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Abstract 

Embedded systems and their applications are becoming ubiquitous and transparent. 

Nowadays, the designers need to implement both hardware and software as fast as they can 

to face the competition. Hence tools and IPs became an important factor of the equation. In 

this work, we present a synthesisable softcore processor similar to the micro-architecture of 

Tanenbaum's IJVM processor. The processor implements a subset of Microsoft's Common 

Intermediate Language. We seek to accelerate the development of the embedded software 

by providing a platform onto which the whole .NET Framework (C#, Visual Basic.NET ... ) 

(along with its object-oriented approach) could execute. We used a Xilinx Virtex Il PRO as 

the prototyping platform. 

Kcywords: Embedded processor, Softcore, CIL, SCIL Processor, Embedded System, 

.Net language 
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Résumé 
Les Systèmes embarqués et leurs applications sont omniprésents et transparents 

actuellement. Afin d'affronter des compétitions, des designers ont besoin d'implémenter 

des matériels et des logiciels le plus vite possible. Des outils et des IPs donc deviennent un 

facteur important. Dans ce pr~jet, nous présentons un processeur sollcore dont 

l'architecture est inspirée par l'architecture de l'IJVM processeur de Tanenbaum. Le 

processeur est synthétisable et implémente un sous ensemble de CIL (Microsoft's Commoll 

Intermediate Language). Parce que CIL est le plus bas niveau langage dans Microsoft .Net 

Framework, toutes les .Net langages, comme C# et Visual Basic.NET, peuvent être utilisés 

pour les systèmes embarqués. Nous souhaitons que cette nouvelle plate-forme puisse 

accélérer le développement des applications logicielles embarquées. 

Mots de clés: Processeur embarqué, Softcore, CIL, SCIL processeur, Système embarqué, 

.Net langage 
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Chapter 1 Introduction 

Introduction 

With embedded systems used more and more widely, new design methods and new 

hardware development too1s are introduced and commercialized. However, embedded 

system designers continue to demand complete solutions to build and complete quickly their 

hardware and software designs. To satisfy such demands, many manufacturers provide their 

embedded processors and corresponding integrated embedded development environments, 

such as Xilinx's MicroBlaze [20] and Xilinx Platform Studio [33], as weil as Altera's Nois!! 

[II] and QuartusII Development Software [34]. By using these design tools, the embedded 

system designers can develop a SoC (System On Chip) starting at a relatively high level. On 

the hardware side, the designers choose the embedded processor and construct the embedded 

sub-system implementations under the development environments; on the software si de, the 

designers develop software applications and then convert them to embedded processor 

instructions, which can be executed by the embedded system implementations. Aller that, 

the designers use the functionalities integrated in the development 100ls to modify the 

optimal design features, improve the design performance, and optimize area and cost of the 

design system. In this way, the developers can craft embedded systems quickly and easily. 

ln this work, we introduce a new softcore processor, SeIL Processor, which implements a 

subset of Microsoft's Common Intermediate Language (CIL) [2]. This processor makes il 

possible to use aIl primary .NET language in embedded system designs to develop software 

applications. In our design, because it is hard to directly implement the CIL on hardware, we 

consider a subset of the CIL as a simpler intennediate language, and th en implement this 

new language on hardware. 
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Embedded processors 

An embedded system is a special purpose computer system designed to perform one or a 

few dedicated functions, and it is usually embedded as part of a complete device inclllding 

hardware and mechanical parts [3]. In order to shorten the period of embedded system 

development, almost ail designers use the CPU platform. The CPU platform uses the 

special-purpose embedded processors, which can be purchased as part of the chip design,to 

construct the embedded system. By using the CPU platform, it is easy and quick for the 

designers to develop a chip (SoC) and create the complex embedded systems. A SoC 

consists of the hardware and the software. The hardware inc1udes embedded processor, 

DSP (Digital Signal Processor) cores, peripherals and interfaces; and the software which is 

the pro gram loaded into the memory controls operations of the hardware. The design flow 

for a SoC aims to develop hardware and software in parallel. The SoC designs can program 

on field-programmable gate array (FPGA) with ail the logic, inc1uding the embedded 

processors. 

There are two kinds of embedded processors: microprocessors (!lp) and microcontrollers 

(!lc). Microprocessor are the single VLSI chip that has a CPU and may also have some 

other units such as caches, floating point processing arithmetic unit, and super-scaling units. 

Microprocessors support their particular instruction sets. Microcontrollers are the single­

chip VLSI unit, which has built-in peripherals together with sorne microprocessors on the 

chip. The use of microcontrollers can reduce the size of embedded systems because it 

redllces the size of control programs. Since the first microprocessor Intel 4004 [4], which 

requires external memory and support chips, was used in embedded systems, many 

microprocessors have been developed and commercialized in this field. Furthermore, in 

contrast to the personal computer (PC) market where only limited CPU architectures are 

used, there are many different CPU architectures used for embedded designs such as ARM 

[5], MIPS [6], Atmel AVR [7], Zilog Z80 and Z8 [8], Renesas H8 and M32R [9], PIC [10], 

as weil as PowerPC. 

Embedded processors can also be divided into hardcore processors and softcore processors. 

A hardcore processor is a fabricated integrated circuit that may or may not be embedded 
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into additional logic, and usually it has a fixed unchangeable construction. A softcore 

processor is a microprocessor core described in a HDL, and that can be implemented using 

logic synthesis. It can be implemented via different semiconductor devices containing 

programmable logic such as FPGA. The softcore processor can be configured based on 

factors such as schedule, unit cost, space constraints, product lifetime, toolset, and 

llexibility needs. Although usually the hardcore processors can achieve better performance 

than that the softcore processors, the softcore processors are widely llsed because not ail 

embedded applications need the high speed performance. In practice, many applications 

require expanded functionality and flexibility. Softcore processors usually provide a 

substantial amount of flexibility through the configurable nature of FPGA. The flexibility 

allows embedded system designers to create a custom system that contains only the needed 

functionalities. Furthermore, it is easy for the softcore processor systems to modify the 

CUITent designs to meet future needs. Therefore, softcore processors may be used not only 

in a simple system, where the only functionality is limited to a simple GPIO (General 

Purpose Input/Output), they may also fit a complex system, where an operation system is 

incorporated and includes many peripherals or any other custom IP. Moreover, these 

softcore processors can be implemented in a much shorter amount of time than hardcore 

processors cano Therefore softcore processors can shorten time-to-market. At present, the 

most popular used softcore processors are Xilinx's MicroBlaze and Altera's NiosIl. 

The MicroBlaze [20] is a softcore processor optimized for Xilinx FPGAs. The MicroBlaze 

is based on RlSC architecture. It features a 3-stage or 5-stage pipeline, with an instruction 

completing in each cycle. Both instruction and data words are 32 bits. The MicroBlaze can 

reach speeds of up to 210 MHz on the virtex-5 FPGA family. The processor can 

communicate via the LMB bus for a fast access to local memory, which is normally the 

BRAM inside FPGAs. The size of the BRAM is flexible and can change based on the 

demands of target systems. With the configurable definition, the MicroBiaze can be 

customized to the applications in many aspects such as: cache structure, peripherals, as weil 

as interfaces. In addition, the MicroBlaze can add or rem ove hardware implementation l'or 

certain operations including multiplication, division, and floating-point arithmetic. [n 

Figure l, we present the base architecture of the MicroBlaze, and show its 3-stage pipeline. 
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Nowadays Xilinx lnc and Altera Corp dominate the whole PLO (Programmable Logic 

Device) market. Based on a business report [38], Xilinx and Altera accounted for a 

combined 83.4 percent market share of the PLO market in 2005. Xilinx is the PLO market 

leader with a 50.3 percent market share and second-place Altera captures 33.1 percent or 

the PLD market. The other small corporations are so far down the two giants so that almost 

nobody ever hears of them. As a result when people develop embedded systems, they 

naturally choose the product from Xilinx and Altera. Because both PowerPC and 

MicroBlaze from Xilinx and NiosII from Altera focus on C/C++ programs, currently C and 

c++ are the main programming languages which are used in embedded system designs. On 

the other hand, a number of researches have been to develop hardware implementations for 

Java. In fact, there exist many Java processors, which can support .IVM or dedicated .lava 

instructions. Hence, it is possible to use Java as the embedded system developing language 

with these Java processors. 
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However, there are few attempts to create .NET language processors and use the .NET 

languages in embedded system designs although .NET languages are used widely at present. 

Therefore, we try to develop an embedded processor for .NET language and aim at the 

language CIL. Because the CIL is the lowest-levellanguage in the .NET Framework and ail 

primary .NET languages, including C#, Visual Basic .NET, C++/CLl and .1#, can compile 

to the language CIL, the new processor can execute ail .NET programs. In this way, we can 

use ail .NET languages as programming languages in embedded system designs with our 

processor. 

With such an embedded processor for .NET language, the designers can use the existing 

programs, which are written in .NET languages, for the target applications instead of 

translating them to the programs in C or Java. In addition, as an Ir or a co-processor, 

the .NET processor would be used as a dedicated unit, which is responsible for 

executing .NET programs, in one system. Finally, we can use this new processor to do 

some tests and benchmarks in multiprocessor systems. It is interesting to compare the 

execution resuIts of different languages. 

Introduction of Microinstruction 

"Microinstruction is an instruction that controls data 1l0w and instruction-execution 

sequencing in a processor at a more fundamental level than machine instructions. A series 

of microinstructions is necessary to perform an individual machine instruction." [21:1 

Microinstructions help the designers to find a simple and easy method to develop the 

control logic for a processor. OriginalIy, people implemented machine instructions directIy 

in circuitry which provided fast performance. However as instruction sets became more and 

more complex, the corresponding circuitries became more difficult to design and needed 

too many hard resources. In 1951 Maurice Wilkes described using microinstructions in 

cru design for the first time. By using Microinstructions, cru design engineers can write 

a microprogram to implement a machine instruction rather than design a circuitry for il. It 

is more flexible to use microinstructions than use circuitries. Even late in the design process, 
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designers can easily modify the context of microinstructions to adapt the changeable 

CPU demands. Moreover, it is possible to reaJize very compJex instruction sets with 

microinstructions. The CPU designers can use microinstructions to implement many 

abstract and high level machine instructions. The famous CPU that uses microinstructions 

is the IBM System360. 

The microprograms with microinstructions exist on a lower conceptual level th an other 

familiar programs. As one single high level language statement is compiled to a series of 

machine instructions, one machine instruction is implemented by a series of 

microinstructions in the processor using microinstructions. The microinstruction exists 

usually in a special read-only memory instead of the main system memory. 

Microinstructions control the action of the processor at a very low level. For example, a 

single typical microinstruction might specify which register should be updated or which 

operation of ALU should be done in one single cycle. Microinstructions can be thought as 

the combination of command signais for ail parts of the processor. In Example l, we show 

several standard microinstructions. There are four microinstructions from MO to M3. These 

four microinstructions are to implement the instructionfetch. The processor has to execute 

the four microinstructions in turn for each instructionfetch. 

MO: PC_out, MARjn 
Ml: read, pcincr 
M2: MDR_out,IRjn 
M3: decoding opcode in IR 

Example 1: The sequence of microinstructions for the instruction fetch 

Introduction of Corn mon Intermediate Language 

CIL (Common Intermediate Language) is the Jowest-Jevel human-readable programming 

language in the CU (Common Language Infrastructure) of Microsoft's .NET Framework. 

Ali primary .NET languages, including C#, Visual Basic .NET, C++ and .1#, are compiled 

to the CIL before .NET program execution. The CIL is a CPU-independent and platform­

independent instruction set, and it can be executed in any environment supporting the .NET 

framework. Like .lVM (Java Virtual Machine), the CIL has a stack-based architecture and 

uses bytecode instructions. Moreover, the CIL is an object-oriented language. 



7 

During execution of a .NET assembly, its CIL codes are passed through the CLI's .lIT 

(Just-In-Time) compiler. The .lIT compiler translates bytecode instructions to native codes 

that are immediately executable to the CPU. The procedure of compilation is performed 

gradually during the whole program's execution. Moreover, in a CIL program, except for 

CIL instructions, there are many Metadata. A .NET language compiler generates Metadata 

and assembles them with CIL instructions. A Metadata in CIL file begin with a "point". For 

example, 

.maxstack 2 

Metadata contain the information about compiled classes and sorne additional attributes. 

Metadata can be thought as the complementary descriptions for CIL instructions. For 

example, Metadata used for a method usually contain the information about the class name, 

the type of the return value and the type of the method parameter. The information ensures 

that the method can be invoked. The lIT compiler reads these Metadata during the .lIT 

compilation. In Figure 2, we show the basic process ofCLR (Common Language Runtime) . 

. NET Source 

.NET 

Complier 

PEfiie 

(.exe) 

CI L + Metadata 

Just-in-time 

(J ITer) 

OS 

Hardware 

Figure 2: Common Language Runtime 

.NET Class libraries 

(.NET Framework) 

The .NET compiler firstly translates a .NET programs to a PE (portable executable) file 

[23]. The PE file is a collection of CIL instructions and Metadata. When the PE file is 

executed, a .lIT compiler compiles CIL instructions and Metadata to native language 
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instructions. During the compilation, the JIT compiler refers to .NET class libraries. 

Finally, these new instructions can be executed on sorne special hardware environment with 

sorne special OS. 

Introduction of SCIL processor 

The SCIL processor is a synthesizable softcore processor which implements a subset of the 

CIL. lt is a little-endian processor. The processor supports 32 bits integer calculation, and it 

cannot execute floating-point operations. The processor does not support object-oriented 

concepts at present. 
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Figure 3: Block-diagram of SCIL processor 

IVIIlT 

In Figure 3, we present the block-diagram of the SCIL processor. The processor consists of 

the following functional units: Instruction Fetch Unit (IFU), Microinstruction Unit (MIU), 
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ALU, Predictor and Registers (local memory). The IFU fetches SOL instruction data 

From memory and then decodes the SCIL instruction code; the MIU picks out 

mÎcroinstructions and converts them to command signaIs; the ALU does the basic 

arithmetic operations and determÎnes whether the processor takes condition branches; the 

Predictor is a one-bit predictor with 128 different addresses for branch prediction; and the 

local memory consists of nine 32-bit registers. Furthermore, we can find three data buses 

(BUS A, BUS B and BUS C) and five command signal sets (CMO_A and B, CMD_ALU, 

CMD_REG, CMD_MEM, and CMD IFU) which control the operations ofdifferent units. 

In addition, the SCIL processor directly connects two BRAMs. One is as the instruction 

memory and the other is as the data memory. 

Oufline of thesis 

The remainder of the thesis is organized as follows. We will introduce the related work in 

nex! chapter. In chapter 3, we will discuss the CIL and the new language SCIL. Then in 

chapter 4, we will present the detailed SCIL processor architecture. We will explain the 

functions and characteristics of each unit of the processor. After that in chapter 5, wc will 

show sorne ex peri ment results, and we will compare and discuss the performance between 

the SCIL processor and the MicroBlaze processor. Finally, we will present the conclusion 

and future works in chapter 6. 
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Chapter 2 Related work 

Currently most embedded processors, which target a specific programming language, focus 

on Java or JVM. These pro cess ors are usually called Java processors. In this chapter, we 

present several typical Java processors. We introduce three JVM based processors: SUN's 

picoJava processor, Co-Designed Java Virtual Machine processor developed by University 

of New Bunswick and Tanenbaum's IJVM processor. Moreover, we introduce the 

Lightfoot processor, which supports the instruction set interpreted from JVM. Furthermore, 

we introduce IBM System z Application Assist Processor (zAAP), which is unique Java 

processor used in large-scale commercial field. 

picoJava processor 

SUN's picoJava processor [12] may be the most famous Java processor although picoJava 

only appears in research papers and this processor is never released as a product by SUN. 

Now SUN provides the full Verilog code under an open source license [13]. The first 

version picoJava core, picoJava-I, was introduced in 1997. 

Through an interpreter or through just-in-time (JIT) compilation, Java programs can be 

executed on a processor. However, both the interpretation and the .lIT compilation have 

their disadvantages. The nature of interpretation involves a time-consuming loop, which 

affects performance significantly. A JIT compiler can reach a high speed. However, 

because the compiler itself and compilation require large quantity of storage, it consumes 

much more memory, which is a precious resource in the embedded designs, than the 

interpretation. Therefore, SUN developed picoJava-I processor to create a processor to the 

Java environment which can eliminate the disadvantages of the two traditional execution 

ways. The picoJava-I is a small, configurable core designed to support the JVM. In Figure 

4, we present the major function units of the picoJava-I. The shading parts indicate 

confi gurabi 1 ity. 
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Figure 4: Block-diagram of picoJava-I processor [12] 

The instruction cache is a direct-mapped cache with a line size of 8 bytes, while the data 

cache is a two ways, set-associative, write-back cache. Both of them can be conligured 

between 0 and 16 Kbytes. The picoJava-1 processor has a 64-entry stack cache which 

directly supports the JVM's stack based architecture. The stack cache is implemented as a 

register file and managed as a circular buffer with a pointer to the top of stack. The 

picoJava-I allows the option of including or excluding a floating-point unit. The pico.lava-I 

processor includes a RISC-style pipeline and a straightforward instruction set. It 

implements 341 different instructions. The processor implements simple Java bytecodes in 

circuitry and executes them in one to three cycles. For example, either integer addition or 

quick loads of object fields uses a circuitry directly. The picoJava-I implements sorne 

performance critical instructions, such as calling a procedure, by using microinstructions. 

Furthermore, for sorne complex instructions, such as creating the object or garbage 
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collection, the picoJava processor uses a trap to execute these instructions. One trap 

needs at least 16 cycles to complete executing. Besides, the picoJava-l processor does not 

have branch prediction logic. In Figure we present the picoJava-I processor's tour-stage 

pipeline. 

1 

Fetch Decode Execute Write 
and cache back 

Fetch 4-byte Decode Execute for Write results 
cache lines up ta !\No one or more back into 
into the instructions cycles the operand 
instruction stack 
buffer Foldinglogic 

Figure 5: PicoJava-I processor's four-stage pipeline [12] 

'The picoJava-I processor can accelerate Java bytecode execution with a folding operation, 

which takes advantage of random single-cycle access to the stack cache. Example 2 shows 

that the processor can reduce one cycle to complete the stack operations by using folding 

operation. 
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Example Folding operation [12] 
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The picoJava-I can be implemented minimal in about 440K gates [14]. Moreover, based on 

the experiments, the picoJava-I processor can reach 15 to 20 times faster th an a 486 with an 

interpreter at an equal clock rate, and five times faster than a Pentium with a .1 IT compiler 

at an equal clock rate. 

Co-Designed JVM processor 

The co-designed JVM processor [15J is developed by Kent from University of New 

Bunswick. This processor uses hardware/software partitions for a JVM within the context 

of a desktop workstation. The motivation of Kent is 10 relieve performance penalty caused 

by the translation from Java bytecodes to machine language. The co-designed JVM 

processor tries to leverage the combined benefits of hardware and software. Instead of 

100% on hardware, Kent implemented only part of Java bytecodes on hardware. 

The co-designed approach realizes a t'ully functional JVM comprised of both hardware and 

software support in a desktop workstation environment. The dedicated hardware, which is 

supported directly on the workstation mainboard, uses a FPGA tightly coupled with the 

workstation's general purpose processor through a PCI bus. The partitioning of the design 

between hardware and software is interesting. The processor uses overlap partitions 

between hardware and software instead of maintaining disjoint partitions which are 

normally used in co-designed systems. This partitioning is to relax the conditions to switch 

execution between hardware/software partitions. The instructions that can be implemented 

in the hardware partition are those that can be found in traditional processors such as stack 

manipulation, arithmetic operators and logic operations, comparison and branching, jllmp 

and return, as weil as data loading and storing. Most of accessed data structures, i.e. the 

method's bytecode, execlltion stack and local variables, are placed in the FPGA board 

memory. The constant pool and the heap reside in the PC's main memory. The software 

partition executes ail object-oriented bytecodes. It suppol1s many complex virtual machine 

functions, such as class loading and verification, garbage collection, exceptions, as well as 

memory management. For example, the instructions new, checkcast, and inslanceof are 

executed in software partition. The software partition is responsible for transferring data 
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during context switch between the hardware and software partitions. Furthermore, 

because some instructions are supported both in the hardware partition and in the software 

partition due to the overload partitioning, the software partition does a run-time decision to 

decide where these instructions are executed. The software partition decides during runtime 

which instruction sequences can be executed by the hardware. The whole system uses a 

single data bus and a controlline to realize a simple communication protocol between the 

two partitions. Once the hardware partition finishes execution, it signaIs the software using 

an interrupt. Then the software partition retrieves the current state of the virtual machine 

from hardware and continues execution. 

The tests of small benchmarks on a simulator show performance gains by a factor of 6 to 11 

compared with an interpreting JVM. (Kent does not introduce the machine used to run the 

software .JVM.) Kent does not show benchmark results on FPGA after implementing the 

processor. The hardware partition is coded in VHDL and the memory uses the memory 

space within the FPGA device. The interface with the PCI bus is Altera pci_mt64 

MegaCore function. Through timing analysis, the maximum c\ock rate is 24 MHz. The 

design which implements the full partition (161 instructions) needs 37,756 logic elements 

with 64 entries instruction cache and data cache. When it uses 16 entries cache, the number 

of logic elements becomes 33,490. 

Lightfoot processor 

The 32-bit Lightfoot processor [16] is the product of Digital Communication Technologies. 

This processor can be used as a design solution of embedded system OEMs from a tiny 

memory footprint. It is a hybrid 8/32-bit processor based on Harvard architecture. This 

processor uses a 3-stage pipeline. The instruction memory is 8-bits wide while the data 

memory is 32-bits wide. 
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Figure 6: Block-diagram of Lightfoot processor [16] 
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ln Figure 6, we show the key blocks of the Lightfoot processor. The shading part indicates 

configurability of the memory interface. The user can configure the size of memory and 

cache. The Control Unit is responsible for fetching, decoding and sequencing the execution 

of instructions in the processor. The ALU is a traditional 32-bit design. Besides the usual 

arithmetic and logic capabilities, it has a 32-bit balTel shifter and a 2-bit multiple step unit 

which can execute a 32x32 bit multiply in 16 cycles. Data stack holds temporary data. The 

return stack holds return addresses for subroutines. Its top-of-stack element is used as an 

index register to access program memory. Moreover, the return stack can be used as an 

auxiliary stack for programs. Both of the two stacks consist of a hardware part and a 

memory extension. The hardware part of the data stack consists of eight 32-bit on-chip 

registers while the hardware part of the return stack is four 32-bit registers. The processor 

has 256 words of register space. The sixteen addresses at the bottom of them are used as 

CUP registers su ch as the stack extension pointers, constant and parameter pool pointers. 

The other register space is for interfacing to system peripherals such as memory 

management unit. The processor supports the instruction set interpreted From JVM. The 

Lightfoot processor has three different instruction formats: soft bytecodes, non-returnable 
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instructions and 32 single-byte instructions: The Lightfoot processor implements the 

128 soft bytecode instructions in low pro gram memory. When the processor needs to 

execute a soft byte code instruction, it branches to one location where the implementation of 

this soft bytecode resides. The processor needs one cycle to do this operation, and it pushes 

the address of the following instruction to the return stack. The 32 single-byte instructions 

can be folded with a return operation. The 32 single-byte instructions have a retulll bit. 

When this bit is set, the processor loads the value popped from the return stack to the 

program counter register. This mechanism implements a zero-overhead return feature orthe 

processor. 

The frequency of the Lightfoot processor can reach 31 MHz on Spartan Il FPGA family 

and 40 MHz frequency on Virtex 11 FPGA families. It can be implemented with less than 

30,000 gates for the conventional form. 

IBM System z Application Assist Processor (zAAP) 

The zAAP [21 ][35] is the tirst large-scale commercial Java processor. The zAAP is 

introduced by IBM in 2004, and available on IBM System z9 and zSeries z9901z890. 

(Because the zAAP is a commercial product of IBM, we can not tind the detailed 

architecture of this processor. We introduce the zAAP based on the introduction and 

presentation on IBM official website.) The objective of the zAAP is to integrate Java 

technology-based applications with mission-critical data and reduce infrastructure 

complexity for multi-tier applications. 

The zAAP is not designed as an independent processor which works individually. USllally 

the zAAPs work as particular processors and do execute Java programs in IBM System z, 

IBM's mainframe computers. For example, IBM z990 has 10 CPs (conventional processor), 

1 lCr (Integrated Coupling Facility), 2 IFLs (lntegrated Facility for Linux), and 3 zAAPs. 

The zAAPs execute Java programs in IBM JVM under control of z/OS [36], which is 

lBM's flagship mainframe operating system. When a Java program is to be execllted, z/OS 

dispatches the work units, which the zAAP can support, on a zAAP while z/OS dispatches 
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the left work units on standard processors. In Figure 7, we show how z/OS partitions 

Java works to zAAPs and general processors. 

zAAP Technical Overview: Z/OS zAAP Partition 

z/OS Logical Partition 

Lo~~al ... '1 

General CP 
Instructions, 

.' ~. ~ -Wh;n-dÎ;patc-h~; - ; 
. : 'runs on GCPs it can ' 
". select non-JAVA and: 
:' JAVA work", ' , ' 

, l 

When dispatcher':' 
runs on zAAP it can ' 

only select JAVA ' 
work 

.~---------_.----~ 

Figure 7: zAAP Technical Overview [35] 

Bccause the zAAPs share many demands from general purpose processors, general purposc 

processors can be available for additional workloads. In Figure 8, we show a simple 

example. With the zAAPs, the system can reduce the standard CP capacity requirement for 

the application to 500 MIPS or a 50% reduction. 
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Consider a WebSphere Application that is transactional in nature and requires 1000 MIPS 
today on zSeries. 

500 MIPB for WebSpnere App + 
t",(lO MIPq now availalJle for addltional workloads 

Figure 8: An example of zAAP [35] 

The zAAP can execute z/ Architecture ™ instruction set architecture (JSA) [17][18][19]. 

The processor does not support ail manual operator controls such as PS W (Pro gram status 

word) Restart, Load or Load derivatives. Moreover, the zAAPs are supported by 1 SM 

middleware such as WebSphere, CICS and DB2. 

Tanenbaum' s lJVM processor 

Tanenbaum's LTVM processor [1] is an implementation of micro-architecture. The IJVM 

processor can execute a subset of integer JVM (IJVM) on hardware. It implements only 

twenty-two different integer JVM instructions su ch as iload and Îsfore. Moreover, the 

processor does not natively support object-oriented concepts. The Tanenbaum's IJVM 

processor uses microinstructions and has a seven-stage pipeline. The processor has tlnee 

data buses and Il local registers. It do es not have prediction logic. In Figure 9, we show the 

basic architecture of the Tanenbaum's IJVM processor. 
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Figure 9: Tanenbaum's IJVM processor [1] 

Additiona] Comments 

We showed how the different Java processors implement an instruction set. Because 

implementing every instruction in circuitry needs too many hardware resources, there are 

few hardware processors which use this approach in practice. Instead, many processors, 

such as picoJava-I processor and Lightfoot processor, use the alternative approach where 

the processor implements simple instructions in circuitry and uses microinstructions to 

implement the complex instructions and native functions. This approach can reduce the 

amount of hardware resources and accelerate the execution of those instructions which are 

used frequently. Of course, the picoJava-I also uses software traps to implement sorne 

complex instructions. Using a number of traps may occur to reduce the performance of the 

processor because the picoJava-I needs minimum 16 cycles to complete a trap operation. 

The architecture of a processor with two or three different implementation approaches 

becomes complex. 
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Another solution we presented is co-design hardware/software approach used in 

Kent's processor. It partitions the whole implementation to hardware part and software part. 

Some instructions are implemented in hardware while others are executed in software. ln 

our opinion, this solution is very interesting and suggestive. However, the potential 

problem is the communication overhead. It is very difficult to predict how much time the 

processor uses to keep the communication while it executes sorne programs. Moreover, the 

raw speedup of the FPGA solution presented by Kent is under the condition that both the 

clock frequency and general-purpose processor have the same clock frequency. As we ail 

know, the clock frequency of a general-purpose processor is usually 20 to 50 faster than 

that of FPGA. Therefore, we doubt whether this co-design approach can be realized in 

practice. 

Our SCIL processor adopts a simple approach: the whole instruction set is implemented by 

microinstructions. In fact, most of small processors use this approach, such as Tanenbaum's 

IJVM processor and Martin Schocberl's JOP [37]. During execution, every SCIL 

instruction is translated to an address and then mapped to one set of microinstructions. The 

processor can complete this translation in one pipeline stage without execution overheads. 

Moreover, since there is no instruction implemented in circuitry, the design can be 

implemented with minimal hardware. ln addition, because the architecture of the processor 

is relatively simple, the development period is shorter than with other approaches. Table 1 

lists the Java processors we introduced. 

Instruction set Clock Logic usages Implementation 
frequencv approach 

picoJava-1 JVM 440K gates Circuitry 
processor M icroinstruction 

Trap 
.~~ ... g u ni JVM 24MHz 37K gates Co-Design 
proccssor 
Lightfoot Interpreted from 40MHz 30K gates Circuitry 
proccssor JVM M icroinstruction 
Tancnbaurn's IJVM M icroinstruction 
I.JVM proccssor 

Table 1: Various Java processors 
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The architecture of SCIL processor is inspired by Tanenbaum's IJVM processor. The 

two processors have some similarities. For example, both of them use three data buses. 

However, there are also lots of ditferences between Tanenbaum's IJVM processor and the 

SCIL processor. First of ail, the instruction set our processor implements is SCIL instead of 

IJVM. The SCIL processor uses a new set of microinstructions, which is different l'rom 

other existing sets of microinstructions, to implements the SCIL instructions. Furthermore, 

we change a lot the architecture in order to make the SCIL processor fit the characteristics 

of the SCIL. For example, the SCIL processor has a different method to deal with branches 

because the SCIL use absolute address to represent branch address. Moreover, in order to 

reduce the number of suspending cycles, the SC IL adopts a predictor and the forwarding 

technique which are not used in the LTVM processor. 

We introduced IBM's zAAP to show that the processors for a specific programmmg 

language have their commercial usages. As we can see, the zAAP has been used in large­

scale commercial field. Furthermore, the zAAP gives one possible method to use the SCIL 

processor. IBM uses the zAAP as co-processors in lBM's mainframe computers to 

accelerate the execution of Java programs. Therefore in the future, it is very possible to use 

the processors for .NET languages in one system to improve the execution of .NET 

programs. 
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Chapter 3 CIL vs. SCIL 

CIL: high level machine language 

In our design, we do not directly use the CIL instructions for our processor. Instead, we 

create a new intermediate language, named SCIL (Simple CIL). By using a SCIL compiler 

(we will introduce it later), we translate a CIL pro gram to a SCIL program, and the two 

programs have the same signification. Then our SCIL processor can execute this SCIL 

program on FPGA. We use the SCIL to replace the CIL because it is hard to implement the 

CIL on hardware. The CIL is close to a machine language. It can be assembled into 

bytecode. At the same time, the CIL is an object language, and it supports object-oriented 

concepts. Therefore, we can think the CIL as a "high level machine language". In Example 

3, we present a piece of CIL program to show its characteristics . 

. class private auto ansi beforefieldinit Class1 extends [mscorlib]System.Object 
{ 

. method private hidebysig static int32 zzz(int32 a) cil managed 
{ 

.maxstack 2 

.Iocals init ([0] int32 b, 
[1] int32 CS$00000003$00000000) 

IL_OOOO: Idc.i4.6 
IL 0001: stloc.O 
IL_0002: Idarg.O 
IL 0003: Idloc.O 
IL 0004: add 
IL 0005: stloc.O 
IL_0006: Idloc.O 
IL 0007: stloc.1 
IL 0008: br.s IL OOOa 
IL OOOa: Idloc.1 
IL OOOb: ret 

} Il end of method Class1 ::zzz 
.method private hidebysig static int32 Main(string[] args) cil managed 
{ 

.entrypoint 

.maxstack 2 

.Iocals init ([0] int32 x, 
[1] int32 CS$00000003$00000000) 

IL_OOOO: Idc.i4.0 
IL_0001: stloc.O 
IL 0002: br.s IL_OOOd 
IL 0004: Idloc.O 



IL 0005: Ide.i4.5 
IL_0006: cali int32 ConsoleApplieation1.Class1 ::zzz(int32) 
IL_OOOb: add 
IL_OOOe: stloe.O 
IL OOOd: Idloe.O 
IL OOOe: Ide.i4.s 100 
IL 0010: blt.s IL 0004 
IL_0012: Idloe.O 
IL_0013: stloc.1 
IL_0014: br.s IL_0016 
IL 0016: Idloe.1 
IL_0017: ret 

} Il end of method Class1 ::Main 
} Il end of class Class1 

Example 3: The "high level machine language" CIL 
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As we can see, the CIL is close to a machine language because every CIL instruction can be 

expressed in form of bytecode instruction, such as "Idarg 0" or "br.s II~ _ OOOa". However 

we can find that the CIL is similar to high level languages such as C++ and Java. The CIL 

uses "return value + function name + parameter type" to declare one procedure, and uses 

one pair of "{" "}" to express the beginning and end of one procedure or class. The CIL 

supports object-oriented programming. Usually only high level languages have the se 

characteristics. As a resuIt, the se high Ievel language characteristics make the CIL much 

different from machine languages. A CIL program is more readable than a JVM program. 

However, it is a real nightmare for the hardware designers to construct the hardware 

solutions that implement the "machine language" CIL. It is difficult for one processor to 

know how to de al with some complex and tedious statements such as "private hidebysig 

static int32 zzz(int32 p) cil managed", or identify some characters like '{' and "". 

Therefore, we give up using the CIL as the machine language for our processor. We adopt 

an alternative approach: before loading CIL instructions into memory, we translate CIL 

instructions to the real machine instructions, and then implement these machine instructions 

on hardware. In this way, we can avoid using the complex CIL statements and sllccess in 

executing the CIL program on hardware. Furthermore, we can reduce significantly the total 

amount of hardware resources and shorten the development period. 
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SCI L: Simplifying CIL 

The SCIL is designed for our processor, and it is the real machine language for the 

processor. The basic idea of generating SCIL instructions is to simplify the CIL. The SCIL 

has no Metadata, and only consists of bytecode instructions. The SCIL is equivalent to a 

subset of the CIL. Nowadays it only supports 32 bits signed integer, and does not support 

tloating-point operations and object-oriented concepts. 

There exist a lot of differences between the CIL and the SCJL. First of ail, the instruction 

codes of the SCIL are completely different from their prototypes, the instruction codes of 

the CIL. We redefine all instruction codes of SCIL instructions. For example, the 

instruction code of add is Ox58 in CIL when the new instruction code is OxOI in SCJL. 

Secondly, for some SCIL instructions, although they still own the same names as CIL 

instructions, their instruction operands may represent different signification. Taking the 

instruction cali for example, the instruction operand of cali in CIL represents the name of 

invoking procedure, however the instruction operand of cali in SCIL represents the branch 

address of invoking procedure. Thirdly, because usually one SCIL instruction corresponds 

to several CIL instructions, the SCIL has much less instructions than the CIL has. (We will 

introduce these differences in following sections.) 

Metadata 

The SCIL has no Metadata any more. lt is not easy for a processor to deal with Metadata 

because lIsually Metadata have various forms and different parameters. We remove 

Metadata by using three ways. Firstly, we directly delete some Metadata. Because now the 

SCIL is not an object language, many Metadata are not useful any more. Therefore, 

although we throw away these Metadata to garbage, we do not change the signification of 

the whole program. For example, the Metadata .class, this Metadata is useful for the CIL to 

declare the beginning of one class definition. However, the SCIL does not have the concept 

of c1ass. Hence, this Metadata becomes not useful, and we can delete it without hesitation. 
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The second way of dealing with Metadata is to remove the Metadata but still 

complete this Metadata's job. For example, the Metadata .enlrypoinf represents which 

procedure is the main procedure in the program. For the SCIL, there is not one instruction 
\ 

which functions as to indicate the position of the main procedure. Alternatively, we define 

that ail SClL programs are executed from the first instruction, the first line of the source 

code. Then we move the procedures, which contains the Metadata .entrypoinl in CIL. to the 

beginning of the SCIL programs. In this way, we can delete the Metadata .entrypoint when 

the SCIL programs still know the position ofthe main procedure. 

The third way is that we use SCIL instructions to replace some Metadata. For example, we 

replace the Metadata .locals with the SCIL instruction local opd. We show an example for 

Metadata .local.~' . 

. Iocals init ([0] int32 a, 
[1] int32 b) 

ln this example, the Metadata .locals expresses that there are two local variables a and h in 

the current procedure. For the SCIL, it is not necessary to remember the name of variables 

because the SCIL al ways use a number to represent a local variable. Instead, the number of 

local variables is very useful for the SCIL. For the above example, the SCIL will name 

variable li as 0111 variable b as 1 si variable. Therefore it is necessary to keep the number of 

variables frol11 the Metadata .locals. We use a SCIL instruction local opd, where opd 

represents the number of variables, to replace the Metadata .locals. Therefore, we can 

replace the Metadata .locals in the above example with the SCIL instruction local 2. In this 

way, the SCIL can keep the information the CIL Metadata contain by only using SCIL 

instructions. 

Regrouping Instructions 

We do some simplifications for CIL instructions while translating them to SCIL 

instructions. We reduce the number of CIL instructions. Usually, several CfL instructions 

correspond to only one SCIL instruction. For example, loading an integer value to the top 

of stack is an often-used operation in the CIL, and the CIL has a series of instructions to do 

loading an integer with different value. (See Table 2) 
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CIL instruction Comment 

Idc.i4.m1 Load integer -1 to the top of stack 

Idc.i4.0 Load integer 0 to the top of stack 

Idc.i4.1 Load integer 1 to the top of stack 

Idc.i4.2 Load integer 2 to the top of stack 

Idc.i4.3 Load integer 3 to the top of stack 

Idc.i4.4 Load integer 4 to the top of stack 

Idc.i4.5 Load integer 5 to the top of stack 

Idc.i4.6 Load integer 6 to the top of stack 

Idc.i4.7 Load integer 7 to the top of stack 

Idc.i4.8 Load integer 8 to the top of stack 

Idc.i4.s opd Load integer opd to the top of stack 

Table 2: Various CIL loading instructions 

J f we kept this series of loading instructions without any change, our processor should have 

implemented them as ten different instructions. Now the SCIL only uses one instruction, 

louds opd, where opd represents the value of the integer loaded, to replace aU these ten CIL 

loading instructions. For example, the CIL instruction Ide. i4. m 1 can be represented by the 

SCIL instruction loads -1; and the CIL instruction Idc.i4.(J can be represented by the SC[L 

instruction louds (J. As a result, our processor can only use almost 1/1 0 hardware resources 

which are needed to implement ail ten loading instructions. Such a simplification a[so 

refers to the CIL instructions such as ldarg, ldloc and st/oc. 

[n fact, if the processor can implement some instructions 1\1 circuitry, the speed of 

execution may be improved. For example, the SCIL can use three instructions to represent 

the various CIL loading instructions: louds (J, louds 1 and louds opd, and the processor 

implements louds (J and louds J in circuitry. As a result, because the first two instructions 

are used frequently, the processor can accelerate execution of programs. Moreover, .iust 

implementing two instructions in circuitry do not need lots of additional hardware 

resources. However, the probIem is how many and which instructions could be 
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implemented in circuitry. Furthermore, the architectural of the processor with many 

circuitries becomes more complex th an that of our current processor. We think maybe the 

SCIL processor could implement part of instructions in circuitry in future woks. 

Absolute address 

When translating CIL branch instructions such as br.s, bge and cali to SCIL instructions, 

we change the instruction operands of these CIL branch instructions. We use the absolute 

branch addresses as the instruction operands of the SCIL instructions. 

The .rIT compiIers ailocate memory for CIL instructions at application run time. (The 

different .lIT compilers may use different methods to allocate memory address. We use the 

document Microsoft's .NET Framework Developer's Guide [24] as our reference.) Before 

CIL instructions are executed, ail CIL instructions are kept in the PE file. When the se CIL 

instructions are executed, one .NET Framework .Ill' compiler is responsible to convert them 

to native code. During the execution, the .lIT compiler does not convert ail CIL instructions 

to native code at one time. The compiler does not load one procedure (or method) until this 

procedure (or method) is needed. When it is the first time to invoke one procedure, the .lIT 

compiler converts this block of instructions, ail of the CIL code for this procedure, to native 

code. Then the lIT compiler locals the native code in memory. Subsequent calls of the 

compiled procedure are proceed directly to the native code that was previously generated. 

The benefit is that some code which never gets invoked during the execution is not loaded in 

memory. Rather than using time and memory to convert ail the CI L to native code, the .lIT 

compiler only converts the CIL needed during execution and stores the resulting native code. 

In Example 4, we show a piece of CIL program. For each CIL instruction, it has a label like 

IL_xxxx, which are generated by the CIL compiler. In this example, we suppose that the first 

instruction Ide. ;4. 6 is the beginning of one procedure, and ail instructions are in the same 

procedure. Wh en this procedure is invoked, the .lIT compiler converts ail CIL instructions in 

this procedure to native code, and loads them to memory. The nLllllbers in parentheses 

before each CIL instruction in the example represents the memory address, which is 

al\ocated by the JIT compiler. 



(Ox0105) 
(Ox0106) 
(Ox0107) 
(Ox0108) 
(Ox0109) 
(Ox010A) 
(Ox010B) 
(Ox010C) 
(Ox010D) 

IL_OOOO: Idc.i4.6 
IL 0001: stloc.O 
IL_0002: Idarg.O 
IL_0003: Idloc.O 
IL_0004: add 
IL_0005: stloc.O 
IL_0006: Idloc.O 
IL_0007: stloc.1 
IL_0008: br.s IL 0002 

Example 4: Branch instruction in CIL 
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The instruction br.s IL _ 0002 is a branch instruction, which represent that the program goes 

to the label IL_0002 when the first element is bigger than the second. The label IL_0002 in 

the branch instruction does not represent the absolute bran ch address but the relative 

displacement to the beginning of current procedure. Therefore, in order to obtain the target 

branch address, the compiler has to do a calculation based on this relative displacement. It 

adds the displacement (lL_0002 - ILOOOO = 2) to the first instruction's memory address of 

the CUITent procedure (OxOI05), and then the compiler can obtain the branch address 

(OxOI07). 

Unlike the CIL, the SClL uses static allocation to allocate SCIL instructions in memory. Ail 

SCIL instruction will be loaded in memory whatever they are executed or not. Before being 

loaded in memory, we can know the memory address of every SCIL instruction. The first 

instruction of the main procedure always occupies the memory address OxOOOO. The SClL 

compiler calculates the address of every instruction in memory. Clearly it is not a Just-In­

Time compilation. However, this kind of memory allocation can reduce the workload of the 

SCIL processor because such an expression enables the processor to avoid branch address 

calculation on the f1y. When the processor obtains an SCIL instruction, it can immediately 

know where the next instruction in memory. Hence the processor does not need any 

operations to calculate memory addresses. 

The SCIL uses the absolute address to represent bran ch addresses. When the SCIL compiler 

translates CIL instructions to SCIL instructions, it calculates the branch address for ail 

bran ch instructions. Then the SC IL branch instructions use bran ch addresses as their 
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instruction operands. In Example 5, we show the SCIL instructions equivalent to the 

CIL instructions presented in Example 4. We suppose that the address in parentheses is the 

memory address in instruction memory for the SCIL processor. The last instruction br 

Ox002E is equivalent to the instruction br.s IL_0002 in Example 4. Now the instruction 

operand Ox002E represents the branch address. When the processor executes this instruction, 

the processor knows the memory address of the next instruction is Ox002E. 

(Ox0029) 
(Ox002C) 
(Ox002E) 
(Ox0030) 
(Ox0032) 
(Ox0033) 
(Ox0035) 
(Ox0037) 
(Ox0039) 

loads 6 
stloc 
Idarg 
Idloc 
add 

o 
o 
o 

stloc 0 
Idloc 0 
stloc 1 
br Ox002E 

Example 5: Branch instruction in SCIL 

For the CIL, the call instruction includes the invoking procedure name, the type of 

parameters and the type of return value. When the .lIT compiler executes a call instruction, 

the compiler searches the list of procedures to check the procedure name, the type of 

parameters and the type ofreturn value. Then the lIT compiler examines the CIL instruction 

and Metadata to determine whether the code Îs type safe, which means a reference to a type 

is strictly compatible with the type being referenced. Only appropriately defined calling 

operations can invoke a procedure. 

In Example 6, we show a piece of CIL program. We also add the memory address allocated 

by the .lIT compiler for each instruction in parenthesis. We suppose that the firs1 part of 

instructions (the first five instructions) is in the main procedure, and the second part of 

instructions is in another procedure named zzz. In the main procedure, there is a cali 

instruction, cali int32 Test.TestClass::zzz(int32), which invokes the procedure zzz. We can 

see that the cali instruction provides lots of infonnation to the lIT compiler. 



(Ox0120) IL_OOOe: Idloc.1 
(Ox0121) IL_OOOt: stloc.2 
(Ox0122) IL_0010: Idloc.2 
(Ox0123) IL_0011: cali int32 Test.TestClass::zzz(int32) 
(Ox0125) IL_0016: stloc.2 

.method private hidebysig static int32 
zzz(int32 p) cil managed 

(Ox0307) IL_OOOO: Idarg.O 

(Ox0308) IL_0001: Idloc.O 

(Ox0309) IL_0002: add 

Example 6: Procedure cali in CIL 
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For the SCIL, the SCIL compiler does the job of searching the target procedure. Unlike the 

.rIT compiler searching the invoking procedures during the execution, the SCIL compiler 

finds out the position of the invoking procedures before SCIL instructions are loaded in 

memory. Furthermore the SCIL uses the branch address as the instruction operand of the 

SCIL instruction calI. The branch address is the memory address of the first instruction in 

the invoking procedure. In Example 7, we show the SCIL instructions equivalent to the CIL 

instructions presented in Example 6. We suppose that the address in parentheses is the 

memory address in instruction memory for the SCIL processor. The new cali instruction 

becollles call Ox0027. The ope rand Ox0027 is the bran ch address which is the Illelllory 

address of the first instruction in the procedure zzz. 

(OxOOO2) loads 1 
(OxOOO5) stloc 1 
(OxOOO7) loads 2 
(OxOOO9) cali OxOO27 
(OxOOOS) stloc 2 

(OxOO27) local 2 
(OxOO2E) Idarg 0 
(OxOO30) Idloc 0 
(OxOO32) add 
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Example 7: Procedure cali in CIL 

By using absolute addresses to represent branch addresses, ail branch instructions can tell 

the processor where the next instruction in the instruction memory. The processor does not 

need calculate branch addresses during the execution, and the processor can hence obtain 

l'aster speed than with ordinary CIL. However, the method of absolute address can only used 

in simple embedded system designs. If we make the processor support object-oriented 

concept, we still need to use dynamic branch calculation. At this time, the processor has to 

know the position of instructions in sorne c1ass instantiations, and the branch addresses are 

different for the same branch instructions. 

Three types of SCIL instructions 

Based on the length of bits which one SC IL instruction requires, we divided ail SClL 

instructions into three types. The Type 1 SCIL instruction occupies 8 bits and does not have 

instruction operand. It needs one word (8 bits per word) in the instruction l11emory for the 

SCIL processor. The Type 2 SCIL instruction needs 16 bits and two words in the memory. 

The first 8 bits represent the instruction code, and the rest bits represent the 8 bit signed 

integer operand. The Type 3 SCIL instruction demands 24 bits and three words in memory. 

The first 8 bits are for instruction code and the others are as the instruction operand, a 

signed 16 bits integer. Furthermore, in order to discriminate the types of SCIL instructions 

easily, we use the first two bits of instruction code to identify the different types. The Type 

1 instructions begin with two bits "00"; the Type 2 instructions begin with "01"; and the 

first bit of the Type 3 instruction is '']''. In Table 3, we show three examples for the three 

types SCIL instructions, and we also show them in binary form when they are loaded in the 

instruction memory. 

Examples Binary form in memory 
i _ .. ~._._---

~ 
add 00000010 

i Type 2 Idarg 2 01000101 

00000010 
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Type 3 cali Ox02 ]00000]0 

00000000 

00000010 

Table 3: Three types SCIL instructions 

SCIL conlpiler 

We use a simple compiler to translate CIL programs to SCIL programs. The SCIL compiler 

is written in language C++. (There is no any special reason why we use C++ rather than 

other languages.) The compiler has two files: compiler.cpp and compiler.h. By using the 

Visual Studio .NET tool ildasm.exe, which is usually in the path " .. \Microsoft Visual 

Studio .NET \SDK\v].] \Bin\ildasm.exe", we can obtain the CIL file from any .NET PE file. 

Then the SCIL compiler executes this CIL file, and converts the CIL to the SCIL. The 

result will be saved as a SCIL file (.scil file). In the SCIL file, ail SCIL instructions are 

decoded in binary form, and each line is 8 bits. Finally, we use this SCIL file as the initial 

file for the instruction memory. In Figure 10, we show the process of converting a PE f'ile 

to a SCIL file, and then loading it into FPGA. 

~ "1 TODI ildasm CIL file 

SCIL Compiler 

FPGA 
Initial BRAM 

SCIL file 

Figure] 0: Convert PE file to SCIL file 
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A SCIL example 

The SCJL program shown in Example 8 is equivalent to the CIL program we presented in 

Example 3. We use the SCIL compiler to execute the CJL program and then obtain the 

corresponding SCIL program. The two programs have the equivalent signification. 

(OxOOOO) local 2 
(OxOO02) loads 0 
(OxOO05) stloc 0 
(OxOO07) br Ox0015 
(OxOOOA) Idloc 0 
(OxOOOC) loads 5 
(OxOOOF) cali Ox0027 
(Ox0012) add 
(Ox0013) stloc 0 
(Ox0015) Idloc 0 
(Ox0017) loads 100 
(Ox001A) bit OxOOOA 
(Ox001 D) Idloc 0 
(Ox001 F) stloc 1 
(Ox0021 ) br Ox0024 
(Ox0024) Idloc 1 
(Ox0026) ret_main 
(Ox0027) local 2 
(Ox0029) loads 6 
(Ox002C) stloc 0 
(Ox002E) Idarg 0 
(Ox0030) Idloc 0 
(Ox0032) add 
(Ox0033) stloc 0 
(Ox0035) Idloc 0 
(Ox0037) stloc 1 
(Ox0039) br Ox003C 
(Ox003C) Idloc 1 
(Ox003F) ret 

Example 8: SCIL program equivalent to CIL program in Example 3 
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Chapter 4 SCIL Processor 

In this chapter, firstly, we will introduce the basic data flow and six-stage pipeline of the 

SCIL processor. Then we will present the format of microinstructions for the scrL 
processor. After that, we will introduce the architecture of the SCIL processor in detail. We 

will discuss all the principal units of the processor one by one and point out characteristics 

ofthem. 

Data tlow 

In Figure Il, we present the basic data flow of the SCIL processor. The SCIL processor 

takes data from the instruction memory Ca), and the data successively pass through the unit 

IFU Cb), and the unit MIU Cc) to find out microinstructions. Then according to command 

signaIs derived from these microinstructions, the SC1L processor sends the value of the 

registers to the ALU though BUS A and BUS B (d). Then the ALU does the arithmetic 

calculations. After that, the ALU outputs the result of calculation on BUS C Ce). At this 

time, the processor updates the value of registers with the data on BUS C. Finally, the 

processor writes or reads the data memory Cf). 
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Figure 1 1 : Data flow of SCIL processor 

Six-stage pipeline 
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Based on relative-independent actions of the processor, we divide the whole data flow into 

six steps. We make each step as one stage of the pipeline. Therefore in the CUITent design, 

the SCIL processor uses a six-stage pipeline. We present the pipeline in Figure 12. The six 

pipeline stages are: Fe/ch, Decode, Regis/er Read, Execution, Regisler Write-back and 

Memmy Access. 

2 3 4 5 6 

1 1 1 1 1 1 
Register Rcgistcr MCl110ry 

4 1 1 r-----!----. Write- r-,!---. r-~ Fetch . ~ Decode Read Execute i\cccss 
1 1 1 1 

back 
1 1 

1 1 1 1 1 1 

1 1 1 1 1 1 1 

Figure 12: Six-stage pipeline 
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ln the stage Fetch, the IFU converts the data taken from the instruction memory to 

instruction code and instruction operand, and then sends the corresponding index address to 

the unit MIU. In the second stage Decode, the MIU uses the index address to search the 

microinstructions, and generate command signais. In the third stage Regis/er Read, the 

processor takes the data of two registers and sends them to the ALU. In the fourth stage 

Execute, the ALU does one arithmetic calculation. In the fifth stage Regis/er Wrile-hack, 

the processor updates the value of registers with the calculation result. ln the last stage 

Memory Access, the SCIL processor writes or reads data memory. 

Comparing with Tanenbaum's UVM processor using a seven-stage pipeline, the SCIL 

processor reduces one stage of pipeline. We combine two stages of the JJVM processor's 

pipeline into one stage. ln the I.lVM processor, the first stage is responsible to take data 

from memory, and the second stage is to convert instruction codes to index addresses. The 

SCIL processor's first stage Fetch does the tasks of the JJVM processor's first and second 

stages now. With the six-stage pipeline, the SCIL processor can begin to execute the 

microinstructions one cycle earlier. The SCIL processor needs at least 2 cycles to prepare 

the microinstructions for a new SCIL instruction. The first cycle is to take an instruction 

from memory and get the index address; the second cycle is to search the corresponding 

microinstruction set. Therefore, the SCIL processor can begin to execute the 

microinstructions at the third cycle. When the processor used a seven-stage pipeline, the 

processor would need at least three cycles before the new SCIL instruction's 

microinstructions can be executed. The first cycle is to take the instruction; the second 

cycle is to get the index address; the third cycle is to search microinstruction set. The 

processor could begin to execute the microinstructions at the fourth cycle. Hence the 

processor can use less cycles with the six-stage pipeline. Furthermore, although we 

combined two stages into one stage, we do not change frequency of the processor. Based on 

timing analyse for the SCIL processor, the unit MIU, the unit for the stage Decode, is the 

unit that needs the most time. The second stage Decode needs more time than the first stage 

}<e/ch, and the time used by the second stage decide the clock frequency of the processor. 

Therefore, we make the SCIL processor use the six-stage pipeline instead of the seven­

stage pipeline. 



39 

Microinstructions for SCIL Processor 

For different micro-architectures, the microinstructions are different. In this section, we 

introduce the microinstructions target for the SCIL processor. 

Notation of Microinstructions for SCIL Processor 

ln Example 9, we show several microinstructions for the SCIL processor. These 

microinstructions are in binary form and each line represents one microinstruction. It is not 

easy to understand what one microinstruction represents. 

0000011110000111101011 
0000011110000111101000 
0001 0111100001110 110 Il 

Example 9: Microinstructions in binary form 

Therefore, here we use a kind of notations to represent microinstructions in order to be 

convenient to express their meanings. We will use these notations in the following 

paragraphs. In Example 10, we show two typical microinstructions written in notation form. 

(a) SS=SS+ 1 
(b) MDR=TOS=TOS+TPR; Wr 
Example 10: Microinstructions in notation form 

The new expression makes microinstructions be similar to a high level language. The 

capital form tenns, such as "SS" and "MDR" represent the registers. The operation symbols, 

such as "+" and "-", represent the operations of the processor's ALU. The terms "Wr" and 

"Rd" represent writing and reading the memory respectively. The equal mark represents 

using the value of right side to update the register of left side. Moreover, it is possible to 

use more than one equal mark in one microinstruction. (See the Example 1 O(b)) lt means 

the rightmost value is used to update several registers of left side at one time. 

ln the Example 10(a), the microinstruction refers to only one register named SS, and the 

task of this microinstruction is to increase the value the register SS with 1. In the Example 
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1 O(b), the microinstruction refers to four registers: MOR, TOS, TOS and TPR. The 

task of this microinstruction is to update the registers MOR and TOS with the sum of TOS 

and TPR. Moreover, the "Wr" represents that this microinstruction includes a writing 

memory operation. 

Implement SCIL instructions with Microinstructions 

For the SCIL processor, every SCIL instruction corresponds to a set of microinstructions, 

and the SCI L processor can complete the functionality of one SCIL instruction with 

executing a set of micro instructions in turn. Usually such a set includes 2~9 

microinstructions and the average number is about 4.5. In Example Il, we show the set of 

microinstructions for the SCIL instruction add. The set for the SCIL instruction add 

includes 3 microinstructions. 

0100000001010000110000 
0000110000000101010000 
0010101000101000010110 

-- MAR=SS=SS-1 
-- TPR=TOS; rd 
-- MDR=TOS=MOR+TPR; Wr 

Example Il: Set of microinstructions for SCIL instruction add 

Currently, one microinstruction for the SCIL processor needs 22 bits. The microinstruction 

consists of five command signal sets, and different command signal sets occupy different 

fixed places. In Table 4, we present the length and fixed places of the five command signal 

sets in one microinstruction. 

1 CMO_ALU 1 CMO_REG 1 CMO_MEM 1 CMO_A 1 CMO_B 

5 bits 7 bits 2 bits 4 bits 4 bits = 22 bits 

Table 4: Length and fixed places of command signaIs sets 

These different command signal sets are responsible to control different parts of the SCIL 

processor. The command signal set CM 0 _ ALU ( 5 bits) is to control the actions of the ALU; 

the command signal set CMO _REG (7 bits) works as to update the registers; the command 

signal set CMD _ MEM (2 bits) is to communicate with the data memory; the command 
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signaIs set CMD_A (4 bits) and CMD_B (4 bits) are to choose the data resource of 

BUS A and BUS B. In the Example 12, we present two microinstructions. 

(a) MAR=OxOl 
(b) MDR=TOS+TPR; Rd 

"1001000000010000000000" 
"0010000000100101010110" 

Example 12: Two microinstructions (a) and (b) 

For the micro instruction (a), the task is to update the register MAR with OxOl. We split this 

microinstruction into five command signal sets, and state what these command signal sets 

represent. 

10010 0000001 00 0000 0000 

=> no data for BUS B 

=> no data for BUS A 

=> no memory operation 

=> update register MAR with data on BUS C 

=> ALU outputs OxOl 

For the microinstruction (b), it refers to an addition operation, a reading memory operation 

and operations of registers. We split this micro instruction into five command signal sets, 

and state the meaning of each command signal set. 

00100 0000010 01 0101 0 110 

=> put register TPR's data on BUS B 

=> put register TOS's data on BUS A 

=> read the data memory 

=> update register MDR with data on BUS C 

=> ALU does addition operation 
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Architecture of SCIL Processor 

In Figure 13, we present the detailed architecture of the SCIL processor. Moreover, we also 

show the signaIs among the instruction memory, the data memory and the SCIL processor. 
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IFU (Instruction Fetch Unit) 

The task of the IFU is to take data from the instruction memory, and then the IFU extracts 

SCIL instruction codes and instruction operands from the data. After that, the IFU puts 

instruction code and instruction operand into two particular registers. Finally, the IFU 

decodes SCI L instruction codes to index addresses. With the index address, the processor 
"", can find out the corresponding set of micro instructions in the unit MIU for every SCIL 

instruction. 

Architecture of IFU 
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Figure 14: Architecture of IFU. 
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In Figure 14, we present the architecture of the unit IFU. The register PC (Program 

Counier) is 16 bits. The register Nexl_PC (16 bits) conserves the memory address of the 

instruction that is next to the current Pc. We use val ue of the register Next jJC as the retllrn 

address when the processor finishes invoking a procedure. The register lm'_code (8 bits) is 

responsible to store the instruction code, while the register lns_ upd (16 bits) is used to 

conserve the corresponding instruction operand. ln addition, there are six registers, named 

as DolaI, Data2, Data3, Data4, Dala5 and Data6 (8 bits for each). These six registers 

respectively conserve the data of instruction memory with the address PC, PC+ 1, PC+ 2, 

PC+ 3, PC+4, PC+5. These six registers work as a data buffeT. The IFU puts data taken 

from the instruction memory into these registers firstly. When the IFU fetches the 

instruction code and instruction operand, the IFU uses the data in the six regisiers instead of 

reading data from the memory. The IFU can receive three kinds of command signals:fèlch, 

jump and setPc. The fetch command asks the IFU to take the SCIL instruction that is next 

to the current PC; the jump command informs IFU there is a branch; and the sel PC 

command asks the IFU to update the value of PC with the data on BUS C. 

Furthermore, inside the IFU, there is another two registers: pre_PC and pre_upd. These 

two registers are used for the prediction. The pre PC conserves the old value of PC when 

the value of PC changes; similarly, the pre opd conserves the old value of the lm'_opd 

when the value of the lns_opd changes. ln addition, the IFU receives a signal named 

correct-prediction which is generated by the MIU. As same as the lwo registers pre_PC 

and pre _opd, this signaI is used for the prediction. This signal states whether the previous 

prediction is correct or not. When it is correct, the value of the signal is '0'; otherwise, the 

value is '1 '. (We will introduce the branch prediction and the predictor in the folJowing 

sections.) 

Fetch SCI L instructions 

The IFU takes SCIL instruction codes and the corresponding instruction operands from the 

six data registers. As we introduced, aIl of SCIL instructions code occupies 8 bits. 

Therefore, the IFU always uses the 8 bits of the register Dalal as the instruction code. 
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Because the length of instruction operand is various (three types SCIL instructions), 

the IFU has to determine the instruction type before it takes correct length bits as the 

instruction operand. The IFU identifies the type of one SCIL instruction with checking the 

tirst two bits of instruction code. Wh en the instruction is a Type 1 SCIL instruction, the 

IFU does not update the value of the register because there are no instruction operands for 

Type 1 SCIL instructions. When the instruction is a Type 2 SCIL instruction, the IFU uses 

the 8 bits data of the register Data2 as the instruction operand. When the instruction is a 

Type 3 SCIL instruction, the IFU uses 8 bits of the register Dala2 and 8 bits of register 

Dala3 as the instruction operand. As a result, because the instruction ope rand was 

conserved in the register Im'_opd, the processor can directly use the instruction operand in 

the register without caring about the Iength of it when the processor deals with the SCIL 

instruction. It is not necessary for the SCIL processor to use additional command to require 

the IFU to take sorne bits data as instruction operands any more. 

After the IFU updates the registers lns_code and lns_opd, the IFU shifts the six data 

register, and use the unused data to replace the used data. For example, when the lFU used 

the data of first three data register DataI, the register Data2 and the register Data3, the 1 FU 

copies the value of the register Data4 to the register DataI, the register Data5 to the 

register Data2, as weil as the register Data6 to the register Data3. After that, the IFU 

checks wh ether there are enough valid (unused) data for the next instruction. Because the 

Type 3 SCIL instruction, which is the longest instruction among three type instructions, 

needs 24 bits, the IFU needs at least three data registers with valid data for the next 

instruction. Otherwise, the IFU reads 32 bits data from the instruction memory to refi Il the 

data registers when the number of unused registers is less than 3. ln Figure 15, we present 

the state machine that describes how the IFU operates the six data registers and when the 

IFU reads new data. 
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When ail the data registers are filled with valid data, the size ofbuffer (number in the cycle) 

is 6. Every times, when the IFU gets a Type 1 SCIL instruction, the size of buffer reduces 1. 

For example, it supposes that the size of buffer is 5. When the IFU gets an instruction add, 

which is a Type 1 SCIL instruction, the size of buffer becomes 4. Similarly, the size of 

buffer subtracts 2 or subtracts 3 when the IFU get a Type 2 SCIL instruction or a Type 3 

SCIL instruction respectively. The IFU reads new data from the instruction memory when 

the size of buffer is smaller than 3. After the IFU reads the memory, it increases the size of 

butfer with 4. 

ln fact, the IFU can remove the six data registers. At this time, we make the IFU suspend 

when it finishes fetching the first instruction, and restart to work wh en the processor asks for 

the second instruction. However, as we introduced in the section for microinstructions, one 

SCIL instruction corresponds to more than one microinstruction, and each microinstruction 

at least needs one cycle to execute. There is hence an interval (several cycles) between the 

processor asking the IFU for the first instruction and the processor asking the IFU for the 

second instruction. In our design, the IFU uses this interval to prepare the new instruction in 

advance. Ouring the interval, the IFU checks whether there is enough valid data for the next 

instruction. Wh en there is not enough valid data, the IFU takes data from the memory 
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automatically. Then when the IFU recelves the new command, the lFU already 

prepared the data for the new instruction. (It supposes that there is no branch.) As a result, 

the IFU now has a simple pre-fetch function to accelerate fetching instructions. The IFU can 

take the next instruction from memory before the processor requires a new instruction. This 

pre-fetch function improves the performance of the processor significantly. Certainly, when 

the processor meets a branch, the pre-fetch function does not work at ail. At this time, the 

IFU clears up ail data registers and reads the new data from the instruction memory. (The 

method offetching data is similar to the method the LTVM processor uses.) 

Actions of IFU 

The actions of the IFU are controlled under the command signais generated by the unit 

MIU. (We will introduce the MIU in following section.) The IFU has three basic actions 

corresponding to three commands. When the IFU receives a command fetch, it means the 

next instruction sequences with the CUITent instruction in memory. Therefore, the IFU 

increases the value of PC depending on the type of the current instruction. For example, 

when the current SCIL instruction is a Type 2 instruction, the IFU increases the value of 

PC with 2. After that, the IFU can fetch the new instruction code and instruction operand 

from the data registers due to the pre-fetch function. Then the IFU updates the register 

lm·_code and lns_opd, and the 'IFU updates the value of the register Next_PC according to 

the new value of the Pc. Finally, the IFU shifts the six data registers and checks whether it 

needs to read new data from the instruction memory. 

When the IFU receives a command jump, it means that there is a branch, and the currcnt 

instruction is a Type 3 instruction whose instruction operand represents the branch address. 

The IFU needs to update the value of PC with this branch address. Because the operand is 

conserved in the register lns _op d, the IFU copies the 16 bits of the register lm·_opd to the 

register Pc. Moreover, because the pre-fetch function dose not work for branches, the 1 FU 

reads new data from the instruction memory ta refill the data registers. After that, the 1 FU 

fctches the new instruction code and instruction operand, and updates the registers lm'_code, 
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Ins opd and Nexl pc. Finally, the IFU shifts the six data registers and check whether 

the IFU needs to read new data from the memory again. 

When the IFU receives a command se/PC, il means that the IFU needs to update the value 

of PC with the data on BUS C. For example, when the processor executes an instruction 

cal!, the processor pushes (writes) the value of the register Nexl _PC to the stack (the data 

memory). When the processor executes the corresponding return instruction, the processor 

pops (reads) the old Nexl PC value from the stack (the data memory), and then it places 

this value on BUS C. At this time, the processor sends a command setPC to the IFU. When 

the IFU receives a command setPC, the IFU uses the data on BUS C to update the register 

Pc. Then the IFU does the same operations as it receives a commandjump. 

However, when the signal correct-prediction states the previous prediction is incorrect, the 

actions fé/ch and jump have a tittle difference. At this time, the IFU does correct previous 

wrong prediction. When the IFU receives a command fé/ch, it means that the incorrect 

prediction is "Take", and now the processor needs to do "Not Take". The IFU firstly picks 

out the value of the register pre Pc. This register conserves the PC of the branch 

instruction for which the previous prediction 1S done. By using this old PC value, the IFU 

can figure out the memory address of the instruction, which is next to the branch instruction 

in memory. After that, the IFU uses this calculation result as the new Pc. When the IFU 

receives a command jump, il means that the incorrect prediction is "Not Take", and the 

processor needs to do "Take". The IFU uses the value of the register pre _opd. This register 

recodes the instruction operand of the instruction for which the previous prediction is done. 

The value of this register is exactly the target branch address. Hence the IFU uses it to 

update the value of PC. When the IFU finished resetting the new PC, the IFU clears up the 

data registers, and begins to do the normal operations. 

Decode SCIL instruction code 

Besides fetching the data, the IFU is responsible to map the SC IL instruction codes to the 

corresponding sets of microinstructions. Inside the IFU, there exists a mapping table, 

named as Decoding Table. For each SCIL instruction code, the Decoding Table records an 
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entrance address. Furthermore, inside the unit MIU, there exists another table, named 

as Microinstruction Table. The Microinstruction Table conserves ail sets of 

microinstructions for SCIL instructions, and every SCIL instruction has one and only one 

set of microinstructions in the Microinstruction Table. When the IFU gets a new SCIL 

instruction code, the IFU sends it to the Decoding Table. The table returns a map index, 

which we cali as index-address. Every index-address represents an address for the 

Microinstructions Table, and it points to the firsl microinstruction in one set of 

microinstructions. In Figure 16, we present the relationship between the Decoding Table 

and the Microinstruction Table. 

Dccoding Table MÎcroinslruclion Tabk 

1 ndcx addrcss 

Instruction code 

IFU 

MW 

Figure 16: Relationship between two tables. 

ln Example 13, we show the process of mapping the SClL instruction add to its 

corresponding set of microinstructions. 
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Dccoding Table M icroinslrUClioll Table 

1 
1 

00000011 00000011 

0000( )001 
0000 1 0000000 1 0 1 0000 1 1 0000 

0000000 Il 0000000 1 0 1 0 1 0000 

0010010101000101000010110 

IFU 

MIU 

Example 13: Map instruction add to the set of microinstructions 

The instruction code of add is "00000001". The IFU uses "00000001" as the address to 

sc arch in the Decoding Table. Then the IFU uses the result "00000011 as the index-address 

and outputs it to the MIU. When the MIU receives this index address, it uses "000000 Il'' 

as the address to search in the Microinstruction Table. As a result, the MIU moves the 

internaI pointer to the fourth clement, which stores the first microinstruction in the set of 

microinstruction for the instruction add. The first micro instruction for the instruction add is 

"00001 00000001 0 1 0000 Il 0000". 

Compare with IJVM processor 

Tanenbaum's LlYM processor also uses a unit named IFU to fetch UVM instructions l'rom 

memory. Furthermore there are sorne similar mechanisms between the IFU of the SC IL 

processor and the IFU of the lJVM processor. For example, both of them use data registers 

as data buffer, and have similar state machines for management of data registers. However, 

we give the IFU of SCIL processor sorne new functions, which the IJVM processor does not 

have. Firstly, the IFU of SCIL processor can automatically fetch instruction operands wbile 

it obtains instruction codes. For the I.lVM processor, tbe processor needs to send a particular 

command to the IFU in order to fetch instruction operands. Therefore, for one IJVM 

instruction, the UVM processor sends two times of commands to the IFU, and the IFU does 

fetching jobs twice. The IJVM processor sends the first command to ask IFU to output 
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instruction codes; and it sends the second command to ask the IFU for the instruction 

operands. In our work, we avoid the second time of asking for the IFU. The SCIL processor 

can obtain both the instruction code and its instruction operand from the IFU at only one 

time. Therefore the SCIL processor uses less times of taking data th an the time the IJVM 

processor needs. SecondIy, because the SCIL processor has the prediction function, the IFU 

of the SCIL processor becomes more complex than the IFU of the IJVM processor. Wc 

added some new registers and signais to implement the prediction function. For example, the 

1 FU have the regi st ers pre _PC and pre _ opd, which are to conserve the state before 

predictions. Thirdly, the IFU of SCIL processor is responsible to decode instruction code. 

For the IJVM processor, another unit does this job. As we introduced, the SCIL processor 

combines two pipeline stages into one stage. Therefore, the IFU has two pieces ofworks at 

the same time. 

MIU (Microinstruction Unit) 

The unit MIU is another principal unit for the whole processor. First of aIl, the MIU has the 

responsibility to control the actions of the unit IFU; secondly, the MIU is to search the set 

of microinstructions in the Microinstruction Table, and th en the M lU arranges 

microinstructions in certain order; thirdly, based on the se microinstructions, the MIU is 

enable to generate kinds of command signaIs, which control the operations of the SCIL 

processor. 

ControlIFU 

As we introduced in the previous sections, the IFU can receive three different commands, 

and the MIU is responsible to send these commands. The IFU generates the commands 

based on the information conserved in the Microinstruction Table. Each line of the 

Microinstruction Table consists of one microinstruction and three flag bits: npc, jmp and 

end. These three flag bits represent the state of the current microinstruction. With acquiring 

the state of microinstructions, the MIU decides to send which command to the IFU. In 
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Table 5, we show one line of the Microinstruction Table. Each line of the 

Microinstruction Table has 25 bits. 

Table 5: One line of Microinstruction Table 

The flag bit end represents whether the current microinstruction is the last microinstruction 

in the set of microinstructions. Because aIl sets of microinstructions are limit (2~9 items for 

each set) and the processor executes these microinstructions sequentially, the last line in 

one set of microinstructions al ways has an active flag bit end. In Example 14, we show the 

set of microinstructions for SCIL instruction add. The first three bits are flag bits, and the 

flag bit end of third li ne is '1'. It means that the third microinstruction is the last 

microinstruction in this set of microinstructions. 

0000100000001010000110000 
0000000110000000101010000 
0010010101000101000010110 
III 
1 \ \ 

npcjmp end 

-- MAR=SS=SS-1 
-- TPR=TOS; rd 
-- MDR=TOS=MDR+ TPR; wr 

Example 14: Microinstruction set for add in Microinstruction Table 

The flag bit jmp is active when the set of micro instructions correspond to one condition 

branch instructions, such as instructions blt, beq and ble. Inside such a set of 

microinstructions, one flag bit jmp is active. In Example 15, we show the set or 
microinstructions for the SCIL instruction bit. We can see that there are two active Ilag bits 

in the fifth line. The first is the flag bit end because the fifth microinstruction is the last 

microinstruction in this set of microinstructions. The second is the flag bitjmp because the 

current microinstruction refers to a condition branch. (The notation ".1MP(Z)" represents 

that the processor takes the branch when Z is true.) 

0000100000001010000110000 
00001000000010101001]0000 

MAR=SS=SS-1 
-- MAR=SS=SS-I; rd 



0000000110000000100010000 
0001000000000000001100101 
0110000101000000000010000 
III 
/ \ \ 

npcjmp end 

-- TPR=MOR; rd 
-- Z=TPR cmp TOS 
-- TOS=MOR; JMP(Z) 

Example 15: Microinstruction set for bit 
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However, in practice, we use two active flag bits jmp for a condition bran ch in the 

Microinstruction Table. For example, there are two active flag bits jmp in the set of 

microinstructions for the instruction bit. We show this set of microinstructions in Example 

16. The tlag bitjmp in the first line is active. We adopt such a method because we hope the 

processor can know the state of microinstructions as early as possible. Earlier the processor 

knows the CUITent instruction referring to a condition branch, earlier the processor begins to 

do the prediction for this condition branch and fetch the new instruction. It is useful for the 

SCJL processor to reduce the suspend cycles. 

0100100000001010000110000 
0000100000001010100110000 
0000000110000000100010000 
0001000000000000001100101 
0110000101000000000010000 
III 
/\\ 

npcjmp end 

-- MAR=SS=SS-1 
-- MAR=SS=SS-1; rd 
-- TPR=MOR; rd 
-- Z=TPR cmp TOS 
-- TOS=MDR; JMP(Z) 

Example 16: Microinstruction set for bit in Microinstruction Table 

The flag bit npc is active when this microinstruction asks the processor to update the value 

of PC with the data on BUS C. As same as the flag bitjmp, the active tlag bit npc appears 

two times in one set of microinstructions. In Example 17, we show the set of 

microinstructions for the SCIL instruction ret. The flag bit end and the flag bit npc in the 

last line are active, and the flag bit npc of the first line is active too. 

1000000100000010001000000 
0000100000001010101000000 
0000000100010000100010000 
0000000110000000000010000 

-- MAR=LV 
-- MAR=SS=L V -1; rd 
-- L V=MDR; rd 
-- TPR=MDR 



0000100000001010000]]0000 
0000]00100001010110000000 
0000000100100000000010000 
0000000100000101001010000 
1010000100000000001100000 
III 
/ \ \ 

npc jmp end 

-- MAR=SS=SS-1 
-- MAR=SS=PAR; rd 
-- PAR=MDR 
-- MDR=TOS; wr 
-- C=TPR 

Example 17: Microinstruction set for ret in Microinstruction Table 
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By checking three flag bits, the MIU can acquire the state of microinstructions and th en 

send three different commands, fetch, jump and setPC, to the IFU. When the MIU deals 

with a new set of microinstructions, firstly the MIU reads the two flag bit jmp and npc of 

the tirst line in the set. When both of them are not active, it means that there is no branch 

for this set of microinstructions. At this time, the MIU sends a command fe/ch to the IFU. 

Otherwise, when the flag bit npc of the first line is active, the MIU does not send any 

command to the IFU immediately. Instead the MIU sequentially executes the 

microinstructions one by one. When the MIU meets the second active flag bit npc, the MIU 

sends a command setPC to the IFU. When the flag bit jmp of first line is active, the MIU 

checks the prediction result made by the predictor and th en sends commands. The MIU 

sends a command fetch to the IFU when the prediction is "Not Take". Otherwise, when the 

predictions result is "Take", the MIU sends a commandjump to the IFU. After that, the IFU 

sequentially executes the microinstructions. When the MIU meets the second active flag bit 

jmp, the MIU reads the value of the condition result Z to check whether the previous 

prediction is correct. When the prediction is correct, it is aU right and there is nothing 

happened. Otherwise, the MIU sends a new correct command to the IFU to replace the 

wrong one. At this time, the MIU sets the value of the signal correet-predic/ion to inform 

the IFU and the predictor whether the prediction is correct. (We will introduce how the 

predictor works in foUowing sections.) 

Tanenbaum's JJVM processor uses two flag bits while the SCIL processor uses three tlag 

bits. Both of the two processors have the flag bit end. However, the SCIL processor uses two 

flag bitsjmp and npe to represent branches which the IJVM processor uses one flag bitjmp 

to represent. For the lJVM processor, it obtains branch addresses only from the data bus. 
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However, there are two methods to obtain branch addresses for the SCIL processor. 

FirstJy, the processor can obtain the bran ch addresses from the data bus. The bit flag npc is 

used to represent this situation. Secondly, the processor can use the value of register 

ln.\" opd inside the IFU as the bran ch addresses. (In previous sections, we introduced that 

the branch addresses as instruction operands are conserved in this register.) The bit flagjmp 

is used to represent the second situation. As we can image, it takes Jess time for the 

processor to use the existing data in the register than to wait for the data on data bus. 

Therefore, we divided ail branches into two different operations. In this way, although our 

SCIL processor uses one more flag bit th an the IJVM processor uses, the SCIL processor 

can accelerate the execution ofbranch operations. 

Data Dependency 

After the MIU finding out the set of microinstructions in the Microinstruction Table based 

on the index-address, the processor begins to execute the microinstructions one by one. 

Theoretically, the processor can execute one microinstruction in one cycle because the 

SCIL processor uses single pipeline construction. However, it is quite easy to generate data 

dependency among microinstructions. The data dependency may result in one or more than 

one suspend cycles for SOme microinstructions. Although we can optimize the 

microinstructions to reduce data dependency, it is impossible to avoid ail data dependency 

because the permutation of the different SCIL instructions is too complex to anticipate ail 

possibilities. In fact, some data dependency is inevitable. 

J n Example 18, we show the set of microinstructions for the SCIL instruction adJ. The 

second microinstruction changes the value of the register TPR; and in the third 

microinstruction, the value of the TPR is used as one operand of the addition operation. 

Hence the third micro instruction is data dependency for the second microinstruction. The 

processor cannot execute the third microinstruction until the processor completes executing 

the second microinstruction. 

MAR=SS=SS-l 
TPR=TOS; rd 



MDR=TOS=MDR+ TPR; Wr 
Example 18: Data dependency 
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Data dependency makes the processor generate suspending cycles, and too many suspend 

cycles affect the execution speed of the processor. Therefore, in order to minimize the 

influence of data dependency, we use the forwarding technique and a FIFO buffer in our 

processor. The forwarding technique can reduce the number of suspend cycles directly. The 

FIFO buffer can make the processor keep doing sorne works ev en when the processor is in 

suspend cycles. 

Forwarding 

The MIU uses forwarding technique when it checks data dependency for microinstructions. 

For example, the processing microinstruction needs the value of a certain register. However 

this register now is waiting for being update because one previous microinstruction referred 

to this register. At this time, without the forwarding, the processor cannot begin to execute 

this processing microinstruction until the processor finishes executing the previous 

microinstruction and updating that register. By contraries, with the forwarding, the 

processor can execute the processing microinstruction several cycles early. 

ln Example 19, we present an example. In (a), we show two sequential microinstructions. 

ln (b), we present the executÎon of the two microinstructions without the forwarding 

technique. The MIU finishes executing the first microinstruction at the i+2l\d cycle, and it 

begins to execute the second microinstruction at the i+ 3rd cycle. The whole execution time 

is 6 cycles. In (c), we present the execution of the two microinstructions with the 

forwarding technique. The MIU finishes executing the first microinstruction still at the 

i+2 l1d cycle. However, the MIU can execute the second microinstruction at i+2nd cycle as 

S0011 as the ALU finishes the addition operation. During the i+2lld cycle, the result of the 

ALU is sent to two objects at the same time. The first receiver is the register TOS. The 

register TOS uses the result to update its value. Another receiver is the ALU. 'l'he ALU 

uses the result as the operand of an addition operation, which Îs done by the second 
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microinstruction. As a result, the whole execution time becomes 5 cycles, which is 

one cycle less than without forwarding. 

Ca) Two microinstructions 

TOS=SS+TPR 
MDR=TOS+MDR 

Cb) Without forwarding 

Cycle TOS=SS+TPR 

1 load SS, TPR 

i+l do addition operation 

i+2 update TOS 

i+3 

i+4 

i+5 

Cc) With forwarding 
Cycle instr: TOS=SS+ TPR 

1 load SS, TPR 

i+l do addition operation 

i+2 update TOS 

i+3 

i+4 

MDR=TOS+MOR 

load TOS, MOR 

do addition operation 

update MOR 

instr: MDR=TOS+MDR 

load MOR, use result of 

ALU as the value ofTOS 

do addition operation 

update MOR 

Example 19: With forwarding and without forwarding 

FIFO Buffer 

The FIFO buffer is inside the MlU. Now the length of the FlFO buffer is 18, and each 

element of FIFO buffer is 25 bits, as same as the element of the Microinstruction Table. 

The FIFO buffer cannot reduce the number of suspending cycles directly as the forwarding 

technique does. Instead, this FIFO buffer helps the processor use these suspending cycles to 

continue part of works. 
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Without FIFO buffer, when there are suspending cycles for the current microinstrllction, 

the MIU suspends completely. The MIU can neither read new microinstruction nor send a 

new command to the IFU. In next cycle, the MIU deal with the same microinstrllction. 

With the FIFO buffer, wh en the MIU meet suspending cycles, the MIU copies the current 

microinstruction to the FlFO buffer. In next cycle, the MIU de al with the microinstruction 

existed in the FIFO butter. Furthermore, now the MIU can pick out a new microinstruction 

from the Microinstruction Table. Therefore, even through the processor is dllring the 

suspending cycles, the MIU can continue sending commands to the IFU based on the new 

microinstruction. As a result, the IFU can receive the commands several cycles early, and 

correspondingly the IFU can finish its operations relatively early. It is very important for 

the IFU when there is a branch. Then after the MIU finishes treating the current set of 

microinstructions, the MIU can execute the new set of microinstructions immediately 

because the IFU completed the task of new commands and finished preparing the needed 

data. Therefore, the MIU can avoid new suspending cycles caused by waiting for the IFU 

completing its operations. (A FIFO buffer is also used in Tanenbaum's UVM processor.) 

Treating microinstructions 

The MI U takes microinstructions from the Microinstruction Table, checks the data 

dependency, and then converts microinstructions to command signal sets. We cali this 

process as Ireating microinsfructions. 

The MIU lises an internai pointer to indicate the position in the Microinstruction Table. 

When the MIU receives a new index-address from the IFU, the MIU move this pointer to 

the first line in the corresponding set of microinstructions. Each cycle, the MIU picks out 

the pointed microinstruction as the processing microinstruction, which is to be treated in 

the current cycle. Then the MIU moves the pointer to the succeeding line till the last line in 

this set of microinstructions. 

Wh en the MIU picks out the processing microinstruction from the Microinstruction Table, 

there are three possibilities for the MIU to deal with this processing microinstruction during 
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the current cycle. Firstly, when the FIFO buffer is empty, the MIU check whether 

there is data dependency for the processing microinstruction. The MIU can convert this 

micro instruction to command signal sets when there is no data dependency. Otherwise, the 

MIU copies the processing microinstruction to the FIFO buffer. At this time, there is no 

microinstruction converted to command signaIs in the current cycle. Secondly, when the 

FIFO butter is neither empty nor full, the MIU copies the processing microinstruction ta 

the FIFO buffer. Then the MIU checks whether there is data dependency for the first 

microinstruction in the FIFO buffer. When there is no data dependency, the MIU uses the 

microinstruction in FIFO buffer as the new processing microinstruction, and converts it to 

command signal sets. Otherwise there is no microinstruction converted to command signais 

in the current cycle. Thirdly, when the FIFO buffer is full, the MIU check whether there is 

data dependency for the first microinstruction in the FIFO buffer. When there is no data 

dependency, the MIU picks out this microinstruction and copies the old processing 

micro instruction to the FIFO buffer. Otherwise, the MIU suspends working in the current 

cycle when there is data dependency for the first microinstruction in the FIFO buffer. In the 

next cycle, the MIU still use the same microinstruction as the processing microinstruction 

and do the same operation as what the MIU does in the CUITent cycle. 

When the MIU converts one microinstruction to command signal sets, the MIU splits this 

microinstruction into four parts and generate ail command signal sets. There are four 

Microinstruction Registers (MIR1, MIR2, MIR3 and MIR4) inside the MIU. These 

registers store the command signaIs to be outputted. The MIU outputs the context of the 

register MIR1 as the command signaIs in the current cycle. Similarly, The MIU outputs the 

context of the MIR2, the MIR3 and the MIR4 in the second, third and fourth cycle 

respectively. Furthermore, after the MIU outputs the context of the MIR 1, the MIU shifts 

contexts of the MIR registers with one position. The MIU copies the MIR2 to the MIR!, 

the MIR3 to the MIR2, as weil as the MIR4 to the MIR3. 

Each MIR register has 22 bits, as same as one microinstruction. When the MIU outputs the 

context of the register MIR!, the bits on the fixed places are outputted as the corresponding 

command signaIs. As we introduced, one microinstruction consists of five command signal 

sets. The MIU splits the microinstruction into four parts. (We make CMO_A and CMD_B 
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as one part). The MIU puts these four parts to the corresponding fixed places of the 

four MIR registers. The MIU copies the partI (CMO_A and CMD_8) to the MIRl, the 

part2 (CMD_ALU) to the MIR2, the part3 (CMO_REG) to the MIR3 as weil as the paIi4 

(CMO _MEM) to the MIR4. ln this way, the MIU outputs the context of one 

microinstruction in four cycles, and only one part is outputted in one cycle. The MIU can 

output command signal sets in form of pipeline. 

In Example 20, we present how the MIU converts one microinstruction to command signaIs. 

It supposes that there is no data dependency for this microinstruction. 

(a) One microinstruction 

0010101000101000010110 -- MOR=TOS=MDR+TPR; Wr 

(b) Spilt the (a) into four parts: 

001 01 01 000 1 0 1 0 0001 0 Il 0 
Part2 Part3 Part4 PartI 

(c) Copy the (8) to the four MIR registers 

MIRl:0000000000000000010110 
MIR2:0010100000000000000000 
MIR3:0000001000100000000000 
MIR4: 0000000000001000000000 

(d) Output command signais 

Cycle 1 

CMO A&B: 00010110 
CMO ALU: 00000 
CMO REG: 0000000 
CMO MEM: 00 

Cycle 2 

00000000 
00101 
0000000 
00 

Cycle 3 

00000000 
00000 
0100010 
00 

Example 20: Convert one microinstruction to command signais 

Cycle 4 

00000000 
00000 
0000000 
10 

ln (a), this is one microinstruction that the MIU picked out from the Microinstruction Table. 

ln (b), the MIU splits this micro instruction into four parts. In Cc), the MIU copies these l'our 

parts to the four MIR registers. In (d), we present the command signais that the MIU 

outputs in successive four cycles. 
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ALU 

The independent execution ALU can do the basic calculation of 32 bits integer. 1t does not 

support float-point operations. The ALU receives the values on BUS A and BUS B as two 

operands, and then does one operation according to the 5 bits command signal set 

CMO ALU. (See Table 6) 

CMD ALU Operation of ALU Comment 

00000 0 Output 0 

00001 A* Output A 

00010 B ** Output B 

00011 Not A Not operation 

00100 -A Negative operation 

00101 A+B Addition operation 

00110 A+B+l Add A, Band 1 

00111 A+ 1 Add 1 

01000 A-l Substruct 1 

01001 A-B Substruct 

01010 A and B And operation 

01011 A or B Or operation 

Z=1 when A=B; 

01100 A=B? Z=O when A/=B; 

Z= 1 when A/=B; 

01101 A/=B? Z=O when A=B; 

Z=1 when A>B; 

01110 A>B? Z=O when A<=B; 

Z= 1 wh en A>=B; 

01111 A>=B? Z=O when A<B; 

Z= 1 when A <B; 

10000 A<B? Z=O when A>=B; 

Z=1 when A<=B; 

10001 A<=B? Z=O when A>B; 

10010 1 Output 1 
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10011 -1 Output -1 

10100 Z='I' Set signal Z ' 1 ' 

10101 Z='O' Set signal Z '0' 

10110 SHLI6 Sh ift left 16 bits 

10111 SHR8 Shift right 8 bits 

11000 SHLI Sh ift left 1 bit 

*A: data from BUS A; 
**B: data from BUS B 

Table 6: Command signal CMD_ALU 

Besides arithmetic calculations, the ALU is responsible to determine whether the processor 

takes condition branches or not. Every cond ition branch instruction, such as hèg, bl! and 

hge, contains one comparison. (We use the notation "cmp" to express the comparison in 

microinstructions) Depending on the result of the comparison, the processor decides to take 

or not take the branch. When the ALU does a comparison, according to the command 

signal set CMD _ ALU, the ALU chooses one kind of comparison operator to compare two 

operands. Then the ALU use the result of the comparison to update the value of the signal 

Z. After that, the processor checks the value of the signal Z. When the signal equals to 'l', 

the processor takes the branch; otherwise, the processor does not take the branch. Specially, 

for the instruction br, although it does not need to do the comparison, we still ask the ALU 

to do an "always true" comparison and update the signal Z as '1'. In this way, the processor 

uses the same method to deal with aIl condition branches and avoid adding the new 

circuitry for the instruction br. ln Example 21, we present the set of microinstructions tor 

the SCIL instruction hit. The fourth microinstruction requires the ALU to do a comparison. 

A fter that, in the fifth microinstruction, "JMP(Z)" represents that the processor decides 

whether it takes this branch or not based on the value of signal Z. 

MAR=SS=SS-l 
MAR=SS=SS-1; Rd 
TPR=MDR; Rd 
Z=TPR cmp TOS 
TOS=MDR; JMP(Z) 

Example 21: Microinstructions for the SCIL instruction bit 
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Local Memory 

Currently the local memory comprises of nine 32-bit registers. These nine registers are 

named as MAR, MOR, OPO, SS, LV, PAR, NPC, TOS and TPR. Each register has its 

particular purpose. 

The register MAR (Memory Address Register) records the address of data memory while 

the register MOR (Memory Data Register) stores the data of data memory. These two 

registers are used to communicate with the data memory. When the processor reads data 

from the memory, it puts the address into the MAR firstly. Then the MAR sends this 

address to the data memory, and the return value of the memory is conversed in the MOR. 

When the processor writes data to the memory, it puts the address into the MAR and puts 

the data into the MOR. Then the processor sends a signal to make the memory writable, 

and writes the data to the address in the memory. 

The register OPO (OPeranO) is used to conserve the instruction operand of the current 

SCIL instruction. As we introduced, the rFU is responsible to fetch instruction operands 

from the instruction memory, and stored them in the register lns_opd. Every cycle, the 

processor updates the value of the register OPO with the value of the lm'_opd. 

The register NPC (Next Pro gram Counter) stores the address of the instruction that is next 

to the current PC. This register corresponds to the register Nexl PC in the IFU. There are 

two reasons why we use a register to conserve the Next PC instead of the PC. Firstly, the 

processor does not need to know the value of the current PC because only the !FU accesses 

the instruction memory and fetches SCIL instructions. Secondly, the value of the Next PC 

is necessary for the processor. The processor has to put this value on BUS C when asking 

the IFU to do a selPC operation. 

The register SS (Summit of Stack) and the register TOS (Top element Of Stack) are used to 

describe the memory stack. The SS al ways points to the summit of the stack in the data 

memory. The TOS always keeps the value of the top element of the stack. Because there 

are many operations using the value of the top element, the processor can accelerate these 

operations when the TOS can keep the correct value of the top element. However, now the 
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processor has to add sorne microinstructions to do sorne additional operations in order 

to keep the correct value in the TOS. It spends a lot of time and hardware resources to 

sustain the correctness of the TOS. Therefore it is ditlicult for us to calculate how much 

time we can win by using the TOS on earth. 

The register LV (Local Variable) conserves the address of the tirst local variable of the 

current procedure in the stack, while the register PAR (PARameter) stores the address of 

the first parameter of the procedure in the stack. These two registers help the processor load, 

store and modify local variables and parameters. 

The last register TPR (TemPorary Register) is a temporary register. Usually the processor 

uses the TPR to conserve sorne intervaJ value during a series of operations. 

Read and W rite Registers 

The processor cannot read and write the registers at the same time. Reading and writing 

registers are in two different pipeline stages. Figure 17 shows the connection among 

registers, three data buses and the data memory. 
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Figure 17: Registers, Data buses and Data Memory 

65 

.Rn:::: A Hm H 

Except for the MAR, the processor can put the value of ail registers on BUS A or BUS B, 

and make them as operands for the ALU. The processor chooses two registers and put thcir 

value on BUS A and BUS B respectively according to the 4 bits co mm and signal sets 

CMD_A (See Table 7) and the 4 bits command signal set CMD_B (See Table 8). 

CMD A Register Comment 

0000 Clear BUS A 

0001 MOR MOR => BUS A 

0010 OPO oro => BUS A 

0011 SS SS => BUS A 
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0100 LV LV => BUS A 

0101 TOS TOS => BUS A 

0110 TPR TPR => BUS A 

0111 NPC NPC => BUS A 

1000 PAR PAR => BUS A 

Table 7: Command signal CMD_A 

CMD B Register Comment 

0000 Clear BUS B 

0001 MOR MOR => BUS B 

0010 OPO OPO => BUS B 

0011 SS SS => BUS B 

0100 LV LV => BUS B 

0101 TOS TOS => BUS B 

0110 TPR TPR => BUS B 

0111 NPC NPC => BUS B 

1000 PAR PAR => BUS B 

Table 8: Command signal CMD_B 

The SCIL processor uses three data sources to update registers. The first data source is the 

IFU. Every cycle, the processor updates the OPO with the value of the register Im'_opd and 

updates the NPC with the value of the register Next _pc. The second source is the data on 

BUS C. The SCIL processor can use the data on BUS C to update one or several registers at 

one time. The processor can update the MAR, MOR, SS, LV, PAR, TOS and TPR with the 

data on BUS C according to the 7 bits command signal set CMO _REG (See the Table 9). 

The third data source is the data memory. The processor takes the data from memory to the 

register MOR according to the 2 bits command signal CMO_MEM (See Table 10). 

The No.i of CMD REG Register Comment 

0 MAR BUS C => MAR 

1 MOR BUS C=> MOR 

2 SS BUS C => SS 

" LV BUS C => LV J 

4 PAR BUS C => PAR 
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Table 9: Command signal CMD _REG 

The No.i ofe Action Comment 

0 Read • Read data memory with 

the address in MAR 10 

MDR 

1 Write Write the data of MDR 10 

data memory with the 

address in MAR 

'fable 10: Command signal CMD_MEM 

Predictor 

The predictor is a one-bit predictor with 128 different addresses. We show the architecture 

of the predictor in Figure] 8, 

Correct -pred i ction 

1 .. 
() 

1 T&NT 
PC's last 7 bits 

? 

1 
1 
Il 

1 1 
1?7 

Figure 18: Architecture of one-bit predictor 

l'he predictor receives the last 7 bits of PC as the prediction address. Therefore the 

prediction address may be same for the different branches when the PCs of these branches 

have the sa me last 7 bits. For example, one branch's PC is 129 and another branch's PC is 
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385. The predictor uses the same branch address 1 for the se two branches because the 

last 7 bits of their PC are "0000001 ". Inside the predictor, there is an array with 128 

elements, and each element is one bit. The predictor uses the inputted 7 -bit prediction 

address as the index of the array, and then it outputs the value of the corresponding element 

as the prediction result. When the bit is 'l', it represents the prediction is "Take"; otherwise, 

it represents the predictions is "Not Take". The predictor outputs the prediction result via 

the signal T&NT. Moreover the signal correct-prediction generated by the MIU informs the 

predictor whether the prediction is correct. When the prediction is incorrect, the predictor 

negatives the value of one bit for this prediction address. For example, when the prediction 

result "Take" for prediction address 4 is incorrect, the predictor will update this prediction 

element with "Not Take". 

When the value of PC changes, the predictor will give a prediction based on the last 7 bits 

or this PC value whatever the current instruction is a branch instruction or not. When the 

current instruction is not a branch instruction, the MIU does not respond for this prediction. 

Therefore, the predictor thinks this prediction is correct and does not change the value of 

this prediction bit. In this way, we avoid adding the additional circuitry to check whether 

the instruction is a branch instruction or not. 

There are four possible situations for one prediction. T/T: the prediction is "Take" and the 

processor needs to take the branch; NTINT: the prediction is "Not Take" and the processor 

needs not to take the branch; TINT: the prediction is "Take" and the processor needs not to 

take the branch; NT/T: the prediction is "Not Take" and the processor needs to take the 

branch. The T/T and NTINT are correct predictions. The TINT and NT/T are incorrect 

predictions. In our design, there are no penalty cycles for the correct predictions. However, 

when the predictions are not correct, there are three penalty cycles for the SCIL processor. 

In Table Il, we show the penalty cycles for the se four prediction results. Moreover, we also 

show the penalty cycles for the processor without a predictor. Without the predictor, the 

processor has three penalty cycles when it takes the branch, and two penalty cycles when it 

does not take the branch. 
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Prediction/Fact Stalls with predictor Stalls without predictor 

TIT 0 3 1 

NTINT 0 2 

TINT i 3 2 

NTIT 3 3 

Table 11: Number of stalls caused by branch 

Instruction Memory and Data memory 

Currently, we use 8 * 1024 bits BRAM as the instruction memory and 32 * 512 bits BRAM 

as the data memory. Seemingly, the instruction memory Îs not very big bec au se averagely 

one SCI L need occupy 16 bits. Therefore this instruction memory can support a SCIL 

program with about 500 SC IL instructions, and c1early the program with 500 instructions is 

not a big program. However, because the SCIL branch instructions use 16 bits to represent 

target branch addresses, we can enlarge the instruction memory to 8 * 65536 bits wlthOlIt 

change the definition of the SCIL. Moreover, in the current design, the SCIL processor 

already uses 16 bits data to represent the PC. As a result, we can modify the size of 

instruction memory with changing the width of signais working as the memory address 

between the instruction memory and the processor. For example, wh en the size of the 

instruction memory is 8* 1024 bits, the processor connects the last 10 bits of the 16 bits as 

the memory address to the instruction rnernory; and when the size of the instruction 

memory becomes 8*65536 bits, the processor connects ail 16 bits as the address to the 

instruction memory. When the size of the instruction memory is 8 * 65536 bits, it can 

contain a SCIL program with about 30000 instructions, and it is enough for most of 

embedded system designs. Furthermore, because the SCIL processor uses 32 bits data to 

conserve the memory address for the data rnemory, the size of the data memory can also be 

changed in sorne range. 

The SCI L processor needs to modify the width of signaIs connecting to these two memories 

when the sizes of the instruction rnemory or the data rnernory change. As a result, the SCI L 
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processor, as a softcore processor, can change the hardware resource usages with 

different memory configurations. At present, we do these changes by modifying the 

generics in VHDL source code directly. 1t is not very convenient for the users who do not 

know well VHDL to implement memory configurations. Therefore it is possible for us to 

develop a GUI (Graphical User Interface) Wizard to facilitate memory configurations in the 

future. 
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Chapter 5 Experiments 

For the purpose of prototyping, we target our SCIL processor for a Xilinx's Virtex Il PRO 

FPGA. Moreover in order to compare the performance of the SCIL processor with other 

existing softcore processors, we create a MicroBlaze system whose construction is similar 

to the SCIL processor system. Both of two systems consist of one processor, one 

instruction memory and one data memory. We respectively run four benchmarks on two 

systems, and compare the number of cycles to execute programs on the different processors. 

Design Flow 

We use VHDL as programming language to code the processor entry, and use Xilinx ISE 

8.2i as the development environment. The FPGA we used is Xilinx's Virtex Il PRO on the 

platform AP 1 000. The functional simulation tool is ModelSim 6.2g. In addition, in order to 

observe internaI signaIs and BRAM results on FPGA, we use Xilinx ChipScope pro 8.2 [25] 

to implement monitor signais on FPGA. Xilinx ChipScope Pro Core Inserter can insel1 

logic analyzer, bus analyzer and virtual 1/0 low-profile cores directly into the design, and 

these captured signaIs can be analyzed through Xilinx ChipScop Pro Analyzer. 

ln Figure 19, we present the basic design flow of the SC IL processor. This design flow 

refers to the Xilinx ISE 8.2 design flow [26]. First ofaI1, under Xilinx editor, we use VHDL 

to create the entities of the SCIL processor. At this time, we do the functional simulation 

with ModelSim tool to verify the correctness of our design. After that, we use the Xilinx 

Synthesis Technology (XST) GUI to synthesize the VHDL files into NGC HIes. Then we 

use ChipScope Pro Core Inserter to add monitor signaIs into the processor design. In design 

implementation step, we convert the logical design file format in order to fit the design with 

APlOOO platform. The physical information about Virtex Il PRO FPGA is contained in the 

native circuit description (NCD) file and the information about CPLDs Îs in VM6 file. Then 

we generate a bitstream file for our device depending on these files. Finally, we use 

iMPACT to load the bitstream file to FPGA on APIOOO via Xilinx download cable. After 
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that, we check the result of program and the values of monitor signais by using 

ChipScop Pro Analyzer. 

_ ......... 

Design Entry in VHDL 
Functional simulation 

l 
with ModelSim 6.2g 

Design Entry Synthesis 
Add monitor signal 

1 .- with Chipscope Core Inserter 
Design implementation 

Optimisation 

~ 
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Mapping 

Placement 

Routing Timing analyse 

~ & Timing Simulation 

CPLDs 

fitting 

+ 
Bitsream 

Generation 

+ In-Circut result check 

Download to FPGA with Chipscope Analyzer 

Figure 19: Design flow 

In the part of software application design, we use C# to program software applications for 

the SCIL processor system. Then we generate the SClL file from the CIL file by llsing the 

SCIL compiler. Finally the SClL file is used as the initial file to initialize the BRAM for 

instruction memory. In the SCIL processor system, in order to record the number of cycles 
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to complete programs, we add one signal to the unit MIU. Before the SCIL processor 

runs the program, the value of this signal is O. Then the value of this signal continues 

increasing till the processor completes executing the program. We can use Xilinx 

ChipScope Pro 8.2i to view the value of this signal. In Figure 20, we show the interface of 

ChipScope Pro Analyzer. 
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Figure 20: ChipScope Pro Analyzer 

A MicroBlaze System 

We create the MicroBlaze system by using Xilinx Platform Studio (XPS) 8.2i [27]. Tbe 

device board is Virtex-II Multimedia FF896 Development Board which is presented in 

Figure 21. We use this platform board because we find that the platform board API 000, 

whicb the SCIL processor system uses, does not support the MicroBlaze processor. (We 
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failed in constructing a MicroBlaze system on APIOOO to the end.) The detail 

introduction of the board FF896 could be found in the reference [28]. 

Figure 21: Virtex-ll Multimedia FF896 Development Board 

With Base System Builder wizard CBSB), we construct a simple MicroBlaze system. In 

Figure 22, we show the block-diagram generated by Xilinx Platform Studio 8.2i's Block­

Diagram view for the MicroBlaze system. In this MicroBlaze system, there is one 

MicroBlaze processor as the embedded processor. There is only one BRAM (16k) with two 

ports because the instruction memory and data memory for MicroBlaze are combined into 

one single memory. The two ports ofthis BRAM connect to the MicroBlaze processor via 

two data buses. 
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Figure 22: Block-diagram of MicroBlaze System 

There are two peripheral controllers and one IP in this MicroBlaze system. We do not use 

the debug_ module which is generated by the wizard. We use the peripheral controller 

RS232 port [29] as the output device. We connect this RS232 port to our computer's COM 

port. Moreover the IP we developed is responsible to count the number of cycles to 

complete programs. This number can be outputted via the RS232 port and finally shown on 

the compute screen by using the tool HyperTerminal. (See Figure 23) 



-- Entering main!) 
number of cycles = 2F79 

-- Exiting main!) --

Figure 23: HyperTerminal 
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ln the software part, we use C to develop the software applications for the MicroBlaze 

system [30]. After compiling the software application, the XPS generates a bitstream file, 

which includes the system design and memory initial data. Then we download the bitstream 

file to the FPGA on develop broad. 

Clock Rate and LUTs usages 

Through timing analysis, the maximum clock rate achieved of the SCIL processor is 50 

MHz. Moreover, the LUTs (Looking-Up Table) usage for our SCIL processor is 3308 on 

Virterx JI RPO. We compare the LUTs usage with the MicroBlaze in Table 12. The LUTs 

lIsed by MicroBlaze varies depending on the configuration used. We can see clearly that the 

cost of our processor and the cost of MicroBlaze are quite in the same range. 

LUTs Used Available 
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MicroBlaze 800 - 2,600 [3 1 ] 88,192 0.9 - 2.9 

CI L I>rocessor 3,308 88,192 3.7 

Table 12: LUTs utilization on the Virtex II PRO 

Benchmarks 

We respectively do four benchmarks: 

• Fibo - computes the Fibonacci number 

• QSorl - sorts an array of integers using the quick sort algorithm with recurslve 

procedure caUs 

• BSorl - sorts an array of integers using the bubble sort algorithm 

• CRC32 - Cyclic Redundancy Checksum with digital signature is a 32-bit number 

Benchmarks QSort, Bubble Sort, CRC32 are modified versions of the benchmarks from 

MiBench [32]. We compare the cycle utilization for Microblaze and our SCIL processor. 

Fibo 

The Fibo does calculate the Fibonacci number. This benchmark is simple and only includes 

basic operations. In Table 13, we show the number cycles that both the SCIL processor and 

the MicroBlaze processor need to execute the Fibo benchmark. The N is the sequence 

length of Fibonacci number. The maximal value of N is 46 because the SCIL processor 

only supports 32 bits integer. 

N tO 20 46 

MicroBiaze 40 70 148 

SCI L processor 930 1880 4350 

Table 13: Cycle utilization for the benchmark Fibo 
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CRC32 

The CRC32 does cyclic redundancy checksum for the list of 32-bit words. This benchmark 

includes many bit operations such as XOR and shift. In Table 14, we show the number 

cycles that both the SCIL processor and the MicroBlaze processor need to execute the 

CRC32 benchmark. The N represents the number ofwords to do CRC32 operation. 

N 100 500 1000 2000 4000 

MicroBlaze 453 1,653 3,153 6,153 12,153 

SCIL Processor 4,933 10,373 17,173 31,000 77,973 

Table 14: Cycle utilization for the benchmark CRC32 

BSort 

The BSort do es sort an integer array by using the algorithm bubble sort. This benchmark 

inc\udes lots of comparison operations and array operations such as loading element and 

storing element. ln Table 15, we show the number cycles that both the SCIL processor and 

the MicroBlaze processor need to execute the BSort benchmark. The N is the size of the 

array. 

N 10 50 100 200 

MicroBlaze 831 21,613 75,756 313,087 

SCIL Processor 13,260 297,247 1,271,967 4,963,570 

Table 15: Cycle utilization for the benchmark BSort 

QSort 

The QSort does sort an integer array by using the algorithm quick sort. Different from the 

BSort, this algorithm use recursive procedure calls. Hence in this benchmark, there are lots 

of calI instructions. In Table 16, we show the number cycles that both the SCIL processor 

and the MicroBlaze processor need to execute the QSort benchmark. The N is the size of 

the array. 
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N 10 50 70 80 100 

Microblaze 1,444 121,584 40,054 51,389 unable 

SCIL processor 955 
1

14,007 25,933 33,246 50,572 

Table 16: Cycle utilization for the benchmark QSort 

Discussion 

For the result of the benchmarks, we can see the perfomlance of Microblaze processor is 

better than that of the SCIL processor. The MicroBlaze expresses good performance when il 

executes the first three benchmarks. These three benchmarks do not include many procedure 

calls. The number of cycles needed by the MicroBlaze is much less than the cycles needed 

by the SCIL processor. In tact, even when our processor could complete one 

microinstruction during each cycle, which is the limit for the single pipeline architecture, the 

SCIL processor should still use more cycles than that the MicroBiaze processor needs. From 

our viewpoint, the perfomlance of the SCIL processor is not bad and acceptable. Taking the 

benchmark Fibo for example, the SCIL processor need to execute about 170 SCIL 

instructions when N=lO. Because usually one SCIL instruction needs 4.5 microinstructions 

to complete ilS functionality, the SCIL proccssor has to execute about 700 microinstructions 

in sumo The number of cycles the SCIL processor needs to execute this program is 930. So 

the CPI (Cycles Per Instruction) for microinstructions is 1.32. We think it is acceptable 

because there should exist many suspend cycles among the se microinstructions. 

The result of benchmark Qsort inspires us very much. Wc can find that the SCIL processor 

uses less Humber of cycles than the Microblaze uses. The benchmark Qsort includes many 

recursive procedure calls and it can show the superiority of our processor. Because the SCI L 

simplifies the CIL by using the absolute address as instruction operands for branch address, 

the SCIL processor uses tiny time to invoke a procedure. The processor can use static branch 

jumps because the SCIL does not support the object-oriented concept. The SCIL compiler 

can ca1culate all branch addresses before we load SCIL instructions into the memory. 
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Chapter 6 Conclusion and Future works 

Currently embedded processors are used widely in embedded system designs. The 

embedded processors can accelerate the development period of embedded systems, and let 

the embedded system designers start their works at high abstract level. We introduced a new 

embedded processor targeted for Microsoft's CIL. The SCIL Processor is a synthesisable 

softcore processor, and it implements a subset of the CIL. Since the CIL is the Întermediate 

language for the all .NET languages, it is possible for designers to use ail languages of .NET 

framework as the programmÎng language to develop software applications for embedded 

systems. However, because the CIL has many characteristics of high level languages, it is 

difticult to implement the CIL directly on hardware. We adopted the approach of 

simplifying CIL instructions, and converted them to SCIL instructions via a small complier. 

The SCIL, as the machine language for the SCIL processor, improved the performance of 

the processor and reduced the amount of needed hardware resources. The SCIL processor 

modified the architecture of Tanenbaum's IJVM processor to adapt to the SCIL instruction 

set. Moreover the SCIL processor used a predictor and the forwarding technique to reduce 

the number of suspending cycles. We illustrated the performance of our processor and 

compared benchmark results of the SCIL processor system with a MicroBlaze processor 

system. 

The future works can continue in three directions. First of aIl, the performance of SCIL 

processor might be improved. We can use an eight-stage pipeline to replace current six­

stage pipeline. Now the unit IFU and the unit MIU have to do lots of works. The IFU is 

responsible to fetch data from memory and decode instruction code. The MIU is responsible 

to search microinstructions and generate command signais. Both of two units needs 

relatively long time to complete their tasks. As a result, it is hard for us to improve the clock 

frequency of the processor further. Therefore, we can split the works of the MIU into two 

parts. We use two different units to do search microinstructions and do generate command 

signaIs respective!y. ln this way, each unit needs less time than the MIU needs. Accordingly, 

we can split the tasks of the IFU to two units. Then we modify six pipeline stages to eight 

pipeline stages. We think the clock frequency of the processor might be improved a lot after 
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the processor using the new pipeline. Another approach of improving the performance 

is to implement some often-used instructions in circuitry. The processor does not need man y 

hardware resources on the se circuitries. Furthennore when the processor can execute these 

often-used instructions in a very short time, we think the processor could improve the 

performance remarkably. Secondly, we intend to enlarge the semantic of the language SCIL, 

and make the processor support the object-oriented concepts. Currently the SCIL is like the 

simple C and does not support object-oriented programming. However, it is necessary to 

make the processor support it if we hope the SCIL processor could be used in practice. In 

our opinion, the processor would need some modifications in order to support object­

oriented concepts. The processor can add one memory to recode the address of object 

instances and another memory to converse these object instances. Moreover, in order to 

implement the garbage collection function effectively, we make the memory for object 

instances a !ittle special. The whole memory is divided into two parts. Both of two parts can 

do garbage collection independently. Wh en the processor is accessing data in one part of 

memory, this part suspends doing garbage collection. However another part can still do 

garbage collection. In this way, the processor can use object instances and do garbage 

collection at the same time. We think this approach of garbage collection can give the 

processor a good perfonnance. Finally, it is possible to fit multiple SCIL processors into a 

same FPGA, we think it would be interesting to realize a network-on-chip design and 

measure the overhead. We can use different network topologies, such as bus network, ring 

network and star network, to connect various SCIL processors in a multiprocessor design. 

Furthermore, we can construct the systems with different number of SC1L processors to test 

the speedup obtained due to the use of many processors instead of one being used. 
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, Appendix 

List of Supportable CIL Instructions 

CIL instruction SCIL instruction SCIL Instruction Code 

nop nop 00000000 

Dup dup 00000011 

pop pop 00000110 

ret ret 00000100 

add add 00000001 

add,ovf add 00000001 

Add,ovf.un add 00000001 

sub sub 00000010 

sub,ovf sub 00000010 

Sub,ovf,un sub 00000010 

and and 00001010 

or or 00001011 

xor xor 00001100 

neg neg 00001101 

not not 00001110 

newarr newarr 00000111 

Ret main ret_main 00000101 

Idelem.i1 Idelem 00001001 

Idelem.u1 Ide lem 00001001 

Idelem.i2 Idelem 00001001 

Idelem.u2 Idelem 00001001 

Idelem.i4 Ide lem 00001001 

Idelem.u4 Ide lem 00001001 

Idelem,i8 Idelem 00001001 

Idelem,i Idelem 00001001 

Idelem.r4 Idelem 00001001 

Idelem.r8 Idelem 00001001 

Idelem Idelem 00001001 

stelem.i stelem 00001000 

stelem,i1 stelem 00001000 

stelem,i2 stelem 00001000 
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stelem.i4 stelem 00001000 

stelem.i8 stelem 00001000 

stelem.r4 stelem 00001000 

stelem.r8 stelem 00001000 

stelem stelem 00001000 

shi shi 00010000 

shr shr 00001111 

shr.un shr 00001111 

Idarg.O Idarg 01000101 

Idarg.1 Idarg 01000101 

Idarg.2 Idarg 01000101 

Idarg.3 Idarg 01000101 

Idarg.s Idarg 01000101 

Idarg Idarg 01000101 

Idloc.O Idloc 01000110 

Idloc.1 Idloc 01000110 

Idloc.2 Idloc 01000110 

Idloc.3 Idloc 01000110 

Idloc.s Idloc 01000110 

Idloc Idloc 01000110 

stloc.O stloc 01000010 

stloc.1 stloc 01000010 

stloc.2 stloc 01000010 

stloc.3 stloc 01000010 

stloc.s stloc 01000010 

stloc stloc 01000010 

starg.s starg 01000001 

starg starg 01000001 

param param 01000100 

Ldc.i4.m1 loads 11000001 

Idc.i4.0 loads 11000001 

Idc.i4.1 loads 11000001 

Idc.i4.2 loads 11000001 

Idc.i4.3 loads 11000001 

Idc.i4.4 loads 11000001 

Idc.i4.5 loads 11000001 

Idc.i4.6 loads 11000001 
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Idc.i4.7 loads 11000001 

Idc.i4.8 loads 11000001 

Idc.i4.s loads 11000001 

Idc.i4 loads 11000001 

Idc.iB loads 11000001 

Idc.r4 loads 11000001 

Idc.rB loads 11000001 

cali cali 10000010 

jmp br 10000001 

br.s br 10000001 

br br 10000001 

beq.s beq 10001000 

beq beq 10001000 

bge.s bge 10001011 

bge.un.s bge 10001011 

bge bge 10001011 

bge.un bge 10001011 

bgt.s bgt 10001010 

bgt.un.s bgt 10001010 

bgt bgt 10001010 

bgt.un bgt 10001010 

ble.s ble 10001100 

ble.un.s ble 10001100 

ble ble 10001100 

ble.un ble 10001100 

blt.s bit 10000111 

blt.un.s bit 10000111 

bit bit 10000111 

bit. un bit 10000111 

bne.un.s bne 10001001 

bne.un bne 10001001 

local local 10000011 
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Table of Microinstructions 

SCIL code M icroinstructions Comment 

loads1 MDR=TOS=OPD Copy OPD to TOS and MDR 

loads2 MAR=SS=SS+1 ;wr Increase SS and set MAR; write memory 

add1 MAR=SS=SS-1 Read and store the word following the stack top 

add2 TPR=TOS; rd TPR the stack top; read memory 

add3 MDR=TOS=MDR+TPR; wr Add two element; write mel110ry 

stloc1 MAR=LV+OPD MAR=first variable address + displacel11ent 

stloc2 MDR=TOS; wr M DR==the stack top; write l11el11ory 

stloc3 MAR=SS= SS-1 Read and store the word following the stack top 

stloc4 rd Read l11emory 

stloc5 TOS=MDR Write the new stack top 

starg1 MAR=PAR+OPD MAR=first paral11eter address + displacel11ent 

starg2 MDR=TOS; wr M DR==the stack top; write l11emory 

starg3 MAR=SS=SS-1 Read and store the word following the stack top 

starg4 rd Read mel110ry 

starg5 TOS=MDR Write the new stack top 

cal11 TPR=OPD Copy OPD to TPR 

cal12 MAR=SS=SS+1 Increase SS; Copy new SS to MAR 

cal13 MDR=NPC; wr Copy NPC to MDR; write mel110ry 

cal14 MAR=SS=SS+1 Increase SS; Copy new SS to MAR 

cal15 MDR=TOS=LV; wr Copy LV to M DR and TOS; write l11emory 

ca liS LV=SS Copy new SS to LV 

call7 BUS C=TPR Output TPR via BUS C 

local1 SS=SS+OPD Increase SS with number of variables 

local2 TOS=O Reset TOS 

Param1 TPR=OPD Copy OPD to TPR 

Param2 MAR=SS=SS+1 Increase SS; Copy new SS to MAR 

Param3 MAD=PAR; wr Cope PAR to MAD; write memory 

Param4 PAR=SS-TPR PAR=position of stack top -- number of parameters 
.... ~ 

ret1 MAR=LV Copy LV to MAR 

ret2 MAR=SS=LV-1; rd Set SS; Copy new SS to MAR; read memory 

ret3 LV=MDR; rd Copy MDR to LV; read memory 

ret4 TPR=MDR Copy M DR to TPR 

ret5 MAR=SS=SS-1 Read and store the word following the stack top 

retS MAR=SS=PAR; rd Set SS; Copy new SS to MAR; read memory 
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ret7 PAR=I\IIDR Copy MDR to PAR 

ret8 MDR=TOS; wr Copy the stack top to M DR; write Illelllory 

ret9 BUS C=TPR Output TPR via BUS C 

ret_main1 MAR=SS=O Reset MAR and SS 

ret main2 MDR=TOS; wr Write the result to the first elelllent 

ret_main3 Output ail '0' End of progralll 

Idarg1 MAR=PAR+OPD MAR=first parallleter address + displacelllent 

Idarg2 MAR=SS=SS+1; rd Increase SS; Copy new SS to MAR; read Illelllory 

Idarg3 TOS=MDR; wr Set the stack top = MDR; write Illelllory 

Idloc1 MAR=LV+OPD+1 MAR=first variable address + displacelllent 

Idloc2 MAR=SS=SS+1; rd Increase SS; Copy new SS to MAR; read Illelllory 

Idloc3 TOS=MDR; wr Set the stack top = MOR; write Illelllory 

br1 Z='1' Set Z=' l' 

br2 JMP(Z) Branch if Z 

blt1 MAR=SS=SS-1 Read and store the word following the stack top 

Read and store the word following the stack top; 

blt2 MAR =SS=SS-1; rd Read Illelllory 

blt3 TPR=I\IIDR; rd Copy MDR to TPR; read Illelllory 

blt4 Z=TPR cmp TOS IfTPR<TOS then Z=' l' else Z='O' 

blt5 TOS=MDR; JMP(Z) Set the stack top = MOR; Branch if Z 

Beq1 MAR=SS=SS-1 Read and store the word following the stack top 

Read and store the word following the stack top; 

Beq2 MAR=SS=SS-1; rd Read Illelllory 

Beq3 TPR=MDR; rd Copy MOR to TPR; read Illelllory 

Beq4 Z=TPR cmp TOS IfTPR=TOS th en Z=' l' else Z='O' 

Beq5 TOS=MDR; JI\J1P(Z) Set the stack top = M DR; Branch if Z 

Bne1 MAR=SS=SS-1 Read and store the word following the stack top 

Read and store the word following the stack top; 

Bne2 MAR=SS=SS-1; rd Read Illelllory 

Bne3 TPR=MDR; rd Copy MOR to TPR; read Illelllory 

Bne4 Z=TPR cmp TOS IfTPR<>TOS then Z=' l' else Z='O' 

Bne5 TOS=MDR; JMP(Z) Set the stack top = MOR; Branch if Z 

Bgt1 MAR=SS=SS-1 Read and store the word following the stack top 

Read and store the word following the stack top; 

Bgt2 MAR=SS=SS-1; rd Read Illelllory 

Bgt3 TPR=MDR; rd Copy M DR to TPR; read Illelllory 

Bgt4 Z=TPR cmp TOS IfTPR>TOS then Z=' l' else Z='O' 
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Bgt5 TOS=MOR; JMP(Z) Set the stack top = !VI DR; Branch if Z 

Bge1 MAR=SS=SS-1 Read and store the word following the stack top 

Read and store the word following the stack top; 

Bge2 MAR=SS=SS-1; rd Read memory 

Bge3 TPR=MOR; rd Copy MDR to TPR; read memory 

Bge4 Z=TPR cmp TOS IfTPR>=TOS then Z=' l' else Z='O' 

Bge5 TOS=MDR; JMP(Z) Set the stack top = M DR; Branch if Z 

ble1 MAR=SS=SS-1 Read and store the word following the stack top 

Read and store the word following the stack top; 

ble2 MAR=SS=SS-1; rd Read memory 

ble3 TPR=MOR; rd Copy MDR to TPR; read memory 

ble4 Z=TPR cmp TOS IfTPR<=TOS then Z=' 1 ' else Z='O' 

ble5 TOS=MDR; JMP(Z) Set the stack top = M DR; Branch if Z 

Sub1 MAR=SS=SS-1 Read and store the word following the stack top 

Sub2 TPR=TOS; rd TPR = the stack top; read memory 

Sub3 MOR=TOS=MOR-TPR; wr Subtract two element; write memory 

And1 MAR=SS=SS-1 Read and store the word following the stack top 

And2 TPR=TOS; rd TPR = the stack top; read memory 

And3 MOR=TOS=MOR and TPR; wr AND two element; write memory 

or1 MAR=SS=SS-1 Read and store the word following the stack top 

or2 TPR=TOS; rd TPR = the stack top; read memory 

or3 MOR=TOS=MOR or TPR; wr OR two element; write memory 

not1 MAR=SS Copy SS to MAR 

NOT the stack top; Copy new stack top to MDR; writc 

not2 MOR=TOS=not TOS; wr memory 

Neg1 MAR=SS Copy SS to MAR 

Negative the stack top; Copy new stack top to MDR; 

Neg2 MOR=TOS=-TOS; wr write memory 

Oup1 MAR=SS=SS+1 Increase SS; Copy new SS to MAR 

Oup2 MOR=TOS; wr Copy the stack top to MDR; write memory 

Pop1 MAR=SS=SS-1 Read and store the word following the stack top 

Pop2 rd Read memory 

Pop3 TOS=MOR Copy MDR to TOS 

xor1 MAR=SS=SS-1 Read and store the word following the stack top 

xor2 rd Read memory 

xor3 TPR=not MOR NOT MDR; Copy new MDR to TPR 

xor4 TPR=TPR and TOS AND two elements; Copy the result to TPR 



xor5 1 TOS=not TOS 

xor6 TOS=MDR and TOS 

xor7 MDR=TOS=TPR or TOS; wr 

loadw1 TPR=shI16(OPD) 

loadw2 MAR=SS 

loadw3 MDR=TOS=TPR+ TOS; wr 

newarr1 TPR=SS 

newarr2 MAR=SS=SS+ TOP 

newarr3 MDR=TOS=TPR; wr 

stelem1 MAR=SS=SS-1 

stelem2 MAR=SS=SS-1; rd 

stelem3 TPR=MDR; rd 

stelem4 MAR=TPR+MDR; 

stelem5 MDR=TOS; wr 

stelem6 MAR=SS=SS-1 

stelem7 rd 

stelem8 TOS=MDR 

Idelem1 MAR=SS=SS-1 

Idelem2 rd 

Idelem3 MAR= MDR+ TOS 

Idelem4 MAR=SS; rd 

Idelem5 TOS=MDR; wr 

shr1 MAR=SS 

shr2 MDR=TOS=SHR8(TOS); wr 

shl1 MAR=SS 

shl2 MDR=TOS=SHL 1(TOS); wr 
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NOTTOS 

ANO two elements; Copy the result to TOS 

OR two elements; Copy the result to MOR and TOS; 

write memory 

Copy high 16 bits to TPR 

Copy SS to MAR 

Combine high 16 bits and low 16 bits; write memory 

Copy SS to TPR 

Increase SS with the size of array; Copy new SS to MAR 

Copy the initial position of array to M OR and TOS; 

write memory 

Read and store the word following the slack top 

Read and store the word following the stack top; 

Read memory 

Copy initial position of array to TPR; read ll1ell1ory 

MAR=initial position of array + index 

Copy TOS to MOR; write memory 

Read and store the word following the stack top 

Read memory 

Copy MOR to TOS 

Read and store the word following the stack top 

Read memory 

MAR=initial position of array + index 

Copy SS to MAR; read memory 

Copy index element to TOS; write memory 

Copy SS to MAR 

Shift TOS; Copy new TOS to MOR; write mell10ry 

Copy SS to MAR 

Shift TOP; Copy new TOS to MOR; write mell10ry 


