introduced in 1997.

Through an interpreter or through just-in-time (JIT) compilation, Java programs can be

executed on a processor. However, both the interpretation and the .lIT compilation have

their disadvantages. The nature of interpretation involves a time-consuming loop, which

affects performance significantly. A JIT compiler can reach a high speed. However,

because the compiler itself and compilation require large quantity of storage, it consumes

much more memory, which is a precious resource in the embedded designs, than the

interpretation. Therefore, SUN developed picoJava-I processor to create a processor to the

Java environment which can eliminate the disadvantages of the two traditional execution

ways. The picoJava-I is a small, configurable core designed to support the JVM. In Figure

4, we present the major function units of the picoJava-I. The shading parts indicate

confi gurabi 1 ity.

Il

1/0 bus and memory interface unit

32 ~-Ir

32 t , r
,<

lnstrvêtion' èache '"
(O'"16,Kby'tes) PC and

trap ... DÇita cache
32 -

~ -
control (0-16 Kbytes)

Instruction t li

buffer ... r
Instruction Execution Data cache
decoding - control logic controlier ..

and folding
~ 32 ~ 1

Al ,1 'f u

L.
Stack cache unit Integer unit Floatinçf-point ... / (64 entries) data path i data :pâth

96 (
r ,;. "

:

Figure 4: Block-diagram of picoJava-I processor [12]

The instruction cache is a direct-mapped cache with a line size of 8 bytes, while the data

cache is a two ways, set-associative, write-back cache. Both of them can be conligured

between 0 and 16 Kbytes. The picoJava-1 processor has a 64-entry stack cache which

directly supports the JVM's stack based architecture. The stack cache is implemented as a

register file and managed as a circular buffer with a pointer to the top of stack. The

picoJava-I allows the option of including or excluding a floating-point unit. The pico.lava-I

processor includes a RISC-style pipeline and a straightforward instruction set. It

implements 341 different instructions. The processor implements simple Java bytecodes in

circuitry and executes them in one to three cycles. For example, either integer addition or

quick loads of object fields uses a circuitry directly. The picoJava-I implements sorne

performance critical instructions, such as calling a procedure, by using microinstructions.

Furthermore, for sorne complex instructions, such as creating the object or garbage

12

collection, the picoJava processor uses a trap to execute these instructions. One trap

needs at least 16 cycles to complete executing. Besides, the picoJava-l processor does not

have branch prediction logic. In Figure we present the picoJava-I processor's tour-stage

pipeline.

1

Fetch Decode Execute Write
and cache back

Fetch 4-byte Decode Execute for Write results
cache lines up ta !\No one or more back into
into the instructions cycles the operand
instruction stack
buffer Foldinglogic

Figure 5: PicoJava-I processor's four-stage pipeline [12]

'The picoJava-I processor can accelerate Java bytecode execution with a folding operation,

which takes advantage of random single-cycle access to the stack cache. Example 2 shows

that the processor can reduce one cycle to complete the stack operations by using folding

operation.

T ---...... LO ~ T+LO 1
i ~-~ T+LO

i

, .
LO r-- LO ""LO ,--- LO

LO
.

1
(a) (b)

Cycle 2: iadd Cycle 1: îload_O. iadd

Example Folding operation [12]

13

The picoJava-I can be implemented minimal in about 440K gates [14]. Moreover, based on

the experiments, the picoJava-I processor can reach 15 to 20 times faster th an a 486 with an

interpreter at an equal clock rate, and five times faster than a Pentium with a .1 IT compiler

at an equal clock rate.

Co-Designed JVM processor

The co-designed JVM processor [15J is developed by Kent from University of New

Bunswick. This processor uses hardware/software partitions for a JVM within the context

of a desktop workstation. The motivation of Kent is 10 relieve performance penalty caused

by the translation from Java bytecodes to machine language. The co-designed JVM

processor tries to leverage the combined benefits of hardware and software. Instead of

100% on hardware, Kent implemented only part of Java bytecodes on hardware.

The co-designed approach realizes a t'ully functional JVM comprised of both hardware and

software support in a desktop workstation environment. The dedicated hardware, which is

supported directly on the workstation mainboard, uses a FPGA tightly coupled with the

workstation's general purpose processor through a PCI bus. The partitioning of the design

between hardware and software is interesting. The processor uses overlap partitions

between hardware and software instead of maintaining disjoint partitions which are

normally used in co-designed systems. This partitioning is to relax the conditions to switch

execution between hardware/software partitions. The instructions that can be implemented

in the hardware partition are those that can be found in traditional processors such as stack

manipulation, arithmetic operators and logic operations, comparison and branching, jllmp

and return, as weil as data loading and storing. Most of accessed data structures, i.e. the

method's bytecode, execlltion stack and local variables, are placed in the FPGA board

memory. The constant pool and the heap reside in the PC's main memory. The software

partition executes ail object-oriented bytecodes. It suppol1s many complex virtual machine

functions, such as class loading and verification, garbage collection, exceptions, as well as

memory management. For example, the instructions new, checkcast, and inslanceof are

executed in software partition. The software partition is responsible for transferring data

14

during context switch between the hardware and software partitions. Furthermore,

because some instructions are supported both in the hardware partition and in the software

partition due to the overload partitioning, the software partition does a run-time decision to

decide where these instructions are executed. The software partition decides during runtime

which instruction sequences can be executed by the hardware. The whole system uses a

single data bus and a controlline to realize a simple communication protocol between the

two partitions. Once the hardware partition finishes execution, it signaIs the software using

an interrupt. Then the software partition retrieves the current state of the virtual machine

from hardware and continues execution.

The tests of small benchmarks on a simulator show performance gains by a factor of 6 to 11

compared with an interpreting JVM. (Kent does not introduce the machine used to run the

software .JVM.) Kent does not show benchmark results on FPGA after implementing the

processor. The hardware partition is coded in VHDL and the memory uses the memory

space within the FPGA device. The interface with the PCI bus is Altera pci_mt64

MegaCore function. Through timing analysis, the maximum c\ock rate is 24 MHz. The

design which implements the full partition (161 instructions) needs 37,756 logic elements

with 64 entries instruction cache and data cache. When it uses 16 entries cache, the number

of logic elements becomes 33,490.

Lightfoot processor

The 32-bit Lightfoot processor [16] is the product of Digital Communication Technologies.

This processor can be used as a design solution of embedded system OEMs from a tiny

memory footprint. It is a hybrid 8/32-bit processor based on Harvard architecture. This

processor uses a 3-stage pipeline. The instruction memory is 8-bits wide while the data

memory is 32-bits wide.

CPU Registers

ALU

Memory Arbiters Uni1ied Memory
Ihterface

Figure 6: Block-diagram of Lightfoot processor [16]

15

ln Figure 6, we show the key blocks of the Lightfoot processor. The shading part indicates

configurability of the memory interface. The user can configure the size of memory and

cache. The Control Unit is responsible for fetching, decoding and sequencing the execution

of instructions in the processor. The ALU is a traditional 32-bit design. Besides the usual

arithmetic and logic capabilities, it has a 32-bit balTel shifter and a 2-bit multiple step unit

which can execute a 32x32 bit multiply in 16 cycles. Data stack holds temporary data. The

return stack holds return addresses for subroutines. Its top-of-stack element is used as an

index register to access program memory. Moreover, the return stack can be used as an

auxiliary stack for programs. Both of the two stacks consist of a hardware part and a

memory extension. The hardware part of the data stack consists of eight 32-bit on-chip

registers while the hardware part of the return stack is four 32-bit registers. The processor

has 256 words of register space. The sixteen addresses at the bottom of them are used as

CUP registers su ch as the stack extension pointers, constant and parameter pool pointers.

The other register space is for interfacing to system peripherals such as memory

management unit. The processor supports the instruction set interpreted From JVM. The

Lightfoot processor has three different instruction formats: soft bytecodes, non-returnable

16

instructions and 32 single-byte instructions: The Lightfoot processor implements the

128 soft bytecode instructions in low pro gram memory. When the processor needs to

execute a soft byte code instruction, it branches to one location where the implementation of

this soft bytecode resides. The processor needs one cycle to do this operation, and it pushes

the address of the following instruction to the return stack. The 32 single-byte instructions

can be folded with a return operation. The 32 single-byte instructions have a retulll bit.

When this bit is set, the processor loads the value popped from the return stack to the

program counter register. This mechanism implements a zero-overhead return feature orthe

processor.

The frequency of the Lightfoot processor can reach 31 MHz on Spartan Il FPGA family

and 40 MHz frequency on Virtex 11 FPGA families. It can be implemented with less than

30,000 gates for the conventional form.

IBM System z Application Assist Processor (zAAP)

The zAAP [21][35] is the tirst large-scale commercial Java processor. The zAAP is

introduced by IBM in 2004, and available on IBM System z9 and zSeries z9901z890.

(Because the zAAP is a commercial product of IBM, we can not tind the detailed

architecture of this processor. We introduce the zAAP based on the introduction and

presentation on IBM official website.) The objective of the zAAP is to integrate Java

technology-based applications with mission-critical data and reduce infrastructure

complexity for multi-tier applications.

The zAAP is not designed as an independent processor which works individually. USllally

the zAAPs work as particular processors and do execute Java programs in IBM System z,

IBM's mainframe computers. For example, IBM z990 has 10 CPs (conventional processor),

1 lCr (Integrated Coupling Facility), 2 IFLs (lntegrated Facility for Linux), and 3 zAAPs.

The zAAPs execute Java programs in IBM JVM under control of z/OS [36], which is

lBM's flagship mainframe operating system. When a Java program is to be execllted, z/OS

dispatches the work units, which the zAAP can support, on a zAAP while z/OS dispatches

17

the left work units on standard processors. In Figure 7, we show how z/OS partitions

Java works to zAAPs and general processors.

zAAP Technical Overview: Z/OS zAAP Partition

z/OS Logical Partition

Lo~~al ... '1

General CP
Instructions,

.' ~. ~ -Wh;n-dÎ;patc-h~; - ;
. : 'runs on GCPs it can '
". select non-JAVA and:
:' JAVA work", ' , '

, l

When dispatcher':'
runs on zAAP it can '

only select JAVA '
work

.~---------_.----~

Figure 7: zAAP Technical Overview [35]

Bccause the zAAPs share many demands from general purpose processors, general purposc

processors can be available for additional workloads. In Figure 8, we show a simple

example. With the zAAPs, the system can reduce the standard CP capacity requirement for

the application to 500 MIPS or a 50% reduction.

18

Consider a WebSphere Application that is transactional in nature and requires 1000 MIPS
today on zSeries.

500 MIPB for WebSpnere App +
t",(lO MIPq now availalJle for addltional workloads

Figure 8: An example of zAAP [35]

The zAAP can execute z/ Architecture ™ instruction set architecture (JSA) [17][18][19].

The processor does not support ail manual operator controls such as PS W (Pro gram status

word) Restart, Load or Load derivatives. Moreover, the zAAPs are supported by 1 SM

middleware such as WebSphere, CICS and DB2.

Tanenbaum' s lJVM processor

Tanenbaum's LTVM processor [1] is an implementation of micro-architecture. The IJVM

processor can execute a subset of integer JVM (IJVM) on hardware. It implements only

twenty-two different integer JVM instructions su ch as iload and Îsfore. Moreover, the

processor does not natively support object-oriented concepts. The Tanenbaum's IJVM

processor uses microinstructions and has a seven-stage pipeline. The processor has tlnee

data buses and Il local registers. It do es not have prediction logic. In Figure 9, we show the

basic architecture of the Tanenbaum's IJVM processor.

19

Figure 9: Tanenbaum's IJVM processor [1]

Additiona] Comments

We showed how the different Java processors implement an instruction set. Because

implementing every instruction in circuitry needs too many hardware resources, there are

few hardware processors which use this approach in practice. Instead, many processors,

such as picoJava-I processor and Lightfoot processor, use the alternative approach where

the processor implements simple instructions in circuitry and uses microinstructions to

implement the complex instructions and native functions. This approach can reduce the

amount of hardware resources and accelerate the execution of those instructions which are

used frequently. Of course, the picoJava-I also uses software traps to implement sorne

complex instructions. Using a number of traps may occur to reduce the performance of the

processor because the picoJava-I needs minimum 16 cycles to complete a trap operation.

The architecture of a processor with two or three different implementation approaches

becomes complex.

20

Another solution we presented is co-design hardware/software approach used in

Kent's processor. It partitions the whole implementation to hardware part and software part.

Some instructions are implemented in hardware while others are executed in software. ln

our opinion, this solution is very interesting and suggestive. However, the potential

problem is the communication overhead. It is very difficult to predict how much time the

processor uses to keep the communication while it executes sorne programs. Moreover, the

raw speedup of the FPGA solution presented by Kent is under the condition that both the

clock frequency and general-purpose processor have the same clock frequency. As we ail

know, the clock frequency of a general-purpose processor is usually 20 to 50 faster than

that of FPGA. Therefore, we doubt whether this co-design approach can be realized in

practice.

Our SCIL processor adopts a simple approach: the whole instruction set is implemented by

microinstructions. In fact, most of small processors use this approach, such as Tanenbaum's

IJVM processor and Martin Schocberl's JOP [37]. During execution, every SCIL

instruction is translated to an address and then mapped to one set of microinstructions. The

processor can complete this translation in one pipeline stage without execution overheads.

Moreover, since there is no instruction implemented in circuitry, the design can be

implemented with minimal hardware. ln addition, because the architecture of the processor

is relatively simple, the development period is shorter than with other approaches. Table 1

lists the Java processors we introduced.

Instruction set Clock Logic usages Implementation
frequencv approach

picoJava-1 JVM 440K gates Circuitry
processor M icroinstruction

Trap
.~~ ... g u ni JVM 24MHz 37K gates Co-Design
proccssor
Lightfoot Interpreted from 40MHz 30K gates Circuitry
proccssor JVM M icroinstruction
Tancnbaurn's IJVM M icroinstruction
I.JVM proccssor

Table 1: Various Java processors

21

The architecture of SCIL processor is inspired by Tanenbaum's IJVM processor. The

two processors have some similarities. For example, both of them use three data buses.

However, there are also lots of ditferences between Tanenbaum's IJVM processor and the

SCIL processor. First of ail, the instruction set our processor implements is SCIL instead of

IJVM. The SCIL processor uses a new set of microinstructions, which is different l'rom

other existing sets of microinstructions, to implements the SCIL instructions. Furthermore,

we change a lot the architecture in order to make the SCIL processor fit the characteristics

of the SCIL. For example, the SCIL processor has a different method to deal with branches

because the SCIL use absolute address to represent branch address. Moreover, in order to

reduce the number of suspending cycles, the SC IL adopts a predictor and the forwarding

technique which are not used in the LTVM processor.

We introduced IBM's zAAP to show that the processors for a specific programmmg

language have their commercial usages. As we can see, the zAAP has been used in large

scale commercial field. Furthermore, the zAAP gives one possible method to use the SCIL

processor. IBM uses the zAAP as co-processors in lBM's mainframe computers to

accelerate the execution of Java programs. Therefore in the future, it is very possible to use

the processors for .NET languages in one system to improve the execution of .NET

programs.

22

Chapter 3 CIL vs. SCIL

CIL: high level machine language

In our design, we do not directly use the CIL instructions for our processor. Instead, we

create a new intermediate language, named SCIL (Simple CIL). By using a SCIL compiler

(we will introduce it later), we translate a CIL pro gram to a SCIL program, and the two

programs have the same signification. Then our SCIL processor can execute this SCIL

program on FPGA. We use the SCIL to replace the CIL because it is hard to implement the

CIL on hardware. The CIL is close to a machine language. It can be assembled into

bytecode. At the same time, the CIL is an object language, and it supports object-oriented

concepts. Therefore, we can think the CIL as a "high level machine language". In Example

3, we present a piece of CIL program to show its characteristics .

. class private auto ansi beforefieldinit Class1 extends [mscorlib]System.Object
{

. method private hidebysig static int32 zzz(int32 a) cil managed
{

.maxstack 2

.Iocals init ([0] int32 b,
[1] int32 CS$00000003$00000000)

IL_OOOO: Idc.i4.6
IL 0001: stloc.O
IL_0002: Idarg.O
IL 0003: Idloc.O
IL 0004: add
IL 0005: stloc.O
IL_0006: Idloc.O
IL 0007: stloc.1
IL 0008: br.s IL OOOa
IL OOOa: Idloc.1
IL OOOb: ret

} Il end of method Class1 ::zzz
.method private hidebysig static int32 Main(string[] args) cil managed
{

.entrypoint

.maxstack 2

.Iocals init ([0] int32 x,
[1] int32 CS$00000003$00000000)

IL_OOOO: Idc.i4.0
IL_0001: stloc.O
IL 0002: br.s IL_OOOd
IL 0004: Idloc.O

IL 0005: Ide.i4.5
IL_0006: cali int32 ConsoleApplieation1.Class1 ::zzz(int32)
IL_OOOb: add
IL_OOOe: stloe.O
IL OOOd: Idloe.O
IL OOOe: Ide.i4.s 100
IL 0010: blt.s IL 0004
IL_0012: Idloe.O
IL_0013: stloc.1
IL_0014: br.s IL_0016
IL 0016: Idloe.1
IL_0017: ret

} Il end of method Class1 ::Main
} Il end of class Class1

Example 3: The "high level machine language" CIL

23

As we can see, the CIL is close to a machine language because every CIL instruction can be

expressed in form of bytecode instruction, such as "Idarg 0" or "br.s II~ _ OOOa". However

we can find that the CIL is similar to high level languages such as C++ and Java. The CIL

uses "return value + function name + parameter type" to declare one procedure, and uses

one pair of "{" "}" to express the beginning and end of one procedure or class. The CIL

supports object-oriented programming. Usually only high level languages have the se

characteristics. As a resuIt, the se high Ievel language characteristics make the CIL much

different from machine languages. A CIL program is more readable than a JVM program.

However, it is a real nightmare for the hardware designers to construct the hardware

solutions that implement the "machine language" CIL. It is difficult for one processor to

know how to de al with some complex and tedious statements such as "private hidebysig

static int32 zzz(int32 p) cil managed", or identify some characters like '{' and "".

Therefore, we give up using the CIL as the machine language for our processor. We adopt

an alternative approach: before loading CIL instructions into memory, we translate CIL

instructions to the real machine instructions, and then implement these machine instructions

on hardware. In this way, we can avoid using the complex CIL statements and sllccess in

executing the CIL program on hardware. Furthermore, we can reduce significantly the total

amount of hardware resources and shorten the development period.

24

SCI L: Simplifying CIL

The SCIL is designed for our processor, and it is the real machine language for the

processor. The basic idea of generating SCIL instructions is to simplify the CIL. The SCIL

has no Metadata, and only consists of bytecode instructions. The SCIL is equivalent to a

subset of the CIL. Nowadays it only supports 32 bits signed integer, and does not support

tloating-point operations and object-oriented concepts.

There exist a lot of differences between the CIL and the SCJL. First of ail, the instruction

codes of the SCIL are completely different from their prototypes, the instruction codes of

the CIL. We redefine all instruction codes of SCIL instructions. For example, the

instruction code of add is Ox58 in CIL when the new instruction code is OxOI in SCJL.

Secondly, for some SCIL instructions, although they still own the same names as CIL

instructions, their instruction operands may represent different signification. Taking the

instruction cali for example, the instruction operand of cali in CIL represents the name of

invoking procedure, however the instruction operand of cali in SCIL represents the branch

address of invoking procedure. Thirdly, because usually one SCIL instruction corresponds

to several CIL instructions, the SCIL has much less instructions than the CIL has. (We will

introduce these differences in following sections.)

Metadata

The SCIL has no Metadata any more. lt is not easy for a processor to deal with Metadata

because lIsually Metadata have various forms and different parameters. We remove

Metadata by using three ways. Firstly, we directly delete some Metadata. Because now the

SCIL is not an object language, many Metadata are not useful any more. Therefore,

although we throw away these Metadata to garbage, we do not change the signification of

the whole program. For example, the Metadata .class, this Metadata is useful for the CIL to

declare the beginning of one class definition. However, the SCIL does not have the concept

of c1ass. Hence, this Metadata becomes not useful, and we can delete it without hesitation.

25

The second way of dealing with Metadata is to remove the Metadata but still

complete this Metadata's job. For example, the Metadata .enlrypoinf represents which

procedure is the main procedure in the program. For the SCIL, there is not one instruction
\

which functions as to indicate the position of the main procedure. Alternatively, we define

that ail SClL programs are executed from the first instruction, the first line of the source

code. Then we move the procedures, which contains the Metadata .entrypoinl in CIL. to the

beginning of the SCIL programs. In this way, we can delete the Metadata .entrypoint when

the SCIL programs still know the position ofthe main procedure.

The third way is that we use SCIL instructions to replace some Metadata. For example, we

replace the Metadata .locals with the SCIL instruction local opd. We show an example for

Metadata .local.~' .

. Iocals init ([0] int32 a,
[1] int32 b)

ln this example, the Metadata .locals expresses that there are two local variables a and h in

the current procedure. For the SCIL, it is not necessary to remember the name of variables

because the SCIL al ways use a number to represent a local variable. Instead, the number of

local variables is very useful for the SCIL. For the above example, the SCIL will name

variable li as 0111 variable b as 1 si variable. Therefore it is necessary to keep the number of

variables frol11 the Metadata .locals. We use a SCIL instruction local opd, where opd

represents the number of variables, to replace the Metadata .locals. Therefore, we can

replace the Metadata .locals in the above example with the SCIL instruction local 2. In this

way, the SCIL can keep the information the CIL Metadata contain by only using SCIL

instructions.

Regrouping Instructions

We do some simplifications for CIL instructions while translating them to SCIL

instructions. We reduce the number of CIL instructions. Usually, several CfL instructions

correspond to only one SCIL instruction. For example, loading an integer value to the top

of stack is an often-used operation in the CIL, and the CIL has a series of instructions to do

loading an integer with different value. (See Table 2)

26

CIL instruction Comment

Idc.i4.m1 Load integer -1 to the top of stack

Idc.i4.0 Load integer 0 to the top of stack

Idc.i4.1 Load integer 1 to the top of stack

Idc.i4.2 Load integer 2 to the top of stack

Idc.i4.3 Load integer 3 to the top of stack

Idc.i4.4 Load integer 4 to the top of stack

Idc.i4.5 Load integer 5 to the top of stack

Idc.i4.6 Load integer 6 to the top of stack

Idc.i4.7 Load integer 7 to the top of stack

Idc.i4.8 Load integer 8 to the top of stack

Idc.i4.s opd Load integer opd to the top of stack

Table 2: Various CIL loading instructions

J f we kept this series of loading instructions without any change, our processor should have

implemented them as ten different instructions. Now the SCIL only uses one instruction,

louds opd, where opd represents the value of the integer loaded, to replace aU these ten CIL

loading instructions. For example, the CIL instruction Ide. i4. m 1 can be represented by the

SCIL instruction loads -1; and the CIL instruction Idc.i4.(J can be represented by the SC[L

instruction louds (J. As a result, our processor can only use almost 1/1 0 hardware resources

which are needed to implement ail ten loading instructions. Such a simplification a[so

refers to the CIL instructions such as ldarg, ldloc and st/oc.

[n fact, if the processor can implement some instructions 1\1 circuitry, the speed of

execution may be improved. For example, the SCIL can use three instructions to represent

the various CIL loading instructions: louds (J, louds 1 and louds opd, and the processor

implements louds (J and louds J in circuitry. As a result, because the first two instructions

are used frequently, the processor can accelerate execution of programs. Moreover, .iust

implementing two instructions in circuitry do not need lots of additional hardware

resources. However, the probIem is how many and which instructions could be

27

implemented in circuitry. Furthermore, the architectural of the processor with many

circuitries becomes more complex th an that of our current processor. We think maybe the

SCIL processor could implement part of instructions in circuitry in future woks.

Absolute address

When translating CIL branch instructions such as br.s, bge and cali to SCIL instructions,

we change the instruction operands of these CIL branch instructions. We use the absolute

branch addresses as the instruction operands of the SCIL instructions.

The .rIT compiIers ailocate memory for CIL instructions at application run time. (The

different .lIT compilers may use different methods to allocate memory address. We use the

document Microsoft's .NET Framework Developer's Guide [24] as our reference.) Before

CIL instructions are executed, ail CIL instructions are kept in the PE file. When the se CIL

instructions are executed, one .NET Framework .Ill' compiler is responsible to convert them

to native code. During the execution, the .lIT compiler does not convert ail CIL instructions

to native code at one time. The compiler does not load one procedure (or method) until this

procedure (or method) is needed. When it is the first time to invoke one procedure, the .lIT

compiler converts this block of instructions, ail of the CIL code for this procedure, to native

code. Then the lIT compiler locals the native code in memory. Subsequent calls of the

compiled procedure are proceed directly to the native code that was previously generated.

The benefit is that some code which never gets invoked during the execution is not loaded in

memory. Rather than using time and memory to convert ail the CI L to native code, the .lIT

compiler only converts the CIL needed during execution and stores the resulting native code.

In Example 4, we show a piece of CIL program. For each CIL instruction, it has a label like

IL_xxxx, which are generated by the CIL compiler. In this example, we suppose that the first

instruction Ide. ;4. 6 is the beginning of one procedure, and ail instructions are in the same

procedure. Wh en this procedure is invoked, the .lIT compiler converts ail CIL instructions in

this procedure to native code, and loads them to memory. The nLllllbers in parentheses

before each CIL instruction in the example represents the memory address, which is

al\ocated by the JIT compiler.

(Ox0105)
(Ox0106)
(Ox0107)
(Ox0108)
(Ox0109)
(Ox010A)
(Ox010B)
(Ox010C)
(Ox010D)

IL_OOOO: Idc.i4.6
IL 0001: stloc.O
IL_0002: Idarg.O
IL_0003: Idloc.O
IL_0004: add
IL_0005: stloc.O
IL_0006: Idloc.O
IL_0007: stloc.1
IL_0008: br.s IL 0002

Example 4: Branch instruction in CIL

28

The instruction br.s IL _ 0002 is a branch instruction, which represent that the program goes

to the label IL_0002 when the first element is bigger than the second. The label IL_0002 in

the branch instruction does not represent the absolute bran ch address but the relative

displacement to the beginning of current procedure. Therefore, in order to obtain the target

branch address, the compiler has to do a calculation based on this relative displacement. It

adds the displacement (lL_0002 - ILOOOO = 2) to the first instruction's memory address of

the CUITent procedure (OxOI05), and then the compiler can obtain the branch address

(OxOI07).

Unlike the CIL, the SClL uses static allocation to allocate SCIL instructions in memory. Ail

SCIL instruction will be loaded in memory whatever they are executed or not. Before being

loaded in memory, we can know the memory address of every SCIL instruction. The first

instruction of the main procedure always occupies the memory address OxOOOO. The SClL

compiler calculates the address of every instruction in memory. Clearly it is not a Just-In

Time compilation. However, this kind of memory allocation can reduce the workload of the

SCIL processor because such an expression enables the processor to avoid branch address

calculation on the f1y. When the processor obtains an SCIL instruction, it can immediately

know where the next instruction in memory. Hence the processor does not need any

operations to calculate memory addresses.

The SCIL uses the absolute address to represent bran ch addresses. When the SCIL compiler

translates CIL instructions to SCIL instructions, it calculates the branch address for ail

bran ch instructions. Then the SC IL branch instructions use bran ch addresses as their

29

instruction operands. In Example 5, we show the SCIL instructions equivalent to the

CIL instructions presented in Example 4. We suppose that the address in parentheses is the

memory address in instruction memory for the SCIL processor. The last instruction br

Ox002E is equivalent to the instruction br.s IL_0002 in Example 4. Now the instruction

operand Ox002E represents the branch address. When the processor executes this instruction,

the processor knows the memory address of the next instruction is Ox002E.

(Ox0029)
(Ox002C)
(Ox002E)
(Ox0030)
(Ox0032)
(Ox0033)
(Ox0035)
(Ox0037)
(Ox0039)

loads 6
stloc
Idarg
Idloc
add

o
o
o

stloc 0
Idloc 0
stloc 1
br Ox002E

Example 5: Branch instruction in SCIL

For the CIL, the call instruction includes the invoking procedure name, the type of

parameters and the type of return value. When the .lIT compiler executes a call instruction,

the compiler searches the list of procedures to check the procedure name, the type of

parameters and the type ofreturn value. Then the lIT compiler examines the CIL instruction

and Metadata to determine whether the code Îs type safe, which means a reference to a type

is strictly compatible with the type being referenced. Only appropriately defined calling

operations can invoke a procedure.

In Example 6, we show a piece of CIL program. We also add the memory address allocated

by the .lIT compiler for each instruction in parenthesis. We suppose that the firs1 part of

instructions (the first five instructions) is in the main procedure, and the second part of

instructions is in another procedure named zzz. In the main procedure, there is a cali

instruction, cali int32 Test.TestClass::zzz(int32), which invokes the procedure zzz. We can

see that the cali instruction provides lots of infonnation to the lIT compiler.

(Ox0120) IL_OOOe: Idloc.1
(Ox0121) IL_OOOt: stloc.2
(Ox0122) IL_0010: Idloc.2
(Ox0123) IL_0011: cali int32 Test.TestClass::zzz(int32)
(Ox0125) IL_0016: stloc.2

.method private hidebysig static int32
zzz(int32 p) cil managed

(Ox0307) IL_OOOO: Idarg.O

(Ox0308) IL_0001: Idloc.O

(Ox0309) IL_0002: add

Example 6: Procedure cali in CIL

30

For the SCIL, the SCIL compiler does the job of searching the target procedure. Unlike the

.rIT compiler searching the invoking procedures during the execution, the SCIL compiler

finds out the position of the invoking procedures before SCIL instructions are loaded in

memory. Furthermore the SCIL uses the branch address as the instruction operand of the

SCIL instruction calI. The branch address is the memory address of the first instruction in

the invoking procedure. In Example 7, we show the SCIL instructions equivalent to the CIL

instructions presented in Example 6. We suppose that the address in parentheses is the

memory address in instruction memory for the SCIL processor. The new cali instruction

becollles call Ox0027. The ope rand Ox0027 is the bran ch address which is the Illelllory

address of the first instruction in the procedure zzz.

(OxOOO2) loads 1
(OxOOO5) stloc 1
(OxOOO7) loads 2
(OxOOO9) cali OxOO27
(OxOOOS) stloc 2

(OxOO27) local 2
(OxOO2E) Idarg 0
(OxOO30) Idloc 0
(OxOO32) add

31

Example 7: Procedure cali in CIL

By using absolute addresses to represent branch addresses, ail branch instructions can tell

the processor where the next instruction in the instruction memory. The processor does not

need calculate branch addresses during the execution, and the processor can hence obtain

l'aster speed than with ordinary CIL. However, the method of absolute address can only used

in simple embedded system designs. If we make the processor support object-oriented

concept, we still need to use dynamic branch calculation. At this time, the processor has to

know the position of instructions in sorne c1ass instantiations, and the branch addresses are

different for the same branch instructions.

Three types of SCIL instructions

Based on the length of bits which one SC IL instruction requires, we divided ail SClL

instructions into three types. The Type 1 SCIL instruction occupies 8 bits and does not have

instruction operand. It needs one word (8 bits per word) in the instruction l11emory for the

SCIL processor. The Type 2 SCIL instruction needs 16 bits and two words in the memory.

The first 8 bits represent the instruction code, and the rest bits represent the 8 bit signed

integer operand. The Type 3 SCIL instruction demands 24 bits and three words in memory.

The first 8 bits are for instruction code and the others are as the instruction operand, a

signed 16 bits integer. Furthermore, in order to discriminate the types of SCIL instructions

easily, we use the first two bits of instruction code to identify the different types. The Type

1 instructions begin with two bits "00"; the Type 2 instructions begin with "01"; and the

first bit of the Type 3 instruction is '']''. In Table 3, we show three examples for the three

types SCIL instructions, and we also show them in binary form when they are loaded in the

instruction memory.

Examples Binary form in memory
i _ .. ~._._---

~
add 00000010

i Type 2 Idarg 2 01000101

00000010

32

Type 3 cali Ox02]00000]0

00000000

00000010

Table 3: Three types SCIL instructions

SCIL conlpiler

We use a simple compiler to translate CIL programs to SCIL programs. The SCIL compiler

is written in language C++. (There is no any special reason why we use C++ rather than

other languages.) The compiler has two files: compiler.cpp and compiler.h. By using the

Visual Studio .NET tool ildasm.exe, which is usually in the path " .. \Microsoft Visual

Studio .NET \SDK\v].] \Bin\ildasm.exe", we can obtain the CIL file from any .NET PE file.

Then the SCIL compiler executes this CIL file, and converts the CIL to the SCIL. The

result will be saved as a SCIL file (.scil file). In the SCIL file, ail SCIL instructions are

decoded in binary form, and each line is 8 bits. Finally, we use this SCIL file as the initial

file for the instruction memory. In Figure 10, we show the process of converting a PE f'ile

to a SCIL file, and then loading it into FPGA.

~ "1 TODI ildasm CIL file

SCIL Compiler

FPGA
Initial BRAM

SCIL file

Figure] 0: Convert PE file to SCIL file

33

A SCIL example

The SCJL program shown in Example 8 is equivalent to the CIL program we presented in

Example 3. We use the SCIL compiler to execute the CJL program and then obtain the

corresponding SCIL program. The two programs have the equivalent signification.

(OxOOOO) local 2
(OxOO02) loads 0
(OxOO05) stloc 0
(OxOO07) br Ox0015
(OxOOOA) Idloc 0
(OxOOOC) loads 5
(OxOOOF) cali Ox0027
(Ox0012) add
(Ox0013) stloc 0
(Ox0015) Idloc 0
(Ox0017) loads 100
(Ox001A) bit OxOOOA
(Ox001 D) Idloc 0
(Ox001 F) stloc 1
(Ox0021) br Ox0024
(Ox0024) Idloc 1
(Ox0026) ret_main
(Ox0027) local 2
(Ox0029) loads 6
(Ox002C) stloc 0
(Ox002E) Idarg 0
(Ox0030) Idloc 0
(Ox0032) add
(Ox0033) stloc 0
(Ox0035) Idloc 0
(Ox0037) stloc 1
(Ox0039) br Ox003C
(Ox003C) Idloc 1
(Ox003F) ret

Example 8: SCIL program equivalent to CIL program in Example 3

34

Chapter 4 SCIL Processor

In this chapter, firstly, we will introduce the basic data flow and six-stage pipeline of the

SCIL processor. Then we will present the format of microinstructions for the scrL
processor. After that, we will introduce the architecture of the SCIL processor in detail. We

will discuss all the principal units of the processor one by one and point out characteristics

ofthem.

Data tlow

In Figure Il, we present the basic data flow of the SCIL processor. The SCIL processor

takes data from the instruction memory Ca), and the data successively pass through the unit

IFU Cb), and the unit MIU Cc) to find out microinstructions. Then according to command

signaIs derived from these microinstructions, the SC1L processor sends the value of the

registers to the ALU though BUS A and BUS B (d). Then the ALU does the arithmetic

calculations. After that, the ALU outputs the result of calculation on BUS C Ce). At this

time, the processor updates the value of registers with the data on BUS C. Finally, the

processor writes or reads the data memory Cf).

lw:l\urluIU

11t'lnOl)'

n .. t'I :

IdelMly :---_ .. -.

C1m-IFll

l
_J ___ , __

p,' T&:NT

IFU i----+I Prc<1iclor i---~

MIU

I11dt'l. Artdlt"H

lorD
z

BUSC

RCl:isten 1"- ALlJ

Cl\W-ALU

1 !i.. ~. -------..... :.~--:----; -- ... _.J i
cr..m·1ŒG

Ca)

11l~lJ Il,tî('1\

~h'mDJ'Y

natn
Ml'rnory

!h\lil
l\lcJMJ;'

~-----i

:---

35

Cl\fD ml

l C(lJTt'l'I~)Jf:(liCfitJlI

l 1

PC T&NT

IFU Prcdictor

MIU

Index Addrpn
~

'r~-'~"~-
-_._._ ..

01JD

, i BlISe

Re~isters ALU j

('MO·ALlI

t
1 i J

..
1

1
DUS.-\.

1 l BU~ li Cf\ID-REG

C:r..m-.M.EIvl

(b)

eMD·IFU

1 • 1 ~Qne<Ul1<dkli01j _____ L
,-t_

PC UN!

IFU Predictor

lIITU ..
Iude'\' ~\ddrr.H

~-l ;+

7

1
HUS C _

ALU
.1 4· ·

(', 1Jl-.-\..LU

~~:;>...=r J
l ___ ._~. __ Cl'IID-REG

C1ID·A'IEM

(c)

Jll~llnftiun

II.kmul)'

D<lla
Mpll\olY ~ .. -

(d)

1 \<'lI

BUSA

_______ BUSH

(e)

--------1
I~

MIU

C1.W·l..FU

Mill

l'l\ID-ALU

CMIl-Ki-:G

36

1

IFlJ

Regisle .. ,
n:;lta
t.-h'mon' - ~ -- t

t'MIl.I U

COI1t:cl_IHt:{lidi\!ll

1 1

rc T&NT
f----+I Prcdiclor I---~

Buse

HlISA

(f)

ALli

i 1
1

... .1

MIU

,.
_J -!-----

t'Ml)·l\lIfl\t

Figure 1 1 : Data flow of SCIL processor

Six-stage pipeline

37

Based on relative-independent actions of the processor, we divide the whole data flow into

six steps. We make each step as one stage of the pipeline. Therefore in the CUITent design,

the SCIL processor uses a six-stage pipeline. We present the pipeline in Figure 12. The six

pipeline stages are: Fe/ch, Decode, Regis/er Read, Execution, Regisler Write-back and

Memmy Access.

2 3 4 5 6

1 1 1 1 1 1
Register Rcgistcr MCl110ry

4 1 1 r-----!----. Write- r-,!---. r-~ Fetch . ~ Decode Read Execute i\cccss
1 1 1 1

back
1 1

1 1 1 1 1 1

1 1 1 1 1 1 1

Figure 12: Six-stage pipeline

38

ln the stage Fetch, the IFU converts the data taken from the instruction memory to

instruction code and instruction operand, and then sends the corresponding index address to

the unit MIU. In the second stage Decode, the MIU uses the index address to search the

microinstructions, and generate command signais. In the third stage Regis/er Read, the

processor takes the data of two registers and sends them to the ALU. In the fourth stage

Execute, the ALU does one arithmetic calculation. In the fifth stage Regis/er Wrile-hack,

the processor updates the value of registers with the calculation result. ln the last stage

Memory Access, the SCIL processor writes or reads data memory.

Comparing with Tanenbaum's UVM processor using a seven-stage pipeline, the SCIL

processor reduces one stage of pipeline. We combine two stages of the JJVM processor's

pipeline into one stage. ln the I.lVM processor, the first stage is responsible to take data

from memory, and the second stage is to convert instruction codes to index addresses. The

SCIL processor's first stage Fetch does the tasks of the JJVM processor's first and second

stages now. With the six-stage pipeline, the SCIL processor can begin to execute the

microinstructions one cycle earlier. The SCIL processor needs at least 2 cycles to prepare

the microinstructions for a new SCIL instruction. The first cycle is to take an instruction

from memory and get the index address; the second cycle is to search the corresponding

microinstruction set. Therefore, the SCIL processor can begin to execute the

microinstructions at the third cycle. When the processor used a seven-stage pipeline, the

processor would need at least three cycles before the new SCIL instruction's

microinstructions can be executed. The first cycle is to take the instruction; the second

cycle is to get the index address; the third cycle is to search microinstruction set. The

processor could begin to execute the microinstructions at the fourth cycle. Hence the

processor can use less cycles with the six-stage pipeline. Furthermore, although we

combined two stages into one stage, we do not change frequency of the processor. Based on

timing analyse for the SCIL processor, the unit MIU, the unit for the stage Decode, is the

unit that needs the most time. The second stage Decode needs more time than the first stage

}<e/ch, and the time used by the second stage decide the clock frequency of the processor.

Therefore, we make the SCIL processor use the six-stage pipeline instead of the seven

stage pipeline.

39

Microinstructions for SCIL Processor

For different micro-architectures, the microinstructions are different. In this section, we

introduce the microinstructions target for the SCIL processor.

Notation of Microinstructions for SCIL Processor

ln Example 9, we show several microinstructions for the SCIL processor. These

microinstructions are in binary form and each line represents one microinstruction. It is not

easy to understand what one microinstruction represents.

0000011110000111101011
0000011110000111101000
0001 0111100001110 110 Il

Example 9: Microinstructions in binary form

Therefore, here we use a kind of notations to represent microinstructions in order to be

convenient to express their meanings. We will use these notations in the following

paragraphs. In Example 10, we show two typical microinstructions written in notation form.

(a) SS=SS+ 1
(b) MDR=TOS=TOS+TPR; Wr
Example 10: Microinstructions in notation form

The new expression makes microinstructions be similar to a high level language. The

capital form tenns, such as "SS" and "MDR" represent the registers. The operation symbols,

such as "+" and "-", represent the operations of the processor's ALU. The terms "Wr" and

"Rd" represent writing and reading the memory respectively. The equal mark represents

using the value of right side to update the register of left side. Moreover, it is possible to

use more than one equal mark in one microinstruction. (See the Example 1 O(b)) lt means

the rightmost value is used to update several registers of left side at one time.

ln the Example 10(a), the microinstruction refers to only one register named SS, and the

task of this microinstruction is to increase the value the register SS with 1. In the Example

40

1 O(b), the microinstruction refers to four registers: MOR, TOS, TOS and TPR. The

task of this microinstruction is to update the registers MOR and TOS with the sum of TOS

and TPR. Moreover, the "Wr" represents that this microinstruction includes a writing

memory operation.

Implement SCIL instructions with Microinstructions

For the SCIL processor, every SCIL instruction corresponds to a set of microinstructions,

and the SCI L processor can complete the functionality of one SCIL instruction with

executing a set of micro instructions in turn. Usually such a set includes 2~9

microinstructions and the average number is about 4.5. In Example Il, we show the set of

microinstructions for the SCIL instruction add. The set for the SCIL instruction add

includes 3 microinstructions.

0100000001010000110000
0000110000000101010000
0010101000101000010110

-- MAR=SS=SS-1
-- TPR=TOS; rd
-- MDR=TOS=MOR+TPR; Wr

Example Il: Set of microinstructions for SCIL instruction add

Currently, one microinstruction for the SCIL processor needs 22 bits. The microinstruction

consists of five command signal sets, and different command signal sets occupy different

fixed places. In Table 4, we present the length and fixed places of the five command signal

sets in one microinstruction.

1 CMO_ALU 1 CMO_REG 1 CMO_MEM 1 CMO_A 1 CMO_B

5 bits 7 bits 2 bits 4 bits 4 bits = 22 bits

Table 4: Length and fixed places of command signaIs sets

These different command signal sets are responsible to control different parts of the SCIL

processor. The command signal set CM 0 _ ALU (5 bits) is to control the actions of the ALU;

the command signal set CMO _REG (7 bits) works as to update the registers; the command

signal set CMD _ MEM (2 bits) is to communicate with the data memory; the command

41

signaIs set CMD_A (4 bits) and CMD_B (4 bits) are to choose the data resource of

BUS A and BUS B. In the Example 12, we present two microinstructions.

(a) MAR=OxOl
(b) MDR=TOS+TPR; Rd

"1001000000010000000000"
"0010000000100101010110"

Example 12: Two microinstructions (a) and (b)

For the micro instruction (a), the task is to update the register MAR with OxOl. We split this

microinstruction into five command signal sets, and state what these command signal sets

represent.

10010 0000001 00 0000 0000

=> no data for BUS B

=> no data for BUS A

=> no memory operation

=> update register MAR with data on BUS C

=> ALU outputs OxOl

For the microinstruction (b), it refers to an addition operation, a reading memory operation

and operations of registers. We split this micro instruction into five command signal sets,

and state the meaning of each command signal set.

00100 0000010 01 0101 0 110

=> put register TPR's data on BUS B

=> put register TOS's data on BUS A

=> read the data memory

=> update register MDR with data on BUS C

=> ALU does addition operation

42

Architecture of SCIL Processor

In Figure 13, we present the detailed architecture of the SCIL processor. Moreover, we also

show the signaIs among the instruction memory, the data memory and the SCIL processor.

fetch & iUITIO & setPC

cOIlccl_prediction 1

MIL! , .. l IFU MICIOIllstrllclloJl Tahll'

IllsllllctÎon

MC1I1Of" l'''~'',' U~~";-i,>
Dccodin~ T'cible Prcdictor

Ins-cd

..h Ins-opd PC TINT ..

Index Addrcss
1'11'0 Buffer ~ Ne" PC Ins opd

Data Registers
MCIllOIY 't--, nus A BUS B

Mi\R

MnJ? .. ~

""
IV

..-
~

PAR
MIRI

NPf' Z

npn MIR2

HW MIIU
np('

MIR4

i 1

eMU-A&!>

ALL! 1--- CMD-IŒG

OUSC

CMD-AI.LJ

CMD-MUvl

Figure 13: Architecture of SCIL Processor

43

IFU (Instruction Fetch Unit)

The task of the IFU is to take data from the instruction memory, and then the IFU extracts

SCIL instruction codes and instruction operands from the data. After that, the IFU puts

instruction code and instruction operand into two particular registers. Finally, the IFU

decodes SCI L instruction codes to index addresses. With the index address, the processor
"", can find out the corresponding set of micro instructions in the unit MIU for every SCIL

instruction.

Architecture of IFU

·1 DataI
Il Data-in
Il

Il

Il •
(ns-code

1 Data2 Data3 1 Data4 DataS 1 Data6
Il
Il

Il

Il

Il

Il

Il
Il

Il

Il

Il

Il

Il

(

I-------------:---~-~

~-._---~ 1

Jump

Data-out setPC
Il

~ ~,--_+_I'---,2.-. _3 _F = = ~:= : = = ~L_N_e_x_t-_PC ______ ______'f--t-••

•
Fetch

Pre-PC pre-opd

L....... _"

BusC

Figure 14: Architecture of IFU.

44

In Figure 14, we present the architecture of the unit IFU. The register PC (Program

Counier) is 16 bits. The register Nexl_PC (16 bits) conserves the memory address of the

instruction that is next to the current Pc. We use val ue of the register Next jJC as the retllrn

address when the processor finishes invoking a procedure. The register lm'_code (8 bits) is

responsible to store the instruction code, while the register lns_ upd (16 bits) is used to

conserve the corresponding instruction operand. ln addition, there are six registers, named

as DolaI, Data2, Data3, Data4, Dala5 and Data6 (8 bits for each). These six registers

respectively conserve the data of instruction memory with the address PC, PC+ 1, PC+ 2,

PC+ 3, PC+4, PC+5. These six registers work as a data buffeT. The IFU puts data taken

from the instruction memory into these registers firstly. When the IFU fetches the

instruction code and instruction operand, the IFU uses the data in the six regisiers instead of

reading data from the memory. The IFU can receive three kinds of command signals:fèlch,

jump and setPc. The fetch command asks the IFU to take the SCIL instruction that is next

to the current PC; the jump command informs IFU there is a branch; and the sel PC

command asks the IFU to update the value of PC with the data on BUS C.

Furthermore, inside the IFU, there is another two registers: pre_PC and pre_upd. These

two registers are used for the prediction. The pre PC conserves the old value of PC when

the value of PC changes; similarly, the pre opd conserves the old value of the lm'_opd

when the value of the lns_opd changes. ln addition, the IFU receives a signal named

correct-prediction which is generated by the MIU. As same as the lwo registers pre_PC

and pre _opd, this signaI is used for the prediction. This signal states whether the previous

prediction is correct or not. When it is correct, the value of the signal is '0'; otherwise, the

value is '1 '. (We will introduce the branch prediction and the predictor in the folJowing

sections.)

Fetch SCI L instructions

The IFU takes SCIL instruction codes and the corresponding instruction operands from the

six data registers. As we introduced, aIl of SCIL instructions code occupies 8 bits.

Therefore, the IFU always uses the 8 bits of the register Dalal as the instruction code.

45

Because the length of instruction operand is various (three types SCIL instructions),

the IFU has to determine the instruction type before it takes correct length bits as the

instruction operand. The IFU identifies the type of one SCIL instruction with checking the

tirst two bits of instruction code. Wh en the instruction is a Type 1 SCIL instruction, the

IFU does not update the value of the register because there are no instruction operands for

Type 1 SCIL instructions. When the instruction is a Type 2 SCIL instruction, the IFU uses

the 8 bits data of the register Data2 as the instruction operand. When the instruction is a

Type 3 SCIL instruction, the IFU uses 8 bits of the register Dala2 and 8 bits of register

Dala3 as the instruction operand. As a result, because the instruction ope rand was

conserved in the register Im'_opd, the processor can directly use the instruction operand in

the register without caring about the Iength of it when the processor deals with the SCIL

instruction. It is not necessary for the SCIL processor to use additional command to require

the IFU to take sorne bits data as instruction operands any more.

After the IFU updates the registers lns_code and lns_opd, the IFU shifts the six data

register, and use the unused data to replace the used data. For example, when the lFU used

the data of first three data register DataI, the register Data2 and the register Data3, the 1 FU

copies the value of the register Data4 to the register DataI, the register Data5 to the

register Data2, as weil as the register Data6 to the register Data3. After that, the IFU

checks wh ether there are enough valid (unused) data for the next instruction. Because the

Type 3 SCIL instruction, which is the longest instruction among three type instructions,

needs 24 bits, the IFU needs at least three data registers with valid data for the next

instruction. Otherwise, the IFU reads 32 bits data from the instruction memory to refi Il the

data registers when the number of unused registers is less than 3. ln Figure 15, we present

the state machine that describes how the IFU operates the six data registers and when the

IFU reads new data.

Read ~ --...

~ - - - - - - - --/~ -=--=- -=- -=- -=-/~-=- -=- -=- -=- -=- -=- -=--=-~ - - - - - - - "" """
/ / / " " " c0 0 QTYP' , ~ /' ~

" /
'-- ._:: .. _/

'--

Type3

,
/

._'/
'--

Figure 15: State machine for six data registers

\

\
.. /
\ .J .

/

'--
Type2

46

When ail the data registers are filled with valid data, the size ofbuffer (number in the cycle)

is 6. Every times, when the IFU gets a Type 1 SCIL instruction, the size of buffer reduces 1.

For example, it supposes that the size of buffer is 5. When the IFU gets an instruction add,

which is a Type 1 SCIL instruction, the size of buffer becomes 4. Similarly, the size of

buffer subtracts 2 or subtracts 3 when the IFU get a Type 2 SCIL instruction or a Type 3

SCIL instruction respectively. The IFU reads new data from the instruction memory when

the size of buffer is smaller than 3. After the IFU reads the memory, it increases the size of

butfer with 4.

ln fact, the IFU can remove the six data registers. At this time, we make the IFU suspend

when it finishes fetching the first instruction, and restart to work wh en the processor asks for

the second instruction. However, as we introduced in the section for microinstructions, one

SCIL instruction corresponds to more than one microinstruction, and each microinstruction

at least needs one cycle to execute. There is hence an interval (several cycles) between the

processor asking the IFU for the first instruction and the processor asking the IFU for the

second instruction. In our design, the IFU uses this interval to prepare the new instruction in

advance. Ouring the interval, the IFU checks whether there is enough valid data for the next

instruction. Wh en there is not enough valid data, the IFU takes data from the memory

47

automatically. Then when the IFU recelves the new command, the lFU already

prepared the data for the new instruction. (It supposes that there is no branch.) As a result,

the IFU now has a simple pre-fetch function to accelerate fetching instructions. The IFU can

take the next instruction from memory before the processor requires a new instruction. This

pre-fetch function improves the performance of the processor significantly. Certainly, when

the processor meets a branch, the pre-fetch function does not work at ail. At this time, the

IFU clears up ail data registers and reads the new data from the instruction memory. (The

method offetching data is similar to the method the LTVM processor uses.)

Actions of IFU

The actions of the IFU are controlled under the command signais generated by the unit

MIU. (We will introduce the MIU in following section.) The IFU has three basic actions

corresponding to three commands. When the IFU receives a command fetch, it means the

next instruction sequences with the CUITent instruction in memory. Therefore, the IFU

increases the value of PC depending on the type of the current instruction. For example,

when the current SCIL instruction is a Type 2 instruction, the IFU increases the value of

PC with 2. After that, the IFU can fetch the new instruction code and instruction operand

from the data registers due to the pre-fetch function. Then the IFU updates the register

lm·_code and lns_opd, and the 'IFU updates the value of the register Next_PC according to

the new value of the Pc. Finally, the IFU shifts the six data registers and checks whether it

needs to read new data from the instruction memory.

When the IFU receives a command jump, it means that there is a branch, and the currcnt

instruction is a Type 3 instruction whose instruction operand represents the branch address.

The IFU needs to update the value of PC with this branch address. Because the operand is

conserved in the register lns _op d, the IFU copies the 16 bits of the register lm·_opd to the

register Pc. Moreover, because the pre-fetch function dose not work for branches, the 1 FU

reads new data from the instruction memory ta refill the data registers. After that, the 1 FU

fctches the new instruction code and instruction operand, and updates the registers lm'_code,

48

Ins opd and Nexl pc. Finally, the IFU shifts the six data registers and check whether

the IFU needs to read new data from the memory again.

When the IFU receives a command se/PC, il means that the IFU needs to update the value

of PC with the data on BUS C. For example, when the processor executes an instruction

cal!, the processor pushes (writes) the value of the register Nexl _PC to the stack (the data

memory). When the processor executes the corresponding return instruction, the processor

pops (reads) the old Nexl PC value from the stack (the data memory), and then it places

this value on BUS C. At this time, the processor sends a command setPC to the IFU. When

the IFU receives a command setPC, the IFU uses the data on BUS C to update the register

Pc. Then the IFU does the same operations as it receives a commandjump.

However, when the signal correct-prediction states the previous prediction is incorrect, the

actions fé/ch and jump have a tittle difference. At this time, the IFU does correct previous

wrong prediction. When the IFU receives a command fé/ch, it means that the incorrect

prediction is "Take", and now the processor needs to do "Not Take". The IFU firstly picks

out the value of the register pre Pc. This register conserves the PC of the branch

instruction for which the previous prediction 1S done. By using this old PC value, the IFU

can figure out the memory address of the instruction, which is next to the branch instruction

in memory. After that, the IFU uses this calculation result as the new Pc. When the IFU

receives a command jump, il means that the incorrect prediction is "Not Take", and the

processor needs to do "Take". The IFU uses the value of the register pre _opd. This register

recodes the instruction operand of the instruction for which the previous prediction is done.

The value of this register is exactly the target branch address. Hence the IFU uses it to

update the value of PC. When the IFU finished resetting the new PC, the IFU clears up the

data registers, and begins to do the normal operations.

Decode SCIL instruction code

Besides fetching the data, the IFU is responsible to map the SC IL instruction codes to the

corresponding sets of microinstructions. Inside the IFU, there exists a mapping table,

named as Decoding Table. For each SCIL instruction code, the Decoding Table records an

49

entrance address. Furthermore, inside the unit MIU, there exists another table, named

as Microinstruction Table. The Microinstruction Table conserves ail sets of

microinstructions for SCIL instructions, and every SCIL instruction has one and only one

set of microinstructions in the Microinstruction Table. When the IFU gets a new SCIL

instruction code, the IFU sends it to the Decoding Table. The table returns a map index,

which we cali as index-address. Every index-address represents an address for the

Microinstructions Table, and it points to the firsl microinstruction in one set of

microinstructions. In Figure 16, we present the relationship between the Decoding Table

and the Microinstruction Table.

Dccoding Table MÎcroinslruclion Tabk

1 ndcx addrcss

Instruction code

IFU

MW

Figure 16: Relationship between two tables.

ln Example 13, we show the process of mapping the SClL instruction add to its

corresponding set of microinstructions.

50

Dccoding Table M icroinslrUClioll Table

1
1

00000011 00000011

0000()001
0000 1 0000000 1 0 1 0000 1 1 0000

0000000 Il 0000000 1 0 1 0 1 0000

0010010101000101000010110

IFU

MIU

Example 13: Map instruction add to the set of microinstructions

The instruction code of add is "00000001". The IFU uses "00000001" as the address to

sc arch in the Decoding Table. Then the IFU uses the result "00000011 as the index-address

and outputs it to the MIU. When the MIU receives this index address, it uses "000000 Il''

as the address to search in the Microinstruction Table. As a result, the MIU moves the

internaI pointer to the fourth clement, which stores the first microinstruction in the set of

microinstruction for the instruction add. The first micro instruction for the instruction add is

"00001 00000001 0 1 0000 Il 0000".

Compare with IJVM processor

Tanenbaum's LlYM processor also uses a unit named IFU to fetch UVM instructions l'rom

memory. Furthermore there are sorne similar mechanisms between the IFU of the SC IL

processor and the IFU of the lJVM processor. For example, both of them use data registers

as data buffer, and have similar state machines for management of data registers. However,

we give the IFU of SCIL processor sorne new functions, which the IJVM processor does not

have. Firstly, the IFU of SCIL processor can automatically fetch instruction operands wbile

it obtains instruction codes. For the I.lVM processor, tbe processor needs to send a particular

command to the IFU in order to fetch instruction operands. Therefore, for one IJVM

instruction, the UVM processor sends two times of commands to the IFU, and the IFU does

fetching jobs twice. The IJVM processor sends the first command to ask IFU to output

51

instruction codes; and it sends the second command to ask the IFU for the instruction

operands. In our work, we avoid the second time of asking for the IFU. The SCIL processor

can obtain both the instruction code and its instruction operand from the IFU at only one

time. Therefore the SCIL processor uses less times of taking data th an the time the IJVM

processor needs. SecondIy, because the SCIL processor has the prediction function, the IFU

of the SCIL processor becomes more complex than the IFU of the IJVM processor. Wc

added some new registers and signais to implement the prediction function. For example, the

1 FU have the regi st ers pre _PC and pre _ opd, which are to conserve the state before

predictions. Thirdly, the IFU of SCIL processor is responsible to decode instruction code.

For the IJVM processor, another unit does this job. As we introduced, the SCIL processor

combines two pipeline stages into one stage. Therefore, the IFU has two pieces ofworks at

the same time.

MIU (Microinstruction Unit)

The unit MIU is another principal unit for the whole processor. First of aIl, the MIU has the

responsibility to control the actions of the unit IFU; secondly, the MIU is to search the set

of microinstructions in the Microinstruction Table, and th en the M lU arranges

microinstructions in certain order; thirdly, based on the se microinstructions, the MIU is

enable to generate kinds of command signaIs, which control the operations of the SCIL

processor.

ControlIFU

As we introduced in the previous sections, the IFU can receive three different commands,

and the MIU is responsible to send these commands. The IFU generates the commands

based on the information conserved in the Microinstruction Table. Each line of the

Microinstruction Table consists of one microinstruction and three flag bits: npc, jmp and

end. These three flag bits represent the state of the current microinstruction. With acquiring

the state of microinstructions, the MIU decides to send which command to the IFU. In

52

Table 5, we show one line of the Microinstruction Table. Each line of the

Microinstruction Table has 25 bits.

Table 5: One line of Microinstruction Table

The flag bit end represents whether the current microinstruction is the last microinstruction

in the set of microinstructions. Because aIl sets of microinstructions are limit (2~9 items for

each set) and the processor executes these microinstructions sequentially, the last line in

one set of microinstructions al ways has an active flag bit end. In Example 14, we show the

set of microinstructions for SCIL instruction add. The first three bits are flag bits, and the

flag bit end of third li ne is '1'. It means that the third microinstruction is the last

microinstruction in this set of microinstructions.

0000100000001010000110000
0000000110000000101010000
0010010101000101000010110
III
1 \ \

npcjmp end

-- MAR=SS=SS-1
-- TPR=TOS; rd
-- MDR=TOS=MDR+ TPR; wr

Example 14: Microinstruction set for add in Microinstruction Table

The flag bit jmp is active when the set of micro instructions correspond to one condition

branch instructions, such as instructions blt, beq and ble. Inside such a set of

microinstructions, one flag bit jmp is active. In Example 15, we show the set or
microinstructions for the SCIL instruction bit. We can see that there are two active Ilag bits

in the fifth line. The first is the flag bit end because the fifth microinstruction is the last

microinstruction in this set of microinstructions. The second is the flag bitjmp because the

current microinstruction refers to a condition branch. (The notation ".1MP(Z)" represents

that the processor takes the branch when Z is true.)

0000100000001010000110000
00001000000010101001]0000

MAR=SS=SS-1
-- MAR=SS=SS-I; rd

0000000110000000100010000
0001000000000000001100101
0110000101000000000010000
III
/ \ \

npcjmp end

-- TPR=MOR; rd
-- Z=TPR cmp TOS
-- TOS=MOR; JMP(Z)

Example 15: Microinstruction set for bit

53

However, in practice, we use two active flag bits jmp for a condition bran ch in the

Microinstruction Table. For example, there are two active flag bits jmp in the set of

microinstructions for the instruction bit. We show this set of microinstructions in Example

16. The tlag bitjmp in the first line is active. We adopt such a method because we hope the

processor can know the state of microinstructions as early as possible. Earlier the processor

knows the CUITent instruction referring to a condition branch, earlier the processor begins to

do the prediction for this condition branch and fetch the new instruction. It is useful for the

SCJL processor to reduce the suspend cycles.

0100100000001010000110000
0000100000001010100110000
0000000110000000100010000
0001000000000000001100101
0110000101000000000010000
III
/\\

npcjmp end

-- MAR=SS=SS-1
-- MAR=SS=SS-1; rd
-- TPR=MOR; rd
-- Z=TPR cmp TOS
-- TOS=MDR; JMP(Z)

Example 16: Microinstruction set for bit in Microinstruction Table

The flag bit npc is active when this microinstruction asks the processor to update the value

of PC with the data on BUS C. As same as the flag bitjmp, the active tlag bit npc appears

two times in one set of microinstructions. In Example 17, we show the set of

microinstructions for the SCIL instruction ret. The flag bit end and the flag bit npc in the

last line are active, and the flag bit npc of the first line is active too.

1000000100000010001000000
0000100000001010101000000
0000000100010000100010000
0000000110000000000010000

-- MAR=LV
-- MAR=SS=L V -1; rd
-- L V=MDR; rd
-- TPR=MDR

0000100000001010000]]0000
0000]00100001010110000000
0000000100100000000010000
0000000100000101001010000
1010000100000000001100000
III
/ \ \

npc jmp end

-- MAR=SS=SS-1
-- MAR=SS=PAR; rd
-- PAR=MDR
-- MDR=TOS; wr
-- C=TPR

Example 17: Microinstruction set for ret in Microinstruction Table

54

By checking three flag bits, the MIU can acquire the state of microinstructions and th en

send three different commands, fetch, jump and setPC, to the IFU. When the MIU deals

with a new set of microinstructions, firstly the MIU reads the two flag bit jmp and npc of

the tirst line in the set. When both of them are not active, it means that there is no branch

for this set of microinstructions. At this time, the MIU sends a command fe/ch to the IFU.

Otherwise, when the flag bit npc of the first line is active, the MIU does not send any

command to the IFU immediately. Instead the MIU sequentially executes the

microinstructions one by one. When the MIU meets the second active flag bit npc, the MIU

sends a command setPC to the IFU. When the flag bit jmp of first line is active, the MIU

checks the prediction result made by the predictor and th en sends commands. The MIU

sends a command fetch to the IFU when the prediction is "Not Take". Otherwise, when the

predictions result is "Take", the MIU sends a commandjump to the IFU. After that, the IFU

sequentially executes the microinstructions. When the MIU meets the second active flag bit

jmp, the MIU reads the value of the condition result Z to check whether the previous

prediction is correct. When the prediction is correct, it is aU right and there is nothing

happened. Otherwise, the MIU sends a new correct command to the IFU to replace the

wrong one. At this time, the MIU sets the value of the signal correet-predic/ion to inform

the IFU and the predictor whether the prediction is correct. (We will introduce how the

predictor works in foUowing sections.)

Tanenbaum's JJVM processor uses two flag bits while the SCIL processor uses three tlag

bits. Both of the two processors have the flag bit end. However, the SCIL processor uses two

flag bitsjmp and npe to represent branches which the IJVM processor uses one flag bitjmp

to represent. For the lJVM processor, it obtains branch addresses only from the data bus.

55

However, there are two methods to obtain branch addresses for the SCIL processor.

FirstJy, the processor can obtain the bran ch addresses from the data bus. The bit flag npc is

used to represent this situation. Secondly, the processor can use the value of register

ln.\" opd inside the IFU as the bran ch addresses. (In previous sections, we introduced that

the branch addresses as instruction operands are conserved in this register.) The bit flagjmp

is used to represent the second situation. As we can image, it takes Jess time for the

processor to use the existing data in the register than to wait for the data on data bus.

Therefore, we divided ail branches into two different operations. In this way, although our

SCIL processor uses one more flag bit th an the IJVM processor uses, the SCIL processor

can accelerate the execution ofbranch operations.

Data Dependency

After the MIU finding out the set of microinstructions in the Microinstruction Table based

on the index-address, the processor begins to execute the microinstructions one by one.

Theoretically, the processor can execute one microinstruction in one cycle because the

SCIL processor uses single pipeline construction. However, it is quite easy to generate data

dependency among microinstructions. The data dependency may result in one or more than

one suspend cycles for SOme microinstructions. Although we can optimize the

microinstructions to reduce data dependency, it is impossible to avoid ail data dependency

because the permutation of the different SCIL instructions is too complex to anticipate ail

possibilities. In fact, some data dependency is inevitable.

J n Example 18, we show the set of microinstructions for the SCIL instruction adJ. The

second microinstruction changes the value of the register TPR; and in the third

microinstruction, the value of the TPR is used as one operand of the addition operation.

Hence the third micro instruction is data dependency for the second microinstruction. The

processor cannot execute the third microinstruction until the processor completes executing

the second microinstruction.

MAR=SS=SS-l
TPR=TOS; rd

MDR=TOS=MDR+ TPR; Wr
Example 18: Data dependency

56

Data dependency makes the processor generate suspending cycles, and too many suspend

cycles affect the execution speed of the processor. Therefore, in order to minimize the

influence of data dependency, we use the forwarding technique and a FIFO buffer in our

processor. The forwarding technique can reduce the number of suspend cycles directly. The

FIFO buffer can make the processor keep doing sorne works ev en when the processor is in

suspend cycles.

Forwarding

The MIU uses forwarding technique when it checks data dependency for microinstructions.

For example, the processing microinstruction needs the value of a certain register. However

this register now is waiting for being update because one previous microinstruction referred

to this register. At this time, without the forwarding, the processor cannot begin to execute

this processing microinstruction until the processor finishes executing the previous

microinstruction and updating that register. By contraries, with the forwarding, the

processor can execute the processing microinstruction several cycles early.

ln Example 19, we present an example. In (a), we show two sequential microinstructions.

ln (b), we present the executÎon of the two microinstructions without the forwarding

technique. The MIU finishes executing the first microinstruction at the i+2l\d cycle, and it

begins to execute the second microinstruction at the i+ 3rd cycle. The whole execution time

is 6 cycles. In (c), we present the execution of the two microinstructions with the

forwarding technique. The MIU finishes executing the first microinstruction still at the

i+2 l1d cycle. However, the MIU can execute the second microinstruction at i+2nd cycle as

S0011 as the ALU finishes the addition operation. During the i+2lld cycle, the result of the

ALU is sent to two objects at the same time. The first receiver is the register TOS. The

register TOS uses the result to update its value. Another receiver is the ALU. 'l'he ALU

uses the result as the operand of an addition operation, which Îs done by the second

57

microinstruction. As a result, the whole execution time becomes 5 cycles, which is

one cycle less than without forwarding.

Ca) Two microinstructions

TOS=SS+TPR
MDR=TOS+MDR

Cb) Without forwarding

Cycle TOS=SS+TPR

1 load SS, TPR

i+l do addition operation

i+2 update TOS

i+3

i+4

i+5

Cc) With forwarding
Cycle instr: TOS=SS+ TPR

1 load SS, TPR

i+l do addition operation

i+2 update TOS

i+3

i+4

MDR=TOS+MOR

load TOS, MOR

do addition operation

update MOR

instr: MDR=TOS+MDR

load MOR, use result of

ALU as the value ofTOS

do addition operation

update MOR

Example 19: With forwarding and without forwarding

FIFO Buffer

The FIFO buffer is inside the MlU. Now the length of the FlFO buffer is 18, and each

element of FIFO buffer is 25 bits, as same as the element of the Microinstruction Table.

The FIFO buffer cannot reduce the number of suspending cycles directly as the forwarding

technique does. Instead, this FIFO buffer helps the processor use these suspending cycles to

continue part of works.

58

Without FIFO buffer, when there are suspending cycles for the current microinstrllction,

the MIU suspends completely. The MIU can neither read new microinstruction nor send a

new command to the IFU. In next cycle, the MIU deal with the same microinstrllction.

With the FIFO buffer, wh en the MIU meet suspending cycles, the MIU copies the current

microinstruction to the FlFO buffer. In next cycle, the MIU de al with the microinstruction

existed in the FIFO butter. Furthermore, now the MIU can pick out a new microinstruction

from the Microinstruction Table. Therefore, even through the processor is dllring the

suspending cycles, the MIU can continue sending commands to the IFU based on the new

microinstruction. As a result, the IFU can receive the commands several cycles early, and

correspondingly the IFU can finish its operations relatively early. It is very important for

the IFU when there is a branch. Then after the MIU finishes treating the current set of

microinstructions, the MIU can execute the new set of microinstructions immediately

because the IFU completed the task of new commands and finished preparing the needed

data. Therefore, the MIU can avoid new suspending cycles caused by waiting for the IFU

completing its operations. (A FIFO buffer is also used in Tanenbaum's UVM processor.)

Treating microinstructions

The MI U takes microinstructions from the Microinstruction Table, checks the data

dependency, and then converts microinstructions to command signal sets. We cali this

process as Ireating microinsfructions.

The MIU lises an internai pointer to indicate the position in the Microinstruction Table.

When the MIU receives a new index-address from the IFU, the MIU move this pointer to

the first line in the corresponding set of microinstructions. Each cycle, the MIU picks out

the pointed microinstruction as the processing microinstruction, which is to be treated in

the current cycle. Then the MIU moves the pointer to the succeeding line till the last line in

this set of microinstructions.

Wh en the MIU picks out the processing microinstruction from the Microinstruction Table,

there are three possibilities for the MIU to deal with this processing microinstruction during

59

the current cycle. Firstly, when the FIFO buffer is empty, the MIU check whether

there is data dependency for the processing microinstruction. The MIU can convert this

micro instruction to command signal sets when there is no data dependency. Otherwise, the

MIU copies the processing microinstruction to the FIFO buffer. At this time, there is no

microinstruction converted to command signaIs in the current cycle. Secondly, when the

FIFO butter is neither empty nor full, the MIU copies the processing microinstruction ta

the FIFO buffer. Then the MIU checks whether there is data dependency for the first

microinstruction in the FIFO buffer. When there is no data dependency, the MIU uses the

microinstruction in FIFO buffer as the new processing microinstruction, and converts it to

command signal sets. Otherwise there is no microinstruction converted to command signais

in the current cycle. Thirdly, when the FIFO buffer is full, the MIU check whether there is

data dependency for the first microinstruction in the FIFO buffer. When there is no data

dependency, the MIU picks out this microinstruction and copies the old processing

micro instruction to the FIFO buffer. Otherwise, the MIU suspends working in the current

cycle when there is data dependency for the first microinstruction in the FIFO buffer. In the

next cycle, the MIU still use the same microinstruction as the processing microinstruction

and do the same operation as what the MIU does in the CUITent cycle.

When the MIU converts one microinstruction to command signal sets, the MIU splits this

microinstruction into four parts and generate ail command signal sets. There are four

Microinstruction Registers (MIR1, MIR2, MIR3 and MIR4) inside the MIU. These

registers store the command signaIs to be outputted. The MIU outputs the context of the

register MIR1 as the command signaIs in the current cycle. Similarly, The MIU outputs the

context of the MIR2, the MIR3 and the MIR4 in the second, third and fourth cycle

respectively. Furthermore, after the MIU outputs the context of the MIR 1, the MIU shifts

contexts of the MIR registers with one position. The MIU copies the MIR2 to the MIR!,

the MIR3 to the MIR2, as weil as the MIR4 to the MIR3.

Each MIR register has 22 bits, as same as one microinstruction. When the MIU outputs the

context of the register MIR!, the bits on the fixed places are outputted as the corresponding

command signaIs. As we introduced, one microinstruction consists of five command signal

sets. The MIU splits the microinstruction into four parts. (We make CMO_A and CMD_B

60

as one part). The MIU puts these four parts to the corresponding fixed places of the

four MIR registers. The MIU copies the partI (CMO_A and CMD_8) to the MIRl, the

part2 (CMD_ALU) to the MIR2, the part3 (CMO_REG) to the MIR3 as weil as the paIi4

(CMO _MEM) to the MIR4. ln this way, the MIU outputs the context of one

microinstruction in four cycles, and only one part is outputted in one cycle. The MIU can

output command signal sets in form of pipeline.

In Example 20, we present how the MIU converts one microinstruction to command signaIs.

It supposes that there is no data dependency for this microinstruction.

(a) One microinstruction

0010101000101000010110 -- MOR=TOS=MDR+TPR; Wr

(b) Spilt the (a) into four parts:

001 01 01 000 1 0 1 0 0001 0 Il 0
Part2 Part3 Part4 PartI

(c) Copy the (8) to the four MIR registers

MIRl:0000000000000000010110
MIR2:0010100000000000000000
MIR3:0000001000100000000000
MIR4: 0000000000001000000000

(d) Output command signais

Cycle 1

CMO A&B: 00010110
CMO ALU: 00000
CMO REG: 0000000
CMO MEM: 00

Cycle 2

00000000
00101
0000000
00

Cycle 3

00000000
00000
0100010
00

Example 20: Convert one microinstruction to command signais

Cycle 4

00000000
00000
0000000
10

ln (a), this is one microinstruction that the MIU picked out from the Microinstruction Table.

ln (b), the MIU splits this micro instruction into four parts. In Cc), the MIU copies these l'our

parts to the four MIR registers. In (d), we present the command signais that the MIU

outputs in successive four cycles.

61

ALU

The independent execution ALU can do the basic calculation of 32 bits integer. 1t does not

support float-point operations. The ALU receives the values on BUS A and BUS B as two

operands, and then does one operation according to the 5 bits command signal set

CMO ALU. (See Table 6)

CMD ALU Operation of ALU Comment

00000 0 Output 0

00001 A* Output A

00010 B ** Output B

00011 Not A Not operation

00100 -A Negative operation

00101 A+B Addition operation

00110 A+B+l Add A, Band 1

00111 A+ 1 Add 1

01000 A-l Substruct 1

01001 A-B Substruct

01010 A and B And operation

01011 A or B Or operation

Z=1 when A=B;

01100 A=B? Z=O when A/=B;

Z= 1 when A/=B;

01101 A/=B? Z=O when A=B;

Z=1 when A>B;

01110 A>B? Z=O when A<=B;

Z= 1 wh en A>=B;

01111 A>=B? Z=O when A<B;

Z= 1 when A <B;

10000 A<B? Z=O when A>=B;

Z=1 when A<=B;

10001 A<=B? Z=O when A>B;

10010 1 Output 1

62

10011 -1 Output -1

10100 Z='I' Set signal Z ' 1 '

10101 Z='O' Set signal Z '0'

10110 SHLI6 Sh ift left 16 bits

10111 SHR8 Shift right 8 bits

11000 SHLI Sh ift left 1 bit

*A: data from BUS A;
**B: data from BUS B

Table 6: Command signal CMD_ALU

Besides arithmetic calculations, the ALU is responsible to determine whether the processor

takes condition branches or not. Every cond ition branch instruction, such as hèg, bl! and

hge, contains one comparison. (We use the notation "cmp" to express the comparison in

microinstructions) Depending on the result of the comparison, the processor decides to take

or not take the branch. When the ALU does a comparison, according to the command

signal set CMD _ ALU, the ALU chooses one kind of comparison operator to compare two

operands. Then the ALU use the result of the comparison to update the value of the signal

Z. After that, the processor checks the value of the signal Z. When the signal equals to 'l',

the processor takes the branch; otherwise, the processor does not take the branch. Specially,

for the instruction br, although it does not need to do the comparison, we still ask the ALU

to do an "always true" comparison and update the signal Z as '1'. In this way, the processor

uses the same method to deal with aIl condition branches and avoid adding the new

circuitry for the instruction br. ln Example 21, we present the set of microinstructions tor

the SCIL instruction hit. The fourth microinstruction requires the ALU to do a comparison.

A fter that, in the fifth microinstruction, "JMP(Z)" represents that the processor decides

whether it takes this branch or not based on the value of signal Z.

MAR=SS=SS-l
MAR=SS=SS-1; Rd
TPR=MDR; Rd
Z=TPR cmp TOS
TOS=MDR; JMP(Z)

Example 21: Microinstructions for the SCIL instruction bit

63

Local Memory

Currently the local memory comprises of nine 32-bit registers. These nine registers are

named as MAR, MOR, OPO, SS, LV, PAR, NPC, TOS and TPR. Each register has its

particular purpose.

The register MAR (Memory Address Register) records the address of data memory while

the register MOR (Memory Data Register) stores the data of data memory. These two

registers are used to communicate with the data memory. When the processor reads data

from the memory, it puts the address into the MAR firstly. Then the MAR sends this

address to the data memory, and the return value of the memory is conversed in the MOR.

When the processor writes data to the memory, it puts the address into the MAR and puts

the data into the MOR. Then the processor sends a signal to make the memory writable,

and writes the data to the address in the memory.

The register OPO (OPeranO) is used to conserve the instruction operand of the current

SCIL instruction. As we introduced, the rFU is responsible to fetch instruction operands

from the instruction memory, and stored them in the register lns_opd. Every cycle, the

processor updates the value of the register OPO with the value of the lm'_opd.

The register NPC (Next Pro gram Counter) stores the address of the instruction that is next

to the current PC. This register corresponds to the register Nexl PC in the IFU. There are

two reasons why we use a register to conserve the Next PC instead of the PC. Firstly, the

processor does not need to know the value of the current PC because only the !FU accesses

the instruction memory and fetches SCIL instructions. Secondly, the value of the Next PC

is necessary for the processor. The processor has to put this value on BUS C when asking

the IFU to do a selPC operation.

The register SS (Summit of Stack) and the register TOS (Top element Of Stack) are used to

describe the memory stack. The SS al ways points to the summit of the stack in the data

memory. The TOS always keeps the value of the top element of the stack. Because there

are many operations using the value of the top element, the processor can accelerate these

operations when the TOS can keep the correct value of the top element. However, now the

64

processor has to add sorne microinstructions to do sorne additional operations in order

to keep the correct value in the TOS. It spends a lot of time and hardware resources to

sustain the correctness of the TOS. Therefore it is ditlicult for us to calculate how much

time we can win by using the TOS on earth.

The register LV (Local Variable) conserves the address of the tirst local variable of the

current procedure in the stack, while the register PAR (PARameter) stores the address of

the first parameter of the procedure in the stack. These two registers help the processor load,

store and modify local variables and parameters.

The last register TPR (TemPorary Register) is a temporary register. Usually the processor

uses the TPR to conserve sorne intervaJ value during a series of operations.

Read and W rite Registers

The processor cannot read and write the registers at the same time. Reading and writing

registers are in two different pipeline stages. Figure 17 shows the connection among

registers, three data buses and the data memory.

("" - - -~ - - - - - - ------1

'REo!istè~ :
. . 1

Daia memory f4i=:===:i====i==::1-,.---'

IFU

E]VIIU

Gl!lb-tJ!r..~

GLID-.KB

1
1
," OPD

Figure 17: Registers, Data buses and Data Memory

65

.Rn:::: A Hm H

Except for the MAR, the processor can put the value of ail registers on BUS A or BUS B,

and make them as operands for the ALU. The processor chooses two registers and put thcir

value on BUS A and BUS B respectively according to the 4 bits co mm and signal sets

CMD_A (See Table 7) and the 4 bits command signal set CMD_B (See Table 8).

CMD A Register Comment

0000 Clear BUS A

0001 MOR MOR => BUS A

0010 OPO oro => BUS A

0011 SS SS => BUS A

66

0100 LV LV => BUS A

0101 TOS TOS => BUS A

0110 TPR TPR => BUS A

0111 NPC NPC => BUS A

1000 PAR PAR => BUS A

Table 7: Command signal CMD_A

CMD B Register Comment

0000 Clear BUS B

0001 MOR MOR => BUS B

0010 OPO OPO => BUS B

0011 SS SS => BUS B

0100 LV LV => BUS B

0101 TOS TOS => BUS B

0110 TPR TPR => BUS B

0111 NPC NPC => BUS B

1000 PAR PAR => BUS B

Table 8: Command signal CMD_B

The SCIL processor uses three data sources to update registers. The first data source is the

IFU. Every cycle, the processor updates the OPO with the value of the register Im'_opd and

updates the NPC with the value of the register Next _pc. The second source is the data on

BUS C. The SCIL processor can use the data on BUS C to update one or several registers at

one time. The processor can update the MAR, MOR, SS, LV, PAR, TOS and TPR with the

data on BUS C according to the 7 bits command signal set CMO _REG (See the Table 9).

The third data source is the data memory. The processor takes the data from memory to the

register MOR according to the 2 bits command signal CMO_MEM (See Table 10).

The No.i of CMD REG Register Comment

0 MAR BUS C => MAR

1 MOR BUS C=> MOR

2 SS BUS C => SS

" LV BUS C => LV J

4 PAR BUS C => PAR

67

Table 9: Command signal CMD _REG

The No.i ofe Action Comment

0 Read • Read data memory with

the address in MAR 10

MDR

1 Write Write the data of MDR 10

data memory with the

address in MAR

'fable 10: Command signal CMD_MEM

Predictor

The predictor is a one-bit predictor with 128 different addresses. We show the architecture

of the predictor in Figure] 8,

Correct -pred i ction

1 ..
()

1 T&NT
PC's last 7 bits

?

1
1
Il

1 1
1?7

Figure 18: Architecture of one-bit predictor

l'he predictor receives the last 7 bits of PC as the prediction address. Therefore the

prediction address may be same for the different branches when the PCs of these branches

have the sa me last 7 bits. For example, one branch's PC is 129 and another branch's PC is

68

385. The predictor uses the same branch address 1 for the se two branches because the

last 7 bits of their PC are "0000001 ". Inside the predictor, there is an array with 128

elements, and each element is one bit. The predictor uses the inputted 7 -bit prediction

address as the index of the array, and then it outputs the value of the corresponding element

as the prediction result. When the bit is 'l', it represents the prediction is "Take"; otherwise,

it represents the predictions is "Not Take". The predictor outputs the prediction result via

the signal T&NT. Moreover the signal correct-prediction generated by the MIU informs the

predictor whether the prediction is correct. When the prediction is incorrect, the predictor

negatives the value of one bit for this prediction address. For example, when the prediction

result "Take" for prediction address 4 is incorrect, the predictor will update this prediction

element with "Not Take".

When the value of PC changes, the predictor will give a prediction based on the last 7 bits

or this PC value whatever the current instruction is a branch instruction or not. When the

current instruction is not a branch instruction, the MIU does not respond for this prediction.

Therefore, the predictor thinks this prediction is correct and does not change the value of

this prediction bit. In this way, we avoid adding the additional circuitry to check whether

the instruction is a branch instruction or not.

There are four possible situations for one prediction. T/T: the prediction is "Take" and the

processor needs to take the branch; NTINT: the prediction is "Not Take" and the processor

needs not to take the branch; TINT: the prediction is "Take" and the processor needs not to

take the branch; NT/T: the prediction is "Not Take" and the processor needs to take the

branch. The T/T and NTINT are correct predictions. The TINT and NT/T are incorrect

predictions. In our design, there are no penalty cycles for the correct predictions. However,

when the predictions are not correct, there are three penalty cycles for the SCIL processor.

In Table Il, we show the penalty cycles for the se four prediction results. Moreover, we also

show the penalty cycles for the processor without a predictor. Without the predictor, the

processor has three penalty cycles when it takes the branch, and two penalty cycles when it

does not take the branch.

69

Prediction/Fact Stalls with predictor Stalls without predictor

TIT 0 3 1

NTINT 0 2

TINT i 3 2

NTIT 3 3

Table 11: Number of stalls caused by branch

Instruction Memory and Data memory

Currently, we use 8 * 1024 bits BRAM as the instruction memory and 32 * 512 bits BRAM

as the data memory. Seemingly, the instruction memory Îs not very big bec au se averagely

one SCI L need occupy 16 bits. Therefore this instruction memory can support a SCIL

program with about 500 SC IL instructions, and c1early the program with 500 instructions is

not a big program. However, because the SCIL branch instructions use 16 bits to represent

target branch addresses, we can enlarge the instruction memory to 8 * 65536 bits wlthOlIt

change the definition of the SCIL. Moreover, in the current design, the SCIL processor

already uses 16 bits data to represent the PC. As a result, we can modify the size of

instruction memory with changing the width of signais working as the memory address

between the instruction memory and the processor. For example, wh en the size of the

instruction memory is 8* 1024 bits, the processor connects the last 10 bits of the 16 bits as

the memory address to the instruction rnernory; and when the size of the instruction

memory becomes 8*65536 bits, the processor connects ail 16 bits as the address to the

instruction memory. When the size of the instruction memory is 8 * 65536 bits, it can

contain a SCIL program with about 30000 instructions, and it is enough for most of

embedded system designs. Furthermore, because the SCIL processor uses 32 bits data to

conserve the memory address for the data rnemory, the size of the data memory can also be

changed in sorne range.

The SCI L processor needs to modify the width of signaIs connecting to these two memories

when the sizes of the instruction rnemory or the data rnernory change. As a result, the SCI L

70

processor, as a softcore processor, can change the hardware resource usages with

different memory configurations. At present, we do these changes by modifying the

generics in VHDL source code directly. 1t is not very convenient for the users who do not

know well VHDL to implement memory configurations. Therefore it is possible for us to

develop a GUI (Graphical User Interface) Wizard to facilitate memory configurations in the

future.

71

Chapter 5 Experiments

For the purpose of prototyping, we target our SCIL processor for a Xilinx's Virtex Il PRO

FPGA. Moreover in order to compare the performance of the SCIL processor with other

existing softcore processors, we create a MicroBlaze system whose construction is similar

to the SCIL processor system. Both of two systems consist of one processor, one

instruction memory and one data memory. We respectively run four benchmarks on two

systems, and compare the number of cycles to execute programs on the different processors.

Design Flow

We use VHDL as programming language to code the processor entry, and use Xilinx ISE

8.2i as the development environment. The FPGA we used is Xilinx's Virtex Il PRO on the

platform AP 1 000. The functional simulation tool is ModelSim 6.2g. In addition, in order to

observe internaI signaIs and BRAM results on FPGA, we use Xilinx ChipScope pro 8.2 [25]

to implement monitor signais on FPGA. Xilinx ChipScope Pro Core Inserter can insel1

logic analyzer, bus analyzer and virtual 1/0 low-profile cores directly into the design, and

these captured signaIs can be analyzed through Xilinx ChipScop Pro Analyzer.

ln Figure 19, we present the basic design flow of the SC IL processor. This design flow

refers to the Xilinx ISE 8.2 design flow [26]. First ofaI1, under Xilinx editor, we use VHDL

to create the entities of the SCIL processor. At this time, we do the functional simulation

with ModelSim tool to verify the correctness of our design. After that, we use the Xilinx

Synthesis Technology (XST) GUI to synthesize the VHDL files into NGC HIes. Then we

use ChipScope Pro Core Inserter to add monitor signaIs into the processor design. In design

implementation step, we convert the logical design file format in order to fit the design with

APlOOO platform. The physical information about Virtex Il PRO FPGA is contained in the

native circuit description (NCD) file and the information about CPLDs Îs in VM6 file. Then

we generate a bitstream file for our device depending on these files. Finally, we use

iMPACT to load the bitstream file to FPGA on APIOOO via Xilinx download cable. After

72

that, we check the result of program and the values of monitor signais by using

ChipScop Pro Analyzer.

_

Design Entry in VHDL
Functional simulation

l
with ModelSim 6.2g

Design Entry Synthesis
Add monitor signal

1 .- with Chipscope Core Inserter
Design implementation

Optimisation

~
FPGAs

Mapping

Placement

Routing Timing analyse

~ & Timing Simulation

CPLDs

fitting

+
Bitsream

Generation

+ In-Circut result check

Download to FPGA with Chipscope Analyzer

Figure 19: Design flow

In the part of software application design, we use C# to program software applications for

the SCIL processor system. Then we generate the SClL file from the CIL file by llsing the

SCIL compiler. Finally the SClL file is used as the initial file to initialize the BRAM for

instruction memory. In the SCIL processor system, in order to record the number of cycles

73

to complete programs, we add one signal to the unit MIU. Before the SCIL processor

runs the program, the value of this signal is O. Then the value of this signal continues

increasing till the processor completes executing the program. We can use Xilinx

ChipScope Pro 8.2i to view the value of this signal. In Figure 20, we show the interface of

ChipScope Pro Analyzer.

U(".6.P,Hl((J)

, I>ataVoLt(.I.J

Tltt'_bhHL[2]

1 Il'''' ''r.on:('1

['",u.r"u['1]

.. J)ataron[{,]

I>l1t.ororr.fi]

11Il.tll.!-'C>lt[81

• D<lLaPoü(9)
i----............................. - --................................... - - -..

t - ... c - - -~ - - ... -... _ ... _ _ - - - - -..................... -

1· ... ················•········· ... ·· ... · ... ··_····· ... ···

, " ,- ~ .,

Figure 20: ChipScope Pro Analyzer

A MicroBlaze System

We create the MicroBlaze system by using Xilinx Platform Studio (XPS) 8.2i [27]. Tbe

device board is Virtex-II Multimedia FF896 Development Board which is presented in

Figure 21. We use this platform board because we find that the platform board API 000,

whicb the SCIL processor system uses, does not support the MicroBlaze processor. (We

74

failed in constructing a MicroBlaze system on APIOOO to the end.) The detail

introduction of the board FF896 could be found in the reference [28].

Figure 21: Virtex-ll Multimedia FF896 Development Board

With Base System Builder wizard CBSB), we construct a simple MicroBlaze system. In

Figure 22, we show the block-diagram generated by Xilinx Platform Studio 8.2i's Block

Diagram view for the MicroBlaze system. In this MicroBlaze system, there is one

MicroBlaze processor as the embedded processor. There is only one BRAM (16k) with two

ports because the instruction memory and data memory for MicroBlaze are combined into

one single memory. The two ports ofthis BRAM connect to the MicroBlaze processor via

two data buses.

75

Figure 22: Block-diagram of MicroBlaze System

There are two peripheral controllers and one IP in this MicroBlaze system. We do not use

the debug_ module which is generated by the wizard. We use the peripheral controller

RS232 port [29] as the output device. We connect this RS232 port to our computer's COM

port. Moreover the IP we developed is responsible to count the number of cycles to

complete programs. This number can be outputted via the RS232 port and finally shown on

the compute screen by using the tool HyperTerminal. (See Figure 23)

-- Entering main!)
number of cycles = 2F79

-- Exiting main!) --

Figure 23: HyperTerminal

76

ln the software part, we use C to develop the software applications for the MicroBlaze

system [30]. After compiling the software application, the XPS generates a bitstream file,

which includes the system design and memory initial data. Then we download the bitstream

file to the FPGA on develop broad.

Clock Rate and LUTs usages

Through timing analysis, the maximum clock rate achieved of the SCIL processor is 50

MHz. Moreover, the LUTs (Looking-Up Table) usage for our SCIL processor is 3308 on

Virterx JI RPO. We compare the LUTs usage with the MicroBlaze in Table 12. The LUTs

lIsed by MicroBlaze varies depending on the configuration used. We can see clearly that the

cost of our processor and the cost of MicroBlaze are quite in the same range.

LUTs Used Available

77

MicroBlaze 800 - 2,600 [3 1] 88,192 0.9 - 2.9

CI L I>rocessor 3,308 88,192 3.7

Table 12: LUTs utilization on the Virtex II PRO

Benchmarks

We respectively do four benchmarks:

• Fibo - computes the Fibonacci number

• QSorl - sorts an array of integers using the quick sort algorithm with recurslve

procedure caUs

• BSorl - sorts an array of integers using the bubble sort algorithm

• CRC32 - Cyclic Redundancy Checksum with digital signature is a 32-bit number

Benchmarks QSort, Bubble Sort, CRC32 are modified versions of the benchmarks from

MiBench [32]. We compare the cycle utilization for Microblaze and our SCIL processor.

Fibo

The Fibo does calculate the Fibonacci number. This benchmark is simple and only includes

basic operations. In Table 13, we show the number cycles that both the SCIL processor and

the MicroBlaze processor need to execute the Fibo benchmark. The N is the sequence

length of Fibonacci number. The maximal value of N is 46 because the SCIL processor

only supports 32 bits integer.

N tO 20 46

MicroBiaze 40 70 148

SCI L processor 930 1880 4350

Table 13: Cycle utilization for the benchmark Fibo

78

CRC32

The CRC32 does cyclic redundancy checksum for the list of 32-bit words. This benchmark

includes many bit operations such as XOR and shift. In Table 14, we show the number

cycles that both the SCIL processor and the MicroBlaze processor need to execute the

CRC32 benchmark. The N represents the number ofwords to do CRC32 operation.

N 100 500 1000 2000 4000

MicroBlaze 453 1,653 3,153 6,153 12,153

SCIL Processor 4,933 10,373 17,173 31,000 77,973

Table 14: Cycle utilization for the benchmark CRC32

BSort

The BSort do es sort an integer array by using the algorithm bubble sort. This benchmark

inc\udes lots of comparison operations and array operations such as loading element and

storing element. ln Table 15, we show the number cycles that both the SCIL processor and

the MicroBlaze processor need to execute the BSort benchmark. The N is the size of the

array.

N 10 50 100 200

MicroBlaze 831 21,613 75,756 313,087

SCIL Processor 13,260 297,247 1,271,967 4,963,570

Table 15: Cycle utilization for the benchmark BSort

QSort

The QSort does sort an integer array by using the algorithm quick sort. Different from the

BSort, this algorithm use recursive procedure calls. Hence in this benchmark, there are lots

of calI instructions. In Table 16, we show the number cycles that both the SCIL processor

and the MicroBlaze processor need to execute the QSort benchmark. The N is the size of

the array.

79

N 10 50 70 80 100

Microblaze 1,444 121,584 40,054 51,389 unable

SCIL processor 955
1

14,007 25,933 33,246 50,572

Table 16: Cycle utilization for the benchmark QSort

Discussion

For the result of the benchmarks, we can see the perfomlance of Microblaze processor is

better than that of the SCIL processor. The MicroBlaze expresses good performance when il

executes the first three benchmarks. These three benchmarks do not include many procedure

calls. The number of cycles needed by the MicroBlaze is much less than the cycles needed

by the SCIL processor. In tact, even when our processor could complete one

microinstruction during each cycle, which is the limit for the single pipeline architecture, the

SCIL processor should still use more cycles than that the MicroBiaze processor needs. From

our viewpoint, the perfomlance of the SCIL processor is not bad and acceptable. Taking the

benchmark Fibo for example, the SCIL processor need to execute about 170 SCIL

instructions when N=lO. Because usually one SCIL instruction needs 4.5 microinstructions

to complete ilS functionality, the SCIL proccssor has to execute about 700 microinstructions

in sumo The number of cycles the SCIL processor needs to execute this program is 930. So

the CPI (Cycles Per Instruction) for microinstructions is 1.32. We think it is acceptable

because there should exist many suspend cycles among the se microinstructions.

The result of benchmark Qsort inspires us very much. Wc can find that the SCIL processor

uses less Humber of cycles than the Microblaze uses. The benchmark Qsort includes many

recursive procedure calls and it can show the superiority of our processor. Because the SCI L

simplifies the CIL by using the absolute address as instruction operands for branch address,

the SCIL processor uses tiny time to invoke a procedure. The processor can use static branch

jumps because the SCIL does not support the object-oriented concept. The SCIL compiler

can ca1culate all branch addresses before we load SCIL instructions into the memory.

80

Chapter 6 Conclusion and Future works

Currently embedded processors are used widely in embedded system designs. The

embedded processors can accelerate the development period of embedded systems, and let

the embedded system designers start their works at high abstract level. We introduced a new

embedded processor targeted for Microsoft's CIL. The SCIL Processor is a synthesisable

softcore processor, and it implements a subset of the CIL. Since the CIL is the Întermediate

language for the all .NET languages, it is possible for designers to use ail languages of .NET

framework as the programmÎng language to develop software applications for embedded

systems. However, because the CIL has many characteristics of high level languages, it is

difticult to implement the CIL directly on hardware. We adopted the approach of

simplifying CIL instructions, and converted them to SCIL instructions via a small complier.

The SCIL, as the machine language for the SCIL processor, improved the performance of

the processor and reduced the amount of needed hardware resources. The SCIL processor

modified the architecture of Tanenbaum's IJVM processor to adapt to the SCIL instruction

set. Moreover the SCIL processor used a predictor and the forwarding technique to reduce

the number of suspending cycles. We illustrated the performance of our processor and

compared benchmark results of the SCIL processor system with a MicroBlaze processor

system.

The future works can continue in three directions. First of aIl, the performance of SCIL

processor might be improved. We can use an eight-stage pipeline to replace current six

stage pipeline. Now the unit IFU and the unit MIU have to do lots of works. The IFU is

responsible to fetch data from memory and decode instruction code. The MIU is responsible

to search microinstructions and generate command signais. Both of two units needs

relatively long time to complete their tasks. As a result, it is hard for us to improve the clock

frequency of the processor further. Therefore, we can split the works of the MIU into two

parts. We use two different units to do search microinstructions and do generate command

signaIs respective!y. ln this way, each unit needs less time than the MIU needs. Accordingly,

we can split the tasks of the IFU to two units. Then we modify six pipeline stages to eight

pipeline stages. We think the clock frequency of the processor might be improved a lot after

81

the processor using the new pipeline. Another approach of improving the performance

is to implement some often-used instructions in circuitry. The processor does not need man y

hardware resources on the se circuitries. Furthennore when the processor can execute these

often-used instructions in a very short time, we think the processor could improve the

performance remarkably. Secondly, we intend to enlarge the semantic of the language SCIL,

and make the processor support the object-oriented concepts. Currently the SCIL is like the

simple C and does not support object-oriented programming. However, it is necessary to

make the processor support it if we hope the SCIL processor could be used in practice. In

our opinion, the processor would need some modifications in order to support object

oriented concepts. The processor can add one memory to recode the address of object

instances and another memory to converse these object instances. Moreover, in order to

implement the garbage collection function effectively, we make the memory for object

instances a !ittle special. The whole memory is divided into two parts. Both of two parts can

do garbage collection independently. Wh en the processor is accessing data in one part of

memory, this part suspends doing garbage collection. However another part can still do

garbage collection. In this way, the processor can use object instances and do garbage

collection at the same time. We think this approach of garbage collection can give the

processor a good perfonnance. Finally, it is possible to fit multiple SCIL processors into a

same FPGA, we think it would be interesting to realize a network-on-chip design and

measure the overhead. We can use different network topologies, such as bus network, ring

network and star network, to connect various SCIL processors in a multiprocessor design.

Furthermore, we can construct the systems with different number of SC1L processors to test

the speedup obtained due to the use of many processors instead of one being used.

82

Reference

[1] A. S. Tanenbaum, Structured Computer Organization, 51E, Prentice Hall, 800 pp,

2006, ISBN13:9780131485211

[2] Standard ECMA-335 Common Language Infrastructure, 3rd Edition, June 2005

[3J Michael Barr, Embedded Systems Glossary, Netrino Technical Library, Retrieved

on 2007-04-21

[4] W.Warner, Great moments in microprocessor history - The history of the micro

from the vacuum tube to today's dual-core multithreaded madness

[5] http://www.arm.com/miscPDFs/3823

[6] Erin Farquhar and Philip Bunce, MIPS Programmer's Handbook, Morgan

Kaufmann Publishers, ISBN 1-55860-297-6

[7] http://www.atme1.com/products/avr/

[8] http://www.zilog.com/products/

[9] http://www.renesasinteractive.com/

[10] Microchip Technology Delivers Five Billionth PIC® Microcontroller, Press release,

Retrieved on 2006-02-13.

[11] Nios Il Processor Reference Handbook

[12] .LMichael, O'Connor, and Marc Tremblay, picoJava-I: The Java Virtual Machine in

Hardware. lEEE Micro, 17(2):45-53, 1997

[13] http://www.sun.com/software/communitysource/processors/download_picojava.xml

[14] S. Dey. P. Sanchez, D. Panigrahi, L. Chen, C. Taylor, and K. Sekar, Using a Soft

Core in a SOC Design: Experiences with picoJava. IEEE Design and Test of

Computers, 17(3):60-71, July 2000

[15] K. 8. Kent, H. Ma, and M. Serra, Rapid Prototyping of a Co-Designed Java Virtual

Machine, RSP2004, 2004

fI 6] Lightfoot 32-bit Java Processor Core, Digital Communication Technologies Ltd.

[17J K. Plambeck, W. Eckert, R. R. Rogers, and C. F, Webb Development and

attributes of z/ Architecture,

http://www.research.ibm.com/journal/rd/464/plambeck .html

[18] Principles of Operation, lB M

83

[]9] z/Architecture Reference Summary, IBM

[20] MicroBlaze Processor Reference Guide, Embedded Development Kit EDK9.1 i

[2]] Paul Rogers, Luiz Fadel, Fernando Ferreira, zSeries Application Assist Processor

(zAAP) Implementation, IBM/Redbook

[22] ANS T1.523-2001, Telecom Glossary 2000

[23] Matt Pietrek, The original Portable Executable, MSDN Magazine, March 1994

[24] .NET Framework Developer's Guide, Compiling MSIL to Native Code

[25] ChipScope Pro Software and Cores User Guide, ChipScope Pro Software 8.2i

[26] ISE 8.2i Development System Reference Guide

[27] Embedded System Tools Reference Manual, Embedded Development Kit, EDK

8.2i

[28] MicroBlaze and ultimedia Development Board User Guide, Xilinx

[29] Xilinx's OPB UART Lite (V1.00b), Xilinx Reference Guide

[30] EDK 8.2 MicroBlaze Tutorial in Spartan

[31] Xilinx, MicroBlaze F AQ, http://www.xilinx.com

[32] B. Fort, Simulation Tooi for Soft Core Processor Performance Analysis, University

of Toronto

[33] Platform Studio User Guide, Xilinx Embedded Development Kit EDK 7.1 i

[34] Introduction to theQuartus® I1Software, Altera Corporation

[35] Kathy Walsh, zAAP what it can do for you, Introduction to zSeries zAAP

Presentation, IBM

[36] Mike Ebbers, Wayne O'Brien, Bill Ogden, Introduction to the New Mainframe:

zlOS Basics, IBM/Redbooks

[37] Martin Schocberl, JOP: A Java Optimized Processor tor Embedded Real-Time

Systems

[38] John Edwards, No room for Second Place - Xilinx and Altera slug it out for

supremacy in the changing PLD market, Electronic Business, 611/2006

84

, Appendix

List of Supportable CIL Instructions

CIL instruction SCIL instruction SCIL Instruction Code

nop nop 00000000

Dup dup 00000011

pop pop 00000110

ret ret 00000100

add add 00000001

add,ovf add 00000001

Add,ovf.un add 00000001

sub sub 00000010

sub,ovf sub 00000010

Sub,ovf,un sub 00000010

and and 00001010

or or 00001011

xor xor 00001100

neg neg 00001101

not not 00001110

newarr newarr 00000111

Ret main ret_main 00000101

Idelem.i1 Idelem 00001001

Idelem.u1 Ide lem 00001001

Idelem.i2 Idelem 00001001

Idelem.u2 Idelem 00001001

Idelem.i4 Ide lem 00001001

Idelem.u4 Ide lem 00001001

Idelem,i8 Idelem 00001001

Idelem,i Idelem 00001001

Idelem.r4 Idelem 00001001

Idelem.r8 Idelem 00001001

Idelem Idelem 00001001

stelem.i stelem 00001000

stelem,i1 stelem 00001000

stelem,i2 stelem 00001000

85

stelem.i4 stelem 00001000

stelem.i8 stelem 00001000

stelem.r4 stelem 00001000

stelem.r8 stelem 00001000

stelem stelem 00001000

shi shi 00010000

shr shr 00001111

shr.un shr 00001111

Idarg.O Idarg 01000101

Idarg.1 Idarg 01000101

Idarg.2 Idarg 01000101

Idarg.3 Idarg 01000101

Idarg.s Idarg 01000101

Idarg Idarg 01000101

Idloc.O Idloc 01000110

Idloc.1 Idloc 01000110

Idloc.2 Idloc 01000110

Idloc.3 Idloc 01000110

Idloc.s Idloc 01000110

Idloc Idloc 01000110

stloc.O stloc 01000010

stloc.1 stloc 01000010

stloc.2 stloc 01000010

stloc.3 stloc 01000010

stloc.s stloc 01000010

stloc stloc 01000010

starg.s starg 01000001

starg starg 01000001

param param 01000100

Ldc.i4.m1 loads 11000001

Idc.i4.0 loads 11000001

Idc.i4.1 loads 11000001

Idc.i4.2 loads 11000001

Idc.i4.3 loads 11000001

Idc.i4.4 loads 11000001

Idc.i4.5 loads 11000001

Idc.i4.6 loads 11000001

86

Idc.i4.7 loads 11000001

Idc.i4.8 loads 11000001

Idc.i4.s loads 11000001

Idc.i4 loads 11000001

Idc.iB loads 11000001

Idc.r4 loads 11000001

Idc.rB loads 11000001

cali cali 10000010

jmp br 10000001

br.s br 10000001

br br 10000001

beq.s beq 10001000

beq beq 10001000

bge.s bge 10001011

bge.un.s bge 10001011

bge bge 10001011

bge.un bge 10001011

bgt.s bgt 10001010

bgt.un.s bgt 10001010

bgt bgt 10001010

bgt.un bgt 10001010

ble.s ble 10001100

ble.un.s ble 10001100

ble ble 10001100

ble.un ble 10001100

blt.s bit 10000111

blt.un.s bit 10000111

bit bit 10000111

bit. un bit 10000111

bne.un.s bne 10001001

bne.un bne 10001001

local local 10000011

87

Table of Microinstructions

SCIL code M icroinstructions Comment

loads1 MDR=TOS=OPD Copy OPD to TOS and MDR

loads2 MAR=SS=SS+1 ;wr Increase SS and set MAR; write memory

add1 MAR=SS=SS-1 Read and store the word following the stack top

add2 TPR=TOS; rd TPR the stack top; read memory

add3 MDR=TOS=MDR+TPR; wr Add two element; write mel110ry

stloc1 MAR=LV+OPD MAR=first variable address + displacel11ent

stloc2 MDR=TOS; wr M DR==the stack top; write l11el11ory

stloc3 MAR=SS= SS-1 Read and store the word following the stack top

stloc4 rd Read l11emory

stloc5 TOS=MDR Write the new stack top

starg1 MAR=PAR+OPD MAR=first paral11eter address + displacel11ent

starg2 MDR=TOS; wr M DR==the stack top; write l11emory

starg3 MAR=SS=SS-1 Read and store the word following the stack top

starg4 rd Read mel110ry

starg5 TOS=MDR Write the new stack top

cal11 TPR=OPD Copy OPD to TPR

cal12 MAR=SS=SS+1 Increase SS; Copy new SS to MAR

cal13 MDR=NPC; wr Copy NPC to MDR; write mel110ry

cal14 MAR=SS=SS+1 Increase SS; Copy new SS to MAR

cal15 MDR=TOS=LV; wr Copy LV to M DR and TOS; write l11emory

ca liS LV=SS Copy new SS to LV

call7 BUS C=TPR Output TPR via BUS C

local1 SS=SS+OPD Increase SS with number of variables

local2 TOS=O Reset TOS

Param1 TPR=OPD Copy OPD to TPR

Param2 MAR=SS=SS+1 Increase SS; Copy new SS to MAR

Param3 MAD=PAR; wr Cope PAR to MAD; write memory

Param4 PAR=SS-TPR PAR=position of stack top -- number of parameters
.... ~

ret1 MAR=LV Copy LV to MAR

ret2 MAR=SS=LV-1; rd Set SS; Copy new SS to MAR; read memory

ret3 LV=MDR; rd Copy MDR to LV; read memory

ret4 TPR=MDR Copy M DR to TPR

ret5 MAR=SS=SS-1 Read and store the word following the stack top

retS MAR=SS=PAR; rd Set SS; Copy new SS to MAR; read memory

88

ret7 PAR=I\IIDR Copy MDR to PAR

ret8 MDR=TOS; wr Copy the stack top to M DR; write Illelllory

ret9 BUS C=TPR Output TPR via BUS C

ret_main1 MAR=SS=O Reset MAR and SS

ret main2 MDR=TOS; wr Write the result to the first elelllent

ret_main3 Output ail '0' End of progralll

Idarg1 MAR=PAR+OPD MAR=first parallleter address + displacelllent

Idarg2 MAR=SS=SS+1; rd Increase SS; Copy new SS to MAR; read Illelllory

Idarg3 TOS=MDR; wr Set the stack top = MDR; write Illelllory

Idloc1 MAR=LV+OPD+1 MAR=first variable address + displacelllent

Idloc2 MAR=SS=SS+1; rd Increase SS; Copy new SS to MAR; read Illelllory

Idloc3 TOS=MDR; wr Set the stack top = MOR; write Illelllory

br1 Z='1' Set Z=' l'

br2 JMP(Z) Branch if Z

blt1 MAR=SS=SS-1 Read and store the word following the stack top

Read and store the word following the stack top;

blt2 MAR =SS=SS-1; rd Read Illelllory

blt3 TPR=I\IIDR; rd Copy MDR to TPR; read Illelllory

blt4 Z=TPR cmp TOS IfTPR<TOS then Z=' l' else Z='O'

blt5 TOS=MDR; JMP(Z) Set the stack top = MOR; Branch if Z

Beq1 MAR=SS=SS-1 Read and store the word following the stack top

Read and store the word following the stack top;

Beq2 MAR=SS=SS-1; rd Read Illelllory

Beq3 TPR=MDR; rd Copy MOR to TPR; read Illelllory

Beq4 Z=TPR cmp TOS IfTPR=TOS th en Z=' l' else Z='O'

Beq5 TOS=MDR; JI\J1P(Z) Set the stack top = M DR; Branch if Z

Bne1 MAR=SS=SS-1 Read and store the word following the stack top

Read and store the word following the stack top;

Bne2 MAR=SS=SS-1; rd Read Illelllory

Bne3 TPR=MDR; rd Copy MOR to TPR; read Illelllory

Bne4 Z=TPR cmp TOS IfTPR<>TOS then Z=' l' else Z='O'

Bne5 TOS=MDR; JMP(Z) Set the stack top = MOR; Branch if Z

Bgt1 MAR=SS=SS-1 Read and store the word following the stack top

Read and store the word following the stack top;

Bgt2 MAR=SS=SS-1; rd Read Illelllory

Bgt3 TPR=MDR; rd Copy M DR to TPR; read Illelllory

Bgt4 Z=TPR cmp TOS IfTPR>TOS then Z=' l' else Z='O'

89

Bgt5 TOS=MOR; JMP(Z) Set the stack top = !VI DR; Branch if Z

Bge1 MAR=SS=SS-1 Read and store the word following the stack top

Read and store the word following the stack top;

Bge2 MAR=SS=SS-1; rd Read memory

Bge3 TPR=MOR; rd Copy MDR to TPR; read memory

Bge4 Z=TPR cmp TOS IfTPR>=TOS then Z=' l' else Z='O'

Bge5 TOS=MDR; JMP(Z) Set the stack top = M DR; Branch if Z

ble1 MAR=SS=SS-1 Read and store the word following the stack top

Read and store the word following the stack top;

ble2 MAR=SS=SS-1; rd Read memory

ble3 TPR=MOR; rd Copy MDR to TPR; read memory

ble4 Z=TPR cmp TOS IfTPR<=TOS then Z=' 1 ' else Z='O'

ble5 TOS=MDR; JMP(Z) Set the stack top = M DR; Branch if Z

Sub1 MAR=SS=SS-1 Read and store the word following the stack top

Sub2 TPR=TOS; rd TPR = the stack top; read memory

Sub3 MOR=TOS=MOR-TPR; wr Subtract two element; write memory

And1 MAR=SS=SS-1 Read and store the word following the stack top

And2 TPR=TOS; rd TPR = the stack top; read memory

And3 MOR=TOS=MOR and TPR; wr AND two element; write memory

or1 MAR=SS=SS-1 Read and store the word following the stack top

or2 TPR=TOS; rd TPR = the stack top; read memory

or3 MOR=TOS=MOR or TPR; wr OR two element; write memory

not1 MAR=SS Copy SS to MAR

NOT the stack top; Copy new stack top to MDR; writc

not2 MOR=TOS=not TOS; wr memory

Neg1 MAR=SS Copy SS to MAR

Negative the stack top; Copy new stack top to MDR;

Neg2 MOR=TOS=-TOS; wr write memory

Oup1 MAR=SS=SS+1 Increase SS; Copy new SS to MAR

Oup2 MOR=TOS; wr Copy the stack top to MDR; write memory

Pop1 MAR=SS=SS-1 Read and store the word following the stack top

Pop2 rd Read memory

Pop3 TOS=MOR Copy MDR to TOS

xor1 MAR=SS=SS-1 Read and store the word following the stack top

xor2 rd Read memory

xor3 TPR=not MOR NOT MDR; Copy new MDR to TPR

xor4 TPR=TPR and TOS AND two elements; Copy the result to TPR

xor5 1 TOS=not TOS

xor6 TOS=MDR and TOS

xor7 MDR=TOS=TPR or TOS; wr

loadw1 TPR=shI16(OPD)

loadw2 MAR=SS

loadw3 MDR=TOS=TPR+ TOS; wr

newarr1 TPR=SS

newarr2 MAR=SS=SS+ TOP

newarr3 MDR=TOS=TPR; wr

stelem1 MAR=SS=SS-1

stelem2 MAR=SS=SS-1; rd

stelem3 TPR=MDR; rd

stelem4 MAR=TPR+MDR;

stelem5 MDR=TOS; wr

stelem6 MAR=SS=SS-1

stelem7 rd

stelem8 TOS=MDR

Idelem1 MAR=SS=SS-1

Idelem2 rd

Idelem3 MAR= MDR+ TOS

Idelem4 MAR=SS; rd

Idelem5 TOS=MDR; wr

shr1 MAR=SS

shr2 MDR=TOS=SHR8(TOS); wr

shl1 MAR=SS

shl2 MDR=TOS=SHL 1(TOS); wr

90

NOTTOS

ANO two elements; Copy the result to TOS

OR two elements; Copy the result to MOR and TOS;

write memory

Copy high 16 bits to TPR

Copy SS to MAR

Combine high 16 bits and low 16 bits; write memory

Copy SS to TPR

Increase SS with the size of array; Copy new SS to MAR

Copy the initial position of array to M OR and TOS;

write memory

Read and store the word following the slack top

Read and store the word following the stack top;

Read memory

Copy initial position of array to TPR; read ll1ell1ory

MAR=initial position of array + index

Copy TOS to MOR; write memory

Read and store the word following the stack top

Read memory

Copy MOR to TOS

Read and store the word following the stack top

Read memory

MAR=initial position of array + index

Copy SS to MAR; read memory

Copy index element to TOS; write memory

Copy SS to MAR

Shift TOS; Copy new TOS to MOR; write mell10ry

Copy SS to MAR

Shift TOP; Copy new TOS to MOR; write mell10ry

