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SOMMAIRE 

 

La maladie d’Alzheimer (MA) est de loin le type de démence le plus répandu 

chez les personnes âgées. Il est maintenant possible de proposer un certain nombre 

d’interventions ou de stratégies préventives aux personnes portant un diagnostic de MA 

ou à risque de développer la maladie. Il est donc important de diagnostiquer cette 

maladie le plus tôt possible. Les personnes avec un trouble cognitif léger (TCL) 

représentent une population d’intérêt puisqu’elles sont à haut risque d’évoluer vers une 

démence et plusieurs d’entres elles seraient ainsi dans une phase prodromale de la MA.  

 

Les travaux de cette thèse visent à explorer les activations fonctionnelles 

associées à la mémoire épisodique et à la mémoire de travail dans le TCL ainsi qu’aux 

effets de la sévérité de la maladie et des caractéristiques de la tâche sur ces activations. 

Dans un premier temps, nous exposerons les connaissances relatives au niveau des 

atteintes cognitives, du patron d’activation fonctionnelle et des plus récents modèles 

élaborés pour expliquer les changements d’activation dans le vieillissement normal et 

pathologique (Chapitre 1). Par la suite, les études réalisées dans le cadre de cette thèse 

seront présentées. Nous avons d’abord étudié la fiabilité du signal d’activation chez les 

TCL et chez les personnes âgées saines (PA) à l’aide de tâches d’encodage et de 

récupération de mots (Chapitre 2). Nous avons ensuite comparé le patron d’activation 

cérébral des PA et des personnes TCL alors qu’elles réalisaient une tâche d’encodage et 

de récupération de mots. L’effet de la sévérité a été évalué en corrélant les activations 

des personnes TCL à leurs scores obtenu à une échelle évaluant leur cognition globale 

(Chapitre 3). L’effet de sévérité a ensuite été étudié de manière plus approfondie chez 

un plus grand nombre de TCL en utilisant la médiane du groupe à cette même échelle 



ii 
 
pour déterminer un groupe de TCL plus atteints et un groupe de TCL moins atteints. 

Ces deux groupes ont ensuite été comparés à un groupe de PA lors d’une tâche 

d’encodage de paires de mots reliés sémantiquement ou non-reliés (Chapitre 4), une 

tâche de reconnaissance de paires de mots mesurant principalement la familiarité ou 

principalement la recollection (Chapitre 5), ainsi que deux tâches impliquant des 

composantes différentes de la mémoire de travail et des fonctions exécutives, soit la 

manipulation de l’information et l’attention divisée (Chapitre 6). 

 

Les résultats présentés dans cette thèse ont mis en évidence une distinction entre 

le patron d’activation des TCL et des PA qui semble caractérisée par une interaction 

entre le niveau de sévérité de la maladie et les processus cognitifs impliqués dans la 

tâche. L’effet de sévérité a été observé lors de plusieurs tâches impliquant des 

processus cognitifs différents où les MCI moins atteints ont montré principalement des 

hyperactivations sous-tendant des mécanismes compensatoires et les MCI plus atteints 

ont montré principalement des hypoactivations soulignant la dégradation de ces 

mécanismes. Par ailleurs, les résultats de nos études ont aussi montré que cet effet de 

sévérité est modulé par le moment d’altération du processus cognitif impliqué dans la 

tâche: les processus altérés précocément dans le TCL sont caractériséees par des 

hyperactivations chez les TCL moins atteints tandis que les processus altérés plus 

tardivement ont plutôt élicité des hyperactivations chez les TCL plus atteints. Les 

implications de ces résultats, ainsi que les limites des études, sont discutés (Chapitre 7).  

 

  Mots clés : trouble cognitif léger, maladie d’Alzheimer, compensation, neuroimagerie, 

mémoire épisodique, fonctions exécutives, cognition. 
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ABSTRACT 

 

Alzheimer's disease (AD) is by far the type most common dementia in the 

elderly. It is now possible to propose a number of interventions or preventive strategies 

to individuals with a diagnosis of AD or at risk of developing the disease. It is therefore 

important to diagnose this disease as soon as possible. Individuals with mild cognitive 

impairment (MCI) represent a population of interest as they are at high risk of 

developing dementia and many of these persons might thus be in a prodromal phase of 

AD. 

 

The work of this thesis aims to explore the functional activations associated 

with episodic memory and working memory in MCI as well as studying the effects of 

disease severity and of task characteristics on these brain activations. Initially, we will 

review the current knowledge about the level of cognitive impairment, functional 

activation pattern and the more recent models developed to explain changes of 

functional activation in normal aging and disease (Chapter 1). Subsequently, the studies 

of this thesis will be presented. First, we studied the reliability of activation signal in 

people with MCI and healthy elderly individuals (HE) using tasks of encoding and 

retrieval of words (Chapter 2). We then compared the pattern of brain activation 

between HE and MCI persons while they were administered tasks of encoding and 

retrieval of words and pseudo-words. The effect of severity was assessed by correlating 

activations of MCI persons with their scores on a scale assessing their overall cognition 

(Chapter 3). The effect of severity was then examined in more details in a larger 

number of people using the median score of the MCI group on the scale of global 

cognitive assessment to determine a group of less impaired MCIs and a group of more 
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impaired MCIs. These two groups were compared to a group of HE while conducting a 

task of encoding semantically related or unrelated pairs of words (Chapter 4), a 

recognition task of word pairs measuring either mainly familiarity processes or 

recollection processes (Chapter 5) and two tasks involving different components of 

working memory or executive functioning, the manipulation of information and 

division of attention (Chapter 6). 

 

The results presented in this thesis have highlighted a distinction between the 

functional activation pattern of MCI persons and HE which seems to be characterized 

by an interaction between level of disease severity and the cognitive processes involved 

in the task. The effect of severity was observed in several tasks involving different 

cognitive processes during which less impaired MCIs showed primarily 

hyperactivations underlying compensatory mechanisms and more impaired MCIs 

showed mainly hypoactivations suggesting a degradation of these mechanisms. 

Moreover, the results of our studies have also shown that the effect of severity is 

modulated by the time of alteration of the cognitive processes involved in the task: the 

process altered early in MCI are caracterized by hyperactivations in less impaired MCIs 

while processes that are altered later on elicited hyperactivations in more impaired 

MCIs. The implications of these findings and the limitations of the studies are 

discussed (Chapter 7).  

 

Keywords : mild cognitive impairment, Alzheimer’s disease, compensation, brain 

imaging, episodic memory, executive functions, cognition. 
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1.1 La maladie d’Alzheimer et le trouble cognitif léger 

1.1.1 La maladie d’Alzheimer 

La démence est une réduction acquise des capacités cognitives qui entraîne une 

baisse du fonctionnement et une perte d’autonomie. La démence peut avoir plusieurs 

étiologies. Parmi celles-ci, la démence de type d’Alzheimer (DTA) est de loin celle la 

plus répandue chez les personnes âgées, affectant environ un Canadien sur vingt âgé de 

plus de 65 ans (McDowell et al., 1994), et représente la cinquième cause de décès de 

cette population. Selon le rythme actuel de progression, on estime qu’en 2050 de 11 à 

16 millions d’américains souffriront de cette maladie neurodégénérative si aucun 

traitement curatif n’est découvert (Mebane-Sims, 2009). L’impact de cette maladie sur 

notre société est majeur, tant au niveau social  qu’économique et cet impact continuera 

d’augmenter avec l’explosion appréhendée du nombre de personnes atteintes. 

 

Selon les critères du DSM (American Psychiatric Association, 2000), le 

diagnostic de la DTA repose sur la présence d’un déclin significatif et progressif au 

niveau des fonctions mnésiques et d’au moins un autre domaine cognitif (fonctions 

exécutives, langage, gnosies ou praxies). Les déficits cognitifs doivent être 

suffisamment importants pour occasionner une diminution significative du 

fonctionnement social ou professionnel. Ils ne peuvent s’expliquer par une affection 

d’une autre nature qu’elle soit organique (neurologique, tumorale, métabolique, 

infectieuse ou toxique) ou psychique (dépression, confusion mentale, schizophrénie, 

etc.). Selon les critères de recherche du NINCDS-ADRDA, un patient souffre d’une 

maladie d’Alzheimer (MA) probable s’il montre une détérioration progressive de la 
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mémoire et d’une autre fonction cognitive, incluant préférablement une atteinte du 

fonctionnement, une histoire familiale de la maladie et la présence d’atrophie à la 

tomodensitométrie cérébrale (McKhann et al., 1984). Selon ces critères, une MA 

certaine n’est diagnostiquée que lorsqu’il y a confirmation neuropathologique associée 

à la symptomatologie clinique propre à la MA probable. Les critères diagnostiques 

actuels de la MA comprennent donc la présence d’une atteinte relativement importante 

de la cognition et dont l’impact fonctionnel est déjà visible et plusieurs estiment que 

pour rencontrer ces critères la maladie doit avoir déjà occasionné des dommages 

cérébraux importants. Or, vu la prévalence et l’impact social de cette maladie, il 

apparaît nécessaire d’en identifier les signes le plus précocement possible si l’on désire 

prévenir, ou du moins retarder l’impact de la maladie ainsi que dans l’éventualité d’un 

traitement curatif. Les patients pourraient ainsi bénéficier d’un éventuel traitement le 

plus rapidement possible. Pour cela, les récentes études ont permis d’élaborer des 

critères permettant d’identifier des individus qui apparaissent comme étant 

particulièrement à risque de développer la maladie et qui pourraient en présenter des 

signes très précoces. Ces personnes sont désignées comme ayant un trouble cognitif 

léger. 

 
 

Le trouble cognitif léger 

Il est maintenant connu que la MA s’installe bien avant que les patients ne 

rencontrent les critères diagnostiques de la maladie. Les individus dans cette période 

dite « prodromale » de la MA manifestent des atteintes cognitives dont ils peuvent se 

plaindre. L’identification de cette période prodromale est cruciale, car malgré l’absence 
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de traitement curatif, il est maintenant possible de proposer un certain nombre 

d’interventions pharmacologiques (Petersen et al., 2005) ou de stratégies préventives 

(Belleville, Gilbert et al., 2006) aux personnes portant un diagnostic de MA ou à risque 

de développer la maladie. De plus, avec les avancées actuelles dans le domaine de la 

neuropharmacologie, il pourrait éventuellement devenir possible d’arrêter l’avancée 

des atteintes neuropathologies dès qu’elles seront détectées.  

 

Les chercheurs ont proposé plusieurs types de classification dans le but 

d’identifier les personnes âgées susceptibles d’être dans ce stade prodromal de la MA 

(voir Feldman & Jacova, 2005, pour une revue de littérature). Depuis une dizaine 

d’années, une attention particulière a été dirigée vers la notion de trouble cognitif léger 

(TCL, ou MCI en anglais). Les critères proposés pour identifier les individus présentant 

un TCL sont: a) La présence d’une plainte cognitive, corroborée par un proche dans la 

mesure du possible; b) Une performance sous les valeurs normatives tenant compte de 

l’âge et de l’éducation dans au moins une tâche mnésique (TCL amnésique domaine 

simple) ou dans au moins une tâche mnésique et une tâche mesurant un autre domaine 

cognitif (TCL amnésique domaines multiples); c) L’absence d’altération significative 

dans le fonctionnement quotidien; d) L’absence de critères d’identification de la 

démence (Petersen et al., 2001; Petersen et al., 1999; Winblad et al., 2004).  

 

Plusieurs études ont montré que les individus ayant répondu aux critères de 

TCL ont une plus grande incidence de démence de type Alzheimer. En effet, le taux de 

progression vers la MA chez les personnes TCL est d’environ 10 à 15% par année, 

alors qu’il est de 1 à 2% par année chez les personnes âgées saines (Petersen et al., 
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1999). Ces personnes sont donc à haut risque de développer la maladie et plusieurs 

d’entre elles pourraient se trouver dans une phase pré-clinique de la MA (Gauthier et 

al., 2006; Lambon Ralph, Patterson, Graham, Dawson, & Hodges, 2003). Pour ces 

raisons, l’examen des atteintes cognitives et des fonctions cérébrales chez les personnes 

avec TCL est susceptible d’apporter un éclairage nouveau et riche en informations sur 

les phases les plus précoces de la MA. L’examen de la littérature portant sur l’atteinte 

cognitive dans la MA porte à croire que certains processus de mémoire spécifique tels 

que la mise en relation des unités d’information, la recollection et certaines sous-

composantes de l’administrateur central de la mémoire de travail pourraient être 

particulièrement atteintes dans les stades les plus précoces de la MA. Pour cette raison, 

notre travail a porté plus particulièrement sur ces composantes. Dans la prochaine 

section, les travaux répertoriant les atteintes de la mémoire et des fonctions exécutives 

dans le TCL seront rapportés et mis en relation avec ceux portant sur la MA (section 

1.2). Puis, nous ferons de même pour les travaux ayant fait appel à la neuroimagerie 

fonctionnelle (section 1.3). Ensuite, nous examinerons si la sévérité de la maladie ou la 

nature de la tâche pourrait rendre compte des résultats observés au niveau des 

activations fonctionnelles (section 1.4). Cet examen de la littérature nous amènera vers 

nos objectifs et hypothèses (section 1.5) 

 

1.2 Atteintes cognitives 

1.2.1 Atteintes de la mémoire épisodique dans la MA et le TCL  

Les atteintes cognitives dans la MA ont fait l’objet de nombreuses études au 

cours des deux dernières décennies. La fonction qui a reçu le plus grand intérêt est sans 
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contredit la mémoire épisodique, la principale fonction cognitive altérée dans la MA. 

La mémoire épisodique réfère à un système de rétention des évènements et de leur 

contexte spatio-temporel (Tulving, 2004). On distingue souvent deux étapes en 

mémoire épisodique: l’encodage et la récupération. Les patients MA semblent 

présenter de nombreuses difficultés tant pour l’encodage que la récupération de 

l’information. Ainsi, ils montrent des difficultés à apprendre des listes de mots et, une 

fois apprises, ils présentent rapidement des difficultés à rappeler les mots ou à les 

reconnaître parmi des distracteurs (Moulin, James, Freeman, & Jones, 2004; Traykov, 

Rigaud, Cesaro, & Boller, 2007). De plus et contrairement aux personnes âgées saines, 

ils bénéficient peu de la présence d’une structure susceptible de supporter l’encodage, 

par exemple la présence  liens sémantiques entre les mots à apprendre (Almkvist 1999). 

Cette difficulté pourrait s’expliquer par une atteinte sémantique qui les empêcherait 

d’encoder les indices. Toutefois, elle pourrait aussi provenir du fait que l’encodage de 

l’item et de son contexte (ici l’indice) nécessite la mise en relation de diverses unités 

d’informations et que les patients MA auraient de la difficulté à unir ces unités lors de 

leurs apprentissages. Il s’agirait alors d’une atteinte des processus de mémoire 

associative. Les études utilisant des tâches de mémoire associative verbale et non-

verbale ont d’ailleurs relevé des atteintes particulièrement importantes chez les patients 

MA autant en mémoire à court terme (Parra et al., 2009) qu’en mémoire à long terme 

(Sahakian et al., 1988; Swainson et al., 2001). Les études ont aussi démontré que les 

patients MA sont atteints au niveau de la reconnaissance. Enfin, ils auraient des 

atteintes importantes au niveau des processus de recollection, c’est-à-dire ceux 

permettant de récupérer les items ainsi que leur contexte d’encodage, et à un moindre 

degré, des déficits au niveau des processus de familiarité, ceux reflétant la 
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reconnaissance qu’un item a été appris sans information sur son contexte 

d’apprentissage (voir Smith & Knight, 2002, pour une série d’études à ce sujet avec la 

procédure de dissociation des processus).  

 

Les personnes TCL auraient elles aussi, comme les patients MA, des atteintes 

touchant les processus d’encodage et de récupération (Perri, Serra, Carlesimo, & 

Caltagirone, 2007). D’abord,  on note la présence de difficultés dans des tâches de 

rappel libre de listes de mots (Collie & Maruff, 2000; Collie, Maruff, & Currie, 2002; 

Nordahl et al., 2005; Perri, Carlesimo, Serra, & Caltagirone, 2005; Petersen et al., 

1999), dans des tâches de rappel de textes et dans des tâches de rappel de mots pairés 

(Collie et al., 2002; Dudas, Clague, Thompson, Graham, & Hodges, 2005). Toutes ces 

tâches font appel autant à l’encodage qu’à la récupération. Notons que, tout comme les 

patients MA, les TCL bénéficient peu de support à l’encodage, tel que la présence de 

liens sémantiques entre les mots à apprendre (Perri et al., 2005). Encore une fois, cette 

difficulté pourrait s’expliquer soit par la présence d’une atteinte sémantique, soit par 

une atteinte de la mise en relation des unités d’information lors de l’encodage. Étant 

donné que des atteintes en mémoire associative ont été proposées sur la base d’une 

difficulté dans le rappel de la localisation spatiale de dessins (Collie et al., 2002) ou de 

visages (Dudas et al., 2005), il a été suggéré que les difficultés d’encodage des TCL 

pourraient provenir en grande partie de leur atteinte de la mémoire associative (De 

Jager, Blackwell, Budge, & Sahakian, 2005; Pereira, Yassuda, Oliveira, & Forlenza, 

2008). Dans les tâches de reconnaissance, plusieurs études ont indiqué une altération 

des processus de recollection chez les personnes TCL, alors que les processus de 

familiarité semble être encore préservés à ce stade-ci de la maladie (Anderson et al., 
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2008; Hudon, Belleville, & Gauthier, 2009; Westerberg et al., 2006) (mais voir Wolk, 

Signoff, & Dekosky, 2008).  

 

En résumé, les études cognitives de la MA et du TCL exposent un patron 

d’atteinte en mémoire épisodique qualitativement similaire avec des déficits au niveau 

de l’encodage et de la récupération; elles montrent aussi des difficultés particulièrement 

importantes lors des tâches reposant sur l’apprentissage associatif et sur la récupération 

du contexte (recollection). De plus, la littérature indique que l’utilisation de matériel 

structuré sémantiquement ne permettrait pas aux patients MA et aux personnes TCL de 

contrer leurs difficultés. De façon générale, les atteintes sont moins importantes chez 

les TCL que chez les patients MA indiquant un gradient de sévérité au cours de 

l’évolution de la maladie.  

 

1.2.2 Mémoire de travail et fonctions exécutives dans la MA et le TCL 

La mémoire de travail est un système de rétention qui permet le maintien et la 

manipulation de l’information à court terme. Certains modèles ont proposé que la 

mémoire de travail repose sur le fonctionnement d’un ensemble de processus de 

contrôle attentionnel relativement indépendants tant sur le plan neuroanatomique que 

cognitif (Belleville, Rouleau, Van der Linden, & Collette, 2003; Miyake et al., 2000). 

Ainsi, la composante attentionnelle de la mémoire de travail, l’administrateur central 

(Baddeley, 1996), aurait plusieurs fonctions, telles la capacité à coordonner plusieurs 

tâches simultanément (attention divisée), à alterner entre plusieurs stratégies cognitives 

(alternance), à maintenir l’attention sur un stimulus tout en ignorant l’effet distracteur 
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de d’autres (inhibition), ainsi qu’à maintenir et manipuler de l’information en mémoire 

(manipulation).  

 

Plusieurs études se sont intéressées aux atteintes exécutives et au 

dysfonctionnement de l’administrateur central de la mémoire de travail chez les 

patients MA. Ces études rapportent généralement des atteintes importantes pour la 

quasi totalité des fonctions de contrôle attentionnel (voir, Bherer, Belleville, & Hudon, 

2004, pour une revue de littérature à ce sujet). Concernant la manipulation de 

l’information, les patients MA ont montré des performances inférieures à celles des 

personnes âgées saines dans des tâches d’alphaspan (rappel d’une série de mots en 

ordre alphabétique plutôt que dans l’ordre de présentation (Belleville, Chertkow, & 

Gauthier, 2007; Belleville et al., 2003), ainsi que dans une tâche d’empan en ordre 

inversé (Almkvist, Fratiglioni, Aguero-Torres, Viitanen, & Backman, 1999). Les 

patients MA montrent aussi des atteintes lorsqu’ils doivent diviser leur attention entre 

deux tâches concurrentes (Belleville et al., 2007; Kalpouzos et al., 2005). De plus, des 

performances déficitaires ont été relevées dans les épreuves ciblant les fonctions 

inhibitrices, telles que mesurées par la tâche de Hayling (Belleville, Rouleau, & Van 

der Linden, 2006) ou avec le test de Stroop (Amieva et al., 2002). En résumé, les 

patients MA semblent déficitaires dans la grande majorité des tâches exécutives 

administrées. Leurs atteintes ne semblent donc pas être spécifiques à une composante 

particulière, mais plutôt généralisées à l’ensemble des fonctions de contrôle 

attentionnel de la mémoire de travail.  
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De plus en plus d’études soulignent également la présence d’altérations au 

niveau de la mémoire de travail dans le TCL. En effet, les personnes TCL montrent des 

performances déficitaires dans les tâches faisant appel aux fonctions inhibitrices, tel 

que mesurées par la tâche de Stroop (Belanger, Belleville, & Gauthier, 2010) et par la 

tâche de Hayling (Belanger & Belleville, 2009; Belleville et al., 2007). Par ailleurs, 

plusieurs études ont indiqué une atteinte de l’attention divisée (Belleville et al., 2007; 

Dannhauser et al., 2005; Okonkwo, Wadley, Ball, Vance, & Crowe, 2008) ainsi qu’une 

altération des processus de manipulation de l’information chez les TCL qui 

progresseront vers la MA (Belleville et al., 2007). Enfin, une étude a aussi souligné des 

troubles des processus d’alternance dans le TCL (Belleville, Bherer, Lepage, Chertkow, 

& Gauthier, 2008). En résumé, les individus TCL montrent des atteintes cognitives 

dans la plupart des sous-composantes attentionnelles de la mémoire de travail. Ces 

difficultés pourraient avoir un impact important, car elles peuvent exacerber les 

problèmes mnésiques (Ranganath, Cohen, & Brozinsky, 2005) et sous-tendre une 

grande partie des plaintes associées aux tâches quotidiennes complexes (Pereira et al., 

2008). De plus, les donnés de plusieurs études  suggèrent qu’une détérioration des 

fonctions de contrôle attentionnel chez les personnes TCL est associée à une 

progression plus fréquente vers la MA. (Belanger & Belleville, 2009; Belleville et al., 

2007; Royall, Palmer, Chiodo, & Polk, 2005). 

 

En résumé, la plupart des sous-composantes de l’administrateur central de la 

mémoire de travail semblent être déficitaires chez les patients MA et chez les 

personnes TCL. L’atteinte semble toutefois plus généralisée chez les patients MA, 

tandis qu’une certaine hétérogénéité des déficits a été observée chez les TCL en 
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fonction de leur degré de sévérité (Belleville et al., 2007) ou en fonction de leur 

évolution ultérieure vers la MA.  

 

1.3 Neuroimagerie 

L’évaluation neuropsychologique permet d’identifier la spécificité et l’ampleur des 

atteintes cognitives en examinant les performances des individus sur différentes tâches 

cognitives. En revanche, la neuroimagerie fonctionnelle examine les patrons d’activités 

cérébrales associés aux activités cognitives et s’intéressent donc aux réseaux neuronaux 

utilisés pour accomplir la tâche. La neuroimagerie fonctionnelle apporte des 

informations intéressantes et complémentaires relatives aux régions cérébrales qui 

sous-tendent les performances cognitives et sur les processus engagés pour réaliser les 

tâches cognitives. En comparant le patron d’activation de patients avec des dommages 

cérébraux à des personnes saines, il devient possible d’obtenir des informations sur la 

présence et le type de compensation neuronale mis en place par les patients. Dans cette 

section, nous examinerons les études qui ont porté sur l’encodage de la mémoire 

épisodique, sur la récupération de la mémoire épisodique et sur la mémoire de travail et 

les fonctions exécutives. Dans tous les cas, nous rapporterons d ‘abord les études 

portant sur la MA puis celles portant sur le TCL.  

 

1.3.1 Mémoire épisodique - Encodage 

Les études en neuroimagerie fonctionnelle qui se sont intéressé à la mémoire 

ont porté soit sur la phase d’encodage, soit sur la phase de récupération. Parmi les 

études ayant examiné les activation des patients MA, cinq ont examiné l’encodage 
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intentionnel ou incident de scènes ou de photos (Golby et al., 2005; Machulda et al., 

2003; J. Mandzia, Black, Grady, McAndrews, & Graham, 2002; Rombouts et al., 2000; 

Small, Perera, DeLaPaz, Mayeux, & Stern, 1999). Ces études ont toutes rapporté des 

hypoactivations du lobe temporal médian (principalement de l’hippocampe et du gyrus 

parahippocampique), c’est à dire une activation moins importante chez les MA que 

chez les contrôles. De plus, certaines ont aussi noté des hypoactivations chez les MA 

dans la région occipitotemporale (Golby et al., 2005; J. Mandzia et al., 2002), dans le 

lobe occipital (Golby et al., 2005), dans le lobe frontal (J. Mandzia et al., 2002) et dans 

le cervelet (Golby et al., 2005). Une seule étude d’encodage rapporte des 

hyperactivations, c’est à dire une activation plus importante chez les MA que chez les 

contrôles, dans le lobe pariétal gauche (J. Mandzia et al., 2002). Dans la même veine, 

Kato et ses collègues ont utilisé un paradigme d’apprentissage de figures géométriques 

chez 8 PA et 7 MA légers (MMSE > 23) et ont observé que les MA présentaient une 

hypoactivation du cortex préfrontal ventrolatéral droit (aires de Brodmann 45/46), du 

gyrus temporal inférieur antérieur gauche (aires de Brodmann 20/21), du gyrus 

supramarginal droit (aire de Brodmann 40) et du cortex entorhinal droit. Plusieurs 

études rapportent donc des hypoactivations lors des tâches d’encodage de scènes ou de 

photos chez les patients avec MA. 

 

Les résultats sont plus divergents lorsqu’une tâche d’association « nom et 

visage » est utilisée (Dickerson et al., 2005; Pariente et al., 2005; Sperling et al., 2003). 

Dans les trois études ayant fait appel à ce type de tâche, les auteurs ont noté des 

hyperactivations du cortex préfrontal chez les patients MA mais des hypoactivations du 

lobe temporal médian. De plus, deux des études ont observé des hyperactivations au 
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niveau du lobe pariétal (Pariente et al., 2005; Sperling et al., 2003) et une d’entre elles a 

noté une hyperactivation du cortex cingulaire postérieur (Sperling et al., 2003).  

 

Puisque les TCL sont à un stade moins sévère de la maladie, leur étude pourrait 

fournir des informations intéressantes concernant l’évolution des activations dans le 

décours de la MA. Cependant, les quelques études qui ont étudié l’activation cérébrale 

associée à l’encodage en mémoire chez des personnes TCL rapportent des résultats 

contradictoires. Par exemple, certains auteurs rapportent une hypoactivation de 

l’hippocampe chez les TCL dans une tâche d’apprentissage de dessins d’objets 

(Johnson et al., 2006) ou de scènes visuelles (Machulda et al., 2003) tandis que d’autres 

observent une hyperactivation de l’hippocampe (Dickerson et al., 2005; Hamalainen et 

al., 2007; Kircher et al., 2007). L’équipe de Dickerson rapporte également que 

l’hippocampe s’active de manière corrélationnelle avec la performance à une tâche 

d’apprentissage de scènes visuelles (Dickerson et al., 2004). Une meilleure 

performance était associée à une plus grande activation. Plusieurs études rapportent une 

hypoactivation du cortex préfrontal chez les TCL (Dannhauser et al., 2008; Elgh, 

Larsson, Eriksson, & Nyberg, 2003; Johnson et al., 2006; J. Mandzia et al., 2002; J. L. 

Mandzia, McAndrews, Grady, Graham, & Black, 2007), alors qu’une étude montre une 

hyperactivation dans ces régions (Kircher et al., 2007).  

 

En résumé, les études de tomographie par émission de positons (TEP) et IRMf 

qui ont utilisé une tâche d’encodage en mémoire épisodique ont principalement observé 

une hypoactivation du lobe temporal médian (surtout de l’hippocampe et du gyrus 

parahippocampique) et du lobe temporal de manière bilatérale ainsi que des 
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hyperactivations du cortex préfrontal chez les patients MA avec des résultats plus 

divergents pour les autres régions. Des résultats plus contradictoires ont toutefois été 

observés chez les TCL puisque certaines études rapportent des hyperactivations alors 

que d’autres rapportent des hypoactivations et ce, pour les mêmes régions cérébrales 

(en particulier, l’hippocampe et le cortex préfrontal).  

 

1.3.2 Mémoire épisodique - Récupération 

 Il existe relativement peu d’études ayant porté sur la phase de récupération en 

mémoire dans la MA. Une d’entre elles s’est intéressée à la reconnaissance de 

photographies de divers objets, nombres et mots, ayant été encodées auparavant 

(Kessler, Herholz, Grond, & Heiss, 1991). Les auteurs ont observé des hypoactivations 

chez les patients MA dans le gyrus frontal moyen, dans le gyrus temporal supérieur, à 

la jonction temporo-pariétale, dans V1 et dans le noyau lentiforme. De manière 

similaire, une étude mesurant la reconnaissance faisant suite à une tâche 

d’apprentissage répétitive de patrons géométriques abstraits a observé des 

hypoactivations dans les gyri temporaux moyen et inférieur droit, dans le lobe occipital 

droit et dans le lobe temporal médian (hippocampe, gyrus parahippocampique, gyri 

lingual et fusiform) (Gron, Bittner, Schmitz, Wunderlich, & Riepe, 2002). Des 

hyperactivations ont également été observées dans la MA pour la reconnaissance de 

photographies d’objets et dessins (J. Mandzia et al., 2002) dans le gyrus frontal 

inférieur bilatéralement et dans le lobe pariétal. Gron et collaborateurs (2004) ont 

mesuré les activations associées à la reconnaissance de patrons géométriques abstraits 

et ont trouvé des hyperactivations dans le cortex préfrontal et dans le lobule pariétal 

inférieur et des hypoactivations dans le lobe temporal, dans le précuneus, dans le uncus 
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gauche, dans le noyau caudé antérieur ainsi que dans le lobe temporal médian. 

Certaines études rapportent à la fois des hyperactivations et des hypoactivations. Une 

étude TEP en rappel de mots indicé (Backman et al., 1999) et une étude IRMf en 

reconnaissance d’associations nom-visage (Pariente et al., 2005) rapportent des 

hypoactivations du lobe temporal médian, des hypoactivations et hyperactivations du 

lobe temporal et des hyperactivations des lobes pariétaux et frontaux, du noyau 

cingulaire postérieur et du côté gauche du cerebellum. De manière similaire, l’étude de 

(Becker et al., 1996), qui porte sur le rappel libre de mots en TEP, rapporte des 

hypoactivations au niveau du gyrus frontal moyen (aire de Brodmann 10) et des 

hyperactivations au niveau du cortex préfrontal dorsolatéral (aires de Brodmann 8, 9, 

10) et des gyri supramarginaux (aire de Brodmann 40) et angulaires (aire de Brodmann 

39). 

 

La littérature actuelle sur les activations cérébrales chez les TCL durant des 

tâches de récupération épisodique est encore peu développée. Une étude montre une 

réduction de l’activation dans les régions frontales chez les personnes TCL par rapport 

aux personnes âgées saines (Elgh et al., 2003). De plus, une étude a démontré que les 

personnes avec TCL activent moins le cortex cingulaire postérieur que les personnes 

âgées saines (PA) dans une tâche de reconnaissance de dessins d’objets (Ries et al., 

2005). Au contraire, Heun et collaborateurs indiquent une plus grande activation 

frontale chez les TCL que chez les PA dans une tâche d’apprentissage de noms 

communs (Heun et al., 2007).  
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En résumé, les quelques études qui ont utilisé une condition de récupération en 

mémoire épisodique chez les patients MA convergent vers une hypoactivation du lobe 

temporal médian (principalement de l’hippocampe et du gyrus parahippocampique) et 

du lobe temporal (sauf pour deux études) de manière bilatérale dans les deux cas. Les 

études chez les TCL sont rares et beaucoup plus divergents.  

 

1.3.3 Mémoire de travail et fonctions exécutives 

Deux études TEP et trois études IRMf se sont intéressées à la mémoire de 

travail dans la MA jusqu’à présent. Afin d’évaluer la boucle phonologique, une équipe 

de chercheurs a demandé à 6 MA de niveau léger ainsi qu’à 6 PA de répéter à voix 

haute 5 ou 10 mots pendant l’enregistrement TEP et ils ont comparé ces répétitions à 

une condition contrôle de lecture de mots (Woodard et al., 1998). Au niveau 

comportemental, les patients et les participants contrôles ont performé aussi bien dans 

les deux conditions (5 ou 10 mots). Cependant, les MA ont eu besoin d’activer leur 

cortex préfrontal dorsolatéral (aires de Brodmann 8, 9) bilatéralement tandis que les PA 

ne l’ont activé que du côté droit. De plus, les MA ont montré des hyperactivations dans 

les aires médiales droites (aires de Brodmann 6, 32), le gyrus moyen droit (aires de 

Brodmann 46/9, 6) du cortex préfrontal et le lobule pariétal inférieur gauche (aire de 

Brodmann 39, gyrus angulaire). Ainsi, pour la même tâche et pour les mêmes 

performances, les MA ont montré des hyperactivations au niveau de leur cortex 

préfrontal et de leur gyrus angulaire. Cependant, il est intéressant de noter qu’aucune 

différence d’activation n’est observée entre les deux groupes lorsque la répétition se 

limite à trois mots (Becker et al., 1996). Une autre étude a administré une tâche de 

mémoire à court terme verbale (listes de 4 mots, chacune suivie d’une reconnaissance) 
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à 16 PA et à 16 patients MA et a observé que les MA avaient des hypoactivations dans 

le cortex préfrontal, dans le gyrus supramarginal et dans le lobe temporal ainsi que des 

hyperactivations dans l’hippocampe et dans le gyrus parahippocampique.  Les auteurs 

de cette étude concluent que les patients MA utilisent des mécanismes de 

reconnaissances alternatifs pour exécuter la tâche. 

 

Des résultats similaires à l’étude de Woodard et collaborateurs (1998) ont été 

observés dans une tâche de mémoire à court terme avec des chiffres en IRMf: 

comparativement aux contrôles, les MA ont montré des hyperactivations du gyrus 

frontal supérieur gauche et de l’uncus gauche (Starr et al., 2005). De plus, de 

l’hypoactivation a aussi été observée dans leur gyrus parahippocampique. Au niveau de 

l’administrateur central, une tâche d’attention divisée où les participants devaient porter 

attention à la fois à un stimulus visuel (un « checkboard » rouge et noir alternant ses 

couleurs à 7 Hz) et à un stimulus vibrotactile (une stimulation appliquée à la main 

droite pendant 2 secondes à chaque 4 secondes) a trouvé que les MA hypoactivaient 

leur cunéus (aire de Brodmann 17) et hyperactivaient et hypoactivaient des structures 

du tronc cérébral (putamen droit, thalamus gauche et protubérance annulaire droite) 

(Johannsen, Jakobsen, Bruhn, & Gjedde, 1999). Il faut cependant noter que cette tâche 

d’attention divisée demandait très peu de ressources cognitives, car aucune diminution 

de performance n’a été notée chez les PA et les MA lors de la double tâche 

comparativement aux tâches exécutées individuellement. Finalement, une tâche de 3-

Back avec des photos d’objets a été utilisé par Yetkin, Rosenberg, Weiner, Purdy, & 

Cullum (2005). Encore une fois, les performances des patients MA ne différaient pas 

de celles des PA. Cependant, de nombreuses différences d’activation ont été notées 
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chez les MA comparativement aux participants contrôles: hyperactivation du cortex 

préfrontal, du lobe temporal, du gyrus fusiform droit et du noyau lentiforme droit ainsi 

qu’une hypoactivation du gyrus précentral gauche, du gyrus frontal supérieur droit et 

des gyri temporaux inférieurs et fusiforme droit.  

 

Jusqu’à présent, seules deux études ont mesuré les activations fonctionnelles 

associées à la mémoire de travail chez les personnes avec TCL. Lors d’une tâche de 

mise-à-jour consistant à détecter si le dernier item présenté est identique à celui 

présenté trois items auparavant (3-Back de photos d’objets de la vie de tous les jours), 

Yetkins et son équipe rapportent davantage d’activations frontales et temporales 

médiales chez les personnes TCL que chez les personnes âgées saines (Yetkin et al., 

2005). Le patron inverse a été observé lors d’une étude d’attention divisée dans laquelle 

les participants devaient à la fois appuyer sur une clé lorsqu’ils voyaient une lettre 

particulière et appuyer sur une autre clé lorsqu’il entendait un chiffre particulier. Dans 

cette étude, les TCL ont montré moins d’activité cérébrale dans le cortex préfrontal 

gauche que les PA (Dannhauser et al., 2005). Ainsi, les deux seules études sur le sujet 

ont des résultats divergents. 

 

En résumé, les études en mémoire de travail et de fonctions exécutives chez les 

patients MA sont peu nombreuses et la plupart utilisent des tâches demandant peu de 

ressources cognitives. Ces études montrent que les patients MA hyperactivent leur 

cortex préfrontal, et plus particulièrement leur cortex préfrontal dorsolatéral gauche, 

lors de l’accomplissement de tâche de mémoire de travail et ce, malgré des 
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performances similaires à celles des sujets sains. Les études chez les personnes TCL 

sont encore moins nombreuses et montrent des résultats contradictoires. 

 

1.4 Impact de la sévérité sur les résultats en neuroimagerie fonctionelle 

Les résultats des études de neuroimagerie fonctionelle (IRMf et TEP) montrent 

des résultats divergents chez les MA avec toutefois une certaine consistance: plusieurs 

auteurs rapportent des hyperactivations au niveau du lobe préfrontal et des 

hypoactivations dans le lobe temporal médian. Il en est tout autre des études chez les 

TCL, qui rapportent tant des hyperactivations que des hypoactivations et ce, pour les 

mêmes régions cérébrales. Plusieurs facteurs pourraient expliquer ces divergences. 

D’une part, le niveau de sévérité de la maladie pourrait être un facteur explicatif. On 

sait qu’avec l’évolution de la maladie, les lésions se propagent des régions temporales 

médiales aux régions corticales associatives (pariétales, frontales et temporales) et leur 

ampleur s’accentue (Braak & Braak, 1991). Il est ainsi possible que ces changements 

dans l’ampleur et la localisation des dommages puissent mener à l’activation de 

réseaux neuronaux différents et ainsi à des patrons d’activation différents. Outre le fait 

que les études divergent considérablement en fonction des caractéristiques des patients 

recrutés, certaines études apportent un support direct à cette hypothèse. Schröder et ses 

collègues (2001) ont évalué l’impact du niveau de sévérité de la maladie sur les 

différences d’activation entre des patients MA et PA à l’aide d’une tâche 

d’apprentissage verbal sériel. Pour ce faire, ils ont divisé leur groupe de MA en 

fonction de la sévérité de leur atteinte cognitive telle que mesurée par l’échelle MMSE: 

ceux dont la sévérité est légère (MMSE > 21) et ceux dont la sévérité est modérée 

(MMSE < 22). Comparativement aux PA, les deux groupes ont montré une 
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hypoactivation des gyri inférieurs, moyens et supérieurs du lobe temporal, du gyrus 

inférieur préfrontal droit et de l’aire 19 du lobe occipital droit. Cependant, les patients 

dont l’atteinte était modérée montraient des hypoactivations additionnelles au niveau 

des gyri moyens et supérieurs préfrontaux bilatéralement, du gyrus inférieur préfrontal 

gauche et des aires 17, 18, 19 et 21 du lobe occipital de manière bilatérale. Ces résultats 

sont intéressants, car ils soulignent l’évolution du patron d’activation cérébrale en 

fonction du niveau de sévérité de la maladie et suggèrent que les hypoactivations 

s’étendent au fur et à mesure du développement de la maladie. 

 

Il est également possible que des mécanismes de plasticité cérébrale agissent en 

début de maladie quand les lésions sont relativement peu importantes. Ces phénomènes 

pourraient être particulièrement actifs durant la phase de TCL. Comme cette plasticité 

ne serait possiblement présente que chez les TCL les moins atteints, la présence ou 

l’absence de plasticité pourrait expliquer l’hétérogénéité retrouvée dans les travaux 

portant sur des patients qui sont dans les phases précliniques de la maladie. En effet, 

dans l’étude de Yetkins et collaborateurs (2005) mentionnée ci-haut, les TCL avaient 

un score moyen relativement élevé (moyenne de 28) au MMSE et ils ont montré 

principalement des hyperactivations à une tâche de mise-à-jour tandis que dams l’étude 

de Dannhauser et collaborateurs (2005), les TCL avaient un score moyen 

comparativement plus bas (moyenne de 24) au MMSE et ils ont montré principalement 

des hypoactivations à une tâche d’attention divisée. Jusqu’à présent, une seule étude a 

évalué directement l’effet de la sévérité sur le patron d’activation cérébral des TCL 

(Celone et al., 2006). Ces auteurs ont utilisé une tâche d’encodage en mémoire 

épisodique chez des sujets âgés sains, des personnes TCL (divisées en deux groupes 
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selon leur au Cognitive Dementia Rating scale) et des patients MA. Ils ont montré que 

les TCL les moins atteints activaient davantage leurs hippocampes que les PA tandis 

que les TCL les plus atteints, tout comme d’ailleurs les patients MA, activaient moins 

leurs hippocampes que les PA. Ces résultats sont ainsi compatibles avec le modèle de 

Prvulovic et al. (2005).  

 

1.4.1 Modèles 

Jusqu’à ce jour, il n’existe aucun modèle sur la relation entre la sévérité des 

TCL et la nature des atteintes cérébrales. Cependant, quelques auteurs ont tenté de 

modéliser cette relation chez les patients MA. Un des premiers modèles proposé par 

Rapoport et Grady (1993) propose que dans les premiers stades de la maladie, les 

patients montreraient moins de métabolisme cérébral que les contrôles lors de tâches de 

repos ou des tâches simples, mais qu’ils auraient un niveau plus important d’activation 

que les contrôles lors de tâches plus exigeantes. Toutefois, une quantité plus importante 

de dommages neuronaux abaisserait la capacité maximale de métabolisme du cerveau 

des patients, ce qui occasionnerait un niveau de métabolisme inférieur à celui des 

contrôles dans toutes les tâches. Le modèle prédit donc la présence d’une relation 

sigmoïdale entre la difficulté de la tâche et les activations cérébrales, relation qui 

varierait selon le degré de sévérité des dommages neuronaux. 

 

Cette approche est compatible avec des modèles plus généraux (Edelman & 

Gally, 2001; Friston & Price, 2003; Price & Friston, 2002) qui proposent qu’un cerveau 

endommagé peut, dans certaines circonstances, engager des réseaux alternatifs pour 

effectuer une tâche donnée. Ces modèles proposent que différents réseaux aient la 
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potentialité d’être réorientés vers des tâches pour lesquels ils ne sont pas spécialisés à 

l’origine. Cela pourrait expliquer pourquoi les personnes saines ne montrent pas tous le 

même patron d’activation durant la même tâche en neuroimagerie. Cependant, ce type 

de compensation ne serait plus possible une fois que tous les réseaux potentiels sont 

altérés, comme dans les stades plus avancées des maladies neurodégénératives. Ainsi, 

le modèle de dégénérescence propose un certain équilibre entre l’accumulation des 

lésions et l’habileté du système cérébral à pouvoir compenser.  

 

L’utilisation de réseaux alternatifs comme mécanisme compensatoire a été observé 

à plusieurs reprises dans la littérature de neuroimagerie chez les sujets jeunes. Par 

exemple, Banich (1998) a démontré l’importance d’une activation bihémisphérique 

pour la compensation. En effet, une telle interaction entre les deux hémisphères 

cérébraux serait bénéfique au traitement attentionnel parce qu’il permettrait une 

division du travail. Suite à ces travaux, de nombreuses études de neuroimagerie ont 

tenté de mieux comprendre les mécanismes compensatoires dans le vieillissement 

normal. Un des modèles les plus influants à l’heure actuelle est le modèle HAROLD 

(Hemispheric Asymmetry Reduction in OLDer adults). Cette théorie soutient que les 

jeunes ont tendance à activer un des deux lobes préfrontaux de manière proéminente 

durant l’exécution de tâches cognitives (apprentissage, récupération en mémoire à long 

terme, mémoire de travail, fonctions exécutives et perception) tandis que les personnes 

âgées ont plutôt tendance à activer le cortex préfrontal de manière bilatérale, suite à la 

mise en place de mécanismes compensatoires. De plus, cette symétrie préfrontale serait 

résistante à un changement de stratégie cognitive induite expérimentalement (Logan, 

Sanders, Snyder, Morris, & Buckner, 2002).  
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Un modèle plus récent et similaire à celui de Rapoport et Grady (1993) a ramené 

l’idée d’une interaction entre la sévérité des dommages neuronaux, la difficulté de la 

tâche et le degré de performance des sujets sur les activations cérébrales dans les 

maladies neurodégénératives (Prvulovic et al., 2005; Wermke, Sorg, Wohlschlager, & 

Drzezga, 2008). Ce modèle propose que le niveau d’activation d’une structure 

cérébrale dépende de son efficacité à traiter l’information et de sa capacité de réserve. 

Ainsi, une lésion mineure diminuerait l’efficacité de la région atteinte mais pas sa 

capacité de réserve. Dans ce cas, la région atteinte pourrait augmenter son niveau 

d’activité cérébrale et ainsi compenser les effets de la lésion. Cette hyperactivation 

s’accroisserait avec la difficulté de la tâche jusqu’à ce qu’elle excède sa capacité 

maximale. Il n’y aurait alors plus de compensation possible et les performances 

diminueraient. En revanche, un dommage plus important diminuerait tant la capacité de 

réserve, que de traitement. La région atteindrait alors beaucoup plus rapidement son 

niveau d’activation maximale. Elle montrerait donc généralement un niveau 

d’activation inférieur à celui des sujets sains, sauf pour les tâches peu exigeantes. Le 

modèle prédit ainsi qu’une maladie évolutive devrait d’abord s’accompagner d’une 

hyperactivation des régions cérébrales lésées qui sont normalement requises par la 

tâche - reflétant un processus de compensation - puis produirait une hypoactivation des 

mêmes régions.   

 

1.5 Les effets de difficulté et du type de tâche 

Selon ces modèles, le degré de difficulté de la tâche pourrait expliquer des 

différences dans les activations. Quelques indications vont dans ce sens. Ainsi, Becker 

et al (1996) rapportent des activations typiques chez les personnes avec MA lors d’une 
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tâche de répétition de trois mots (Becker et al., 1996) alors que Woodard et al (1998) 

observent des hyperactivations préfrontales pour une tâche de répétition de cinq ou dix 

mots (Woodard et al., 1998). La répétition de listes plus courtes est vraisemblablement 

plus facile et mieux réussie que la répétition de listes plus longues. Le cerveau des 

patients MA aurait donc la capacité de recruter les réseaux nécessaires à la réalisation 

d’une tâche simple. Il en serait toutefois autrement pour les tâches plus exigeantes, où 

les ressources neuronales du réseau typique seraient insuffisantes et nécessiteraient 

l’activation de réseaux alternatifs.  

 

Le type de processus cognitif sollicité par la tâche pourrait aussi contribuer à 

l’hétérogénéité des résultats, tout particulièrement chez les personnes TCL où le niveau 

d’atteinte semble différer d’un processus cognitif à l’autre. À titre d’exemple, des 

hyperactivations ont été observées chez les TCL lors d’une tâche de mise-à-jour où 

leurs performances étaient similaires à celle des personnes âgées saines (Yetkin et al., 

2005) tandis que des hypoactivations ont été observées lors d’une tâche d’attention 

divisée où leurs performances étaient inférieures à celles des personnes âgées saines 

(Dannhauser et al., 2005). Cela suggère que les patients pourraient montrer des 

hyperactivations lors de tâches impliquant des processus cognitifs peu atteints par la 

maladie et des hypoactivations pour des processus cognitifs plus atteints.  Il semble 

ainsi important de prendre en considération le degré de difficulté de la tâche et le type 

de processus cognitif impliqué lors de l’analyse des résultats de la littérature. Jusqu’à 

ce jour, aucune étude n’a évalué directement ces effets de difficulté de la tâche et du 

type de processus cognitif impliqué chez la population TCL. 
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Par ailleurs, la performance inférieure chez les patients MA par rapport à celle 

des sujets contrôles pourrait en partie refléter des différences au niveau de la 

motivation des participants et ainsi représenter une variable confondante dans les 

études rapportées plus haut. Afin de contrôler pour ce facteur, une étude a utilisé une 

tâche d’apprentissage de mots dans laquelle les performances des MA (de niveau léger 

à modéré) et des PA étaient utilisée comme covariable dans l’analyse des activations 

(Remy, Mirrashed, Campbell, & Richter, (2005). En faisant ce type de contrôle 

statistique, les auteurs observent que les MA hyperactivent les gyri préfrontaux 

moyens, supérieurs et dorsolatéraux gauches et hypoactivent le gyrus préfrontal 

inférieur bilatéralement, le gyrus temporal moyen droit, le cortex perirhinal gauche, le 

noyau cingulé postérieur gauche et le lobe pariétal bilatéralement. Ainsi, les différences 

d’activation entre les deux groupes semblent être le fruit de changements au niveau des 

circuits neuronaux. Il est à noter que ces auteurs ont observé des résultats similaires 

avec les TCL.  

 

1.6 Objectifs et hypothèses 

En résumé, la mémoire épisodique et la mémoire de travail sont des 

composantes altérées très tôt dans la MA. Les études en neuroimagerie fonctionnelle 

dans la MA révèlent principalement des hypoactivations au niveau des régions 

associées aux fonctions mnésiques ainsi que des hyperactivations au niveau du cortex 

préfrontal. On connaît toutefois très peu la nature des activations dans le TCL. Le TCL 

étant un prodrome de la MA, on pourrait s’attendre à trouver des hypoactivations dans 

des régions similaires à celles qui ont été rapportées dans la MA. De plus, les récents 

modèles de compensation cérébrale dans les maladies neurodégénératives suggèrent 



 26 

des différences dans le patron d’activation en neuroimagerie en fonction de la sévérité 

de la maladie. Or le TCL est évolutif et ces hypothèses on été peu explorées dans cette 

condition. Ces différences pourraient aussi dépendre du degré de difficulté de la tâche 

et des processus cognitifs impliqués.  

 

L'objectif principal de cette thèse est d’étudier les activations fonctionnelles 

associées à la mémoire épisodique et à la mémoire de travail dans le TCL. La thèse 

s’intéresse également aux effets de la sévérité de la maladie et des caractéristiques de la 

tâche sur les patrons d’activation cérébrale des personnes présentant un TCL. La thèse 

comprend cinq articles empiriques. Deux articles sont ajoutés en annexe (Annexe I et 

Annexe II). Ces articles portent sur des questions de recherche reliées à la thématique 

du TCL, mais qui ne sont pas en lien direct avec les objectifs de cette thèse. 

 

Étude 1: 

Objectifs: Le but du premier article est d’apporter un préalable méthodologique 

aux articles suivants puisqu’il mesure la fiabilité du signal IRMf chez les personnes 

TCL et chez les individus âgés sains. L’obtention d’un signal fiable est en effet 

indispensable à la recherche clinique en évaluant si les mesures de fMRI peuvent être 

utilisées pour mesurer l’effet des traitements ou comme marqueur de progression. Il 

s’agit donc d’une information importante pour soutenir l’utilité des études s’intéressant 

à la sévérité de la maladie. Des tâches d’encodage et de récupération de mots ainsi que 

des tâches de traitement phonologiques (c-à-d. la lecture de pseudomots) ont donc été 

administrées à deux reprises à 10 personnes âgées saines et à 10 personnes TCL afin de 
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vérifier la fidélité inter-séance du patron d’activation moyen de chaque groupe et des 

différences intergroupes.  

 

Hypothèse: Je fais l’hypothèse d’une fiabilité du signal IRMf tant pour le groupe 

de personnes TCL que pour le groupe de personnes âgées saines. Cela devrait se 

manifester par des patrons d’activation relativement similaires d’une session à l’autre et 

par l’absence d’effet de session dans les ANCOVAs. Ainsi, les différences d’activation 

entre les personnes âgées saines et les TCL ne devraient pas être altérées après six 

semaines d’intervalle.   

 

Étude 2: 

Objectif: Le but du deuxième article est de comparer le patron d’activation 

cérébral des personnes âgées saines et des personnes TCL ainsi que de déterminer s’il y 

a un effet de sévérité sur ces différences d’activation. Pour ce faire, nous avons 

enregistré l’activation cérébrale de 12 personnes TCL et de 10 personnes âgées saines 

alors qu’elles réalisent une tâche d’encodage et de récupération de mots et de pseudo-

mots. Vu le petit effectif, l’effet de la sévérité est évalué ici en corrélant l’activation au 

score obtenu à l’échelle Mattis Dementia Rating Scale (MDRS; Mattis, 1976) qui 

reflète le fonctionnement cognitif global.  

 

Hypothèses:  

- Il devrait y avoir des différences d’activation entre les personnes âgées saines et 

les TCL durant l’encodage et durant la récupération.  
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- Des différences devraient être trouvées dans les régions connues comme étant 

souvent compromises structurellement, ou montrant de l’hypométabolisme 

à la TEP, dans la MA.   

- Nous nous attendons à observer une combinaison d’hyperactivation et 

d’hypoactivation. 

- Une corrélation est attendue entre les activations observées chez les TCL et 

leurs scores à la MDRS, les personnes étant plus atteintes par la maladie 

montrant plus d’hypoactivations que les moins atteintes. 

 

Étude 3: 

Objectifs. L’article 3 évalue l’activation fonctionnelle associée à l’encodage en 

mémoire épisodique dans le TCL ainsi que l’impact de la sévérité de la maladie et du 

type d’encodage sur ces activations. L’étude rapporte les activations associées à une 

tâche d’encodage associatif en comparant l’encodage de paires de mots reliés 

sémantiquement et l’encodage de paires de mots non-reliés sémantiquement. Ces deux 

conditions permettent de comparer les activations associées à une condition nécessitant 

davantage de ressources cognitives pour mettre en relation les diverses unités 

d’informations (paires de mots non-reliés sémantiquement) à une condition nécessitant 

moins de ressources cognitives (paires de mots reliés sémantiquement). L’effet de la 

sévérité est évalué en utilisant la médiane du groupe de TCL au test de MDRS pour 

déterminer un groupe de TCL plus atteints (score inférieur à la médiane du groupe) à 

un groupe de TCL moins atteints (score supérieur à la médiane du groupe). Ces deux 
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groupes de 13 TCL chacun sont comparés à un groupe de 14 personnes âgées sans 

atteinte cognitive.  

 

Hypothèses:  

- Les TCL moins atteints devraient montrer principalement des hyperactivations 

fonctionelles, c’est-à-dire plus d’activations que les personnes âgées saines.  

- Les TCL plus atteints ne devraient pas montrer d’hyperactivation. Au contraire, 

ils devraient montrer soit des hypoactivations, c’est-à-dire moins 

d’activation que les personnes âgées saines, ou un niveau d’activation 

similaire au groupe contrôle.  

- Les hyperactivations devraient être situées soit dans des régions qui sont 

connues pour leur implication dans le processus cognitif évalué, soit dans 

des réseaux alternatifs qui pourraient être recrutés de façon compensatoires. 

De plus, l’emplacement de ces régions d’hyperactivation pourrait aussi 

dépendre du type de mécanisme compensatoire: des hyperactivations 

pourraient ainsi se situer dans des régions impliquées dans le traitement 

sémantique. 

- Les hypoactivations devraient aussi être situées principalement dans des régions 

qui sont connues pour être atteintes dans la MA.  

 

Étude 4:  

Objectifs: L’étude 4 évalue l’activation fonctionnelle associée à la récupération en 

mémoire épisodique dans le TCL ainsi que l’impact de la sévérité de la maladie et du 
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type de processus de récupération sur ces activations. Cela est mis en évidence à l’aide 

d’une tâche de reconnaissance de paires de mots comprenant une condition dans 

laquelle les paires de mots à la récupération seront soit intactes, soit recombinées 

(mesure les processus de familiarité et de recollection) et une condition dans laquelle 

les paires seront soit intactes, soit nouvelles (mesure uniquement le processus de 

familiarité). Ces deux conditions permettent de comparer les activations associées à une 

condition nécessitant davantage de ressources cognitives en raison du caractère 

associatif de la tâche (paires intactes et recombinées) à une condition nécessitant moins 

de ressources cognitives (paires intactes et nouvelles). La médiane du groupe de TCL 

au test de MDRS est encore une fois utilisée pour déterminer un groupe de TCL plus 

atteints (score inférieur à la médiane du groupe) à un groupe de TCL moins atteints 

(score supérieur à la médiane du groupe), afin de déterminer l’impact de la sévérité sur 

le patron d’activation cérébrale. Ces deux groupes de 13 TCL chacun sont comparés à 

un groupe de 14 personnes âgées sans atteinte cognitive.  

 

Hypothèses:  

- Les TCL moins atteints devraient montrer principalement des hyperactivations. 

- Les TCL plus atteints ne devraient pas montrer d’hyperactivations. Au 

contraire, ils devraient montrer soit des hypoactivations, c’est-à-dire moins 

d’activation que les personnes âgées saines, ou un niveau d’activation 

similaire au groupe contrôle.  

- Les hyperactivations devraient être situées soit dans des régions qui sont 

connues pour leur implication dans le processus cognitif évalué, soit dans 
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des réseaux alternatifs qui pourraient être utilisés comme mécanismes 

compensatoires.  

- Les hypoactivations devraient aussi être situées principalement dans des régions 

qui sont connues pour être atteintes dans la MA.  

- Les résultats devraient dépendre du type de processus cognitif impliqué: le 

processus altéré le plus précocement dans la MA (ex.: recollection) devrait 

montrer des hyperactivations chez les MCI les moins atteints et des 

hypoactivations chez les MCI les plus atteints. Par ailleurs le processus 

cognitif altéré plus tard dans la MA (ex.: familiarité) devrait plutôt montrer 

des hyperactivations chez les MCI les plus atteints, car les mécanismes 

compensatoires ne devraient pas encore être dégradés. 

 

Étude 5: 

Objectifs: Enfin, l’étude 5 évalue le patron d’activation cérébrale associé à 

certaines composantes des fonctions exécutives dans le TCL ainsi que l’impact de la 

sévérité de la maladie et du type de processus cognitif sur ces activations.  Pour ce 

faire, deux tâches impliquant des composantes différentes de l’administrateur central de 

la mémoire de travail, soit la manipulation de l’information et l’attention divisée, ont 

été administrées à des personnes TCL et à des personnes âgées saines. L’effet de 

sévérité est à nouveau étudié par l’entremise des résultats au test de MDRS où la 

médiane du groupe de TCL a été utilisée pour déterminer un groupe de TCL plus 

atteints (score inférieur à la médiane du groupe) à un groupe de TCL moins atteints 
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(score supérieur à la médiane du groupe). Ces deux groupes de 12 TCL chacun sont 

comparés à un groupe de 14 personnes âgées sans atteinte cognitive. 

 

Hypothèses:  

- Les TCL moins atteints devraient montrer principalement des hyperactivations, 

c’est-à-dire plus d’activations que les personnes âgées saines. 

- Les TCL plus atteints ne devraient pas montrer d’hyperactivations. Au 

contraire, ils devraient montrer soit des hypoactivations, c’est-à-dire moins 

d’activation que les personnes âgées saines, ou un niveau d’activation 

similaire au groupe contrôle.  

- Les hyperactivations devraient être situées soit dans des régions qui sont 

connues pour leur implication dans le processus cognitif évalué, soit dans 

des réseaux alternatifs qui pourraient être utilisés comme mécanismes 

compensatoires. 

-  Les hypoactivations devraient aussi être situées principalement dans des 

régions qui sont connues pour être atteintes dans la MA.  
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Abstract 

This study investigated test–retest fMRI reproducibility in 10 healthy older adults 

and in 10 MCI persons using a two-condition (encoding and retrieval) verbal episodic 

memory task as well as a two-condition (with and without a motor response) 

phonological processing task. Reproducibility measures included an overlap ratio with 

four different thresholds, statistical comparisons of the condition contrasts across 

sessions (test-retest contrasts), ANCOVAs and intraclass correlation (ICC) on selected 

regions of interests (ROIs). In all four conditions and for all reproducibility measures, 

MCI individuals showed fMRI test-retest reproducibility indices that were comparable to 

those of healthy older adults. At the group level, the comparison of the test-retest 

condition contrasts yielded very few differences in the areas and level of activation and 

those differences tended to show a slight reduction of activation in the second session. In 

addition, the results from the ANCOVAs showed that the fMRI signal measured at the 

group level does not vary significantly from one session to another. Overlap ratios 

however showed that the fMRI signal failed to produce a reliable pattern of significantly 

activated voxels across sessions. At the individual level, ICC analyses on selected ROIs 

indicated that there is high within-subject variability, suggesting reduced reliability at the 

individual level. Overall, these findings indicate that MCI individuals show fMRI test-

retest reproducibility comparable to those healthy controls and hence that mild cognitive 

impairment do not alter fMRI reproducibility.  Furthermore, they indicate that 

monitoring treatment effects is reliable when comparing groups but reduced when 

comparing single individuals. These results have precise implications for the design of 

longitudinal studies relying on fMRI measures in older adults. 
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Introduction 

 

There is increasing interest in the use of functional magnetic resonance imaging 

(fMRI) as a diagnostic tool for age-associated cognitive disorders. This technique also 

yields considerable interest as a potential marker for therapeutic treatment of age-related 

neurodegenerative diseases, such as Alzheimer’s disease (AD) or mild cognitive 

impairment (MCI).  

 

People with mild cognitive impairment (MCI) show greater cognitive decline 

than expected relative to people of the same age and education level. Indeed, MCI has 

been identified as a risk factor for the development of AD as it has been shown that a 

large proportion of persons who meet the clinical criteria for MCI will progress to 

dementia (Gauthier et al., 2006). No cure has yet been found for AD, though a number of 

studies have investigated the possibility of pharmaceutical (e.g.: Gron, et al. 2006; 

Saykin, et al. 2004) and non-pharmaceutical interventions (e.g.: Ball, et al. 2002; 

Belleville, et al. 2006; Craik, et al. 2007; Rapp, et al. 2002) to enhance mnesic abilities in 

healthy older adults and in persons with MCI or to at least slow the initial rate of 

progression toward AD (Petersen and Morris 2005). With the advancement of 

neuroimaging technologies, it is now possible to quantify cognitive decline and the 

effects of a given intervention in terms of changes in cerebral activation, in addition to 

characterizing modifications in behaviour (e.g.: Goekoop, et al. 2004; Goekoop, et al. 

2006; Gron, et al. 2006; Saykin, et al. 2004). Neuroimaging techniques could become 

useful clinical tools for quantifying longitudinal cerebral activation changes associated 

with a disease or intervention effects. However, the use of fMRI in clinical and research 

studies that involve repeated measures requires firm evidence that measures of brain 
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activation in those populations are reliable indicators and do not vary in test-retest 

measurements. More precisely, it is crucial to know whether or not the fMRI signal is 

reproducible, i.e. if two functional magnetic resonance imaging (fMRI) sessions produce 

comparable activations.  

 

 The vast majority of fMRI reliability studies have been performed on young 

healthy subjects performing a variety of cognitive and noncognitive tasks, including 

sensory tasks (Kiehl and Liddle, 2003; Miki et al., 2000; Rombouts et al., 1998; 

Rombouts et al., 1997; Specht et al., 2003; Stark et al., 2004; Waldvogel et al., 2000; 

Yetkin et al., 1996), motor tasks (Havel et al., 2006; Liu et al., 2004; Loubinoux et al., 

2001; Raemaekers et al., 2007; Swallow et al., 2003; Waldvogel et al., 2000; Yetkin et 

al., 1996), memory tasks (Machielsen et al., 2000; Miller et al., 2002; Wagner et al., 

2005), executive function tasks (Aron et al., 2006; Neumann et al., 2003; Wei et al., 

2004), and language tasks (Maldjian et al., 2002; Rutten et al., 2002). These studies 

generally report a reasonably good, though not perfect, reproducibility of fMRI cerebral 

activations.  

 

While there is no general consensus as to the appropriate method that should be 

used to assess fMRI reproducibility across sessions, many studies (Fernandez et al., 

2003; Havel et al., 2006; Machielsen et al., 2000; Miki et al., 2000; Raemaekers et al., 

2007; Rutten et al., 2002; Specht et al., 2003; Swallow et al., 2003; Wagner et al., 2005; 

Yetkin et al., 1996) have used the overlap ratio initially used by Rombouts et al. (1997) 

which measures reproducibility in the number and location of voxels by comparing 

voxels activated in both sessions to those activated in only one of them. Overall, the 
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overlap ratio does not vary widely though there is some task related effect with higher 

overlap ratios found when using sensorimotor tasks (ex.: from 0.48; Miki, et al. 2000, to 

0.64; Rombouts, et al. 1998) relative to higher level cognitive tasks (ex.: from 0.36; 

Machielsen et al., 2000; Wagner et al., 2005 to 0.42; Wagner, et al. 2005, in the case of 

memory tasks). Another fMRI reproducibility method that has been used by many 

researchers is the intraclass correlation (ICC) (Aron, Gluck, & Poldrack, 2006; 

Fernandez et al., 2003; Kong et al., 2007; Manoach et al., 2001; Raemaekers et al., 2007; 

Specht, Willmes, Shah, & Jancke, 2003; Wei et al., 2004). ICC assesses fMRI activation 

reliability by comparing the between-subject variance to total variance and it is therefore 

higher when within-subject variance is low and between-subject variance is high. In 

healthy subjects, the ICC seems to vary greatly from one study to another and from one 

region to another. 

 

Reliance on repeated scans is likely to be particularly vital in clinical populations 

as researchers are attempting to elucidate the brain-related effects of disease evolution 

and/or of treatment. Nevertheless, the reproducibility of fMRI signal in patients has not 

been extensively studied and thus remains largely unknown. We are aware of only four 

studies conducted on different clinical populations: schizophrenic patients (Manoach, et 

al. 2001), stroke patients (Chen and Small 2007), patients with focal epilepsy (Fernandez, 

et al. 2003), and patients with chronic nonfluent aphasia (Kurland et al., 2004).  The 

results of these studies suggest that patients show less reliable activations across sessions 

than healthy participants, possibly due to unstable brain compensation, greater head 

movement than controls, and more variability in task performances. However, all of 

these patients suffered from chronic symptoms, hence it is difficult to transpose these 
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results to a population with a slowly evolving disease; furthermore, very little is known 

about the impact of aging on fMRI reproducibility. Indeed, only one study assessed fMRI 

reproducibility in healthy older adults using an N-Back working memory task and a 

finger-tapping task (Marshall, et al. 2004). These studies concluded that across-session 

fMRI reproducibility in older adults is similar to the one reported in young subjects. 

More studies are required in order to extend these findings to other cognitive functions in 

elderly people and to know whether these results also apply to MCI individuals. 

 

The goal of this study was to assess the reproducibility of fMRI signal in healthy 

older adults and in MCI persons with a verbal memory task, a cognitive task typically 

used as a diagnostic marker of dementia, with both an encoding and a retrieval condition. 

A phonological processing task was also used. This is a task that is typically unimpaired 

in MCI and early AD that can provide indications regarding reproducibility values in 

unimpaired conditions. Two conditions were also used in the phonological task: one that 

included a motor response and one that did not include a motor response because 

memory conditions also included either a motor response (in the retrieval condition) or 

no motor response (in the encoding condition). This allowed us to assess the relative 

contribution of the motor response component to the overlap ratio of the memory and 

phonological tasks. These paradigms were used because, as mentioned earlier, tasks with 

a motor response tend to produce higher overlap ratios than tasks with no motor 

component. It was therefore important to ensure that task differences in reproducibility 

were not related to the motor component. Reproducibility was assessed in each group 

using the overlap ratio measure, statistical comparisons of the condition contrasts across 

sessions, as well as ICC measure and statistical comparison of the beta values in selected 
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Regions-of-Interest (ROI) that are known to be involved in verbal memory and/or 

phonological processing (Cabeza & Nyberg, 2000): Broca’s area (BA 44), the left and 

right ventrolateral prefrontal cortex (BA 45, 47), the left and right dorsolateral prefrontal 

cortex (BA 9, 46), the precuneus bilaterally, the posterior cingulate cortex bilaterally, and 

in the hippocampus bilaterally. As the overlap ratio method can be threshold sensitive, 

overlap ratio measures were done using four different threshold values. We first 

hypothesized that healthy older adults and MCI persons would both show relatively good 

fMRI reproducibility of a similar magnitude as those observed in the literature with 

younger adults; moreover, we also hypothesized that conditions that included a motor 

response would show a higher overlap ratio than conditions that did not include a motor 

response, due to the higher fMRI reproducibility of sensorimotor cortices. Lastly, we 

predicted that the statistical comparisons of the condition contrasts across sessions would 

highlight a reduction of activation in some areas from the first to the second session, in 

accordance with the literature (see Kelly and Garavan 2005).  

 

Method 

Participants 

A total of 20 participants, 10 MCI persons and 10 healthy older adults 

participated in this study. Persons with MCI (3 males) had a mean age of 67.20 years (SD 

= 8.03, median = 73, range = 51-74) and had a mean of 13.7 (SD = 3.8, median = 11.5, 

range = 9-18) years of education. Healthy older adults (2 males) had a mean age of 71.20 

years (SD = 7.25, median = 69, range = 58-80), with an average of 12.90 (SD = 2.5, 

median = 13, range = 8-20) years of education. French was the first language of all 

participants.  
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Participants with MCI were recruited from memory clinics and met the criteria 

proposed by Petersen et al (1999) for amnestic single or multiple domain MCI: 1) they 

had a memory complaint; 2) they performed at least 1.5 SD below the average level of 

persons of similar age and education on standardized memory tests; 3) they showed no 

global cognitive impairment on the basis of the MMSE (using the age- and education-

adjusted cutoff for dementia); 4) nor any significant impact on daily functions as 

measured by the SMAF functional impairment scale and clinical interview; 5) they failed 

to meet criteria for dementia. MCI participants went through an extensive 

neuropsychological evaluation that covered episodic memory (a cued and free word 

recall task: RL/RI-16; Buschke 1984; Van der Linden, et al. 2004, a text memory of the 

BEM; Signoret 1991, and the recall of Rey’s Complex Figure; Rey 1959), executive 

functions (third set of Victoria Stroop; Regard 1981, and copy of Rey’s Complex Figure; 

Rey 1959), visuospatial processing (Benton Judgment of line orientation; Benton, et al. 

1983), information processing speed (Coding of the WAIS-III; Wechsler 1997), language 

(Boston Naming Test; Kaplan, et al. 1983), and global cognitive functions (Mattis 

Dementia Rating Scale, MDRS; Mattis 1976, and Mini-Mental State Examination, 

MMSE; Folstein, et al. 1975). In addition, depressive symptoms were assessed with the 

Geriatric Depression Scale (GDS; Yesavage 1988) and vascular risk factors were 

assessed with the Hachinski questionnaire (Hachinski, et al. 1975). MCI persons also 

went through an extensive medical, neurological and neuroradiological examination to 

exclude the presence of any significant systemic, neurological or psychiatric condition 

that could explain their cognitive difficulties. 
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Elderly controls were recruited from the community. They also completed a 

clinical and a partial neuropsychological assessment (MDRS, MMSE, MOCA, GDS, 

RL/RI-16) to ensure that they did not suffer from cognitive deficits. Exclusion criteria 

included past history of psychiatric or neurological disorders, including traumatic brain 

injury and depression. This study was approved by the Institut Universitaire de Gériatrie 

de Montréal Human Ethics Committee and was part of a larger intervention study as a 

control condition. 

 

Stimuli 

Six lists of eight concrete, one- to three-syllable words were created for the 

learning phase of the memory task. The six lists were matched in terms of mean word 

frequency, semantic category and concreteness of the words in the list. Six lists of eight 

concrete, one- to three-syllable words were created for the retrieval phase. Half of the 

words used in the retrieval lists were part of the encoding list and half were new words. 

The new words were matched to the old words in terms of the relevant linguistic 

dimensions (syllabic length, frequency, and concreteness).  

 

Twelve lists of six pseudo words were created for the phonological processing 

task. Six were used in the motor response condition and six were used in the no-response 

condition. The pseudo words were matched to the words used in the memory task in 

terms of the relevant linguistic dimensions (length, phonological complexity, and 

frequency of the words from which they were derived).  
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Two parallel versions of the memory lists were used in this study and were 

counterbalanced across subjects so that each list was presented to equivalent number 

of participants on each session. 

 

Neuroimaging procedure 

The task was programmed on E-prime and stimuli were visually presented and 

mirror-projected. Subjects’ vision was corrected with goggles appropriate for MRI 

scanning. During rest, subjects were instructed to close their eyes and to try not to think 

about anything. During phonological processing without a motor response, subjects were 

instructed to read covertly a series of pseudo words. During phonological processing 

with a motor response, subjects were instructed to read covertly a series of pseudo words 

and to press randomly using a two-button response. Each phonological processing block 

or series contained six pseudo words (4 sec presentation rate, 1 sec interstimulus 

interval). There were six blocks for a total of 36 pseudo words. During memory 

encoding, subjects were asked to memorize series of visually presented words. Each 

encoding block or series contained eight words (4 sec presentation rate, 1 sec 

interstimulus interval). There were six encoding blocks for a total of 48 words. During 

memory retrieval, subjects were asked to perform an old-new recognition judgment of 

visually presented words using a two-button response. Each retrieval block or series 

contained eight words (4 sec presentation rate, 1 sec interstimulus interval), half of which 

were presented in the preceding encoding blocks, half of which were new. There were six 

retrieval blocks for a total of 48 words. 
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Subjects performed the task in a blocked design with one encoding run and one 

retrieval run. The encoding run was composed of six alternating blocks series of rest, 

phonological processing without a motor response, and intentional encoding (i.e. six 

series of: rest, <task1>, <task2>) with each session lasting 28 sec, 30 sec, and 40 sec, 

respectively. In addition, a brief instruction (4 sec) was presented to the subjects prior to 

each block. A retrieval run composed of six alternating block series of rest, phonological 

processing with a motor response, and retrieval followed by the encoding run. The rest, 

phonological processing with a motor response, and retrieval blocks lasted 28 sec, 30 sec, 

and 40 sec, respectively, and were preceded by instructions. Two days prior to scanning 

and just before the scanning session, subjects were trained using an fMRI simulator. The 

whole procedure was repeated again 6-weeks later.  

 

Data acquisition 

Magnetic Resonance Imaging (MRI) was performed using a SIEMENS 3T 

Magnetom TRIO a TIM System (Erlangen, Germany) at the Unité de Neuroimagerie 

Fonctionnelle (UNF) of the Institut Universitaire de Gériatrie de Montréal. Functional 

MR images were acquired using Gradient-Echo Echo-Planar imaging sequences (GE-

EPI) sensitive to blood oxygen level-dependent (BOLD) contrast (TR/TE = 2000/30 ms, 

flip angle = 90 deg; 31 interleaved slices, voxel size = 3.75 mm x 3.75 mm x 5 mm with 

a gap of 1 mm, field of view = 240 mm, matrix = 64*64). A 3-D structural image was 

taken at the end of the two runs using a sagittal T1-weighted 3D-MPRAGE sequence was 

obtained (TR/TE = 1950/3.93 ms, flip angle = 15 deg; 176 slices, voxel size = 1 mm x 1 

mm x 1 mm, field of view = 256 mm, matrix = 256*256). 
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Image processing and data analysis 

 Data were analyzed in MATLAB 7.0 (http://www.mathworks.com) using the 

statistical parametric mapping software SPM2 (http://www.fil.ion.ucl.ac.uk/spm/). The 

first three volumes were automatically discarded by the fMRI scanner in order to allow 

the magnetization to reach equilibrium. The remaining functional images were first 

converted into Analyze format and unwarped. Functional volumes of each subject were 

then realigned to the first acquired volume in the session and a mean realigned volume 

was created for each subject. All the realigned volumes of each subject were spatially 

normalized into the Montreal Neurological Institute (MNI) stereotactic space and 

spatially smoothed with an 8-mm Gaussian kernel. Low-frequency noise was removed 

with a high-pass filter of 256 sec. Global changes in fMRI response from scan to scan 

were removed by proportionally scaling each volume to a common global mean voxel 

value. A single-subject analysis was carried out in order to evaluate the individual 

contrasts (encoding vs. rest, retrieval vs. rest, phonological processing without a motor 

response vs. rest, and phonological processing with a motor response vs. rest) for each 

subject. The instruction blocks were modeled as a condition of no-interest. A Random 

Effects (RFX) Analysis was then performed by calculating, for each group (healthy older 

adults and MCI), a one way ANOVA with 8 conditions (encoding session 1, encoding 

session 2, retrieval session 1, retrieval session 2, phonological processing without a 

motor response session 1, phonological processing without a motor response session 2, 

phonological processing with a motor response session 1, phonological processing with a 

motor response session 2), with non-sphericity correction, replications over subjects, and 

with correlated repeated measures. In order to visualize the area of overlapping volume 
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for each group, an inclusive mask of the first and second measurement of encoding, 

retrieval, and phonological processing with and without a motor response was performed. 

This analysis has been used previously to assess the reliability of a verbal episodic 

memory task in young adults (Wagner, et al. 2005). An uncorrected threshold of p<0.001 

with 10 contiguous voxels was used for both the overlap ratio and the test-retest 

comparison. The overlap ratio method was also recalculated with uncorrected thresholds 

of p<0.005, of p<0.0001, and of p<0.00001, all with 10 contiguous voxels.  

 

Test-retest reliability measures 

Overlap ratio. The relative amount of overlapping volume Rij
overlap  between two 

activation SPM maps was calculated according to a method introduced by Rombouts et 

al. (1997) based on Dice coefficient (D) (Dice, 1945): 

                                                             Rij
overlap =  2*Voverlap 

                                                                                 Vi + Vj   
 
where Vi = number of suprathreshold voxels within SPM(t) maps in session i, Vj = 

number of suprathreshold voxels within SPM(t) maps in session j, and Voverlap = the 

number of suprathreshold voxels in both maps. The overlap ratio can range from 0 to 1 

and is based strictly on the location of significantly activated voxels and not on the actual 

t values of these voxels. Overlap ratios were also converted to Jaccard coefficients (J), 

which are the ratio of the size of the intersection divided by the size of the union of 

activated voxels:  

 

J(S1, S2) = |S1∩S2| 
                   |S1∪S2|                                                                         
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where S1 represents the activated voxels of the first fMRI session and S2 represent the 

activated voxels of the second fMRI session. The Jaccard coefficient has been used in 

structural imaging for tissue classification (Shattuck, Sandor-Leahy, Schaper, 

Rottenberg, & Leahy, 2001) but has not, to our knowledge, been used yet as an index of 

reliability for functional neuroimaging. The conversion from the overlap ratio (or more 

precisely from the Dice coefficient) can be performed with the following formula: 

D =   2J 
                                                                        (1+J) 

Or:                                                            J = -D 
                                                                       D-2 
 

In contrast to the overlap ratio, the Jaccard coefficient can be directly interpreted as the 

percentage of the voxels that are activated during both sessions (ex: J = 0.21 = 21% of 

the voxels activated during both sessions). 

 

Test-retest comparison. One limitation of the overlap ratio is that thresholding an 

image can exaggerate very small differences and hence lead to considerable differences 

in the size of the overlap ratio obtained. For instance, a voxel can show very similar 

signal strength during two sessions but with one signal being slightly below the threshold 

and the other one being slightly above. The calculation of the overlap ratio would 

consider this voxel as being inconsistent from one session to another, despite the fact that 

its signal strength was similar. For this reason, we also compared the SPM(t) encoding, 
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retrieval, and phonological processing with and without motor response contrasts of both 

sessions. 

 

Beta values comparisons and ICCs in ROIs. A ROI image of Broca’s area (area 

44), of the left and right ventrolateral prefrontal cortex (BA 45, 47), of the left and right 

dorsolateral prefrontal cortex (BA 9, 46), of the precuneus bilaterally (BA 7), of the 

posterior cingulate cortex bilaterally, and of the hippocampus bilaterally were created 

with WFU Pickatlas (Maldjian, et al. 2003). Then, the average beta values of the ROIs 

were extracted with marsbar (Brett, et al. 2002) for each group and for each condition 

during both sessions. Three-way mixed ANCOVAs with Group (controls, MCI) as a 

between-subject factor, Session (1, 2) and Condition (encoding, retrieval, phonological 

processing without a motor response, and phonological processing with a motor 

response) as within-subject factors, and Age and Education as covariates were performed 

in SPSS 13.0 (http://www.spss.com) to assess possible group differences as well as 

reliability of the beta values from session 1 to session 2. Shrout-Fleiss two-way single 

measure absolute agreement random ICC model (2,1) were also performed on the 

average beta values of each ROIs for each subject and for each session. The unit of 

observation was the subject. F-tests reference test-value was set to 0 with a confidence 

interval of 95%. The ICC analyses were also performed in SPSS 13.0. 

 

Results 

Sociodemographic data 
 

To assess whether the groups differed on age and education, two t-tests were 

performed on these two variables. No significant age, t(18) = 1.38, N.S., or education 
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effect, t(18) = -0.88, N.S., were found. This indicates that the control group was age- and 

education-matched to the MCI group.  

 

Neuropsychological evaluation 

 Independent t-tests were also performed on the neuropsychological evaluation 

scores obtained by the two groups. MCI participants obtained significantly lower scores 

than healthy controls on the MDRS, t(18) = 2.48, p < 0.05, MMSE, t(18)  = 2.63, p < 

0.05, 3rd free recall of the RL/RI-16, t(18) = 2.71, p < 0.05, and on the delayed recall of 

the RL/RI-16, t(18) = 3.41, p < 0.01 (Table I). 

 

Behavioral data 
 
 The mean percentage of correctly recognized words was 72.07% (SD = 10.95) in 

the first session and 76.88% (SD = 10.24) in the second session for the control group and 

67.20% (SD = 11.92) in the first session and 71.63% (SD = 12.04) in the second session 

for the MCI group.1 A two-way mixed ANOVA with Group (controls, MCI) as a 

between-subject factor and Session (1, 2) as a within-subject factor was performed to 

assess whether task performances were equivalent across groups and sessions. No 

significant Group effect, F(1,16) = 1.11, N.S., Session effect, F(1,16) = 4.09, N.S., or 

Group by Session interaction, F(1,16) = 0.01, N.S, were found. Therefore, the two groups 

performed at a similar level during the two sessions and there was no behaviorally 

evident training effect. 

 

 

                                                 
1 Note that performances of two MCI persons were not recorded due to equipment difficulties. 
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Neuroimaging data and test-retest comparisons 
 
 Memory encoding. The activations for the memory encoding condition for 

sessions 1 and 2 of the healthy controls group (a and b respectively) and of the MCI 

group (c and d respectively) are shown in Figure 1. Overall, healthy controls showed 

activations in a frontotemporoparietal network commonly observed in episodic memory 

task (medial temporal lobe, anterior and posterior cingulate gyrus, precuneus, 

supramarginal and angular gyri, medial prefrontal cortex, and premotor areas) as well as 

in the occipital lobe, in subcortical structures (basal ganglia and thalamus), and in the 

right cerebellum. The MCI group activated the same frontotemporoparietal network 

during both sessions, but also showed additional activations in the prefrontal cortex 

(inferior prefrontal gyrus, dorsolateral prefrontal cortex and orbitofrontal regions). 

Statistical comparison of the two sessions for each group yielded few results as is 

illustrated in Table II: healthy controls showed more activation in the putamen and in the 

left inferior and middle temporal gyri (Brodmann’s area 21) in the first session than in 

the second session and MCI persons showed more activation during the first session than 

during the second session in the left middle frontal gyrus (Brodmann’s area 11). The 

results of the first session are described in more details elsewhere (Clement, Belleville, & 

Mellah, submitted). 

 

Memory retrieval. The activations for the retrieval condition for sessions 1 and 2 

of the healthy controls group (a and b respectively) and of the MCI group (c and d 

respectively) are shown in Figure 2. Both groups activated a similar 

frontotemporoparietal network as in encoding. The test-retest comparison showed no 

significance session effect on retrieval activations. 
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 Phonological processing without a motor response. The activations for the 

phonological processing without a motor response condition for sessions 1 and 2 of the 

healthy controls group (a and b respectively) and of the MCI group (c and d respectively) 

are shown in Figure 3. During the first session, the healthy controls group showed 

activations in the left parahippocampal gyrus, posterior cingulate gyrus, in the occipital 

lobe, in the parietal lobe (precuneus and supramarginal gyrus), in the premotor area, in 

the thalamus, and in the cerebellum. Healthy controls showed less activation in the left 

putamen during the second session than during the first session. Again, the MCI group 

showed the same activations as controls in both sessions but with additional activations 

in the prefrontal cortex (in the inferior prefrontal gyrus, in the dorsolateral prefrontal 

cortex, and in the premotor region). The test-retest comparison for both groups indicated 

that healthy controls showed more activation in the left putamen during the first session 

than during the second session (Table III). 

 

Phonological processing with a motor response. The activations for the 

phonological processing with a motor response condition for sessions 1 and 2 of the 

healthy controls group (a and b respectively) and of the MCI group (c and d respectively) 

are shown in Figure 4. During the first session, the healthy controls group showed 

activations in the anterior and posterior cingulate gyrus, in the occipital lobe, in the 

parietal lobe (precuneus, postcentral gyrus, inferior and superior parietal lobules), in the 

premotor area, and in the cerebellum. Healthy controls showed the same activations 

during the second session, with the exception of the premotor area that does not activate. 

Again, the MCI group showed the same activations as controls in both sessions but with 
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additional activations in the prefrontal cortex (in the inferior prefrontal gyrus, in the 

dorsolateral prefrontal cortex, and in the premotor region). A comparison between both 

sessions in MCI persons also indicates that they show more activation in the left 

cerebellum during the first session than during the second session (Table IV). 

 

Test-retest overlap of activations 

 The overlap ratio was first calculated using an uncorrected threshold of p<0.001. 

In the memory encoding condition, the overlap ratio (Roverlap) in healthy controls and 

MCI were 0.41 (J = 0.26) and 0.40 (J = 0.25) respectively. In the memory retrieval 

condition, healthy controls and MCI obtained overall ratios of 0.69 (J = 0.53) and 0.70 (J 

= 0.54) respectively. In the phonological processing condition without a motor response, 

healthy controls and MCI obtained overall ratios of 0.46 (J = 0.30) and 0.42 (J = 0.27) 

respectively. In the phonological processing condition with a motor response, healthy 

controls and MCI obtained an overlap ratio of 0.68 (J = 0.52) and 0.66 (J = 0.49) 

respectively. Therefore, the overlap ratio was almost identical across groups and was 

higher in the two conditions in which a motor response was included. 

 

 The overlap ratio was recalculated using a more liberal uncorrected threshold of 

p<0.005. In the memory encoding condition, the overlap ratio (Roverlap) in healthy 

controls and MCI were 0.39 (J = 0.24) and 0.47 (J = 0.31) respectively, thus quite similar 

to the values found with a threshold of p<0.001. In the memory retrieval condition, 

healthy controls and MCI obtained overall ratios of 0.71 (J = 0.56) and 0.75 (J = 0.59) 

respectively, again very similar to the values mentioned above. In the phonological 

processing condition without a motor response, healthy controls and MCI obtained 
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overall ratios of 0.45 (J = 0.29) and 0.49 (J = 0.33), respectively. In the phonological 

processing condition with a motor response, healthy controls and MCI obtained an 

overlap ratio of 0.71 (J = 0.55) and 0.70 (J = 0.54), respectively. Therefore, the use of a 

more liberal threshold had only a slight effect on the overlap ratios in both groups. 

 

The overlap ratio was also recalculated using two more conservative uncorrected 

threshold of p<0.0001 and p<0.00001. For the threshold of p<0.0001, in the memory 

encoding condition, the overlap ratio (Roverlap) in healthy controls and MCI were 0.46 (J = 

0.30) and 0.25 (J = 0.14) respectively. In the memory retrieval condition, healthy 

controls and MCI obtained overall ratios of 0.60 (J = 0.43) and 0.64 (J = 0.47) 

respectively. In the phonological processing condition without a motor response, healthy 

controls and MCI obtained overall ratios of 0.53 (J = 0.36) and 0.32 (J = 0.19) 

respectively. In the phonological processing condition with a motor response, healthy 

controls and MCI obtained an overlap ratio of 0.59 (J = 0.42) and 0.56 (J = 0.39) 

respectively. For the threshold of p<0.00001, in the memory encoding condition, the 

overlap ratio (Roverlap) in healthy controls and MCI were 0.42 (J = 0.27) and 0.10 (J = 

0.05) respectively. In the memory retrieval condition, healthy controls and MCI obtained 

overall ratios of 0.43 (J = 0.28) and 0.52 (J = 0.35) respectively. In the phonological 

processing condition without a motor response, healthy controls and MCI obtained 

overall ratios of 0.46 (J = 0.30) and 0.19 (J = 0.11) respectively. In the phonological 

processing condition with a motor response, healthy controls and MCI obtained an 

overlap ratio of 0.44 (J = 0.28) and 0.45 (J = 0.29) respectively. For all four conditions, 

the use of more conservative thresholds therefore reduced considerably the overlap ratios 

of the two groups. 
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Beta values comparisons in ROIs 

Beta value changes from session 1 to session 2 were assessed for Broca’s area 

(BA 44), for the left and right ventrolateral prefrontal cortex (BA 45, 47), for the left and 

right dorsolateral prefrontal cortex (BA 9, 46), for the precuneus bilaterally (BA 7), for 

the posterior cingulate cortex bilaterally, and for the hippocampus bilaterally for both 

groups and for the 4 conditions. Three-way mixed ANCOVA with Group (controls, 

MCI) as a between-subject factor, Session (1, 2) and Condition (encoding, retrieval, 

phonological processing without a motor response, and phonological processing with a 

motor response) as within-subject factors, and Age and Education as covariates were 

performed to assess possible group differences and reliability of the beta values from 

session 1 to session 2. For Broca’s area (BA 44), a significant Group effect was found, 

F(1,16) = 15.57, p < 0.001, but no Session effect, F(1,16) = 2.25, N.S., or Condition 

effect, F(3,48) = 1.64, N.S., were found and no significant interaction was observed (see 

Figure 5). For the left ventrolateral prefrontal cortex (BA 45, 47), no significant Group 

effect, F(1,16) = 1.12, N.S., Session effect, F(1,16) = 0.54, N.S., or Condition effect, 

F(3,48) = 1.82, N.S. were found and no significant interaction was observed. For the 

right ventrolateral prefrontal cortex (BA 45, 47), no significant Group effect, F(1,16) = 

0.43, N.S., Session effect, F(1,16) = 0.76, N.S., or Condition effect, F(3,48) = 1.44, N.S. 

were found and no significant interaction was observed. For the left dorsolateral 

prefrontal cortex (BA 9, 46), no significant Group effect, F(1,16) = 0.05, N.S., Session 

effect, F(1,16) = 0.09, N.S., or Condition effect, F(3,48) = 1.19, N.S. were found but a 

Group X Condition interactions was observed, F(3,48) = 3.04, p < 0.05. Post-hoc 

analysis showed that MCI showed significantly more activation in this ROI during the 
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phonological processing without a motor response condition, p < 0.05. For the right 

dorsolateral prefrontal cortex (BA 9, 46), a significant Group effect was found, F(1,16) = 

7.60, p = 0.01 but no Session effect, F(1,16) = 2.79, N.S., or Condition effect, F(3,48) = 

0.88, N.S. were found and no significant interaction was observed. For the precuneus 

bilaterally (BA 7), no significant Group effect, F(1,16) = 0.26, N.S., Session effect, 

F(1,16) = 1.28, N.S., or Condition effect, F(3,48) = 1.36, N.S. were found and no 

significant interaction was observed, F(3,48) = 3.04, p < 0.05. For the posterior cingulate 

bilaterally, no significant Group effect, F(1,16) = 0.34, N.S., Session effect, F(1,16) = 

0.17, N.S., or Condition effect, F(3,48) = 0.39, N.S. were found and no significant 

interaction was observed. For the hippocampus bilaterally, no significant Group effect, 

F(1,16) = 1.33, N.S., Session effect, F(1,16) = 0.41, N.S., or Condition effect, F(3,48) = 

0.33, N.S. were found. A significant Condition X Session interaction was observed, 

F(3,48) = 3.81, p < 0.05. Post-hoc analysis showed a significant reduction from session 1 

to session 2 was observed during the phonological processing with a motor response 

condition, p < 0.05. 

 

In summary, MCI showed significantly more activation than healthy controls in 

the Broca’s area and in the right dorsolateral prefrontal cortex during all four conditions 

and more activation than healthy controls in the left dorsolateral prefrontal cortex during 

the phonological processing without a motor response condition only. The only 

significant change of activation from one session to another was observed in the 

hippocampus bilaterally with a reduction from session 1 to session 2 during the 

phonological processing with a motor response condition. No ROI showed more change 
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in activation from one session to another in the MCI group than in the healthy controls 

group. 

  

ICC in ROIs 

Single measure ICC of sessions 1 and 2 were assessed for Broca’s area (BA 44), 

for the left and right ventrolateral prefrontal cortex (BA 45, 47), for the left and right 

dorsolateral prefrontal cortex (BA 9, 46), for the precuneus bilaterally (BA 7), for the 

posterior cingulate cortex bilaterally, and for the hippocampus bilaterally for both groups 

and for the 4 conditions (Table V). Healthy controls showed significant ICC in the 

precuneus bilaterally during the retrieval and phonological processing without a motor 

response conditions, in the left dorsolateral prefrontal cortex (BA 9,46) during the 

encoding, retrieval, and phonological processing with motor response conditions, in the 

left ventrolateral prefrontal cortex (BA 45, 47) during the retrieval condition, in the right 

ventrolateral prefrontal cortex (BA 45, 47) during the retrieval and phonological 

processing with motor response conditions, and in the posterior cingulate cortex during 

the retrieval and phonological processing with motor response conditions. MCI 

participants showed significant ICC in Broca’s area (BA 44) during the retrieval 

condition, in the precuneus bilaterally during all four conditions, in the hippocampus 

bilaterally during the retrieval and phonological processing with a motor response 

conditions, in the right dorsolateral prefrontal cortex (BA 9, 46) during the retrieval, 

phonological processing without a motor response, and phonological processing with a 

motor response conditions, and in the posterior cingulate cortex during the retrieval, 

phonological processing without a motor response, and phonological processing with a 

motor response conditions. The mean ICC of healthy controls was 0.31 and the one of 
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MCIs was 0.36. A t-test between the ICCs of the two groups did not reveal a significant 

difference, t(62) = -0.68, N.S. 

 

Discussion 

The goal of this study was to assess the reliability of fMRI signal in healthy older 

adults and in MCI persons. This was done with a verbal memory task and a phonological 

processing task, both with and without a motor response. Although MCI persons and 

healthy older adults showed differences in the localization of their activations between 

the two sessions, a statistical comparison of session 1 and 2 revealed few significant 

differences even with the use of a relatively liberal threshold value (p<0.001). Small 

clusters in the putamen and in the left inferior and middle temporal lobe of the healthy 

older adults and in the left middle frontal gyrus of the MCI group showed less activation 

at Session 2 relative to Session 1. Reduction of activation during the second session is 

consistent with what is usually observed in studies of practice effects (see Kelly and 

Garavan 2005) and the changes observed in the current study likely reflect the same 

phenomenon. Importantly, we did not find significant behavioral performance 

differences between the two groups or between the two sessions. This is important for 

fMRI data as differences in performance could otherwise be attributed to motivational or 

attentional factors that might have had an impact on brain activation thus limiting the 

interpretation of activation differences as they relate to reproducibility.  

FMRI reproducibility was also assessed by comparing the average beta values of 

selected ROIs in areas that that are known to be involved in verbal memory and/or 

phonological processing (Cabeza & Nyberg, 2000). While some group differences were 

observed (i.e. more activation in MCI than in healthy controls in the Broca’s area and in 
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the right dorsolateral prefrontal cortex during all four conditions and in the left 

dorsolateral prefrontal cortex during the phonological processing without a motor 

response condition only), these group differences appear to be stable in time as no Group 

X Session interaction was found. Furthermore, only the hippocampus ROI showed 

change in activation from one session to another and this was only during one among 

four conditions. The comparison of beta values in the ROIs therefore suggests that the 

two groups show reliable session-to-session fMRI signal, at least in the regions 

investigated in this study. Overall, these results, combined with the statistical 

comparisons of Sessions 1 and 2, suggest that in older adults with or without cognitive 

decline, the fMRI signal elicited by the execution of the four conditions used here do not 

vary significantly when measured in two sessions that are six weeks apart. 

 

The test-retest reliability was also assessed with the overlap ratio, a commonly 

used reliability method that measures reproducibility by comparing number and location 

of voxels activated in both sessions compared to those activated in only one of them. The 

group overlap ratios (Roverlap) of healthy controls and of MCI were almost identical in the 

four conditions with an uncorrected threshold of p<0.001 and were very similar when 

using an uncorrected threshold of p<0.005. This was the case whether tested with a 

relatively simple phonological task or with a more demanding memory task irrespective 

of the motor response. For these two thresholds, the encoding overlap ratio of both 

groups is very close to the one previously reported in healthy young adults (0.41 in 

healthy older adults and 0.40 in MCI respectively, vs. 0.36 in healthy young adults; 

Machielsen, et al. 2000; Wagner, et al. 2005) and the overlap ratio associated with 

retrieval is higher in both groups than that previously reported in healthy young adults 
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(0.69 in healthy older adults and 0.70 in MCI, vs. 0.42 in healthy young adults; Wagner, 

et al. 2005). Thus the present data indicate that MCI persons show overlap ratios that are 

comparable to those found in healthy older adults and healthy young adults and that this 

overlap ratio is not reduced by the disease.  However, it is of note that while the overlap 

ratios (Dice coefficient) of the conditions comprising a motor response were often above 

0.60 for the liberal thresholds, and hence can be considered as representing good 

agreement (Landis & Koch, 1977), the overlap ratios found for the conditions with no 

motor response were between 0.40 and 0.60 which represents a moderate between-

session agreement. For the two more conservative thresholds, most overlap ratios were 

either between 0.40 and 0.60 (moderate agreement) or below 0.40 (fair to low 

agreement). Overall our results indicate that to have a reliable index of disease 

progression or to evaluate the neural effect of treatments, researchers should rely more on 

statistical comparisons of the condition contrasts across sessions and on comparisons of 

the average beta values of selected ROIs, rather than on voxel activation comparisons as 

the latter provide fair to moderate reliability when the task does not include a motor 

response. 

 

In addition to the two aforementioned thresholds, two other more conservative 

threshold values were used to calculate the overlap ratio in order to assess the impact of 

thresholding on this reproducibility measure because, as mentioned above, the overlap 

ratio is limited by the fact that thresholding an image can exaggerate very small 

differences and hence lead to considerable differences in the size of the overlap ratio 

obtained. In the current study the two liberal thresholds (p<0.001 and p<0.005) led to 

similar relatively high overlap ratios in the two groups, while the use of two more 
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conservative threshold values (p<0.0001 and p<0.00001) led to lower overlap ratios in 

both groups. This could be due to the fact that some voxels showed few signal 

differences between the two sessions but with one being just below the threshold and the 

other being just above the threshold. Alternatively, the current neuroimaging technology, 

preprocessing treatment (such as smoothing and realignment), and statistical analyses 

may not be advanced enough and/or optimal to measure session-to-session signal 

changes on a single voxel basis. Be this as it may, it indicates that threshold values are 

likely to have an impact on reliability and that more conservative thresholds tend to be 

associated with lower reliability than less conservative ones. This has obvious 

implication when using fMRI to assess change in older populations.  

 

We also found some interesting task-related effect on overlap ratios. Notably, 

memory tasks and phonological tasks yielded comparable overall ratios. The relevant 

condition appeared to be the presence of a motor response in the task. In both memory 

and phonological tasks, the inclusion of a motor response resulted in a much higher 

overlap ratio than when no motor response was included in the task. This is coherent with 

the literature indicating that sensorimotor tasks produce more reliable brain activation 

across sessions. 

 

  Finally, we assessed fMRI reproducibility with ICC measures in these same 

ROIs. It is noteworthy that the ICC was calculated here on an individual basis rather than 

on a group basis (i.e. individual/single measure ICCs rather than average measure ICCs). 

Results indicated that overall both MCI and healthy controls showed significant ICC on a 

large number of regions and that the mean ICC values of MCI and healthy older adults 
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were very close and not statistically different. While significant, ICC values were 

however of a relatively low magnitude (mean ICC of 0.31 and of 0.36 for healthy 

controls and MCI, respectively) in comparison to those that have been reported in young 

healthy individuals (Aron et al., 2006; Specht et al., 2003; Wei et al., 2004).   The fact 

that the ICCs were calculated on the average beta values of the ROI, instead of on the 

beta value of specific voxels, may however have increased the session-to-session 

variability. Another finding was that, as observed in studies with young healthy 

participants, the ICCs values were found to vary greatly as a function of the region 

analyzed. However, the regional effect on ICCs appears to differ from one group to 

another, with some regions showing significant ICCs in the MCI group but not in the 

healthy control group and others showing significant ICC in the healthy control group 

but not in the MCI group. For healthy controls, ICCs were much lower in Broca’s area, 

hippocampus, and right dorsolateral prefrontal cortex than in the precuneus, left 

dorsolateral and ventrolateral prefrontal cortex, right ventrolateral prefrontal cortex, and 

posterior cingulate cortex. For MCI persons, the opposite pattern was found. Yet, those 

findings suggest that although the fMRI signal is reliable at the group level for both 

healthy older adults and MCI individuals, it is much less so when examining data on an 

individual basis. Again, this may arise from the fact that the current neuroimaging 

technology, preprocessing treatment, and statistical analyses may not be advanced 

enough and/or optimal enough to reduce within-subject variability and thus to measure 

session-to-session signal change in a single individual. It could also be due to the 

sensitivity of the signal to personal factors that vary in time such as fatigue, stress, or 

other biologically determined factors. It is however noteworthy that most participants 

were scanned at the same time of the day for the two sessions.  
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We are aware of the limitations of this study. First, our sample was relatively 

small and we may have lacked statistical power for some of the analyses even though, 

although our N was quite consistent with most fMRI studies in clinical populations. 

Alternatively, it could be argued that a p<0.001 threshold is too conservative and may 

have overshadowed some session-to-session differences. While there is no gold standard 

for the choice of statistical threshold in fMRI analyses, we believe that the fact that we 

used multiple reproducibility measures overcomes this limitation. Note also that 

reliability appears to decrease, not increase, with more conservative threshold. Another 

limitation could be the use of proportional scaling, a procedure that is used to remove 

both intersession and intrasession variance in the global signal but that can decrease 

sensitivity values, and hence may decrease the activation levels, when the global signal is 

correlated to the experimental paradigm (Gavrilescu et al., 2002; Junghofer, Schupp, 

Stark, & Vaitl, 2005). The finding of this study should therefore be replicated with other 

global normalization methods such as grand mean scaling, masking methods or 

orthogonalization methods. Lastly, the lack of significant task performance differences 

between the two sessions was judged as a strength because differences in performances 

might then have an impact on brain activation and may have subsequently limited the 

interpretation of activation differences. However, it could be also seen as a limitation as 

the evolution of a disease and/or a pharmalogical or non-pharmalogical intervention are 

likely to produce a decrease or an increase of the behavioral performance of the 

participants on the fMRI task. Therefore, these findings will need to be replicated with 

fMRI tasks that elicit either group differences, or session-to-session differences, in 

performances. 
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The findings from this study indicate that MCI individuals exhibit fMRI test-

retest reproducibility that are quite comparable to those of healthy older adults, 

suggesting that the fMRI reproducibility is not modified in an important way by mild 

cognitive impairments. The results also show that the fMRI signal does not vary 

significantly at a group level when comparing brain activity in two sessions that are 

separated by a six-week period, suggesting that this technique could be used as a neural 

surrogate of pharmalogical or non-pharmalogical approaches to mild cognitive 

impairment or early Alzheimer’s disease (for examples see Goekoop, et al. 2004; 

Goekoop, et al. 2006; Gron, et al. 2006; Saykin, et al. 2004) as long as the outcome is 

measured in terms of fMRI signal rather than solely in terms of activation of voxels and 

as long as it is evaluated at the group level. Indeed, test-retest failed to produce a reliable 

pattern of significantly activated voxels as there seems to be within-subject variability in 

the fMRI signal from session to session. This lack of reproducibility at an individual 

level suggests that precautions should be taken when using fMRI as a diagnostic tool or 

as a tool to monitor the evolution of the disease. One should first be aware of 

thresholding effects and rely on multiple thresholds. One should also be aware that task 

characteristics will affect reliability and that tasks with motor responses should yield 

higher reproducibility than tasks without motor responses. Lastly, the use of more 

optimized realignment tools and of higher sizes of full width at half maximum (FWHM) 

during smoothing may increase reliability by decreasing test-retest differences in voxel 

localization. Importantly though, the present findings indicate that obtaining reliable test-

retest findings with fMRI is not more difficult in a population of older adults with 

cognitive impairments than in a population of healthy older adults. 
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Table I 

Scores on the neuropsychological tasks for the two groups. SD is in parenthesis.  

  Controls                  MCI                   

   n = 10                       n = 10                    

MDRS (/144)      140.40 (3.10)  133.30 (8.51) * 

MMSE  (/30)      29.10 (0.74)  27.60 (1.65) * 

MOCA (/30)      26.75 (1.75)   

GDS (/15)      1.38 (2.45)  3.29 (2.98) 

Hachinski (/18)        2.20 (2.57)  

Boston Naming Test (/15)       12.40 (2.68) 

BEM Immediate recall (/12)       6.62 (1.19) 

BEM Delayed recall (/12)       5.69 (1.36) 

RL/RI-16 3rd free recall (/16)   12.20 (1.87)  7.80 (4.78) * 

RL/RI-16 delayed free recall (/16)   13.50 (1.18)  8.50 (4.48) ** 

Copy of Rey's Figure: time       241.30(123.54) 

Copy of Rey's Figure: score (/36)      28.30 (4.18) 

Stroop 3rd plate time        37.11 (19.02) 

Stroop 3rd plate errors       2.60 (3.06) 

Benton Judgment of line orientation (/30)     20.70 (4.67) 

Coding (WAIS-III, scaled score)      9.30 (2.21) 

 

Note. impairment relative to the controls at * p < 0.05; ** at p < 0.01 
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Table II 
 
Activated clusters (>10 voxels) for the comparison of sessions 1 and 2 of memory 
encoding with cluster size, peak voxel MNI coordinates and corresponding t-values. 

 
Activates areas (Brodmann area)         Cluster 
    (p < 0.001)               Size  x y z t value 
  

Healthy Controls: Encoding Session 1 > Session 2 
Right putamen    18  18 0 6 4.06 

Left putamen     25  -24 0 21 4.04 

Left inferior/middle temporal gyrus (21) 12  -57 -9 -18 3.90 

MCI: Encoding Session 1 > Session 2 
Left middle frontal gyrus (11)  15  -36 51 -9 4.27 
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Table III 
 
Activated clusters (>10 voxels) for the comparison of sessions 1 and 2 of phonological 
processing without motor responses with cluster size, peak voxel MNI coordinates and 
corresponding t-values. 

 
Activates areas (Brodmann area)        Cluster 
    (p < 0.001)              Size  x y z t value 
  

Healthy Controls: Phonological processing without motor responses Session1>Session2 
Left putamen     19  -24 0 21 3.67 
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Table IV 
 
Activated clusters (>10 voxels) for the comparison of sessions 1 and 2 phonological 
processing with motor responses with cluster size, peak voxel MNI coordinates and 
corresponding t-values. 
 
Activates areas (Brodmann area)             Cluster 
    (p < 0.001)              Size  x y z t value 
  

MCI: Phonological processing with motor responses Session 1 > Session 2 
Left cerebellum    26  -21 -69 -39 4.08 
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Table V. 

Single measures intraclass correlation of ROIs for both groups & for the four conditions 

   Controls        MCI 

Condition     1    2     3    4    1    2    3     4 

Broca’s area (BA 44)  0.30 0.38 -0.18 0.39 0.31 0.60* 0.13 -0.13 

Precuneus bilaterally (BA 7) -0.1 0.56* -0.21 0.62* 0.48* 0.63* 0.64* 0.79*** 

Hippocampus bilaterally 0.02 -0.05 -0.25 0.29 -0.08 0.48* 0.19 0.50* 

Left dorsolateral PFC  0.50* 0.57* 0.38 0.59* 0.13 0.29 0.11 0.40 

(BA 9, 46) 

Right dorsolateral PFC 0.22 0.24 0.09 0.36 0.36 0.61* 0.60* 0.70** 

(BA 9, 46) 

Left ventrolateral PFC 0.16 0.59* 0.05 0.42 -0.17 0.40 -0.23 0.32 

(BA 45, 47) 

Right ventrolateral PFC 0.36  0.79*** 0.24 0.90***0.43 0.33 0.27 0.17 

(BA 45, 47) 

Posterior cingulate cortex 0.10 0.76** 0.05 0.72** 0.22 0.61* 0.60* 0.74** 

 

Note. F-test (with a reference test-value of 0) significant at * p < 0.05; ** at p < 0.01; 

*** at p < 0.001 
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Figure 1. Activations for the encoding condition a) for session one in healthy controls 

group b) in session two in healthy controls group c) for session one in MCI group d) for 

session two in MCI group. 
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Figure 2. Activations for the retrieval condition a) for session one in healthy controls 

group b) in session two in healthy controls group c) for session one in MCI group d) for 

session two in MCI group. 
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Figure 3. Activations for the phonological processing without a motor response condition 

a) for session one in healthy controls group b) in session two in healthy controls group c) 

for session one in MCI group d) for session two in MCI group. 
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Figure 4. Activations for the phonological processing with a motor response condition a) 

for session one in healthy controls group b) in session two in healthy controls group c) 

for session one in MCI group d) for session two in MCI group. 
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Figure 5. Beta values in Broca’s area (BA 44) for the two groups during the four 

conditions and during the two sessions. 
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Abstract 

 

Introduction: The goal of this study was to explore the association between disease 

severity and performance on brain activation associated with episodic memory encoding 

and retrieval in persons with mild cognitive impairment. Method: This was achieved by 

scanning 12 MCI persons and 10 age- and education-matched healthy controls while 

encoding words and while retrieving them in a recognition test. Results: Behaviorally, 

there was no significant group difference on recognition performance. However, MCI 

and healthy controls showed different patterns of cerebral activation during encoding. 

While most of these differences demonstrated reduced activation in the MCI group, there 

were areas of increased activation in the left ventrolateral prefrontal cortex. Reduced 

activation was found in brain areas known to be either structurally compromised or 

hypometabolic in AD. In contrast, very few group differences were associated with 

retrieval. Correlation analyses indicated that increased disease severity, as measured with 

the Mattis Dementia Rating Scale, was associated with smaller activation of the right 

middle and superior temporal gyri. In contrast, recognition success in MCI persons was 

associated with larger activation of the left ventrolateral prefrontal cortex during the 

encoding phase. Conclusion: Overall, our results indicate that most of the memory-

related cerebral network changes in MCI persons occur during the encoding phase. They 

also suggest that a prefrontal compensatory mechanism could occur in parallel with the 

disease-associated reduction of cerebral activation in temporal areas. 
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1. Introduction 

People with mild cognitive impairment (MCI) experience more marked memory 

deficits than what would be expected based on their age and education, yet fail to reach 

criteria for dementia (Petersen et al., 2001; Gauthier et al., 2006). They are, however, at 

risk of developing AD and voxel-based morphometry and MRI volumetry studies of MCI 

show that this condition is associated with marked reduction in hippocampal and 

entorhinal cortex volumes (Whitwell et al., 2007; Xu et al., 2000; Pennanen et al., 2005; 

Pennanen et al., 2004). Moreover, the atypical atrophy in MCI persons is positively 

correlated with conversion to AD (Erten-Lyons et al., 2006; Korf et al., 2004; Jack et al., 

1999). The aforementioned regions are typically involved in episodic memory and a 

certain number of studies have investigated whether those structural changes in MCI are 

associated with effects on brain activation while completing episodic memory tasks. 

Understanding how MCI modifies the brain’s physiological response to cognitive events 

is critical because such functional changes may represent early indicators of 

neurodegenerative diseases. In addition, activation studies may provide crucial 

information about how brain networks support memory performance in persons with 

MCI and whether these brain networks differ qualitatively or quantitatively from those 

supporting memory in healthy older adults. 

 

A number of studies have documented the alterations of the medial temporal lobe 

in MCI individuals and in early AD (Mitchell et al., 2002; Markesbery et al., 2006). In 
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addition, there is also some recent evidence that the basal forebrain cholinergic system, 

which provide cholinergic innervations to all cortical areas, appears to show some of the 

earliest AD neuropathology (Auld et al., 2002; Mesulam et al., 2004). This may explain 

the fact that functional brain imaging studies have observed brain dysfunctions that 

extend beyond the medial temporal lobe area and alter the functioning of large neural 

networks involved in memory (e.g.: Johnson et al., 2006; Petrella et al., 2007; Ries et al., 

2005; Kircher et al., 2007; Heun et al., 2007). However, whether those alterations result 

in hyper or hypoactivation is unclear as well as the more specific localization of those 

impaired networks, particularly along the anterior/posterior axis. While a number of 

studies of memory encoding have found decreased activation in the medial temporal lobe 

(Johnson et al., 2006; Machulda et al., 2003; Trivedi et al., 2006) and in the prefrontal 

cortex of persons with MCI (Dannhauser et al., 2008; Mandzia et al., 2002; Mandzia et 

al., 2007), some studies have reported that MCI persons or persons at risk for AD have 

more activation than healthy older adults in the medial temporal lobe (Bookheimer et al., 

2000; Kircher et al., 2007; Dickerson et al., 2005; Hamalainen et al., 2007), in the 

prefrontal cortex (Bookheimer et al., 2000; Bondi et al., 2005; Han et al., 2006), and in 

posteromedial cortices (Petrella et al., 2007). Studies of the retrieval phase of episodic 

memory have also reported conflicting results, with some of them reporting decreased 

activations in the prefrontal cortex (Mandzia et al., 2002; Mandzia et al., 2007) and in 

posteromedial cortices (Ries et al., 2005), while another study reports increased 

activations of the prefrontal cortex (Heun et al., 2007). 

 

Our literature review suggests that across studies, persons with MCI and healthy 

controls show more areas of reliable brain activation differences during the encoding 
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phase when compared with the retrieval phase. This may suggest that encoding is 

particularly vulnerable to the early stage of AD. However, in most studies, participants 

were scanned either while learning the list (for encoding studies) or while recognizing 

items (for retrieval studies) and differences in patient sample and design complicates 

direct comparison of their results. Investigating both the encoding and retrieval phases in 

the same set of participants facilitates comparison of the activation associated with the 

two phases and can thus provide data regarding their differential sensitivity to the 

disease. It can also help us to understand whether both phases would be associated with 

similar localisation and pattern of brain changes.  

 

The inconsistent findings in the literature can also arise from the fact that MCI 

criteria are extremely variable and different studies include MCI participants that may 

diverge in terms of their clinical characteristics. Group differences in levels of severity is 

an important issue to this regard. Studies that have assessed the natural history of 

cognitive deficits in MCI have reported that those persons experience a gradual increase 

in their symptom severity, due to accumulation of AD pathology (Bennett et al., 2002). 

Differences in severity may reveal themselves to be a determining factor in accounting 

for differences in the patterns of brain activation in neurodegenerative diseases 

(Prvulovic et al., 2005; Celone et al., 2006). Within this perspective, a recent model has 

proposed that milder brain neuropathologies in early AD might lead to a mild decrease in 

processing efficiency accompanied by a compensatory increase in neuron recruitment. 

As the disease progresses and neuropathologies accumulate, processing capacity would 

further decrease and would pose limits on the capacity for compensatory neuronal 

recruitment (Prvulovic et al., 2005).  Based on this model, it is expected that MCI 
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persons situated on the mild end of the disease severity continuum would tend to show 

more brain activation than healthy controls, whereas MCI persons with more severe 

deficits and closer to AD would tend to show less brain activation than healthy controls. 

One study has reported results that are congruent with this hypothesis. Using a face-name 

associative encoding task, Celone et al. (2006) reported hippocampal hyperactivation in 

MCIs with less severe cognitive impairments relative to healthy controls, and 

hippocampal hypoactivation in MCIs with more severe cognitive impairments. It must be 

noted however that the MCI persons in this study were chosen based on different criteria 

than the ones used in the other studies. Generalizing these findings to individuals meeting 

current MCI criteria would have important implications for the assessment and follow-up 

of these individuals, for the understanding and integration of the results found in the 

literature, and for the comprehension of the brain response to neurodegenerative injuries.  

 

The goal of this study was to assess the role of disease severity on the brain 

activation of persons with MCI during both the encoding and retrieval phases of a verbal 

episodic memory task. Furthermore, we wanted to explore the impact of performance on 

the nature and extent of brain activation. This was assessed in the prefrontal cortex and in 

the temporal lobe, two key regions for memory processes. In line with the literature, we 

hypothesized that more group differences in brain activation would be observed during 

the encoding phase than during the retrieval phase. We also hypothesized that 

performances would be correlated with brain activation in the prefrontal cortex for the 

healthy controls group, as this region has been linked to retrieval success in both healthy 

younger (Wagner et al., 1998) and healthy older adults. It is unclear whether a similar 

association is present or not in MCI as Dannhauser and collaborators (2008) have failed 
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to find a correlation between prefrontal activation and performance in persons with MCI 

during a verbal memory encoding task that promoted interference effects. Presence of a 

larger activation of the prefrontal areas in MCI associated with a positive correlation 

between prefrontal activation and memory performance would be consistent with 

compensatory mechanisms whereas a lack of correlation would not.  

 

Methods 

Participants 

Twelve persons with MCI (9 females and 3 males) and 10 healthy older adults (8 

females and 2 males) took part in this study. Persons with MCI had a mean age of 67.83 

years (SD = 7.49) and had a mean of 13.25 (SD = 3.96) years of education. Healthy older 

adults had a mean age of 71.70 years (SD = 7.62), with an average of 12.50 (SD = 2.68) 

years of education. French was the first language of all participants.  

 

Participants with MCI were recruited from memory clinics and met the criteria 

proposed by Petersen (Petersen et al., 1999; Petersen et al., 2001; Winblad et al., 2004) 

for single (n=3) or multiple domain (n=9) amnestic MCI: they had a subjective memory 

complaint and performed at least 1.5 SD below the average level of persons of similar 

age and education on standardized memory tests, they showed no global cognitive 

impairment on the basis of the MMSE, nor any significant impact on daily functions as 

measured by the SMAF functional impairment scale, a 29-item scale that measures 

functional ability in five areas of daily living (activities of daily living, mobility, 

communication, mental functions and instrumental activities of daily living) (Desrosiers 

et al., 1995), and clinical interview, and failed to meet criteria for dementia. MCI 
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participants went through an extensive neuropsychological evaluation that covered 

episodic memory (cued and free word recall task, RL/RI-16; Buschke, 1984; Van der 

Linden et al., 2004, text memory of the BEM; Signoret, 1991, and recall of Rey’s 

Complex Figure; Rey, 1959), executive functions (third card of Victoria Stroop; Regard, 

1981, and copy of Rey’s Complex Figure; Rey, 1959), visuospatial processing (Benton 

Judgment of line orientation; Benton et al., 1983), information processing speed (Coding 

of the WAIS-III; Wechsler, 1997), language (Boston Naming Test; Kaplan et al., 1983), 

and global cognitive functions (Mattis Dementia Rating Scale, MDRS; Mattis, 1976, and 

Mini-Mental State Examination, MMSE; Folstein et al., 1975). The MDRS is a measure 

of cognitive abilities that includes 36 tasks measuring five cognitive domains (Attention, 

Initiation, Construction, Reasoning, and Memory), with a maximum total score of 144. 

This scale bears many advantages over the MMSE: it is not curtailed by ceiling effects 

and it investigates a broad range of cognitive functions which might make it more 

sensitive to the mild cognitive deficits characterizing MCI. The MDRS has strong 

internal consistency (correlation coefficient of .90), and is a useful test for quantifying 

the degree of impairment in individuals with organic mental syndrome (Gardner et al., 

1981). This test is widely used as a measure of global cognitive functions in older 

patients with cognitive impairment (Clement et al., 2008; Chetelat et al., 2005; Furio et 

al., 2007; Graff-Radford et al., 2007). MCI persons also received a medical, neurological 

and neuroradiological examination to exclude the presence of any other systemic, 

neurological or psychiatric condition that could explain their cognitive difficulties. 

Healthy older adults were recruited from the community and they were tested with a 

subset of the neuropsychological tests used with MCI (MDRS, MMSE, RL/RI-16). All 

healthy controls performed within normal limits (determined on an individual basis, i.e. 
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above cut-off score) on the MDRS, MMSE, and RL/RI-16, ensuring that they did not 

suffer from mild cognitive deficits.  

Participants all met the following exclusion criteria: diagnosis of probable AD or 

other form of dementia, history of neurological or severe psychiatric disorder, history of 

cardiovascular disease, alcoholism, drug addiction, using psychoactive drugs or a general 

anesthesia during the last six months. 

 

This study was approved by the Institut Universitaire de Gériatrie de Montréal 

Human Ethics Committee and by the Comité conjoint d’Évaluation Scientifique du 

Regroupement de Neuroimagerie du Québec (CÉS-RNQ) and was part of an intervention 

study as a control condition.  

 

Stimuli 

Six lists of eight one- to three- syllable words were used for learning in the 

encoding phase. Items were all concrete words and they were matched across lists in 

terms of average word frequency, familiarity, semantic category membership, and 

concreteness values, all obtained from a French words database, Lexique 

(www.lexique.org) . Six lists of eight words were also used for the retrieval phase. 

Each list contained four old words that were part of the corresponding encoding list 

and four new words. The new words were matched to the old words in terms of the 

number of syllables, frequency of use, semantic category, and concreteness values, 

based again on a French words database (Lexique). 

 

Procedure 
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 The task was programmed on E-prime and stimuli were visually presented and 

mirror-projected. Subjects wore goggles appropriate for MRI if their vision needed 

correction. Two days prior to and just before scanning, participants were trained on the 

task and were exposed to the sound of the scanner.  

 

The fMRI episodic memory task consisted of two runs: the encoding run was 

composed of six alternating blocks series of rest (28 sec each) and intentional encoding 

(40 sec each) and the retrieval run was composed of six alternating blocks series of rest 

(28 sec each) and retrieval (40 sec each). During rest, subjects were instructed to close 

their eyes and relax. During encoding, subjects were asked to memorize the words that 

were shown on the screen (8 words per block, 4 sec presentation rate, 1 sec interstimulus 

interval). During retrieval, subjects were asked to perform an old-new recognition 

judgment using a two-button response. Eight words were presented, half of which were 

presented in the preceding encoding blocks. In addition, a brief instruction (4 sec) was 

presented to the subjects prior to each encoding and retrieval blocks. The instruction 

blocks were modeled as a condition of no-interest. The retrieval phase was included in a 

separate run after participants had encoded all lists. As a result, the encoding and 

retrieval of a particular list was separated by about 15 minutes during which participants 

were encoding/retrieving other items. This procedure precluded reliance on working 

memory rehearsal. 

 

Data acquisition 

Magnetic Resonance Imaging (MRI) was performed using a Siemens 3-T whole-

body system (Siemens, Erlangen, Germany) at the Institut Universitaire de Gériatrie de 
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Montréal. A 3-D structural image was taken at the end of the session and consisted of a 

sagittal T1-weighted 3D-MPRAGE sequence (TR/TE = 1950/3.93 ms, flip angle = 15 

deg; 176 slices, voxel size = 1 mm x 1 mm x 1 mm, field of view = 256 mm, matrix = 

256*256). Functional MR images were acquired using Gradient-Echo Echo-Planar 

imaging sequences (GE-EPI) sensitive to blood oxygen level-dependent (BOLD) contrast 

(TR/TE = 2000/30 ms, flip angle = 90 deg; 31 interleaved slices, voxel size = 3.75 mm x 

3.75 mm x 5 mm with a gap of 1 mm, field of view = 240 mm, matrix = 64*64).  

 

Image processing and data analysis 

 Data were analyzed in MATLAB 7.0 (http://www.mathworks.com) using the 

statistical parametric mapping software SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). 

Before statistical analysis, functional images were converted into Analyze format and 

unwarped. Functional volumes of each subject were then realigned to the first acquired 

volume in the session and a mean realigned volume was created for each subject. All the 

realigned volumes of each subject were spatially normalized into the Montreal 

Neurological Institute (MNI) stereotactic space and spatially smoothed with an 8-mm 

Gaussian kernel. Low-frequency noise was removed with a high-pass filter of 256 sec. 

Global changes in fMRI response from scan to scan were removed by proportionally 

scaling each volume to a common global mean voxel value. A single-subject analysis 

was carried out in order to evaluate the individual contrasts (encoding vs rest and 

retrieval vs rest) for each subject. A Random Effects (RFX) Analysis was then performed 

by calculating, for each group, a two way ANOVA with Groups (healthy older adults, 

MCI) as a between-subjects factor and Conditions (encoding, retrieval) as a within-

subjects factor, with non-sphericity correction, replications over subjects, and with 
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correlated repeated measures. An uncorrected threshold of p < .001 with 10 continguous 

voxels was used for within-group comparisons and an uncorrected threshold of p < .005 

with 10 continguous voxels was used for between-group comparisons. 

 

 In a second step, the average beta values of each between-group comparison 

significant cluster in the frontal lobe and in the temporal lobe for both encoding and 

retrieval were extracted with marsbar (Brett et al., 2002) and correlated in SPSS 13.0 

(Statistical Product and Service Solution, http://www.spss.com) to the behavioural 

performance of the subjects. For MCI participants, these averaged beta values were also 

correlated to their MDRS scores. 

 

Results 

Sociodemographic data 

Two independent t-tests were computed on the dependant variables age and 

education to assess whether the groups were properly matched on the sociodemographic 

variables age and education. No significant age, t(20) = 1.19, N.S., and education effects,  

t(20) = -.51, N.S., were found. 

 

Neuropsychological evaluation 

 Independent t-tests were also computed on the scores obtained by the two groups 

on the neuropsychological tests. As illustrated in Table 1 and as expected, MCI 

participants obtained significantly lower scores than healthy controls on the MDRS, t(20) 

= 2.43, p < .05, MMSE, t(20)  = 2.32, p < .05, on the 3rd free recall of the RL/RI-16, 

t(20) = 3.16, p < .01, and on the delayed recall of the RL/RI-16, t(20) = 3.94, p < .01. 
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Behavioral data 

 The mean percentage of correctly recognized words was 65.85% (SD = 11.07) for 

the MCI group1 and 72.00% (SD = 10.85) for the healthy control group. An independent 

t-test indicated that the small group difference was not statistically significant, t(18) = 

1.25, N.S. To avoid possible response bias, the corrected recognition rate (Phit – Pfalse 

alarms) was also calculated. The MCI group showed a mean corrected recognition rate of 

42.25% (SD = 21.98) whereas the control group showed a mean corrected recognition 

rate of 50.47% (SD = 16.66). Again, independent t-test indicated that the group 

difference was not statistically significant, t(18) = 0.94, N.S.  

 

Neuroimaging data 

Within-group comparisons 

 Controls. During encoding, the group of healthy controls showed activations in 

the left parahippocampal gyrus, in the right cerebellum and bilaterally in the anterior and 

posterior cingulate gyrus, in the occipital lobe (Brodmann areas 17,18,19), in the 

occipitotemporal regions (Brodmann area 37), in the parietal lobe (precuneus, 

supramarginal and angular gyri), in the medial prefrontal cortex (Brodmann areas 10,11, 

and 32), in the premotor area, in the thalamus, and in the basal ganglia (Figure 1a). 

Similar activations were found during retrieval. Activations were found in the left 

thalamus, the left cerebellum anterior, the left supramarginal gyrus, the left (Brodmann 

area 47) and right (45) inferior frontal gyrus, the right premotor area, and bilaterally in 

the posterior cingulate gyrus, the sensorimotor area, the precuneus, the occipital lobe 
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(Brodmann areas 17,18,19), and the occipitotemporal regions (Brodmann area 37). Note 

that no activations were found in the medial temporal lobe during retrieval (Figure 1b). 

MCI. During encoding, MCI persons also showed activations in the left 

parahippocampal gyrus, in the left and in the right hippocampi, and bilaterally in the 

inferior prefrontal gyrus (Brodmann areas 44, 45, and 47), in the orbitofrontal regions 

(Brodmann area 10), in the dorsolateral prefrontal cortex (Brodmann areas 9 and 46), in 

the premotor region, in the anterior and posterior cingulate gyrus, in the precuneus, in the 

occipital lobe (Brodmann areas 17,18,19), in the occipitotemporal regions (Brodmann 

area 37), in the left thalamus, in the basal ganglia, in the medulla, in the pons, in the 

midbrain, and in the cerebellum (Figure 1c). During retrieval, MCI participants activated 

regions similar to the ones observed during encoding. Activations were found in the left 

insula, and bilaterally in the anterior and posterior cingulate gyrus, the parahippocampal 

gyrus, the inferior frontal gyrus (Brodmann areas 44, 45 and 47), the dorsolateral 

prefrontal cortex (Brodmann area 46), the premotor region, the sensorimotor region, the 

precuneus, the supramarginal gyrus, the occipitotemporal regions (Brodmann area 37), 

the occipital lobe (Brodmann areas 17,18,19), the thalamus, the basal ganglia, and the 

cerebellum (Figure 1d). As was the case for healthy controls, MCI persons did not show 

activation of the medial temporal lobe during retrieval. 

 

Between-group comparisons 

 A number of significant activation differences were found between the two 

groups during the encoding phase as shown in Table 2 and described below. 
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Controls>MCI Encoding. During encoding, MCI persons showed less activation 

than healthy controls in the right middle and superior temporal gyrus, bilaterally in the 

occipital lobe, in the right thalamus, and in the right anterior cingulate gyrus and right 

medial frontal lobe.  

 

Controls<MCI Encoding. MCI participants showed more activation than healthy 

controls in the left ventrolateral prefrontal cortex during the encoding phase.  

 

Controls>MCI  Retrieval. During retrieval, MCI persons showed less activation 

than healthy controls in the medial frontal lobe, bilaterally.  

 

Controls<MCI Retrieval. Only the premotor area was more activated in MCI 

persons than in healthy controls during the retrieval phase. 

 

Correlational analyses 
 To perform correlational analyses, the average beta values of prefrontal and 

temporal clusters that were different between MCI and healthy controls were first 

extracted. Table 3 shows the mean beta values obtained for each group as well as the 

range of values for each area. Pearson correlations were then calculated between those 

values and the MDRS scores as a measure of disease severity in MCI. Pearson 

correlations were also calculated between those values and the performances of healthy 

controls and MCI to assess whether the activation of those regions were linked to 

enhanced performances and hence to possible compensatory mechanisms. Correlation 

coefficients and significance values are presented in Table 4. Strong positive correlations 



 96 

were found in MCI between the activation of their right middle and superior temporal 

gyri at encoding and their scores on the MDRS (r = .79, p < .001, and r = .55, p < .05, 

respectively). In addition, there was a negative correlation between the activation of the 

right anterior cingulate and medial frontal cortex in MCI and their scores on the MDRS 

(r = -.52, p < .05) (see Figure 2). A positive correlation was also found in MCI between 

the activation of the left inferior frontal gyrus at encoding and their performances in the 

scanner (r = .55) (see Figure 3a). Importantly, there was no correlation between 

activation in the occipital areas and performance scores. In healthy controls, none of the 

correlations reached significance (see Table 4 and Figure 3b). 

 

Discussion 

The purpose of this study was to compare the brain activation patterns associated 

with verbal memory encoding and retrieval processes in MCI persons and healthy older 

adults and to assess its relation to disease severity and performance. Healthy older adults 

activated a brain network that included the lateral prefrontal cortex bilaterally, the lateral 

parietal cortex bilaterally, and the anterior cingulate cortex bilaterally. Globally, a similar 

network was activated during encoding and retrieval but smaller areas of activation were 

found in the prefrontal and mediotemporal cortex during retrieval. Previous studies 

indicate that in young adults, the left lateral prefrontal cortex is related to episodic 

memory encoding while the right lateral prefrontal cortex is related to episodic memory 

retrieval, (Hemispheric encoding/retrieval asymmetry in episodic memory, HERA 

model; Tulving et al., 1994). In the present study, activations were observed in the areas 

activated by younger adults with similar paradigms except that they were mostly bilateral 

in our group of healthy older adults. Interestingly, this finding of bilateral activation 
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during the encoding and retrieval phases in healthy older adults is consistent with 

numerous findings indicating reduced lateralization of prefrontal activity in older adults 

(Hemispheric asymmetry reduction in older adults, HAROLD model; Cabeza, 2002, 

2001; Madden et al., 1999). Our finding of activation in the anterior cingulate cortex and 

in the lateral parietal lobe in verbal episodic memory is consistent with similar data that 

has also been reported in younger participants (see Cabeza and Nyberg, 2000, for a 

review). However, their exact contribution remains debatable when obtained in designs 

using rest with closed eyes as control condition as was done here, because they may also 

reflect attentional processes or phonological verbal memory. Overall, our paradigm was 

therefore successful in activating the brain regions that are typically reported to be 

involved in similar episodic memory tasks and also possibly those areas involved in 

sensory or attentional processes.  

 

Our paradigm led to a number of differences in terms of brain activation between 

the MCI and control groups particularly at encoding. First, at encoding persons with MCI 

showed less activation than controls in the occipital lobe, in the thalamus, in the right 

anterior cingulate and medial frontal gyri as well as in the right middle and right superior 

temporal gyri. Considering that MCI is viewed as a prodrome of AD, our findings of 

hypoactivation of the posterior areas of the brain in MCI persons may appear surprising 

but are in fact consistent with the finding that the early phase BOLD response is 

significantly diminished in the occipital region of MCI patients compared to controls 

(Rombouts et al., 2005). This latter finding was interpreted as reflecting a combination of 

both a modification of the neurovascular coupling and diminished neuronal response in 

the occipital region. Similarly, the hypoactivation of the right middle and right superior 
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temporal gyri may result from the medial temporal lobe pathologies that hallmark early 

AD (Arnold et al., 1991; Braak and Braak, 1991; Markesbery et al., 2006; Mitchell et al., 

2002). This is also coherent with PET studies showing a reduction of metabolism in AD 

in the right middle temporal (Kessler et al., 1991; Schroder et al., 2001) and superior 

temporal (Schroder et al., 2001) cortex. The PET study reported by Schroder and 

colleagues (2001) was done while participants completed a serial verbal learning task 

whereas the one reported by Kessler and colleagues (1991) was done using both resting 

state and a visual recognition task (i.e. recognition of black and white pictures of 

concrete objects, words or figures). Interestingly, both studies showed an association 

between increased disease severity in AD patients and larger reduction in metabolism. 

 

In addition to the hypoactivations mentioned above, MCI participants showed 

more activation during encoding than healthy controls in the left inferior frontal gyrus 

(Brodmann’s area 47). In the context of verbal episodic memory encoding, the role of 

this region has been attributed to semantic elaboration of verbal material (Demb et al., 

1995; Poldrack et al., 1999). The finding of a greater activation of this region in MCI 

than in controls is not uncommon in conditions of matched performance. Similar findings 

have been found in a study of Rosano and colleagues (2005) who reported increased 

prefrontal cortex activation when MCI patients matched the performance of controls on 

an attention task, and in a study of Bookheimer and collaborators (2000) who also 

reported increased prefrontal cortex activation during matched memory task performance 

in high risk subjects. In turn, it is interesting to note that reduced activation has been 

found in the same region during the encoding of visual material in a study where healthy 

controls outperformed persons with MCI (Mandzia et al., 2007). Thus increased 
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prefrontal activation indicates compensatory activation when performance is matched 

whereas decreased activation associated with impaired performance indicates failed 

compensation in persons with MCI. 

 

 During retrieval, very few significant differences were found when the two 

groups were compared in spite of the fact that the extent of activations in MCI appears 

larger than the ones found in healthy controls. Statistically, the only significant difference 

was in fact that of a lower activation for MCI persons than healthy controls in the medial 

frontal gyrus bilaterally and of a larger activation in the left premotor area. This suggests 

either that the difference in activation between the two groups is small or that the 

activation associated with retrieval is characterized by important inter-subject variability. 

Be this as it may, our finding that retrieval elicits relatively small group differences 

between MCI and healthy controls supports previous studies reporting group differences 

circumscribed only to small brain areas during the retrieval phase (Mandzia et al., 2002; 

Mandzia et al., 2007; Heun et al., 2007; Ries et al., 2005).  

 

One of our main goals was to investigate the effect of disease severity on the 

brain activation of MCI persons. We used impairment on a global neuropsychological 

scale, the MDRS, as an estimate of disease severity and found strong positive 

correlations between the MDRS and activation of the right middle and right superior 

temporal gyri of MCI persons (r = .79 and r = .55, respectively). Thus in MCI, the 

presence of increased cognitive deficits is associated with less activation in these areas. 

This is consistent with the presence of a gradual increase of neuropathologies in the 

temporal lobe during the MCI phase. The functional impact of these temporal lobe 
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pathologies could result in a decrease of activation in the neighborhood regions along 

with an increase in severity and clinical symptoms. In addition, a negative correlation 

was found between the MDRS and the activation of the right anterior cingulate cortex 

and of the medial prefrontal cortex (r = -.52). Thus, in MCI the presence of increased 

cognitive symptoms is associated with more activation in those areas. As the anterior 

cingulate cortex has been found to be more activated in tasks that have a high level of 

difficulty than in easier ones (Paus et al., 1998), this could reflect increased difficulty in 

MCI to perform the task as the disease progresses. Interestingly, a moderate positive 

association (r = .55) was found in persons with MCI between performance on the 

recognition task and activation of the left inferior frontal gyrus (Brodmann’s area 47), a 

region that shows hyperactivation in MCI. A similar positive relationship between 

performance and brain activation has been linked to compensation mechanisms in 

healthy older adults (Cabeza et al., 2002). Our finding of an increased activation of this 

area in MCI and our finding that larger activation correlates with better performance is 

also reflective of compensatory mechanisms. This finding contrasts with a recent study 

of verbal episodic memory that found no correlation between performance and activation 

of the left ventrolateral prefrontal cortex in MCI (Brodmann’s areas 44 and 45) 

(Dannhauser et al., 2008). There are many factors that could explain the difference in the 

Dannahauser’s study and the present one. First, MCI individuals in Dannhauser’s study 

(2008) were older (mean age of 72 vs 68 in our study) and might thus be more advanced 

into the disease. This is supported by the fact that persons with MCI in our study had 

milder impairment on the MMSE, an abbreviated cognitive measure (mean MMSE: 

27.83), than those in Dannhauser et al. (2008) study (mean MMSE: 24.50). This is 

coherent with our hypothesis that only milder MCI rely on the compensatory neural 
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changes indexed by increased activation. Another possible account relates to task 

difficulty, as the task in the Dannhauser’s study produced lower levels of performance 

(corrected recognition rate of 0.48 for healthy controls of 0.26 for MCIs) than the task 

used in our study, particularly for MCI persons (corrected recognition rate of 0.50 for 

controls and 0.42 for MCI). This might be due to the fact that word presentation was 

shorter in the Dannhauser’s study (2.5 sec/word vs 4.0 sec/word in this study). A short 

presentation time might also have precluded initiation of compensation strategies in MCI. 

 

 The present study has some limitations. First, we used a low-level control task 

(rest) rather than a high-level control task and therefore the activation differences that we 

found between our groups could be related to the sensory, attentional, and/of working 

memory processing that supports and controls memory rather than to the encoding 

process. Note that the fact that we did not find a significant association between 

performances of MCI in the scanner and their occipital lobe activation diminishes the 

possibility of altered sensory processing as a significant factor in our MCI group. 

However, this possibility cannot be entirely ruled out because some studies have reported 

decreased attentional (Belleville et al, 2006; 2008) and sensory (Vannini et al., 2007) 

processing in MCI. To better control for the contribution of attention or sensory 

processing, future studies might use high-level control conditions that match the memory 

condition on every aspect apart from the encoding process. Another limitation of our 

study is the small sample size of healthy controls (N = 10) and of MCI individuals (N = 

12). While this may have decreased our statistical power, it is important to note that we 

did nonetheless obtain a very coherent pattern of significant group effects in brain 

activation levels and significant correlations. Another limitation is that our task was 
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relatively easy and may have lacked the sensibility to distinguish MCIs from healthy 

controls. While absence of a group difference in performance greatly simplifies the 

interpretation of the group difference in cerebral activation (Gould et al., 2005), the lack 

of sensitivity could have overshadowed some potential cognitive compensation processes 

in either of the two groups. A potential compromise could be to use a parametric design 

with two or three conditions of different levels of difficulty.  Lastly, we cannot rule out 

the possibility that some of the subjects might have been doing something other than 

memorizing the words during memory encoding as no online measure of behavior was 

taken. However, we are comforted by the fact that both MCI individuals and healthy 

controls performed above chance in the task and by the fact that our subjects showed 

activation in regions that are commonly activated in fMRI memory taks (i.e. ventrolateral 

and dorsolateral prefrontal cortices and medial temporal lobe).  

 

 To conclude, findings of this study indicate that MCI individuals and healthy 

older adults show brain activations differences particularly during the encoding phase of 

verbal episodic memory and relatively fewer brain activation differences during the 

retrieval phase. During encoding, MCI persons show hypoactivation of the right middle 

and superior temporal gyri, a region that has been shown to be structurally compromised 

and that is known to show hypometabolism in AD. Our finding may thus reflect a very 

early involvement of those areas during the MCI phase. Importantly, reduced activation 

in the right middle and superior temporal gyri was strongly associated with disease 

severity, as measured with the MDRS indicating that reduced activation increases with 

the disease. In contrast, hyperactivation in the left ventrolateral prefrontal cortex was 

observed in MCI persons. This increased activation correlated with the MCIs’ 
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performance on the memory task and could thus represent compensatory mechanisms, 

possibly in response to the hypoactivation of the temporal network. These compensatory 

mechanisms could be cognitive for example, patients could be using alternative cognitive 

strategies to perform the tasks (e.g.: greater reliance on rehearsal or semantic elaboration 

attempt). They might also be strictly neuronal, that is, reflecting changes in the neural 

architecture due to neural change (e.g.: increased activation of contralateral regions), or 

both (see Cabeza, 2002). Future studies will be necessary to assess the relative 

contribution of cognitive and neuronal compensation and whether this prefrontal 

compensatory activation can be enhanced, either with pharmacological or non-

pharmacological interventions. 
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Footnotes 
 

1. Note that the performances of two MCI persons were not recorded due to 
equipment failure. 
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Table 1. 

Scores on the neuropsychological tasks for the two groups. SD is in parenthesis.  

  Controls                  MCI                   

   n = 10                       n = 12                    

MDRS       140.40 (3.10)  133.83 (8.03) * 

MMSE       29.10 (.74)  27.83 (1.59) * 

RL/RI-16 3rd free recall    12.20 (1.87)  7.33 (4.54) ** 

RL/RI-16 delayed free recall    13.50 (1.18)  8.17 (4.13) ** 

Note. Significant impairment relative to controls, * p < .05; ** at p < .01 
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Table 2 
 
Clusters (>10 voxels) significantly more activated in healthy controls than in MCI 
persons or significantly more activated in MCI persons than in healthy controls with 
cluster size, peak voxel coordinates and corresponding t-values. 

 
Activates areas (Brodmann area)          Cluster 
    (p < .005)               Size x y z t value 
  

CA > MCI Encoding 

Left occipital lobe (BA 18/19)  82  -27 -90   0 5.18 

Right occipital lobe (BA 18/19)  146  27 -81 18 4.13 

Right anterior cingulate/medial frontal gyri  29  3 54 12 3.68 

Right thalamus    13  15 -12 3 3.66 

Right middle temporal gyrus (BA 21) 12  60 -21 14 3.31 

Right superior temporal gyrus (BA 22) 14  45 -21 -9 3.04 

CA < MCI Encoding 

Left inferior frontal gyrus (BA 47)  29  -48 27 -6 3.56 

CA > MCI Retrieval 

Right/left medial frontal gyrus (BA 10) 28  0 54 12 3.80 

CA < MCI Retrieval 

Left premotor area (BA 6)   12  -15 -6 72 3.54 
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Table 3. 
 
Mean average beta values of clusters that are different between the two groups. Range of 
values is in parenthesis. 
 
Activates areas (Brodmann area)                             

   (p < .005)               MCIs             Controls                
                 
CA > MCI Encoding 

 Left occipital lobe (BA 18/19)   .61 (-0.86 – 2.12) 2.08 (.74 – 3.42) 

 Right occipital lobe (BA 18/19)  .51 (-.96 – 2.25) 1.84 (1.01 – 3.48)  

Right anterior cingulate/ medial frontal gyri  .34 (-1.34 – .99) .79 (-.15 – 1.49) 

Right middle temporal gyrus (BA 21) -.47 (-1.09 – .12) .17 (-.46 – .77) 

Right superior temporal gyrus (BA 22) -.72 (-2.16 – -.16) .32 (-.63 – 1.15) 

CA < MCI Encoding 

Left inferior frontal gyrus (BA 47)  .82 (.06 – 2.28) -.28 (-1.27 – .47) 

CA > MCI Retrieval 

Right/left medial frontal gyrus (BA 10) .52 (-.72 – 1.66) .56 (-.56 – 2.15) 

CA < MCI Retrieval 

Left premotor area (BA 6)   -.32 (-1.50 – 0.72) -.66 (-.1.42 – -.17) 
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Table 4. 
 
Correlations between average beta values of clusters that are different between the two 
groups with performance scores of controls and MCIs and with MDRS scores of MCIs. 
 
Activates areas (Brodmann area)                  Performances            MDRS  

   (p < .005)           MCIs         Controls            MCIs        
                 
CA > MCI Encoding 

Left occipital lobe (BA 18/19)   .33  .13  -.16 

  

Right occipital lobe (BA 18/19)   .36  -.01  .13 

Right anterior cingulate & medial frontal gyri .15  .13  -.52 * 

Right middle temporal gyrus (BA 21)  .31  .17  .79 ** 

Right superior temporal gyrus (BA 22)  .34  .14  .55 * 

CA < MCI Encoding 

Left inferior frontal gyrus (BA 47)   .55 *  -.12  -.12 

CA > MCI Retrieval 

Right/left medial frontal gyrus (BA 10)  .28  .17  -.30 

CA < MCI Retrieval 

Left premotor area (BA 6)    .16  .21  -.18 

 

Note. Significant impairment relative to controls, * p < .05; ** at p < .001 
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Figure Caption 

 

Figure 1. Cerebral activations (p < .001, uncorrected, cluster size > 10) of healthy 

controls during encoding (a) and retrieval (b) and of MCI persons during encoding (c) 

and retrieval (d). 

Figure 2. Scatter plots with fit lines showing the significant correlations in MCI between 

the scores on the MDRS and their beta values in a) the right middle temporal gyrus (BA 

21) b) the right superior temporal gyrus (BA 22) and c) the right anterior cingulate & 

medial frontal gyri. 

Figure 3. Scatter plots with fit lines showing the significant correlations between 

performances in the scanner and beta values for MCIs and healthy controls in the left 

inferior frontal gyrus (BA 47) (a and b respectively). Note that the correlations are only 

significant for MCIs. 
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Figure 1. Cerebral activations (p < .001, uncorrected, cluster size > 10) of healthy 

controls during encoding (a) and retrieval (b) and of MCI persons during encoding (c) 

and retrieval (d). 
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Figure 2. Scatter plots with fit lines showing the significant correlations in MCI between 

the scores on the MDRS and their beta values in a) the right middle temporal gyrus (BA 

21) b) the right superior temporal gyrus (BA 22) and c) the right anterior cingulate & 

medial frontal gyri. 
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Figure 3. Scatter plots with fit lines showing the significant correlations between 

performances in the scanner and beta values in the left inferior frontal gyrus (BA 47) (a 

and b respectively) a) for MCI participants and b) for healthy controls. Note that the 

correlations are only significant for MCIs. 
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Abstract 
 

Background: Alzheimer’s disease (AD) is a neurodegenerative disease with progressive 

cognitive impairments that are likely to affect the compensatory mechanisms and the 

cerebral activation patterns of the patients. Methods: Functional neuroimaging was used 

to test the effect of disease severity on the brain activation of persons at risk for AD and 

to highlight the process of compensation in some of these individuals. This was done for 

the verbal learning of either semantically related or semantically unrelated word pairs. 

Twenty-six persons with mild cognitive impairment (MCI) were separated into two 

groups, MCI higher-cognition and MCI lower-cognition, using a split-median on their 

scores for the Mattis Dementia Rating Scale. A group of 14 healthy older adults were 

matched to the MCI participants. Results: In both task conditions, MCI higher-cognition 

activated additional regions, relative to controls, in the right ventrolateral and 

dorsolateral prefrontal brain areas. Additional areas of hyperactivation were found in the 

right prefrontal area 45 when encoding semantically related word pairs and in the left 

hippocampus during encoding of unrelated word pairs. In contrast, MCI lower-cognition 

failed to show additional prefrontal activations when compared to healthy controls, and 

showed decreased activation in posterior areas. Conclusions: These results are in line 

with compensation occurring at the beginning of the MCI continuum and with the 

breakdown of compensation in patients experiencing more severe symptoms.  
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Introduction 

 

Alzheimer’s disease (AD) is the most prevalent form of dementia. Neuroimaging 

activation techniques have been important in understanding how the disease impacts the 

neural circuitry that underlies cognitive functioning and compensation. However, despite 

the fact that AD is a progressive disorder, little is known about the effect of disease 

severity on the pattern of brain activation in AD (but see 1). In addition, progression 

through the disease continuum is likely to be marked by a compensation breakdown after 

a certain accumulation of lesions. The goal of this study is to assess the neural circuitry 

that allows some of the MCI individuals to retain capacities to compensate for their 

memory impairments. 

 

 Older persons with mild cognitive impairment do not meet criteria for dementia 

but many of them probably stand in a prodromal phase of the disease. Studies on the 

natural history of MCI indicate that there is a gradual increase in their symptom severity 

which likely parallels the accumulation of the underlying AD neuropathology (2). 

Degeneration models propose that there is a trade-off between the accumulation of 

lesions and the ability for the neural system to exhibit compensation (3, 4).  It was 

proposed that neurodegenerative diseases that implicate a small amount of cerebral 

lesions would decrease processing efficiency but preserve processing capacity. This 

would allow increased recruitment of neurons to compensate for neuronal loss and 

prevent performance from decreasing. As more important neuronal damage accumulates, 

both processing efficiency and capacity would decrease. This would impede the capacity 
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for neuronal recruitment, reduce compensation capacities and result in a decreased level 

of performance (5, 6).  

 

These models underscore the tremendous impact that disease severity is likely to 

bear on the expected pattern of brain activation in MCI and AD.  Because persons with 

MCI first suffer from a relatively small amount of neural damage, the model would 

predict that those MCIs, at the beginning of the continuum to AD, would be able to 

activate compensatory networks in response to neural damage. This would result in 

increased functional activation, relative to healthy controls, in order to maintain 

relatively good levels of performance. This pattern would revert as persons with MCI 

suffer from more severe neural damage, which would be reflected in reduced brain 

activation and compensation breakdown associated with impaired performance level.  

The model also predicts that these changes in brain activation should be found mainly in 

AD-related brain areas as these regions are the ones that suffer from neural damage. 

There is data that seems to suggest that this might be the case in MCI (7, 8).  

 

The effect of disease severity might reconcile some of the incompatibilities found 

in the literature on MCI. For instance, some studies reported decreased activation in the 

hippocampus and prefrontal cortex of MCI persons relative to healthy older adults (9, 10, 

14-16) while others have reported increased activation (11-13). The hypothesis of a 

brain-related breakdown in neural compensation is also coherent with the data indicating 

that AD is characterized by reduced brain activation. However, the effect of disease 

severity has not been assessed directly in a single study that uses a common measure to 

assess severity across patients. 
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 The goal of this study was to assess the impact of disease severity and of task 

characteristics on the memory-related brain activation of persons with MCI with the use 

of a verbal episodic memory encoding task. MCI persons were split into two groups as a 

function of their level of cognitive impairment on a dementia rating scale.  The fMRI 

task included two encoding conditions: one that involved semantically related word pairs 

and one that involved unrelated word pairs. We hypothesized that MCIs with better 

cognitive functions (MCI higher-cognition) would be much less impaired than those with 

lower cognitive functions and would show additional activation in alternative structures 

or networks compared to healthy controls. In contrast, we hypothesized that MCIs with 

lesser cognitive functions (MCI lower-cognition) would be impaired on the task and 

would not show, or would show minimal, additional activations. Importantly, we 

hypothesized that most changes in brain activation would be found in AD-related brain 

areas. Finally, we also predicted that compensatory activations would be task-dependent.  

 

Methods and Materials 

Participants 

Twenty-eight persons with MCI (17 females/11 males) and 14 healthy older 

adults (8 females/6 males) were initially recruited to take part in this study. Two of the 

MCI individuals (2 females/0 male) were excluded because they showed head movement 

in the scanner. French was the first language of all participants. Sociodemographic 

characteristics of the two groups are shown in Table 1. 

 

MCI participants were referred from memory clinics and met the criteria 

proposed by Petersen (17-19) for amnestic single or multiple domain MCI (Supplement 
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1). Persons with MCI completed an extensive neuropsychological evaluation that 

covered episodic memory (Rappels libres/Rappels indices; RL/RI-16 free and cued word 

recall task, 21, 22, Batterie d’Efficience Mnésique; BEM text memory, 23, 20-min recall 

of the Rey’s Complex Figure, 24), executive functions (third plate of Stroop-Victoria, 25, 

and copy of Rey’s Complex Figure, 24), visuospatial processing (Benton Judgment of 

line orientation, 26), speed of information processing (Coding of the WAIS-III, 27), 

language (Modified Boston Naming Test, 28), and global cognitive functions (Mattis 

Dementia Rating Scale, MDRS, 29, and MMSE, 30). MCI persons also went through an 

extensive medical, neurological and neuroradiological examination to exclude the 

presence of any other significant systemic, neurological or psychiatric conditions that 

could explain their cognitive difficulties.  

 

To assess the effect of disease severity on functional neuroimaging data, MCI 

participants were divided into two groups of different levels of cognitive impairment 

(MCI higher-cognition and MCI lower-cognition) using a split-median of their scores on 

the MDRS. The MDRS is an abbreviated neuropsychological scale that covers a wide 

range of cognitive functions. It therefore has the advantage of measuring severity 

independently of the episodic memory task used for the functional neuroimaging. 

Furthermore, it is more sensitive than the MMSE to MCI’s quite subtle cognitive 

impairments.  It also yields the variability necessary for the use of a split-median and is 

not curtailed by ceiling effects.  See Supplement 1 for details on the follow-up of MCI 

participants. 
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Healthy older adults were recruited from the community and underwent a brief 

clinical and neuropsychological assessment to ensure that they did not suffer from 

cognitive deficits. The tasks included measures of global cognitive functions (MDRS2, 

MMSE, Montreal Cognitive Assessment, MOCA; 31), speed of information processing 

(Coding), and episodic memory (RL/RI-16). 

 

This study was approved by the Institut Universitaire de Gériatrie de Montréal 

Human Ethics (comité conjoint d’évaluation scientifique, CÉS-RNQ). 

 

Task and fMRI procedures 

Encoding was measured by asking participants to memorize 16 lists of nine pairs 

of concrete, one- or two-syllable, words.  Half of the lists was composed of semantically 

related pairs of words (ex: butter-cheese) and the other half was composed of 

semantically unrelated pairs (ex: tea-bed). Related pairs were created by selecting an 

item and one of its associates from French lists of semantic associates (32, 33). To avoid 

guessing and to avoid that the two words get encoded as a single concept, only the 

words’ second, third, or fourth associates were used. Lists of unrelated word pairs were 

created by selecting pairs of words with no semantic relation, ensuring that none were 

semantically associated with other items in the list. All sixteen lists were matched in 

terms of word frequency and word length. The task was programmed on E-prime. Word 

pairs were presented visually at a rate of 4 sec (seconds) per pair and were mirror-

projected. Encoding was recorded in two runs. Each run included eight blocks of visual 

fixation (20 sec each), eight blocks of intentional encoding (one list per block, total of 40 

                                                 
2 Five healthy controls did not complete the MDRS. 
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sec each) and eight blocks of recognition (40 sec each, see below). The order of 

presentation of the semantically related and unrelated lists was randomized and fixed 

across participants. Each block consisted of either only related or only unrelated words. 

The visual fixation blocks consisted of crosshair fixation. Finally, a brief instruction 

(”Learn the following pairs of words”) was presented to the subjects prior to each block. 

During practice one week prior to scanning, participants were told to combine the two 

words in their memory and that their memory would be tested later.  

 

Recognition accuracy was tested by asking participants to perform a recognition 

judgment task on 16 lists of eight word-pairs: four pairs that had been presented 

previously (target) and four pairs composed either of one word presented previously and 

one new word or of two words that belonged to different pairs (foils). A brief instruction 

(”Determine if the two words were presented together during the study phase”) was 

presented to the subjects prior to each block. Emphasis was placed on the fact that a 

positive answer should be provided when the two words had been seen as a pair. All lists 

were equivalent in terms of words frequency and semantic relatedness. The fMRI data 

from the retrieval phase are presented in a separate paper and will not be discussed 

further here.   

 

Data acquisition 

Magnetic Resonance Imaging (MRI) was performed using a SIEMENS 3T 

Magnetom TRIO a TIM System (Erlangen, Germany) at the Unité de Neuroimagerie 

Fonctionnelle (UNF) of the Institut Universitaire de Gériatrie de Montréal. Functional 

MR images were acquired using Gradient-Echo Echo-Planar imaging sequences (GE-
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EPI) sensitive to blood oxygen level-dependent (BOLD) contrast (TR/TE = 2000/30 ms, 

flip angle = 90 deg; 31 interleaved slices, voxel size = 3.75 mm x 3.75 mm x 5 mm with 

a gap of 1 mm, field of view = 240 mm, matrix = 64*64). A 3-D structural image was 

taken at the end of the session and consisted of a sagittal T1-weighted 3D-MPRAGE 

sequence (TR/TE = 1950/3.93 ms, flip angle = 15 deg; 176 slices, voxel size = 1 mm x 1 

mm x 1 mm, field of view = 256 mm, matrix = 256*256).  

 
Image processing and data analysis 

 Data were analyzed in MATLAB 7.0 (http://www.mathworks.com) using the 

statistical parametric mapping software SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). 

Functional images were first converted into Analyze format and unwarped. They were 

then realigned to the first acquired volume in the session, and a mean realigned volume 

was created for each subject. All the realigned volumes for each subject were spatially 

normalized into the Montreal Neurological Institute stereotactic space and spatially 

smoothed with an 8-mm Gaussian kernel. Low-frequency noise was removed with a 

high-pass filter of 208 sec. The instruction blocks were modeled as a condition of no-

interest. A single-subject analysis was carried out in order to evaluate the individual 

contrasts (encoding semantically related vs visual fixation & encoding unrelated vs 

visual fixation) for each subject. A Random Effects (RFX) analysis was then performed 

on the contrast images by calculating a two-way ANOVA with Groups (healthy older 

adults, MCI higher-cognition, MCI lower-cognition) as a between-subjects factor, and 

Conditions (encoding semantically related, encoding unrelated) as a within-subjects 

factor, with non-sphericity correction, replications over subjects, and with correlated 

repeated measures. A conjunction analysis was performed to highlight the common 
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regions of activation in all three groups. A threshold of p < 0.05 family-wise corrected 

(FWE) with 10 contiguous voxels was used for the within-group analyses. For the 

between-group analyses, a more liberal threshold of p < 0.001 (uncorrected, with 5 

continguous voxels) was used in accordance with what has been used most frequently in 

the MCI fMRI literature (10, 34-37). In addition, the p-values associated with a cluster-

level correction were also calculated. As mentioned in the results section, all 

neuroimaging analyses were performed with the performance scores (percentage of 

correctly recognized pairs) of each subject as a covariate. 

 

 In a second step, two ROI images of the hippocampus bilaterally were created 

with WFU Pickatlas (38) and the between-group analyses were performed again on this 

ROI with a less stringent threshold (p<0.005 uncorrected, with 5 continguous voxels). 

Then, the average beta values of the hippocampal voxels that showed group differences 

were extracted with marsbar (39) for each group and they were correlated to the MDRS 

score of the MCI participants. 

 

Results 

Sociodemographic and neuropsychological data 

Clinical data is shown in Table 1. One-way ANOVAs with Group (healthy 

controls, MCI higher-cognition, and MCI lower-cognition) as a between-subject factor 

indicated no age, F(2,37) = 0.15, N.S., or education, F(2,37) = 0.64, N.S., differences. 

Chi square analyses indicated a similar male to female ratio in the three groups (χ 2 = 

0.05, χ 2 = 0.03, χ 2 = 0.16, healthy controls vs MCI higher-cognition, healthy controls vs 
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MCI lower-cognition, and MCI higher-cognition vs MCI lower-cognition respectively, 

all N.S.) 

 

 One-way ANOVAs with Group (healthy controls, MCI higher-cognition, and 

MCI lower-cognition) as a between-subjects factor were also computed on cognitive 

measures (Supplement 1). Unsurprisingly, both MCI subgroups showed lower episodic 

memory capacities than healthy controls, but there was a greater impairment observed in 

the MCI lower-cognition than MCI higher-cognition subgroup (based on Tukey’s post 

hoc). As expected, the MCI lower-cognition group showed a MDRS score significantly 

lower than that of healthy controls. 

  The group of MCI higher-cognition was composed of 5 amnestic single-domain 

MCI and 8 amnestic multiple-domain MCI whereas the MCI lower-cognition group was 

composed of 4 amnestic single-domain  MCI and 9 amnestic multiple-domain  MCI. This 

difference was not significant (χ 2 = 0.17, N.S.).  
Behavioral data 

 The mean percentage of correctly recognized pairs in the fMRI task is illustrated 

in Figure 1 for both conditions and for the three groups. A two–way ANOVA using 

Group (healthy controls, MCI higher-cognition, and MCI lower-cognition) as a between-

subject factor and Condition (semantically related, unrelated) as a within-subject factor 

was computed on the mean percentage of correctly recognized pairs. A significant Group 

effect was observed, F(2,37) = 9.87, p < 0.001, but no Condition effect or Group by 

Condition interaction could be found. Tukey’s post-hoc test revealed that both healthy 

controls and MCI higher-cognition performed significantly better than MCI lower-



 136 

cognition, p < 0.001 for both groups, and that the performances of the healthy controls 

and of the MCI higher-cognition groups were not significantly different (See Supplement 

1 for correlations with neuropsychological data). As a group difference on performance 

was observed, all neuroimaging analyses used performance scores as a covariate.  

 

Functional measures 

Within-group comparisons 

See Supplement 1 for Main Group effect and interaction. 

Semantically related condition. Table 2 shows group activation results for the 

encoding semantically related contrast (Encoding > Visual fixation). The conjunction 

analysis showed that all three groups activated the occipital lobe bilaterally, the left 

inferior and superior parietal lobules and precuneus, and the left prefrontal cortex (Figure 

2a). In addition, the healthy controls and the MCI higher-cognition groups activated the 

medial prefrontal cortex and anterior cingulate cortex bilaterally. The MCI higher-

cognition group additionally activated the right prefrontal cortex and the right inferior 

and superior parietal lobules and precuneus. The activation of the left prefrontal cortex in 

healthy controls and in MCI lower-cognition groups, as opposed to the bilateral 

activation of the prefrontal cortex in MCI higher-cognition group, is illustrated in Figure 

3 (a, b, c).  

 

Semantically unrelated condition. Table 3 shows group activation results for 

encoding unrelated contrast (Encoding > Visual fixation). The conjunction analysis 

showed that the three groups activated the occipital lobe bilaterally, the left inferior and 

superior parietal lobules and precuneus, and the left prefrontal cortex (Figure 2b). In 
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addition, the healthy controls and the MCI higher-cognition groups activated the medial 

prefrontal cortex and anterior cingulate cortex bilaterally. The MCI higher-cognition 

group additionally activated the right prefrontal cortex, the superior parietal lobule and 

precuneus and the right cerebellum. Also, the MCI higher-cognition and the MCI lower-

cognition groups showed additional activations in the right inferior parietal lobule. Figure 

3 (d, e, f) illustrates the activation of the left prefrontal cortex in healthy controls and in 

MCI lower-cognition groups as opposed to the bilateral activation of the prefrontal cortex 

in MCI higher-cognition group. 

 
 

Comparison of MCI subgroups and healthy controls 

 Table 4 shows areas of activation that differ significantly between MCI subgroups 

and healthy controls. When encoding semantically related word pairs, MCI higher-

cognition showed significantly more activation than healthy controls in the right 

dorsolateral prefrontal cortex, in the right ventrolateral prefrontal cortex, and in the right 

premotor and motor areas. In contrast, MCI lower-cognition showed less activation than 

healthy controls in the right occipital lobe and the left inferior parietal lobule, while 

showing more activation in a more dorsal cluster within the left inferior parietal lobule. 

Comparison of the two MCI groups indicated that MCI higher-cognition showed more 

activation than MCI lower-cognition in the left temporal region, in the right precentral 

gyrus, in the right dorsolateral prefrontal cortex, in the right superior parietal lobule, and 

in the left inferior and superior parietal lobules. No regions were significantly more 

activated in MCI lower-cognition than in MCI higher-cognition. When encoding 

unrelated word pairs, MCI higher-cognition showed more activation than healthy 

controls in the right dorsolateral prefrontal cortex. Comparison of the two MCI groups 
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indicated that MCI higher-cognition showed more activation than MCI lower-cognition 

in the left parahippocampal gyrus and in the left superior parietal lobule. Again, no 

regions were significantly more activated in MCI lower-cognition than in MCI higher-

cognition.  

 

The ROI analyses indicated that MCI higher-cognition showed significantly more 

activation than healthy controls in the left hippocampus during the unrelated condition 

(Figure 3). Pearson correlations were calculated between the beta values of all MCI 

individuals and their MDRS scores. A positive correlation was found (r = 0.48, p = 0.01), 

indicating a lower activation of the left hippocampus in MCI persons with lower MDRS 

scores (Figure 4).  

 

Discussion 

Healthy older adults activated a memory network that includes the left superior 

and inferior parietal lobe, the left precuneus, the left lateral prefrontal cortex, the 

occipital lobe bilaterally, the medial prefrontal cortex bilaterally and the anterior 

cingulate gyrus bilaterally. The encoding of semantically related word pairs activated 

additional regions of the ventrolateral prefrontal cortex (BA 45). BA 45 has been 

involved in semantic processing and elaboration (40, 41) and in semantic memory 

encoding of semantically related word pairs (42).  

 

The two MCI subgroups activated a relatively similar network but interesting 

differences were observed. As a preamble, it is of note that MCI higher-cognition 

performed the fMRI task similarly to the healthy controls even though they showed 
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objective memory deficits during the neuropsychological evaluation. This might be due 

to the fact that recognition was used in the fMRI, a condition that is less sensitive to the 

MCI-related memory impairment (43) and more amenable to compensation effects in 

MCI persons. This is supported by the pattern of brain activation found among MCI with 

higher cognition: they showed significantly more activation than healthy controls in a 

number of areas of the right prefrontal cortex (BA 4-6-8-9-45-46) during the two 

encoding conditions and in the left hippocampus during the encoding of unrelated word 

pairs. Increase in brain activation has been typically reported as reflecting either 1) 

compensatory mechanisms that would work against lesion-related deficits in brain 

function and that would improve performance, (6, 44-46) or 2) dedifferentiation or 

nonselective recruitment, which would reflect a generalized non-functional spread of 

activity that is not relevant to the task (47, 48). The fact that the MCI higher-cognition 

subjects in this study obtained performances comparable to those of healthy controls 

suggests that their additional right prefrontal and left hippocampus activations reflect 

compensatory mechanisms. It is interesting to note that most of the additional activations 

of the MCI higher-cognition were found in areas controlateral to the regions activated in 

healthy controls, a pattern that has been also found in compensating healthy older adults 

(see HAROLD model, 49, and 50). Alternatively, the recruitment of the contralateral 

hemisphere could reflect the activation of a degenerated system that is structurally 

different from the one activated in healthy controls but that can serve the same function 

(3, 4, 51). 

 

By contrast, MCI lower-cognition were significantly less accurate on the verbal 

learning fMRI task and failed to show increased prefrontal and hippocampal activation, 
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suggesting an inability to compensate for their deficits. Furthermore, they showed less 

activation than controls (hypoactivation) in posterior regions on both sides. It is 

noteworthy that the fMRI effects with MCI lower-cognition would be augmented if the 

results were not covaried for performance. However, this covariation was necessary in 

order to reduce a confounding effect between disease severity and activations. The 

increase of hippocampal activation in MCI higher-cognition, but not in MCI lower-

cognition, is similar to what has been observed by Celone and colleagues (8) who found 

that the less impaired older patients had more activation in their hippocampi whereas 

more impaired patients had less activations in their hippocampi. Interestingly, many 

memory encoding studies have found hypoactivations in AD (8, 52-55), suggesting that 

MCI persons with more severe cognitive deficits show a functional brain activation 

pattern similar to the one observed in AD. Our results and those of Celone et al, contrast 

with the findings reported by Miller and colleagues (56) who reported larger 

hippocampal activation in MCI with a more rapid decline. These divergent results might 

be due to their use of an easier task and/or inclusion of slightly milder patients.  

 

The compensation breakdown during the MCI stage is also supported by our 

finding of a positive correlation between the left hippocampus activation and the MDRS 

score of MCI individuals, which suggests reduced activation of this structure as the 

disease progresses. Importantly, most of the group differences in activation were located 

in frontal and parietal regions, areas that have been shown to accumulate an increased 

level of amyloid deposition, as measured with PET imaging of Pittsburgh’s Compound-

B, in Alzheimer’s disease patients (57-61). The finding of brain activation in AD-related 
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brain areas is crucial as the model predicts that these functional changes should happen in 

regions that suffer from neural damage. 

 

There are a few limitations that must be discussed. First, our use of a clinical 

measure as an indicator of disease severity may not be ideal. However, because there is 

no gold standard for severity measure, we favoured a measure of global cognitive 

performance as it is closer to the current criteria for identifying MCI and AD than are 

neuroanatomical markers. Moreover, one may criticize our use of a median-split rather 

than regressions strategy. However, we predicted that brain activation would follow a 

nonlinear trajectory, a pattern that is not easily amenable to regression analyses. Another 

limitation is our use of a low-level control task rather than a high-level control task such 

as passive reading. However, this could have overshadowed the interpretation of the 

results, as it has been shown that MCI persons and healthy controls show different brain 

activation patterns during word reading (62). Finally, our use of a blocked design does 

not allow a comparison of correct and incorrect responses. However, blocked designs 

offer maximal detection power (63), which is crucial to highlight differences related to 

severity levels. 

 

To conclude, our study indicates a progression within the MCI phase. 

Compensation and hyperactivation of the right prefrontal cortex and of the left 

hippocampus characterize MCIs with less severe cognitive deficits, while breakdown of 

compensation and hypoactivation of the posterior regions characterize MCIs with more 

severe cognitive deficits. Our fMRI analyses were covaried for performance level and it 

is therefore unlikely that the different brain activation patterns are solely explained by 
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differences in motivation or in attention. Our results suggest that divergent fMRI results 

in the MCI literature might be explained by different levels of severity among the MCI 

patients from the different studies and hence by different compensation capacities. Those 

findings could have tremendous implications for therapeutic efforts because they suggest 

that persons with MCI retain the capacity to develop neural compensation. In addition, 

they have implications for those wishing to use fMRI as a brain surrogate to assess the 

effects of treatment. First, our results allows predictions regarding how treatments 

promoting cognitive or brain compensations should modulate brain activation in MCI. In 

addition, they offer a measure of treatment outcome by connecting the cerebral activation 

pattern to the cognitive impairment severity.  
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Table 1. 

Demographic variables and scores on the neuropsychological tasks for the three groups.  

Controls         MCI           MCI  
                                                                                higher-cognition          lower-cognition                  
                                                 n = 14                       n = 13                          n = 13 

Gender    8F/6M   8F/5M   7F/6M 

Age    67.21 (6.80)  68.62 (10.30)  67.08 (6.29) 

Education   14.57 (3.76)  15.31 (3.83)  13.62 (3.91) 

MDRS    140.33 (2.65)  139.31 (2.81)  129.92 (4.48)b  

MMSE    29.29 (1.14)  28.85 (1.57)  26.46 (1.56) b 

MOCA   27.64 (1.39)      

SMAF       -0.83 (0.83)  -1.33 (1.13) 

Modified Boston Naming Test (/15)   13.92 (1.12)  12.46 (1.71)c  

Coding (WAIS-III)  11.29 (2.30)  9.77 (2.65)  8.92 (2.69) 

Benton Judgment of line orientation   24.85 (3.58)  22.62 (4.11) 

Copy of Rey's Figure (time)          216.69 (105.64)            251.38 (144.08) 

Copy of Rey's Figure (score)    31.35 (3.26)  30.08 (3.48) 

Immediate recall of Rey’s Figure (score)  12.46 (5.19)  8.27 (5.99) 

Delayed recall of Rey’s Figure (score)  13.81 (4.99)  7.34 (5.21)d  

Stroop 3rd plate (time)    29.68 (6.78)  32.57 (8.56) 

Stroop 3rd plate (errors)    0.92 (1.04)  1.54 (2.54) 

RL/RI-16 3rd free recall 12.21 (2.32)  10.15 (2.54)  5.23 (2.59)b,e 

RL/RI-16 delayed free recall 12.71 (2.40)  9.52 (3.86)a              4.85(3.08)b,e       
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Note. a impairment relative to the controls at p < 0.05; b impairment relative to the 
controls at p < 0.001; c impairment relative to the MCI higher-cognition at p < 0.05; d 
impairment relative to the MCI higher-cognition at p < 0.01; e impairment relative to the 
MCI higher-cognition at p < 0.001 
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Table 2 
 
Clusters (>10 voxels) significantly more activated during the encoding of semantically 
related word pairs condition than during the visual fixation condition for healthy 
controls, MCI higher-cognition, and MCI lower-cognitions with cluster size, peak voxel 
MNI coordinates and corresponding t-values. 

 
Activates areas (Brodmann area)      Cluster 
    (p < 0.05, corrected)          Size  x y z t value 
  

Healthy controls: Encoding semantically related > visual fixation 

Left occipital lobe (17, 18, 19) 286 (20020 µl) -15 -90 -6 8.56 

Right occipital lobe (17, 18)  126 (8820 µl)  18 -87 -3 8.34 
 
Left inferior/ superior parietal lob. 49 (3430 µl)  -30 -69 36 6.63 

and precuneus (7, 39, 40) 

Left prefrontal cortex (9, 44, 45, 46) 42 (2940 µl)  -45 15 30 6.39 

Left prefrontal cortex (6, 9)  18 (1260 µl)  -45 0 39 5.99 

Left/Right medial prefrontal cortex   35 (2450 µl)  6 12 48 5.98 
 
& anterior cingulate cortex (6, 8, 24, 32) 
 

MCI higher-cognition: Encoding semantically related > visual fixation 

Left occipital lobe (17, 18, 19) 318 (22260 µl) -15 -90 -9 10.12 
 
Right occipital lobe (17, 18)  190 (13300 µl) 18 -90 -3 8.22 
 
Right inferior/superior parietal lob. 46 (3220 µl)  33 -63 51 7.30 

and precuneus (7, 39) 

Right prefrontal cortex (6, 9, 44, 45) 57 (3990 µl)  42 0 42 7.08 

Left prefrontal cortex (6, 9, 44, 45) 71 (4970 µl)  -39 0 36 6.50 

Left inferior/superior parietal lob. 125 (8750 µl)  -30 -69 42 6.27 

and precuneus (7, 39, 40) 
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Right prefrontal cortex (46)  24 (1680 µl)  45 27 24 6.14 

Left/Right medial prefrontal cortex 33 (2310 µl)  -6 6 51 5.93 
 
and anterior cingulate cortex (8, 24, 32) 
 

MCI lower-cognition: Encoding semantically related > visual fixation 

Left occipital lobe (17, 18, 19) 290 (20300 µl) -18 -90 -9 11.19 

Right occipital lobe (17, 18)  133 (9310 µl)  27 -87 0 8.24 

Left prefrontal cortex (6, 9, 44, 46) 146 (10220 µl) -45 0 39 6.90 

Left inferior parietal lobule (39) 22 (1540 µl)  -30 -69 39 6.10 
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Table 3 
 
Clusters (>10 voxels) significantly more activated during the encoding of unrelated word 
pairs condition than during the visual fixation condition for healthy controls, MCI 
higher-cognition, and MCI lower-cognition with cluster size, peak voxel MNI 
coordinates and corresponding t-values. 

 
Activates areas (Brodmann area)     Cluster 
    (p < 0.05, corrected)        Size  x y z t value 
 

Healthy controls: Encoding unrelated > visual fixation 

Left occipital lobe (17, 18, 19) 190 (13300 µl) -39 -69 -12 7.26 

Right occipital lobe (17, 18)  74 (5180 µl)  18 -87 -3 7.02 

Left inferior/superior parietal lob. 47 (3290 µl)  -27 -72 36 6.37 

and precuneus (7, 39, 40) 

Left prefrontal cortex (9, 44, 46) 42 (2940 µl)  -45 12 30 6.06 
 
Left/Right medial prefrontal cortex 42 (2940 µl)  -6 3 54 5.74 
 
and anterior cingulate cortex (6, 8, 32) 
 
Left prefrontal cortex (6)  12 (840 µl)  -45 0 39 5.70 

MCI higher-cognition: Encoding unrelated > visual fixation 

Left occipitotemporal areas  403 (28210 µl) -15 -90 -9 9.77 

(17, 18, 19, 37) 

Right occipital lobe (17, 18)  170 (11900 µl) 18 -90 -3 8.42 

Left prefrontal cortex (6, 9, 44) 181 (12670 µl) -39 0 36 7.58 

Right inferior/superior parietal lob. 64 (4480 µl)  30 -63 48 7.12 

and precuneus (7, 39) 

Right prefrontal cortex (46)  20 (1400 µl)  45 27 24 6.28 

Left superior parietal lobule  93 (6510 µl)  -30 -54 39 7.12 
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and precuneus (7)  

Left/Right medial prefrontal cortex  49 (3430 µl)  -6 6 51 6.06 
 
and anterior cingulate cortex (6, 8, 32) 
 
Right prefrontal cortex (6, 9, 44) 27 (1890 µl)  42 3 39 5.87 
 
Left inferior prefrontal cortex (46) 15 (1050 µl)  -42 30 21 5.85 
 
Left inferior parietal lobule (40) 10 (700 µl)  -42 -45 42 5.42 

Right cerebellum   33 (2310 µl)  36 -57 -21 5.40 

MCI lower-cognition: Encoding unrelated > visual fixation 

Left occipital lobe (17, 18, 19) 188 (13160 µl) -18 -90 -9 9.60 

Right occipital lobe (17, 18)  98 (6860 µl)  27 -87 0 7.96 

Left prefrontal cortex   227 (15890 µl) -45 3 36 7.70 

(6, 9, 44, 45, 46) 

Left inferior parietal lobule (40) 35 (2450 µl)  -27 -63 39 5.68 

Right inferior parietal lobule (39) 11 (770 µl)  33 -63 36 5.66 
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Table 4. 
 
Clusters (>5 voxels) significantly more activated in healthy controls than in MCI higher- 
and lower-cognition or significantly more activated in MCI higher and lover-cognition 
than in healthy controls, with cluster size, peak voxel MNI coordinates and 
corresponding t-values. 

 
Activates areas (Brodmann area)      Cluster 
    (p < 0.001, uncorrected)         Size  x y z t value 
 

MCI higher-cognition > Healthy controls Encoding semantically related 

Right prefrontal cortex (4, 6, 9) 35 (2450 µl)  42 0 42 4.30 

Right prefrontal cortex (45, 46) 25 (1750 µl)  48 27 21 4.17 

MCI higher-cognition > Healthy controls Encoding unrelated 
 

Right prefrontal cortex (8, 9)  12 (840 µl)  46 6 39 3.78 

Right prefrontal cortex (46)  5 (350 µl)  48 24 21 3.46 

Left hippocampus   5 (350 µl)  -18 -33 -3 2.78* 

MCI higher-cognition > MCI lower-cognition Encoding semantically related 
 

Left transverse temporal gyrus 25 (1750 µl)  -51 -18 15 4.33 
 
(13, 41, 43) 
 
Right superior parietal lobule (7) 8 (560 µl)  33 -60 51 4.21 
 
Left inferior parietal lobule (40) 10 (700 µl)  -30 -51 57 3.87 
 
Right precentral gyrus (6)  20 (1400 µl)  42 -3 45 3.84 
 
Left superior parietal lobule (7) 6 (42 µl)  -24 -66 54 3.64 
 
Right middle frontal gyrus (9) 6 (42 µl)  27 27 36 3.52 

 
MCI higher-cognition > MCI lower-cognition Encoding unrelated 

 
Left parahippocampal gyrus  8 (56 µl)  -21 -42 -15 3.72 
 
Left superior parietal lobule (7) 8 (56 µl)  -15 -72 54 3.62 
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Healthy controls > MCI lower-cognition Encoding semantically related 

Right occipital lobe (18)  17 (1190 µl)  21 -81 12 3.75 
 
Left inferior parietal lobule (40) 14 (980 µl)  -30 -51 57 3.65 
 

MCI lower-cognition> Healthy controls Encoding semantically related 

Left inferior parietal lobule (40) 6 (420 µl)  -54 -57 39 3.80 
 
 
 
*p < 0.005 (ROI analysis) 
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Figure Caption 

 

Figure 1. Scores obtained on the encoding of semantically related word pairs condition 

and on the encoding of unrelated word pairs condition by the Healthy controls, MCI 

higher-cognition, and MCI lower-cognition groups. Note. * p < 0.05. 

Figure 2. Conjunction analysis and cerebral activations (p < 0.05, corrected, cluster size 

> 5) of healthy controls, MCI higher-cognition, and MCI lower-cognition during 

encoding of semantically related word pairs and during encoding of unrelated word pairs 

for healthy controls (a and b, respectively).  

Figure 3. Cerebral activations (p < 0.05, corrected, cluster size > 5) during encoding of 

semantically related word pairs and during encoding of unrelated word pairs for healthy 

controls (a and d, respectively), MCI higher-cognition (b and e, respectively), and MCI 

lower-cognition (c and f, respectively). The Z-coordinate is 110 for all slices. 

Figure 4.  Increased activation (MCI higher-cognition > Healthy controls, p < 0.005 

uncorrected, cluster size > 5) in the MCI higher-cognition than in healthy controls during 

encoding of unrelated word pairs. The Y-coordinate is -34. 

Figure 5. Scatter plot with fit line showing the significant correlations in MCI individuals 

between the scores on the MDRS and their beta values in the left hippocampus during the 

unrelated encoding condition. The dash line represents the mean beta values of the 

healthy controls. 
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Figure 1. Scores obtained on the encoding of semantically related word pairs condition 

and on the encoding of unrelated word pairs condition by the Healthy controls, MCI 

higher-cognition, and MCI lower-cognition groups. Note. * p < 0.05. 
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Figure 2. Conjunction analysis and cerebral activations (p < 0.05, corrected, cluster size 

> 5) of healthy controls, MCI higher-cognition, and MCI lower-cognition during 

encoding of semantically related word pairs and during encoding of unrelated word pairs 

for healthy controls (a and b, respectively).  
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Figure 3. Cerebral activations (p < 0.05, corrected, cluster size > 5) during encoding of 

semantically related word pairs and during encoding of unrelated word pairs for healthy 

controls (a and d, respectively), MCI higher-cognition (b and e, respectively), and MCI 

lower-cognition (c and f, respectively). The Z-coordinate is 110 for all slices. 
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Figure 4.  Increased activation (MCI higher-cognition > Healthy controls, p < 0.005 

uncorrected, cluster size > 5) in the MCI higher-cognition than in healthy controls during 

encoding of unrelated word pairs. The Y-coordinate is -34. 
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Figure 5. Scatter plot with fit line showing the significant correlations in MCI individuals 

between the scores on the MDRS and their beta values in the left hippocampus during the 

unrelated encoding condition. The dash line represents the mean beta values of the 

healthy controls. 
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Abstract 
 
 It is proposed that the prodromal phase of Alzheimer’s disease is associated with 

additional brain activation in key regions involved in memory, reflecting compensatory 

brain plasticity. Very little is however known about the evolution of these compensatory 

mechanisms as the brain acquires more damages. We conducted an fMRI memory study 

measuring brain activation related to old/new (item recognition) and intact/rearranged 

(associative recognition) word-pair recognition paradigms in 26 persons with mild 

cognitive impairment (MCI) and 14 healthy older adults. The Mattis Dementia Rating 

Scale was used to divide persons with MCI into those with higher and lower cognitive 

performances. Results indicated more brain activation in MCIs than in controls but 

disease severity determined which cognitive process was associated with larger 

activation: Persons with less severe MCI showed hyperactivation during associative 

recognition only, whereas persons with more severe MCI showed hyperactivation during 

item recognition only. These hyperactivations were found mainly in brain areas that are 

typically associated with memory retrieval (e.g., bilateral prefrontal cortex and left 

inferior parietal lobule). These findings indicate that neural plasticity occurs during the 

entire MCI phase but that it is associated with different cognitive components: As they 

progress in the disease, individuals with MCI will experience a breakdown in the 

compensatory mechanisms for associative recognition accompanied by emergence of 

compensatory mechanisms for item recognition.  

 

 

Keywords:  Alzheimer’s disease, episodic memory, cognition, magnetic resonance 

imaging 
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An important feature of Alzheimer’s disease (AD) is that the associated brain 

lesions and the resulting cognitive deficits are progressive [1]. Yet and surprisingly, little 

is known regarding the evolution of the functional brain response to these growing 

damages. Most studies assumed that their MCI participants were equivalent in terms of 

disease severity and treated them as a single homogeneous group on this dimension. This 

strategy has been useful in providing a nomenclature of the pattern of cognitive 

impairment those patients experience. However, it does not provide information 

regarding the dynamic of the brain-behavior relationship as the brain looses healthy 

neurons. This might be a major shortcoming because the recent literature on brain 

plasticity suggests that cerebral insult results in substantial plasticity and reorganization 

even in the aging brain [2, 3]. Because lesions are progressive, the AD brain might 

attempt neural compensatory mechanisms, particularly during the first stages of the 

disease while it still has sufficient resources and these might be successful. If true, 

disease severity should have a profound impact on the pattern of functional activation 

associated with different cognitive tasks. The major goal of this study was to provide the 

empirical data to address this important question. 

 

The idea that the functional brain activation changes as the brain acquires more 

pathology in neurodegenerative diseases is contained in a number of integrative models 

of cerebral activation [4-7]. For example, Prvulovic and collaborators [8] have suggested 

that the brain damage characteristic of the earliest phase of AD decreases processing 

efficiency in mildly affected brain areas while preserving their processing capacity. As a 

result, regions that are only mildly impaired should have sufficient neuronal resources to 

allow the implementation of compensatory mechanisms relying on increased neuronal 
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recruitment and brain activation. This would result in the hyperactivation of mildly 

affected brain regions in patients relative to controls when compared using functional 

brain imaging techniques. However, as the disease advances, increasing damage to the 

affected brain regions results in a decrement in processing efficiency and capacity, 

impeding neuronal recruitment and compensatory mechanisms. This inability to 

compensate should be associated with hypoactivation. The pattern of brain functional 

activation in AD may therefore be characterized by a dynamic shift from normal to 

hyper- to hypoactivation as the disease progresses and extends to different brain areas. 

There are also predictions regarding the brain areas that should reflect hyper and 

hypoactivation.  In the early compensation phase, hyperactivation should be found in 

areas that are mildly affected by the disease and that are typically recruited by the 

cognitive task. It is also expected that hyperactivation occur in alternative areas that 

might be used to support compensation [9, 10]. Later in the disease, hypoactivation 

should be found in disease-affected areas that are recruited for the cognitive task. This 

dynamic view of brain activation in neurodegenerative diseases holds considerable 

promise for understanding severity-related activations in AD. 

 

Our predictions are expected to be particularly relevant for brain activations 

related to episodic memory, as it is one of the first cognitive functions to be impaired in 

early AD [11, 12] and the main domain of subjective cognitive complaints [13]. The 

neural substrates of episodic memory have been studied extensively [see 14, for a 

review], but very little is known about how these memory networks are modified as the 

brain acquires new pathologies. Furthermore, and as mentioned above, neural 

compensation depends not only on disease severity, but also on the task demands and 
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characteristics. As different components are impaired at different phases during the 

disease, they should benefit differently from compensation during the course of their 

progression. This is relevant here as different components of episodic memory retrieval 

are dependent on different brain regions and thus impaired in different sequences during 

the disease process. This is the case with recollection, which refers to the retrieval of the 

event/item with its context of encoding, and with familiarity, which refers to the 

recognition that the event/item is experienced but without its contextual details. 

Accordingly, it has been suggested that associative recognition, which is mostly based on 

recollection processes, is altered in persons with mild cognitive impairment (MCI), 

whereas item recognition, which is mostly based on familiarity processes, is impaired 

later, when persons meet criteria for AD [15-17; but see 18]. The model predicts that the 

extent of damage in a process-related network will determine its potential for 

compensation. Compensation will only surface when damage is present but the damage 

need be mild to support compensation. Thus, it can be predicted that persons with less 

severe MCI will show more neural compensation for associative recognition than for 

item recognition because the associative recognition network is vulnerable at this stage 

and lesions are mild enough to allow brain plasticity to occur. By contrast, persons with 

more severe MCI should show neural compensation only for item-recognition because 

impairment to the associative recognition network is too severe to allow compensation 

(Figure 1).  

 

 The predictions were tested using a median split of Mattis Dementia Rating Scale 

(MDRS) scores to divide degrees of MCI. The assumption was that individuals with 

lower scores were in a more advanced phase of the disease and/or experienced a larger 
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degree of brain pathology than persons with higher scores. We tested the effect of 

severity on brain activation and compensation using a word-pair associative recognition 

procedure with two retrieval conditions: an item recognition and an associative 

recognition. We predicted that persons with milder MCI would show neural 

compensation during associative recognition only, whereas those with more severe MCI 

would show neural compensation during item recognition only. In terms of brain 

activation, these neural compensatory mechanisms were predicted to manifest as 

hyperactivation (i.e., more activation than healthy controls) in key regions involved in 

episodic memory retrieval and possibly in remote brain areas that have been identified as 

being involved in memory-related compensatory mechanisms in older adults. For 

instance, prefrontal regions controlateral to the ones usually activated by episodic 

memory tasks have been identified as compensatory structures in “high-performing” 

older adults [19]. Also, the dorsolateral prefrontal cortex is known to increase its 

activation following attentional training in healthy older adults, suggesting an 

involvement of this area in compensatory mechanisms [20]. A shift from hyperactivation 

(see Figure 1) associated with a memory process affected early (associative recognition) 

to hyperactivation associated with a memory process affected later (item recognition) 

would reflect the compensation breakdown for associative retrieval and emergence of 

compensation for item retrieval during the MCI phase. Thus, plastic changes are 

predicted to involve different cognitive processes as brain dysfunction develops in MCI. 

Investigating the relationship between cognitive severity and fMRI brain activation 

pattern in this population will provide crucial new information regarding the dynamic 

nature of the brain/behavior relationship and will allow a better understanding of 
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compensatory mechanisms in age-related cognitive disorders. 

 

Materials and Methods 

Participants 

Forty participants, 26 persons with MCI and 14 healthy older adults, took part in 

this study. Participants with MCI were recruited from memory clinics and met the criteria 

for single- or multiple-domain amnestic MCI [11, 21, 22]: (1) they expressed a concern 

regarding their memory; (2) they performed at least 1.5 standard deviation (SD) below 

the average level of persons of similar age and education on standardized memory tests; 

(3) they showed no global cognitive impairment on the basis of the Mini-Mental State 

Examination (MMSE, adjusted for age and education); and (4) they showed no 

significant impact on daily functions as measured by the SMAF (Functional Autonomy 

Measurement System) functional impairment scale and clinical interview. Persons with 

MCI completed an extensive neuropsychological evaluation that covered episodic 

memory [Rappels Libres/Rappels indicés-16, RL/RI-16, free and cued word recall task, 

23, 24; Batterie d'Efficience Mnésique, BEM, text memory, 25; and 20-min recall of the 

Rey’s Complex Figure, 26], executive functions [third plate of Stroop-Victoria, 27; and 

copy of Rey’s Complex Figure, 26], visuospatial processing [Benton Judgment of line 

orientation, 28], speed of information processing [Coding of the WAIS-III, 29], language 

[Boston Naming Test, 30], and global cognitive functions [Mattis Dementia Rating 

Scale, MDRS, 31; and Mini-Mental State Examination, MMSE, 32]. Participants with 

MCI also underwent an extensive medical, neurological, and neuroradiological 

examination to exclude the presence of any other significant systemic, neurological, or 

psychiatric condition that could explain their cognitive difficulties.  
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A median split of the MDRS [31] scores was used to separate participants with 

MCI into two groups: those with a higher level of overall cognitive functioning (MCI 

higher-cognition, n = 13) and those with a lower level of overall cognitive functioning 

(MCI lower-cognition, n = 13). The MDRS was preferred over the MMSE [32] as a 

measure of severity because participants with MCI show less of a ceiling effect on this 

scale; thus, it has the variability necessary to use a median split. In addition, the MDRS 

may be more sensitive to the milder cognitive impairments of those with MCI, as it 

investigates a broader range of cognitive functions. 

 

Participants with MCI were followed over a two-year period after their 

participation in this study. At the two-year follow-up, no one in the MCI higher-

cognition group met criteria for AD. Of the same group, seven had remained stable, and 

six showed a cognitive decline insufficient to meet criteria for AD. Over the same period, 

four in the MCI lower-cognition group remained stable, one showed cognitive decline 

insufficient for AD, and eight were diagnosed with AD. Patients with AD were 

diagnosed according to the NINCDS-ADRDA [33] and DSM-IV criteria [34]. 

 

Healthy older adults also completed an abbreviated clinical and 

neuropsychological assessment involving measures of global cognitive functions 

(MDRS,3 MMSE), speed of information processing [Coding subtest of the WAIS-III, 

29], and episodic memory [a cued and free word recall task: RL/RI-16, 23] to ensure they 

did not suffer from cognitive deficits. The study was approved by an ethics committee: le 

                                                 
3 Five healthy controls did not undergo the MDRS. 
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Comité mixte d’éthique de la recherche du Regroupement Neuroimagerie/Québec 

(CMER-RNQ). 

 

Data acquisition 

Magnetic resonance imaging was performed using a SIEMENS 3T Magnetom 

TRIO System (Erlangen, Germany) at the Unité de Neuroimagerie Fonctionnelle (UNF) 

of the Institut Universitaire de Gériatrie de Montréal. For high anatomical resolution, a 

sagittal T1-weighted three-dimensional MPRAGE sequence was obtained at the end of 

the two runs (TR/TE = 1950/3.93 ms, flip angle = 15 °; 176 slices, voxel 

size = 1 × 1 × 1 mm, field of view = 256 mm, matrix = 256 × 256). Functional MR 

images were acquired using gradient-echo echo-planar imaging sequences (GE-EPI) 

sensitive to blood oxygen level-dependent (BOLD) contrast (TR/TE = 2000/30 ms, flip 

angle= 90 °; 31 interleaved slices, voxel size = 3.75 × 3.75 × 5 mm with a gap of 1 mm, 

field of view = 240 mm, matrix = 64 × 64).  

 
Task procedure 

Participants were first asked to memorize 16 lists of nine concrete word pairs 

consisting of one or two syllables. Half of the word pairs were semantically related pairs 

of words (e.g., butter–cheese), and the other half were semantically unrelated pairs (e.g., 

tire–game). Related pairs were created by selecting an item and one of its associates from 

French lists of semantic associates [35, 36]. Only the second, third, or fourth associates 

of selected words were chosen to avoid participants guessing and to avoid the encoding 

of the two words as a single concept. Lists of unrelated word pairs were created by 

selecting pairs of words with no semantic relation and by ensuring that no words were 
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semantically associated with other items in the list. All 16 lists were matched in terms of 

word frequency and word length.  

 

Recognition was then tested by asking participants to perform a yes/no 

recognition judgment. Two recognition conditions were tested, each with eight lists of 

word pairs. In the old/new judgment condition, each of the lists was composed of four old 

pairs of words (the same pair presented during the encoding phase; e.g., tire–game, from 

the above example) and four new pairs of words (one word presented during the 

encoding phase and one completely new word; e.g., cheese–milk from the above 

example) arranged in random order. Of the eight word pairs, half were presented in the 

same format as during the study phase (e.g., tire–game), and the other half were 

presented in a reversed format (e.g., game–tire) to ensure participants did not learn only 

the second word to achieve the task. In the intact/rearranged judgment condition, each of 

the lists was composed of four intact pairs of words (the same pair presented during the 

encoding phase; e.g., butter–cheese from the above example) and four rearranged pairs of 

words (two words presented during the encoding phase but belonging to two different 

pairs; e.g., butter–tire from the above example) arranged in random order. Again, half of 

the word pairs were presented in the same format as during the encoding phase (e.g., 

butter–cheese), and the other half were presented in a reversed format (e.g., cheese–

butter). To prevent participants from retrieving items from their short-term memory, at 

least four word pairs separated the presentation of a pair in the study phase from its 

presentation in the recognition phase. All lists were equivalent in terms of word 

frequency and semantic relatedness. 
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fMRI procedure 

The task was programmed on E-prime, and stimuli were visually presented and 

mirror projected. Goggles appropriate for MRI scanning were used to correct the vision 

of the subjects when needed. An fMRI block design paradigm was preferred over an 

event-related one to maximize detection power [37] and to be more suitable for patients 

with memory difficulties, as the conditions alternate less frequently in a block design. 

Subjects performed the memory task in two runs, each composed of four alternating 

series of visual fixation (20 s; fixation of a crosshair), encoding (40 s; memorization of 

nine visually presented pairs of words per block), and recognition (44 s; recognition 

judgment of eight visually presented pairs of words per block). During the study phase, 

word pairs were visually presented at a rate of 4 s per pair and mirror projected to 

participants while they were in the fMRI scanner. Note that brain activation was recorded 

during the study phase and that data are being reported in a separate paper [38]. It was 

found that MCI higher-cognition showed hyperactivations in prefrontal areas whereas the 

MCI lower-cognition did not show these hyperactivations and even showed 

hypoactivations in posterior regions. During the recognition phase, word pairs were 

visually presented at a rate of 5 s per pair. Each recognition block consisted of either only 

old/new judgment or only intact/rearranged judgment. In addition, brief instructions (4 s) 

were presented to subjects, prior to each recognition block, telling them to indicate on a 

two-button response box whether the complete pair had been seen in the study phase. 

Emphasis was placed on the fact that a positive answer should be provided when the two 

words were seen as a pair. These instructions were the same for the two recognition 

conditions. Thus, a “yes” response would be provided for old (in the old/new condition) 

and intact (in the intact/rearranged condition) pairs, and a “no” response would be 



 178 

provided for new (in the old/new condition) and rearranged (in the intact/rearranged 

condition) pairs. The order of presentation of the old/new lists and the intact/rearranged 

lists was randomized and fixed across participants. One week prior to scanning, 

participants were familiarized with the fMRI procedure and the tasks, using a simulator 

that mimics the entire fMRI environment. 

 

Image processing and data analysis 

 Before statistical analysis, functional images were converted into Analyze 

format and unwarped. Functional volumes from each subject were then realigned to the 

first acquired volume in the session, and a mean realigned volume was created for each 

subject. All the realigned volumes from each subject were spatially normalized into 

Montreal Neurological Institute (MNI) stereotactic space and spatially smoothed with an 

8-mm Gaussian kernel. Low-frequency noise was removed with a high-pass filter of 

208 s. The instruction blocks were modeled as a condition of no interest. A single-subject 

analysis was carried out to evaluate the individual contrasts (old/new judgment vs. visual 

fixation, intact/rearranged judgment vs. visual fixation) for each subject. A random effect 

(RFX) analysis was then performed on the contrast images with a two-way analysis of 

covariance (ANCOVA) using Group (healthy older adults, MCI higher-cognition, MCI 

lower-cognition) as a between-subject factor and Condition (old/new judgment, 

intact/rearranged judgment) as a within-subject factor, with non-sphericity correction, 

replications over subjects, and correlated repeated measures. Also, the mean performance 

(%) of each subject on the task was used as a covariate (see below). T-tests were thus 

performed on the contrast of each task (Recognition old/new > visual fixation & 

Recognition intact/rearranged > visual fixation) for each group individually (within-
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group analyses) as well as between the groups (between-group analyses). In addition, t-

tests were performed between the old/new condition and the intact/rearranged condition 

for the healthy control group. Within-group analyses were performed using a threshold of 

p < .05, family-wise corrected (FWE) with 10 contiguous voxels. Between-group 

analyses were performed with a more liberal threshold of p < .001 (uncorrected, with 5 

contiguous voxels) in accordance with what has been used most frequently in the MCI 

fMRI literature [e.g., 39-42]. All preprocessing and statistical analyses were performed in 

MATLAB 7.0 (http://www.mathworks.com) using the statistical parametric mapping 

software SPM5 (http://www.fil.ion.ucl.ac.uk/spm/).  

 

Results 

Sociodemographic and clinical data 
Table 1 shows the sociodemographic data and the results of the 

neuropsychological evaluation for all three groups. The MDRS score of MCI participants 

(ranged from 117 to 144, mean = 134.61, SD = 6.03, skewness = -.81) was used to assign 

each MCI person to either the MCI higher- or lower-cognition groups. One-way 

ANOVAs with Group (healthy controls, MCI higher-cognition, MCI lower-cognition) as 

a between-subject factor indicated the groups did not differ in age (F(2,37) = 0.15, NS) or 

education (F(2,37) = 0.64, NS). In addition, chi-square analyses indicated a similar male-

to-female ratio in the three groups (χ2 = 0.05, χ2 = 0.03 and χ2 = 0.16 for the comparison 

between healthy controls and MCI higher-cognition, healthy controls and MCI lower-

cognition, and MCI higher-cognition and MCI lower-cognition, respectively, all NS). 

 

One-way ANOVAs with Group (healthy controls, MCI higher-cognition, MCI 

lower-cognition) as a between-subject factor were also computed on cognitive measures 
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followed by Tukey’s post hoc test to determine the source of the effect (Table 1). As 

expected, both MCI groups showed lower episodic memory capacities than healthy 

controls (i.e. lower score on the RL/RI-16 test for both groups and lower score on the 

delayed recall of Rey’s Figure for the MCI lower-cognition group), and MCI lower-

cognition showed lower episodic memory performances than MCI higher-cognition.  

 

The number of persons meeting criteria for single- or multiple-domain amnestic 

MCI was also compared across groups. The MCI higher-cognition group comprised five 

persons with single-domain amnestic MCI and eight persons with multiple-domain 

amnestic MCI, whereas the MCI lower-cognition group comprised four persons with 

single-domain amnestic MCI and nine with multiple-domain amnestic MCI. These 

numbers were equivalent (χ2 = 0.17, NS). 

 
Behavioral data 
 The behavioral data obtained from the recognition test are illustrated in Figure 2. 

A two-way ANOVA with Group (healthy controls, MCI higher-cognition, MCI lower-

cognition) as a between-subject factor and Condition (old/new judgment, 

intact/rearranged judgment) as a within-subject factor was computed using the mean 

percentage of correctly recognized pairs as a dependent variable. A Group effect 

(F(2,37) = 9.87, p < .001) and a Condition effect (F(1,37) = 79.35, p < .001) were observed. 

Tukey’s post hoc test showed that healthy controls and persons in the MCI higher-

cognition group recognized more word pairs than those in the MCI lower-cognition 

group (p < .001 for both groups), but that the healthy control and MCI higher-cognition 

groups did not differ from each other. In addition, the Condition effect was due to all 

three groups performing worse on the intact/rearranged judgment condition than on the 
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old/new judgment condition. No Group-by-Condition interaction was found. Because 

both Group and Condition showed a significant effect on performance level, all fMRI 

analyses were computed using individual performance scores as a covariate.  All 

analyses were also performed without the covariate. This resulted in a slight decrease in 

the amount of regions that showed significant activation. However, it did not change the 

general pattern of results. 

  Hit rates, false alarms and an index of sensitivity (ď = Z(hit rates) – Z(false 

alarms) were also computed. Healthy controls showed a mean hit rate of 0.84 (SD = 

0.23), a mean false alarm rate of 0.09 (SD = 0.12) and a d’ of 3.34 (SD = 1.47) for item 

recognition. MCI higher-cognition showed a mean hit rate of 0.78 (SD = 0.26), a mean 

false alarm rate of 0.20 (SD = 0.22) and a d’ of 2.42 (SD = 1.09) for item recognition. 

MCI lower-cognition showed a mean hit rate of 0.64 (SD = 0.28), a mean false alarm rate 

of 0.43 (SD = 0.23) and a d’ of 0.82 (SD = 0.87) for item recognition. For the associative 

recognition task, healthy controls showed a mean hit rate of 0.79 (SD = 0.21), a mean 

false alarm rate of 0.38 (SD = 0.21) and a d’ of 1.33 (SD = 0.77). MCI higher-cognition 

showed a mean hit rate of 0.77 (SD = 0.25), a mean false alarm rate of 0.42 (SD = 0.29) 

and a d’ of 1.28 (SD = 1.39) for associative recognition. MCI lower-cognition showed a 

mean hit rate of 0.58 (SD = 0.31), a mean false alarm rate of 0.55 (SD = 0.36) and a d’ of 

0.10 (SD = 0.97) for associative recognition.  

 
 
  
fMRI data 

Within-group comparisons  
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 Item recognition. The areas of activation for the old/new judgment condition are 

presented in Table 2 and Figure 3 for the three groups separately. In this condition, all 

groups showed activation in the left inferior and superior parietal lobules and the 

precuneus (BA 7, 39, and/or 40), the occipital lobe on both sides (BA 17, 18, and/or 19), 

the right medial prefrontal cortex and cingulate cortex (BA 8, 32) and the left Broca’s 

area (BA 44). In addition to these common areas of activation, healthy controls showed 

activation in the right cerebellum and the left dorsolateral prefrontal cortex (BA 46). In 

the MCI higher-cognition group, the condition was associated with additional areas of 

activation in the right inferior parietal lobule (BA 39, 40), the left medial prefrontal and 

anterior cingulate cortex (BA 8, 24, and/or 32), the left premotor area (BA 6), the left 

precentral and postcentral gyri (BA 2, 3, and/or 4), the left ventrolateral prefrontal cortex 

(BA 45, 47), the right ventrolateral prefrontal cortex (44, 45, 47), and the right 

dorsolateral prefrontal cortex (BA 46). In addition to the common areas of activation 

mentioned above, the MCI lower-cognition group showed areas of activation in the right 

cerebellum, the inferior parietal lobule bilaterally (BA 39, 40), the medial prefrontal and 

anterior cingulate cortex bilaterally (BA 8, 24, and/or 32), the premotor area bilaterally 

(BA 6), the left precentral and postcentral gyri (BA 2, 3, and/or 4), the ventrolateral 

prefrontal cortex bilaterally (BA 44, 45, 47 and the left dorsolateral prefrontal cortex (BA 

46).  

 

Associative recognition. The areas of activation for the intact/rearranged 

judgment condition are presented in Table 3 and Figure 3 for the three groups separately. 

This condition was associated with activation in the left occipital lobe (BA 17, 18, and/or 

19) and the right medial prefrontal cortex and cingulate cortex (BA 8, 32) in all three 
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groups. Healthy controls also showed areas of activation in the left and right inferior and 

superior parietal lobules and the precuneus (BA 7, 39, and/or 40), the left Broca’s area 

(BA 44), the left premotor area (BA 6), and the left medial prefrontal cortex and 

cingulate cortex (BA 8, 32). The MCI higher-cognition group also showed areas of 

activation in the left and right inferior and superior parietal lobules and the precuneus 

(BA 7, 39, and/or 40), the left Broca’s area (BA 44), the left premotor area (BA 6), the 

left and right dorsolateral prefrontal cortices (BA 9, 46), the right ventrolateral prefrontal 

cortex (BA 44, 45, 47), the left ventrolateral prefrontal cortex (BA 45, 47), the left motor 

postcentral and precentral gyri (BA 3, 4), and the right cerebellum. The MCI lower-

cognition group did not recruit additional regions during this condition.  

 
Between-group comparisons 

 Between-group comparisons were performed to directly compare the differences 

in activation as a function of the recognition condition between the two MCI groups and 

the healthy control group. The data is reported in Table 4 and Figure 4. 

 

MCI higher-cognition vs. healthy controls. In the intact/rearranged condition 

(associative recognition), analyses indicated a number of brain areas with more activation 

in persons in the MCI higher-cognition group than in healthy controls. More activation 

was found in the left inferior parietal lobule (BA 40), the right temporal lobe (BA 37, 

41), the left and right dorsolateral prefrontal cortices (BA 9), and the right ventrolateral 

prefrontal cortex (BA 44). During the old/new condition (item recognition), no area 

showed significantly more activation in the MCI higher-cognition group than in healthy 

controls. The only significant differences associated with item-recognition between these 

two groups were found in the right posterior cingulate cortex and parahippocampal 
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gyrus, where more activation was found in healthy controls than in persons in the MCI 

higher-cognition group. Areas of hyperactivation were thus found exclusively for 

associative recognition in MCI higher-cognition. 

 

MCI lower-cognition vs. healthy controls. In the intact/rearranged condition 

(associative recognition), no areas showed more activation in the MCI lower-cognition 

group than in healthy controls. By contrast, the old/new condition (item recognition) was 

associated with more activation in MCI lower-cognition than in healthy controls in many 

areas including the left dorsolateral prefrontal cortex (BA 46), the medial prefrontal 

cortex bilaterally (BA 8), the left inferior parietal lobule (BA 40), and the anterior 

cingulate cortex bilaterally (BA 24, 32). Areas of hyperactivation were thus found 

exclusively for item recognition in the MCI lower-cognition group. 

 

MCI higher-cognition vs. MCI lower-cognition. The only significant difference of 

activation between the two MCI groups was observed in the precuneus and superior 

parietal lobule (BA 7) bilaterally where MCI higher-cognition had more activation than 

MCI lower-cognition during the intact/rearranged condition. No other differences were 

found. 

 

Between-task comparison 

 Between-task comparisons were performed in healthy controls to highlight the 

regions that are specifically more activated by each task. The data is reported in Table 5. 

Healthy controls showed more activation during the old/new condition than in the 

intact/rearranged condition in the medial prefrontal cortex bilaterally (BA 10), in the 
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parahippocampal gyri bilaterally, and in the right middle and superior temporal gyrus 

(BA 19, 39). In contrast, they showed more activation during the intact/rearranged 

condition than in the old/new condition in the left basal ganglia and in the right anterior 

cingulate cortex (BA 24). 

 

Discussion 

This paper assessed the effect of disease severity on the dynamic of compensatory 

brain plasticity in individuals with MCI. Scores on the MDRS reflected the degree of 

participants’ global cognitive functioning, whereas an old/new judgment and an 

intact/rearranged judgment measured item and associative recognition, respectively. Our 

model predicts that disease severity would have a different effect on brain activation 

depending on the cognitive process: Individuals with less severe MCI were expected to 

show neural compensation for associative recognition only, whereas those with more 

severe MCI were expected to show neural compensation for item recognition only. 

Results support this hypothesis (Figure 4): during the milder stage, MCI persons recruit 

additional brain areas during demanding recognition condition (i.e., associative 

recognition) while showing fairly similar brain activations to that of healthy controls on a 

less demanding condition (i.e. item recognition). This indicates that the brain areas 

underlying item recognition are not yet significantly affected by the disease. However, as 

MCI individuals progress in the disease, they experience a shift in their brain activation 

pattern: Recruitment of the compensation network for associative recognition is 

dismissed, but a network of brain areas, similar to the compensatory network used by the 

MCI higher-cognition group during associative recognition, is hyperactivated during item 

recognition.  We therefore found a shift in hyperactivation (see Figure 1) from 
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associative to item recognition as a function of disease severity, suggesting a 

compensation breakdown for associative retrieval and emergence of compensatory 

mechanisms for item retrieval.  

 

This shift in hyperactivation is in agreement with the neurodegenerative fMRI 

model proposed by Prvulovic and collaborators [8] and with recent data that show a 

similar compensation breakdown in individuals with more severe MCI for the encoding 

of information [43].  As predicted, many of the regions that showed hyperactivation in 

the two MCI subgroups were located in key regions for episodic memory retrieval (i.e., 

the right dorsolateral and ventrolateral prefrontal cortices and the left inferior parietal 

lobule) [see 14]. This larger recruitment in regions specialized for memory processes 

probably reflects the fact that brain regions affected by the disease need to increase their 

activation to optimize performance. However, we also observed additional activations in 

regions that are usually not reported as being involved in those verbal episodic tasks. 

Those additional zones of activations were located in regions contralateral to areas 

typically activated in verbal episodic memory tasks (i.e., the left dorsolateral prefrontal 

cortex, the right temporal lobe). These new activations may represent the recruitment of 

additional compensatory networks, which is also reflected by a direct comparison 

between the two MCI subgroups that has revealed that MCI higher-cognition show more 

activation in posterior regions than MCI lower-cognition during associative recognition. 

These areas have been shown to accumulate an increased level of amyloid deposition, as 

measured with positron emission tomography with Pittsburgh’s Compound B, in AD 

patients [44, 45].  
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It must be noted that our fMRI analyses were covaried for performance level 

since the performances of the MCI lower-cognition group were lower than the ones of 

the two other groups. Thus, group differences in activation cannot be related to mere 

differences in degrees of effort on the task. This is an important issue, as it has been 

shown that performance level explains most of the differences in brain activation 

between healthy controls and patients with AD [46]. Importantly, a similar pattern of 

results was found when repeating our analyses without covarying for performance, 

suggesting that our findings reflect an intrinsic difference in the neural networks of our 

participants rather than a simple effect of performances on brain activation.   

 

Behavioral results indicate impaired associative recognition and item recognition 

in persons in the MCI-lower cognition group, but preserved performance in those in the 

MCI higher-cognition group. Although many studies have found intact item or 

familiarity-based recognition in MCI [15-17], the contrary has been observed in one 

study [18]. Our results point to a possible explanation for the divergent findings in the 

literature: The different levels of severity in the MCI groups may explain the different 

levels of impairment on the associative and item recognition tasks. It may also appear 

surprising that the MCI higher-cognition group performed at the same level as the 

healthy controls on the experimental tasks even though they met criteria for MCI and 

were thus impaired on the more classical neuropsychological tests such as the free and 

cued word recall task and text memory task. This can probably be explained by the fact 

that the clinical neuropsychological evaluation of memory relied on free recall, whereas 

that of experimental tasks used recognition. The current literature is rather controversial 

regarding this issue, but some studies have reported a preservation of recognition 
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memory in MCI [47-50]. Another possible explanation is disease severity, as those 

studies reporting preserved recognition relied on MCI participants who were slightly less 

impaired (mean MMSE of 27.5 and 27.0, respectively) than those reporting impaired 

recognition (mean MMSE of 26.1 and 26.4, respectively). Accordingly, in this study, 

individuals with less severe MCI (mean MMSE of 28.85) showed preserved recognition, 

whereas those with more severe MCI (mean MMSE of 26.46) showed impaired 

recognition.  

 

Another finding relates to the activation of the prefrontal cortex, which tended to 

be more bilaterally activated in both MCI groups than in healthy controls. MCI higher-

cognition showed bilateral activation of many prefrontal regions during both the old/new 

condition (BA 6, 44, 45, 47) and the intact/rearranged condition (BA 9, 44, 46), whereas 

the MCI lower-cognition showed bilateral activation during the old/new condition only 

(BA 44, 45, 47). This bilateral activation is in agreement with recent models that 

highlight the importance of interhemispheric interaction in neural compensatory 

mechanisms [9, 10]. Similarly, the left inferior parietal lobule (BA 40) appears to be a 

key component of the compensatory network used during MCI, as it showed 

hyperactivation in the MCI higher-cognition group during the intact/rearranged condition 

and in the MCI lower-cognition group during the old/new condition. The involvement of 

the left lateral parietal lobe in memory retrieval is in line with data reported in previous 

studies [see 51, for a review] and is often interpreted as reflecting attentional processes 

directed at internal mnemonic representations. Thus, it is plausible that one of the 

compensatory mechanisms used by individuals with MCI involves allocating increased 

attentional resources to the memory task. 
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The present study does have some limitations. First, the design was cross-

sectional and therefore did not directly measure the MCI-to-AD continuum. A related 

limitation concerns the possibility that some of the individuals with MCI were not in a 

prodromal phase of AD. Note, however, that 58% of the individuals with MCI in our 

study either showed cognitive decline or progressed to AD after only two years, 

suggesting that a large proportion of those participants may be on a pathological 

pathway. A third potential limitation is our use of a block fMRI design rather than an 

event-related design. One pitfall of the block design is that it does not allow a 

comparison between correct and incorrect responses. However, this design is more 

suitable for patients with memory difficulties, as the conditions alternate less frequently, 

and offers maximal detection power [37]. The power issue was particularly critical in our 

context, as we were looking for differences related to severity levels likely to yield more 

modest effect sizes than when comparing a clinical with a control group. Furthermore, 

blocked design might allow us to interpret our tasks as reflecting the “retrieval mode” in 

which participants are engaged in during the recognition phase [52-54]. Also, the use of 

a clinical measure (i.e., MDRS) as an indicator of disease severity may not be ideal. We 

favored a measure of global cognitive performance because it is closer to the current 

criteria for identifying MCI and AD than are neuroanatomical markers. It is noteworthy 

that the MDRS scores for individuals with MCI correlated strongly with their 

performances on the RL/RI-16 3rd free recall (r = 0.68, p < .001) and delayed free recall 

(r = 0.71, p < .001) tasks. This supports our contention that using this score as a measure 

of disease severity is sound.  
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Overall, the findings of this study point toward the presence of neural 

compensation and brain plasticity throughout the entire phase of MCI. However, this 

phase does feature a change in the pattern of neural compensation (Figure 4). At first, 

persons with MCI recruit a large network of additional brain areas during the most 

demanding recognition condition (i.e., associative recognition), and this is accompanied 

by a normal performance level. During this early phase, item recognition is unimpaired 

behaviorally and is associated with fairly similar brain activation to that of healthy 

controls, probably reflecting that the brain areas underlying item recognition are not yet 

affected by the disease. Therefore, item recognition can be judged to be truly unimpaired. 

As individuals with MCI progress in the disease, they experience a shift in their pattern 

of neural compensation: Recruitment of the compensation network for associative 

recognition is dismissed, but a network of brain areas, similar to the compensatory 

network used by the MCI higher-cognition group during associative recognition, is 

hyperactivated while completing a task that taps item recognition, a less demanding 

cognitive process. This shift in hyperactivation reveals a breakdown in the compensatory 

mechanisms for associative retrieval during the MCI phase, with gradual emergence of 

compensation for item retrieval. 
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Table 1. 

Demographic variables and scores (SD) on the neuropsychological tasks for the groups  

Healthy         MCI           MCI  
                                                controls                   higher-cognition          lower-cognition
                   
                                                n = 14                       n = 13                          n = 13 

Gender    8F/6M   8F/5M   7F/6M 

Age    67.21 (6.80)  68.62 (10.30)  67.08 (6.29) 

Education   14.57 (3.76)  15.31 (3.83)  13.62 (3.91) 

MDRS    140.33 (2.65)  139.31 (2.81)  129.92 (4.48)b  

MMSE    29.29 (1.14)  28.85 (1.57)  26.46 (1.56)b 

SMAF       -0.83 (0.83)  -1.33 (1.13) 

Boston Naming Test     13.92 (1.12)  12.46 (1.71)c 

Coding (WAIS-III)  11.29 (2.30)  9.77 (2.65)  8.92 (2.69) 

Benton Judgment of line orientation   24.85 (3.58)  22.62 (4.11) 

Copy of Rey’s Figure (time)              216.69 (105.64)          251.38 (144.08) 

Copy of Rey’s Figure (score)    31.35 (3.26)  30.08 (3.48) 

Immediate recall of Rey’s Figure (score)  12.46 (5.19)  8.27 (5.99) 

Delayed recall of Rey’s Figure (score)  13.81 (4.99)  7.34 (5.21)d  

Stroop 3rd plate (time)    29.68 (6.78)  32.57 (8.56) 

Stroop 3rd plate (errors)    0.92 (1.04)  1.54 (2.54) 

RL/RI-16 3rd free recall 12.21 (2.32)  10.15 (2.54)  5.23 (2.59)b,e 

RL/RI-16 delayed free recall 12.71 (2.40)  9.52 (3.86)a  4.85 (3.08)b,e 

a impairment relative to controls at p < .05; b impairment relative to controls at p < .001; c 
impairment relative to MCI higher-cognition at p < .05; d impairment relative to MCI 
higher-cognition at p < .01; e impairment relative to MCI higher-cognition at p < .001 
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Table 2. 
 
Clusters (> 10 voxels) significantly more activated during the recognition of old/new 
word pairs condition than during the visual fixation condition for Healthy controls, MCI 
higher-cognition, and MCI lower-cognition, with cluster size, peak voxel MNI 
coordinates, and corresponding t-values. 

 
Activated areas (Brodmann area)          Cluster 
    (p < .05, corrected)               size  x y z t-value 
  

Healthy controls: Recognition old/new > visual fixation 

Left occipital lobe (17, 18, 19)  193  -30 -75 -18 10.01 
 
Right occipital lobe (17, 18)   117  15 -87 -3 8.63 
 
Left inferior and superior parietal lobules 49  -30 -66 39 6.87 

and precuneus (7, 39, 40) 

Right medial prefrontal cortex and  45  6 15 51 6.77 
 
anterior cingulate cortex (8, 32) 
 
Right cerebellum    59  21 -54 -21 6.36 
 
Left prefrontal cortex (44, 46)  15  -45 18 30 5.49 
 

MCI higher-cognition: Recognition old/new > visual fixation 

Left occipital lobe (18, 19)   128  -30 -75 -18 10.58 
 
Left/Right medial prefrontal cortex and 90  6 21 42 8.28 
 
anterior cingulate cortex (8, 32) 
 
Left inferior and superior parietal lobules 90  -27 -63 42 7.66 

and precuneus (7, 39) 

Right inferior and superior parietal lobules 81  33 -66 45 7.19 

and precuneus (7, 39, 40) 

Right dorsolateral prefrontal cortex (46) 42  45 27 27 7.15 
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Right occipital lobe (17)   43  18 -90 -3 6.84 

Right prefrontal cortex (6, 44, 45, 47) 33  33 27 0 6.69 

Left prefrontal cortex (6, 44, 45, 47)  47  -39 0 33 5.98 

Left precentral and postcentral gyri (3, 4) 17  -36 -30 54 5.71 

MCI lower-cognition: Recognition old/new > visual fixation 

Left occipital lobe (17, 18, 19)  314  -18 -90 -9 10.14 
 
Right occipital lobe (17, 18)   153  18 -90 -6 9.42 
 
Left/Right superior/medial prefrontal cortex 252  6 24 42 8.55 
 
and anterior cingulate cortex (6, 8, 24, 32) 
 
Left precentral and postcentral gyri and  179  -36 -60 39 7.10 
 
left inferior parietal lobule (2, 3, 4, 39, 40) 
 
Left dorsolateral prefrontal cortex (46) 35  -42 24 27 7.02 
 
Left prefrontal cortex (6, 44, 45)  70  -45 6 36 6.91 
 
Right cerebellum    59  21 -54 -21 6.69 
 
Right inferior parietal lobule (39, 40) 36  33 -63 36 6.44 
 
Left ventrolateral prefrontal cortex (47) 21  -33 24 0 5.99 
 
Right cerebellum    10  3 -63 -21 5.73 
 
Right ventrolateral prefrontal (44, 45, 47) 17  36 24 3 5.65 
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Table 3. 
 
Clusters (> 10 voxels) significantly more activated during the encoding of 
intact/rearranged word pairs condition than during the visual fixation condition for 
Healthy controls, MCI higher-cognition, and MCI lower-cognition, with cluster size, 
peak voxel MNI coordinates, and corresponding t-values. 

 
Activated areas (Brodmann area)        Cluster 
    (p < .05, corrected)             size  x y z t-value 
 

Healthy controls: Recognition intact/rearranged > visual fixation 

Left occipital lobe (18, 19), left cerebellum 87  -30 -75 -18 8.13 
 
Left/Right medial prefrontal cortex and 84  6 15 48 7.30 
 
anterior cingulate cortex (8, 32) 
 
Left prefrontal cortex (6, 44)   18  -45 0 36 6.49 
 
Left inferior and superior parietal lobules 19  -30 -66 39 6.11 

and precuneus (7, 39) 

MCI higher-cognition: Recognition intact/rearranged > visual fixation 

Left inferior and superior parietal lobules 215  -27 -63 45 8.27 

and precuneus (7, 39, 40) 

Right inferior and superior parietal lobules 133  33 -66 42 7.76 

and precuneus (7, 39, 40) 

Left occipital lobe (17, 18, 19)  96  -27 -75 -15 7.68 

Right occipital lobe (17, 18)   68  18 -90 -3 7.39 

Left prefrontal cortex (6, 9, 44)  73  -42 12 33 7.32 

Right medial prefrontal & premotor area 44  6 21 42 7.01 
 
and anterior cingulate cortex (6, 8, 32) 
 
Right dorsolateral prefrontal cortex (9, 46) 39  48 15 27 6.78 
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Left dorsolateral prefrontal cortex (46) 11  -45 27 24 6.48 
 
Right ventrolateral prefrontal (44, 45, 47) 20  33 27 -3 6.26 
 
Right cerebellum    22  21 -54 -21 6.18 
 
Left precentral and postcentral gyri  59  -39 -15 54 6.11 
 
and premotor area (3, 4, 6) 
 
Left ventrolateral prefrontal cortex (45, 47) 17  -30 21 6 5.95 
 
Right occipital lobe (19)   13  39 -66 -21 5.81 
 
Right dorsolateral prefrontal cortex (46) 20  42 30 12 5.73 
 

MCI lower-cognition: Recognition intact/rearranged > visual fixation 

Left occipital lobe (18)   56  -15 -87 -9 6.84 
 
Right medial prefrontal cortex  31  6 30 39 6.17 
 
and anterior cingulate cortex (8, 32) 
 
Right occipital lobe (17)   15  15 -87 -6 5.90 
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Table 4. 
 
Clusters (> 5 voxels) significantly more activated in Healthy controls than in MCI 
higher- and MCI lower-cognition or significantly more activated in MCI higher- and 
MCI lower-cognition than in Healthy controls, with cluster size, peak voxel MNI 
coordinates, and corresponding t-values. 

 
Activated areas (Brodmann area)              Cluster 
    (p < .001, uncorrected)             size  x y z t-value 
 

MCI higher-cognition > Healthy controls: Recognition intact/rearranged 
 

Right dorsolateral prefrontal cortex (9) 19  3 42 48 4.21 

Left inferior parietal lobule (40)  12  -48 -45 48 3.90 

Right lateral temporal lobe (37)  13  51 -57 -3 3.74 

Right lateral temporal lobe (41)  6  42 -21 12 3.74 

Left dorsolateral prefrontal cortex (9) 6  -45 15 42 3.61 

Right ventrolateral prefrontal cortex (44) 6  48 12 24 3.58 

Healthy controls > MCI higher-cognition: Recognition intact/rearranged 

None 

MCI higher-cognition > Healthy controls: Recognition old/new 

None 

Healthy controls > MCI higher-cognition: Recognition old/new 

Right cingulate & parahippocampal gyrus 25  6 -42 3 4.09  

MCI lower-cognition > Healthy controls: Recognition intact/rearranged 

None 

Healthy controls > MCI lower-cognition: Recognition intact/rearranged 

None 
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MCI lower-cognition > Healthy controls: Recognition old/new 

Left dorsolateral prefrontal cortex (46) 22  -27 48 21 4.25 
 
Left/Right medial prefrontal cortex (8) 20  0 36 51 4.10 
 
Left inferior parietal lobule (40)  6  -48 -51 39 3.52 
 
Left/Right anterior cingulate (24, 32) 8  6 33 6 3.51 
 

Healthy controls > MCI higher-cognition: Recognition old/new 
 

None 
 

MCI higher-cognition > MCI lower-cognition: Recognition intact/rearranged 
 
Right precuneus, superior parietal lobule(7) 28  24 -69 51 3.77 
 
Left precuneus, superior parietal lobule (7) 12  -24 -66 51 3.71 

 
MCI lower-cognition > MCI higher-cognition: Recognition intact/rearranged 

 
None 

 
MCI higher-cognition > MCI lower-cognition: Recognition old/new 

 
None 

 
MCI lower-cognition > MCI higher-cognition: Recognition old/new 

 
None 
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Table 5. 
 
Clusters (> 10 voxels) significantly more activated during the recognition of old/new 
word pairs condition than during the recognition intact/rearranged word pairs or during 
the recognition of intact/rearranged word pairs condition than during the recognition 
old/new word pairs for Healthy controls, with cluster size, peak voxel MNI coordinates, 
and corresponding t-values. 

 

 
Activated areas (Brodmann area)         Cluster 
    (p < .005, uncorrected)             size  x y z t-value 
 

Healthy controls: Recognition old/new > Recognition intact/rearranged 
 

Left/Right medial prefrontal cortex (10) 26  -3 66 3 3.30 
 
Left parahippocampal gyrus   7  -12 -39 3 3.18 
 
Right parahippocampal gyrus  9  24 -30 -15 3.17 
 
Right middle/superior temporal    10  48 -63 15 2.99 
 
gyrus (19, 39) 

 
Healthy controls: Recognition intact/rearranged > Recognition old/new 

 
Left basal ganglia    21  -6 3 -3 3.37 
 
Right anterior cingulated cortex (24)  11  6 36 3 2.96 
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Figure Captions 

 

Figure 1. Progression of theoretical brain activation for item recognition and associative 

recognition in normal individuals and patients with milder mild cognitive impairment 

(MCI), more severe MCI, and Alzheimer’s disease (AD). 

Figure 2. Scores obtained on the recognition of old/new word pairs condition and on the 

recognition of intact/rearranged word pairs condition by the Healthy controls, MCI 

higher-cognition, and MCI lower-cognition groups.  

Figure 3. Cerebral activations (p < .05, FWE corrected, cluster size > 5 voxels) on the 

recognition of old/new word pairs condition and on the recognition of intact/rearranged 

word pairs condition by the Healthy controls, MCI higher-cognition, and MCI lower-

cognition groups. 

Figure 4. Group differences in cerebral activations (p < .001, uncorrected, cluster size > 

5 voxels) for (a) areas showing significantly more activation in the MCI higher-cognition 

group than in Healthy controls for the recognition intact/rearranged task and (b) areas 

showing significantly more activation in the MCI lower-cognition group than in Healthy 

controls for the recognition old/new task. 
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Figure 1. Progression of theoretical brain activation for item recognition and associative 

recognition in normal individuals and patients with milder MCI, more severe MCI, and 

Alzheimer’s disease (AD). 
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Figure 2. Scores obtained on the recognition of old/new word pairs condition and on the 

recognition of intact/rearranged word pairs condition by the Healthy controls, MCI 

higher-cognition, and MCI lower-cognition groups.  
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Figure 3. Cerebral activations (p < .05, FWE corrected, cluster size > 5 voxels) on the 

recognition of old/new word pairs condition and on the recognition of intact/rearranged 

word pairs condition by the Healthy controls, MCI higher-cognition, and MCI lower-

cognition groups. 
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Figure 4. Group differences in cerebral activations (p < .001, uncorrected, cluster size > 5 

voxels) for (a) areas showing significantly more activation in MCI higher-cognition than 

Healthy controls for the recognition intact/rearranged task and (b) areas showing 

significantly more activation in MCI lower-cognition than Healthy controls for the 

recognition old/new task. 
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Abstract 
 

Our goal was to test the effect of disease severity on the brain activation 

associated with two executive processes: manipulation and divided attention. This was 

achieved by administrating a manipulation task and a divided attention task using 

functional magnetic resonance imaging to 24 individuals with mild cognitive impairment 

and 14 healthy controls matched for age, sex and education. The Mattis Dementia Rating 

Scale was used to divide persons with mild cognitive impairment into those with better 

and worse cognitive performances. Both tasks were associated with more brain activation 

in the mild cognitive impairment group with higher cognition than in healthy controls, 

particularly in the left frontal areas. Correlational analyses indicated that greater 

activation in a frontostriatal network hyperactivated by the higher-cognition group was 

related with better task performance, suggesting that these activations may support 

functional reorganization of a compensatory nature. By contrast, the lower-cognition 

group failed to show greater cerebral hyperactivation than controls during the divided 

attention task and showed less brain activation than controls in the left ventrolateral 

cortex, a region commonly hypoactivated in patients with Alzheimer’s disease, during 

the manipulation task. These findings indicate that, during the early phase of mild 

cognitive impairment, executive functioning benefits from neural reorganization, but that 

a breakdown of this brain plasticity characterizes the late stages of the disease. 
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 The last decade has seen considerable interest in the study of the cognitive and 

neural changes experienced by individuals with mild cognitive impairment (MCI) 

(Petersen et al., 1999; Petersen et al., 2001), a population at high risk of developing 

Alzheimer’s disease (AD) (Gauthier et al., 2006). While memory has been the main topic 

of interest, more attention is now being given to non-memory deficits, particularly those 

that affect executive functioning (Dannhauser et al., 2005; Belleville et al., 2007; 

Belanger and Belleville, 2009).  Such investigations are clinically relevant because 

executive deficits have been shown to exacerbate memory deficits (Ranganath et al., 

2005) and could represent a critical factor in the progression from MCI to dementia 

(Royall et al., 2005). Therefore, the first goal of this study was to contribute to a better 

understanding of the brain changes that underlie executive decline in MCI.  

 

Our second goal was to investigate whether those changes could be modulated by 

mechanisms of brain compensation and plasticity. It has been proposed that there is a 

functional trade-off between brain damage and compensatory mechanisms over the 

course of AD: When the disease is mild, the brain might be able to compensate for the 

effect of the lesions by recruiting additional functional networks that include the lesioned 

region and/or distal areas, but, as lesions accumulate, the neural system might gradually 

lose this compensatory ability (Friston and Price, 2003; Prvulovic et al., 2005). In this 

view, individuals with MCI are expected to be able to reorganize their functional 

networks in response to the brain damage because they are in a very early phase of the 

disease. As they acquire more neuropathologies, however, a breakdown of this functional 

reorganization should be observed. Yet, despite its important implications, this model has 

been tested in only a few studies (Celone et al., 2006; Clement and Belleville, 2010; 
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Clement et al., 2010), and none have investigated whether it characterizes executive 

functions. 

 

This study measured the brain activation patterns of individuals with MCI by 

using tasks that involve two executive processes, manipulation and divided attention. The 

effect of disease severity was also measured by dividing MCI individuals into those with 

lower and higher cognitive functioning. We hypothesized that MCI participants with 

higher cognition would show increased brain activation compared with healthy controls 

(i.e., hyperactivation) and that these hyperactivations would be positively correlated with 

task performances. By contrast, MCI participants with lower cognition should show no 

evidence of hyperactivation and exhibit less activation than controls. Moreover, these 

hyper/hypoactivations should be observed in regions altered in AD and/or involved in 

executive functioning (i.e. lateral prefrontal cortex, precuneus and posterior parietal 

areas, Collette et al., 1999; Wager and Smith, 2003; Johnson and Zatorre, 2006). 

Findings in accordance with these hypotheses would provide empirical evidence of the 

presence of neural reorganization during the early stages of MCI and of a breakdown of 

this mechanism during the later stages of the disease.  

 

Method 

Participants 

Thirty-eight participants, 14 healthy older adults and 24 persons with MCI, took 

part in this study. French was the first language of all participants, and all tasks were 

conducted in French. Sociodemographic characteristics of the two groups are shown in 

Table 1. 
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Participants with MCI were referred from memory clinics and met the following 

four criteria (Petersen et al., 1999; Petersen et al., 2001; Winblad et al., 2004) for 

amnestic single or multiple domain MCI: (1) memory complaint corroborated by an 

informant when possible; (2) performance at least 1.5 standard deviations (SD) below the 

average level of persons of similar age and education on at least one memory test from 

the neuropsychological battery (amnestic single domain MCI subtype) or on at least one 

memory test plus one or more tests measuring other cognitive domains (amnestic 

multiple domain MCI subtype); (3) neither global cognitive impairment on the basis of 

the Mini-Mental State Examination (MMSE) (using a cutoff for age and education) nor a 

significant impact on daily functions as measured by the SMAF functional impairment 

scale (Desrosiers et al., 1995) and clinical interview with an informant; and (4) absence 

of dementia based on clinical criteria (American Psychiatric Association, 2000). 

Individuals with MCI completed an extensive neuropsychological evaluation that 

covered episodic memory (free and cued word recall task: Rappel Libre/Rappel Indicé-

16; Van der Linden et al., 2004; text memory of the Batterie d’Efficience Mnésique, 

BEM; Signoret, 1991; recall of Rey Complex Figure, Rey, 1959), executive functions 

(third plate of Stroop-Victoria, Regard, 1981; and copy of Rey Complex Figure, Rey, 

1959), visuospatial processing (Benton Judgment of line orientation, Benton et al., 1983), 

speed of information processing (Coding of the WAIS-III, Wechsler, 1997), language 

(Boston Naming Test, Kaplan et al., 1983) and global cognitive functions (Mattis 

Dementia Rating Scale, MDRS, Mattis, 1976; MMSE, Folstein et al., 1975). Individuals 

with MCI also underwent an extensive medical, neurological and neuroradiological 

examination prior to enrolment in the study to exclude the presence of any other 
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significant systemic, neurological or psychiatric condition that could explain their 

cognitive difficulties.  

 

Participants with MCI were separated into two groups using a split-median of 

their scores on the MDRS. The MDRS was preferred over the MMSE for identifying 

disease severity levels in MCI participants because it covers a broader range of cognitive 

functions and has more variability, and because MCI participants do not show a ceiling 

effect on this scale. The split-median identified 12 persons with a higher level of overall 

cognitive functioning (MCI higher-cognition) and 12 persons with a lower level of 

overall cognitive functioning (MCI lower-cognition). 

 

Two years after participating in this study, the MCI participants underwent the 

same medical, neurological, neuroradiological and neuropsychological evaluations to 

determine whether they had developed AD or showed significant cognitive decline. 

Alzheimer’s disease was diagnosed by the referring clinicians using the NINCDS-

ADRDA (McKhann et al., 1984) and DSM-IV criteria. Cognitive decline was defined as 

a reduced performance by more than 1 SD on at least two neuropsychological tests 

(Belleville et al., 2007). The determination of cognitive decline or progression to AD was 

performed blind to the group membership identified here. At follow-up, 67% of the MCI 

higher-cognition participants were found to have remained stable, 33% showed a 

cognitive decline, and none had developed AD. Among the MCI lower-cognition 

participants, 33% were found to have remained stable, 8% showed cognitive decline, and 

58% had developed AD. Chi-square analyses indicated a higher proportion of conversion 
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to AD in the MCI lower-cognition group (χ2 = 2.66, p < .05) than in the MCI higher-

cognition group.  

 

Healthy older adults were recruited from the community and, to ensure they did 

not suffer from any cognitive deficits, were subjected to a clinical and 

neuropsychological evaluation involving the assessment of global cognitive functions 

(MDRS,4 Mattis, 1976; MMSE, Folstein et al., 1975; Montreal Cognitive Assessment, 

MOCA; Nasreddine et al., 2005), speed of information processing (Coding subtest of the 

WAIS-III; Wechsler, 1997) and episodic memory (cued and free word recall task: 

RL/RI-16, Buschke, 1984; Van der Linden et al., 2004). 

 

The study was approved by the Comité mixte d’éthique de la recherche du 

Regroupement Neuroimagerie/Québec (CMER-RNQ). 

 

Stimuli and procedure 

Manipulation task: Manipulation was measured by having participants complete 

equations that require on-line processing and manipulation of the alphabet (Logan, 1988; 

Compton and Logan, 1991). Alphanumeric problems took the form of the equation 

x ± 1 = y, where x was a letter of the alphabet chosen randomly between A and L 

followed by a plus (+) or minus (–) sign and the number 1, and where y was a proposed 

solution to the problem. Half of the equations were true (e.g., A + 1 = B), and the other 

half were false (e.g., A + 1 = C). Half of the equations used a plus sign, and the other half 

used a minus sign (e.g., G – 1 = F). The proposed solution was either 1 letter (50% of 

                                                 
4 Five healthy controls did not complete the MDRS, but did complete the MMSE and MOCA. 



 220 

trials) or 2-3 (50% of trials) letters away from the solution. Equations were visually 

presented and remained on the screen for 5 s. Participants were asked to determine 

whether the solution to the equation was correct and to answer by pressing one key with 

their right middle finger for true equations and another key with their right ring finger for 

false equations. After the training session (see below), no feedback was given.  

 

Divided attention task: Divided attention was measured by having participants 

combine the alphanumeric equation task with a simple visual detection task. A new set of 

alphanumeric equations was created for the divided attention task, with the same 

constraints as in the manipulation task. Participants were asked to judge the accuracy of 

alphanumeric equations that were first presented in black print but changed to red 

unexpectedly during the trial. Participants were asked to pay attention to this colour 

change while completing the equation and report the change when it occurred. 

Participants judged the accuracy of the equation by pressing one key with their right 

middle finger for true equations and another key with their right ring finger for false 

equations, and reported the colour change by pressing a third key with their right index 

finger. Participants were asked to give equal priority to both tasks and to answer as 

quickly and accurately as possible. Each equation was presented individually and 

remained on the screen for 5 s. No feedback was given during the task. An instruction 

screen appeared for 4 s at the beginning of each block to remind the subject of the 

instructions. Correct responses were recorded. 

 

Control condition: The control condition for both the manipulation and the 

divided attention tasks involved the visual presentation of series of random characters. 
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Each series was composed of two random letters (from A to L), two random numbers 

(from 1 to 9), one plus or minus sign, and one equal sign—all placed in random positions 

(e.g., = F 3 H + or 4 – = B L), with 37.5% of the strings presented in red and 62.5% in 

white. Participants were asked to press a key with their right index finger each time the 

random string of letters, numbers, and signs was red. Each string was presented 

individually and remained on the screen for 2.5 s. 

 

Procedure specific to functional magnetic resonance imaging  
 

The tasks were programmed with E-prime, and stimuli were visually presented 

and mirror-projected. Subjects with corrected vision wore goggles appropriate for 

magnetic resonance imaging (MRI). The procedure consisted of one run composed of 

five series of visual fixation (14 s), manipulation task (44 s), control task (44 s), visual 

fixation (14 s) and divided attention (44 s). The visual fixation block consisted of fixation 

on crosshairs.  

 

Participants were first trained on the functional MRI (fMRI) procedure and 

practised in a simulator that mimics the fMRI environment (in terms of task, body 

position, sound, etc.) one week prior to scanning. For this practice session, participants 

completed 10 trials in each condition. To limit repetition effects, the stimuli used for the 

practice session were different than those used for the actual fMRI task (i.e., letters M 

through Z for the practice and A through L for the fMRI task).  
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Data acquisition 

Magnetic resonance imaging was performed using a SIEMENS 3T Magnetom 

TRIO System (Erlangen, Germany) at the Unité de Neuroimagerie Fonctionnelle (UNF) 

of Institut universitaire de gériatrie de Montréal. Functional MR images were acquired 

using gradient-echo echo-planar imaging sequences (GE-EPI) sensitive to blood oxygen 

level-dependent (BOLD) contrast (TR/TE = 2000/30 ms, flip angle = 90 °; 31 interleaved 

slices, voxel size = 3.75×3.75×5 mm3 with a gap of 1 mm, field of view = 240 mm, 

matrix = 64×64). A three-dimensional (3D) structural image was taken at the end of the 

session and consisted of a sagittal T1-weighted 3D-MPRAGE sequence 

(TR/TE = 1950/3.93 ms, flip angle = 15 °; 176 slices, voxel size = 1×1×1 mm3, field of 

view = 256 mm, matrix = 256×256).  

 

Image processing and data analysis 

 Data were analyzed in MATLAB 7.0 (http://www.mathworks.com) using the 

statistical parametric mapping software SPM5 (http://www.fil.ion.ucl.ac.uk/spm/). The 

first three volumes were automatically discarded by the fMRI scanner in order to allow 

the magnetization to reach equilibrium. Functional images were first converted into 

Analyze format and unwarped. They were then realigned to the first volume acquired in 

the session, and a mean realigned volume was created for each subject. All the realigned 

volumes from each subject were spatially normalized into the Montreal Neurological 

Institute (MNI) stereotactic space and spatially smoothed with an 8-mm Gaussian kernel. 

Low-frequency noise was removed with a high-pass filter of 208 s. The instruction 

blocks were modelled as a condition of no-interest. In the first level analysis, the 

coefficients for each contrast were estimated separately in fixed effect models for each 
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participant. A random effects (RFX) analysis was then performed by calculating a two-

way analysis of variance (ANOVA) with Group (healthy older adults, MCI higher-

cognition, MCI lower-cognition) as a between-subject factor and Condition 

(manipulation, divided attention, control) as a within-subject factor, with non-sphericity 

corrections, replications over subjects and correlated repeated measures. Manipulation 

task activations were calculated with the contrast (manipulation > control task). Divided 

attention task activations were calculated by conducting an interaction analysis between 

the contrasts (divided attention > manipulation) and (control task > visual fixation). This 

method of cognitive subtraction has been shown to be an appropriate method for 

measuring areas that show greater activation in a dual task than in the single tasks alone 

(Szameitat et al., 2002). Two criteria were used to define significant regions for the 

between-group analyses: (1) a voxel-level threshold of p < .001 uncorrected and (2) a 

cluster-level threshold of p < .05. As mentioned in the results section, all neuroimaging 

analyses were performed with the performance scores of each subject as a covariate. 

 

Results 

 

Sociodemographic and clinical data 

Sociodemographic neuropsychological data are shown in Table 1. They were 

analyzed with one-way ANOVAs using Group (healthy controls, MCI higher-cognition, 

MCI lower-cognition) as a between-subject factor. Tukey’s post hoc tests were used to 

determine the source of the effect when significant. The groups did not differ in age, 

F(2,35) = 0.09, N.S., or education, F(2,37) = 0.13, N.S. As expected, both MCI 

subgroups showed lower episodic memory performances than healthy controls, and MCI 
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lower-cognition showed lower episodic memory abilities than MCI higher-cognition. In 

addition, the MCI lower-cognition group scored lower than the other two groups on a 

task that reflects speed and executive functioning (i.e., Coding). Moreover, chi-square 

analyses indicated a similar male-to-female ratio in the three groups (χ2 < 0.01, in all 

cases N.S.).  

 

Examination of individuals’ clinical profiles revealed that, within the MCI higher-

cognition group, six persons met criteria for the amnestic single domain subtype and six 

met criteria for amnestic multiple domain MCI. Within the MCI lower-cognition group, 

four persons met criteria for the amnestic single domain subtype and eight met criteria 

for amnestic multiple domain MCI. A chi-square analysis indicated that the proportion of 

persons with single and multiple domain MCI was equivalent in the two groups 

(χ2 = 0.69, N.S.).  
Cognitive data 

 For the manipulation task, performances were calculated as the mean percentage 

of correctly solved equations. A one-way ANOVA with Group (healthy controls, MCI 

higher-cognition, MCI lower-cognition) as a between-subject factor was performed and 

indicated a significant Group effect, F(2,35) = 5.30, p = .01. Tukey’s post hoc test 

revealed that both MCI groups had a lower performance on the manipulation task 

compared with healthy controls, p < .05 and p < .01 for MCI higher-cognition and MCI 

lower-cognition, respectively. The performances of the two MCI groups were not 

significantly different (Figure 1).  
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For the divided attention task, we used the mean percentage of correctly solved 

equations and the mean percentage of correctly detected red targets as dependent 

variables. Separate two-way ANOVAs with Group (healthy controls, MCI higher-

cognition, MCI lower-cognition) as a between-subject factor and Condition (focused 

attention, divided attention) as a within-subject factor were computed for each dependent 

variable. For the equation problems, a Group effect, F(2,35) = 8.46, p < .001, and a 

Condition effect, F(1, 35) = 217.79, p < .001, were observed, but no interactions were 

noted. Unsurprisingly, the Condition effect showed that participants performed better 

with focused than with divided attention. Tukey’s post hoc test revealed that the Group 

effect was due to worse performance of both MCI higher-cognition and MCI lower-

cognition compared with healthy controls, p < .05. Only a Condition effect was found in 

the detection task, F(1,35) = 99.22, p < .001, with participants performing better when 

they completed the task with focused rather than divided attention.  

 

Divided attention cost scores were then calculated for each dependent variable 

with the following formula:  

[(focused – divided) / focused] × 100%. 

Two separate one-way ANOVAs with Group (healthy controls, MCI higher-

cognition, MCI lower-cognition) as a between-subject factor were computed on the 

divided attention cost scores for equations and for detection. A Group effect was 

observed on the equations cost score, F(2,35) = 4.51, p < .05. Tukey’s post hoc tests 

revealed that MCI lower-cognition had a greater divided attention cost score than healthy 

controls for equations, p < .05, but that MCI higher-cognition did not differ from healthy 

controls (Figure 2). No Group effect was observed for the divided attention cost scores 
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for detection, F(2,35) = 1.53, N.S. (Figure 2). Because group differences in performance 

were observed on some of the tasks, all the following neuroimaging analyses were 

performed with the performance scores of each subject as a covariate.  
Brain imaging data: Within-group comparisons 

Manipulation. All three groups showed activation in the medial frontal gyri and 

the anterior cingulate gyrus (BA 6, 8, 32), both bilaterally, as well as in the right 

cerebellum (Table 2). The MCI lower-cognition group showed no additional activations. 

Healthy controls showed activations in the left inferior frontal gyrus (BA 44, 45, 46), the 

right inferior frontal gyrus (BA 45, 47), the left middle frontal gyrus (BA 9), the 

precuneus bilaterally (BA 7), the left premotor area (BA 6), the occipitoparietal areas 

bilaterally (BA 7, 19, 39, 40) and the left cerebellum, whereas MCI higher-cognition 

showed additional activations in the left inferior frontal gyrus (BA 44, 45, 47) and the 

left superior frontal gyrus (BA 8).  

 
Divided attention. As displayed in Table 3, all three groups showed bilateral 

activation of the medial precuneus and dorsal posterior cingulate gyrus (BA 7, 31). The 

MCI lower-cognition group showed additional activations in the temporoparietal areas 

(BA 39 bilaterally and BA 22 on the left side) and in the right precuneus (BA 7). The 

MCI higher-cognition group showed additional activations in a frontostriatal network on 

the left side (BA 47, caudate, putamen), the right superior frontal gyrus (BA 6), the 

anterior cingulate cortex bilaterally (BA 24, 32), the right paracentral lobule (BA 5), the 

left middle temporal gyrus (BA 21), the right entorhinal and perirhinal areas (BA 28, 35), 

the left occipitotemporal areas (BA 36, 37), the right inferior parietal lobule and 
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supramarginal and angular gyri (BA 39, 40), the right posterior cingulate cortex (BA 31) 

and the left cerebellum.  

 
Brain imaging data: Between-group comparisons 

 Manipulation. When the activations were compared statistically across groups, 

MCI higher-cognition showed increased activation compared with healthy controls in the 

left postcentral gyrus (BA 43) and the left middle and superior frontal gyri (BA 6, 8) (see 

Table 4), but less activation in the left cerebellum. By contrast, MCI lower-cognition 

showed only hypoactivation, which was found in the left inferior and middle frontal gyri 

(BA 45, 46) and the left occipitotemporal areas (BA 19, 37). There were no areas 

showing hyperactivation in the MCI lower-cognition group.  

 

Divided attention. As displayed in Table 5, MCI higher-cognition showed 

significantly increased activation compared with healthy controls in a large frontostriatal 

network that involves the left inferior frontal gyrus (BA 47), the left insula (BA 13), the 

left caudate and putamen, and the anterior cingulate cortex bilaterally. They also showed 

hyperactivation in the left fusiform gyrus (BA 36, 37), the left thalamus, and the left 

cerebellum and midbrain. There were no areas showing significant differences in 

activation when MCI lower-cognition were compared with healthy controls. 

 

Correlations between activations and performances 

Correlations were computed between task performance and the level of activation 

in the clusters that showed differences in activation between individuals with MCI and 

healthy controls (see Table 5). The average beta values of the regions of interest were 

extracted with MarsBaR (Brett et al., 2002) for each participant and condition. Pearson’s 
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correlations were then performed in SPSS 13.0 (http://www.spss.com). The performance 

variables used for the correlations were the percentage of correctly solved equations in 

the manipulation task and the percentage of correctly solved equations and correctly 

detected targets in the divided attention task. As indicated in Table 5, significant 

correlations were found only in the MCI higher-cognition group. In this group, 

performance in the divided attention task was positively correlated with activation in a 

cluster comprising the right putamen, the anterior cingulate cortex, the left caudate, the 

left insula and the left inferior frontal gyrus. In this case, greater activation was 

associated with better divided attention performance. 

 

Discussion 

The goal of this study was to assess the brain activation patterns of individuals 

with MCI during tasks involving executive functions and to evaluate the effect of disease 

severity on those patterns. Two executive components were measured: brain activation 

associated with the manipulation of information and brain activation associated with 

divided attention. The effect of disease severity was determined by distinguishing 

patients on the basis of their scores on the MDRS, an index of global cognitive 

functioning. It was hypothesized that persons with MCI with better cognitive function 

(MCI higher-cognition) would show neural reorganization (as reflected by 

hyperactivation) during both tasks, whereas brain plasticity would fail in those with more 

severe MCI (MCI lower-cognition), as reflected by hypoactivation. Interestingly, our 

MCI higher-cognition and MCI lower-cognition subgroups showed a mean MMSE score 

very similar to those associated with the early MCI and late MCI subgroups of the 

Alzheimer’s Disease Neuroimaging Initiative 2 (ADNI 2) project (Aisen et al., 2010). In 
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the following discussion, we first present the data for healthy controls in order to identify 

the networks that are typically required to execute the specific task. This information will 

then be used to shed light on whether the areas of change in MCI are those normally 

involved in each task. 

 

Healthy controls 

During manipulation, healthy older adults showed activations in several regions 

that are known to be involved in the manipulation of information in younger adults 

(Collette et al., 1999; D'Esposito et al., 1999; Smith and Jonides, 1999; Wager and 

Smith, 2003). These regions include the ventrolateral (BA 44, 45, 47) and dorsolateral 

(BA 9, 46) prefrontal cortex and the precuneus (BA 7), both bilaterally. In young adults, 

the division of attention across tasks has been associated with activity in either the left 

ventrolateral and dorsolateral prefrontal cortex or the posterior parietal areas (Bunge et 

al., 2000; Szameitat et al., 2002; Loose et al., 2003; Schubert and Szameitat, 2003; 

Johnson and Zatorre, 2006). The pattern of brain activation associated with divided 

attention in our group of healthy older adults is more consistent with the findings of 

posterior activations: divided attention was associated with activation in the precuneus as 

well as in a large cluster within the posterior parietal areas. The pattern found here is also 

consistent with the more widely distributed network of activation that has been reported 

in healthy older adults (Rajah and D'Esposito, 2005).  

 

MCI higher-cognition 

It was expected that persons in the MCI higher-cognition group still had sufficient 

neural resources to allow neural reorganization and that this would result in either 
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expanded areas of activation or increased activation when compared with controls 

(hyperactivation). This was indeed the case. During the manipulation task, the MCI 

higher-cognition group showed hyperactivations in the left middle and superior frontal 

gyri and the left postcentral gyrus. It must be noted that the left middle and superior 

frontal gyri were also activated in healthy older adults, though to a lesser degree, and 

have been shown to be activated during manipulation tasks (Collette et al., 1999; 

D'Esposito et al., 1999). By contrast, the left postcentral gyrus is not activated in healthy 

older adults. Thus, during manipulation, the MCI higher-cognition group showed 

increased activation in a combination of regions typically involved in the task and new 

regions. 

 

Similarly, during the divided attention task, the MCI higher-cognition group 

showed hyperactivations in areas that were also activated by healthy controls (i.e., the 

putamen and the left prefrontal cortex). Interestingly, the left prefrontal cortex has been 

identified as a key region in a number of studies involving divided attention tasks (Bunge 

et al., 2000; Szameitat et al., 2002; Loose et al., 2003; Schubert and Szameitat, 2003; 

Johnson and Zatorre, 2006). However, MCI higher-cognition also showed activation in 

areas that were not activated by controls (e.g., the left fusiform gyrus and the left insula) 

and are not typically associated with divided attention.  

 

Correlational analyses indicated that some of these activations were of a 

compensatory nature. In particular, a large frontostriatal area of hyperactivation was 

highly correlated with performance on the divided attention task (r = 0.62) in the MCI 

higher-cognition group. Because divided attention is unimpaired in this group, this 
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correlation suggests that this increased activation might partly support their maintenance 

of intact performance on this task and, hence, represent compensatory mechanisms. 

Furthermore, the involvement of the striatal regions in this correlation is interesting: 

While the basal ganglia have traditionally been involved in the control of movement, 

recent studies indicate that they might play a role in executive control (Monchi et al., 

2006; Nagano-Saito et al., 2008), perhaps because different parts of the striatum project 

to regions within the dorsolateral prefrontal and lateral orbitofrontal cortices (Middleton 

and Strick, 1994, 2000).  

 

MCI lower-cognition 

The MCI lower-cognition group comprised individuals with MCI who showed 

the most severe cognitive impairment and were thus considered to be in a more advanced 

stage of the disease. As expected, participants in this group performed significantly 

worse on the divided attention task than those in MCI higher-cognition, which supports 

our contention that participants in this group were in a more severe stage of the disease. 

Our model proposes that these individuals should be characterized by reduced activation 

relative to controls. Again, our results generally support this hypothesis. During 

manipulation, MCI lower-cognition showed only areas of hypoactivation, which were 

found in the left inferior and middle frontal gyri (BA 45, 46), regions typically involved 

in the manipulation of information (Collette et al., 1999; D'Esposito et al., 1999; Wager 

and Smith, 2003), as well as in the left occipitotemporal areas (BA 19, 37). Therefore, it 

seems that the MCI lower-cognition group failed to recruit some of the crucial networks 

activated by healthy older adults during this task. In turn, this under-recruitment may be 

responsible for their poor performances on the task. Further, it is notable that the left 
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ventrolateral cortex was hypoactivated in the MCI lower-cognition group, a finding that 

has frequently been reported in patients with AD during similar tasks requiring executive 

functions (Yetkin et al., 2005; Lim et al., 2008). Finally, during the divided attention 

task, the MCI lower-cognition group showed no clusters that differed significantly from 

the level of activation in healthy controls, a finding that contrasts markedly with the 

hyperactivation characterizing the MCI higher-cognition group.  

 

Limitations 

Some limitations of the present study must be mentioned. Because we used a 

cross-sectional design rather than a longitudinal one, it is impossible to completely rule 

out the possibility that patients defined on the basis of their clinical severity belong to 

different subgroups rather than lie on different points of a severity continuum. Along the 

same line, and as there is no gold standard for indexing disease severity, biological 

markers such as whole brain volume or beta amyloid brain load could have been used 

instead of the MDRS. However, we favoured a clinical rather than a biological index 

because clinical measures are closer to the criteria on which the diagnoses of MCI and 

AD are established and because measures of brain activation may not be entirely 

independent of typical biological measures. Another limitation could be the use of a 

blocked fMRI design rather than an event-related design because blocked designs do not 

allow the distinction between correct and incorrect answers. However, they do offer 

maximal detection power (Liu, 2004) and are more manageable for patients with 

cognitive deficits, as the conditions alternate less frequently than in an event-related 

design. 

 



 233

Summary 

 We found that MCI individuals with milder cognitive symptoms show large areas 

of hyperactivation associated with executive functioning. This effect is not task specific, 

as it was found with both the manipulation and divided attention tasks, although the 

localization of the hyperactivations varies as a function of the cognitive process involved. 

Importantly, our data indicates that these areas of hyperactivation can support successful 

compensation, as a large performance-correlated frontostriatal circuit was found during 

the divided attention task. By contrast, individuals with MCI who exhibit more severe 

overall cognitive deficits experience a breakdown of this purported brain plasticity 

phenomenon: Not only do they not show hyperactivation during the divided attention 

task, but they also show evidence of hypoactivation during the manipulation task. This 

breakdown is accompanied by an impaired level of performance on both tasks. Thus, our 

findings suggest an early MCI phase characterized by increased activation and 

compensatory neural reorganization is followed by a breakdown of these mechanisms as 

the disease progresses. It is possible that this shift in brain activation and the breakdown 

of compensatory mechanisms signal the critical moment of brain deterioration and 

executive function deficit that occur just before these individuals progress to a stage in 

which they meet criteria for dementia.  
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Table 1 
 
Demographic variables and scores on the neuropsychological tasks for the three groups.  

Controls         MCI           MCI  
                                                                                 higher-cognition          lower-cognition
                   
                                                  n = 14                       n = 12                          n = 12 

Gender     8F/6M   7F/5M   7F/5M   

Age    67.21 (6.80)  68.50 (10.82)  68.33 (6.91) 

Education   14.57 (3.76)  14.92 (3.92)  14.08 (4.23) 

MDRS    140.33 (2.65)   139.58 (2.23)  130.17 (4.90)c,f 

MMSE    29.29 (1.14)  28.92 (1.68)  27.00 (1.81)b,e 

MOCA   27.64 (1.39)      

SMAF       -0.82 (0.90)  -1.46 (1.18) 

Boston Naming Test     13.92 (1.16)  12.58 (1.73) 

Coding (WAIS-III)  11.29 (2.30)  10.58 (2.35)  8.75 (2.60)a 

Benton Judgment of line orientation   25.17 (3.64)  23.25 (3.44) 

Copy of Rey’s Figure (score)    31.50 (3.23)  30.42 (3.59) 

Immediate recall of Rey’s Figure (score)  13.91 (5.51)  8.67 (6.21)d 

Delayed recall of Rey’s Figure (score)   14.67 (4.93)  8.13 (5.92)e 

Stroop 3rd plate (errors)    0.92 (1.08)  1.92 (2.57) 

RL/RI-16 3rd free recall 12.21 (2.32)  10.33 (2.77)  6.08 (2.50)c,f 

RL/RI-16 delayed free recall 12.71 (2.40)  9.00 (4.80)a  5.75 (3.19)c 
 
Note. SD are in parentheses. a impairment relative to controls at p < .05; b impairment 
relative to controls at p < .01; c impairment relative to controls at p < .001; d impairment 
relative to MCI higher-cognition at p < .05; e impairment relative to MCI higher-
cognition at p < .01; f impairment relative to MCI higher-cognition at p < .001 
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Table 2 

 
Clusters (>10 voxels) significantly more activated during the manipulation task than 
during the control task for healthy controls, MCI higher-cognition and MCI lower-
cognition with cluster size, peak voxel MNI coordinates and corresponding t-values. 

 
Activated areas (Brodmann area)          Cluster 
    (p < .001, uncorrected)   Size  x y z t-value 
  

Healthy controls: Manipulation > control task 

Left occipitoparietal areas (7, 19, 39, 40) 275  -27 -78 42 5.57 

Left/Right cerebellum   770  9 -75 -27 5.52 

Right inferior frontal gyrus (45, 47)  80  33 27 0 5.27 

Left superior and medial frontal gyri and 46  -6 12 48 5.06 

left cingulate gyrus (6, 8, 32) 

Left inferior and middle frontal gyri (6, 9) 39  -45 -3 39 4.64 

Left inferior frontal gyrus (44)  18  -51 6 18 4.42 

Left inferior frontal gyrus (45, 46)  93  -39 21 18 4.32 

Right superior and medial frontal gyri and 17  9 24 45 4.00 

right cingulate gyrus (6, 8, 32) 

Right inferior and superior parietal lobules 34  36 -51 51 3.74 

and precuneus (7, 40) 

Left precuneus (7)    18  -6 -81 45 3.65 

Right occipital areas (19)   11  33 -72 42 3.61 

Right precuneus (7)    14  18 -72 48 3.59 

 
MCI higher-cognition: Manipulation > control task 

Left inferior frontal gyrus (44, 45, 47) 156  -30 24 3 5.82 
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Left occipitoparietal areas (7, 19, 39) 241  -30 -60 39 5.19 

Left/Right superior and medial frontal gyri 136  -6 12 48 4.70 

and left cingulate gyrus (6, 8, 24, 32) 

Right occipitoparietal areas (19, 39)  30  36 -75 33 4.52 

Right cerebellum    26  12 -66 -30 4.21 

Left middle and superior frontal gyri (6, 8) 54  -24 12 60 4.16 

Left inferior parietal lobule (40)  15  -45 -45 45 4.08 

MCI lower-cognition: Manipulation > control task 

Left/Right superior and medial frontal gyri 136  -3 9 57 4.54 

and left cingulate gyrus (6, 8, 32) 

Right cerebellum    53  33 -60 -30 4.12 

Right medial frontal gyrus and  16  6 30 39 3.61 

right cingulate gyrus (8, 9, 32) 
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Table 3 
 
Clusters (>10 voxels) significantly more activated during the divided attention task than 
during the manipulation and control tasks for healthy controls, MCI higher-cognition and 
MCI lower-cognition with cluster size, peak voxel MNI coordinates and corresponding t-
values. 

 
Activated areas (Brodmann area)               Cluster 
    (p < .001, uncorrected)             Size  x y z t-value 
  

Healthy controls: Divided attention > manipulation & control tasks 

Left/Right precuneus and posterior  662  6 -69 33 5.77 

cingulate gyrus (7, 31) 

Left precuneus (7)    10  -3 -48 54 3.91 

MCI higher-cognition: Divided attention > manipulation & control tasks 

Left inferior frontal gyrus, left caudate, 697  -12 9 0 5.74 

and left putamen (47) 

Left/Right precuneus and left posterior 521  21 -45 72 5.23  

cingulate gyrus (7, 31) 

Left cerebellum    35  -24 -54 -42 5.05 

Left middle temporal gyrus (21)  52  -45 -3 -18 4.34 

Right entorhinal & perirhinal areas (28, 35) 16  21 -27 -15 4.25 

Left/Right anterior cingulate cortex (24, 32) 50  0 36 9 4.16 

Right posterior cingulate cortex (31)  17  15 -57 21 4.07 

Right paracentral lobule (5)   12  6 -42 54 4.07 

Left occipitotemporal areas (36, 37)  111  -42 -39 -18 4.00 

Right inferior parietal lobule, supramarginal 28  45 -57 27 3.87 

and angular gyri (39, 40) 
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Right superior frontal gyrus (6)  14  24 -9 69 3.57 

MCI lower-cognition: Divided attention > manipulation & control tasks 

Left/Right precuneus and posterior  471  -6 -69 24 5.83 

cingulate gyrus (7, 23, 31) 

Left temporoparietal areas (22, 39)  59  -48 -63 21 5.03 

Right temporoparietal areas (39)  13  48 -66 24 4.04 

Right precuneus (7)    11  12 -69 33 3.85 
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Table 4 
 
Clusters (cluster-level correction at p < .05) significantly more activated in healthy 
controls than in MCI higher- and lower-cognition or significantly more activated in MCI 
higher- and lower-cognition than in healthy controls for the manipulation task, with 
cluster size, peak voxel MNI coordinates, corresponding t-values and correlations with 
task performances. 

 
Activated areas (Brodmann area)  Cluster 
    (p < .001, uncorrected)           Size  x y z   t    correlation  
 

Manipulation: MCI higher-cognition > Healthy controls 

Left postcentral gyrus (43)  34  -48 -12 21 4.45 0.27 

Left middle and superior  48  -39 18 48 4.44 0.21 

frontal gyri (6, 8) 

Manipulation: Healthy controls > MCI higher-cognition 

Left cerebellum   145  -42 -66 -24 5.32 0.51 

Manipulation: MCI lower-cognition > Healthy controls 

None 

Manipulation: Healthy controls > MCI lower-cognition 

Left inferior and middle  42  -42 30 18 4.46 0.26 

frontal gyri (45, 46) 

Left occipitotemporal areas (19, 37) 39  -48 -66 -12 3.91 -0.07 
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Table 5 
 
Clusters (>10 voxels) significantly more activated in healthy controls than in MCI 
higher- and lower-cognition or significantly more activated in MCI higher and lower-
cognition than in healthy controls for the divided attention task, with cluster size, peak 
voxel MNI coordinates, corresponding t-values and correlations with task performances. 

 
Activated areas (Brodmann area)              Cluster 
    (p < .001, uncorrected)                       Size x y z t      correlation 
 

Divided attention: MCI higher-cognition > Healthy controls 

Left/Right anterior cingulate cortex,  777 -9 9 -3 5.29 0.62* 

left caudate, left putamen, left insula,  

and left inferior frontal gyrus (13, 25, 47) 

Left fusiform gyrus (36, 37)   66 -36 -42 -15 4.74 0.31 

Left thalamus     52 -6 -15 18 4.42 0.48 

Left cerebellum and midbrain  32 -6 -39 -21 4.02 0.49 

Right putamen    30 24 15 -6 3.74 0.32 

Divided attention: Healthy controls > MCI higher-cognition 

None 

Divided attention: MCI lower-cognition > Healthy controls 

None 

Divided attention: Healthy controls > MCI lower-cognition 

None 

 

Note. * correlation significant at p < .05 
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Figure Captions 

Figure 1. Mean percentage of correctly solved equations in the manipulation task for the 

healthy controls, MCI higher-cognition and MCI lower-cognition groups. Note. * 

p < .05. 

Figure 2. Divided attention cost score for both the mean percentage of correctly solved 

equations and the correctly detected red targets for the healthy controls, MCI higher-

cognition and MCI lower-cognition groups. Note. * p < .05. 

Figure 3. Regions significantly more activated in MCI individuals than in healthy 

controls (red) or significantly more activated in healthy controls than in MCI individuals 

(blue) during the manipulation task. 

Figure 4. Regions significantly more activated in MCI individuals than in healthy 

controls (red) or significantly more activated in healthy controls than in MCI individuals 

(blue) during the divided attention task. 
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Figure 1. Mean percentage of correctly solved equations in the manipulation task for the 

healthy controls, MCI higher-cognition and MCI lower-cognition groups.  

Note. * p < .05. 
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Figure 2. Divided attention cost score for both the mean percentage of correctly solved 

equations and the correctly detected red targets for the healthy controls, MCI higher-

cognition and MCI lower-cognition groups. Note. * p < .05. 
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Figure 3. Regions (p < .001, uncorrected, cluster size > 10 voxels) more activated in MCI 

individuals than in healthy controls (red) or more activated in healthy controls than in 

MCI individuals (blue) during the manipulation task. 
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Figure 4. Regions (p < .001, uncorrected, cluster size > 10 voxels) more activated in MCI 

individuals than in healthy controls (red) or more activated in healthy controls than in 

MCI individuals (blue) during the divided attention task. 
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Discussion générale 
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7.1 Rappel et discussion des principaux résultats 

Le but de cette thèse était d’étudier les activations fonctionnelles associées à la 

mémoire épisodique et à la mémoire de travail dans le trouble cognitif léger (TCL).  La 

thèse comportait deux sous-objectifs, soit l’étude de l’effet de la sévérité de la maladie 

sur les patrons d’activations cérébraux des TCL, ainsi que l’étude des caractéristiques de 

la tâche sur ces patrons. Pour ce faire, nous avons administré à des personnes âgées 

saines et à des personnes TCL différentes tâches cognitives portant sur l’encodage et la 

récupération de matériel verbal. De plus, nous avons ajouté des tâches de mémoire de 

travail qui mesurent la manipulation d’information et la division de l’attention. Ces 

études ont mis en évidence une interaction entre le niveau de sévérité de la maladie et les 

processus cognitifs impliqués dans la tâche. 

 

Avant de mesurer les activations propres au TCL, nous avons évalué la fiabilité 

du signal IRMf chez les personnes TCL et chez les individus âgés sains (se référer à 

l’étude intitulée « Test-retest reliability of fMRI verbal episodic memory paradigms in 

healthy older adults and in persons with mild cognitive impairment »). Une bonne 

fiabilité du signal est essentielle à l’utilisation de l’IRMf comme marqueur de 

progression de la maladie ou encore comme outil pour mesurer l’effet des interventions. 

Dix personnes âgées saines et dix personnes TCL ont pris part à cette expérience. Des 

tâches d’encodage et de récupération de mots ainsi que de traitement phonologique, la 

lecture de pseudomots, ont été administrées aux participants à deux reprises, à six 

semaines d’intervalle. La reproductibilité a été mesurée à partir d’un ratio de 

chevauchement des voxels selon 4 seuils statistiques différents, de comparaisons 

statistiques des conditions d’une session à une autre, d’ANCOVAs et de corrélations 
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intra-classes. Les résultats ont montré une bonne reproductibilité au niveau des 

comparaisons de groupes (comparaisons statistiques des conditions d’une session à une 

autre et ANCOVAs). Ainsi, les différences d’activation observées entre les personnes 

âgées saines et les TCL sont similaires après six semaines d’intervalle. De plus, cette 

étude indique que les personnes âgées saines et les TCL montrent, en tant que groupes, 

un niveau de fiabilité similaire. Ces résultats diffèrent de ce qui a été noté chez les 

patients atteints de schizophrénie (Manoach et al., 2001), d’épilepsie (Fernandez et al., 

2003), d’aphasie non fluente chronique (Kurland et al., 2004) et d’un accident vasculaire 

cérébral (Chen & Small, 2007), où le niveau de fiabilité tendait à être inférieur à celui du 

groupe contrôle. Ceci pourrait s’expliquer par le fait que le TCL n’est probablement pas 

une pathologie très variable dans un court laps de temps, peu de variabilité intra-

individuelle, et qu’on ne s’attend ainsi pas à une dégénération ou une récupération 

significative durant un intervalle de six semaines. Ces résultats valident l’approche 

adoptée dans nos autres études, car ils révèlent que le début de la MA n’altère pas la 

reproductibilité du signal et qu’il est ainsi possible de comparer le patron d’activation des 

personnes âgées saines et des TCL. De plus, ces résultats indiquent que l’IRMf pourrait 

être utilisé comme outil pour mesurer les effets d’interventions pharmacologiques 

(Petersen et al., 2005) ou de stratégies préventives (Belleville et al.; Belleville et al., 

2006) chez les personnes portant un diagnostic de maladie d’Alzheimer (MA) ou à risque 

de développer la maladie.  Il faut néanmoins souligner que la reproductibilité du signal 

était beaucoup plus faible au niveau individuel (corrélations intra-classes). Ainsi, les 

individus montrent une assez grande variabilité dans leur signal IRMf d’une session à 

une autre, mais cette variabilité semble s’amoindrir lorsqu’on regroupe les participants. 

L’utilisation d’une méthodologie reposant sur des études de cas ou des études de cas 



 256 

multiples pour évaluer l’efficacité d’un traitement pose donc un défi particulier en raison 

de la faible reproductibilité du signal à un niveau individuel. En revanche, cette étude 

supporte le recours à une méthodologie faisant appel à des études de groupe. 

 

Le but de l’article intitulé « Functional neuroanatomy of the encoding and 

retrieval processes of verbal episodic memory in MCI » était de comparer le patron 

d’activation cérébral des personnes âgées saines et des personnes TCL. De plus, nous 

voulions déterminer s’il y avait un effet de sévérité sur ces différences d’activation. Pour 

ce faire, une tâche d’encodage et de récupération de mots et de pseudo-mots a été 

administrée à 10 personnes âgées saines et à 12 TCL. Même si aucune différence de 

performance n’a été notée entre les deux groupes de participants, plusieurs différences 

d’activation ont été observées, tout particulièrement durant l’encodage. En effet, les TCL 

ont montré plusieurs hypoactivations dans des régions qui sont connues, chez les patients 

MA, comme étant souvent compromises structurellement ou montrant de 

l’hypométabolisme à la TEP comme par exemple dans les gyri temporaux moyens et 

supérieurs. Nos résultats indiquent également des zones d’hyperactivation, dont l’une 

d’entre elle, le cortex préfrontal ventrolatéral, a montré une corrélation positive avec le 

niveau de performance des participants. Étant donné le nombre restreint de participants 

dans cette étude, l’effet de la sévérité a été mesuré en corrélant le signal dépendant du 

niveau d’oxygénation cérébrale (signal BOLD) des régions hyper- ou hypoactivées chez 

les MCI à leurs scores sur une échelle de fonctionnement cognitif global, la MDRS. Une 

corrélation positive a été obtenue pour deux des régions hypoactivées chez les TCL, les 

gyri temporaux moyens et supérieurs. Ainsi, les TCL les plus atteints cognitivement 

(faible score au MDRS) ont montré moins d’activation dans ces régions que ceux moins 
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atteints au plan cognitif. En somme, ces résultats nous ont permis de constater que les 

personnes âgées saines et les personnes TCL n’ont pas le même patron d’activation 

cérébral lors de l’exécution d’une tâche de mémoire et qu’ils montrent à la fois des 

hyperactivations et des hypoactivations. La présence d’hypoactivation était attendue 

puisqu’elle est généralement rapportée dans la maladie d’Alzheimer. En revanche, la 

présence d’hyperactivaiton pourrait être une caractéristique des stades les plus légers de 

la maladie et particulièrement, le TCL. 

 

Le but de l’article intitulé « Compensation and disease severity on the memory-

related activations in mild cognitive impairment » était d’évaluer directement cette 

hypothèse en examinant si la sévérité du TCL modulait le patron d’activation cérébral. 

Pour cela, le score médian du groupe de TCL au test de MDRS a été utilisé pour 

déterminer un groupe de TCL plus atteints (score inférieur à la médiane du groupe) et un 

groupe de TCL moins atteints (score supérieur à la médiane du groupe). Cette procédure 

nous a permis de tester l’effet de sévérité d’une manière plus précise que dans l’étude 

précédente qui faisait appel à une analyse corrélationnelle. En effet, le fait de séparer les 

participants en deux groupes permet d’évaluer si les conditions de la tâche modulent les 

changements d’activation. Une tâche d’encodage associatif composée de deux 

conditions, un encodage de paires de mots reliés sémantiquement et un encodage de 

paires de mots non-reliés sémantiquement, a été administrée aux participants. Les 

résultats indiquent que les TCL plus atteints ont des performances inférieures à celles des 

groupes de contrôles et de TCL moins atteints. Les données en neuroimagerie montrent 

que les TCL moins atteints montrent des hyperactivations au niveau du cortex préfrontal, 

de l’hippocampe gauche et des aires postérieures, des aires connues pour leur implication 
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dans les fonctions mnésiques (Cabeza & Nyberg, 2000). De manière intéressante, la 

condition d’encodage de paires de mots reliés sémantiquement a été la seule à entraîner 

une hyperactivation du cortex préfrontal ventrolatéral chez les TCL moins atteints. Cette 

région est connue pour son implication dans l’élaboration sémantique (Fletcher & 

Henson, 2001; Poldrack et al., 1999) et dans l’encodage de paires de mots liés 

sémantiquement (Kapur et al., 1996). Ce résultat est important, car il indique que les 

mécanismes compensatoires utilisés par les TCL ne sont pas fixes, mais varient selon le 

processus cognitif impliqué dans la tâche. Les TCL moins atteints n’ont pas montré 

d’hyperactivations dans le cortex préfrontal et ils ont même montré des hypoactivations 

dans les aires postérieures. Ces résultats confirment ainsi notre hypothèse qu’il y a 

présence de mécanismes compensatoires durant les premiers stades du TCL et que ces 

mécanismes compensatoires ne sont plus présents lorsque les atteintes cognitives 

deviennent plus importantes. 

 

L’article intitulé « Effect of disease severity on neural compensation of item and 

associative recognition in mild cognitive impairment » avait comme objectif de vérifier si 

les mêmes processus étaient présents pendant la phase de récupération d’information en 

mémoire. Il permettait ainsi de vérifier si le phénomène se généralisait à d’autres 

processus mnésique. Les deux groupes de TCL, les plus atteints et les moins atteints, et le 

groupe de personnes âgées saines ont réalisé une tâche de reconnaissance comprenant 

une condition dans laquelle les paires de mots à la récupération étaient soit intactes, soit 

recombinées (censée mesurer les processus de familiarité et de recollection) et une 

condition dans laquelle les paires étaient soit intactes, soit nouvelles (censée mesurer 

uniquement le processus de familiarité). Nous faisons l’hypothèse que la première 
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condition  impliquait un processus cognitif altéré plus précocement dans le TCL, la 

recollection, tandis que la deuxième reposait sur un processus cognitif altéré plus 

tardivement dans le TCL, la familiarité. Les résultats indiquent que les trois groupes ont 

des performances plus basses pour la tâche de paires de mots intactes/recombinées que 

pour la tâche intactes/nouvelles et que les TCL plus atteints ont des performances 

inférieures à celles des groupes de contrôles et de TCL moins atteints. Les données de 

neuroimagerie indiquent que les TCL moins atteints ont effectivement montré des 

hyperactivations uniquement durant la condition de recollection tandis que les TCL plus 

atteints ont montré des hyperactivations uniquement durant la condition de familiarité. 

De manière intéressante, ces hyperactivations étaient principalement situées dans des 

régions cérébrales typiquement associées à la récupération d’information en mémoire, 

telles que le cortex préfrontal et le lobule pariétal inférieur gauche. Ainsi, cette étude a 

également montré que les mécanismes compensatoires dépendent du degré d’atteinte du 

processus cognitif étudié. Ces résultats sont importants, car ils nous indiquent qu’il y a de 

la plasticité neuronale durant tout le stade du TCL, mais que la mise en branle de ces 

mécanismes dépend du type de processus cognitif impliqué. Ainsi, au fur et à mesure que 

les personnes TCL progressent vers la MA, on observe une dégradation de leurs 

mécanismes compensatoires pour la recollection  avec une émergence des mécanismes 

de compensation pour la familiarité. Ceci pourrait s’expliquer par le fait que les 

neuropathologies caractéristiques de la MA affectent très rapidement les régions 

impliquées dans les processus de recollection, mais n’affectent que plus tardivement les 

aires impliquées dans les processus de familiarité (Arnold, Hyman, Flory, Damasio, & 

Van Hoesen, 1991; Braak & Braak, 1995). 
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Enfin, l’article « Emergence and breakdown of neural plasticity during mild 

cognitive impairment » avait comme objectif d’étendre ces hypothèses à une autre 

fonction cognitive touchée dans le TCL et la MA: les processus exécutifs en MdeT. 

Ainsi, deux tâches impliquant des composantes différentes des fonctions exécutives, soit 

la manipulation de l’information et l’attention divisée, ont été administrées à deux 

groupes de 12 TCL chacun et à un groupe de 14 personnes âgées saines. Les résultats 

indiquent la présence d’hyperactivations chez les TCL moins atteints lors de l’exécution 

des deux tâches et ce, tout particulièrement dans les aires préfrontales gauches. De plus, 

des analyses corrélationnelles ont montré une association positive entre l’hyperactivation 

d’un réseau frontostriatal chez les TCL moins atteints et leurs performances à la tâche. 

Ces résultats suggèrent que ce réseau frontostrial pourrait être le fruit d’une 

réorganisation fonctionnelle de nature compensatrice. Le groupe de TCL plus atteint a 

obtenu un tout autre patron d’activation: ils n’ont pas montré d’hyperactivations durant la 

tâche d’attention divisée et ils n’ont montré que des hypoactivations lors de la tâche de 

manipulation. Ces données sont importantes, car elles montrent que les mécanismes 

compensatoires observés en début de TCL, ainsi que leur dégradation dans les stades plus 

avancés du TCL, ne se limitent pas aux fonctions mnésiques mais touchent aussi les 

fonctions exécutives. Cette incapacité à compenser lors des tâches exécutives chez les 

TCL plus atteints pourrait ainsi exacerber leurs troubles mnésiques (Ranganath, Johnson, 

& D'Esposito, 2000) et représenter ainsi le facteur critique dans la progression du TCL 

vers la démence (Royall, Palmer, Chiodo, & Polk, 2005). 
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7.2 Mécanismes compensatoires 

Les résultats de nos études pointent vers une prédominance des hyperactivations 

chez les TCL les moins atteints qui, selon notre hypothèse, serait les TCL en début de 

continuum. Une telle présence des hyperactivations dans un groupe de participants, 

comparativement à un groupe contrôle, a été interprétée comme étant soit premièrement 

de la dédifférentiation, c’est-à-dire un recrutement non-sélectif reflétant une dispersion 

généralisée de l’activation dans des régions non pertinentes pour la tâche (Li & 

Lindenberger, 1999; Logan, Sanders, Snyder, Morris, & Buckner, 2002), soit 

deuxièmement des mécanismes permettant de compenser les déficits liés à la lésion et 

ainsi améliorer les performances (Cabeza, Anderson, Locantore, & McIntosh, 2002; 

Grady et al., 2003; Grady, McIntosh, & Craik, 2005). Un des modèles de compensation 

les plus influants chez les personnes âgées est le modèle HAROLD (Hemispheric 

Asymmetry Reduction in OLDer adults). Cette théorie soutient que les jeunes ont 

tendance, lors de la mise en place de mécanismes compensatoires, à activer un des deux 

lobes préfrontaux de manière proéminente durant l’exécution de tâches cognitives 

(apprentissage, récupération en mémoire à long terme, mémoire de travail, fonctions 

exécutives et perception) tandis que les personnes âgées ont plutôt tendance à activer le 

cortex préfrontal de manière bilatérale. De manière intéressante, cette bilatéralisation des 

activations est uniquement observée chez les personnes âgées montrant des performances 

à un niveau similaire à celui des jeunes. Ainsi, il semble important de vérifier si les 

hyperactivations s’accompagnent d’augmentation ou de baisse de performances à la 

tâche si l’on désire déterminer si elles sous-tendent des mécanismes compensatoires ou 

de la dédifférentiation. Dans le cas de nos études, le fait que les MCI moins atteints ont 

obtenu des performances comparables à celles des participants contrôles suggère que 
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leurs hyperactivations représentent des mécanismes de compensation. Cela est également 

corroboré par la présence d’une corrélation positive entre l’hyperactivation des TCL 

moins atteints et leurs performances à la tâche dans deux de nos études. 

 

Bien qu’il y ait un certain consensus sur les circonstances où des hyperactivations 

puissent être interprétées comme reflétant des mécanismes compensatoires, la 

localisation de l’aire compensatrice semble toutefois dépendre du modèle (Banich, 1998; 

Cabeza, 2002; Edelman & Gally, 2001; Price & Friston, 2002; Prvulovic, Van de Ven, 

Sack, Maurer, & Linden, 2005). En effet, certains stipulent que les hyperactivations 

devraient se trouver dans des régions impliquées dans la fonction cognitive: une plus 

grande activation du réseau requis pour la tâche permettrait ainsi de préserver un certain 

niveau de performance. D’autres modèles croient plutôt que les hyperactivations 

devraient se trouver dans un réseau alternatif composé de structures qui ne sont 

normalement pas activées chez les sujets contrôles lors de l’exécution de cette tâche. Ce 

réseau alternatif viendrait ainsi supporter le réseau actuel en augmentant le nombre 

d’aires cérébrales participant à la tâche ou en permettant l’utilisation d’une autre stratégie 

cognitive. Il apparait ainsi intéressant de s’interroger sur la localisation des 

hyperactivations des TCL moins atteints et de vérifier si elle dépend de la fonction 

cognitive impliquée ou si, au contraire, un seul réseau alternatif sert toujours de 

mécanisme compensatoire pour toutes les tâches. 

 

 Une analyse des divers résultats des études de cette thèse pointent vers une 

certaine tendance en ce qui concerne la localisation des régions impliquées dans les 

mécanismes compensatoires. En effet, il semblerait que les régions hyperactivées par les 
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TCL moins atteints sont principalement dans des régions impliquées dans l’exécution de 

la tâche (c-à-d. activées par les contrôles) et semblent ainsi différer selon le type de 

processus cognitif impliqué. À titre d’exemple, les deux régions hyperactivées par les 

TCL dans la deuxième étude (le gyrus préfrontal inférieur gauche et le cortex prémoteur 

gauche) étaient toutes deux des structures déjà activées par les contrôles. Des résultats 

similaires ont été observés dans les autres études, mais la localisation des régions 

différait selon la fonction cognitive impliquée dans la tâche. Une deuxième tendance qui 

émerge de nos résultats est qu’en plus des régions impliquées dans la tâche, des 

activations additionnelles dans le lobe frontal ont été observées dans toutes nos études. 

Ainsi, l’hyperactivation du cortex préfrontal ne semble pas dépendre de la fonction 

cognitive impliquée. Il est donc possible que les aires préfrontales jouent un rôle 

particulier dans la compensation et que leurs hyperactivations reflètent l’implantation 

d’un réseau compensatoire pouvant supporter la plupart des processus cognitifs. Il est 

aussi intéressant que, lors de la troisième étude, les TCL moins atteints n’ont pas 

seulement activé les mêmes aires préfrontales que les contrôles dans l’hémisphère 

gauche, mais ils ont aussi activé ces mêmes aires dans l’hémisphère droit. Ces résultats 

sont ainsi en accord avec le modèle HAROLD et suggère qu’une activation bilatérale des 

régions frontales puisse servir de mécanisme compensatoire aussi bien chez les 

personnes âgées saines que chez celles qui sont possiblement en phase prodromale d’une 

démence. 

 

7.3 Hypoactivations 

 Le TCL étant un prodrome de la MA, on pourrait s’attendre à ce que les 

hypoactivations observées chez les TCL plus atteints, c’est-à-dire ceux qui sont 
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probablement les plus près du moment de progression vers la MA, soient principalement 

situées dans des aires connues pour leur accumulation de neuropathologies (plaques 

amyloïdes ou protéine Tau) lors du développement de la maladie. Ainsi, si l’on se fie aux 

études ayant fait des autopsies sur des patients MA décédés, les hypoactivations 

devraient se situer principalement dans les aires temporales médiales ainsi que dans le 

cortex associatif (aires préfrontales et pariétales, lobe temporal latéral et cortex cingulé) 

(Arnold et al., 1991; Braak & Braak, 1991). Il est intéressant de noter que ces régions 

sont aussi celles qui ont montré la plus grande quantité de marqueur de plaques 

amyloïdes, le Pittsburgh Compound B, chez des personnes TCL et des patients MA 

(Frisoni et al., 2009; Kemppainen et al., 2007; Klunk et al., 2004; Rowe et al., 2007).  

 

En général, la très grande majorité des hypoactivations des TCL observées dans 

nos études se trouvaient effectivement dans des régions connues pour leur atteinte dans la 

MA (ex. : lobule pariétale inférieur gauche, cortex cingulé et cortex préfrontal médial). 

Cette observation est compatible avec le modèle de Prvulovic et ses collègues (2005) qui 

stipule qu’un dommage important à une région diminue tant sa capacité de réserve, que 

de traitement. La région atteindrait ainsi beaucoup plus rapidement son niveau 

d’activation maximale et elle montrerait donc généralement un niveau d’activation 

inférieur à celui des sujets sains, sauf pour les tâches peu exigeantes. Ce modèle est 

entièrement compatible avec nos résultats: nous avons trouvé des hypoactivations dans 

des régions possiblement endommagées chez les TCL les plus atteints lors de toutes les 

tâches cognitives, excepté la moins exigeante (familiarité). Il serait intéressant d’utiliser 

des marqueurs de plaques amyloïdes et de voir s’il y a une association entre le niveau 

d’atteinte pathologique d’une région et son hypoactivation. 
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7.4 Limitations 

Les études rapportées ici présentent certaines limitations communes qui doivent 

être gardées à l’esprit lors de l’interprétation des résultats. Premièrement, toutes ces 

études ont été faites selon un devis transversal plutôt que longitudinal. Il sera ainsi 

important de reproduire les résultats d’effet de sévérité en suivant un groupe de sujets 

TCL pendant quelques années et en montrant un changement des hyperactivations pour 

des hypoactivations chez ces mêmes sujets. Une autre limitation concerne la possibilité 

que certaines de nos personnes TCL ne soient pas dans une phase prodromale de la MA, 

mais plutôt des personnes âgées « saines » qui ont toujours montré des capacités 

mnésiques inférieures au reste de la population. Cependant, il faut souligner le fait que 

les critères TCL utilisés dans nos études ne comprenaient pas uniquement des critères 

psychométriques, mais aussi la présence d’une plainte mnésique, préférablement 

corroborée par un proche. La présence d’une plainte augmente ainsi la probabilité que les 

déficits mnésiques soient récents et qu’il dénote ainsi d’une certaine détérioration 

cérébrale. Il serait bon de noter le fait que plus de 50% de nos TCLs ont montré un déclin 

cognitif ou une progression vers la MA après seulement deux ans de suivi. Ce taux de 

progression est semblable à ce qui est observé dans les autres laboratoires ou cliniques 

(Gauthier et al., 2006) et suggère ainsi qu’une proportion importante de nos TCL sont 

possiblement atteints d’un processus dégénératif. Par ailleurs, cette dégénérescence des 

fonctions mnésiques a été observée dans les deux sous-groupes de TCL, ce qui rend peu 

probable l’hypothèse que nos TCL les moins atteints soient des personnes âgées saines 

avec de faibles capacités mnésiques et que nos TCL les plus atteints représentent les 

seuls « vrai TCL ». Nous croyons plutôt que le stade du TCL représente un continuum et 
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qu’il est ainsi possible d’identifier des personnes qui soient assez éloignées de la 

progression vers la démence et d’en identifier d’autres qui qu’en sont pas très loin. 

 

D’autres limitations plus techniques doivent aussi être mentionnées. 

Premièrement, toutes nos études IRM ont été effectuées avec un devis en bloc plutôt 

qu’évènementiel. Une faiblesse du devis en bloc réside dans son incapacité à comparer 

séparément les bonnes et les mauvaises réponses des participants, ce qui a été 

particulièrement utilisé avec les tâches mnésiques (Wagner et al., 1998). Toutefois, le 

devis en bloc comporte plusieurs avantages, dont celui d’être plus facile à suivre pour les 

patients présentant des difficultés cognitives étant donné que les conditions alternent 

moins fréquemment. De plus, ce devis offre une puissance de détection maximale, ce qui 

est particulièrement critique pour des études comme les nôtres où des sous-groupes de 

patients sont comparés entre eux et qu’on risque ainsi de retrouver des tailles d’effets 

plus modestes.  Maintenant que des effets de sévérité et de processus cognitifs ont été 

montrés avec un devis en bloc, il serait intéressant d’essayer de reproduire ces résultats 

avec un devis évènementiel. Enfin, l’utilisation d’une échelle clinique (c-à-d. le MDRS) 

comme indicateur de sévérité de la maladie pourrait être critiqué. Néanmoins, nous 

avons préféré utilisé une échelle mesurant les déficits cognitifs globaux à des marqueurs 

neuroanatomiques, tel que le volume hippocampique, car les critères diagnostiques 

actuels de la MA repose sur des critères cliniques. Il serait toutefois intéressant 

d’analyser à nouveau ces données en séparant les sujets TCL selon leur volume 

hippocampique ou selon un marqueur de plaques amyloïdes tel que le marqueur PIB 

(Pittsburgh Compound B) 
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7.5 Implications et perspectives futures 

Les résultats de cette thèse sont compatibles avec la notion d’un continuum dans 

le TCL où les premiers stades sont caractérisés par une émergence de mécanismes 

compensatoires suivi d’un effondrement de ces même processus lors des stades plus 

avancés. Ce continuum a plusieurs implications cliniques importantes, car il suggère que 

bien que toutes les personnes TCL soient à un plus grand risque de développer une MA, 

il est possible d’en identifier un sous-groupe qui lui est à très haut risque de progresser 

plus rapidement vers la maladie. D’ailleurs, après un suivi de deux ans, aucun de nos 

TCL moins atteints n’avaient progressé tandis que 62% (8/13) de nos TCL plus atteints 

avaient progressé vers une MA. Ainsi, l’utilisation du concept de sévérité chez les TCL 

nous permet d’avoir une meilleure idée du pronostic à court terme de ces personnes. De 

plus, les études de cette thèse ont montré que la dégradation des mécanismes 

compensatoires chez les TCL n’arrivait pas au même moment dans le continuum, mais 

dépendait plutôt du processus cognitif requis pour exécuter la tâche. À titre d’exemple, 

les personnes TCL semblent montrer une difficulté à compenser beaucoup plus tôt pour 

les processus de recollection et il semble ainsi important d’investiguer en profondeur les 

fonctions cognitives de ces personnes afin de leur offrir des recommandations qui sont 

centrées sur les processus cognitifs préservés. De plus, ces données suggèrent aussi que 

les programmes d’entraînement cognitif devraient viser des processus cognitifs où il y a 

encore un potentiel de compensation possible. Il pourrait ainsi être intéressant de former 

deux types d’entraînement cognitif pour les TCL: un pour les moins atteints qui 

reposerait principalement sur des mécanismes d’encodage profond, d’élaboration 

sémantique, de manipulation de l’information et d’aide à la recollection et un autre 
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programme pour les TCL plus atteints qui reposerait principalement sur du support à la 

familiarité et au contrôle attentionnel. 

 

Une autre implication importante de ces études est au niveau de l’interprétation 

des études de neuroimagerie fonctionnelle chez les personnes TCL dans la littérature. En 

effet, certaines études ont identifié des hyperactivations chez les TCL tandis que d’autres 

ont identifié des hypoactivations. Ces données, qui semblent au premier abord comme 

étant divergentes, pourraient s’expliquer par un différent niveau de sévérité de leurs 

participants TCL. À titre d’exemple, Yetkin et ses collègues ont étudié des TCL que l’on 

pourrait considérer comme moins atteints (MMSE moyen de 28) et ont trouvé des 

hyperactivations lors d’une tâche impliquant les fonctions exécutives (Yetkin, 

Rosenberg, Weiner, Purdy, & Cullum, 2005) tandis que Dannhauser et ses collaborateurs 

ont étudié des TCL plus atteints (MMSE moyen de 24) et ont plutôt observé des 

hypoactivations. Il serait ainsi intéressant de faire une méta-analyse de la littérature en 

séparant les études ayant des TCL plus atteints et moins atteints. Si le nombre d’études le 

permet, il serait aussi intéressant de prendre en considération le type de processus 

cognitif impliqué dans les tâches, étant donné que nous avons montré que cela influence 

la possibilité de mécanismes compensatoires.  

 

Bien que les études de cette thèse aient répondu à nos questions initiales, 

plusieurs nouvelles interrogations en découlent. Premièrement, il serait intéressant de 

suivre ces TCL durant quelques années et de voir si une augmentation de la sévérité 

induit une transition de l’hyperactivation vers l’hypoactivation chez ces sujets et s’il y a 

corrélation avec une baisse des performances lors de l’exécution de la tâche. En plus 
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d’effectuer des contrastes entre les conditions et entre les groupes comme nous avons fait 

dans nos études, il serait enrichissant d’avoir aussi recours à des analyses de connectivité 

fonctionnelle. Ce type d’analyse nous permettrait de mieux identifier et départager les 

réseaux qui sont impliqués dans la tâche de ceux dits « alternatifs » qui servent aux 

mécanismes compensatoires. Jusqu’à présent, une seule étude a utilisé des analyses de 

connectivité fonctionnelle chez les TCL (Celone et al., 2006) et une seule les a utilisées 

chez les patients MA (Grady, Furey, Pietrini, Horwitz, & Rapoport, 2001) et elles ont 

toutes deux observé une altération des corrélations entre les structures impliquées dans la 

tâche. Il serait toutefois important de mieux comprendre l’impact de ce changement des 

connectivités sur les mécanismes compensatoires. 

 

Il serait aussi intéressant d’étudier comment la sévérité de la maladie affecte le 

mode par défaut des sujets TCL, c’est-à-dire leur niveau de base d’activation lorsqu’ils 

ne font aucune tâche (donc au repos) (Raichle et al., 2001). En effet, il a été montré que 

ce mode par défaut est altéré chez les patients MA (Greicius, Srivastava, Reiss, & 

Menon, 2004) et il serait pertinent d’essayer d’identifier à quel moment de la maladie ces 

changements arrivent.  

 

En sommes, les études de cette thèse ont permis d’identifier une interaction entre 

le niveau de sévérité des personnes TCL, le type de processus cognitif impliqué dans la 

tâche et le niveau d’activation observé comparativement aux sujets contrôles. Les 

résultats montrent une progression durant la phase TCL: les premiers stades sont 

caractérisés par la présence d’hyperactivations et de mécanismes compensatoires pour 

plusieurs processus cognitifs (encodage, recollection, manipulation de l’information et 
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attention divisée) tandis que les stades plus avancés sont caractérisés par des 

hypoactivations et par une dégradation des mécanismes compensatoires pour la plupart 

des processus cognitifs, sauf ceux connus pour être préservés plus longtemps dans la MA 

(familiarité et possiblement attention divisée). Ces données ont plusieurs implications 

cliniques et fondamentales et suggèrent que l’imagerie par résonance magnétique 

fonctionnelle pourrait être utilisée comme marqueur cérébral des effets d’intervention 

cognitive ou pharmacologique. En effet, ces résultats nous permettent de faire des 

prédictions sur la manière dont un traitement devrait moduler l’activation cérébrale chez 

les TCL. Il sera donc intéressant de vérifier si les traitements actuels ou futurs sont ou 

seront capables de contrer cette dégradation des mécanismes compensatoires et de 

ramener de l’hyperactivation chez des personnes TCL plus atteints. 
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Abstract 

Whereas presence of a subjective memory complaint is a central criteria for mild 

cognitive impairment (MCI), little work has been done to empirically measure its nature 

and severity. The Self-Evaluation Questionnaire (QAM) assessed memory complaints 

relative to 10 domains of concrete activities of daily life in 68 persons with MCI, 26 

persons with Alzheimer’s disease (AD) and 81 healthy older adults. In addition, a 

neuropsychological battery was administered to assess whether subjective complaints 

were linked to actual cognitive performance. The findings indicate that individuals with 

MCI report more memory complaints than controls for a range of specific 

materials/circumstances. MCI and AD individuals did not differ in their level of memory 

complaints. Correlational analyses indicated that a higher level of memory complaints 

relative to conversations and to movies and books were associated with a higher level of 

objective cognitive deficits in persons with MCI but not in AD.  Furthermore, complaints 

increased in parallel with global cognitive deficits in MCI. These results suggest that 

MCI report more memory complaints than healthy older controls, but only in specific 

domains and circumstances and that anosognosia is more characteristic of the demented 

than of the MCI phase of Alzheimer’s disease. 

 
 

Mesh or key words:  memory, cognition, neuropsychology, dementia, amnesia, 

neuropsychological tests 
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Introduction 

Mild cognitive impairment (MCI) has been identified as a risk factor for the 

development of AD as it has been shown that a large proportion of persons who meet the 

clinical criteria for MCI will progress to dementia (Gauthier et al., 2006). Typically, the 

criteria for MCI include the presence of an objective cognitive deficit relative to 

normative values and the presence of a subjective complaint (Petersen et al., 1999). In 

addition to being central to the defining criteria for MCI, the subjective complaint is also 

used by clinicians to support further investigation when there is suspicion of cognitive 

decline. Surprisingly, very little is known about the nature and severity of the cognitive 

complaints that characterize MCI.  

 

One major objective of the present research was to assess the specific domains of 

complaint in persons with MCI. It is now well established that individuals with MCI do 

not show general cognitive decline and that episodic memory is the cognitive domain for 

which they show the greatest impairments (Collie & Maruff, 2000; Nordahl et al., 2005; 

Perri et al., 2005; Petersen et al., 1999). Thus, it is expected that the reported cognitive 

problems of people with MCI relate to domains that require episodic memory. However, 

the majority of studies only examined a global level of memory complaints and none 

have looked at specific domains of complaints. Such a global assessment approach could 

lead to misleading interpretations of the level of complaint. For instance, when asking 

one general question about subjective memory evaluation, Jungwirth et al. (2004) found 

that the majority (94%) of memory-impaired subjects did not complain about their 

memory, whereas Lam et al. (2005) obtained the opposite finding with a short (five 
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questions) memory complaint questionnaire. This may result from the narrow set of 

questions or from the nature of the domains addressed by short questionnaires. 

 

Another important objective in relation to complaints in MCI was to assess their 

actual predictive value of objective capacities. Previous findings are inconsistent 

regarding whether or not memory complaints are representative of the actual cognitive 

deficits in this population. Lam and collaborators (2005) found an association between 

memory complaint and cognitive test performances. Yet, other studies have found no 

association between self-reported memory complaint and objective memory deficits 

(Carr et al., 2000; Derouesne et al., 2004; Farias et al., 2005; Jungwirth et al., 2004). 

Again, the way in which memory complaints are measured is an issue. It is possible that 

relying on a comprehensive or focused assessment of the complaint affords a better fit 

with cognitive performance. 

 

Finally, an important question to address relates to the changes that occur in the 

level and nature of complaint as individuals progress through the MCI phase, and from 

MCI to AD. First, it is well accepted that AD is characterized by anosognosia and that 

the level of anosognosia in AD increases with the severity of the disease (Kashiwa et al., 

2005; Starkstein et al., 2006). This inverse relationship between complaint and cognition 

as the disease progresses is illustrated in Figure 1A. However, it is unclear how the 

cognitive complaint evolves from MCI to AD and within the MCI phase. While some 

studies have concluded that individuals with MCI and individuals with AD have a similar 

level of anosognosia (Vogel et al., 2005; Vogel et al., 2004), others have found that 

persons with MCI report more cognitive problems (Kalbe et al., 2005) or functional 



 xxv

difficulties (Farias et al., 2005) than what is reported by their informant, indicating an 

overestimation of their deficits. One possibility is that these differences are a function of 

the phase during which MCI participants were tested: the initial phase could be 

associated with a higher level of complaint, which would decrease as persons develop 

more severe deficits and anosognosia. This association would mimic the one found in 

AD and shown in Fig 1A. On the other hand, the complaint could increase along with the 

deficits during the MCI phase, as illustrated in Figure 1B, with anosognosia only 

appearing during the AD phase along with the emergence of executive impairment. 

Discrepancies could also relate to the domains for which persons with MCI are 

questioned. However, to our knowledge, no study has investigated the level and nature of 

the complaint within the MCI stage and as a function of the severity level of cognitive 

deficit.  

 

In summary, the literature on the nature and level of complaint in MCI is sparse 

and the data are inconclusive. Several factors could explain the divergent findings found 

in the literature. Many studies investigated memory complaint with a limited set of 

questions (the number of questions often varying between 1 and 5) or used a large-scale 

tool to measure cognition (e.g., Mini-Mental State Examination (MMSE)). These are 

relevant factors because persons with MCI have mild cognitive decline, which may be 

obscured by the use of gross cognitive tasks. The modest cognitive impairment of MCI 

may result in more focused areas of difficulty, and thus, of complaints. For these reasons, 

more specific measures of the memory complaints that are specific to the MCI 

population are warranted. In addition, the complaint may change as MCI evolves toward 

AD, and severity has to be taken into account. 



 xxvi

The goal of the present study was to investigate self-reported complaints related 

to cognition in everyday situations in normal elderly persons, persons with MCI, and 

persons with AD by taking into account the aforementioned factors. More importantly, 

we wanted to characterize the nature and severity of the cognitive complaint of MCI and 

AD persons and to determine if this complaint is linked with their actual memory deficits 

and with the severity of their overall cognitive decline. We used the Self-Evaluation 

Questionnaire (QAM; Van der Linden et al., 1989) to assess self-reported complaints. 

The advantage of this questionnaire is that it contains a large number of questions 

grouped in sections that reflect different cognitive deficits: episodic memory, working 

memory, prospective memory, general events, face processing, orientation in space and 

praxia. In addition, results from neuropsychological tests were used to assess how 

subjective complaint is associated with actual cognitive performance. We focused on 

episodic memory and executive functions as these are components that are impaired 

during the MCI phase (Belleville & Ménard, 2006; Hodges, 2006). The influence of 

depression on complaint was also measured. Psychoaffective symptoms could lead to an 

over-estimation of the cognitive difficulties in persons with MCI in light of recent studies 

showing higher levels of anxiety and depression in these individuals (Gabryelewicz et al., 

2004; Hwang et al., 2004; Kumar et al., 2006; Lopez et al., 2005; Lyketsos et al., 2002). 

Finally, the impact of progression in the disease and the role of the severity of cognitive 

deficits in complaint were measured. This was achieved by comparing the complaint in 

persons with MCI to that expressed by persons with AD, and by comparing the 

complaint in MCI persons with high and low global cognitive functioning.  
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We hypothesized that people with MCI would report more memory complaints 

than healthy older adults on the sections of the QAM that are indices of episodic memory 

and that their level of complaint would be equivalent or even more important than that of 

AD patients because individuals with AD are known to exhibit a certain degree of 

anosognosia. We also hypothesized that there would be an association between complaint 

and formal deficit in MCI and that persons with MCI who exhibit more severe cognitive 

impairments would show more cognitive complaints. However, no association was 

expected between complaint level and formal cognitive deficits in AD. Overall, this 

would be consistent with anosognosia appearing during the AD phase. 

 

Method 

Participants 

A total of 175 participants, 26 AD patients, 68 persons with MCI, and 81 healthy 

older adults participated in this study.  Three persons with MCI and one healthy control 

did not complete the entire QAM questionnaire and were thus excluded from some of the 

analyses. Healthy older adults (22 males) were between 50 and 87 years of age (M = 

68.6; SD = 8.2), and had a mean of 14.2 years of education (SD = 3.6). Persons with 

MCI (29 males) were between 52 and 84 years of age (M = 69.1; SD = 7.9), with an 

average of 13.9 years of education (SD = 4.3), and persons with AD (13 males) were 51 

to 85 years of age (M = 74.5; SD = 7.7 ) and had an average of 12.1 years of education 

(SD = 5.0). French was the first language of all participants.  
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Participants with AD and MCI were recruited from memory clinics where they 

had received their diagnosis following assessment by an experienced clinical neurologist 

and following extensive neuropsychological testing (see Table 1). In addition, AD and 

MCI participants went through an extensive medical, neurological and neuroradiological 

examination to exclude the presence of any other significant systemic, neurological or 

psychiatric condition that could explain their cognitive difficulties.  

 

Participants with MCI met the criteria proposed by Petersen et al (1999) for 

amnestic and non-amnestic types, single or multiple domains: 1) they consulted because 

they worried about their memory; 2) they performed at least 1.5 SD below the average 

level of persons of similar age and education on standardized memory tests (single 

domain amnestic MCI), on standardized memory and non-memory tests (multiple 

domain amnestic MCI), or on standardized non-memory tests (non-amnestic MCI); 3) 

they showed no global cognitive impairment on the basis of the MMSE; 4) nor any 

significant impact on daily functions as measured by the SMAF functional impairment 

scale and clinical interview. Sixteen participants with MCI met the criteria for single 

domain amnestic MCI, 49 met the criteria for multiple domain amnestic MCI, and 3 met 

the criteria for non-amnestic MCI. AD patients were diagnosed according to the 

NINCDS-ADRDA (McKhann et al., 1984), and DSM-IV criteria. The severity of their 

disease ranged from mild to moderate, on the basis of the neuropsychological and clinical 

assessments. Elderly controls were recruited from the community. Healthy older adults 

also completed the clinical and neuropsychological assessment to ensure that they did not 

suffer from cognitive deficits. The study was approved by the Institut Universitaire de 

Gériatrie de Montréal Human Ethics Committee. 
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Memory questionnaire 

The Self-Evaluation Complaint Questionnaire (QAM; Van der Linden et al., 

1989) is composed of 64 questions divided into ten sections representing different 

dimensions of concrete activities and situations of daily life. The ten sections are 1-

Conversation, 2-Movies and Books, 3-Slips of Attention, 4-People, 5-Use of Objects, 6-

Political and Social Events, 7-Places, 8-Actions to Perform, 9-Personal Events, 10-

General. The sections cover a range of cognitive domains including episodic memory (1-

Conversation; 2-Movies and Books), working memory (3-Slips of Attention), persons’ 

knowledge (4-People), praxia (5-Use of Objects), knowledge about general events (6-

Political and Social Events), orientation in space (7-Places), prospective memory (8-

Actions to Perform), autobiographical memory (9-Personal Events) and the impact of 

environmental/personal factors on memory (10-General). Each section includes 2 to 14 

questions. For each question, participants make a judgment on a 6-point scale (from 

never = 1 to always = 6) about the frequency with which they encounter difficulties in a 

particular situation.  A single score per section is determined by averaging the responses 

on all questions within the section. A total score, corresponding to the average score 

across sections, is also computed to assess the overall level of complaint. Examples of 

questions for each section are shown in Table 2.  

 

Global Cognitive Function 

The Mini-Mental State Examination (MMSE; Folstein et al., 1975) and the Mattis 

dementia rating scale (MDRS; Mattis, 1976) were used to assess global functioning and 

dementia severity.  
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Functional and psychological assessment 

The Functional Autonomy Measurement System (SMAF; Desrosiers et al., 1995) 

was used to measure functional autonomy. It is a 29-item scale that measures functional 

ability in five areas: activities of daily living, mobility, communication, mental functions 

and instrumental activities of daily living. A total disability score (on –87) was calculated 

for each subject. Depression was assessed using the short version (5-item) of the 

Geriatric Depression Scale (GDS; Yesavage, 1988).  

 

Memory 

Memory was evaluated with a cued and free word recall task (RL/RI-16; 

Buschke, 1984; Van der Linden et al., 2004) and with a text memory of the BEM 

(Signoret, 1991). The RL/RI-16 allows for an assessment of patients’ memory capacities 

when effective processing is provided during the learning of 16 words. There are three 

trials, with free recall followed by cued recall. A delayed free and cued recall is done 

after a 20 min-delay. Text memory involves presentation of a short story followed by its 

immediate and delayed recall. 

 

Executive functions 

Executive functions were evaluated with the third plate of Stroop-Victoria where 

participants are asked to name color words printed in non-corresponding colors of ink 

(Regard, 1981) and with the copy of Rey’s complex figure. The score on the copy of the 

Rey’s complex figure measures copy planning and strategy. 
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Data analysis 

Groups differences on socio-demographic factors were assessed with one–way 

analyses of variance (ANOVA) for the continuous variables age and education. 

Difference in gender composition was assessed with chi-square. In the case of significant 

Group differences, further analyses included the relevant variable as a covariate.  

 

To assess Groups differences on the QAM, a one–way multiple analysis of 

variance (MANOVA) was done using Group (controls, MCI, AD) as a between-subject 

factor on the scores of the ten sections of the QAM. MANOVA is used in designs that 

have multiple dependent measures likely to be intercorrelated as is the case here.  It 

forms a new dependant variable that is a linear combination of the measured dependant 

variables. It is thus a conservative test that reduces the likelihood of type 1 error 

(Tabachnick & Fidell, 2007). In the case of a significant group difference on the 

MANOVA, analysis of the location of the difference was done by performing individual 

ANOVAs on the individual scores for each section. 

 

A correlationnal approach was used to test the relationship between subjective 

complaint on the QAM sections, depression and cognitive performance. First, in order to 

reduce the number of variables, control for type 1 error and increase signal-to-noise ratio, 

performance on the cognitive tests were grouped to create three composite scores: a 

memory composite score, a composite score for the executive domain and a severity 

composite.  The cognitive tests were placed on the same scale by calculating individual 

Z-scores using the mean and SD of the control group as a reference. The memory 

composite score was obtained by averaging the Z-scores on the BEM delayed recall, 
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RL/RI-16 free recall Trial 3, and RL/RI-16 delayed free recall. The executive composite 

score was obtained by averaging Z-scores on Rey’s complex figure (score) and Stroop-

Victoria (number of errors: note that to keep higher Z-scores as indicating higher 

performance, Z-scores for number of errors were reversed). The severity composite score 

was obtained by averaging the Z-scores on the MMSE and MDRS. It should be noted 

that a low severity score indicates low MMSE and MDRS scores, and thus higher deficits 

of global cognitive function. Pearson’s partial correlations were then computed between 

the QAM sections, the GDS and three composite scores. We used only those sections for 

which significant MCI/Control group differences were found to reduce the number of 

comparisons. In order to control for type 1 error, a conservative p value of 0.005 was 

used as significance threshold. 

 

The effect of overall cognitive deficit was assessed by separating participants 

with MCI into two groups: one with a higher level of overall cognitive functioning and 

one with a lower level of overall cognitive functioning. This was done using a split-

median on the MDRS scores. The cognitive complaints of those with the highest MDRS 

scores (n=32) were compared to the cognitive complaints of those with the lowest scores 

(n=33) using a one–way MANOVA with Group (high-MDRS and low-MDRS) as a 

between-subject factor on the ten sections of the QAM. The same procedure was used 

with AD patients.  
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Results 

Sociodemographic data 
 

To assess whether the groups differed on age, a one–way analysis of variance 

(ANOVA) with Group (controls, MCI, AD) as a between-subject factor was performed. 

The analysis indicated a main Group effect, F(2,172) = 5.65, p < 0.01. Post-hoc tests 

indicated that AD patients were significantly older than controls and MCI, p < 0.01 in 

both cases. However, patients with MCI did not differ from controls. The age difference 

between patients with AD and persons with MCI is not surprising because MCI is 

considered to be a pre-clinical phase of AD. To assess whether age differences could 

account for our findings and whether age should be statistically controlled, a correlation 

was performed between age and the total number of complaints for each group. Age was 

not found to be significantly correlated with the number of complaints for any of our 

groups, r = -0.19, r = -0.04, r = -0.09, for AD, MCI, and controls respectively. Thus, this 

factor was not taken into consideration in our future analyses. 

 

A one-way ANOVA with Group (controls, MCI, AD) as a between-subject factor 

was also performed on education and indicated no Group differences, F(2,172) = 2.56, 

N.S. A chi square analysis revealed that groups differed in their gender composition (chi 

square = 6.2, p < 0.05). Therefore, gender was used as a covariate in all further analyses. 

 

Validity of the QAM 

To address the external validity of the QAM, the association between the QAM 

and the SMAF was assessed in healthy older adults, in MCI persons and in AD patients. 

The QAM is a well-validated scale that measures the level of reported difficulties with 
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complex activities of daily life (Desrosiers et al., 1995). A Pearson’s partial correlation 

(controlling for gender) between the QAM total score and the score on the SMAF 

indicated a significant negative correlation between the two tests in healthy older adults, r 

= -0.30, p < 0.01, in persons with MCI, r = -0.24, p < 0.05, and in AD patients, r = -0.45, 

p < 0.05. In other words, a higher level of cognitive complaints on the QAM was 

associated with a lower score on the SMAF, and thus with a lower level of self-reported 

functional autonomy.  

 

Groups differences on the QAM 

Figure 2 displays the scores obtained by healthy older adults, persons with MCI 

and AD patients on each section of the QAM and their average scores. Inspection of 

Figure 2 indicates that persons with MCI and with AD reported more cognitive 

complaints than healthy controls. It also indicates heterogeneity across domains, as MCI 

persons and AD did not differ from healthy older adults on all sections of the QAM. This 

was confirmed by a one–way multiple analysis of covariance (MANCOVA) with Group 

(controls, MCI, AD) as a between-subject factor and gender as a covariate performed on 

the scores of the ten sections of the QAM. The MANCOVA indicated a significant main 

Group effect, Λ = 0.77, F(20,316) = 2.18, p < 0.01. ANOVAs indicated significant main 

Group effects on the following sections: Conversations, F(2,167) = 12.25, p < 0.001, 

Movies and Books, F(2,167) = 7.88, p = 0.001, Slips of Attention, F(2,167) = 3.23, p < 

0.05, Political and Social Events, F(2,167) = 3.06, p < 0.05, Places, F(2,167) = 8.96, p < 

0.001, Personal Events, F(2,167) = 4.74, p = 0.01, and General, F(2,167) = 3.16, p < 

0.05. Tukey’s post-hoc tests indicated that individuals with AD and MCI reported a 

higher level of complaint than controls on the Conversation section, p < 0.01 in both 
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groups, on the Movies and Books section, p < 0.05 and p < 0.01 for AD and MCI 

respectively, and on the Places section, p < 0.01 in both groups. In addition, persons with 

MCI had a higher level of complaint than controls on the Slips of Attention section, p < 

0.05, Personal Events section, p < 0.01, and on General section, p < 0.05. No significant 

differences between persons with MCI and AD were found on any of the sections.  

 

Correlational analyses 

Correlations between cognitive tests and the QAM sections tested the relationship 

between complaint and cognitive deficits. The results obtained on the composite scores 

by patients with MCI and AD are shown in Table 3 (by definition, the average Z-score of 

control participants is 0). 

 

To assess the relation between cognitive performance and the different domains 

of complaints, Pearson’s partial correlations (controlling for gender) were computed 

between the three composite scores and the QAM sections for which significant 

MCI/Control group differences were obtained (1-Conversation, 2-Movies and Books, 3-

Slips of Attention, 7-Places, 9-Personal Events, 10-General). We also correlated the GDS 

with those sections of the QAM to assess the association between depression and 

cognitive complaint. The correlations are shown in Table 4. In persons with MCI, a 

higher level of complaints about Conversations (section 1) was associated with a lower 

global cognitive performance, r = -0.39, p < 0.005. In addition, the complaints relative to 

Movies and Books (QAM section 2) were negatively correlated with the executive 

composite scores in persons with MCI, r = -0.47, p < 0.005 (Table 4). Also, the 

complaints of AD patients relative to Slips of Attention (section 3) was positively 
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correlated with the memory composite score: r = 0.53, p < 0.005. In healthy older adults, 

none of the domains of complaints correlated significantly with cognitive composites 

scores. Finally, in neither groups was depression associated with composite scores5 

 

MCI with high and low global cognitive functioning 
We assessed whether or not individuals with MCI who had more severe global 

cognitive decline would report more memory complaints than those with better cognitive 

abilities.  We used the MDRS scores as a measure of global cognitive functioning as it 

yielded the variability necessary for the use of a split-median and is not curtailed by 

ceiling effects. Furthermore, the MDRS investigates a broad range of cognitive functions, 

and hence might be more sensitive to MCI’s quite subtle cognitive impairments. A split-

median on the MDRS distinguished participant with high and low global cognitive 

functioning.  A one–way MANOVA with Group (high-MDRS and low-MDRS) as a 

between-subjects factor was then performed on the scores on the ten sections of the 

QAM. A main group effect for the MANOVA was found, Λ = 0.67, F(10,53) = 2.62, p < 

0.05. A significant Group effect was found for the Conversations section, F(1,62) = 5.99, 

p < 0.05 and for Movies and Books, F(1,62) = 4.31, p < 0.05 (Figure 3). Therefore, 

persons with MCI who have lower global cognitive function on the MDRS report more 

memory problems related to conversations, and to movies and books, but not to other 

areas. 

 

                                                 
5 Because of the lack of a correlation between cognition and depression, it was 

unnecessary to perform an ANCOVA with this factor in spite of the presence of a group 

difference on this factor (Lovell et al., 1987). 
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The same procedure was performed for the patients with AD patients. No main 

Group effect for the MANOVA was found.  

 

Discussion 

The general goal of this study was to make a comprehensive assessment of self-

reported complaints related to everyday cognitive situations in persons with MCI relative 

to normal elderly and AD patients, relate those to objective deficits and assess the effect 

of global cognitive deficits. Prior to discussing our main findings, we would like to stress 

that a moderate (negative) association was found between the QAM total score obtained 

by healthy older adults, MCI persons, and AD patients and their scores on a well 

validated scale of functional autonomy. This confirms that a higher number of cognitive 

complaints was associated with poorer self-reported functional autonomy and thus 

provides some external validity for the QAM. Furthermore, none of our sections was 

correlated with the geriatric depression scale (GDS) in either groups, indicating that 

depression did not contribute to the data. These two preliminary findings are important as 

they indicate that the QAM reflects subjective self-assessment of cognitive impairment, 

but not a by-product of depressive symptoms.  

 

A first objective of this study was to evaluate the level of complaints expressed 

by persons with MCI and AD on different domains of cognition. We found that 

complaints differed across domains. People with MCI report more memory problems 

related to Conversations (section 1), Movies and Books (section 2), Slips of Attention 

(section 3), Places (section 7), Personal Events (section 9), and on the General section 

(section 10). Most of these sections address problems that require encoding and 
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retrieving the spatiotemporal context of information, a memory process particularly 

impaired in the MCI population (Collie & Maruff, 2000; Nordahl et al., 2005; Petersen et 

al., 1999). Thus, as predicted, subjective complaints are consistent with our knowledge 

regarding the nature of memory deficits in MCI. The level of complaint of AD patients 

was significantly higher than healthy controls in a subset of the domains for which MCI 

persons expressed complaints: Conversations, Movies and Books, and Places.  

 

The second objective of this study was to evaluate the association between 

subjective and objective cognitive abilities measured by composite scores. It was found 

that only some domains of memory complaints in individuals with MCI were linked to 

their actual cognitive deficits: Conversations (section 1) was related to the global 

cognitive score and Movies and Books’ (section 2) was associated with the executive 

score. It indicates that a short complaint questionnaire that would include the questions 

which are part of those two sections (see Table 5 for the list of questions) may represent 

a good indicator of actual cognitive deficits. It is however important to note that none of 

the QAM sections were related to the memory composite score. Thus persons with MCI 

complaint of memory deficits and these complaints are related to their general cognitive 

deficits but not to their actual memory deficits. This lack of a relationship between the 

QAM subscales and the memory composite score is in line with a recent study that shows 

that people with MCI have metamemory difficulties and are therefore poor at predicting 

their memory performance (episodic feeling-of-knowing) (Perrotin et al., 2007). This 

may suggest that the complaint of persons with MCI is based on an assessment of their 

general cognitive difficulties and not on a precise assessment of their performance on 

memory.  
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We found no significant correlations between cognitive performance and the 

QAM subscales in healthy controls. This indicates that the relationship between 

cognition and memory complaint is specific to MCI. One possible reason for this lack of 

a correlation is that a large number of personal factors contributes to memory complaint 

in older adults without memory deficits. Possibly, it is only when a significant amount of 

memory change occurs – such as is the case in MCI - that this factor actually accounts 

for interindividual variations in the level of complaint. There was also a remarkable 

absence of correlation between subjective complaints on memory domains and objective 

memory performance in AD patients. This is consistent with the anosognosia typically 

reported in AD patients (Farias et al., 2005; Kalbe et al., 2005). Notably, however, the 

number of AD participants in this study was relatively small (N = 26) and more statistical 

power might be required to uncover an association between objective deficits and 

cognitive complaints in AD. Hence, these results need to be replicated with a larger 

sample.  

 

One final goal was to investigate the differences in the level and nature of 

cognitive complaint as a function of the severity of cognitive impairment in MCI and 

AD. We are aware that the level of severity measured in a cross-sectional sample cannot 

be entirely amenable to progression in the disease. However, our hypothesis was that 

participants with more severe overall cognitive deficit were more likely to be more 

advanced along the MCI/AD continuum. On that basis, it was predicted that individuals 

with MCI who exhibited more severe cognitive impairments would show more cognitive 

complaints and that anosognosia would only be present in participants with AD. The 

results of this study partially confirm this hypothesis: MCI persons who had larger 
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cognitive deficits report more problems with Conversation and with Movies and Books 

than those with smaller cognitive deficits. In addition, there is a correlation between the 

composite score of severity and the level of complaint on Section 1 (Conversation). This 

supports an increase in the complaint that parallels the cognitive decline during the MCI 

phase.  Our data also suggest that the complaint does not increase further as patients 

progress into the AD phase. This relation between complaint and deficit during the 

MCI/AD continuum is illustrated in Figure 1B. 

 
We are aware of the limitations of this study. First, as mentioned above, our 

sample of AD patients was relatively small and we may have lacked some statistical 

power for this population. The fact that participants with AD and MCI were recruited 

from memory clinics can also be judged as a limitation. Specifically, our sample is biased 

toward persons who consulted the clinics themselves and are thus somehow more 

sensitive to their problems, at least on a general level. It would be interesting to extend 

our results to a community-based sample that would include people who did not consult 

for their memory problems. A related limitation arises from the apparent circularity of 

the studying of memory complaint in a diagnostic category that contains memory 

complaint as a criteria. However, circularity is reduced by the fact that our goal was to 

characterize the specific domains of complaint in MCI and to assess the relationship 

between cognitive complaint and actual deficits as well as its change as a function of 

overall disease severity, rather than just confirm the presence of a complaint.  Again, 

extending our results to a community-based sample would protect against circularity. A 

third limitation is the cross-sectional design of the study, which does not permit us to 

attribute direct causation between our variables, and which limits the interpretation of our 

findings in terms of progression. These individuals with MCI, as well as the patients with 
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AD, are currently being followed-up, which might allow us to obtain more conclusive 

results in the future. Also, we did not give the QAM to informants. Notably, however, the 

format of the questionnaire is not easily amenable to a third-party because some 

questions are specific to mental states and may not be evaluated from an outside point-of-

view.  

 

Overall, the findings of our study indicate that individuals with MCI report more 

memory complaints than healthy older controls, but only in specific domains and 

circumstances. Within these specific domains of complaint, only two (reported memory 

difficulties for conversations, and for movies and books) were found to be good 

indicators of their objective cognitive deficits , to increase in parallel with global 

cognitive deficits in MCI and to reach a plateau once the individual has progressed to 

AD. The complaints related to these two domains appear more relevant and better 

indicators of global cognitive deficits than other memory domains probably because they 

place a high demand on episodic memory processes. 
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Table 1. 

Sociodemographic status and neuropsychological evaluation for the three groups. SD is  

in parenthesis.  

        Controls            MCI                    AD 

          n = 81                   n = 68                    n = 26 

Age     68.59 (8.20)      69.06 (7.89)          74.50 (7.75) ** 

Education    14.19 (3.56)      13.88 (4.34) 12.12 (4.97) 

MDRS     140.64 (2.89)      136.12 (4.95)**  120.88 (10.42)** 

MMSE     28.91 (0.92)      27.96 (1.76) ** 23.77 (3.64) ** 

GDS (/5)    0.70 (0.89)      1.09 (1.18)  1.23 (1.34) 

Coding     11.00 (2.67)      9.22 (2.61) ** 7.00 (3.01) ** 

Benton Judgment of line orientation 23.94 (3.87)      22.69 (4.69) 19.62 (5.89) ** 

BEM Immediate recall  8.93 (1.72)      6.51 (2.24) ** 2.75 (1.72) ** 

BEM Delayed recall   8.64 (1.79)      5.82 (2.40) ** 1.46 (1.78) ** 

SMAF     -0.17 (0.44)      -0.76 (0.77) -4.74 (6.36) ** 

Copy of Rey's Figure: time  217.09 (96.26)  268.72 (122.09)   367.08 (204.79)** 

Copy of Rey's Figure: score  32.09 (3.90)      29.43 (5.37) ** 24.54 (7.14) ** 

Stroop 3rd plate time   29.27 (8.44)      35.11 (12.22) *    51.29 (20.86) ** 

Stroop 3rd plate errors  1.16 (1.43)      2.79 (3.02) ** 4.85 (4.70) ** 

RL/RI-16 3rd free recall  11.88 (2.05)      8.94 (3.35) ** 2.88 (2.72) ** 

RL/RI-16 delayed free recall  12.56 (2.31)      9.83 (3.55) ** 2.38 (3.09) ** 

 

Note. impairment relative to the controls at * p < 0.05; ** at p < 0.01 
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Table 2.  

Examples of questions from each section of the QAM 

Domains  Examples of questions 

1- Conversation Do you forget the content of a conversation that took place a few 

days before? Do you have difficulty following up on a 

conversation going on among many people because you forget 

what has just been said ?  

2- Movies and Books Do you have difficulty in remembering the story of a movie seen a 

few days before? Do you have difficulty in reading because you 

forget what you have just read, which obliges you to read the same 

text again ?  

3- Slips of Attention Do you forget to pick up personal objects when leaving a place? 

(e.g. Keys, hat, etc.). Do you sometimes enter a room to do 

something and forget what it was that you wanted to do? 

4- People Do you have difficulty in remembering the name of a person you 

have met recently and still meet from time to time? Do you have 

difficulty in recognizing famous people's faces? 

5- Use of Objects Do you have difficulty in remembering how to appropriately use 

an object?  

Do you have difficulty in learning how to use an object you have 

never used before ? 

6- Political and Do you have difficulty in remembering current events? Do you 

    Social Events   have difficulty in learning new knowledge (academic, professional, 

or other) ? 
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7- Places Do you have difficulty in learning a new itinerary? Do you forget 

the name of a street that you know well? 

8- Actions to Perform Do you forget to perform an action you planned on doing? Do you 

forget meetings ? 

9- Personal Events Do you forget past personal events from a few days or weeks 

before? Do you hesitate to buy something because you are not sure 

if you already own it ?  

10- General Is it more difficult for you to learn something while in a noisy 

environment? Is it more difficult for you to learn something when 

you are tired ? 
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Table 3 

Mean Z-scores (and standard deviations) obtained by persons with MCI and AD.            

Scores            MCI                     AD 

                      n = 71                         n = 26 

Severity    -1.33 (1.53) ** -6.29 (3.39) ** 

Memory    -1.43 (1.29) ** -4.34 (1.11) ** 

Executive Functions   -0.93 (1.36) ** -2.30 (2.13) ** 

 

Note. impairment relative to the controls at ** p < 0.01 
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Table 4 

Correlations between QAM sections with GDS and scores of severity, memory and 

executive functions.  

                Composite Scores   

                GDS            Severity       Memory   Executive Fcts 

Conversation  MCI  0.14  -0.39 *  -0.31        -0.29   

   AD  0.17  -0.21     0.16        -0.13    

   CA  0.08  -0.15  -0.18        0.12 

Movies and Books MCI  0.05  -0.22     -0.27       -0.47* 

   AD  0.09  -0.26     0.14        -0.47   

   CA  0.06  -0.23  -0.26        0.09 

Slips of Attention MCI  0.13  0.08  0.05       -0.22 

   AD  0.22  0.06  0.53 *       -0.25 

   CA  0.22  -0.04  -0.09        0.08 

Places   MCI  0.16  -0.02  -0.10         -0.11    

   AD  0.12  -0.08     0.40        -0.23  

   CA   0.17  -0.09  -0.13        0.02 

Personal Events MCI  0.08  -0.04    -0.09        -0.21    

   AD  0.18  -0.12     0.32        -0.24    

   CA  0.16  -0.09  -0.12        0.08 

General  MCI  0.13  -0.16  -0.24       -0.23 

   AD  0.08  -0.11  0.31       -0.29 

   CA  0.04  -0.23  -0.13        0.10 

Note. * p < 0.005 
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Table 5 

Questions from sections Conversation and Movies and Books of the QAM 

Domains  Questions 

1- Conversation Do you have difficulty in following up on a conversation going on 

with one person because you forget what has just been said ? Do 

you have difficulty in following up on a conversation going on 

among many people because you forget what has just been said ? 

During a conversation, do you repeat many times the same thing 

because you forgot that you have just said it ? Does it happen that 

you repeat something again and again because you forget that you 

have already said it a few hours or a few days before? Do you 

forget the content of a conversation that took place a few days 

before? Do you forget the content of a conversation that has just 

taken place? 

2- Movies and books Do you have difficulty in reading because you forget what you 

have just read, which obliges you to read the text again ? Do you 

have difficulty in remembering what you have read a few days 

before? Do you have difficulty in following a movie or a TV 

program because you forget what just happened? Do you have 

difficulty in remembering the story of a movie you have seen a few 

days before?  
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Figure Caption 

 

Figure 1. Two possible models of the relationship between cognitive impairment and 

complaint in Alzheimer's Disease 

Figure 2. Score obtained on the ten sections of the QAM by persons with MCI, AD 

patients and control participants. Note. * p < 0.05; ** p < 0.01 

Figure 3. Score obtained on the ten sections of the QAM by individuals with MCI with 

high-MDRS scores and by individuals with MCI with low-MDRS scores. Note. * p < 

0.05 
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Figure 1. Two possible models of the relationship between cognitive impairment and 

complaint  in Alzheimer's Disease 
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Figure 2. Score obtained on the ten sections of the QAM by persons with MCI, AD 

patients and control participants. 
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Figure 3. Score obtained on the ten sections of the QAM by individuals with MCI with 

high-MDRS scores and by individuals with MCI with low-MDRS scores. 

 



 lviii 

 

 

 

  

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

ANNEXE II 

 

 

Article n° 7 
 
 

Personality and psychological health in persons with mild cognitive impairment 
 

Francis Clément, Sylvie Belleville, Sara Bélanger & Véronique Chassé 

 

 

 

 

 

 

 

 

Canadian Journal on Aging 2008; 28(2): 147-156 

 

 

 

 

 

 

 



 lx

Abstract 

An increasing number of studies have documented the cognitive profile of 

individuals with mild cognitive impairment (MCI), but few studies have investigated 

their psychological health and personality traits, as well as how these factors interact with 

cognition. In the present study, 27 healthy older adults and 30 persons with MCI 

completed questionnaires covering psychological health, morale, personality, self-

efficacy and self-actualization. The results indicated that individuals with MCI are more 

depressed, anxious, hostile, and have lower morale than matched healthy older adults. 

Furthermore, our results show a positive association between the level of depression of 

MCI persons and the severity of their cognitive dysfunctions. In contrast, there were no 

group differences on measures of personality traits. Thus while psychological distress is 

present in persons with MCI, those individuals are not characterized by differences in 

personality traits relative to older adults experiencing no cognitive impairment. 

  

 Plusieurs études ont documenté le profil cognitif des individus avec un trouble 

cognitif léger (TCL ou MCI), mais très peu se sont intéressées à leur santé 

psychologique et leurs traits de personnalité, ainsi qu’aux interactions entre ces 

facteurs et la cognition. Dans cette étude, 27 personnes âgées saines et 30 personnes 

avec un TCL ont complété une évaluation neuropsychologique ainsi que des 

questionnaires portant sur la santé psychologique, bien-être, la personnalité, l’auto-

efficacité et l’auto-actualisation. Les résultats indiquent que les individus avec un 

TCL sont plus déprimés, anxieux, hostiles et ont moins de bien-être que ce que 

rapporte un groupe de personnes âgées sans trouble de cognition. De plus, nos 

résultats montrent une association positive entre le niveau de dépression des personnes 
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TCL et la sévérité de leurs atteintes cognitives. En revanche, aucune différence n’est 

observée entre les groupes sur les échelles de personnalité. Ainsi, alors que la détresse 

psychologique est présente chez les personnes avec un TCL, ces personnes ne 

montrent pas de différence de traits de personnalité par rapport aux personnes âgées 

n’éprouvant pas de troubles cognitifs. 

Keywords: Alzheimer’s disease; depression; anxiety; cognition; neuropsychology 
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Introduction 

Strong cognitive abilities are important in our ever-changing society, where 

attention, memory and executive functions are placed at a premium to keep up with the 

evolving technology and the constant influx of new information. Unfortunately, aging is 

often associated with a certain amount of decline in cognitive abilities, which can in 

some circumstances have maladaptive impacts and is often accompanied or exacerbated 

by psychological distress. This is likely to be the case for the 3-19 % of the elderly 

population who suffer from mild cognitive impairment (MCI). Individuals with MCI 

(Gauthier et al., 2006; Petersen et al., 2001; Petersen et al., 1999) experience atypical 

cognitive changes and perform below expected norms based on their age and education 

on formal cognitive measures, yet fail to meet criteria for Alzheimer’s disease (AD) 

(Petersen et al., 2001). Follow-up studies have shown that a large proportion of persons 

meeting criteria for MCI will eventually progress to dementia (Gauthier et al., 2006).  

 

While the majority of studies have documented the cognitive profile of 

individuals with MCI, there has been few detailing psychological assessment of MCI. 

Yet recent studies indicate that MCI could be associated with a substantial burden on 

patients’ lives as it diminishes well-being and creates concerns about changing family 

roles due to cognitive impairment (Frank et al., 2006). Furthermore, it has been observed 

that depression is common in individuals with MCI (Gabryelewicz et al., 2004; Kumar et 

al., 2006), and that their mood disturbances, much like their cognitive capacities, are 

typically at an intermediate level between AD patients and healthy older adults (Li, 

Meyer, & Thornby, 2001; Lyketsos et al., 2002), but can even be at the same level as AD 

patients (Hwang, Masterman, Ortiz, Fairbanks, & Cummings, 2004; Lopez, Becker, & 
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Sweet, 2005). In addition, depression is a risk factor for the development of MCI in older 

persons (Kumar et al., 2006; Lopez et al., 2003) and there is also some indication that 

depression is a risk factor for progression to AD (Li et al., 2001; Modrego & Ferrandez, 

2004 but see Copeland et al., 2003; Robert et al., 2006). These findings suggest that 

cognitive decline may be associated with psychological distress. However, factors other 

than depression, such as hostility and morale, are rarely assessed in MCI and 

consequently, little is known about their impact on personality changes; furthermore, the 

interaction between cognition and psychological distress is not well understood in 

persons with MCI.  

 

Although virtually nothing is known about the complex relationship between 

personality, cognition, and psychological health in MCI, it is now known that in healthy 

aging the amount of psychological distress associated with the cognitive decline can be 

mediated to a certain extent by personality traits. For instance, a strong internal locus of 

control and a low level of neuroticism appear to be protective in older adults when 

experiencing impairments in general cognitive functioning, fluid intelligence, memory, 

or information processing speed (Van den Heuvel, Smits, Deeg, & Beekman, 1996). 

Along the same line, high neuroticism and low mastery predict the onset of depression 

(Steunenberg, Beekman, Deeg, & Kerkhof, 2006) in the elderly population. Interestingly, 

openness (intellectual curiosity, imagination, and a preference for variety and mental 

stimulation), extraversion (excitement-seeking and warmth), and neuroticism 

(nervousness, impulsivity, and moodiness) are positively correlated with a number of 

cognitive functions, including general ability, executive functions, memory, and fluid 

intelligence (Booth, Schinka, Brown, Mortimer, & Borenstein, 2006; Jorm et al., 1993; 
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Meier, Perrig-Chiello, & Perrig, 2002 but see Jelicic et al., 2003). In summary, there is 

some indication that personality traits can influence the psychological response to a 

decline in cognitive abilities in older adults, and that they are associated with cognitive 

functioning to a certain extent. 

 

 Personality seems to be quite stable in older adults, reaching a peak trait 

consistency of approximately .74 between the ages of 50 and 70 years (see Roberts & 

DelVecchio, 2000, for an extensive meta-analysis of 152 longitudinal studies). There is 

however ample evidence indicating that personality is altered by neurodegenerative 

disease that would lesion brain areas involved in complex emotional processing. Though 

the location of these regions is still controversial, some key regions of the prefrontal 

cortex (dorsolateral prefrontal cortex, anterior cingulate cortex and orbitofrontal cortex) 

and of the limbic structures (amygdala, hippocampus, and nucleus accumbens) have been 

found to be associated with temperament (Talassi, Cipriani, Bianchetti, & Trabucchi, 

2007) and their dysfunction in AD  (Arnold, Hyman, Flory, Damasio, & Van Hoesen, 

1991; Braak & Braak, 1991) may result in personality changes. Accordingly, many 

studies have reported personality changes in patients with AD (Aitken, Simpson, & 

Burns, 1999; Jacomb & Jorm, 1996; Petry, Cummings, Hill, & Shapira, 1989; Talassi et 

al., 2007) and some have reported a positive correlation between the magnitude of these 

changes and cognitive impairment (Aitken et al., 1999; Talassi et al., 2007 but see Petry 

et al., 1989). Using a longitudinal design, Strauss & Pasupathi (1994) found that AD 

patients experienced an increase of neuroticism, a decrease in the level of extraversion, 

and a diminished level of conscientiousness over a one-year period. There is thus strong 

support to the notion that AD is accompanied by a gradual change in personality traits. In 
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contrast, only a few studies have investigated personality in prodromal AD while no 

studies have included persons with MCI. Meins and Dammast (2000) found that AD 

patients showed a lower premorbid level of neuroticism than Parkinson’s disease (PD) 

patients but their study did not include a comparison with healthy older adults. Copeland 

and colleagues (2003) found that personality change in older adults with questionable 

dementia (CDR of 0.5) was a risk factor for converting to AD. The finding is thus 

inconsistent regarding the presence of personality changes in prodromal AD and nothing 

is known regarding MCI. Because many of those with MCI will develop dementia, 

personality traits can be expected to be altered in those individuals. In turn, many studies 

have reported that the prefrontal cortex is functional in MCI (Chetelat et al., 2002; 

Pennanen et al., 2005; Whitwell et al., 2007), suggesting that personality or temperament 

may not be modified in this population. 

 

 The goal of the current study was to compare the psychological profile of 

individuals with MCI and healthy older adults by assessing personality traits 

(neuroticism, extraversion, self-efficacy, and self-actualization) and psychological health 

(depression, anxiety, hostility, and morale). In addition, we investigated the association 

between personality traits, psychological health and cognitive functions (general 

cognitive functioning, memory, perception, and executive functions). We hypothesized 

that persons with MCI would show more psychological distress than healthy older adults. 

Mood disturbances and morale would be particularly affected, as suggested by the 

reviewed literature, and mood disturbances were expected to be positively correlated 

with cognitive impairment in MCI. Whether MCI persons would differ from healthy 

controls on personality traits was unclear based on the published literature but 
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considering the lack of frontal dysfunction in this population, it was hypothesized that 

individuals with MCI would not experience personality changes/disturbances. Hence no 

correlation was expected between cognitive functions and personality traits in MCI. 

Lastly, we hypothesized that the way personality and psychological health influence each 

other would not differ in MCIs and healthy older adults. 

 

Method 

Participants 

 The current study included 57 older participants: 30 persons with MCI (14 males) 

and 27 education and age-matched healthy older (7 males) adults. Participants with MCI 

were recruited from memory clinics in the Montreal area. Healthy older adults were 

recruited from the same community1, and thus from a similar socio-cultural background, 

through advertisements in newspapers or seniors clubs. Healthy older participants were 

matched to MCI participants on socio-demographic factors. The average age was 68.19 

years (SD = 8.37) for the healthy older adults and 65.97 years (SD = 10.43) for 

individuals with MCI. Healthy older adults had a mean of 14.11 years of education (SD = 

4.01) while persons with MCI had an average of 14.5 years of education (SD = 4.66).  

 

MCI individuals went through an extensive medical, neurological and 

neuroradiological examination to exclude the presence of any other significant disease 

that could explain their cognitive difficulties. They were identified as MCI by 

experienced clinical neurologists or geriatricians and following extensive 

neuropsychological and clinical assessment. The clinical assessment included the Mini-
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Mental State Examination (MMSE; Folstein, Folstein, & McHugh, 1975), the Mattis 

Dementia Rating Scale (MDRS; Mattis, 1976), the Geriatric Depression Scale (GDS; 

Yesavage, 1988), the Hachinski scale to measure vascular risk (Hachinski, Iliff, Zilka, & 

et, 1975), the Self-Evaluation Questionnaire to measure memory complaint (QAM; Van 

der Linden et al., 1989), and the SMAF (Desrosiers, Bravo, Hebert, & Dubuc, 1995) to 

measure functional independence. We also used a section of the OARS Multidimensional 

functional assessment questionnaire to measure functional status (MFAQ; Fillenbaum & 

Smyer, 1981). The original OARS (Older Americans Resources and Services) instrument 

was used to measure the functional level of adults and elders according to five 

dimensions: social functioning, economical provisions, mental health, physical health 

and day-to-day activities. We used the physical health and social functioning sections, 

which have been validated in French.  

The standardized neuropsychological battery measured memory (a cued and free 

word recall task, RL/RI-16, Van der Linden et al., 2004), executive functions (Stroop-

Victoria; Regard, 1981), and visuospatial processing (Copy of Rey’s Complex Figure, 

Rey, 1959). The RL/RI-16 reflects memory capacities when effective processing is 

provided. Participants are presented with a list of 16 words encoded as a function for 

their semantic category (for example, dentist as a profession). They are then asked to 

recall all words without semantic cues (free recall) or with the cues used at encoding 

(cued recall). Learning is repeated over three trials followed by delayed recall 20 minutes 

later. The third sheet of the Stroop-Victoria was used to assess executive functions where 

participants were asked to name the color of the ink of incongruent color words (ex: the 

word blue printed in yellow; Regard, 1981). The score on the copy of the Rey’s complex 

figure was also used as a measure of copy planning and strategy. Participants with MCI 
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met the criteria proposed by Petersen for the amnestic subtype of MCI (Petersen et al., 

2001): 1) presence of a complaint, preferably corroborated by an informant, based on the 

clinical interview or on performance on a Memory Self-Evaluation Questionnaire (QAM; 

Van der Linden et al., 1989); 2) performance at least 1.5 SD below the average level of 

persons of a similar age and educational background based on a standardized memory 

test (cued and free word recall task: RL/RI-16; Van der Linden et al., 2004) for single 

domain amnestic MCI, or on standardized memory plus impairment on any of the other 

non-memory tests included in the neuropsychological assessment for multiple domain 

amnestic MCI; 3) performance above the age- and education-adjusted threshold for 

dementia on the MMSE; 4) no significant impact on activities of daily living as reported 

in clinical interview and measured by the SMAF (Functional Autonomy Measurement 

System) functional impairment scale. On the basis of these criteria, four of our 

participants were identified as single domain amnestic MCI and 26 were identified as 

multiple domain amnestic MCI. As no functional impairment was noted in the SMAF 

scale and from the clinical interview, none of these participants met the DSM-IV criteria 

for dementia. Healthy older adults completed the same neuropsychological and clinical 

protocol as persons with MCI and none of them met the criteria for MCI.  

All participants spoke French as their first language. Accordingly, all testing was 

conducted in French. They all met the following exclusion criteria: diagnosis of probable 

AD or other form of dementia (for MCI, this was based on clinical criteria prior to 

referral, based on a medical, neuroradiological, and neuropsychological examination), 

history of neurological or severe psychiatric disorder, history of cardiovascular disease, 

alcoholism, drug addiction, using psychoactive drugs or a general anesthesia during the 
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last six months. This study was approved by the Institut Universitaire de Gériatrie de 

Montréal Human Ethics Committee. 

 

Tests and Questionnaires 

Questionnaires covering psychological health and personality were administered 

to participants. This was conducted in a single two-hour session by two qualified 

interviewers (Ph.D. candidates in Clinical Neuropsychology).  

 

Psychological health  

The short version of the Indices de Détresse Psychologique (Préville, Boyer, 

Potvin, Perrault, & Légaré, 1992), a French translation of the Psychiatric Symptom 

Index, was used to measure psychological health (Illfeld, 1976). This 14-item 

questionnaire measures symptoms of depression, anxiety, and hostility. It has been 

conceived to evaluate a non-specific symptomatology designated as “psychological 

distress”. Participants are asked if they have experienced, over the past seven days, 

symptoms described via a 4-point scale ranging from 1 (“never”) to 4 (“very often”) 

(norms published by Boyer, Préville, Légaré, & Valois, 1993). The IDPESQ has good 

internal consistency (Cronbach's alpha coefficient of 0.89; Préville et al., 1992). 

The French version of the revised Philadelphia Geriatric Center Morale Scale 

(PGC-MS; (Lawton, 1975) was used to measure the morale of the participants. This 

questionnaire includes 17 yes-no questions that cover three main constructs: “agitation”, 
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“attitude toward own aging” and “lonely dissatisfaction”. The PGC-MS has been shown 

to have a good internal consistency (Cronbach's alpha coefficient of 0.85; Lawton, 1975). 

 

Personality 

The Eysenck Personality Inventory (EPI) was used to assess personality traits 

(Eysenck & Eysenck, 1968). The EPI is composed of 57 yes/no questions. It provides 

information about participants’ level of Extraversion-Introversion and Neuroticism-

Stability. Both subscales are highly reliable (from .84 to .94; Eysenck & Eysenck, 1968). 

 

The French version of Schwarzer’s Generalized self-efficacy scale (GSES) was 

used to appraise self-efficacy (1994). This questionnaire is composed of 10 statements 

from which the participants must position themselves on a 4 point scale (e.g., 1 point is 

given if the statement is judged as entirely false, 4 points if it is evaluated as completely 

true). The GSES has good internal consistency and reliability (Cronbach's alpha 

coefficient ranging from 0.76 to 0.90) and a good criteria-related validity.  

 

The Mesure d’actualisation du potentiel (MAP) was used as a measure of self-

actualization (Leclerc, Lefrançois, Dubé, Hébert, & Gaulin, 1998). This questionnaire is 

composed of 27 self-rated items (scored from 1 to 5), each describing typical traits of 

people who actualize themselves. The final score ranges between 1 (weak actualization) 

and 5 (strong actualization). The score can be separated into two dimensions 1) reference 

to self (adaptation and autonomy) and, 2) openness to experience (openness to self, 

openness to life, and openness to others). The MAP has good internal consistency 
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(Cronbach's alpha coefficient ranging from 0.86 to 0.89) and reliability (one week retest: 

r = 0.87).  

 

Results 
Sociodemographic data 
 

To ensure that groups were well matched on education, age, physical and social 

functioning,  four one-way analyses of variance (ANOVAs) with Group (MCI, Control) 

as a between-subject factor were performed on age, education, physical health, and social 

functioning. The analysis did not indicate a main Group effect for age, F(1,55) = 0.77, 

N.S., for education, F(1,55) = 0.11, N.S., for physical health, F(1,55) = 1.97, N.S., and 

for social functioning, F(1,55) = 0.56, N.S.  A chi square analysis revealed that the 

gender distribution of the two groups did not differ significantly (x2 = 2.62, p > 0.05). 

Nevertheless, gender was used as a covariate in further analyses because gender has been 

shown to interact with the stability of personality traits in older adults (Small, Hertzog, 

Hultsch, & Dixon, 2003). 

 

Neuropsychological variables 

Tabled 1 shows the mean scores on the cognitive measures for controls and 

MCIs. In order to reduce the number of variables, control for type 1 errors, increase 

signal-to-noise ratio and to control for trade off effects in certain tests (ex.: making fewer 

errors but taking more time), neuropsychological tests were grouped into four composite 

scores to reflect different cognitive domains: a composite score for the memory cognitive 

domain, a composite score for the executive domain, a composite score for the 

visuospatiale domain and an overall score of severity.  First, the neuropsychological tasks 
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were placed on the same scale by calculating individual Z-scores using the mean and SD 

of the control group as a reference. The memory composite score was obtained using the 

average Z-scores on RL/RI-16 free recall Trial 3, and RL/RI-16 delayed free recall. The 

executive composite score was obtained using the average Z-scores on the time and the 

error score of the Stroop-Victoria (to keep higher Z-scores as indicating higher 

performance, Z-scores for time and for the number of errors were transformed into 

negative Z-scores). The visuospatial composite score was obtained using the average Z-

scores on the time and the score of the copy of Rey’s Complex Figure (to keep higher Z-

scores as indicating higher performance, Z-scores for time were transformed into 

negative Z-scores). The global cognition composite score was obtained using the average 

Z-scores on the MMSE and MDRS. The results obtained on the composite scores by 

patients with MCI are -0.61 for Global Cognition, -0.51 for Visuospatial, -0.81 for 

Executive, and -1.07 for Memory (by definition, the average Z-score of control 

participants is 0). 

 

One-way ANCOVAs with Group (MCI, Control) as a between-subject factor and 

gender as a covariate were performed on the composite scores: Global cognition, 

Visuospatial, Executive, and Memory. As expected, individuals with MCI were impaired 

relative to controls on all composite scores.  A lower level of performance was found in 

persons with MCI relative to controls on the Global cognition, F(1,54) = 3.99, p = 0.05, 

Visuospatial, F(1,54) = 4.00, p = 0.05, Executive, (F1,54) = 8.42, p < 0.01, and Memory, 

F(1,54) = 5.57, p < 0.05, composite scores.  
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Psychological health 

A one–way multiple analysis of covariance (MANCOVA) with Group (controls, 

MCI) as a between-subject factor and gender as a covariate was used to compare groups 

on the psychological health measures. MANOVA is used in designs that have multiple 

dependent measures likely to be correlated as is the case here.  It forms a new dependant 

variable that is a linear combination of the measured dependant variables. It is a 

conservative test that reduces the likelihood of type 1 error (Tabachnick, B.G., & Fidell, 

L.S., 2007). In case of a significant group difference with MANOVA, analyses of the 

location of the difference can be done by performing ANOVAs on the individual 

sections. A main Group effect for the MANCOVA was found, Λ = 0.69, F(10,45) = 2.06, 

p < 0.05. A main Group effect was found for the following psychological health 

measures: PGC-MS (morale), F(1,54) = 6.80, p < 0.05, depression, F(1,54) = 8.66, p < 

0.01, anxiety, F(1,54) = 8.14, p < 0.01, and hostility, F(1,54) = 6.18, p < 0.05. These 

results indicate that MCI patients have a lower morale and greater depression, anxiety, 

and hostility than healthy controls (see Table 2). 

 

Personality traits 

 
Five one-way ANCOVAs with Group (MCI, Control) as a between-subject factor 

and gender as a covariate were used to assess group differences on the neuroticism, 

extraversion, self-efficacy, reference to self, and openness to experiences scores. No 

significant group differences were found, F(1,54) = 2.10, N.S., F(1,54) = 1.75, N.S., 

F(1,54) = 0.36, N.S, F(1,54) = 0.08, N.S, F(1,54) = 0.33, N.S, for neuroticism, 

extraversion, self-efficacy, reference to self, and openness to experience, respectively. In 
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addition, the mean score of each of these scales was within the range of normative values 

for both groups. In order to control for type 1 errors, only the two personality traits that 

have been mostly used in the literature (i.e. neuroticism and extraversion) were kept for 

measures of association. 

 

Associations between cognition, psychological health and personality 

Partial correlations (controlling for gender) were calculated between 

psychological health variables and the neuropsychological composite scores. In MCI 

persons, significant associations were found between their morale score and their 

Executive composite score, r = 0.37, p < 0.05, and between their depression score and 

their Global Cognition composite score, r = -0.37, p < 0.05. No association between 

psychological health and cognitive functions was found in healthy controls (Table 3).  

 

Pearson’s partial correlations (controlling for gender) assessed the relation 

between the two Eysenck personality traits that were measured and the 

neuropsychological composite scores. As shown in Table 4, the level of neuroticism and 

of extraversion was not significantly associated with any of our cognitive measures in 

persons with MCI or in healthy controls.  

 

Finally, the relation between personality and psychological health was assessed 

by performing partial correlations (controlling for gender) between the two personality 

traits and the psychological health measures. As shown in Table 5, only neuroticism was 

associated with the psychological health measures with morale being negatively 
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correlated with neuroticism and depression, anxiety, and hostility being positively 

correlated with neuroticism. The association was found to be identical in both groups. 

 

Conclusion 

The goal of this study was to shed light on the psychosocial profile of older 

persons with MCI by assessing personality traits and psychological health. We also 

measured the associations between personality, cognitive functions and psychological 

health to verify if personality was related to psychological health in a similar way in MCI 

as it is in healthy older adults and to assess if personality alterations and psychological 

disturbances are related to cognitive deficits in MCI. 

 

Participants with MCI exhibited significantly more mood disturbances 

(depression, anxiety, and hostility) and lower morale than matched healthy older adults. 

This study is consistent with previous findings indicating reduced psychological health in 

MCI (Gabryelewicz et al., 2004; Hwang et al., 2004; Kumar et al., 2006; Li et al., 2001; 

Lopez et al., 2005; Lyketsos et al., 2002). It is worth noting that the aforementioned 

studies have typically relied on the Neuropsychiatric Inventory (ex.: Hwang et al., 2004; 

Lyketsos et al., 2002) to assess psychological health. Using different scales, our study 

provides validity to the assertion that there is reduced psychological health in MCI 

relative to healthy older adults in spite of the fact that physical health and social 

functioning were equivalent across both groups. Thus, our findings cannot be related to 

withdrawal in persons with MCI or reduced interactions with their social or physical 

environment (i.e. people, experiences). 
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One of our main findings is that older persons with MCI do not show different 

personality traits than matched older persons without cognitive deficit. Indeed, no 

difference in neuroticism, extraversion, self-efficacy, and self-actualization (reference to 

self and openness to experiences) was found between participants with MCI and a group 

of healthy older controls matched on socio-demographic factors and recruited from a 

similar socio-cultural background. Thus, contrary to AD (Aitken et al., 1999; Jacomb & 

Jorm, 1996; Petry et al., 1989; Strauss & Pasupathi, 1994), MCI is not associated with 

marked personality changes/disturbances. This is consistent with the absence of 

prefrontal anomalies in persons with MCI. This finding implies that older persons who 

seek consultation for their memory problems and experience mild cognitive decline may 

not be markedly different in terms of their personality than older adults without cognitive 

deficits. This is important because one might have predicted that people with a high level 

of neuroticism may be more likely to consult and/or experience cognitive deficits. The 

findings of the present study do not support this notion and are consistent with previous 

research indicating that neuroticism is not associated with either current cognitive 

performance or cognitive decline over a period of 3 years (Jelicic et al., 2003).   

 

One other important finding in MCI was the presence of a negative correlation 

between their Global Cognition composite score and their depression score and the 

converging positive correlation between their executive functions composite score and 

their morale score. Two other studies have shown that the level of depression in MCI is 

intermediate to healthy older participants and participants with dementia (Li et al., 2001; 

Lyketsos et al., 2002), a notion confirmed by the results of this study, suggesting that 

more depressive symptoms are associated with more important cognitive impairment. 



 lxxvii

No association between personality traits and cognitive performance was found 

for persons with MCI and healthy older adults. Our results indicating that neuroticism 

and extraversion are not associated with cognitive performance in older adults are 

compatible with those of Booth et al. (2006) and Jelicic et al. (2003). The current study 

extends this finding to older individuals with MCI. Lack of an association between 

personality traits and cognition in MCI is also consistent with our finding that MCI 

individuals do not experience personality disturbances.  

 

When measuring the associations between personality and psychological health, it 

was found that higher neuroticism was related to increased psychological distress and 

that this was the case in both individuals with MCI and healthy older adults. Thus, 

although psychological distress is associated with neuroticism in MCI, this relationship is 

not specific to MCI. Extraversion was not associated with any psychological health 

variable and again, this was found in both groups. Overall, our results indicate that the 

association between personality and psychological health in healthy controls is not 

modified in MCI persons. Again, this is consistent with our finding that personality is not 

disturbed in these individuals.  

 

It is important to point out some of the limitations of this study. First, our sample 

(27 healthy older adults and 30 MCI individuals) was relatively small and statistical 

power may be an issue. However, we do not believe that our results were severely 

hindered by lack of power because the negative results that we reported were far from 

significance in the majority of cases. Results that were significant were characterized by 
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medium to large effect sizes according to Cohen’s Standard (Cohen, 1988), with seven of 

our correlations reaching an r value above 0.50 (r2 = 0.25; large effect size) and five 

reaching an r value between 0.30 (r2 = 0.09) and 0.50 (r2 = 0.25; medium effect size). By 

contrast, although we have attempted to reduce the likelihood of type 1 error by using 

composite scores for cognitive measures, the number of comparisons remain relatively 

high which could have inflated the risk of type 1 error. However, it is worth noting that 

the effects we found are consistent with the findings expected on the basis of our initial 

hypotheses and the results of previous work in older adults. The fact that we recruited our 

participants with MCI exclusively from memory clinics may be seen as a limitation, as 

the results cannot be generalized to the general population of cognitively impaired older 

adults. However, our recruitment strategy bears the advantage that the data are more 

representative of the population that clinicians from memory clinics will encounter in 

their daily practice. A third limitation is the use of the Eysenck Personality Inventory to 

assess personality instead of an instrument that could have measured a larger number of 

personality traits (such as the NEO PI-R). Thus, future research should be aimed at using 

more extensive personality tools in the study of personality and MCI. Another limitation 

is that the design of this study is cross-sectional and not longitudinal. It is therefore 

impossible to be certain that all MCI will convert to AD and that we did not include 

individuals with simply poor cognitive functioning rather than with a cognitive decline. It 

is however important to stress that this limitation should not preclude studying this 

particular population because in day to day practice, clinicians do not know in advance 

whether their patient will be among those who will or will not evolve to AD. Also, the 

fact that we used a cognitive complaint measure may decrease the probability of 

including individuals with no cognitive decline as cognitive complaints usually comes as 
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a results of patients noticing a change of cognitive abilities relative to their previous 

state. Nevertheless, these results need to be replicated in a longitudinal study that will 

follow MCI until their progression to AD. Finally, it is important to note that correlations 

do not imply causal links, and hence, our results must be interpreted with caution. 

 

In summary, the goal of the current study was to establish the psychological 

profile of individuals with MCI and to compare it to that of healthy older adults. We 

found that MCI individuals do not show personality disturbances, in contrast with what 

has been reported in persons with AD. Contrary to personality traits, persons with MCI 

report a significant amount of psychological distress and the magnitude of their 

depressive symptoms is positively correlated with the severity of their cognitive 

dysfunction.  

 

The present data have important implication at the clinical level. First, these 

results indicate that older adults facing cognitive deficits, even if relatively minor, are 

likely to experience a significant level of psychological discomfort that needs to be 

acknowledged and properly addressed by clinicians. Second, our findings indicate that 

the psychological distress experienced by persons with MCI is not merely due to the fact 

that they belong to a particular type of personality trait like neuroticism. Finally, the 

importance of the psychological distress reported here by individuals with MCI stresses 

the relevance of designing interventions, whether pharmacological or non-

pharmacological that would target these symptoms. Because of the relation between 

cognitive symptoms and psychological distress, interventions that would address both 
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cognitive impairments and psychological distress in a multifactorial manner, are likely to 

have a synergetic effect in persons with MCI. This could potentially be done by 

combining psychotherapy and/or pharmalogical medication to cognitive training 

(Belleville, 2008). 
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Notes 

1. Note that one control was the spouse of an MCI participant and his results on the 

questionnaires were similar to those of other controls. 
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Table 1 
 
Mean scores on the cognitive measures for controls and MCIs. S.D. are in parentheses. 
 
Cognitive domain       Test                                            Controls                   MCIs 

General  MDRS    140.26 (3.12)       137.03 (5.28) ** 

   MMSE    28.89 (0.97)         28.63 (1.16) 

Executive Functions  

   Stroop color time (plate 3)  27.34 (8.68)          33.35 (11.45) * 

   Stroop color errors (plate 3)    1.07 (1.30)            2.27 (2.35) * 

Visuospatial   

   Copy of Rey’s Figure (time)  199.41 (76.56)       249.89 (154.30) 

   Copy of Rey's Figure (score)    31.39 (5.22)           29.55 (4.80) 

Memory   

   RL/RI-16 free recall trial 3     11.52 (2.05) 9.33 (3.34) ** 

   RL/RI-16 delayed free recall      12.33 (2.17) 10.03 (3.68) ** 

 

Note. * p < 0.05. ** p < 0.01.  
 

 

 

 

 

 

 

 

 



 xci

Table 2. 
 
Level of psychological health among controls and MCIs. S.D. are in parentheses. 
 
          Controls     MCIs 

PGC-MS: Morale     14.41 (2.45) 12.50 (3.83) * 

PSI:  

   Depression      1.44 (1.83) 2.87 (2.11) ** 

   Anxiety      1.44 (1.19) 2.80 (2.41) * 

   Hostility      1.30 (1.84) 2.47 (2.16) * 

Note. * p < 0.05. ** p < 0.01. 
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Table 3. 
 
Correlations between composite scores and psychological health for controls and MCIs. 
 
         Global Cognition      Visuo spatial      Executive          Memory 

          MCI    Control         MCI   Control        MCI   Control    MCI Control 

PGC-MS: Morale    0.30      0.13            0.25      -0.19        0.37 *       0.11      -0.04    0.18 

PSI:  

   Depression         -0.37 *  -0.11           -0.11     -0.06        -0.15        -0.04     -0.13   -0.38 

   Anxiety          -0.08    -0.10            -0.01     0.11        -0.26        0.21       -0.06    0.21 

   Hostility          0.10    0.06         0.11      0.15         -0.03        0.28       0.22   -0.14 

 Note. * p < 0.05. 
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Table 4. 
 
Correlations between composite scores and personality traits for controls and MCIs. 
 
             Neuroticism                  Extraversion  

     MCIs            Controls  MCIs         Controls 

Global Cognition   0.05  0.09  0.10  0.24 

Visuospatial    0.01  0.16  0.25  0.14 

Executive    0.20  0.07  0.22  0.08 

Memory    0.01  0.05  0.12  0.11 
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Table 5. 
 
Correlations between personality traits and psychological health for controls and MCIs. 
 
              Neuroticism         Extraversion  

     MCIs            Controls  MCIs         Controls 

PGC-MS: Morale   -0.64 ***         -0.61 ***   0.25               0.11 

PSI:  

   Depression     0.45 *  0.55 **  -0.18             -0.17 

   Anxiety    0.60 *** 0.57 **  0.04              -0.00 

   Hostility    0.67 *** 0.51 **   0.01              -0.14 

Note. * p < 0.05. ** p < 0.01. *** p < 0.001. 
 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

 


