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i
Abstract

Embedded systems and their applications are becoming ubiquitous and transparent.
Nowadays, the designers need to implement both hardware and software as fast as they can
to face the competition. Hence tools and IPs became an important factor of the equation. In
this work, we present a synthesisable softcore processor similar to the micro-architecture of
Tanenbaum’s 1JVM processor. The processor implements a subset of Microsoft’s Common
Intermediate Language. We seek to accelerate the development of the embedded software
by providing a platform onto which the whole NET Framework (C#, Visual Basic.NET...)
(along with its object-oriented approach) could execute. We used a Xilinx Virtex Il PRO as

the prototyping platform.

Keywords: Embedded processor, Softcore, CIL, SCIL Processor, Embedded System,
Net language



v
Résumé

Les Systemes embarqués et leurs applications sont omniprésents el transparents
actuellement. Afin d’affronter des compétitions, des designers ont besoin d’implémenter
des matériels et des logiciels le plus vite possible. Des outils et des IPs donc deviennent un
facteur important. Dans ce projet, nous présentons un processeur sollcore dont
I’architecture est inspirée par [’architecture de I'lJVM processeur de Tanenbaum. Le
processeur est synthétisable et implémente un sous ensemble de CIL (Microsoft’'s Common
Intermediate Language). Parce que CIL est le plus bas niveau langage dans Microsoft .Net
Framework, toutes les .Net langages, comme C# et Visual Basic.NET, peuvent étre utilisés
pour les systémes embarqués. Nous souhaitons que celte nouvelle plate-forme puisse

accélérer le développement des applications logicielles embarquées.

Mots de clés : Processeur embarqué, Softcore, CIL., SCIL processeur, Systeme embarqué,

Net langage
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Chapter 1  Introduction

Introduction

With embedded systems used more and more widely, new design methods and new
hardware development tools are introduced and commercialized. However, embedded
system designers continue to demand complete solutions to build and complete quickly their
hardware and software designs. To satisty such demands, many manufacturers provide their
embedded processors and corresponding integrated embedded development environments,
such as Xilinx’s MicroBlaze |20] and Xilinx Platform Studio [33]. as well as Altera’s NoislI
[11] and Quartusll Development Software [34]. By using these design tools, the embedded
system designers can develop a SoC (System On Chip) starting at a relatively high level. On
the hardware side, the designers choose the embedded processor and construct the embedded
sub-system implementations under the development environments; on the software side, the
designers develop software applications and then convert them to embedded processor
instructions, which can be executed by the embedded system implementations. After that,
the designers use the functionalities integrated in the development tools to modify the
optimal design features, improve the design performance, and optimize area and cost of the

design system. In this way, the developers can craft embedded systems quickly and easily.

In this work, we introduce a new softcore processor, SCIL Processor, which implements a
subset of Microsoft’s Common Intermediate Language (CIL) [2]. This processor makes it
possible to use all primary NET language in embedded system designs to develop sofiware
applications. In our design, because it is hard to directly implement the CIL on hardware, we
consider a subset of the CIL as a simpler intermediate language, and then implement this

new language on hardware.



Embedded processors

An embedded system is a special purpose computer system designed to perform one or a
few dedicated functions, and it is usually embedded as part of a complete device including
hardware and mechanical parts [3]. In order to shorten the period of embedded system
development, almost all designers use the CPU platform. The CPU platform uses the
special-purpose embedded processors, which can be purchased as part of the chip design, to
construct the embedded system. By using the CPU platform, it is easy and quick for the
designers to develop a chip (SoC) and create the complex embedded systems. A SoC
consists of the hardware and the software. The hardware includes embedded processor,
DSP (Digital Signal Processor) cores, peripherals and interfaces; and the software which is
the program loaded into the memory controls operations of the hardware. The design flow
for a SoC aims to develop hardware and software in parallel. The SoC designs can program
on field-programmable gate array (FPGA) with all the logic, including the embedded

processors.

There are two kinds of embedded processors: microprocessors (up) and microcontrollers
(uc). Microprocessor are the single VLSI chip that has a CPU and may also have some
other units such as caches, floating point processing arithmetic unit, and super-scaling units.
Microprocessors support their particular instruction sets. Microcontrollers are the single-
chip VLSI unit, which has built-in peripherals together with some microprocessors on the
chip. The use of microcontrollers can reduce the size of embedded systems because it
reduces the size of control programs. Since the first microprocessor Intel 4004 [4], which
requires external memory and support chips, was used in embedded systems, many
microprocessors have been developed and commercialized in this field. Furthermore, in
contrast to the personal computer (PC) market where only limited CPU architectures are
used, there are many different CPU architectures used for embedded designs such as ARM
[5], MIPS [6], Atmel AVR [7], Zilog Z80 and Z8 [8], Renesas H8 and M32R [9], PIC [10],

as well as PowerPC.

Embedded processors can also be divided into hardcore processors and softcore processors.

A hardcore processor is a fabricated integrated circuit that may or may not be embedded



into additional logic, and usually it has a fixed unchangeable construction. A softcore

processor is a microprocessor core described in a HDL, and that can be implemented using
logic synthesis. It can be implemented via different semiconductor devices containing
programmable logic such as FPGA. The softcore processor can be configured based on
factors such as schedule, unit cost, space constraints, product lifetime, toolset, and
flexibility needs. Although usually the hardcore processors can achieve better performance
than that the softcore processors, the softcore processors are widely used because not all
embedded applications need the high speed performance. In practice, many applications
require expanded functionality and flexibility. Softcore processors usually provide a
substantial amount of flexibility through the configurable nature of FPGA. The flexibility
allows embedded system designers to create a custom system that contains only the needed
functionalities. Furthermore, it is easy for the softcore processor systems to modify the
current designs to meet future needs. Therefore, softcore processors may be used not only
in a simple system, where the only functionality is limited to a simple GPIO (General
Purpose Input/Output), they may also fit a complex system, where an operation system is
incorporated and includes many peripherals or any other custom IP. Moreover, these
softcore processors can be implemented in a much shorter amount of time than hardcore
processors can. Therefore softcore processors can shorten time-to-market. At present, the

most popular used softcore processors are Xilinx’s MicroBlaze and Altera’s Niosll.

The MicroBlaze [20] is a softcore processor optimized for Xilinx FPGAs. The MicroBlaze
is based on RISC architecture. It features a 3-stage or 5-stage pipeline, with an instruction
completing in each cycle. Both instruction and data words are 32 bits. The MicroBlaze can
reach speeds of up to 210 MHz on the virtex-5 FPGA family. The processor can
communicate via the LMB bus for a fast access to local memory, which is normally the
BRAM inside FPGAs. The size of the BRAM is flexible and can change based on the
demands of target systems. With the configurable definition, the MicroBlaze can be
customized to the applications in many aspects such as: cache structure, peripherals, as well
as interfaces. In addition, the MicroBlaze can add or remove hardware implementation for
certain operations including multiplication, division, and floating-point arithmetic. [n

Figure 1, we present the base architecture of the MicroBlaze, and show its 3-stage pipeline.
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Figure 1: Xilinx MicroBlaze [20]

Motivation of project

Nowadays Xilinx Inc and Altera Corp dominate the whole PLD (Programmable Logic
Device) market. Based on a business report [38], Xilinx and Altera accounted for a
combined 83.4 percent market share of the PLD market in 2005. Xilinx is the PLD market
leader with a 50.3 percent market share and second-place Altera captures 33.1 percent of
the PLD market. The other small corporations are so far down the two giants so that almost
nobody ever hears of them. As a result when people develop embedded systems, they
naturally choose the product from Xilinx and Altera. Because both PowerPC and
MicroBlaze from Xilinx and Niosll from Altera focus on C/C++ programs, currently C and
C++ are the main programming languages which are used in embedded system designs. On
the other hand, a number of researches have been to develop hardware implementations for
Java. In fact, there exist many Java processors, which can support JVM or dedicated Java
instructions. Hence, it is possible to use Java as the embedded system developing language

with these Java processors.



However, there are few attempts to create NET language processors and use the .NET
languages in embedded system designs although .NET languages are used widely at present.
Therefore, we try to develop an embedded processor for NET language and aim at the
language CIL. Because the CIL is the lowest-level language in the .NET Framework and all
primary .NET languages, including C#, Visual Basic .NET, C++/CLI and J#, can compile
to the language CIL, the new processor can execute all NET programs. In this way, we can
use all .NET languages as programming languages in embedded system designs with our

processor.

With such an embedded processor for NET language, the designers can use the existing
programs, which are written in .NET languages, for the target applications instead of
translating them to the programs in C or Java. In addition, as an IP or a co-processor,
the .NET processor would be used as a dedicated unit, which is responsible for
executing NET programs, in one system. Finally, we can use this new processor to do
some tests and benchmarks in multiprocessor systems. It is interesting to compare the

execution results of different languages.

Introduction of Microinstruction

“Microinstruction is an instruction that controls data flow and instruction-execution
sequencing in a processor at a more fundamental level than machine instructions. A series
of microinstructions is necessary to perform an individual machine instruction.” [21]
Microinstructions help the designers to find a simple and easy method to develop the
control logic for a processor. Originally, people implemented machine instructions directly
in circuitry which provided fast performance. However as instruction sets became more and
more complex, the corresponding circuitries became more difficult to design and needed
too many hard resources. In 1951 Maurice Wilkes described using microinstructions in
CPU design for the first time. By using Microinstructions, CPU design engineers can write
a microprogram to implement a machine instruction rather than design a circuitry for it. It

is more flexible to use microinstructions than use circuitries. Even late in the design process,
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designers can easily modify the context of microinstructions to adapt the changeable
CPU demands. Moreover, it is possible to realize very complex instruction sets with
microinstructions. The CPU designers can use microinstructions to implement many

abstract and high level machine instructions. The famous CPU that uses microinstructions

is the IBM System360.

The microprograms with microinstructions exist on a lower conceptual level than other
familiar programs. As one single high level language statement is compiled to a series of
machine instructions, one machine instruction is implemented by a series of
microinstructions in the processor using microinstructions. The microinstruction exists
usually in a special read-only memory instead of the main system memory.
Microinstructions control the action of the processor at a very low level. For example, a
single typical microinstruction might specify which register should be updated or which
operation of ALU should be done in one single cycle. Microinstructions can be thought as
the combination of command signals for all parts of the processor. In Example 1, we show
several standard microinstructions. There are four microinstructions from MO to M3. These
four microinstructions are to implement the instruction fefch. The processor has to execute

the four microinstructions in turn for each instruction ferch.

MO:  PC_out, MAR in
M1: read, pcincr
M2:  MDR out, IR in
M3: decoding opcode in IR
Example 1: The sequence of microinstructions for the instruction fetch

Introduction of Common Intermediate Language

CIL (Common Intermediate Language) is the lowest-level human-readable programming
language in the CL1 (Common Language Infrastructure) of Microsoft’s NET Framework.
All primary .NET languages, including C#, Visual Basic .NET, C++ and J#, are compiled
to the CIL before .NET program execution. The CIL is a CPU-independent and platform-
independent instruction set, and it can be executed in any environment supporting the .NET
framework. Like JVM (Java Virtual Machine), the CIL has a stack-based architecture and

uses bytecode instructions. Moreover, the CIL is an object-oriented language.



During execution of a .NET assembly, its CIL codes are passed through the CLI’s JIT
(Just-In-Time) compiler. The JIT compiler translates bytecode instructions to native codes
that are immediately executable to the CPU. The procedure of compilation is performed
gradually during the whole program’s execution. Moreover, in a CIL program, except for
CIL instructions, there are many Metadata. A .NET language compiler generates Metadata
and assembles them with CIL instructions. A Metadata in CIL file begin with a “point”. For
example,
.maxstack 2

Metadata contain the information about compiled classes and some additional attributes.
Metadata can be thought as the complementary descriptions for CIL instructions. For
example, Metadata used for a method usually contain the information about the class name,
the type of the return value and the type of the method parameter. The information ensures
that the method can be invoked. The JIT compiler reads these Metadata during the JIT

compilation. In Figure 2, we show the basic process of CLR (Common Language Runtime).

NET Source CIL + Metadata NET Class libraries
> ]
(.NET Framework)
A 4
NET Just-in-time
Complier (IITer)
PE file oS
(.exe) Hardware

Figure 2: Common Language Runtime

The NET compiler firstly translates a .NET programs to a PE (portable executable) file
[23]. The PE file is a collection of CIL instructions and Metadata. When the PE file is

executed, a JIT compiler compiles CIL instructions and Metadata to native language



instructions. During the compilation, the JIT compiler refers to .NET class libraries.
Finally, these new instructions can be executed on some special hardware environment with

some special OS.

Introduction of SCIL processor

The SCIL processor is a synthesizable softcore processor which implements a subset of the
CIL. 1t is a little-endian processor. The processor supports 32 bits integer calculation, and it
cannot execute floating-point operations. The processor does not support object-oriented

concepts at present.
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Figure 3: Block-diagram of SCIL processor

In Figure 3, we present the block-diagram of the SCIL processor. The processor consists of

the following functional units: Instruction Fetch Unit (IFU), Microinstruction Unit (MIU),



9

ALU, Predictor and Registers {local memory). The IFU fetches SCIL instruction data

from memory and then decodes the SCIL instruction code; the MIU picks out
microinstructions and converts them to command signals; the ALU does the basic
arithmetic operations and determines whether the processor takes condition branches; the
Predictor is a one-bit predictor with 128 different addresses for branch prediction; and the
local memory consists of nine 32-bit registers. Furthermore, we can find three data buses
{BUS A, BUS B and BUS C) and five command signal sets (CMD_A and B, CMD_ALL,
CMD_REG, CMD_MEM, and CMD_IFU) which control the operations of different units.
In addition, the SCIL processor directly connects two BRAMSs. One is as the instruction

memory and the other is as the data memory.

Outline of thesis

The remainder of the thesis is organized as follows. We will introduce the related work in
next chapter. In chapter 3, we will discuss the CIL and the new language SCIL. Then in
chapter 4, we will present the detailed SCIL processor architecture. We will explain the
functions and characteristics of each unit of the processor. After that in chapter 5, we will
show some experiment results, and we will compare and discuss the performance between
the SCIL processor and the MicroBlaze processor. Finally, we will present the conclusion

and future works in chapter 6.
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Chapter 2  Related work

Currently most embedded processors, which target a specific programming language, focus
on Java or JVM. These processors are usually called Java processors. In this chapter, we
present several typical Java processors. We introduce three JVM based processors: SUN’s
picoJava processor, Co-Designed Java Virtual Machine processor developed by University
of New Bunswick and Tanenbaum’s IJVM processor. Moreover, we introduce the
Lightfoot processor, which supports the instruction set interpreted from JVM. Furthermore,
we introduce IBM System z Application Assist Processor (zAAP), which is unique Java

processor used in large-scale commercial field.

picolava processor

SUN’s picolava processor [12] may be the most famous Java processor although picolava
only appears in research papers and this processor is never released as a product by SUN.
Now SUN provides the full Verilog code under an open source license [13]. The first

version picoJava core, picoJava-1, was introduced in 1997.

Through an interpreter or through just-in-time (JIT) compilation, Java programs can be
executed on a processor. However, both the interpretation and the JIT compilation have
their disadvantages. The nature of interpretation involves a time-consuming loop, which
affects performance significantly. A JIT compiler can reach a high speed. However,
because the compiler itself and compilation require large quantity of storage, it consumes
much more memory, which is a precious resource in the embedded designs, than the
interpretation. Therefore, SUN developed picoJava-I processor to create a processor to the
Java environment which can eliminate the disadvantages of the two traditional execution
ways. The picoJava-l is a small, configurable core designed to support the JVM. In Figure
4, we present the major function units of the picoJava-1. The shading parts indicate

configurability.
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Figure 4: Block-diagram of picoJava-I processor [12]

The instruction cache is a direct-mapped cache with a line size of 8 bytes, while the data
cache is a two ways, set-associative, write-back cache. Both of them can be configured
between 0 and 16 Kbytes. The picolava-1 processor has a 64-entry stack cache which
directly supports the JVM’s stack based architecture. The stack cache is implemented as a
| register file and managed as a circular buffer with a pointer to the top of stack. The
picoJava-I allows the option of including or excluding a floating-point unit. The picolava-I
processor includes a RISC-style pipeline and a straightforward instruction set. It
implements 341 different instructions. The processor implements simple Java bytecodes in
circuitry and executes them in one to three cycles. For example, either integer addition or
quick loads of object fields uses a circuitry directly. The picolava-l implements some
performance critical instructions, such as calling a procedure, by using microinstructions.

Furthermore, for some complex instructions, such as creating the object or garbage
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collection, the picolava processor uses a trap to execute these instructions. One trap
needs at least 16 cycles to complete executing. Besides, the picolava-I processor does not

have branch prediction logic. In Figure 5, we present the picolava-I processor’s four-stage

pipeline.
Fetch Decode Execute Write
and cache back

Fetch 4-byte | Decode Execute for Write results
cache lines up to two one or more back into
into the instructions cycles the operand
instruction | stack
buffer Folding logic

Figure 5: PicolJava-I processor’s four-stage pipeline [12]

The picoJava-I processor can accelerate Java bytecode execution with a folding operation,
which takes advantage of random single-cycle access to the stack cache. Example 2 shows

that the processor can reduce one cycle to complete the stack operations by using folding

operation.
T —m 10 |+l T+LO T {3 T+LO
T —
D L0 L0 0
LD
(a) (b)
Cycle 1:iload_0 Cycle 2: iadd Cycle 1:ilcad_0. iadd

Example 2: Folding operation [12]
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The picolava-l can be implemented minimal in about 440K gates [14]. Moreover, based on
the experiments, the picoJava-I processor can reach 15 to 20 times faster than a 486 with an
interpreter at an equal clock rate, and five times faster than a Pentium with a JIT compiler

at an equal clock rate.

Co-Designed JVM processor

The co-designed JVM processor [15] is developed by Kent from University of New
Bunswick. This processor uses hardware/software partitions for a JVM within the context
of a desktop workstation. The motivation of Kent is to relicve performance penalty caused
by the translation from Java bytecodes to machine language. The co-designed JVM
processor tries to leverage the combined benefits of hardware and software. Instead of

100% on hardware, Kent implemented only part of Java bytecodes on hardware.

The co-designed approach realizes a fully functional JVM comprised of both hardware and
software support in a desktop workstation environment. The dedicated hardware, which is
supported directly on the workstation mainboard, uses a FPGA tightly coupled with the
workstation’s general purpose processor through a PCI bus. The partitioning of the design
between hardware and software is interesting. The processor uses overlap partitions
between hardware and software instead of maintaining disjoint partitions which are
normally used in co-designed systems. This partitioning is to relax the conditions to switch
execution between hardware/software partitions. The instructions that can be implemented
in the hardware partition are those that can be found in traditional processors such as stack
manipulation, arithmetic operators and logic operations, comparison and branching, jump
and return, as well as data loading and storing. Most of accessed data structures, i.e. the
method’s bytecode, execution stack and local variables, are placed in the FPGA board
memory. The constant pool and the heap reside in the PC’s main memory. The software
partition executes all object-oriented bytecodes. It supports many complex virtual machine
functions, such as class loading and verification, garbage collection, exceptions, as well as
memory management. For example, the instructions new, checkcast, and instanceof are

executed in software partition. The software partition is responsible for transferring data
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during context switch between the hardware and software partitions. Furthermore,
because some instructions are supported both in the hardware partition and in the software
partition due to the overload partitioning, the software partition does a run-time decision to
decide where these instructions are executed. The software partition decides during runtime
which instruction sequences can be executed by the hardware. The whole system uses a
single data bus and a control line to realize a simple communication protocol between the
two partitions. Once the hardware partition finishes execution, it signals the software using
an interrupt. Then the software partition retrieves the current state of the virtual machine

from hardware and continues execution.

The tests of small benchmarks on a simulator show performance gains by a factor of 6 to 11
compared with an interpreting JVM. (Kent does not introduce the machine used to run the
software JVM.) Kent does not show benchmark results on FPGA after implementing the
processor. The hardware partition is coded in VHDL and the memory uses the memory
space within the FPGA device. The interface with the PCI bus is Altera pci_mt64
MegaCore function. Through timing analysis, the maximum clock rate is 24 MHz. The
design which implements the full partition (161 instructions) needs 37,756 logic elements
with 64 entries instruction cache and data cache. When it uses 16 entries cache, the number

of logic elements becomes 33,490.

Lightfoot processor

The 32-bit Lightfoot processor [16] is the product of Digital Communication Technologies.
This processor can be used as a design solution of embedded system OEMs from a tiny
memory footprint. It is a hybrid 8/32-bit processor based on Harvard architecture. This
processor uses a 3-stage pipeline. The instruction memory is 8-bits wide while the data

memory is 32-bits wide.
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Figure 6: Block-diagram of Lightfoot processor [16]

In Figure 6, we show the key blocks of the Lightfoot processor. The shading part indicates
configurability of the memory interface. The user can configure the size of memory and
cache. The Control Unit is responsible for fetching, decoding and sequencing the execution
of instructions in the processor. The ALU is a traditional 32-bit design. Besides the usual
arithmetic and logic capabilities, it has a 32-bit barrel shifter and a 2-bit multiple step unit
which can execute a 32x32 bit multiply in 16 cycles. Data stack holds temporary data. The
return stack holds return addresses for subroutines. Its top-of-stack element is used as an
index register to access program memory. Moreover, the return stack can be used as an
auxiliary stack for programs. Both of the two stacks consist of a hardware part and a
memory extension. The hardware part of the data stack consists of eight 32-bit on-chip
registers while the hardware part of the return stack is four 32-bit registers. The processor
has 256 words of register space. The sixteen addresses at the bottom of them are used as
CUP registers such as the stack extension pointers, constant and parameter pool pointers.
The other register space is for interfacing to system peripherals such as memory
management unit. The processor supports the instruction set interpreted from JVM. The

Lightfoot processor has three different instruction formats: soft bytecodes, non-returnable
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instructions and 32 single-byte instructions. The Lightfoot processor implements the

128 soft bytecode instructions in low program memory. When the processor needs to
execute a soft bytecode instruction, it branches to one location where the implementation of
this soft bytecode resides. The processor needs one cycle to do this operation, and it pushes
the address of the following instruction to the return stack. The 32 single-byte instructions
can be folded with a return operation. The 32 single-byte instructions have a return bit.
When this bit is set, the processor loads the value popped from the return stack to the
program counter register. This mechanism implements a zero-overhead return feature of the

processor.

The frequency of the Lightfoot processor can reach 31 MHz on Spartan 11 FPGA family
and 40 MHz frequency on Virtex 1l FPGA families. It can be implemented with less than

30,000 gates for the conventional form.

IBM System z Application Assist Processor (zZAAP)

The zAAP [21][35] is the first large-scale commercial Java processor. The zAAP is
introduced by IBM in 2004, and available on IBM System z9 and zSeries z990/z890.
(Because the zAAP is a commercial product of IBM, we can not find the detailed
architecture of this processor. We introduce the zAAP based on the introduction and
presentation on IBM ofticial website.) The objective of the zAAP is to integrate Java
technology-based applications with mission-critical data and reduce infrastructure

complexity for multi-tier applications.

The zAAP is not designed as an independent processor which works individually. Usually
the zAAPs work as particular processors and do execute Java programs in IBM System z,
IBM’s mainframe computers. For example, IBM 2990 has 10 CPs (conventional processor),
1 ICT (Integrated Coupling Facility), 2 IFLs (Integrated Facility for Linux), and 3 zAAPs.
The zAAPs execute Java programs in IBM JVM under control of z/OS [36], which is
IBM’s flagship mainframe operating system. When a Java program is to be executed, z/OS

dispatches the work units, which the ZAAP can support, on a ZAAP while z/OS dispatches
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the left work units on standard processors. In Figure 7, we show how z/OS partitions

Java works to ZAAPs and general processors.
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Figure 7: zZAAP Technical Overview [35]

Because the ZAAPs share many demands from general purpose processors, general purpose
processors can be available for additional workloads. In Figure 8, we show a simple
example. With the ZAAPs, the system can reduce the standard CP capacity requirement for

the application to 500 MIPS or a 50% reduction.
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Consider a WebSphere Application that is transactional in nature and requires 1000 MIPS
today on zSeries.

vvvvvvvv
TN

1000 IIPS for WebSphére App~ ~ ¢ 500 MIPS for WebSphere App +
' ' 500 MIPS now available for addilional workioads

Figure 8: An example of zZAAP [35]

The zAAP can execute z/Architecture '™ instruction set architecture (ISA) [17][18][19].
The processor does not support all manual operator controls such as PSW (Program status
word) Restart, Load or Load derivatives. Moreover, the zAAPs are supported by I1BM
middleware such as WebSphere, CICS and DB2.

Tanenbaum’s 1JVM processor

Tanenbaum’s 1JVM processor [1] is an implementation of micro-architecture. The 1JVM
processor can execute a subset of integer JVM (IJVM) on hardware. 1t implements only
twenty-two different integer JVM instructions such as iload and isfore. Moreover, the
processor does not natively support object-oriented concepts. The Tanenbaum’s 1JVM
processor uses microinstructions and has a seven-stage pipeline. The processor has three
data buses and 11 local registers. It does not have prediction logic. In Figure 9, we show the

basic architecture of the Tanenbaum’s [JVM processor.
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Figure 9: Tanenbaum’s [JVM processor [1]

Additional Comments

We showed how the different Java processors implement an instruction set. Because
implementing every instruction in circuitry needs too many hardware resources, there are
few hardware processors which use this approach in practice. Instead, many processors,
such as picolava-1 processor and Lightfoot processor, use the alternative approach where
the processor implements simple instructions in circuitry and uses microinstructions to
implement the complex instructions and native functions. This approach can reduce the
amount of hardware resources and accelerate the execution of those instructions which are
used frequently. Of course, the picolava-I also uses software traps to implement some
complex instructions. Using a number of traps may occur to reduce the performance of the
processor because the picolava-I needs minimum 16 cycles to complete a trap operation.
The architecture of a processor with two or three different implementation approaches

becomes complex.
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Another solution we presented is co-design hardware/software approach used in

Kent’s processor. It partitions the whole implementation to hardware part and software part.
Some instructions are implemented in hardware while others are executed in software. In
our opinion, this solution is very interesting and suggestive. However, the potential
problem is the communication overhead. 1t is very difficult to predict how much time the
processor uses to keep the communication while it executes some programs. Moreover, the
raw speedup of the FPGA solution presented by Kent is under the condition that both the
clock frequency and general-purpose processor have the same clock frequency. As we all
know, the clock frequency of a general-purpose processor is usually 20 to 50 faster than
that of FPGA. Therefore, we doubt whether this co-design approach can be realized in

practice.

Our SCIL processor adopts a simple approach: the whole instruction set is implemented by
microinstructions. In fact, most of small processors use this approach, such as Tanenbaum’s
IJVM  processor and Martin Schocberl’s JOP [37]. During execution, every SCIL
instruction is translated to an address and then mapped to one set of microinstructions. The
processor can complete this translation in one pipeline stage without execution overheads.
Moreover, since there is no instruction implemented in circuitry, the design can be
implemented with minimal hardware. In addition, because the architecture of the processor
is relatively simple, the development period is shorter than with other approaches. Table 1

lists the Java processors we introduced.

Instruction set Clock Logic usages | Implementation
frequency approach
picoJava-I JVM 440K gates Circuitry
processor Microinstruction
Trap

Kent's JVM JVM 24MHz 37K gates Co-Design
processor
Lightfoot Interpreted from | 40MHz 30K gates Circuitry

rocessor JVM Microinstruction
Tanenbaum’s [IVM Microinstruction
1JVM processor

Table 1: Various Java processors
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The architecture of SCIL processor is inspired by Tanenbaum’s IJVM processor. The

two processors have some similarities. For example, both of them use three data buses.
However, there are also lots of differences between Tanenbaum’s IJVM processor and the
SCIL processor. First of all, the instruction set our processor implements is SCIL instead of
[JVM. The SCIL processor uses a new set of microinstructions, which is different from
other existing sets of microinstructions, to implements the SCIL instructions. Furthermore,
we change a lot the architecture in order to make the SCIL processor fit the characteristics
of the SCIL. For example, the SCIL processor has a different method to deal with branches
because the SCIL use absolute address to represent branch address. Moreover, in order to

reduce the number of suspending cycles, the SCIL adopts a predictor and the forwarding

technique which are not used in the IJVM processor.

We introduced IBM’s zAAP to show that the processors for a specific programming
language have their commercial usages. As we can see, the zZAAP has been used in large-
scale commercial field. Furthermore, the ZAAP gives one possible method to use the SCIL
processor. IBM uses the zZAAP as co-processors in IBM’s mainframe computers to
accelerate the execution of Java programs. Therefore in the future, it is very possible to use
the processors for .NET languages in one system to improve the execution of NET

programs.
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Chapter 3  CIL vs. SCIL

CIL: high level machine language

In our design, we do not directly use the CIL instructions for our processor. Instead, we
create a new intermediate language, named SCIL (Simple CIL). By using a SCIL compiler
(we will introduce it later), we translate a CIL program to a SCIL program, and the two
programs have the same signification. Then our SCIL processor can execute this SCIL
program on FPGA. We use the SCIL to replace the CIL because it is hard to implement the
CIL on hardware. The CIL is close to a machine language. It can be assembled into
bytecode. At the same time, the CIL is an object language, and it supports object-oriented
concepts. Therefore, we can think the CIL as a “high level machine language”. In Example

3. we present a piece of CIL program to show its characteristics.

.Class private auto ansi beforefieldinit Class1 extends [mscorlib]System.Object

{

.method private hidebysig static int32 zzz(int32 a) cil managed
{

.maxstack 2

Jocals init ([0] int32 b,

[1] int32 CS$0O0000003$00000000)

IL_0000: Idc.i4.6

IL_0001: stloc.0

IL_0002: Idarg.0

IL_0003: Idloc.0

IL_0004. add

IL_0005: stloc.0

IL_0006: Idloc.0

IL_0007: stloc.1

IL_0008: br.s IL_000a

IL_000a: Idloc.1

IL_0OO0Ob: ret
} /I end of method Class1::zzz
.method private hidebysig static int32 Main(string|[] args) cil managed
{

.entrypoint

.maxstack 2

Jocals init ([0] int32 x,

[1]int32 CS$00000003$00000000)

IL_0000: Idc.i4.0

IL_0001: stloc.0

IL_0002: br.s IL_000d

IL_0004: Idloc.0



IL_0005: Idc.i4.5
IL_0006: call int32 ConsoleApplication1.Class1::zzz(int32)
IL_000b: add
IL_000c: stloc.0
IL_000d: Idloc.0
IL_000e: Idc.i4.s 100
[L_0010: blt.s IL_0004
IL_0012: Idloc.0
IL_0013: stloc.1
IL_0014: br.s IL_0016
IL_0016: Idloc.1
IL_0017: ret
} // end of method Class1::Main
} /1 end of class Class1

Example 3: The “high level machine language” CIL

As we can see, the CIL is close to a machine language because every CIL instruction can be
expressed in form of bytecode instruction, such as “Idarg 0” or “br.s IL._000a”. However
we can find that the CIL is similar to high level languages such as C++ and Java. The CIL
uses “return value + function name + parameter type” to declare one procedure, and uses
one pair of “{* “}” to express the beginning and end of one procedure or class. The CIL
supports object-oriented programming. Usually only high level languages have these
characteristics. As a result, these high level language characteristics make the CIL much
different from machine languages. A CIL program is more readable than a JVM program.
However, it is a real nightmare for the hardware designers to construct the hardware
solutions that implement the “machine language” CIL. It is difficult for one processor to
know how to deal with some complex and tedious statements such as “private hidebysig
static int32 zzz(int32 p) cil managed”, or identify some characters like ‘{* and .
Therefore, we give up using the CIL as the machine language for our processor. We adopt
an alternative approach: before loading CIL instructions into memory, we translate CIL
instructions to the real machine instructions, and then implement these machine instructions
on hardware. In this way, we can avoid using the complex CIL statements and success in
executing the CIL program on hardware. Furthermore, we can reduce significantly the total

amount of hardware resources and shorten the development period.
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SCIL: Simplifying CIL

The SCIL is designed for our processor, and it is the real machine language for the
processor. The basic idea of generating SCIL instructions is to simplify the CIL. The SCIL
has no Metadata, and only consists of bytecode instructions. The SCIL is equivalent to a
subset of the CIL. Nowadays it only supports 32 bits signed integer, and does not support

floating-point operations and object-oriented concepts.

There exist a lot of differences between the CIL and the SCIL. First of all, the instruction
codes of the SCIL are completely different from their prototypes, the instruction codes of
the CIL. We redefine all instruction codes of SCIL instructions. For example, the
instruction code of add is 0x58 in CIL when the new instruction code is 0x0l in SCIL.
Secondly, for some SCIL instructions, although they still own the same names as CIL
instructions, their instruction operands may represent different signification. Taking the
instruction call for example, the instruction operand of call in CIL represents the name of
invoking procedure, however the instruction operand of call in SCIL represents the branch
address of invoking procedure. Thirdly, because usually one SCIL instruction corresponds
to several CIL instructions, the SCIL has much less instructions than the CIL has. (We will

introduce these differences in following sections.)

Metadata

The SCIL has no Metadata any more. It is not easy for a processor to deal with Metadata
because usually Metadata have various forms and different parameters. We remove
Metadata by using three ways. Firstly, we directly delete some Metadata. Because now the
SCIL is not an object language, many Metadata are not useful any more. Therefore,
although we throw away these Metadata to garbage, we do not change the signification of
the whole program. For example, the Metadata .class, this Metadata is useful for the CIL to
declare the beginning of one class definition. However, the SCIL does not have the concept

of class. Hence, this Metadata becomes not useful, and we can delete it without hesitation.
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The second way of dealing with Metadata is to remove the Metadata but still

complete this Metadata’s job. For example, the Metadata .entrypoin/ represents which
procedure is the main procedure in the program. For the SCIL, there is not one instruction
which functions as to indicate the position of t\he main procedure. Alternatively, we define
that all SCIL programs are executed from the first instruction, the first line of the source
code. Then we move the procedures, which contains the Metadata .e¢ntrypoin in CIL, to the
beginning of the SCIL programs. In this way, we can delete the Metadata .en/rypoinf when

the SCIL programs still know the position of the main procedure.

The third way is that we use SCIL instructions to replace some Metadata. For example, we
replace the Metadata .locals with the SCIL instruction local opd. We show an example for
Metadata . loculs.
Jocals init ([0] int32 a,
[1]int32 b)
In this example, the Metadata ./ocals expresses that there are two local variables ¢ and 5 in
the current procedure. For the SCIL, it is not necessary to remember the name of variables
because the SCIL always use a number to represent a local variable. Instead, the number of
local variables is very useful for the SCIL. For the above example, the SCIL will name
variable & as 0" variable b as 1" variable. Therefore it is necessary to keep the number of
variables from the Metadata ./ocals. We use a SCIL instruction local opd, where opd
represents the number of variables, to replace the Metadata ./ocals. Therefore, we can
replace the Metadata ./ocals in the above example with the SCIL instruction local 2. In this
way, the SCIL can keep the information the CIL. Metadata contain by only using SCIL

instructions.

Regrouping Instructions

We do some simplifications for CIL instructions while translating them to SCIL
instructions. We reduce the number of CIL instructions. Usually, several CIL instructions
correspond to only one SCIL instruction. For example, loading an integer value to the top
of stack is an often-used operation in the CIL, and the CIL has a series of instructions to do

loading an integer with different value. (See Table 2)
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CIL instruction Comment
ldc.i4.ml Load integer -1 to the top of stack
ldc.i4.0 Load integer O to the top of stack
Idc.i4.1 Load integer 1 to the top of stack
ldc.i4.2 Load integer 2 to the top of stack
1dc.i4.3 Load integer 3 to the top of stack
Idc.i4.4 Load integer 4 to the top of stack
Idc.i4.5 Load integer 5 to the top of stack
ldc.14.6 Load integer 6 to the top of stack
Idc.i4.7 Load integer 7 to the top of stack
1dc.i4.8 Load integer 8 to the top of stack
Idc.i4.s opd Load integer opd to the top of stack

Table 2: Various CIL loading instructions

IF we kept this series of loading instructions without any change, our processor should have
implemented them as ten different instructions. Now the SCIL only uses one instruction,
loads opd, where opd represents the value of the integer loaded, to replace all these ten CIL
loading instructions. For example, the CIL instruction /dc.i4.m! can be represented by the
SCIL instruction loads —1I; and the CIL instruction /dc.i4.0 can be represented by the SCII.
instruction loads (). As a result, our processor can only use almost 1/10 hardware resources
which are needed to implement all ten loading instructions. Such a simplification also

refers to the CIL instructions such as /darg, Idloc and stloc.

[n fact, if the processor can implement some instructions in circuitry, the speed of
execution may be improved. For example, the SCIL can use three instructions to represent
the various CIL loading instructions: loads 0, loads | and loads opd, and the processor
implements /oads 0 and loads 1 in circuitry. As a result, because the first two instructions
are used frequently, the processor can accelerate execution of programs. Moreover, just
implementing two instructions in circuitry do not need lots of additional hardware

resources. However, the problem is how many and which instructions could be
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implemented in circuitry. Furthermore, the architectural of the processor with many
circuitries becomes more complex than that of our current processor. We think maybe the

SCIL processor could implement part of instructions in circuitry in future woks.

Absolute address

When translating CIL branch instructions such as br.s, bge and call to SCIL instructions,
we change the instruction operands of these CIL branch instructions. We use the absolute

branch addresses as the instruction operands of the SCIL instructions.

The JIT compilers allocate memory for CIL instructions at application run time. (The
different 1I'T compilers may use different methods to allocate memory address. We use the
document Microsoft’s .NET Framework Developer’s Guide [24] as our reference.) Before
CIL instructions are executed, all CIL instructions are kept in the PE file. When these CIL
instructions are executed, one .NET Framework JIT compiler is responsible to convert them
to native code. During the execution, the II'T compiler does not convert all CIL instructions
to native code at one time. The compiler does not load one procedure (or method) until this
procedure (or method) is needed. When it is the first time to invoke one procedure, the JI'T
compiler converts this block of instructions, all of the CIL code for this procedure, to native
code. Then the JIT compiler locals the native code in memory. Subsequent calls of the
compiled procedure are proceed directly to the native code that was previously generated.
The benefit is that some code which never gets invoked during the execution is not loaded in
memory. Rather than using time and memory to convert all the CIL to native code, the JIT

compiler only converts the CIL needed during execution and stores the resulting native code.

In Example 4, we show a piece of CIL program. For each CIL instruction, it has a label like
IL _xxxx, which are generated by the CIL compiler. In this example, we suppose that the first
instruction /dc.i4.6 is the beginning of one procedure, and all instructions are in the same
procedure. When this procedure is invoked, the JIT compiler converts all CIL instructions in
this procedure to native code, and loads them to memory. The numbers in parentheses
before each CIL instruction in the example represents the memory address, which is

allocated by the JIT compiler.
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(Ox0105) IL_0000: Idc.i4.6
(Ox0106) IL_0001: stloc.0
(Ox0107)  IL_0002: Idarg.0
(0x0108) IL_0003: Idloc.0
(0Ox0109) IL_0004: add

(Ox010A)  IL_0005: stloc.0
(Ox010B)  IL_0006: Idloc.0
(0x010C) IL_0007: stloc.1
(Ox010D)  IL_0008: br.s IL_0002

Example 4: Branch instruction in CIL

The instruction br.s IL_0002 is a branch instruction, which represent that the program goes
to the label 1L_0002 when the first element is bigger than the second. The label /L 0002 in
the branch instruction does not represent the absolute branch address but the relative
displacement to the beginning of current procedure. Therefore, in order to obtain the target
branch address, the compiler has to do a calculation based on this relative displacement. It
adds the displacement (I1L._0002 — [L.L0000 = 2) to the first instruction’s memory address of

the current procedure (0x0105), and then the compiler can obtain the branch address

(0x0107).

Unlike the CIL, the SCIL uses static allocation to allocate SCIL instructions in memory. All
SCIL instruction will be loaded in memory whatever they are executed or not. Before being
loaded in memory, we can know the memory address of every SCIL instruction. The first
instruction of the main procedure always occupies the memory address 0x0000. The SCIL
compiler calculates the address of every instruction in memory. Clearly it is not a Just-In-
Time compilation. However, this kind of memory allocation can reduce the workload of the
SCIL processor because such an expression enables the processor to avoid branch address
calculation on the fly. When the processor obtains an SCIL instruction, it can immediately
know where the next instruction in memory. Hence the processor does not need any

operations to calculate memory addresses.

The SCIL uses the absolute address to represent branch addresses. When the SCIL compiler
translates CIL instructions to SCIL instructions, it calculates the branch address for all

branch instructions. Then the SCIL branch instructions use branch addresses as their
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instruction operands. In Example 5, we show the SCIL instructions equivalent to the
CIL instructions presented in Example 4. We suppose that the address in parentheses is the
memory address in instruction memory for the SCIL processor. The last instruction br
0x002E is equivalent to the instruction br.s 1. 0002 in Example 4. Now the instruction
operand 0x002E represents the branch address. When the processor executes this instruction,

the processor knows the memory address of the next instruction is 0x002E.

(0x0029) loads 6
(0x002C) stioc O
(Ox002E) ldarg O
(0x0030) Idloc O
(0x0032) add

(0x0033) stlioc O
(0x0035) Idloc O
(0x0037) stloc 1
(0x0039) br 0x002E

Example 5: Branch instruction in SCIL

For the CIL, the call instruction includes the invoking procedure name, the type of
parameters and the type of return value. When the JIT compiler executes a call instruction,
the compiler searches the list of procedures to check the procedure name, the type of
parameters and the type of return value. Then the JIT compiler examines the CIL instruction
and Metadata to determine whether the code is type safe, which means a reference to a type
is strictly compatible with the type being referenced. Only appropriately defined calling

operations can invoke a procedure.

In Example 6, we show a piece of CIL program. We also add the memory address allocated
by the JIT compiler for each instruction in parenthesis. We suppose that the first part of
instructions (the first five instructions) is in the main procedure, and the second part of
instructions is in another procedure named zzz. In the main procedure, there is a call
instruction, call int32 Test. TestClass::zzz(int32), which invokes the procedure zzz. We can

see that the call instruction provides lots of information to the JIT compiler.



(0x0120) IL_00OCe: Idloc.1
(0x0121) IL_OO0Of: stloc.2
(0x0122) IL_0010: Idloc.2
(0x0123) I1L_0011: call int32 Test. TestClass::zzz(int32)
(0x0125) 1__0016: stloc.2

.method private hidebysig static int32
zzz(int32 p) cil managed
(0x0307)  IL_0000: Idarg.0

(0x0308)  IL_0001: Idloc.0
(0x0309)  IL_0002: add

Example 6: Procedure call in CIL

For the SCIL, the SCIL compiler does the job of searching the target procedure. Unlike the
JIT compiler searchihg the invoking procedures during the execution, the SCIL compiler
finds out the position of the invoking procedures before SCIL instructions are loaded in
memory. Furthermore the SCIL uses the branch address as the instruction operand of the
SCIL instruction call. The branch address is the memory address of the first instruction in
the invoking procedure. In Example 7, we show the SCIL instructions equivalent to the CIL
instructions presented in Example 6. We suppose that the address in parentheses is the
memory address in instruction memory for the SCIL processor. The new call instruction
becomes call 0x0027. The operand 0x0027 is the branch address which is the memory

address of the first instruction in the procedure zzz.

0x0002

( ) loads 1
(0x0005) stloc 1
(0x0007) loads 2
(0x0009) call  0x0027
(Ox000B stloc 2
(0x0027) local 2
(Ox002E) Idarg O
(0x0030) Idloc 0

(

0x0032) add



Example 7: Procedure call in CIL

By using absolute addresses to represent branch addresses, all branch instructions can tell
the processor where the next instruction in the instruction memory. The processor does not
need calculate branch addresses during the execution, and the processor can hence obtain
faster speed than with ordinary CIL. However, the method of absolute address can only used
in simple embedded system designs. If we make the processor support object-oriented
concept, we still need to use dynamic branch calculation. At this time, the processor has to
know the position of instructions in some class instantiations, and the branch addresses are

different for the same branch instructions.

Three types of SCIL instructions

Based on the length of bits which one SCIL instruction requires, we divided all SCIL
instructions into three types. The Type 1 SCIL instruction occupies 8 bits and does not have
instruction operand. It needs one word (8 bits per word) in the instruction memory for the
SCIL processor. The Type 2 SCIL instruction needs 16 bits and two words in the memory.
The first 8 bits represent the instruction code, and the rest bits represent the 8 bit signed
integer operand. The Type 3 SCIL instruction demands 24 bits and three words in memory.
The first 8 bits are for instruction code and the others are as the instruction operand, a
signed 16 bits integer. Furthermore. in order to discriminate the types of SCIL instructions
easily, we use the first two bits of instruction code to identify the different types. The Type
| instructions begin with two bits “007; the Type 2 instructions begin with “01”; and the
first bit of the Type 3 instruction is “1”. In Table 3, we show three examples for the three
types SCIL instructions, and we also show them in binary form when they are loaded in the

instruction memory.

Examples Binary form in memory
Type 1 add 00000010
Type 2 ldarg 2 01000101
00000010
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o

Type 3

call 0x02

10000010
00000000
00000010

Table 3: Three types SCIL instructions

SCIL compiler

We use a simple compiler to translate CIL programs to SCIL programs. The SCIL compiler

is written in language C++. (There is no any special reason why we use C++ rather than

other languages.) The compiler has two files: compiler.cpp and compiler.h. By using the

Visual Studio .NET tool ildasm.exe, which is usually in the path ".\Microsoft Visual
Studio .NET \SDK\v1.1\Bin\ildasm.exe", we can obtain the CIL file from any .NET PE file.

Then the SCIL compiler executes this CIL file, and converts the CIL to the SCIL. The
result will be saved as a SCIL file (.scil file). In the SCIL file, all SCIL instructions are

decoded in binary form, and each line is 8 bits. Finally, we use this SCIL file as the initial

file for the instruction memory. In Figure 10, we show the process of converting a PE file

to a SCIL file, and then loading it into FPGA.

Tool ildasm ——*( CIL file

FPGA

v
SCIL Compiler

Initial BRAM v

A

GI'IL file

Figure 10: Convert PE file to SCIL file
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A SCIL example

The SCIL program shown in Example 8 is equivalent to the CIL program we presented in
Example 3. We use the SCIL compiler to execute the CIL. program and then obtain the

corresponding SCIL program. The two programs have the equivalent signification.

(Ox0000) local 2
(0x0002) loads 0
(0Ox0005) stloc 0
(0x0007) br 0x0015
(Ox000A) ldloc O
(Ox000C) loads 5
(Ox000F) call  0x0027
(0x0012) add

(0x0013) stoc O
(0x0015) ldloc 0
(0x0017) loads 100
(Ox001A) blt 0x000A
(0Ox001D) Idloc O
(Ox001F) stloc 1
(0x0021) br 0x0024
(0x0024) Idloc 1
(0x0026) ret_main
(0x0027) local 2
(0x0029) loads 6
(0x002C) stloc O
(Ox002E) ldarg 0O
(0x0030) dloc 0
(0x0032) add
(0x0033) stloc
(0x0035) ldloc
(0x0037) stloc
(0x0039) br
(0x003C) Idloc
(0x003F) ret

x003C

- O -~00

Example 8: SCIL program equivalent to CIL program in Example 3
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Chapter 4  SCIL Processor

In this chapter, firstly, we will introduce the basic data flow and six-stage pipeline of the
SCIL processor. Then we will present the format of microinstructions for the SCIL
processor. After that, we will introduce the architecture of the SCIL processor in detail. We
will discuss all the principal units of the processor one by one and point out characteristics

of them.

Data flow

In Figure 11, we present the basic data flow of the SCIL processor. The SCIL processor
takes data from the instruction memory (a), and the data successively pass through the unit
IFU (b), and the unit MIU (c) to find out microinstructions. Then according to command
signals derived from these microinstructions, the SCIL processor sends the value of the
registers to the ALU though BUS A and BUS B (d). Then the ALU does the arithmetic
calculations. After that, the ALU outputs the result of calculation on BUS C (e). At this
time, the processor updates the value of registers with the data on BUS C. Finally, the

processor writes or reads the data memory (f).
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Based on relative-independent actions of the processor, we divide the whole data flow into

six steps. We make each step as one stage of the pipeline. Therefore in the current design,

the SCIL processor uses a six-stage pipeline. We present the pipeline in Figure 12. The six

pipeline stages are: Felch, Decode, Register Read, Execution, Register Write-back and

Memory Access.

| | 2 I 3 i 4 5 6 |
| ! | !
! ! : i . |
: : Register | Register Memory :
by Ly 1 - i - N
Fetch i 7| Decode i » Read i Execute P Write- » Access S >
: : : back !

Figure 12: Six-stage pipeline
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In the stage Felch, the TFU converts the data taken from the instruction memory to
instruction code and instruction operand, and then sends the corresponding index address to
the unit MIU. In the second stage Decode, the MIU uses the index address to search the
microinstructions, and generate command signals. In the third stage Register Read, the
processor takes the data of two registers and sends them to the ALU. In the fourth stage
Execute, the ALU does one arithmetic calculation. In the fifth stage Register Write-back,
the processor updates the value of registers with the calculation result. In the last stage

Memory Access, the SCIL processor writes or reads data memory.

Comparing with Tanenbaum’s 1JVM processor using a seven-stage pipeline, the SCIL
processor reduces one stage of pipeline. We combine two stages of the 1JVM processor’s
pipeline into one stage. In the 1JVM processor, the first stage is responsible to take data
from memory, and the second stage is to convert instruction codes to index addresses. The
SCIL processor’s first stage Fetch does the tasks of the 1JVM processor’s first and second
stages now. With the six-stage pipeline, the SCIL processor can begin to execute the
microinstructions one cycle earlier. The SCIL processor needs at least 2 cycles to prepare
the microinstructions for a new SCIL instruction. The first cycle is to take an instruction
from memory and get the index address; the second cycle is to search the corresponding
microinstruction set. Therefore, the SCIL processor can begin to execute the
microinstructions at the third cycle. When the processor used a seven-stage pipeline, the
processor would need at least three cycles before the new SCIL instruction’s
microinstructions can be executed. The first cycle is to take the instruction; the second
cycle is to get the index address; the third cycle is to search microinstruction set. The
processor could begin to execute the microinstructions at the fourth cycle. Hence the
processor can use less cycles with the six-stage pipeline. Furthermore, although we
combined two stages into one stage, we do not change frequency of the processor. Based on
timing analyse for the SCIL processor, the unit MIU, the unit for the stage Decode, is the
unit that needs the most time. The second stage Decode needs more time than the first stage
Fetch, and the time used by the second stage decide the clock frequency of the processor.
Therefore, we make the SCIL processor use the six-stage pipeline instead of the seven-

stage pipeline.



Microinstructions for SCIL Processor

For different micro-architectures, the microinstructions are different. In this section, we

introduce the microinstructions target for the SCIL processor.

Notation of Microinstructions for SCIL Processor

In Example 9, we show several microinstructions for the SCIL processor. These
microinstructions are in binary form and each line represents one microinstruction. It is not

easy to understand what one microinstruction represents.

0000011110000111101011
0000011110000111101000
0001011110000111011011

Example 9: Microinstructions in binary form

Therefore, here we use a kind of notations to represent microinstructions in order to be
convenient to express their meanings. We will use these notations in the following

paragraphs. In Example 10, we show two typical microinstructions written in notation form.

(a) SS=SS+1
(b) MDR=TOS=TOS+TPR; Wr
Example 10: Microinstructions in notation form

The new expression makes microinstructions be similar to a high level language. The
capital form terms, such as “SS” and “MDR” represent the registers. The operation symbols,
such as “+” and “-“, represent the operations of the processor’s ALU. The terms “Wr” and
“Rd” represent writing and reading the memory respectively. The equal mark represents
using the value of right side to update the register of left side. Moreover, it is possible to
use more than one equal mark in one microinstruction. (See the Example 10(b)) It means

the rightmost value is used to update several registers of left side at one time.

In the Example 10(a), the microinstruction refers to only one register named SS, and the

task of this microinstruction is to increase the value the register SS with 1. In the Example
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10(b), the microinstruction refers to four registers: MDR, TOS, TOS and TPR. The
task of this microinstruction is to update the registers MDR and TOS with the sum of TOS
and TPR. Moreover, the “Wr” represents that this microinstruction includes a writing

memory operation.

Implement SCIL instructions with Microinstructions

For the SCIL processor, every SCIL instruction corresponds to a set of microinstructions,
and the SCIL processor can complete the functionality of one SCIL instruction with
executing a set of microinstructions in turn. Usually such a set includes 2~9
microinstructions and the average number is about 4.5. In Example 11, we show the set of
microinstructions for the SCIL instruction add. The set for the SCIL instruction add

includes 3 microinstructions.

0100000001010000110000 -- MAR=SS=SS-1
0000110000000101010000 -- TPR=TOS; rd
0010101000101000010110 -- MDR=TOS=MDR+TPR; Wr

Example 11: Set of microinstructions for SCIL instruction add

Currently, one microinstruction for the SCIL processor needs 22 bits. The microinstruction
consists of five command signal sets, and different command signal sets occupy different
fixed places. In Table 4, we present the length and fixed places of the five command signal

sets in one microinstruction.

CMD_ALU CMD_REG CMD_MEM CMD_A CMD B
S bits 7 bits 2 bits 4 bits 4 bits =22 bits

Table 4: Length and fixed places of command signals sets

These different command signal sets are responsible to control different parts of the SCIL
processor. The command signal set CMD_ALU (5 bits) is to control the actions of the ALU;
the command signal set CMD_REG (7 bits) works as to update the registers; the command

signal set CMD_MEM (2 bits) is to communicate with the data memory; the command
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signals set CMD_A (4 bits) and CMD_B (4 bits) are to choose the data resource of

BUS A and BUS B. In the Example 12, we present two microinstructions.

(a) MAR=0x01 “1001000000010000000000”
(b) MDR=TOS+TPR; Rd “0010000000100101010110”

Example 12: Two microinstructions (a) and (b)

For the microinstruction (a), the task is to update the register MAR with 0x01. We split this
microinstruction into five command signal sets, and state what these command signal sets

represent.

10010 0000001 00 0000 0000

| | |
| | => no data for BUS B

| |

| |

\ | | => no data for BUS A

| | =>  no memory operation

| => update register MAR with data on BUS C
=>  ALU outputs 0x01

For the microinstruction (b), it refers to an addition operation, a reading memory operation
and operations of registers. We split this microinstruction into five command signal sets,
and state the meaning of each command signal set.
00100 0000010 01 0101 0110

| | | | |

| | | | => put register TPR’s data on BUS B

| | | => put register TOS’s data on BUS A

| | =>  read the data memory

| => update register MDR with data on BUS C

=>  ALU does addition operation



Architecture of SCIL Processor

In Figure 13, we present the detailed architecture of the SCIL processor. Moreover, we also

show the signals among the instruction memory, the data memory and the SCIL processor.
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IFU (Instruction Fetch Unit)

The task of the IFU is to take data from the instruction memory, and then the [FU extracts
SCIL instruction codes and instruction operands from the data. After that, the IFU puts
instruction code and instruction operand into two particular registers. Finally, the IFU
decodes SCIL instruction codes to index addresses. Wiﬂ\] the index address, the processor
can find out the corresponding set of microinstructions in the unit MIU for every SCIL

instruction.

Architecture of IFU
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Figure 14: Architecture of [FU.
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In Figure 14, we present the architecture of the unit IFU. The register PC (Program

Counter) is 16 bits. The register Next PC (16 bits) conserves the memory address of the
instruction that is next to the current PC. We use value of the register Next PC as the return
address when the processor finishes invoking a procedure. The register /ns code (8 bits) is
responsible to store the instruction code, while the register /ns_opd (16 bits) is used to
conserve the corresponding instruction operand. In addition, there are six registers, named
as Datal, Data2, Dala3, Data4, Datad and Data6 (8 bits for each). These six registers
respectively conserve the data of instruction memory with the address PC, PC+1. PC+2,
PC+3, PC+4, PC+5. These six registers work as a data buffer. The IFU puts data taken
from the instruction memory into these registers firstly. When the IFU fetches the
instruction code and instruction operand, the [FU uses the data in the six registers instead of
reading data from the memory. The [FU can receive three kinds of command signals: ferch,
Jump and setPC. The feich command asks the IFU to take the SCIL instruction that is next
to the current PC; the jump command informs [FU there is a branch; and the se/PC

command asks the IFU to update the value of PC with the data on BUS C.

Furthermore, inside the 1FU, there is another two registers: pre_PC and pre_opd. These
two registers are used for the prediction. The pre PC conserves the old value of PC when
the value of PC changes; similarly, the pre_opd conserves the old value of the Ins opd
when the value of the /ns opd changes. In addition, the IFU receives a signal named
correct-prediction which is generated by the MIU. As same as the two registers pre PC
and pre_opd, this signal is used for the prediction. This signal states whether the previous
prediction is correct or not. When it is correct, the value of the signal is ‘0’; otherwise, the

value is ‘1°. (We will introduce the branch prediction and the predictor in the following

sections.)

Fetch SCIL instructions

The IFU takes SCIL instruction codes and the corresponding instruction operands from the
six data registers. As we introduced, all of SCIL instructions code occupies 8 bits.

Therefore, the IFU always uses the 8 bits of the register Dafal as the instruction code.
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Because the length of instruction operand is various (three types SCIL instructions),

the IFU has to determine the instruction type before it takes correct length bits as the
instruction operand. The IFU identifies the type of one SCIL instruction with checking the
first two bits of instruction code. When the instruction is a Type 1 SCIL instruction, the
IFU does not update the value of the register because there are no instruction operands for
Type 1 SCIL instructions. When the instruction is a Type 2 SCIL instruction, the IFU uses
the 8 bits data of the register Data2 as the instruction operand. When the instruction is a
Type 3 SCIL instruction, the IFU uses 8 bits of the register Dara2 and 8 bits of register
Data3 as the instruction operand. As a result, because the instruction operand was
conserved in the register /ns_opd, the processor can directly use the instruction operand in
the register without caring about the length of it when the processor deals with the SCIL
instruction. It is not necessary for the SCIL processor to use additional command to require

the IFU to take some bits data as instruction operands any more.

After the IFU updates the registers Ins code and Ins_opd, the 1FU shifts the six data
register, and use the unused data to replace the used data. For example, when the IFU used
the data of first three data register Datal, the register Data2 and the register Data3, the [FU
copies the value of the register Data4 to the register Datal, the register Data3 1o the
register Data2, as well as the register Data6 to the register Data3. After that, the IFU
checks whether there are enough valid (unused) data for the next instruction. Because the
Type 3 SCIL instruction, which is the longest instruction among three type instructions,
needs 24 bits, the IFU needs at least three data registers with valid data for the next
instruction. Otherwise, the IFU reads 32 bits data from the instruction memory to refill the
data registers when the number of unused registers is less than 3. In Figure 15, we present
the state machine that describes how the 1FU operates the six data registers and when the

IFU reads new data.
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Figure 15: State machine for six data registers

When all the data registers are filled with valid data, the size of buffer (number in the cycle)
is 6. Every times, when the IFU gets a Type 1 SCIL instruction, the size of buffer reduces 1.
For example, it supposes that the size of buffer is 5. When the IFU gets an instruction add,
which is a Type 1 SCIL instruction, the size of buffer becomes 4. Similarly, the size of
buffer subtracts 2 or subtracts 3 when the [FU get a Type 2 SCIL instruction or a Type 3
SCIL instruction respectively. The IFU reads new data from the instruction memory when
the size of buffer is smaller than 3. After the IFU reads the memory, it increases the size of

buffer with 4.

In fact, the IFU can remove the six data registers. At this time, we make the IFU suspend
when it finishes fetching the first instruction, and restart to work when the processor asks for
the second instruction. However, as we introduced in the section for microinstructions, one
SCIL instruction corresponds to more than one microinstruction, and each microinstruction
at least needs one cycle to execute. There is hence an interval (several cycles) between the
processor asking the IFU for the first instruction and the processor asking the IFU for the
second instruction. In our design, the IFU uses this interval to prepare the new instruction in
advance. During the interval, the IFU checks whether there is enough valid data for the next

instruction. When there is not enough valid data, the IFU takes data from the memory
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automatically. Then when the IFU receives the new command, the [FU already
prepared the data for the new instruction. (It supposes that there is no branch.) As a result,
the IFU now has a simple pre-fetch function to accelerate fetching instructions. The IFU can
take the next instruction from memory before the processor requires a new instruction. This
pre-fetch function improves the performance of the processor significantly. Certainly, when
the processor meets a branch, the pre-fetch function does not work at all. At this time, the
IFU clears up all data registers and reads the new data from the instruction memory. (The

method of fetching data is similar to the method the 1JVM processor uses.)

Actions of IFU

The actions of the IFU are controlled under the command signals generated by the unit
MIU. (We will introduce the MIU in following section.) The IFU has three basic actions
corresponding to three commands. When the 1FU receives a command ferch, it means the
next instruction sequences with the current instruction in memory. Therefore, the [FU
increases the value of PC depending on the type of the current instruction. For example,
when the current SCIL instruction is a Type 2 instruction, the IFU increases the value of
PC with 2. After that, the [FU can fetch the new instruction code and instruction operand
from the data registers due to the pre-fetch function. Then the IFU updates the register
Ins_code and Ins opd, and the 1FU updates the value of the register Next PC according to
the new value of the PC. Finally, the IFU shifts the six data registers and checks whether it

needs to read new data from the instruction memory.

When the IFU receives a command jump, it means that there is a branch, and the current
instruction is a Type 3 instruction whose instruction operand represents the branch address.
The 1FU needs to update the value of PC with this branch address. Because the operand is
conserved in the register /ns_opd, the IFU copies the 16 bits of the register /ns_opd to the
register PC. Moreover, because the pre-fetch function dose not work for branches, the [FU
reads new data from the instruction memory to refill the data registers. After that, the 1FU

fetches the new instruction code and instruction operand, and updates the registers Ins_code,
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Ins_opd and Next_PC. Finally, the IFU shifts the six data registers and check whether

the IFU needs to read new data from the memory again.

When the IFU receives a command se/PC, it means that the IFU needs to update the value
of PC with the data on BUS C. For example, when the processor executes an instruction
call, the processor pushes (writes) the value of the register Next PC to the stack (the data
memory). When the processor executes the corresponding return instruction, the processor
pops (reads) the old Nex/ PC value from the stack (the data memory), and then it places
this value on BUS C. At this time, the processor sends a command setPC to the IFU. When
the IFU receives a command se/PC, the 1FU uses the data on BUS C to update the register

PC. Then the IFU does the same operations as it receives a command jump.

However, when the signal correct-prediction states the previous prediction is incorrect, the
actions fetch and jump have a little difference. At this time, the 1FU does correct previous
wrong prediction. When the IFU receives a command fetch, it means that the incorrect
prediction is “Take”, and now the processor needs to do “Not Take”. The IFU firstly picks
out the value of the register pre PC. This register conserves the PC of the branch
instruction for which the previous prediction is done. By using this old PC value, the IFU
can figure out the memory address of the instruction, which is next to the branch instruction
in memory. After that, the IFU uses this calculation result as the new PC. When the [FU
receives a command jump, it means that the incorrect prediction is “Not Take”, and the
processor needs to do “Take”. The IFU uses the value of the register pre_opd. This register
recodes the instruction operand of the instruction for which the previous prediction is done.
The value of this register is exactly the target branch address. Hence the 1FU uses it to
update the value of PC. When the IFU finished resetting the new PC, the IFU clears up the

data registers, and begins to do the normal operations.

Decode SCIL instrilction code

Besides fetching the data, the IFU is responsible to map the SCIL instruction codes to the
corresponding sets of microinstructions. Inside the IFU, there exists a mapping table,

named as Decoding Table. For each SCIL instruction code, the Decoding Table records an
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entrance address. Furthermore, inside the unit MIU, there exists another table, named

as Microinstruction Table. The Microinstruction Table conserves all sets of
microinstructions for SCIL instructions, and every SCIL instruction has one and only one
set of microinstructions in the Microinstruction Table. When the IFU gets a new SCIL
instruction code, the IFU sends it to the Decoding Table. The table returns a map index,
which we call as index-address. Every index-address represents an address for the
Microinstructions Table, and it points to the first microinstruction in one set of
microinstructions. In Figure 16, we present the relationship between the Decoding Table

and the Microinstruction Table.

Decoding Table Micrainstruction Table

[ESE— Index address

Instruction code

A 4

IFU

MIU

Figure 16: Relationship between two tables.

In Example 13, we show the process of mapping the SCIL instruction add 1o its

corresponding set of microinstructions.
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Decoding Table Microinstruction Table
—p 00000011 00000011
00000001
00001000000010100001 FO000
»
7 00000001 10000000101010000
00100101010001010000 10T (0
IFU

MIU

Example 13: Map instruction add to the set of microinstructions

The instruction code of add is “00000001”, The IFU uses “00000001” as the address to
search in the Decoding Table. Then the IFU uses the result “00000011 as the index-address
and outputs it to the MIU. When the MIU receives this index address, it uses “00000011”
as the address to search in the Microinstruction Table. As a result, the MIU moves the
internal pointer to the fourth element, which stores the first microinstruction in the set of

microinstruction for the instruction add. The first microinstruction for the instruction add is

“0000100000001010000110000™.

Compare with 1JVM processor

Tanenbaum’s [JVM processor also uses a unit named 1FU to fetch [JVM instructions from
memory. Furthermore there are some similar mechanisms between the IFU of the SCIL
processor and the 1FU of the 1JVM processor. For example, both of them use data registers
as data buffer, and have similar state machines for management of data registers. However,
we give the IFU of SCIL processor some new functions, which the [JVM processor does not
have. [irstly, the [FU of SCIL processor can automatically fetch instruction operands while
it obtains instruction codes. For the 1JVM processor, the processor needs to send a particular
command to the [FU in order to fetch instruction operands. Therefore, for one 1JVM
instruction, the ILJVM processor sends two times of commands to the 1FU, and the [FU does

fetching jobs twice. The 1JVM processor sends the first command to ask IFU to oulput
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instruction codes; and it sends the second command to ask the IFU for the instruction
operands. In our work, we avoid the second time of asking for the 1FU. The SCIL processor
can obtain both the instruction code and its instruction operand from the IFU at only one
time. Therefore the SCIL processor uses less times of taking data than the time the [JVM
processor needs. Secondly, because the SCIL processor has the prediction function, the 1FU
of the SCIL processor becomes more complex than the IFU of the IJVM processor. We
added some new registers and signals to implement the prediction function. For example, the
[FU have the registers pre PC and pre opd, which are to conserve the state before
predictions. Thirdly, the IFU of SCIL processor is responsible to decode instruction code.
For the IIVM processor, another unit does this job. As we introduced, the SCIL processor
combines two pipeline stages into one stage. Therefore, the IFU has two pieces of works at

the same time.

MIU (Microinstruction Unit)

The unit MIU is another principal unit for the whole processor. First of all, the M1U has the
responsibility to control the actions of the unit IFU; secondly, the MIU is to search the set
ol microinstructions in the Microinstruction Table, and then the MIU arranges
microinstructions in certain order; thirdly, based on these microinstructions, the MIU is
enable to generate kinds of command signals, which control the operations of the SCIL

processor.

Control IFU

As we introduced in the previous sections, the IFU can receive three different commands,
and the MIU is responsible to send these commands. The IFU generates the commands
based on the information conserved in the Microinstruction Table. Each line of the
Microinstruction Table consists of one microinstruction and three flag bits: npc, jmp and
end. These three flag bits represent the state of the current microinstruction. With acquiring

the state of microinstructions, the MIU decides to send which command to the IFU. In
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Table 5, we show one line of the Microinstruction Table. Each line of the

Microinstruction Table has 23 bits.

npc | jmp | End Microinstruction

Ibit 1 hit | bit 22 bits

Table 5: One line of Microinstruction Table

The flag bit end represents whether the current microinstruction is the last microinstruction
in the set of microinstructions. Because all sets of microinstructions are limit (2~9 items for
each set) and the processor executes these microinstructions sequentially, the last line in
one set of microinstructions always has an active flag bit end. In Example 14, we show the
set of microinstructions for SCIL instruction add. The first three bits are flag bits, and the
flag bit end of third line is ‘1°. It means that the third microinstruction is the last

microinstruction in this set of microinstructions.

0000100000001010000110000 -- MAR=S5=S8-1
0000000110000000101010000 -- TPR=TOS; rd
0010010101000101000010110 -- MDR=TOS=MDR-+TPR; wr
1]
/AN

npc jmp end

Example 14: Microinstruction set for add in Microinstruction Table

The flag bit jmp is active when the set of microinstructions correspond to one condition
branch instructions, such as instructions blf, beg and ble. Inside such a set of
microinstructions, one flag bit jmp is active. In Example 15, we show the set of
microinstructions for the SCIL instruction blf. We can see that there are two active (lag bits
in the fifth line. The first is the flag bit end because the fifth microinstruction is the last
microinstruction in this set of microinstructions. The second is the flag bit jmp because the
current microinstruction refers to a condition branch. (The notation “IMP(Z)” represents

that the processor takes the branch when Z is true.)

0000100000001010000110000 -- MAR=S55=§8-1
0000100000001010700110000 -- MAR=85=88§-1; rd



0000000110000000100010000 -- TPR=MDR; rd
0001000000000000001100101 -- Z=TPR emp TOS
0110000101000000000010000 -- TOS=MDR; IMP(Z)
|11

/AN

npc jmp end

Example 15: Microinstruction set for blt

However, in practice, we use two active flag bits jmp for a condition branch in the
Microinstruction Table. For example, there are two active flag bits jmp in the set of
microinstructions for the instruction blt. We show this set of microinstructions in Example
16. The flag bit jmp in the first line is active. We adopt such a method because we hope the
processor can know the state of microinstructions as early as possible. Earlier the processor
knows the current instruction referring to a condition branch, earlier the processor begins to
do the prediction for this condition branch and fetch the new instruction. It is useful for the

SCIL processor to reduce the suspend cycles.

0100100000001010000110000 -- MAR=SS=S8S-1
0000100000001010100110000 -- MAR=SS=SS-1; rd
0000000110000000100010000 -- TPR=MDR; rd
0001000000000000001100101 -- Z=TPR emp TOS
0110000101000000000010000 -- TOS=MDR; IMP(Z)
1]

/AN

npc jmp end

Example 16: Microinstruction set for b/t in Microinstruction Table

The flag bit npc is active when this microinstruction asks the processor to update the value
of PC with the data on BUS C. As same as the flag bit jmp, the active flag bit npc appears
two times in one set of microinstructions. In Example 17, we show the set of
microinstructions for the SCIL instruction ret. The flag bit end and the flag bit npc in the

last line are active, and the flag bit npc of the first line is active too.

1000000100000010001000000 -- MAR=LV
0000100000001010101000000 -- MAR=SS=LV-1; rd
0000000100010000100010000 -- LV=MDR; rd

0000000110000000000010000 -- TPR=MDR
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0000100000001010000110000 -- MAR=SS=SS-1
00001001000010101 10000000 -- MAR=SS=PAR; rd
0000000100100000000010000 -- PAR=MDR
0000000100000101001010000 -- MDR=TOS; wr
1010000100000000001100000 -- C=TPR
n
/\\

npc jmp end

Example 17: Microinstruction set for rez in Microinstruction Table

By checking three flag bits, the M1U can acquire the state of microinstructions and then
send three different commands, fetch, jump and setPC, to the IFU. When the MIU deals
with a new set of microinstructions, firstly the MIU reads the two flag bit jmp and npc of
the first line in the set. When both of them are not active, it means that there is no branch
for this set of microinstructions. At this time, the MIU sends a command ferch to the TFU.
Otherwise, when the flag bit npc of the first line is active, the MIU does not send any
command to the IFU immediately. Instead the MIU sequentially executes the
microinstructions one by one. When the MIU meets the second active flag bit npc, the MIU
sends a command sefPC to the IFU. When the flag bit jmp of first line is active, the MIU
checks the prediction result made by the predictor and then sends commands. The MIU
sends a command fetch to the IFU when the prediction is “Not Take”. Otherwise, when the
predictions result is “Take”, the M1U sends a command jump to the 1FU. After that, the IFU
sequentially executes the microinstructions. When the MIU meets the second active flag bit
Jjmp, the MIU reads the value of the condition result Z to check whether the previous
prediction is correct. When the prediction is correct, it is all right and there is nothing
happened. Otherwise, the MIU sends a new correct command to the IFU to replace the
wrong one. At this time, the MIU sets the value of the signal correct-prediction to inform
the IFU and the predictor whether the prediction is correct. (We will introduce how the

predictor works in following sections.)

Tanenbaum’s 1JVM processor uses two flag bits while the SCIL processor uses three flag
bits. Both of the two processors have the flag bit end. However, the SCIL processor uses two
flag bits jmp and npc to represent branches which the [JVM processor uses one flag bit jmp

to represent. For the 1JVM processor, it obtains branch addresses only from the data bus.
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However, there are two methods to obtain branch addresses for the SCIL processor.

Firstly, the processor can obtain the branch addresses from the data bus. The bit flag npc is
used to represent this situation. Secondly, the processor can use the value of register
Ins_opd inside the IFU as the branch addresses. (In previous sections, we introduced that
the branch addresses as instruction operands are conserved in this register.) The bit flag jmp
is used to represent the second situation. As we can image, it takes less time for the
processor to use the existing data in the register than to wait for the data on data bus.
Therefore, we divided all branches into two different operations. In this way, although our
SCIL processor uses one more flag bit than the IJVM processor uses, the SCIL processor

can accelerate the execution of branch operations.

Data Dependency

After the MIU finding out the set of microinstructions in the Microinstruction Table based
on the index-address, the processor begins to execute the microinstructions one by one.
Theoretically, the processor can execute one microinstruction in one cycle because the
SCIL processor uses single pipeline construction. However, it is quite easy to generate data
dependency among microinstructions. The data dependency may result in one or more than
one suspend cycles for some microinstructions. Although we can optimize the
microinstructions to reduce data dependency, it is impossible to avoid all data dependency
because the permutation of the different SCIL instructions is too complex to anticipate all

possibilities. In fact, some data dependency is inevitable.

In Example 18, we show the set of microinstructions for the SCIL instruction add. The
second microinstruction changes the value of the register TPR; and in the third
microinstruction, the value of the TPR is used as one operand of the addition operation.
Hence the third microinstruction is data dependency for the second microinstruction. The
processor cannot execute the third microinstruction until the processor completes executing

the second microinstruction.

MAR=SS=8S§-1
TPR=TOS; rd
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MDR=TOS=MDR+TPR; Wr
Example 18: Data dependency

Data dependency makes the processor generate suspending cycles, and too many suspend
cycles affect the execution speed of the processor. Therefore, in order to minimize the
influence of data dependency, we use the forwarding technique and a FIFO buffer in our
processor. The forwarding technique can reduce the number of suspend cycles directly. The
FIFO buffer can make the processor keep doing some works even when the processor is in

suspend cycles.

Forwarding

The MIU uses forwarding technique when it checks data dependency for microinstructions.
For example, the processing microinstruction needs the value of a certain register. However
this register now is waiting for being update because one previous microinstruction referred
to this register. At this time, without the forwarding, the processor cannot begin to execute
this processing microinstruction until the processor finishes executing the previous
microinstruction and updating that register. By contraries, with the forwarding, the

processor can execute the processing microinstruction several cycles early.

In Example 19, we present an example. In (a), we show two sequential microinstructions.
In (b), we present the execution of the two microinstructions without the forwarding
technique. The MIU finishes executing the first microinstruction at the i+2" cycle, and it
begins to execute the second microinstruction at the i+3" cycle. The whole execution time
is 6 cycles. In (c), we present the execution of the two microinstructions with the
forwarding technique. The MIU finishes executing the first microinstruction still at the
i+2" cycle. However, the MIU can execute the second microinstruction at i+2™ cycle as
soon as the ALU finishes the addition operation. During the i+2" cycle, the result of the
ALU is sent to two objects at the same time. The first receiver is the register TOS. The
register TOS uses the result to update its value. Another receiver is the ALU. The ALU

uses the result as the operand of an addition operation, which is done by the second
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microinstruction. As a result, the whole execution time becomes 5 cycles, which is

one cycle less than without forwarding.

(a) Two microinstructions

TOS=SS+TPR
MDR=TOS+MDR

(b) Without forwarding

Cycle | TOS=SS+TPR MDR=TOS+MDR

i load SS, TPR

i+1 do addition operation

i+2 update TOS

i+3 load TOS, MDR

i+4 do addition operation
i+5 update MDR

(¢) With forwarding

Cycle | instr: TOS=SS+TPR instr: MDR=TOS+MDR

i load SS, TPR

i+1 do addition operation

i+2 update TOS load MDR, use result of
ALU as the value of TOS

i+3 do addition operation

1+4 update MDR

Example 19: With forwarding and without forwarding

FIFO Buffer

The FIFO buffer is inside the MIU. Now the length of the FIFO buffer is 18, and each
element of FIFO buffer is 25 bits, as same as the element of the Microinstruction Table.
The FIFO buffer cannot reduce the number of suspending cycles directly as the forwarding
technique does. Instead, this FIFO buffer helps the processor use these suspending cycles to

continue part of works.
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Without FIFO buffer, when there are suspending cycles for the current microinstruction,
the MIU suspends completely. The MIU can neither read new microinstruction nor send a
new command to the IFU. In next cycle, the MIU deal with the same microinstruction.
With the FIFO buffer, when the MIU meet suspending cycles, the MIU copies the current
microinstruction to the FIFO buffer. In next cycle, the MIU deal with the microinstruction
existed in the FIFO buffer. Furthermore, now the MIU can pick out a new microinstruction
from the Microinstruction Table. Therefore, even through the processor is during the
suspending cycles, the MIU can continue sending commands to the [FU based on the new
microinstruction. As a result, the IFU can receive the commands several cycles early, and
correspondingly the IFU can finish its operations relatively early. It is very important for
the IFU when there i1s a branch. Then after the MIU finishes treating the current set of
microinstructions, the MIU can execute the new set of microinstructions immediately
because the IFU completed the task of new commands and finished preparing the needed
data. Therefore, the MIU can avoid new suspending cycles caused by waiting for the 1FU

completing its operations. (A FIFO buffer is also used in Tanenbaum’s [JVM processor.)

Treating microinstructions

The MIU takes microinstructions from the Microinstruction Table, checks the data
dependency, and then converts microinstructions to command signal sets. We call this

process as (realing microinstructions.

The MIU uses an internal pointer to indicate the position in the Microinstruction Table.
When the MIU receives a new index-address from the IFU, the MIU move this pointer to
the first line in the corresponding set of microinstructions. Each cycle, the MIU picks out
the pointed microinstruction as the processing microinsiruction, which is (o be treated in
the current cycle. Then the MIU moves the pointer (o the succeeding line till the last line in

this set of microinstructions.

When the MIU picks out the processing microinstruction from the Microinstruction Table,

there are three possibilities for the MIU to deal with this processing microinstruction during
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the current cycle. Firstly, when the FIFO buffer is empty, the MIU check whether
there is data dependency for the processing microinstruction. The MIU can convert this
microinstruction to command signal sets when there is no data dependency. Otherwise, the
MIU copies the processing microinstruction to the FIFO buffer. At this time, there is no
microinstruction converted to command signals in the current cycle. Secondly, when the
FIFO buffer is neither empty nor full, the MIU copies the processing microinstruction to
the FIFO buffer. Then the MIU checks whether there is data dependency for the [irst
microinstruction in the FIFO buffer. When there is no data dependency, the MIU uses the
microinstruction in FIFO buffer as the new processing microinstruction, and converts it to
command signal sets. Otherwise there is no microinstruction converted to command signals
in the current cycle. Thirdly, when the FIFO buffer is full, the MIU check whether there is
data dependency for the first microinstruction in the FIFO buffer. When there is no data
dependency, the MIU picks out this microinstruction and copies the old processing
microinstruction to the FIFO buffer. Otherwise, the MIU suspends working in the current
cycle when there is data dependency for the first microinstruction in the FIFO buffer. In the
next cycle, the MIU still use the same microinstruction as the processing microinstruction

and do the same operation as what the MIU does in the current cycle.

When the MIU converts one microinstruction to command signal sets, the MIU splits this
microinstruction into four parts and generate all command signal sets. There are four
Microinstruction Registers (MIR1, MIR2, MIR3 and MIR4) inside the MIU. These
registers store the command signals to be outputted. The MIU outputs the context of the
register MIR1 as the command signals in the current cycle. Similarly, The MIU outputs the
context of the MIR2, the MIR3 and the MIR4 in the second, third and fourth cycle
respectively. Furthermore, after the MIU outputs the context of the MIR1, the MIU shifts
contexts of the MIR registers with one position. The MIU copies the MIR2 to the MIR1,
the MIR3 to the MIR2, as well as the MIR4 to the MIR3.

Each MIR register has 22 bits, as same as one microinstruction. When the MIU outputs the
context of the register MIR1, the bits on the fixed places are outputted as the corresponding
command signals. As we introduced, one microinstruction consists of five command signal

sets. The MIU splits the microinstruction into four parts. (We make CMD_A and CMD_B
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as one part). The MIU puts these four parts to the corresponding fixed places of the
four MIR registers. The MIU copies the partl (CMD_A and CMD_B) to the MIR1, the
part2 (CMD_ALU) to the MIR2, the part3 (CMD_REG) to the MIR3 as well as the part4
(CMD_MEM) to the MIR4. In this way, the MIU outputs the context of one
microinstruction in four cycles, and only one part is outputted in one cycle. The MIU can

output command signal sets in form of pipeline.

In Example 20, we present how the MIU converts one microinstruction to command signals.

It supposes that there is no data dependency for this microinstruction.

(@)  One microinstruction
0010101000101000010110 -- MDR=TOS=MDR+TPR; Wr
(b) Spilt the (a) into four parts:

00101 0100010 10 00010110
Part2  Part3 Part4  Partl

() Copy the (B) to the four MIR registers

MIR1: 0000000000000000010110
MIR2: 0010100000000000000000
MIR3: 0000001000100000000000
MIR4: 0000000000001000000000

(d) Output command signals

Cycle 1 Cycle 2 Cycle 3 Cycle 4
CMD_A&B: 00010110 00000000 00000000 00000000
CMD_ALU: 00000 00101 00000 00000
CMD_REG: 0000000 0000000 0100010 0000000
CMD_MEM: 00 00 00 10

Example 20: Convert one microinstruction to command signals

In (a), this is one microinstruction that the MIU picked out from the Microinstruction Table.
In (b), the MIU splits this microinstruction into four parts. In (c), the MIU copies these four
parts to the four MIR registers. In (d), we present the command signals that the MIU

outputs in successive four cycles.



61
ALU

The independent execution ALU can do the basic calculation of 32 bits integer. It does not
support float-point operations. The ALU receives the values on BUS A and BUS B as two
operands, and then does one operation according to the 5 bits command signal set

CMD_ALU. (See Table 6)

CMD_ALU Operation of ALU Comment

00000 0 Output 0

00001 A* Output A

00010 B ** Output B

00011 Not A Not operation

00100 -A Negative operation

00101 A+B Addition operation

00110 A+B+1 Add A, B and |

00111 A+ Add 1

01000 A—1 Substruct 1

01001 A-B Substruct

01010 Aand B And operation

01011 AorB Or operation
Z=1 when A=B;

01100 A=B? 7Z=0 when A/=B;
Z=1 when A/=B;

01101 A/=B? Z=0 when A=B;
Z=1 when A>B;

01110 A>B? 7=0 when A<=B,;
Z=1 when A>=B;

01111 A>=B? 7Z=0 when A<B;
Z=1 when A<B;

10000 A<B? Z=0 when A>=B;
Z=1 when A<=B;b

10001 A<=B? Z=0 when A>B;

10010 1 Output 1
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10011 -1 Output -1

10100 =1 Set signal Z “1”
10101 7= Set signal Z ‘0°
10110 SHL.16 Shift left 16 bits
10111 SHRS Shift right 8 bits
11000 SHL1 Shift left 1 bit

*A: data from BUS A;
**B: data from BUS B

Table 6: Command signal CMD_ALU

Besides arithmetic calculations, the ALU is responsible to determine whether the processor
takes condition branches or not. Every condition branch instruction, such as beg, blt and
bge, contains one comparison. (We use the notation “cmp” to express the comparison in
microinstructions) Depending on the result of the comparison, the processor decides to take
- or not take the branch. When the ALU does a comparison, according to the command
signal set CMD_ALU, the ALU chooses one kind of comparison operator to compare two
operands. Then the ALU use the result of the comparison to update the value of the signal
7. After that, the processor checks the value of the signal Z. When the signal equals to ‘17,
the processor takes the branch; otherwise, the processor does not take the branch. Specially,
for the instruction br, although it does not need to do the comparison, we still ask the ALU
to do an “always true” comparison and update the signal Z as ‘1°. In this way, the processor
uses the same method to deal with all condition branches and avoid adding the new
circuitry for the instruction br. In Example 21, we present the set of microinstructions for
the SCIL instruction b/(. The fourth microinstruction requires the ALU to do a comparison.
After that, in the fifth microinstruction, “JMP(Z)” represents that the processor decides

whether it takes this branch or not based on the value of signal Z.

MAR=SS8=S8S-1
MAR=SS=SS8-1; Rd
TPR=MDR; Rd
7Z=TPR cmp TOS
TOS=MDR; IMP(Z)

Example 21: Microinstructions for the SCIL instruction b/t



Local Memory

Currently the local memory comprises of nine 32-bit registers. These nine registers are
named as MAR, MDR, OPD, SS, LV, PAR, NPC, TOS and TPR. Each register has its

particular purpose.

The register MAR (Memory Address Register) records the address of data memory while
the register MDR (Memory Data Register) stores the data of data memory. These two
registers are used to communicate with the data memory. When the processor reads data
from the memory, it puts the address into the MAR firstly. Then the MAR sends this
address to the data memory, and the return value of the memory is conversed in the MDR.
When the processor writes data to the memory, it puts the address into the MAR and puts
the data into the MDR. Then the processor sends a signal to make the memory writable,

and writes the data to the address in the memory.

The register OPD (OPeranD) is used to conserve the instruction operand of the current
SCIL instruction. As we introduced, the IFU is responsible to fetch instruction operands
from the instruction memory, and stored them in the register /ns opd. Every cycle, the

processor updates the value of the register OPD with the value of the /ns_opd.

The register NPC (Next Program Counter) stores the address of the instruction that is next
to the current PC. This register corresponds to the register Next PC in the [FU. There are
two reasons why we use a register to conserve the Next PC instead of the PC. Firstly, the
processor does not need to know the value of the current PC because only the IFU accesses
the instruction memory and fetches SCIL instructions. Secondly, the value of the Next PC
is necessary for the processor. The processor has to put this value on BUS C when asking

the IFU to do a setPC operation.

The register SS (Summit of Stack) and the register TOS (Top element Of Stack) are used to
describe the memory stack. The SS always points to the summit of the stack in the data
memory. The TOS always keeps the value of the top element of the stack. Because there
are many operations using the value of the top element, the processor can accelerate these

operations when the TOS can keep the correct value of the top element. However, now the
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processor has to add some microinstructions to do some additional operations in order
to keep the correct value in the TOS. It spends a lot of time and hardware resources to
sustain the correctness of the TOS. Therefore it is difficult for us to calculate how much

time we can win by using the TOS on earth.

The register LV (Local Variable) conserves the address of the first local variable of the
current procedure in the stack, while the register PAR (PARameter) stores the address of
the first parameter of the procedure in the stack. These two registers help the processor load,

store and modify local variables and parameters.

The last register TPR (TemPorary Register) is a temporary register. Usually the processor

uses the TPR to conserve some interval value during a series of operations.

Read and Write Registers

The processor cannot read and write the registers at the same time. Reading and writing
registers are in two different pipeline stages. Figure 17 shows the connection among

registers, three data buses and the data memory.



65

P

1
'
)

‘Bddress
Data memoty
Difh
IFJ
]
!
g
k2
(WD EIFE
LI
CHD-ERG
CHD-A B

RIS € RIS 4 FIS R

Figure 17: Registers, Data buses and Data Memory

Except for the MAR, the processor can put the value of all registers on BUS A or BUS B,
and make them as operands for the ALU. The processor chooses two registers and put their
value on BUS A and BUS B respectively according to the 4 bits command signal sets

CMD_A (See Table 7) and the 4 bits command signal set CMD_B (See Table 8).

CMD_A Register Comment
0000 Clear BUS A
0001 MDR MDR => BUS A
0010 OoPD OPD =>BUS A
0011 SS SS =>BUSA
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0100 LV LV =>BUSA
0101 TOS TOS =>BUS A
o110 TPR TPR =>BUS A
0111 NPC NPC =>BUS A
1000 PAR PAR =>BUS A

Table 7: Command signal CMD_A

CMD_B Register Comment
0000 Clear BUS B
0001 MDR MDR =>BUS B
0010 OPD OPD =>BUS B
0011 SS SS =>BUSB
0100 Lv LV =>BUSB
0101 TOS TOS =>BUSB
0110 TPR TPR =>BUSB
0111 NPC NPC =>BUS B
1000 PAR PAR =>BUS B

Table 8: Command signal CMD B

The SCIL processor uses three data sources to update registers. The first data source is the
IFU. Every cycle, the processor updates the OPD with the value of the register /ns_opd and
updates the NPC with the value of the register Next PC. The second source is the data on
BUS C. The SCIL processor can use the data on BUS C to update one or several registers at
one time. The processor can update the MAR, MDR, SS, LV, PAR, TOS and TPR with the
data on BUS C according to the 7 bits command signal set CMD_REG (See the Table 9).
The third data source is the data memory. The processor takes the data from memory to the

register MDR according to the 2 bits command signal CMD_MEM (See Table 10).

The No.i of CMD_REG Register Comment
0 MAR BUS C => MAR
| MDR BUS C=> MDR
2 SS BUS C =>SS
3 LV BUSC=>LV
4 PAR BUS C => PAR
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5 TOS BUS C => TOS§
6 TPR BUS C=>TPR

Table 9: Command signal CMD_REG

The No.i of CMD_MEM Action Comment
0 Read Read data memory with
the address in MAR (o
MDR
[ Write Write the data of MDR (0
data memory with the
address in MAR

Table 10: Command signal CMD MEM

Predictor

The predictor is a one-bit predictor with 128 different addresses. We show the architecture

of the predictor in Figure 18.

Correct-prediction

L T&NT
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v
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Figure 18: Architecture of one-bit predictor

The predictor receives the last 7 bits of PC as the prediction address. Therefore the
prediction address may be same for the different branches when the PCs of these branches

have the same last 7 bits. For example, one branch’s PC is 129 and another branch’s PC is
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385. The predictor uses the same branch address 1 for these two branches because the

last 7 bits of their PC are “0000001”. Inside the predictor, there is an array with 128
elements, and each element is one bit. The predictor uses the inputted 7-bit prediction
address as the index of the array, and then it outputs the value of the corresponding element
as the prediction result. When the bit is “1°, it represents the prediction is “Take”; otherwise,
it represents the predictions is “Not Take”. The predictor outputs the prediction result via
the signal T& NT. Moreover the signal correct-prediction generated by the MIU informs the
predictor whether the prediction is correct. When the prediction is incorrect, the predictor
negatives the value of one bit for this prediction address. For example, when the prediction
result “Take” for prediction address 4 is incorrect, the predictor will update this prediction

element with “Not Take”.

When the value of PC changes, the predictor will give a prediction based on the last 7 bits
ol this PC value whatever the current instruction is a branch instruction or not. When the
current instruction is not a branch instruction, the MIU does not respond for this prediction.
Therefore, the predictor thinks this prediction is correct and does not change the value of
this prediction bit. In this way, we avoid adding the additional circuitry to check whether

the instruction is a branch instruction or not.

There are four possible situations for one prediction. T/T: the prediction is “Take” and the
processor needs to take the branch; NT/NT: the prediction is “Not Take” and the processor
needs not to take the branch; T/NT: the prediction is “Take” and the processor needs not to
take the branch; NT/T: the prediction is “Not Take” and the processor needs o take the
branch. The T/T and NT/NT are correct predictions. The T/NT and NT/T are incorrect
predictions. In our design, there are no penalty cycles for the correct predictions. However,
when the predictions are not correct, there are three penalty cycles for the SCIL processor.
In Table 11, we show the penalty cycles for these four prediction results. Moreover, we also
show the penalty cycles for the processor without a predictor. Without the predictor, the
processor has three penalty cycles when it takes the branch, and two penalty cycles when it

does not take the branch.
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Prediction/Fact | Stalls with predictor | Stalls without predictor
/T 0 3
NT/NT 2
T/NT 3 2
NT/T 3 3

Table 11: Number of stalls caused by branch

Instruction Memory and Data memory

Currently, we use 8 * 1024 bits BRAM as the instruction memory and 32 * 512 bits BRAM
as the data memory. Seemingly, the instruction memory is not very big because averagely
one SCIL need occupy 16 bits. Therefore this instruction memory can support a SCIL
program with about 500 SCIL instructions, and clearly the program with 500 instructions is
not a big program. However, because the SCIL branch instructions use 16 bits to represent
target branch addresses, we can enlarge the instruction memory to 8 * 65536 bits without
change the definition of the SCIL. Moreover, in the current design, the SCIL processor
already uses 16 bits data to represent the PC. As a result, we can modify the size of
instruction memory with changing the width of signals working as the memory address
between the instruction memory and the processor. For example, when the size of the
instruction memory is 8*1024 bits, the processor connects the last 10 bits of the 16 bits as
the memory address to the instruction memory; and when the size of the instruction
memory becomes 8*65536 bits, the processor connects all 16 bits as the address to the
instruction memory. When the size of the instruction memory is 8 * 65536 bits, il can
contain a SCIL program with about 30000 instructions, and it is enough for most of
embedded system designs. Furthermore, because the SCIL processor uses 32 bits data (o
conserve the memory address for the data memory, the size of the data memory can also be

changed in some range.

The SCIL processor needs to modify the width of signals connecting to these two memories

when the sizes of the instruction memory or the data memory change. As a result, the SCIL
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processor, as a softcore processor, can change the hardware resource usages with
different memory configurations. At present, we do these changes by modifying the
generics in VHDL source code directly. 1t is not very convenient for the users who do not
know well VHDL to implement memory configurations. Therefore it is possible for us to

develop a GUI (Graphical User Interface) Wizard to facilitate memory configurations in the

future.
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Chapter 5 Experiments

For the purpose of prototyping, we target our SCIL processor for a Xilinx’s Virtex 11 PRO
FPGA. Moreover in order to compare the performance of the SCIL processor with other
existing softcore processors, we create a MicroBlaze system whose construction is similar
to the SCIL processor system. Both of two systems consist of one processor, one
instruction memory and one data memory. We respectively run four benchmarks on two

systems, and compare the number of cycles to execute programs on the different processors.

Design Flow

We use VHDL as programming language to code the processor entry, and use Xilinx ISE
8.21 as the development environment. The FPGA we used is Xilinx’s Virtex Il PRO on the
platform AP1000. The functional simulation tool is ModelSim 6.2g. In addition, in order to
observe internal signals and BRAM results on FPGA, we use Xilinx ChipScope pro 8.2 [25]
to implement monitor signals on FPGA. Xilinx ChipScope Pro Core Inserter can insert
logic analyzer. bus analyzer and virtual I/O low-profile cores directly into the design, and

these captured signals can be analyzed through Xilinx ChipScop Pro Analyzer.

In Figure 19, we present the basic design flow of the SCIL processor. This design flow
refers to the Xilinx ISE 8.2 design flow [26]. First of all, under Xilinx editor, we use VHHDL
to create the entities of the SCIL processor. At this time, we do the functional simulation
with ModelSim tool to verify the correctness of our design. After that, we use the Xilinx
Synthesis Technology (XST) GUI to synthesize the VHDL files into NGC files. Then we
use ChipScope Pro Core Inserter to add monitor signals into the processor design. In design
implementation step, we convert the logical design file format in order to fit the design with
AP1000 platform. The physical information about Virtex [I PRO FPGA is contained in the
native circuit description (NCD) file and the information about CPLDs is in VM6 file. Then
we generate a bitstream file for our device depending on these files. Finally, we use

iIMPACT to load the bitstream file to FPGA on AP1000 via Xilinx download cable. After
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that, we check the result of program and the values of monitor signals by using

ChipScop Pro Analyzer.
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Figure 19: Design flow

In the part of software application design, we use C# to program software applications for
the SCIL processor system. Then we generate the SCIL file from the CIL file by using the
SCIL compiler. Finally the SCIL file is used as the initial file to initialize the BRAM for

instruction memory. In the SCIL processor system, in order to record the number of cycles
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to complete programs, we add one signal to the unit MIU. Before the SCIL processor
runs the program, the value of this signal is 0. Then the value of this signal continues
increasing till the processor completes executing the program. We can use Xilinx

ChipScope Pro 8.2i to view the value of this signal. In Figure 20, we show the interface of

ChipScope Pro Analyzer.
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Figure 20: ChipScope Pro Analyzer

A MicroBlaze System

We create the MicroBlaze system by using Xilinx Platform Studio (XPS) 8.2i [27]. The
device board is Virtex-Il Multimedia FF896 Development Board which is presented in
Figure 21. We use this platform board because we find that the platform board AP1000,

which the SCIL processor system uses, does not support the MicroBlaze processor. (We
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failed in constructing a MicroBlaze system on AP1000 to the end.) The detail
introduction of the board FF896 could be found in the reference [28].

Figure 21: Virtex-11 Multimedia FF896 Development Board

With Base System Builder wizard (BSB), we construct a simple MicroBlaze system. In
Figure 22, we show the block-diagram generated by Xilinx Platform Studio 8.2i’s Block-
Diagram view for the MicroBlaze system. In this MicroBlaze system, there is one
MicroBlaze processor as the embedded processor. There is only one BRAM (16k) with two
ports because the instruction memory and data memory for MicroBlaze are combined into
one single memory. The two ports of this BRAM connect to the MicroBlaze processor via

two data buses.
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Figure 22: Block-diagram of MicroBlaze System

There are two peripheral controllers and one IP in this MicroBlaze system. We do not use
the debug module which is generated by the wizard. We use the peripheral controller
RS232 port [29] as the output device. We connect this RS232 port to our computer’s COM
port. Moreover the IP we developed is responsible to count the number of cycles to
complete programs. This number can be outputted via the RS232 port and finally shown on

the compute screen by using the tool HyperTerminal. (See Figure 23)
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Figure 23: HyperTerminal

In the software part, we use C to develop the software applications for the MicroBlaze

system [30]. After compiling the software application, the XPS generates a bitstream file,

which includes the system design and memory initial data. Then we download the bitstream

file to the FPGA on develop broad.

Clock Rate and LUTSs usages

Through timing analysis, the maximum clock rate achieved of the SCIL processor is 50
MHz. Moreover, the LUTs (Looking-Up Table) usage for our SCIL processor is 3308 on
Virterx 11 RPO. We compare the LUTs usage with the MicroBlaze in Table 12. The LUTs

used by MicroBlaze varies depending on the configuration used. We can see clearly that the

cost of our processor and the cost of MicroBlaze are quite in the same range.

LUTs Used

Available

Utilization (%)
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MicroBlaze 800 — 2,600 [31] 88,192 09-29

CIL Processor 3,308 88,192 3.7

Table 12: LUTs utilization on the Virtex II PRO

Benchmarks
We respectively do four benchmarks:
e Fibo — computes the Fibonacci number

e (Sort — sorts an array of integers using the quick sort algorithm with recursive

procedure calls
e BSort—sorts an array of integers using the bubble sort algorithm
e (CRC32 - Cyclic Redundancy Checksum with digital signature is a 32-bit number

Benchmarks QSort, Bubble Sort, CRC32 are modified versions of the benchmarks from

MiBench [32]. We compare the cycle utilization for Microblaze and our SCIL processor.

Fibo

The Fibo does calculate the Fibonacci number. This benchmark is simple and only includes
basic operations. In Table 13, we show the number cycles that both the SCIL processor and
the MicroBlaze processor need to execute the Fibo benchmark. The N is the sequence
length of Fibonacci number. The maximal value of N is 46 because the SCIL processor

only supports 32 bits integer.

N 10 20 46
MicroBlaze 40 70 148
SCIL processor | 930 1880 4350

Table 13: Cycle utilization for the benchmark Fibo
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CRC32

The CRC32 does cyclic redundancy checksum for the list of 32-bit words. This benchmark
includes many bit operations such as XOR and shift. In Table 14, we show the number
cycles that both the SCIL processor and the MicroBlaze processor need to execute the

CRC32 benchmark. The N represents the number of words to do CRC32 operation.

N 100 500 1000 2000 4000
MicroBlaze 453 1,653 3,153 6,153 12,153
SCIL Processor | 4,933 10,373 | 17,173 | 31,000 | 77,973

Table 14: Cycle utilization for the benchmark CRC32

BSort

The BSort does sort an integer array by using the algorithm bubble sort. This benchmark
includes lots of comparison operations and array operations such as loading element and
storing element. In Table 15, we show the number cycles that both the SCIL processor and
the MicroBlaze processor need to execute the BSort benchmark. The N is the size of the

array.

N 10 50 100 200
MicroBlaze 831 21,613 75,756 313,087
SCIL Processor | 13,260 | 297,247 1,271,967 | 4,963,570

Table 15: Cycle utilization for the benchmark BSort

QSort

The QSort does sort an integer array by using the algorithm quick sort. Different from the
BSort, this algorithm use recursive procedure calls. Hence in this benchmark, there are lots
of call instructions. In Table 16, we show the number cycles that both the SCIL processor
and the MicroBlaze processor need to execute the QSort benchmark. The N is the size of

the array.
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N 10 50 70 80 100
Microblaze 1,444 | 21,584 | 40,054 | 51,389 | unable
SCIL processor | 955 14,007 | 25,933 | 33,246 | 50,572

Table 16: Cycle utilization for the benchmark QSort

Discussion

For the result of the benchmarks, we can see the performance of Microblaze processor is
better than that of the SCIL processor. The MicroBlaze expresses good performance when it
executes the first three benchmarks. These three benchmarks do not include many procedure
calls. The number of cycles needed by the MicroBlaze is much less than the cycles needed
by the SCIL processor. In fact, even when our processor could complete one
microinstruction during each cycle, which is the limit for the single pipeline architecture, the
SCIL processor should still use more cycles than that the MicroBlaze processor needs. From
our viewpoint, the performance of the SCIL processor is not bad and acceptable. Taking the
benchmark Fibo for example, the SCIL processor need to execute about 170 SCIL
instructions when N=10. Because usually one SCIL instruction needs 4.5 microinstructions
to complete its functionality, the SCIL processor has to execute about 700 microinstructions
in sum. The number of cycles the SCIL processor needs to execute this program is 930. So
the CPI1 (Cycles Per Instruction) for microinstructions is 1.32. We think it is acceptable

because there should exist many suspend cycles among these microinstructions.

The result of benchmark Qsort inspires us very much. We can find that the SCIL processor
uses less number of cycles than the Microblaze uses. The benchmark Qsort includes many
recursive procedure calls and it can show the superiority of our processor. Because the SCIL
simplifies the CIL by using the absolute address as instruction operands for branch address,
the SCIL processor uses tiny time to invoke a procedure. The processor can use static branch
jumps because the SCIL does not support the object-oriented concept. The SCIL compiler

can calculate all branch addresses before we load SCIL instructions into the memory.
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Chapter 6  Conclusion and Future works

Currently embedded processors are used widely in embedded system designs. The
embedded processors can accelerate the development period of embedded systems, and let
the embedded system designers start their works at high abstract level. We introduced a new
embedded processor targeted for Microsoft’s CIL. The SCIL Processor is a synthesisable
softcore processor, and it implements a subset of the CIL. Since the CIL is the intermediate
language for the all .NET languages, it is possible for designers 1o use all languages of .NET
framework as the programming language to develop software applications for embedded
systems. However, because the CIL has many characteristics of high level languages, it is
difficult to implement the CIL directly on hardware. We adopted the approach of
simplifying CIL instructions, and converted them to SCIL instructions via a small complier.
The SCIL, as the machine language for the SCIL processor, improved the performance of
the processor and reduced the amount of needed hardware resources. The SCIL processor
modified the architecture of Tanenbaum’s [IVM processor to adapt to the SCIL instruction
set. Moreover the SCIL processor used a predictor and the forwarding technique to reduce
the number of suspending cycles. We illustrated the performance of our processor and
compared benchmark results of the SCIL processor system with a MicroBlaze processor

system.

The future works can continue in three directions. First of all, the performance of SCIL
processor might be improved. We can use an eight-stage pipeline to replace current six-
stage pipeline. Now the unit I[FU and the unit MIU have to do lots of works. The IFU is
responsible to fetch data from memory and decode instruction code. The MIU is responsible
to search microinstructions and generate command signals. Both of two units needs
relatively long time to complete their tasks. As a result, it is hard for us to improve the clock
frequency of the processor further. Therefore, we can split the works of the MIU into two
parts. We use two different units to do search microinstructions and do generate command
signals respectively. [n this way, each unit needs less time than the MIU needs. Accordingly,
we can split the tasks of the IFU to two units. Then we modify six pipeline stages to eight

pipeline stages. We think the clock frequency of the processor might be improved a lot after
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the processor using the new pipeline. Another approach of improving the performance

1s to implement some often-used instructions in circuitry. The processor does not need many
hardware resources on these circuitries. Furthermore when the processor can execute these
often-used instructions in a very short time, we think the processor could improve the
performance remarkably. Secondly, we intend to enlarge the semantic of the language SCIL,
and make the processor support the object-oriented concepts. Currently the SCIL is like the
simple C and does not support object-oriented programming. However, it is necessary to
make the processor support it if we hope the SCIL processor could be used in practice. In
our opinion, the processor would need some modifications in order to support object-
oriented concepts. The processor can add one memory to recode the address of object
instances and another memory to converse these object instances. Moreover, in order to
implement the garbage collection function effectively, we make the memory for object
instances a little special. The whole memory is divided into two parts. Both of two parts can
do garbage collection independently. When the processor is accessing data in one part of
memory, this part suspends doing garbage collection. However another part can still do
garbage collection. In this way, the processor can use object instances and do garbage
collection at the same time. We think this approach of garbage collection can give the
processor a good performance. Finally, it is possible to fit multiple SCIL processors into a
same FPGA, we think it would be interesting to realize a network-on-chip design and
measure the overhead. We can use different network topologies, such as bus network, ring
network and star network, to connect various SCIL processors in a multiprocessor design.
Furthermore, we can construct the systems with different number of SCIL processors to test

the speedup obtained due to the use of many processors instead of one being used.
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- Appendix

List of Supportable CIL Instructions

CIL instruction

SCIL instruction

SCIL Instruction Code

nop
Dup
pop
ret
add
add.ovf
Add.ovf.un
sub
sub.ovf
Sub.ovf.un
and
or
xor
neg
not
newarr
Ret_main
ldelem.i1
|delem.u
ldelem.i2
Idelem.u2
|delem.i4
Idelem.u4d
Idelem.i8
ldelem.i
Idelem.rd
|delem.r8

Idelem

stelem.i
\ stelem.i1
L stelem.i2

nop
dup
pop
ret
add
add
add
sub
sub
sub
and
or
xor
neg
not
newarr
ret_main
Idelem
delem
Idelem
ldelem
Idelem
Idelem
Idelem
idelem
Idelem
Idelem
Idelem
stelem
stelem

stelem

00000000
00000011
00000110
00000100
00000001
00000001
00000001
00000010
00000010
0oooo010
00001010
00001011
00001100
00001101
00001110
00000111
00000101
00001001
00001001
0coc1001
00001001
00001001
00001001
00001001
00001001
00001001
00001001
00001001
00001000
00001000
00001000
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stelem.i4
stelem.i8
stelem.r4
stelem.r8
stelem
shl
shr
shr.un
ldarg.0
Idarg.1
ldarg.2
ldarg.3
ldarg.s
ldarg
Idloc.0
Idloc.1
Idloc.2
ldloc.3
ldloc.s
idloc
stloc.0
stloc.1
stloc.2
stloc.3
stloc.s
stloc
starg.s
starg
param
Ldc.i4.m1
Idc.i4.0
idc.i4.1
Idc.i4.2
Idc.i4.3
Idc.i4.4
Idc.i4.5
Idc.i4.6

stelem
stelem
stelem
stelem
stelem
shi
shr
shr
ldarg
Idarg
ldarg
Idarg
ldarg
ldarg
Idloc
Idloc
idloc
Idloc
ldloc
Idloc
stloc
stloc
stloc
stloc
stloc
stloc
starg
starg
param
loads
loads
loads
loads
loads
loads
loads

loads

00001000
00001000
00001000
00001000
00001000
00010000
00001111
00001111
01000101
01000101
01000101
01000101
01000101
01000101
01000110
01000110
01000110
01000110
01000110
01000110
01000010
01000010
01000010
01000010
01000010
01000010
01000001
01000001
01000100
11000001
11000001
11000001
11000001
11000001
11000001
11000001
11000001
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Idc.id.7

Idc.i4.8

Idc.id.s
Idc.i4
Idc.i8
Idc.r4
Idc.r8

call

Imp
br.s
br
beq.s
beq
bge.s
bge.un.s
bge
bge.un
bgt.s
bgt.un.s
bgt
bgt.un
ble.s
ble.un.s
ble
ble.un
blt.s
bit.un.s
bit
blt.un
bne.un.s
bne.un

local

loads
loads
loads
loads
loads
loads
loads
call
br
br
br
beq
beq
bge
bge
bge
bge
bgt
bgt
bgt
bgt
ble
ble
bie
ble
bit
bt
bit
bit
bne
bne

local

11000001
11000001
11000001
11000001
11000001
11000001
11000001
10000010
10000001
10000001
10000001
10001000
10001000
10001011
10001011
10001011
10001011
10001010
10001010
10001010
10001010
10001100
10001100
10001100
10001100
10000111
10000111
10000111
10000111
10001001
10001001
10000011
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SCIL code Microinstructions Comment

loads1 MDR=TOS=0PD Copy OPD to TOS and MDR

loads? MAR=SS=SS+1;wr Increase SS and set MAR; write memory

add1 MAR=55=5S-1 Read and store the word following the stack top
add?2 TPR=TOS; rd TPR = the stack top; read memory

add3 MDR=TOS=MDR+TPR; wr Add two element; write memory

stloc1 MAR=LV+0OPD MAR=first variable address + displacement
stloc2 MDR=TOS; wr MDR=the stack top; write memory

stloc3 MAR=SS= SSG-1 Read and store the word following the stack top
stloc4 rd Read memaory

stloc5 TOS=MDR Write the new stack top

starg1 MAR=PAR+OPD MAR=first parameter address + displacement
starg2 MDR=TOS; wr MDR=the stack top; write memory

starg3 MAR=SS=5S5-1 Read and store the word following the stack top
starg4 rd Read memory

stargb TOS=MDR Write the new stack top

call1 TPR=0OPD Copy OPD to TPR

call2 MAR=SS=55+1 Increase SS; Copy new SS to MAR

call3 MDR=NPC; wr Copy NPC to MDR; write memory

call4 MAR=SS=55+1 Increase SS; Copy new S8 to MAR

calls MDR=TOS=LV; wr Copy LV to MDR and TOS; write memory
callé LV=SS Copy new SSto LV

call7 BUS C=TPR Output TPR via BUS C

local1 S5=8S+0PD Increase SS with number of variables

local2 TOS=0 Reset TOS

Param1 TPR=0OPD Copy OPD to TPR

Param2 MAR=SS=55+1 [ncrease SS; Copy new SS to MAR

Param3 MAD=PAR; wr Cope PAR to MAD; write memory

Param4 PAR=SS-TPR PAR=position of stack top - number of parameters
ret1 MAR=LV Copy LV to MAR

ret2 MAR=SS5=LV-1; rd Set SS; Copy new SS to MAR; read memory
ret3 LV=MDR; rd Copy MDR to LV; read memory

ret4 TPR=MDR Copy MDR to TPR

ret5 MAR=SS=5S-1 Read and store the word following the stack top
reté MAR=SS=PAR; rd Set SS; Copy new SS to MAR; read memory
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ret7 PAR=MDR Copy MDR to PAR

ret8 MDR=TOS; wr Copy the stack top to MDR; write memory

ret9 BUS C=TPR Output TPR via BUS C

ret. main1 | MAR=S8S=0 Reset MAR and SS

ret main2 | MDR=TOS; wr Write the result to the first element

ret_main3 | Output all ‘0’ End of program

ldarg1 MAR=PAR+OPD MAR=first parameter address + displacement

Idarg2 MAR=SS=SS+1; rd Increase SS; Copy new SS to MAR; read memory

ldarg3 TOS=MDR; wr Set the stack top = MDR; write memory

Idloc1 MAR=LV+OPD+1 MAR=first variable address + displacement

Idloc2 MAR=SS=SS+1; rd Increase SS; Copy new SS to MAR; read memory

fdioc3 TOS=MDR; wr Set the stack top = MDR; write memory

br1 z="1 Set Z="1"

br2 JMP(Z) Branch if Z

bit1 MAR=55=55-1 Read and store the word following the stack top
Read and store the word following the stack top;

bit2 MAR=8S=SS-1; rd Read memory

blt3 TPR=MDR,; rd Copy MDR to TPR; read memory

blt4 Z=TPR cmp TOS If TPR<TOS then Z="1" else Z="0’

blt5 TOS=MDR; JMP(Z) Set the stack top = MDR; Branch if Z

Beq1 MAR=85=5S-1 Read and store the word following the stack top
Read and store the word following the stack top;

Beg2 MAR=SS=SS-1; rd Read memory

Beq3 TPR=MDR,; rd Copy MDR to TPR; read memory

Beqg4 Z=TPR cmp TOS If TPR=TOS then Z="1" else Z="0’

Beg5 TOS=MDR; JMP(Z) Set the stack top = MDR; Branch if Z

Bne1 MAR=55=5S-1 Read and store the word following the stack top
Read and store the word following the stack top;

Bne2 MAR=SS=SS-1; rd Read memory

Bne3 TPR=MDR; rd Copy MDR to TPR:; read memory

Bne4 Z=TPR cmp TOS If TPR<>TOS then Z="1" else Z="0’

Bneb TOS=MDR; JMP(Z) Set the stack top = MDR; Branch if Z

Bgt1 MAR=SS=SS-1 Read and store the word following the stack top
Read and store the word following the stack top;

Bgt2 MAR=55=55-1; rd Read memory

Bgt3 TPR=MDR; rd Copy MDR to TPR; read memory

Bgt4 Z=TPR cmp TOS If TPR>TOS then Z="1" else Z="0’
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Bgtb TOS=MDR; JMP(Z) Set the stack top = MDR; Branch if Z
Bge1 MAR=SS=5S-1 Read and store the word following the stack top
Read and store the word following the stack top;
Bge? MAR=8S=SS-1; rd Read memory
Bge3 TPR=MDR; rd Copy MDR to TPR; read memory
Bge4 Z=TPR cmp TOS If TPR>=TOS then Z="1" else Z="(
Bge5 TOS=MDR; JMP(Z) Set the stack top = MDR; Branch if Z
ble1 MAR=88=5S-1 Read and store the word following the stack top
Read and store the word following the stack top;
ble2 MAR=SS=SS-1; rd Read memory
ble3 TPR=MDR,; rd Copy MDR to TPR; read memory
ble4 Z=TPR cmp TOS If TPR<=TOS then Z="1" else Z="("
ble5 TOS=MDR; JMP(Z) Set the stack top = MDR; Branch if Z
' Sub1 MAR=SS=5S-1 Read and store the word following the stack top
Sub2 TPR=TOS; rd TPR = the stack top; read memory
Sub3 MDR=TOS=MDR-TPR; wr Subtract two element; write memory
And1 MAR=55=5S-1 Read and store the word following the stack top
And2 TPR=TOS; rd TPR = the stack top; read memory
And3 MDR=TOS=MDR and TPR; wr | AND two element; write memory
or1 MAR=55=5S-1 Read and store the word following the stack top
or2 TPR=TOS; rd TPR = the stack top; read memory
or3 MDR=TOS=MDR or TPR; wr OR two element; write memory
' not1 MAR=SS Copy SS to MAR
NOT the stack top; Copy new stack top to MDR; write
not2 MDR=TOS=not TOS; wr memory
Neg1 MAR=SS Copy SS to MAR
Negative the stack top; Copy new stack top to MDR;
Neg?2 MDR=TOS=-TOS; wr write memory
Dup1 MAR=5S=SS+1 Increase SS; Copy new SS to MAR
Dup?2 MDR=TOS; wr Copy the stack top to MDR; write memory
Pop1 MAR=SS=SS-1 Read and store the word following the stack top
Pop2 rd Read memory
Pop3 TOS=MDR Copy MDR to TOS
xor1 MAR=S5S=5S-1 Read and store the word following the stack top
xor2 rd Read memory
xor3 TPR=not MDR NOT MDR; Copy new MDR to TPR
xor4 TPR=TPR and TOS AND two elements; Copy the result to TPR
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xor5 TOS=not TOS NOT TOS
xor6 TOS=MDR and TOS AND two elements; Copy the result to TOS
’ OR two elements; Copy the result to MDR and TOS;
xor? MDR=TOS=TPR or TOS; wr write memory
loadw1 TPR=shl16(OFD) Copy high 16 bits to TPR
lcadw?2 MAR=SS Copy SS to MAR
Joadw3 MDR=TOS=TPR+TQS; wr Combine high 16 biis and low 16 bils; write memory
newarr1 TPR=SS Copy SSto TPR
newarr2 MAR=SS=SS+TOP [ncrease SS with the size of array; Copy new SS to MAR
Copy the initial position of array to MDR and TOS;
newarr3 MDR=TOS=TPR; wr write memory
stelem1 MAR=SS=5S-1 Read and store the word following the stack top
Read and store the word following the stack top;
stelem2 MAR=SS=SS-1; rd Read memory
stelem3 TPR=MDR; rd Copy initial position of array to TPR; read memory
stelemd MAR=TPR+MDR: MAR-=initial position of array + index
stelem5 MDR=TOS; wr Copy TOS to MDR; write memory
stelem6 MAR=SS=55-1 Read and store the word following the stack top
stelem? rd Read memory
stelem8 TOS=MDR Copy MDR to TOS
Idelem1 MAR=55=5S-1 Read and store the word following the stack top
ldelem?2 rd Read memory
Idelem3 MAR= MDR+TOS MAR=initial position of array + index
ldelem4 MAR=SS; rd Copy SS to MAR; read memory
Idelems TOS=MDR; wr Copy index element to TOS; write memory
shr1 MAR=SS Copy SS to MAR
shr2 MDR=TOS=SHR8(TOS}; wr Shitt TOS; Copy new TOS to MDR; write memory
shl1 MAR=SS Copy SS to MAR
shl2 MDR=TOS=SHL1(TOS); wr Shift TOP; Copy new TOS to MDR; write memory




