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Résumé 

Les lymphocytes B et T sont issus de cellules progénitrices lymphoïdes de la moelle 

osseuse qui se différencient grâce à l’action de facteurs de transcription, cytokines et voies 

de signalisation, dont l’interleukine-7 (IL-7)/IL-7 récepteur (IL-7R). Le facteur de 

transcription c-Myc est exprimé par les cellules lymphoïdes et contrôle leur croissance et 

leur différenciation. Cette régulation transcriptionnelle peut être coordonnée par le 

complexe c-Myc/Myc-Interacting Zinc finger protein-1 (Miz-1). Le but de ce projet était de 

comprendre les mécanismes qui impliquent Miz-1 et le complexe c-Myc/Miz-1 dans le 

développement des lymphocytes B et T. Pour réaliser ce projet, des souris déficientes pour 

le domaine de transactivation de Miz-1 (Miz-1ΔPOZ) et des souris à allèles mutantes pour c-

MycV394D, mutation qui empêche l’interaction avec Miz-1, ont été générées.  

La caractérisation des souris Miz-1ΔPOZ a démontré que l’inactivation de Miz-1 

perturbe le développement des lymphocytes B et T aux stades précoces de leur 

différenciation qui dépend de l’IL-7. L’analyse de la cascade de signalisation IL-7/IL-7R a 

montré que ces cellules surexpriment la protéine inhibitrice SOCS1 qui empêche la 

phosphorylation de STAT5 et perturbe la régulation à la hausse de la protéine de survie 

Bcl-2. De plus, Miz-1 se lie directement au promoteur de SOCS1 et contrôle son activité. 

En plus de contrôler l’axe IL-7/IL-7R/STAT5/Bcl-2 spécifiquement aux stades précoces du 

développement afin d’assurer la survie des progéniteurs B et T, Miz-1 régule l’axe 

EBF/Pax-5/Rag-1/2 dans les cellules B afin de coordonner les signaux nécessaires pour la 

différenciation des cellules immatures. La caractérisation des souris c-MycV394D a montré, 

quant à elle, que les fonctions de Miz-1 dans les cellules B et T semblent indépendantes de 

c-Myc.  

Les cellules T des souris Miz-1ΔPOZ ont un défaut de différenciation additionnel au 

niveau de la β-sélection, étape où les signaux initiés par le TCR remplacent ceux induits par 

IL-7 pour assurer la prolifération et la différenciation des thymocytes en stades plus 
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matures. À cette étape du développement, une forme fonctionnelle de Miz-1 semble être 

requise pour contrôler le niveau d’activation de la voie p53, induite lors du processus de 

réarrangement V(D)J du TCR. L’expression de gènes pro-apoptotiques PUMA, NOXA, Bax 

et du régulateur de cycle cellulaire p21CIP1 est régulée à la hausse dans les cellules des 

souris Miz-1ΔPOZ. Ceci provoque un débalancement pro-apoptotique qui empêche la 

progression du cycle cellulaire des cellules TCR-positives. La survie des cellules peut être 

rétablie à ce stade de différenciation en assurant une coordination adéquate entre les 

signaux initiés par l’introduction d’un TCR transgénique et d’un transgène codant pour la 

protéine Bcl-2.  

En conclusion, ces études ont montré que Miz-1 intervient à deux niveaux du 

développement lymphoïde: l’un précoce en contrôlant la signalisation induite par l’IL-7 

dans les cellules B et T, en plus de l’axe EBF/Pax-5/Rag-1/2 dans les cellules B; et l’autre 

tardif, en coordonnant les signaux de survie issus par le TCR et p53 dans les cellules T. 

Étant donné que les thymocytes et lymphocytes B immatures sont sujets à plusieurs rondes 

de prolifération, ces études serviront à mieux comprendre l’implication des régulateurs du 

cycle cellulaire comme c-Myc et Miz-1 dans la génération des signaux nécessaires à la 

différenciation non aberrante et à la survie des ces cellules. Enfin, les modèles 

expérimentaux, souris déficientes ou à allèles mutantes, utilisés pour ce travail permettront 

de mieux définir les bases moléculaires de la transformation maligne des lymphocytes B et 

T et de révéler les mécanismes conduisant au lymphome. 

 

Mots-clés : Miz-1, c-Myc, IL-7R, TCR, différenciation, apoptose, Bcl-2, STAT5, SOCS1, 

p53.  
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Abstract 

Signaling pathways control the differentiation and proliferation of blood cells, like 

B and T lymphocytes. They converge into regulating the activity of transcription factors 

that influence ultimately gene expression patterns. The transcription factor c-Myc is a 

central regulator of cellular proliferation and growth, and its deregulated expression has 

been demonstrated to be involved in many types of cancers, in particular lymphoma. 

Recent studies have shown that repression by c-Myc can be mediated by a complex formed 

with the BTB/POZ domain transcription factor Miz-1 (Myc Interacting Zinc finger protein-

1). Given that both c-Myc and Miz-1 proteins are expressed in lymphoid precursors and 

since c-Myc has been shown to be important for B- and T-cell development, the aim of this 

thesis was to investigate the role of Miz-1 and the c-Myc/Miz-1 complex in regulating B 

and T cell survival, commitment and differentiation. To do so, mice expressing a non-

functional Miz-1 protein lacking the BTB/POZ domain (Miz-1ΔPOZ) and knock-in mice 

expressing a mutant c-MycV394D allele that no longer interacts with Miz-1 were generated. 

B- and T-cell development requires the coordinated action of transcription factors 

and cytokines, in particular interleukin-7 (IL-7). The studies presented in this work 

demonstrated that mice deficient for the BTB/POZ domain of transcription factor Miz-1 

almost entirely lack follicular B cells and T cells, since their progenitors fail to activate the 

JAK/STAT5 pathway and to up-regulate Bcl-2 upon IL-7 stimulation. Miz-1 exerts a dual 

role in the IL-7 receptor (IL-7R) pathway by directly repressing the JAK inhibitor SOCS1 

and by activating Bcl-2 expression. In B cells, a functional form of Miz-1 is also required 

for the proper expression of early B cell genes like E2A and EBF. These data suggest that 

Miz-1 represents a new regulatory element of early B- and T-cell differentiation required 

for the regulation of the IL-7/IL-7R/STAT5/Bcl-2 axis by monitoring SOCS1 for survival 

and by regulating the EBF/Pax-5/Rag-1/2 axis for the proper commitment and 

differentiation of the B-cell lineage. The regulation exerted by Miz-1 in B and T cells is 
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mostly likely independent of its interacting partner c-Myc, and seems specifically linked to 

the BTB/POZ domain of Miz-1.  

Mice deficient for the BTB/POZ domain of Miz-1 have additionally a severe 

differentiation block at the pre-T cell “β-selection” checkpoint. Miz-1 deficient pre-T cells 

are highly apoptotic and do show cell cycle defects. This concurs with enhanced expression 

of p53-target genes such as p21CIP1, Bax, PUMA and Noxa, most likely induced by the 

DNA double-strand breaks generated during the V(D)J recombination of the TCR. Only the 

co-expression of rearranged TCRαβ and Bcl-2 fully rescued Miz-1-deficient cell numbers 

and enabled them to differentiate into TCRβ+ cells. These data suggest that Miz-1 is 

required for both the regulation of the p53 response and proper expression of the pre-TCR 

to support the proliferative burst of pre-T cells. 

In conclusion, the studies presented in this thesis revealed the so far unknown 

implication of Miz-1 in B- and T-cell development. More specifically, Miz-1 exerts early 

regulatory functions by monitoring the IL-7/IL-7R signaling in B and T cells. It regulates 

later stages of differentiation by controlling the EBF/Pax-5/Rag-1/2 in B cells and the TCR 

expression and the p53 response in T cells. These studies and the generated mice model 

(conditional knock-out and knock-in) will help characterize the implications of 

transcription factors that have been causally implicated in the altered genetic programming 

found in hematopoietic malignancies due to their capacities to regulate cell cycle. 

Ultimately the characterization of Miz-1 and c-Myc functions in B and T cells will help 

better understand the mechanisms responsible for the emergence of leukemia and 

lymphoma.  

 

Keywords : Miz-1, c-Myc, IL-7R, TCR, differentiation, apoptosis, Bcl-2, STAT5, SOCS1, 

p53.  
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Overview 

The immune system has evolved over the years to arm the body with many 

strategies of defense against pathogens and infections. The innate immune system 

possesses sensors that initiate innate responses after promiscuous recognition. On the 

contrary, the adaptive immunity integrates signals from specific antigen receptors to 

transcriptional regulation events that govern the acquired response. The shape and size of 

the antigen receptor repertoire are also tightly regulated by immuno-surveillance 

mechanisms such as tolerance to avoid cross-reactivity, inflammatory pathologies and 

autoimmune diseases. 

All mature blood cells originate from hematopoietic stem cells that mature in the 

bone marrow or in primary lymphoid organs through coordinated proliferation and 

differentiation events. By acquiring lineage restrictions, the progenitors loose stemness, but 

gradually gain proliferative capacity that needs to be tightly regulated by transcription 

factors. These transcription factors ensure the maintenance of the genetic programming that 

regulates cell growth, commitment and survival. Lymphoid malignancies arise from 

different stages of development and are often linked to a deregulated signaling pathway or 

transcriptional regulatory functions in B and T cells. 

The transcription factor c-Myc plays important roles in hematopoietic 

differentiation and in the emergence of lymphoma and other blood cancers. It can regulate 

the transcription of its target genes through two pathways, one E-box-dependent and the 

other E-box-independent. The second E-box-independent pathway, in which c-Myc 

regulates gene expression, is dependent on the association of c-Myc with Miz-1. Miz-1 

itself can control the expression of genes involved in proliferation. The identity of most of 

these genes and their function in c-Myc lymphocyte biology are unknown.  

This work aimed to define the role of Miz-1 and the c-Myc/Miz-1 complex in the 

regulation of T- and B-cell survival, commitment and differentiation. As c-Myc has been 
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shown to play important roles in the development of progenitors and T cells, this project 

hypothesis was that its interacting partner Miz-1 also had implications in precursor 

commitment and lymphoid development processes. The characterization of these two 

transcription factors was thought to enable the identification of the interplay between c-

Myc and Miz-1 functions during critical developmental checkpoint of B- and T-cell 

development. 

The results obtained for this project will be presented in three chapters. The first 

chapter will contain the published article in ''Immunity'' regarding the requirement for a 

functional form of Miz-1 to regulate IL-7R signaling at early commitment stages of B-cell 

differentiation. The second chapter will expose data regarding the role of Miz-1 in IL-7R-

dependent survival and differentiation of early T-lineage progenitors that were published in 

''Blood''. The third chapter will present data from a manuscript recently accepted for 

publication in ''The Journal of Immunology'' on the implication of Miz-1 later in T-cell 

development, where it is important to coordinate the expression of TCRβ and p53 effector 

genes at the pre-TCR ‘’β-selection’’ checkpoint. 

These studies revealed that Miz-1 is a new regulator of normal lymphoid 

development and that it exerts this role independently of c-Myc. Since it is known that both 

c-Myc and Miz-1 can affect the process of malignant transformation, their function in 

normal cells needs to be properly monitored in order to avoid the emergence of leukemia 

and lymphoma. Hence, this study not only presents a new insight on the mechanisms 

underlying normal lymphoid development, but it also provides new knowledge that is very 

likely important to design future therapeutic strategies against different types of blood 

cancers. 



 

 

Introduction 

Hematopoietic stem cells (HSC) are responsible for the generation of mature blood cells 

through a series of well coordinated proliferation and differentiation events. As cells 

progress through the early stages of hematopoiesis, they give rise to precursors that are 

more restricted because they gradually loose their multilineage and self-renewal potential 

which characterized the originating HSC [1, 2]. By acquiring a certain lineage restriction, 

the progenitors gradually loose their ability for self-renewal but gain proliferative capacity. 

These processes are tightly regulated by transcription factors that ensure the maintenance of 

the genetic programming that regulates cell growth, lineage commitment and cell survival 

[3]. 

 

Throughout the lifespan of a mouse, the hematopoietic progenitors generate mature 

lymphoid and myeloid cells that continue to replenish the innate and adaptive or acquired 

immune systems. The innate system constitutes the first line of defense and recognizes a 

limited number of evolutionary conserved molecules expressed by pathogen-associated 

molecules such as lipopolysaccharides and peptidogylcans [4, 5]. The major difference 

between these two branches of the immune system is that the adaptive immunity provides 

specificity to antigen recognition by the B cell receptor (BCR) or the T cell receptor (TCR) 

and secretes antibodies [6, 7]. Moreover, the innate immune system responds to antigen 

with a fast kinetic that lacks memory capacity whereas the adaptive immune system 

responds with a delayed kinetic, but possesses effective memory responses [4, 6]. The 

specificity of antigen recognition is achieved through several developmental pathways and 



 

 

 

2 

selection steps orchestrated by the interplay between the TCR or BCR signaling and 

transcription factor regulation [8]. Another particularity of the adaptive immune response is 

the clonal selection, a process that enables each cell that expresses a single receptor to 

expand based on the affinity of that receptor for its ligand. Hence, a small number of 

specific naïve cells will expand following the recognition of a particular antigenic epitope. 

Consequently, the repertoire of the adaptive immune system is unique to each individual, 

whereas the receptors of the innate immune system, that are retricted to specific motifs, are 

not clonally distributed and may be shared within individuals [8].  

 

Hematopoietic cells bear characteristics of both the innate and the adaptive immune system. 

Yet, some subsets of cells do not classify within the criteria of the innate or adaptive 

response, as they possess properties of both branches. Examples of such cells include 

natural killer T (NKT) cells, γδ T cells, CD8αα T cells, B-1 B cells, marginal zone B cells 

and subsets of NK cells [9].  T and B cells are a lymphocyte lineage that is critical for the 

host defense system against many types of pathogens. Their functions are well 

characterized in the periphery, but major questions still remain regarding their origin and 

their developmental processes. 

 

1. Hematopoiesis and lineage progenitors 

Most hematopoietic lineages, including B cells, develop in the bone marrow, while T cells 

complete their development in the specific environment of the thymus. The migration of 
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progenitors out of the bone marrow allows the circulation of cells in the bloodstream 

through which they finally reach the homing organ [10].  Many markers have been 

proposed to accurately identify the correct progenitor that generates a specific lineage. For 

instance, lineage markers (Lin) are cell surface antigens that define specific populations of 

mature blood cells. The lack of lineage marker expression is found in an enriched 

population of cells with primitive hematopoietic stem cell or early progenitor cell 

characteristics. A bone marrow fraction that lacks Lin expression and expresses c-Kit 

(CD117) and Sca-1 is referred to as Lin−Sca-1+c-Kit+ or ''LSK'' cells that contain long-term 

and short-term hematopoietic stem cells (HSC) [11]. Long-term (LT)-HSC cells are the true 

hematopoietic stem cells that are capable of self-renewal, have a multi-lineage potential and 

can repopulate a transplanted host. LT-HSC can also be identified by the absence or low 

expression levels of Thy-1.1 (CD90) and Flt3 (Fms-like tyrosine kinase 3, Flk2, CD135), 

i.e. as Thy-1.1lo Flt3- cells or as CD34−Flt3− or CD150+CD244−CD48− cells [12, 13].  

 

Self-renewing LT-HSC cells are the base of the hematopoietic system holding a very potent 

proliferative potential in order to produce differentiated mature blood cells. The 

differentiation steps required to generate blood cells are irreversible, as once a lineage 

potential is lost, it cannot be recovered [13, 14]. Many stages govern the differentiation and 

proliferation of hematopoietic precursors. LT-HSC give rise to short-term-HSC (ST-HSC) 

that can sustain hematopoiesis for only about 6 weeks in a mouse because of their 

restrictive self-renewal capacity [15]. ST-HSC can express Flt3 and are Thy-1.1loFlt3+ or 

CD34+Flt3- and CD34+Flt3+, functionally distinct subsets of short-term HSC [16], and 
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contribute to multi-lineage differentiation. The oldest technique for determining the 

capacity of progenitors to generate hematopoietic cell fates is an in vitro colony-forming 

cell assay where transplanted stem cells can form colonies in the spleen of irradiated mice 

[17-19]. ST-HSC are potent progenitors of the hematopoietic lineage and can generate 

colonies (CFU-S: Colony Forming Units-Spleen) that can be detected by this spleen colony 

technique after transplantation [15, 16]. ST-LSK will give rise to non-self renewing 

multipotent precursors (MPP) characterized by the expression of Thy1.1-Flt3+ or 

CD34+Flt3+. MPP have multilineage potential and mark the first step of lineage restriction 

during hematopoiesis [1, 2]. In addition, MPP have been identified as the progenitors of the 

common lymphoid progenitor (CLP) and common myeloid progenitor (CMP) [20, 21] 

(Figure 1).  
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Figure 1. The classical model of hematopoiesis. Hematopoietic stem cells lose their self-
renewal activity and their first lineage fate decision is to engage in lymphoid or myeloid 
differentiation. In this model, the common lymphoid progenitor (CLP) and the common 
myeloid progenitor (CMP) are symmetrically derived from the same multipotent precursors 
(MPP). Each progenitor gives rise to the indicated mature blood cells. GMP, 
granulocyte/macrophage progenitor; MEP, megakaryocyte/erythroid progenitor; Meg, 
megakaryocyte; NK, natural killer; Mφ, macrophage (adapted from [22]). 

1.1. Models for the hematopoietic cell differentiation 

1.1.1. The classical model 

Many groups have used the fractionation of hematopoietic precursors into subsets with 

different lineage specifications to further define hematopoietic differentiation. The first 
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dichotomy model was established in 1997 by the identification of the symmetrical division 

of MPP into CLP and CMP [20, 21]. CMP cells give rise to two sets of restricted bipotent 

progenitors: the megakaryocyte/erythroid (MegE) progenitors (CD34−FcγRIII−Thy1.1−IL-

7Rα−Lin−Sca-1−c-Kit+) and the granulocyte/macrophage (GM) progenitors 

(CD34+FcγRIII+Thy-1.1−IL-7Rα−Lin−Sca-1−c-Kit+) [21].  CLP (Lin-IL-7Rα+Sca-1lowc-

KitlowThy-1.1−) are proposed to be the common lymphoid progenitor that gives rise to B 

and T cells. Refinements to this model were added by Adolfsson and his collaborators who 

reported that MPP could be divided into two groups based on Flt3 expression [23]. The 

highest Flt3 expressing subset had lost its MegE differentiation potential, but retained 

robust GM-, T- and B-cell differentiation potential [23]. Further analyses characterizing the 

expression of Flt3 expression allowed defining the branching point for most potent 

lymphoid progenitors to develop into the lymphoid lineage. 

1.1.2. The revised classical model  

By using Flt3 as a marker in combination with vascular cell adhesion molecule-1 (VCAM-

1), Kondo’s group could further subdivide the MPP population into three subsets: 

Flt3loVCAM-1+, Flt3hiVCAM-1+, and Flt3hiVCAM-1− MPP [24, 25]. The Flt3loVCAM-1+ 

MPP population seems to contain the true multi-lineage progenitor able to differentiate into 

MegE, GM and lymphoid precursors [25]. In agreement with the findings from Adolfsson 

and collaborators, the Flt3hiVCAM-1+ MPP can no longer differentiate into MegE lineage, 

but can give rise to GM and T and B cells [25]. Flt3hiVCAM-1− MPP cells still have GM 

differentiation potential, but preferentially give rise to lymphocytes [24, 25]. Only 



 

 

 

7 

Flt3loVCAM-1+ MPP can give rise to CMP, whether the more developmentally defined 

Flt3hiVCAM-1− MPP cell give rise to CLP [24]. Adolfsson and colleagues proposed an 

alternative lineage commitment step to the classical model where ST-HSC or MPP first 

diverge into the MegE lineage, and the loss of this MegE potential is a prerequisite for the 

differentiation into GM or lymphoid lineages [23]. This revised model suggests that CLP 

are not necessarily generated from the same MPP that commit to the CMP lineage (Figure 

2). This refinement is particularly important to understand lymphoid lineage commitment 

and differentiation processes. These processes appear more complex compared to the 

myeloid-lineage commitment and differentiation program because of the multiple lineage 

restriction steps and the loss of the MegE and GM differentiating potentials prior to 

lymphoid lineage commitment.  

1.1.2.1. Lymphoid versus myeloid lineage potential 

One of the MPP subsets which expresses high levels of the Flt3 (Flt3+LSK) has been 

termed ‘lymphoid-primed multipotent progenitors’ (LMPP). LMPP are the precursors of 

the common lymphoid progenitor (Lin-IL-7Rα+Sca-1lowCD117lowThy-1.1−) and early 

lymphoid progenitors (ELP, Lin-IL-7Rα-CD44+Sca-1highCD117high) [20, 26-28] (Figure 2). 

ELP are lymphoid progenitors expressing the recombination activating gene-1 (RAG-1) 

[29, 30]. They are similar to Flt3hiVCAM-1- MPP which have been proposed to be 

lymphoid-biased progenitors that gradually down-modulate their myeloid potential. They 

also express CC-chemokine receptor 9 (CCR9), the chemokine receptor for CCL25 [31], 

which is only detected in the thymus [32], not in the bone marrow. Thus CCR9 enables 
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ELP to home to the thymus [20, 22, 29, 33]. CCR9 expression is not detected on CLP [34]. 

Consequently, their T cell potential is believed to occur prior to the silencing of the myeloid 

program and before the CLP stage [22]. Recently, the marker Ly6D has been used to 

identify the branch point where CLP divide into B cell-biased lymphoid progenitor (BLP) 

and all-lymphoid progenitor (ALP) that either give rise to the first stages of B-cell 

development or contribute to the T-cell development, respectively [35]. Ly6D- CLP possess 

B, T, natural killer (NK), dendritic cell (DC), and some degree of myeloid potential, 

whereas Ly6D+ CLP are B cell lineage restricted progenitors [35]. Ly6D- CLP are thought 

to enter the thymus, since after intravenous transfer, they can generate thymocytes [35, 36] 

(Figure 2). Both the CLP that express IL-7R gene and the ELP progenitors relay on IL-7/IL-

7R signaling or priming in order to contribute to the B- and T-cell development [37-39]. 

The notion of priming was demonstrated by visualizing the history of IL-7R gene 

expression in a study by Schelnner and collaborators. The experiments performed in this 

study showed that, although the vast majority of ELP lacked IL-7R mRNA expression, they 

were marked by a prior IL-7R expression. This indicated that they are primed by the IL-7R 

gene signature and that they descend from a progenitor that is IL-7R-positive [39]. 
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Figure 2. Schematic representation of the revised model of hematopoietic lineage 
differentiation, specification and commitment. Cells in pink can give rise to the myeloid 
lineage (gray) and the lymphoid lineages (blue-green). Common lymphoid progenitors 
(CLP) containing the ALP and BLP are in both pink and blue. ELP are also indicated under 
the LMPP cells as they represent a more immature stage compared to CLP. ELP and ALP 
can give rise to ETP, whereas BLP give rise to B cells. Specific surface markers for each 
cell types are indicated. Examples of key-player genes at the different differentiation stages 
are listed. HSC, hematopoietic stem cell; MPP, multipotent progenitor; CMP, common 
myeloid progenitor; MEP, megakaryocytic/erythrocyte progenitor; GMP, 
granulocyte/macrophage progenitor; LMPP, lymphoid-primed multipotent progenitor; 
LSK, Lin-Sca-1+c-Kit+; ALP, All lymphoid progenitor; ETP, early thymic progenitor; BLP, 
B cell-biased lymphoid progenitor; CLP, common lymphoid progenitor (adapted from 
[40]). 
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1.1.3. The myeloid-based model  

The common lymphoid progenitors were described as the precursors that give rise to B, T 

and NK cells, but not to myeloid cells [20]. The prediction from this model was that CLP 

migrate to the thymus from the bone marrow to initiate T-cell development. However, 

some reports showed that the predominant thymus-seeding cells do not resemble CLP, but 

have characteristics of earlier hematopoietic progenitors [41]. Other evidence came from 

the characterization of Ikaros, member of the Ikaros family of transcription factors that 

contribute to multiple aspects of hematopoietic development and homeostasis [42, 43]. 

Ikaros-knockout mice lack B cells, but maintain their T cell pool despite the fact that they 

lack CLP because they retain the presence of an early T-lineage progenitor population in 

the thymus [44, 45].  These findings suggested that specific early T-lineage progenitors 

rather than CLP are the true T cell progenitors and that both can develop independently of 

each other. Therefore, an additional diversion at the CLP commitment step may be 

responsible for B- and T-cell development. Moreover, studies in mice showed differences 

in hematopoiesis between fetal and adult stages. In fetal mice, the myeloid potential 

persisted even after the lineage branch of hematopoiesis divided toward T and B cells [46-

48]. Therefore, it was proposed that an additional 'myeloid-based' model of hematopoiesis 

exist, in which a hematopoietic stem cell initially generates common myelo-erythroid 

progenitors and common myelo-lymphoid progenitors. Recent studies validated this model 

for adult hematopoiesis, providing evidence that the early cell populations in the adult 

thymus contain progenitors that have lost the potential to generate B cells but retained 

substantial myeloid potential [49, 50]. These studies argue against the classical dichotomy 
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model in which T cells are derived from CLPs. It supports instead a myeloid-based model 

for both adult and fetal hematopoiesis.   

 

Although compelling, the myeloid-based model of hematopoiesis is mainly supported by in 

vitro evidence. The proposed common progenitor for T and myeloid lineages has recently 

been challenged by an in vivo model able to map the fate of T- and myeloid cell 

development by visualizing the history of IL-7R expression. These elegant experiments 

provide evidence suggesting that lymphoid-restricted progenitors are the major source of T-

cell differentiation and that the separation between lymphoid and myeloid progenitors is a 

fundamental hallmark of hematopoiesis [39]. In vitro and in vivo differentiation potentials 

must carefully be examined as both studies may generate artifactual results. On the one 

hand, non-physiological high concentrations of cytokines or growth factors may have been 

used in vitro that allow progenitors to differentiate into cell lineages that they are unable to 

generate under in vivo conditions. On the other hand, in vivo studies implicate isolation and 

manipulation of progenitors prior to their injection or transplantation which may force or 

alter the migration potential to distinct niches within the bone marrow or to the thymus [51] 

that only support the maturation of certain lineages.  

 

Taken together, these studies show that the classical model of the CLP/CMP branching 

point of hematopoiesis is still valid, although some subdivisions in the subsets of MPP or 

ST-HSC that give rise to lymphoid or myeloid lineages must exist. Further analysis of bone 

marrow progenitors with T-cell differentiation potential will have to be done to clarify 
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whether only one or multiple subpopulations contribute to thymopoiesis. This clarification 

may have implications for improving bone marrow transplantation strategies to treat 

leukemia [52]. It takes months to fully reconstitute T cells after bone marrow 

transplantation [53]. During this period, patients are susceptible to infections. To improve 

the reconstitution of the peripheral T cell pool in a transplanted patient, it may become 

important to increase the number of true T-lineage committed progenitors in the transplant. 

In fact, while LMPP and CLP are able to generate CD4+CD8+ double positive (DP) cells in 

the thymus, HSC failed to do so after transfer. HSC, CLP and LMPP subsets can produce 

DP cells after intrathymic transfer, but HSC are unable to settle the thymus to generate DP 

cells. They can do so if the homing step is bypassed [54].  These experiments indicated that 

thymic settling is selective toward the circulating progenitors and that certain signals are 

required for thymic entry [54]. To improve stem cell transplantation efficiency, it was 

shown that the co-transplantation of CLP and hematopoietic stem cells in irradiated hosts 

can improve the recovery of the T-lineage [55]. Recently, Van den Brink’s group 

successfully transferred precursors generated in vitro on OP9DL1 bone marrow stromal cell 

cultures that improved peripheral T cell numbers in irradiated mice [56]. This in vitro 

technique has the advantage of generating a large number of T-committed precursors in 

order to improve the peripheral T cell pool that is suitable for transfer and that expresses a 

normal T cell receptor repertoire. These precursor-derived T cells also had normal cytokine 

production and proliferated in response to antigenic stimulation [56]. The increase in donor 

T cells after transplantation was shown to improve the resistance to Listeria infection and 

enhanced graft-versus-tumor responses [56]. Finally, the generation of T cell precursors 
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from human CD34+ cord blood cells using Notch signaling in vitro was also successful 

[57]. Therefore, whether T-lineage progenitors derived from bone marrow or from in vitro 

cultures are used, the co-transfer of true T cell progenitors and HSC may allow for an 

enhanced and accelerated T cell reconstitution after stem cell transfer. 

 

2. Temporal and spatial regulation of transcription factors in 

stem cells 

Lineage specification and commitment of HSC is dependent, for example, on the stem cell 

niche, the profile of chemokine expression, cytokine signaling and transcription factors that 

mediate their survival and development [58-60]. The molecular programming of 

hematopoietic progenitor subsets depend on gene regulation, which occurs based on 

transcription factors, co-factors, signaling molecules present in the cell and on the context 

of the regulatory elements of each gene. Moreover, the function of a transcription factor can 

change during developmental transitions, but the regulatory elements of each gene do not 

vary with each transitional step [61]. Stem cells and multilineage precursors co-express 

lymphoid, erythroid and myeloid genes [62, 63]. Some genes can be qualified as 

differentiation genes that are true markers of lineage commitment [64]. For example, 

GATA, Pu.1, Id factors, SCL, Ikaros, Gfi1 and Gfi1b are transcription factors required to 

enable precursors to make specific lineage fate decisions [65, 66].  
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2.1. GATA and  Pu.1 during lineage commitment 

Sequence-specific DNA-binding proteins are important regulators of chromatin 

configuration that either increase or inhibit gene expression [67]. For example, the zinc 

finger transcription factor GATA-1 directly occupy looped enhancers and target gene 

promoters at the β-globin locus [68].  GATA-1 is essential for the erythroid lineage 

differentiation [69] and mutations in the GATA-1 gene are associated with 

megakaryoblastic leukemia and anemia [70]. GATA-1 is a transcriptional activator of many 

erythroid specific genes and can also function as a repressor of proto-oncogenes like Myc 

and Kit in order to terminate cell proliferation when erythroid maturation is achieved [71-

73]. The zinc finger transcription factor GATA-2 is another GATA family member that is 

expressed in hematopoietic stem cells, multilineage progenitors and early committed 

erythroblasts. The erythroid differentiation is orchestrated by an exchange between the 

GATA factors as GATA-1 levels increase leading to the silencing of GATA-2 expression 

upon cell maturation [74, 75]. Furthermore, GATA2 exerts different functions regulating 

development, cell cycle and lineage commitment processes. It is expressed in 

hematopoietic stem cells during fetal and adult development [76, 77]. GATA2 deletion is 

lethal at mid-gestation due to severe defects in hematopoiesis [78]. GATA2 seems required 

to promote the proliferation and survival of early hematopoietic cells and mast cells, but it 

is not needed for terminal myeloid differentiation [79]. Mice deficient for one allele of 

GATA2 (GATA2+/-) show decreased numbers of HSC that are unable to compete with 

normal cells in transplantation assays [80]. It has been suggested that the decrease in 

GATA2 expression increases apoptotic cell rates and ultimately provokes cell death [80].  



 

 

 

15 

 

The GATA/Pu.1 axis is important for the separation between erythro-megakaryocytic and 

myeloid lineages [81]. GATA-1 drives erythro-megakaryocyte cell differentiation in 

opposition to the Ets (E26 transformation specific) family factor Pu.1, which directs 

differentiation towards the myeloid fate [82-84]. The transcription factor Pu.1 is expressed 

at the highest level in macrophages. It induces myeloid genes such as Mac-1 (CD11b), 

F4/80, GM-CSF receptor (CD116) and M-CSF receptor (CD115) [85, 86]. The disruption 

of Pu.1 results in many hematopoietic abnormalities [87-89]. Up-regulation of Pu.1 drives 

the cells into the myeloid lineage, while low Pu.1 expression levels are necessary for B-cell 

development [90, 91]. At low levels of Pu.1 expression, the IL-7Rα is induced to promote 

both the survival and proliferation of pro-B and pro-T cells [91, 92]. Moreover, Pu.1 must 

be downregulated as cells differentiate toward the T cell lineage to avoid activation of 

myeloid genes and cell death in T cell precursors [89, 93, 94].  

2.2. Id1 to Id4 during lineage commitment 

Id1-4 proteins (inhibitor of differentiation) are members of the helix-loop-helix protein 

family of transcription factor that play important roles during embryogenesis, cell fate 

determination and cell cycle progression [95]. During myeloid development, Id2 expression 

is up-regulated as the cells progress to terminally differentiated monocyte-macrophages, 

granulocytes and erythrocytes [96, 97]. Id proteins are also required for lymphopoiesis 

since Id2-/- mice display defects in NK cells that can emerge from the bone marrow or the 

thymus. Their development is regulated by the inhibition of basic helix-loop-helix E protein 
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functions which is mediated by high levels of Id protein expression [98, 99]. Id proteins 

lack the basic domain that allows helix-loop-helix proteins to bind to DNA. The 

heterodimerization of E- and Id-proteins abolishes the capacity of E-proteins, for example 

E2A (transcription factor 3), to bind to the DNA [100]. Id2 and Id3 are not expressed in 

early differentiating thymocytes as they interfere with their lineage commitment 

presumably by influencing the function of other factors such as E2A and HEB [101-103].  

Id2-deficient precursors still give rise to T cells but not to NK cells, whereas forced 

expression of Id3 pushes thymocytes towards the NK fate [98, 103]. 

2.3. SCL/Tal-1 during lineage commitment 

The helix-loop-helix stem cell leukemia (SCL/Tal-1) transcription factor is essential for the 

very early steps of hematopoiesis [104-107]. SCL/Tal-1 is also an erythroid differentiation 

cofactor along with the LIM-domain (for Lin11, Ist-1, Mec-3) protein LMO-2 [108, 109]. 

Maturation of T cells is associated with the downregulation of SCL/Tal-1 and LMO-1 and 

LMO-2, and a parallel up-regulation of E2A and HEB expressions. Enforced expression of 

SCL/Tal-1 and LMO-1 blocks T-cell development by inhibiting HEB target genes like the 

pre-TCRα chain (pTα) [110, 111]. Moreover, the deregulation of SCL/LMO-1 or LMO-2 

complexes in T cells alters their normal growth pattern leading to the formation of leukemia 

[110, 112]. It is also involved in t(1;14) translocation observed in childhood T-cell acute 

lymphoblastic leukemia (T-ALL) [113, 114].  
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2.4. Ikaros during lineage commitment  

Ikaros is the founding member of the Ikaros family of transcription factors that contributes 

to multiple aspects of hematopoietic development [115]. The Ikaros family members 

regulate, in particular, lymphocyte development and homeostasis [43, 44, 116, 117] and 

were originally described as transcription factors that recognize regulatory sequences of 

genes expressed in lymphoid cells [118, 119]. The Ikaros gene contains seven exons and 

can give rise to eight isoforms by alternative splicing [119]. The Ikaros proteins share a 

common C-terminal domain with two zinc fingers, whereas their N-terminal domains 

contain different combinations of one to four zinc finger motifs [119]. The N-terminal 

domains mediate DNA-binding and the C-terminal motif mediates self-dimerization or 

multimerization with other Ikaros family members such as Helios or Aiolos [120-122]. It 

takes three N-terminal zinc fingers for high affinity DNA interaction. Therefore only 

Ikaros-1, Ikaros-2 and Ikaros-3 are able to bind to sequences that share the core motif 

GGGA [119]. Ikaros-4 has two N-terminal zinc fingers and binds to tandem recognition 

sites that share the GGGA sequence [119]. On the contrary, Ikaros-5, Ikaros-6, Ikaros-7 and 

Ikaros-8, which have one or no N-terminal zinc fingers cannot bind to DNA [118]. The 

various isoforms of Ikaros act as activators or repressors of transcription [118]. For 

example, Ikaros-6 lacks a DNA-binding domain and acts as a dominant negative regulator 

of Ikaros function [118]. 

 

All Ikaros proteins are expressed in self-renewing populations of stem cells [115]. The role 

of the Ikaros gene was studied by deleting its last translated exon which is shared by all of 
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the Ikaros proteins. Ikaros-null mice lack B, NK and fetal T cells, but some T cell 

progenitors in the thymus and mature T cells in the periphery are found [44]. Although 

hematopoietic stem cell activity is defective in Ikaros-deficient mice, their myeloid 

differentiation is relatively normal [123, 124]. Mice expressing reduced amounts of Ikaros 

fail to undergo pro-B to pre-B cell differentiation and their bone marrow cells do not form 

colonies in response to IL-7 in vitro [125]. One explanation for these finding is provided by 

studies showing that Ikaros regulates the expression levels of several genes promoting 

lymphoid lineage differentiation such as terminal deoxynucleotidyl transferase (Tdt), Rag-

1/2, Flt3 and IL-7R [124, 125]. 

2.5. Gfi1, Gfi1b and their functions 

Growth factor independent-1 (Gfi1) and its closely related paralogue Gfi1b are 

transcription factors with a SNAG domain at the N-terminus and six zinc fingers at their c-

terminal end [126-129]. The region between these two domains is smaller in Gfi1b than 

Gfi1 and is not conserved between the two proteins. Gfi1 is a transcriptional repressor that 

also plays essential roles outside of the hematopoietic system. For example, Gfi1 is 

important for the inner ear development [130, 131] and for the development of subsets of 

intestinal cells [132, 133]. Moreover, the SNAG domain repressor Gfi1 can regulate cell 

cycle progression through its interaction with the zinc finger protein Miz-1 (Myc-

interacting zinc finger protein-1) [134]. Miz-1 is a transcriptional transactivator or 

transrepressor depending on its interacting partner and the best documented activation 

potential of Miz-1 is exemplified by its regulation of the expression of two genes encoding 
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for the cyclin-dependent kinase inhibitors Cdkn2b (p15INK4B) and Cdkn1a (p21CIP1) [135-

138]. It has been shown that Gfi1 can bind to the cell cycle inhibitor Cdkn1a promoter 

through the zinc finger protein Miz-1, thereby influencing the outcome of its transcriptional 

regulation [134]. In this study, the association of Gfi1 with Miz-1 seems to allow Gfi1 to 

control cell proliferation in response to TGFβ stimulation [134]. Another study showed that 

the Miz-1/Gfi1 complex was important to repress the transcription of another cell cycle 

inhibitor, Cdkn2b [139]. This mutual recruitment of Gfi1 and Miz-1 to target gene promoter 

represents an novel transcriptional regulation that require more work in order to elucidate 

the full potential of this mechanism. 

 

During hematopoiesis, Gfi1 and Gfi1b are differentially expressed [140]. Myeloid cells, in 

particular granulocytes, express high levels of Gfi1 whereas Gfi1b is completely absent. 

Gfi1 is also expressed in activated macrophages, granulo-monocytic precursors (GMP), 

stem cells, thymocytes and developing B and T lymphocytes, but absent or expressed at 

low levels in mature resting B and T cells, respectively [126, 130, 141-144]. Loss of Gfi1 

in mice affects early B- and T-cell development [145] and neutrophil development [142, 

146]. In addition, the deletion of Gfi1 in mice affects the frequency and function of HSC 

and greatly affects CLP numbers in the bone marrow. Moreover, Gfi1 is important to 

restrains the proliferation of HSC in order to control their self-renewal capacity and long-

term engraftment abilities [147]. It also protects HSC from stress-induced apoptosis [148]. 

As for the implication of Gfi1 in B-cell development, it was demonstrated that Gfi1-
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deficient B cell precursors can no longer integrate the signals initiated by the IL-7/IL-7R 

cascade [149].  

 

Conversely, Gfi1b is absent from granulocytes, activated macrophages that reside in the 

bone marrow and GMP. Gfi1b is not expressed in almost all stages of T-cell differentiation, 

but it is present in early steps of B-cell development [144]. Moreover, Gfi1b is highly 

expressed in hematopoietic stem cells and in erythroid precursors, megakaryocytes and 

their progenitor cells (MEP), where Gfi1 is mostly undetectable [144, 150, 151]. The 

deletion of Gfi1b is lethal at mid-gestation probably because of the disrupted erythroid and 

megakaryocyte development [144, 150]. To circumvent this lethality, conditional deletion 

of Gfi1b in adult mice was achieved and showed that the deficient HSC significantly 

expanded in the bone marrow and blood. This expansion correlates with increased levels of 

reactive oxygen species and disturbed expression of cell surface receptors that mediate stem 

cells niche localization [148]. The co-expression of Gfi1 and Gfi1b was observed in early 

stages of B cell and in a subset of early T cells, suggesting a tight regulation of both 

transcriptional factors in a cell-specific manner [143, 144]. 

2.6. Transcriptional regulation of B- versus T-lineage choice 

The dichotomy between Notch signals and Paired-homeodomain transcription factor Pax-5 

dictates the T- versus B-lineage commitment respectively. Notch signals activate RBPJ 

(Recombining binding protein suppressor of hairless) transcription factor, also known as 

CSL (CBF-1, Suppressor of Hairless, Lag-1) which triggers and sustains a T lymphocyte 
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program while blocking any B-cell differentiation potential. Conversely, Pax-5 directs the 

B cell program while blocking the T cell fate, in part by inhibiting Notch1 expression [152-

154].  These transcription factors are key-players in the cell-type specific regulation of 

lineage fate. They can repress or inhibit a cascade of other factors important for alternative 

pathways in order to activate the cell-specific fate (Figure 3) [155]. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. A simplified version of the transcriptional network governing B-, T- and 
myeloid lineage differentiation. Key surface receptors for B cells (blue), T cells (green) 
and myeloid cells (gray) are shown in rectangles. Transcription factors involved in different 
stages of hematopoiesis are in black text. Positive gene regulation is represented by arrows, 
while barred lines represent transcriptional repression. Indirect interactions are in dashed 
arrows (adapted from [40]). 
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3. B-cell development 

B cells are typical representative members of the adaptive immune system because they 

provide both a specific response and a long-lasting protection against invading pathogens. 

B cell activation is initiated following the recognition of antigens by the BCR which results 

in cell proliferation and differentiation. Activated B cells can differentiate into either 

plasma cells that are responsible for antibody secretion or memory cells that provide 

protection during secondary responses against the same invading pathogen [156]. The 

proper functioning of B effector cells is coordinated during the immune response. Most 

importantly, it is tightly regulated earlier during development to assure that only functional 

mature B cells populate peripheral lymphoid organs to mount efficient responses against 

potential pathogens and infections. 

3.1 Early stages of B-cell differentiation 

Emergence of CLP from LMPP progenitors is marked by the up-regulation of IL-7Rα 

(CD127) expression that, together with the common γ chain (CD132), forms the IL-7R 

[157]. The IL-7Rα chain is also a component of the thymic-stromal-derived lymphopoietin 

(TSLP) receptor [158]. Given that IL-7Rα is required for two different receptors that 

function in B-cell development, it is to be noted that IL-7Rα-deficient mice have more 

pronounced B cell deficiencies compared to mice lacking the other chain of IL-7R, the 

common γ chain, since the γ-deficient mice have an intact TSLP-R [37, 159]. Mice lacking 

the IL-7 cytokine itself (IL-7-/-) have a similar phenotype to IL-7Rα-deficient mice, but their 

B-cell development arrest at a later stage [38]. This difference is probably caused by other 
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cytokines that use the IL-7Rα, such as TSLP. IL-7-/- mice also showed similar lymphocyte 

abnormalities to γ-deficient mice [160], even if this receptor unit is shared by other 

common γ chain user cytokines. These studies indicate that the most severe lymphocyte 

developmental abnormalities observed in γ-deficient mice are mainly due to IL-7 and not 

the other cytokines that bind to this receptor. 

 

Although CLP express IL-7Rα, this signaling cascade is not necessary for the generation of 

these progenitors, but is crucial for their ability to differentiate into pre-pro-B lymphocytes 

and to undergo cytokine-induced expansion [161, 162]. B-cell commitment can be analyzed 

by tracking the surface markers B220 (CD45R), HSA (CD24), CD43 and CD19 which 

follow a precise ordered expression pattern. The most immature B cells express B220 and 

CD43, whereas more mature stages start expressing HSA and CD19 [163]. The B220+ 

subset in the CD19-negative cells is also referred to as fraction (Fr) A, which contain the 

uncommitted pre-pro-B cells (B220+CD19-) and are the source for committed CD19+ pro-B 

cells (B220+CD19+CD43+IgM-). These cells can be further subdivided into Fr B and Fr C 

or pro-B cells, that differentiate into Fr C-prime or early/large pre-B cells and ultimately 

give rise to Fr D or late/small pre-B cells [164, 165] (Figure 4).  

 

The transition from pro-B cells to pre-B cells is the first stage of B-cell development that is 

accompanied by the expression of the pre-B cell receptor. This pre-BCR is composed of the 

surrogate light chain, VpreB or Vλ5, that pairs with the immunoglobulin µ heavy chain 

(Igµ) in large pre-B cells [166].The diversity of the BCR repertoire is generated by the 
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variable (V), diversity (D), joining (J) recombination events that are sequentially 

coordinated during B-cell development [166]. The immunoglobulin heavy chain (Igh) locus 

undergoes rearrangements in the pro-B cells, and successful rearrangement leads to the 

expression of the Igµ heavy chain protein. Subsequently, the recombination of the Ig-light 

chain genes Igk or Igl takes place later in the small pre-B cells, which replaces the surrogate 

VpreB and Vλ5 chains resulting in the expression of the BCR [166] (Figure 4). 

 

Diversity is generated during these early B-cell differentiation steps by random 

rearrangement of the immunoglobulin genes. This process mainly generates auto-reactive 

immature B cells that are eliminated from the repertoire by clonal deletion [167] or by the 

induction of anergy, which renders auto-reactive B cells non-responsive to a BCR-mediated 

simulation [167, 168]. Another mechanism to eliminate auto-reactive B cells is receptor 

editing, where a new Ig gene rearrangement occurs to generate a new light chain to pair 

with the existing Ig heavy chain [169-171]. The new combination, if successful, will 

generate non-self reactive BCR which prevents the cells from deletion by apoptosis [172]. 

Some auto-reactive B cells can also be generated later in the development, after mature B 

cells leave the bone marrow and enter the spleen where they undergo somatic mutations of 

the Ig variable region genes. Hence, tolerance mechanisms operate in the periphery such as 

receptor revision [173, 174] or by blocking activated B cells from becoming antibody-

secreting plasma cells [175] (Figure 4). 
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Figure 4. Illustration of B-cell development in the bone marrow. The B-cell lineage is 
initiated by a common lymphoid precursor (CLP) that give rise to cytokine-dependent pro-
B cells. Pro-B cells start V(D)J recombination and the µ heavy chain is produced in the 
large pre-B cell stage. Cells that fail to produce this chain are eliminated by apoptosis. In 
large pre-B cells, the µ heavy chain pairs with two surrogate light chains, λ5 and VpreB, 
and form the pre-B cell receptor (BCR). The pre-BCR signaling mediates proliferation and 
differentiation of small pre-B cells. Subsequently, rearrangement of the kappa and lambda 
light chains takes place and a fully assembled BCR, mainly IgM molecules at this stage, is 
expressed on the surface of immature B cells. These immature B cells emigrate from the 
bone marrow to further maturate in the spleen and lymph nodes where they encounter 
antigen and go through the process of receptor editing. The different B cell maturation steps 
are defined by the presence of specific markers, some of which are indicated (adapted from 
[176-178]). 
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3.2. B-cell differentiation and cytokines  

Adult B-cell development takes place in the bone marrow through well-defined steps 

involving cytokine signaling, V(D)J recombination and gene regulation [179, 180]. The 

differentiation, proliferation and survival of early B-cell progenitors are dependent on 

cytokine signaling, in particular on Flt3 and IL-7R [27, 181, 182]. Most of the relevant 

cytokines for B-cell development are produced in the bone marrow by stromal cells that 

reside in the medullary cavity. Stromal cells that support pre-pro-B cells are CXCL12+IL-7-

, whereas those that support pro-B cell differentiation are CXCL12-IL-7+ [183].  

 

IL-7 has been documented by many groups to be a necessary B lymphopoietic factor since 

B-cell differentiation does not occur in IL-7R-deficient mice [38]. The expression of the 

pre-BCR is dependent on stromal cell interactions and IL-7 receptor signaling. This 

signaling up-regulates the expressions of the IL-7Rα chain itself and the enzyme terminal 

deoxynucleotidyl transferase (Tdt), responsible for adding nucleotides at the joining region 

between V and D segments during recombination [184]. However, adult and fetal B 

lymphopoieses differ in their requirements for IL-7. For example, B-1 B cells, which are 

mainly produced during fetal development, may be independent of IL-7 since they are still 

produced in IL-7-deficient mice [185]. This may be attributable to the compensatory effect 

of thymic stromal lymphopoietin on fetal B cell progenitors [159, 186]. Contrary to IL-7-

deficient mice, B-1 B cells are severely impaired in the absence of the IL-7 receptor. This 

indicates that the IL-7R is the key factor for adult B-cell development [187]. 
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3.2.1. IL-7/IL-7R signaling in B cells 

IL-7R signaling activates three major axes or pathways named after the Janus kinase- signal 

transducer and activator of transcription (JAK-STAT), the phosphatidylinositol 3-kinase 

(PI3K)-Akt and the RAS-mitogen-activated protein kinase (MAPK) [188]. The IL-7/IL-7R 

signaling cascade is induced when IL-7 binds to its receptor, which activates JAK3 that 

phosphorylates the IL-7Rα-associated JAK1 and the IL-7Rα chain itself. The 

phosphorylation of JAK proteins creates a docking site for STAT5, which is itself activated 

by phosphorylation following its recruitment to IL-7Rα chain [157]. The transcription 

factor STAT5 consists of two related isoforms, STAT5A and STAT5B, encoded by 

separate genes. In lymphocytes, STAT5A and STAT5B play redundant roles as the deletion 

of either one of them has only minor consequences on cellular functions [189]. 

Phosphorylated STAT5 proteins dimerize and translocate to the nucleus where they activate 

the transcription of IL-7-dependent target genes [157, 189] (Figure 5).  

 

One outcome of IL-7R signaling is the maintenance of cell survival by promoting a positive 

balance of Bcl-2-family members. This is achieved by increasing the expression of anti-

apoptotic Bcl-2 (B-cell CLL/lymphoma-2) and Mcl-1 proteins (Myeloid cell leukemia 

sequence 1, Bcl-2-related), and by redistributing the cell-death proteins Bax (Bcl-2-

associated X protein) and Bad (Bcl-2-antagonist of cell death) [190]. On the one hand, pro-

apoptotic Bax, Bad and Bak (Bcl-2-antagonist/killer) proteins form homo-oligomeric pores 

in the mitochondrial membrane and are critical for cytochrome c release. On the other hand, 

Bcl-2, Mcl-1 and Bcl-XL (Bcl-2-like 1) are anti-apoptotic proteins that maintain 
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mitochondrial homeostasis, thus preventing mitochondrial outer membrane 

permeabilization [190]. A shift in this balance will induce cell death over cell survival. The 

expression of Bcl-2 is up-regulated after IL-7 stimulation and some studies have 

additionally shown that this up-regulation can be STAT5-dependent [191-194] or indirect, 

i.e. STAT5 induces another factor which expression can induce the transcription of Bcl-2 

[195] (Figure 5).  

 

The phosphorylation site on IL-7Rα chain that acts as a docking site for STAT5 also allows 

the recruitment of PI3K [194, 196, 197]. Some studies have shown that PI3K activation 

leads to the activation of AKT protein, which regulates the glucose metabolism of the cell 

and therefore maintains pro-survival and growth functions [157].  In some B cell lines, IL-

7R signaling induced PI3K activity allowing the cells to enter cell cycle and to proliferate 

[198]. Mice deficient for the p85α subunit of PI3K or for the p85α together with splice 

variants p55α and p50α [199] have a severe B-cell differentiation block indicating that 

PI3K is a downstream mediator of IL-7 signaling during B-cell development. IL-7 can also 

activate Fyn and Lyn Src kinases in pre-B cell lines, but no member of this kinase family 

has been shown to be absolutely required for IL-7-induced proliferation [200] (Figure 5).  

 

IL-7 induces a negative feedback loop on its own signaling by downregulating the activity 

of JAK1. Suppressor of cytokine signaling 1 (SOCS1) is known to inhibit phosphorylation 
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of STAT proteins by directly binding to JAK proteins. This competition for binding to 

JAK1 targets STAT proteins for proteasomal degradation. As a consequence, all further 

downstream signaling events are inhibited to ensure a return to steady state homeostasis 

after cytokine responses [201-203] (Figure 5).  

3.2.1.1. IL-7/IL-7R regulation and B-cell differentiation 

The expression of IL-7R is directly regulated by a subset of transcription factors, among 

them Ikaros, Pu.1 and E2A [204]. The signaling cascade initiated when IL-7 binds to its 

receptor not only activates developmental genes such as early B cell factor-1 (EBF1) and 

survival factors like Mcl-1 and Bcl-2; it also regulates cell proliferation [162, 205-207]. 

STAT5 was shown to bind to the Pax-5 promoter at the same region where EBF also binds 

[208], which represent a critical signaling axis in the regulation of early B-cell development 

[209] (Figure 5).  

The regulation of the downstream effectors of IL-7/IL-7R signaling pathway and their 

precise function during B-cell development is still a matter of debate. For instance, whether 

EBF1 is a direct downstream target of IL-7 is unclear since progenitors from IL-7R and IL-

7 knockout mice still express EBF1, albeit at very low levels [162]. Moreover, the ectopic 

expression of EBF1 can partially rescue a differentiation block at the pre-pro-B cell to pro-

B cell transition in IL-7R-deficient mice. However, this rescue is transient suggesting that 

other factors than EBF, downstream of the IL-7/IL-7R signaling pathway, are equally 

required for early B-cell development [162]. It is also not clear whether IL-7/IL-7R 

signaling is required for the coordination of all B cells developmental processes. For 
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example, IL-7 was shown to be essential for CLP survival and development but not for 

their proliferative expansion [27]. Furthermore, a recent study by Malin and colleagues 

showed that the IL-7/STAT5 axis mainly controls B cell survival in pro-B cell rather than 

developmental processes [207] (Figure 5). 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. IL-7/IL-7R signaling cascade. IL-7 binds to the IL-7R and triggers a signaling 
cascade that phosphorylates PI3K, AKT, and STAT5. IL-7 cascade maintains a favorable 
balance between pro-apoptotic (Bcl-2, Mcl-1) and anti-apoptotic (Bim, Bax and Bad) 
proteins. The overall response after stimulation is indicated by big arrows ranging from 
differentiation or survival to cell death. SOCS1 inhibits the phosphorylation of STAT 
proteins to ensure a return to steady state homeostasis after IL-7/IL-7R responses. The 
involvement of other pathways in the activation of IL-7-downstream target genes is 
represented by a question mark (adapted from [157]). 
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3.2.2. Flt3L/Flt3 signaling in B cells 

Flt3 ligand (Flt3L) is one of the cytokines that affects hematopoietic lineage development 

at multiple stages [210]. These effects are mediated when Flt3L binds to its receptor Flt3, 

expressed on hematopoietic stem and progenitor cells [211]. Flt3L is a membrane-bound 

protein that can be proteolytically cleaved to generate the soluble protein. Both soluble and 

membrane-bound forms are active [212]. Flt3L can synergize with other growth factors to 

promote hematopoietic cell proliferation and differentiation. For example, Flt3L in 

combination with IL-7, SCF, IL-11 and IL-3 will stimulate B-cell differentiation in vitro 

[213-216].   

 

The administration of soluble Flt3L into mice generates an expansion of hematopoietic 

progenitors in the bone marrow and the spleen. Moreover, a potent mobilization of stem 

and progenitor cells into the peripheral blood occurs [217]. Expansion of B cells in the bone 

marrow and spleen was also noted [218]. On the contrary, mice lacking the receptor for 

Flt3L, Flt3-/-, have hematological defects [219]. These mice lack B cell precursors in the 

bone marrow, but exhibit normal numbers of functional B cells in the periphery. The mild 

defects in B-cell differentiation in Flt3-/- mice can be attributable to other receptors, such as 

c-Kit, which may be able to susbstitute for Flt3 function in vivo [220]. Finally, mice 

lacking Flt3L have even more profound hematological defects compared to Flt3-/- mice. 

Flt3L-/- mice have a reduced cellularity of hematopoietic precursors in the bone marrow and 

of mature cells in the blood and the peripheral organs [221]. Whereas blood hematocrit, 

platelets and the thymic cellularity were not affected, both myeloid and B-cell progenitors 



 

 

 

32 

were reduced in the bone marrow of Flt3L-/- mice [221]. In addition NK and DC cell 

numbers were reduced in the spleen [221].  

3.3. Mature B cells 

Most immature B cells leave the bone marrow and become part of the mature, recirculating 

B cells in the spleen. These cells are referred to as follicular B cells (Fo) because of their 

localization to the follicular region in peripheral lymphoid organs [222]. The follicular B 

cell zone constitutes the last maturation site of B cells. Several transgenic models of B cell 

tolerance have shown that the self-reactive cells cannot enter the follicular zone and are 

therefore excluded from the recirculating B-cell repertoire [223, 224]. Fo B cells do not 

proliferate, but can persist in the resting state for months. Marginal zone B cells (MZ) are 

the second mature B lymphocytes. They are localized in the marginal zone of the spleen 

that represents the major antigen filtering area [225, 226]. MZ B cells respond very rapidly 

to antigens, likely in a T cell-independent manner, but also participate in the early phases of 

T cell-dependent responses [165]. These cells only produce IgM antibodies. 

3.3.1 Somatic hypermutation and class switch recombination   

B cells that leave the bone marrow and migrate to the spleen or lymph nodes encounter 

many types of antigens. If a naïve B cell-mediated antigenic activation occurs in a T cell-

dependent manner, follicular structures called germinal centers are formed in the peripheral 

organ. Two maturation steps occur in germinal centers that greatly increase antibody 

affinity: somatic hypermutation (SHM) and class switch recombination (CSR) [227]. SHM 

can modify antibody affinities through the introduction of mutations in the variable region 
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of the Ig heavy and light genes [228]. CSR plays important roles in modulating antibody 

effector functions by replacing the antibody isotype. This occurs through DNA 

recombination events that join two switch regions [229].  

 

Both SHM and CSR are triggered by activation-induced cytidine deaminase (AID) [230-

232]. Specifically, AID induces the deamination of cytosines (dC) to uraciles (dU) in 

single-stranded DNA [228, 229, 233]. The resulting dU pairs with a Guanine (dG) and this 

dU:dG mismatch is processed to generate mutations in the variable region during SHM or 

DSBs in switch regions during CSR [228, 229, 233]. Mutations in AID are associated with 

hyper-IgM syndrome, which yields an increased susceptibility to infections and secondary 

antibody responses lacking characteristic class-switched, hypermutated antibodies [231]. 

CSR and SHM initiate DNA damage that is normally restricted to genes that encode 

antibodies [234]. The repair of the DSBs generally leads to diversification by SHM and 

CSR. However, aberrant damage of genes that do not encode for immunoglobulin genes 

and abnormal repair of AID-induced lesions most likely increase the tendency of B cells to 

undergo malignant transformation [234]. 

3.4. B-1 and B-2 cells 

The differentiation of CLP into mature B cells mainly generates the conventional B cells 

termed B-2 cells [235]. Furthermore, a bone marrow bipotent progenitor that can generate 

B cells and macrophages has been described [236] and recognized as a special feature of 

fetal hematopoiesis [237-239]. Adult Lin-B220lo/-CD19+ cells that are associated with 
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B/macrophage activities ultimately generate another B cell subset, the B-1 cells, but not B-

2 cells [240, 241]. B-1 cells represent approximately 5 % of B cells in the mouse and they 

mainly participate in T cell-independent responses. They constitute a high proportion of B 

cells in the peritoneal and pleural cavities. In these sites, B-1 cells can be further subdivided 

into B-1a (sIgMhi, sIgDlo, CD11b+, CD5+) and B-1b (sIgMhi, sIgDlo, CD11b+, CD5-) [242, 

243].  

 

Two forms of circulating IgM antibodies exist: the natural and the antigen-induced-IgM. 

Natural IgM are mainly secreted by B-1 cells that can produce them in the absence of 

antigen stimulation [244-246]. In fact, natural antibodies are naturally occurring in 

individuals or 'antigen-free' mice independently of external antigens and non-specific 

mechanisms in response to environmental stimulations during an immune response [244]. 

They are encoded by germline genes with multireactivity but low affinity to a wide variety 

of antigens, such as cytoskeleton, nuclear proteins and DNA [244]. Although these 

preformed sIgM are used in their original germline configuration, they rapidly respond with 

more reactivity to both foreign antigens and self-components of the body, probably to 

provide a selective advantage to ensure the early survival of the host before the 

establishment of a more sophisticated immune response [245, 247]. Antigen-induced IgM 

are mostly produced by the conventional B-2 cells after antigen stimulation [246]. Both 

natural and induced IgM antibodies are polymeric. They can bind multimeric antigens, 

efficiently activate the complement cascade and be transported via the poly-Ig receptor onto 

mucosal surfaces to provide protection against invading pathogens [248, 249]. As IgM are 
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the first class of antibodies produced during an infection, and because of all their unique 

properties, they represent the first line of defense against mucosal and systemic pathogens 

[250, 251]. 

 

Even if B-1, MZ and Fo B cells develop from different precursors [239, 240, 252, 253], 

signaling at the immature B cell stage is critical for their development and can arise from 

crosslinking of the BCR and other microenvironmental sources. For example, Fo B-cell 

development is dependent on B cell-activating factor (BAFF) signaling, rather than BCR 

crosslinking, while B-1 development is dependent on BCR signaling and independent of 

BAFF [254]. MZ B-cell development uniquely requires Notch2 signaling [255, 256]. Most 

B cells in the periphery are quiescent and signaling from the BCR is the common 

mechanism that guides their transition to maturity after the appearance of surface IgM 

[257-262].  The mature B cell pool is determined by the proportion of immature B cells 

surviving transit to maturity and the longevity of the mature cells themselves [263]. 

Consequently, understanding the factors that control selection and the different B-cell 

development stages is critical to grasp how the size and composition of the B cell 

compartment is regulated in the periphery. 

3.5. B-cell commitment is regulated by a transcription factor network 

The differentiation, proliferation and survival of early B-cell progenitors are dependent on 

cytokine signaling, in particular on Flt3 and IL-7R. The expression of Flt3 and IL-7 

receptors during B-cell development is directly regulated by a network of transcription 
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factors such as Ikaros, Pu.1 and E2A [204]. The helix-loop-helix proteins E2A and EBF1 

specify the commitment of cells toward the B-cell lineage by activating B cell-specific 

genes such as Pax-5. A hierarchy seems to exist in the developmental regulation by these 

transcription factors whereby E2A effectors act upstream of EBF1, while terminal B-

lineage commitment is regulated by Pax-5 [264]. In fact, Pax-5 restricts the potential of 

lymphoid progenitors to the B cell fate by repressing other lineage specific genes and by 

activating B cell specific genes [154]. It has been proposed that STAT5 regulates Pax-5 

expression by interacting with its promoter region [208, 265]. STAT5 can also regulate 

EBF1 expression [162], although this regulation is still a matter of debate [207]. Both EBF 

and Pax-5 are required for the rearrangement of the immunoglobulin heavy chain locus Igh 

[266-268]. In contrast to adult B-cell development, EBF expression is independent of IL-7 

signaling during fetal B-cell development [269], which may explain the presence of B cells 

in IL-7-/- mice [185]. Although some B cells can be detected in the peripheral organs of IL-

7-deficient mice, it is believed that these B cells are mainly generated from fetal or neonatal 

origins [159, 185].  

 

4. T-cell development 

T and B cells are a lymphoid lineage that constitute the adaptive immune system. To 

generate T cells through the adult lifespan, the thymus needs to be continuously replenished 

with hematopoietic progenitors from the bone marrow via the bloodstream. Once homed to 

the thymus, these progenitor cells undergo extensive expansion and differentiation steps 
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that generate functionally competent, mature T cells that migrate to the peripheral lymphoid 

organs [51]. Several T cell subsets are involved in the host defense against invading 

pathogens. CD8+ T cells are effector cells capable of lysing target cells by secreting 

perforin. CD4+ cells orchestrate the immune response by secreting cytokines that control 

the functions of other immune cells. Among the best characterized CD4+ subsets are the T 

helper 1 (Th1), Th2, Th17 and T regulatory cells [270]. 

4.1. The origin of T cells 

The identification of the hematopoietic precursor best suited to home to the thymus has 

been a question of debate [41, 271]. The early T-lineage progenitors (ETP) represent the 

earliest known and most efficient intrathymic progenitors of T cells [272, 273], in 

comparison to other reported thymic precursors such as CD4lo precursors [274], common 

lymphoid precursors 2 (CLP-2) [275], L-selectin+ precursors [276], double-negative CD4-

CD8- (DN)1c, DN1d and DN1e precursors [277], thymic multipotent progenitors (TMP) 

[28], circulating T cell progenitors (CTP) [278] and CCR9+ multipotent precursors (CCR9+ 

MMP) [34]. Recently, Ly6D- CLP cells were proposed to enter the thymus and competently 

generate thymocytes even better than earlier LMPP precursors [35, 36]. Although Ly6D- 

CLP cells originate from LMPP, of both populations, only Ly6D- CLP rapidly reconstituted 

thymopoiesis after intravenous injections. This delayed kinetic was suggested to be 

attributable to the fact that LMPP need to reseed the bone marrow and regenerate CLP 

before migrating to the thymus [36]. 
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4.2. Early T-lineage progenitors 

The ability of bone marrow progenitors to settle the thymus has been attributed to different 

cytokines, adhesion molecules and chemoattractants. It has been suggested that the P-

selectin/PSGL-1 axis plays a role in recruiting progenitors with T-cell potential to the 

thymus by mediating a step similar to the rolling step of the endothelial migration of mature 

leukocytes [279]. The chemokine receptors CCR9 and CCR7 support thymus settling [30, 

34, 280-282] and act as migration signals. Finally, Flt3 signaling controls the expression of 

homing molecules such as CCR9 [30]. ETP in the thymus are believed to originate from 

LMPP/ELP in the bone marrow that express CCR9 [30, 273], or from the recently 

described Ly6D- CLP that also originate from LMPP [35, 36]. ETP are phenotypically 

Linneg/low, CD117high, CD25- [272] and comprise less than 0,01% of the adult thymus. They 

have the potential to expand extensively and to repopulate the thymus after intrathymic 

transfer [272].  

 

Experimental evidence indicate that ETP are functionally and phenotypically 

heterogeneous. Using CCR9-EGFP knock-in reporter mouse, Benz and Bleul found that 

ETP can be subdivided into CCR9-EGFPhigh and CCR9-EGFPlow subsets [28]. Furthermore, 

Sambandam and colleagues fractionated ETP based on the expression of Flt3, which is 

expressed on the surface of bone marrow LSK cells, CLP and CLP-2 cells, but only 5%-

20% of the thymic ETP population [33]. Flt3+CCR9+ ETP are considered to be the most 

immature T-cell progenitors in the thymus that still have the potential to differentiate into 

the B cell lineage [28, 33]. Although immature thymocytes still retain the capacity to 
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differentiate into myeloid cells, it is strongly believed that thymus-seeding precursors are 

T/B bipotent progenitors that migrate from the bone marrow [35, 39]. 

4.3. CD4-CD8- double negative cell differentiation 

ETP cells undergo extensive expansion and differentiation steps that will generate 

functionally competent and mature T cells [41]. These steps are dependent on the stroma 

microenvironment for the expression of Notch ligands, mainly delta-like ligand 1 (DL1) 

and DL4 [153, 283, 284], in addition to other signaling pathway and cytokines such as IL-7 

[285, 286]and the Kit ligand stem cell factor (SCF) [287]. The proper signaling initiated by 

these pathways is crucial for the maintenance of thymocyte survival and proliferation 

throughout the differentiating steps of the T cell program [288]. 

 

The most immature thymocytes do not express the CD4 or CD8 T cell co-receptors and are 

subdivided into four stages of double negative cells, DN1 to DN4. Development through 

the first differentiation stage, from ETP to DN3 cells, is dependent on cytokine signaling, 

independent of the T cell receptor and is coordinated by the migration of cells through 

distinct thymic microenvironments [51]. DN1 are defined by the expression of 

CD44+CD25-c-Kit+IL-7Rα+Thy-1.1+. They can be subdivided into DN1a to DN1e 

according to the expression of the heat stable antigen (HSA) and c-Kit, where DN1a and 

DN1b have also been identified as the precursors that correspond to the ETP subset [277].  
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DN1 give rise to the CD44+ CD25+ DN2 subset, which is also fractionated into DN2a and 

DN2b based on c-Kit expression. Subsequently DN2 cells differentiate into DN3 cells 

expressing CD44-CD25+, which are classified as DN3a and DN3b based on their size [289] 

and CD27 expression [290]. DN3a cells, that successfully rearrange the TCRβ gene, 

express a TCRβ chain that associates with an invariant pTα chain to compose the pre-TCR. 

Pre-TCR-positive DN3 cells differentiate into DN3b cells that are selected by pre-TCR-

dependent signals, referred to as the ''β-selection'' checkpoint [291]. This receptor-mediated 

step is the first critical checkpoint in T-cell development that resembles the one at the 

transition from pro-B cells to pre-B cells after the cytokine-dependent steps in B-cell 

development. Both pre-TCR and pre-BCR checkpoints are accompanied by the expression 

of a pre-B or a pre-T cell receptor composed of a surrogate or invariant chain (VpreB or 

Vλ5 for B cells and pTα for T cells) that pairs with the Igµ in pre-B cells or with the TCRβ 

in pre-T cells. DN3 cells that fail to undergo productive TCRβ V(D)J recombination can 

still be rescued by the expression of successful TCRγ and TCRδ rearrangements influencing 

the generation of γδ-T cells, also referred to as the ''δ-selection'' [292]. Cells that fail to 

rearrange their TCRβ or TCRγ and TCRδ or those that do not express in-frame 

rearrangements are eliminated at this point. On the contrary, successful rearrangements 

allow DN3 cells to reach the last subset of DN maturation, the CD44-CD25- DN4 pre-T 

cells, or migrate to the periphery as γδ-T cells [291] (Figure 6). 
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4.4. CD4+CD8+ double positive cell differentiation 

The newly developed DN4 cells up-regulate CD4 and CD8 co-receptors and become 

CD4+CD8+ DP cells by transiting through an intermediary stage referred to as ''immature 

single positive (ISP)'' cells [293]. DP cells are the largest thymic subpopulation that 

possesses a bipotent cell-fate potential, which needs to be coordinated throughout the T-cell 

differentiation program [291]. DP cells are also the first cells to express a fully assembled 

TCRαβ after the rearrangement of the TCRα gene that replaces the invariant pTα molecule 

[291, 294]. This recombination step resembles the one for the Ig-light chain genes Igk or Igl 

that takes place in the small pre-B cells, which replaces the surrogate VpreB and Vλ5 

chains resulting in the expression of the BCR [166]. Most DP cells express TCRαβ that can 

not engage self major histocompatibility complex (MHC) molecules and are subjected to 

selection processes. They are mainly eliminated by ''death by neglect'' at this stage [294]. 

Cells bearing useful TCR are signalled to survive and continue their differentiation into 

functionally mature cells. These life versus death TCR-mediated signals in DP are referred 

to as ''positive selection'' [291, 294] (Figure 6). Because of this TCR-dependent restrictive 

step, DP cells do not depend on pro-survival cytokines like IL-7. They are also unique 

among the T cell lineage since they express both CD4 and CD8 co-receptors, do not 

express the IL-7R and express high amounts of SOCS1 [295, 296].  

 

By expressing both co-receptors, DP cells get signalled by both MHC-class-I and MHC-

class-II-restricted TCR molecules. DP signalled by MHC-class-II restricted TCR reach the 
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periphery as CD4+ helper T cells, whereas cells signalled by MHC-class-I-restricted TCR 

differentiate into CD8+ cytotoxic T cells [291, 294] (Figure 6). Many models have been 

proposed in order to explain the CD4/CD8 lineage choice in the thymus, all of each agreed 

on the importance of TCR-mediated positive selection signals [294]. The implications of 

CD4 and CD8 co-receptors and, more recently, of cytokine signals and co-receptor reversal 

[297, 298] added to the complexity of the lineage choice decision [294] and need to be 

addressed at the molecular level in order to clarify the complexity of this process. 

Moreover, TCR and co-receptor signaling can be integrated with transcriptional regulation 

involved in the CD4 versus CD8 lineage choice that explains the lineage commitment of 

DP cells [299]. For example, Th-POK zinc finger protein encoded by the Zbtb7b gene [300, 

301] is very important for CD4 lineage choice [300-302]. Conversely, RUNX3, a member 

of the runt-domain family of transcription factors [303], can silence both Zbtb7b and Cd4 

gene transcription, leading to the termination of CD4 lineage potential and reinitiating 

thymocytes differentiation into mature CD8+ cells [304, 305]. 
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Figure 6. Illustration of T-cell development in the thymus. Early thymic progenitors 
(ETP) migrate from the bone marrow to the thymus, where they differentiate into four 
double negative CD4-CD8- (DN) stages. DN1-DN4 subsets express CD44 and CD25 and 
undergo V(D)J rearrangements. The first critical selection checkpoint in this maturation 
process is at the DN3 stage. At this stage, a pre-T cell receptor (TCR) is expressed. If it is 
composed of the γδ chains, no further selection is required and the cells become γδ T cells. 
If the pre-TCR is composed of a TCRβ chain and the invariant pTα chain, the cells 
expressing this pre-TCR undergo the β-selection. Selected cells mediate proliferative 
signals which results in the expansion of the DN3 subset. Cells that fail to undergo 
productive V(D)J recombination at this point are eliminated. DN4 cells up regulate CD4 
and CD8 co-receptors to become double positive (DP) cells that undergo the second 
checkpoint in T cell maturation: the positive and negative selection. Non-auto-reactive 
thymocytes are positively selected, downregulate CD4 or CD8 and reach the periphery as 
mature CD4+ or CD8+ αβ T cells. The main signaling pathways that govern DN 
differentiation are indicated (adapted from [306, 307]). 
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4.5. TCRγδ T cells 

T cells bearing the TCRγδ receptor do not express precise surface markers in the periphery, 

and are therefore believed to have originated from CD4-CD8- DN cells that have rearranged 

their TCRγ and TCRδ loci [308]. They do not proceed through a DP developmental stage in 

the thymus and do not express a pre-TCR or CD4/CD8 co-receptors [309, 310]. The 

potential of TCRγδ signaling is believed to be superior compared to the one initiated by 

TCRαβ [311]. Moreover, it is important to regulate the commitment of DN cells to the γδ-T 

cell fate and to assure their subsequent differentiation into mature TCRγδ cells [308, 312]. 

Although it is unclear how TCRγδ cells are selected in the thymus, some studies have 

shown that a least some γδ-T cells get positively selected when they express particular 

TCRγδ heterodimers that do not involve interaction between these TCR and polymorphic 

MHC molecules [313, 314]. This δ-selection favors in-frame TCRγ and TCRδ 

rearrangements positively influencing the generation of γδ-T cells [292]. γδ-T-cell-

development also shows variations in the homing pattern of emigrating thymocytes which 

may be attributable to the TCR repertoire [313, 314]. The first γδ-T cells that emerge 

during fetal development express a restricted repertoire of (V)γ5Vδ1 TCR and preferentially 

migrate to the skin. A second wave generates γδ-T cells which express a (V)γ6Vδ1 TCR 

repertoire and populate the genital tract and tongue. Around or right after birth a third wave 

of γδ-T cells, mostly expressing Vγ7
+ or Vγ1

+ T cell receptors, emigrates to the small 

intestine and epithelium. As the mouse ages, more Vγ4
+ cells are produced and migrate to 

the peripheral blood and lymphoid tissues [307, 312].  
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In order to track γδ-T-cell development, mouse models have been generated such as the 

knock-in mutant for TCRδ tagged with enhanced green fluorescent protein (EGFP). This 

model has been used to visualize cells transcribing the TCRδ locus within the TCRγδ 

subset [315]. With this tool, it was observed that TCRγδ signaling in EGFP+ DN3 cells up-

regulated TCRδ transcription. The maturation of γδ-T cells occurs during the DN3/DN4 

transitional stage and correlates with the up-regulation of the activation marker CD5. 

Another study has tracked CD27 and CD5 expressions to identify γδ-T cells and 

demonstrated that γδ-selected CD27+ DN3b cells do not proliferate as much as the β-

selected CD27+ DN3b thymocytes [290], but did express higher CD5 on their surface 

correlating with the hypothesis that the strength of TCRγδ signaling is stronger compared to 

the one initiated by the TCRβ [316]. The use of fluorescent cells and new cell surface 

markers like CD27 helped to characterize the genes involved in the commitment of γδ- over 

αβ-T cell lineage. For example, γδ-T cell selection favors Bcl-2 rather than Bcl-XL 

prosurvival protein [290]. Moreover, γδ-T cells preferentially express Runx1, early growth 

response (Egr) proteins Egr2 and Egr3, and Id3 rather than HEB and Egr1 transcription 

factors in αβ-T cells [290].  

4.6. Other unconventional T cells 

In addition to the main αβ- and γδ- axes of T-cell development, other variations occur in the 

thymus. For instance, instead of the interaction between thymocytes and thymic epithelial 

cells that controls conventional T-cell development, some immature DP cells interact in a 

homotypic manner. This leads to the selection of NKT cells, a T cell subset with 
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characteristics typical for cells from the innate immune system. Such innate-like 

lymphocytes are subsets of T cells that express rearranged antigen receptors [317, 318] that 

are often invariant and recognize self-antigens or simple molecular structures on pathogens. 

Innate-like lymphocytes mainly reside in non-lymphoid tissues and express memory cell or 

activated memory cell markers. NKT cells can also colonize the spleen and, more 

abundantly, the mesenteric and pancreatic lymph nodes compared to the peripheral lymph 

nodes [319, 320]. In comparaison to B-1 B cells and marginal zone B cells, which can be 

considered as innate-like B cells [321], innate-like T lymphocytes include NKT, mucosal 

associated invariant T cells (MAIT), γδ-T cells and CD8αα cells [322].  

 

Some αβ-T cells expressing a CD8αα homodimer instead of a CD8αβ heterodimer are 

differently selected and home directly to epithelial sites [323-326]. These cells seem to lack 

peptide-MHC restriction and may develop only by stroma support [327]. Cryptopatches 

(CP) along the intestinal wall were identified as primitive stroma that could support such 

unconventional T-cell development [328, 329]. These intraepithelial lymphocytes (IEL) 

express genes typically found in γδ-T cells and are functionally more similar to these T 

cells than to conventional CD8+ αβ-T cells [330, 331]. Importantly, IEL populate the gut 

and contribute to the physiological integrity and the homeostasis of the intestinal 

epithelium in order to control immune response to commensal bacteria and the adaptive 

tolerance toward self-antigens [327]. When IEL functions are deregulated, inflammatory 

responses occur in the intestines emphasizing the importance of their proper regulation 

during unconventional T-cell development. 
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4.7. Extrathymic T-cell development 

Some T cell progenitors have been detected in the spleen of wild-type (WT) C57/BL 6 

mice, indicating that extrathymic T-cell development occurs [332]. Athymic mice or 

irradiated mice express abundant extrathymic T cell progenitors after bone marrow 

transplantation [333-336]. Although the developmental fate of these progenitors is unclear, 

they resemble DN3 cells expressing lower Notch1, Notch3 and Notch target genes [332-

336]. Contrary to intrathymic T-cell development that requires Notch1, extrathymic T-cell 

development relies either on Notch1 or Notch2 for the generation of splenic T progenitors 

[333]. Splenic T-lineage progenitors have also been found to be dependent on IL-7R 

signaling [332]. 

4.8. Cytokine receptors and T-cell differentiation 

Flt3 and IL-7 act together to support CLP and LMPP maintenance and to promote their 

development [2, 20, 25, 337]. Both cytokines also play important roles for the survival and 

proliferation of ETP. Given their pleiotrophic function, the regulation of their expression is 

important to understand their roles within the thymic environment.  

4.8.1. Flt3L/Flt3 signaling in T cells 

Both Flt3L and Flt3 play important roles in promoting the expansion of early hematopoietic 

progenitors and in the differentiation of mature cells. Flt3L increases the T-cell potential of 

multipotent bone marrow precursors in the presence of the thymic stromal 

microenvironment and IL-12 [338], or when cultured on bone marrow stromal cells in vitro 
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[339]. The T-cell potential of bone marrow precursors is also greatly augmented when they 

are cultured in the presence of Flt3L, IL-3, IL-6 and IL-7 [340]. In addition, T-lineage 

commitment is affected in mice deficient for the Flt3 receptor, shown by competitive 

repopulation experiments where stem cells from Flt3-/- mice transplanted into irradiated 

recipients did not effectively reconstitute the T cell compartment [219]. The reduced but 

not absent hematopoiesis in Flt3-/- mice has been attributed to the compensatory role of c-

Kit. Mice with mutations in both c-Kit and Flt3 displayed an even further reduced 

hematopoiesis and life span [219, 341].  

4.8.2. IL-7/IL-7R signaling in T cells 

IL-7R signaling plays a central role in the development, survival and expansion of both B 

and T cell lineages [38, 182]. IL-7Rα and the common γ chain ensure proliferation signals 

and survival through most pro-T cell differentiation steps [342-346]. IL-7Rα is expressed in 

DN1, DN2 and DN3 stages and acts in concert with Flt3.  ETP and their downstream 

subsets are significantly reduced in IL-7R-deficient and Flt3L-deficient mice [347]. Indeed, 

more severe defects in fetal and postnatal thymic progenitors are observed in IL-7R- and 

Flt3L-double deficient mice, which results in a loss of adult mice thymopoiesis. These 

results suggest that these two receptors have additive effects during early T-cell 

development [347, 348]. 

 

To return to a steady state of activation, IL-7 induces the expression of SOCS1 [349]. This 

induction needs to be carefully titrated as the overexpression of SOCS1 abrogates T-cell 
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development beyond the DN1 stage of differentiation [350]. Furthermore, SOCS1 

transgenic mice showed inhibition of STAT5 phosphorylation further demonstrating the 

ability of SOCS1 to inhibit IL-7 signaling and its importance in regulating the αβ-T-cell 

development [351]. The deletion of SOCS1 in mice leads to growth retardation and death 

by the third week after birth [203]. This lethality is in part due to excessive responses 

typical to the ones induced by IFNγ in mice, which suggests that SOCS1 regulates IFNγ 

action. It can be rescued by crossing SOCS1-deficient mice with IFNγ-/- mice [352]. The 

targeted deletion of SOCS1 in T cells did not show defects in DN differentiation, but 

revealed an exaggerated response of thymocytes to IL-7, inducing more CD8 

differentiation. These CD8+ T cells also showed features of memory T cells [295]. 

 

IL-7/IL-7R pathway is also important for γδ-T-cell development by controlling the 

chromatin accessibility during V(D)J rearrangement and transcription of the TCRγ locus 

[345, 353].  Introducing STAT5 in IL-7-deficient mice partially rescued γδ-T-cell 

development suggesting that STAT5 is actively participating in the induction of V(D)J 

recombination and chromatin accessibility at the TCRγ locus [353].  

4.9. Notch signaling 

Notch signaling is required to ensure lineage commitment, survival and development of 

ETP into defined pro-T cell subsets [283].  Among the four Notch receptors, Noch1-4, 

Notch1 has been identified to play the key role in T-cell development [283, 354]. Two 

ligand families for the Notch receptors have been identified, Delta-like and Jagged [355]. 
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The Notch signaling cascade is initiated by the cleavage of the Notch receptors when they 

encounter their ligands. The cleavage is generated sequentially by metalloproteases and γ-

secretases, releasing the intracellular domain of Notch (ICN) [356-358]. The ICN part is 

translocated to the nucleus where it binds to the transcription factor CSL and recruits other 

co-activators such as mastermind-like proteins (MAML) [359]. This transcriptional 

complex activates and regulates the expression of Notch target genes.  

 

Several line of evidence indicate that the biochemical events through which the cell detects 

and responds to Notch signaling depend on the signal strength. For example, sequence 

paired sites (SPS) have been identified for CSL which promote the assembly of 

transcriptionally active complexes of CSL, ICN and MAML1 [360] or favor the 

cooperation with basic helix-loop-helix E proteins binding at neighboring elements [361]. 

Moreover, it has been shown that different Notch cleavage sites may contribute to the 

gradation of the signal strength by generating two types of ICN, one more stable than the 

other, which results in different intensities of the transcriptional response [362]. Notch 

signaling is also modulated by antagonistic transcription factors such as LRF or Zbtb7a 

[363], or by antagonists of the assembly of the MAML1 complex like Msx2-interacting 

protein (MINT) [364]. Other feedback negative regulators such as Deltex1 and Nrarp [365, 

366] also inhibit Notch target gene transcription (Figure 7). 
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Figure 7. Notch signaling pathway. Notch is composed of an extracellular and 
intracellular domain. Once the intracellular domain of Notch (ICN) is cleaved by 
metalloprotease (extracellular site) and γ-secretase complex (transmembrane region), it 
translocates to the nucleus. ICN forms together with Mastermind and CSL a protein 
complex that recruits co-activators such as p300 to actively transcribe target genes. Notch 
activity is also inhibited by negative regulators like Deltex (Dtx), Numb, MINT, Nrarp, 
Fringe and others (adapted from [153]). 
 
 
ETP are regulated by Notch signaling and have been shown to express high levels of 

Notch1, Hes1 (a Notch target gene) and Deltex1. Moreover, it has been proposed that these 

precursors express mostly lymphoid specific genes and other genes important for T-cell 

differentiation [34]. Notch-deficient bone marrow precursors adopt a B cell fate in the 
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thymus [283], whereas the overexpression of a constitutive active form of intracellular 

Notch1 in the same precursors leads to immature T cell differentiation in the bone marrow 

[354]. Sustained Notch signaling through DN1 and DN2 stages is required for both the 

differentiation of αβ- and γδ-T cells [367, 368]. At these stages, Notch promotes V(D)J 

rearrangement at the TCRγ, TCRδ and TCRβ loci [369, 370]. The synergy between Notch 

and TCR signaling determines the αβ versus γδ lineage choice during T-cell development 

[371]. According to this TCR-Notch synergy model, DN cells expressing the pre-TCR, 

require less Notch to progress to the DP stage and out-compete TCRγδ T cells for Notch 

ligands. The differentiation of γδ-T cells from the DN3 subset occurs in a Notch-

independent way, although residual Notch signaling has been shown to be necessary in 

order to sustain their proliferation [290, 315]. In accordance with these observations, 

Notch1 expression and the expression of its target genes quickly diminish after the β-

selection checkpoint [290], but several studies have demonstrated that Notch signaling is 

crucial for αβ-T-cell development at and after the β-selection stage [370-373]. Although the 

role of Notch at this first selection stage of T-cell development remains poorly understood, 

Ciofani and her collaborators showed that Notch signaling was required for the survival of 

pre-β selected cells [374]. Many in vitro studies that elucidated the implication of Notch 

signaling during T-cell development came from experiments with co-cultures of precursors 

or thymocyte subsets on modified OP9 bone marrow stromal cells [367] that mimic the 

thymic stromal microenvironment and express Notch ligands DL1 or DL4 [283, 284].  
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4.10. T cell gene expression network regulates the processes of 

differentiation 

Many transcription factors play critical roles in T cell lineage commitment. These factors 

function in different stages of T-cell differentiation and control the T cell lineage fate. For 

instance, Bcl11b is a zinc finger transcription factor that plays an essential role during T-

lineage commitment [375-377]. This role is comparable to the one Pax-5 plays in 

maintaining B cell identity of B cell progenitors. The expression of Bcl11b is up-regulated 

from ETP to DN2, and is required for the survival of DP thymocytes [378, 379]. 

Conditional deletion of Bcl11b arrests T-cell development at the expense of increased 

myeloid and NK fate [375, 376]. Pu.1 and GATA3 are other examples and are both 

required for early T-cell development. The ablation of their expression disturbs T-cell 

development, but their overexpression also inhibits the generation of T cells [93, 380]. Pu.1 

regulates the expression of the cytokine receptors Flt3 and IL-7R in early prethymic stages 

and controls the commitment of progenitors toward the myelo-erythroid or lymphoid fate 

[381]. Once the cells reach the DN3 stage, enforced expression of Pu.1 dedifferentiates the 

committed T cells into cells with macrophage and DC phenotypes [382, 383]. GATA3 is a 

double zinc finger transcription factor that is expressed mainly in T cell progenitors. It is a 

direct Notch1 target, induced at the earliest stages of T cell precursors. It is expressed in 

ETP, DN2 and DN3 cells and its absence results in the complete loss of the T cell lineage 

[33, 384-386]. Studies have shown that GATA3 mainly regulates the differentiation, but 

not the survival or proliferation of early T-lineage progenitors [386]. 
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T-lineage specific genes are responsible for the coordination of the main T-cell receptor 

initiated signaling pathways such as Ras/MAPK, PI3K and protein kinase C (PKC). This 

background fidelity is mainly coordinated by Notch1/CSL, GATA3, TCF-1, Ikaros, Runx 

factors, HEB, E2A and c-myb [387, 388]. However, other pathways such as bone 

morphogenetic proteins (BMP), Sonic hedgehog (SHH) and Wnt (wingless and integration 

site) are equally important and play crucial roles during early T-cell development [389-

392]. Overall, in response to specific receptor stimulation, a complex network of 

transcriptional regulators mediates signaling pathways that control the stability of T-lineage 

commitment during the development and assures the production of T effector cells.  

4.11. Pre-TCR rearrangement and double-stranded breaks  

To produce a functional αβ TCR during T-cell development, thymocytes must rearrange 

the TCR genes. Each cell contains two copies of the TCRβ locus, one on each allele. The 

TCRβ chain is composed of V(D)J and constant (C) region exons. Although many exons 

encode for each segment, there are approximately 20 Vβ exons, and two exons of each Dβ, 

Jβ and Cβ [393, 394]. During the DN2/DN3 transition, V(D)J recombination occurs at the 

TCRβ locus mediated by enzymes encoded by the recombination activating genes RAG-1 

and RAG-2 [395]. Mice deficient for either RAG-1 or RAG-2 lack mature B and T cells as 

both lineages are arrested during development since no V(D)J recombination occurs [396, 

397]. The RAG proteins recognize recombination signal sequences (RSS) in the DNA that 

contain spacer sequences. These RSS are localized before and after the D and J regions and 
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at the 3’ end of the V region coding exons. Only an RSS with a 12bp spacer sequence can 

pair with an RSS with a 23bp spacer, a rule known as the 12/23 rule [394, 395, 398, 399]. 

Tdt is another gene that takes part in the recombination process by adding random 

nucleotides to fill in the gap between the DJ and DJ to V regions. Finally, transcript 

processing through splicing removes internal introns producing a rearranged V(D)J-C 

TCRβ transcript [394, 400]. 

 

If errors occur during the recombination process leading to a non-productive allele, the 

rearrangement will continue on the second allele, using all available exons on the same 

chromosome [400, 401]. TCRβ chain rearrangement only takes place on one allele in order 

to express one polypeptide within a single cell. This process ensures the restriction of the 

rearrangement events and is referred to as the allelic exclusion [402]. Once a productive 

V(D)J recombination occurs, the TCRβ chain pairs with the pTα chain to form the pre-

TCR that provides the proliferative and survival signals DN3 cells need for their further 

differentiation into DP cells [403]. 

 

V(D)J rearrangement at the DN3 stage generates DNA double-stranded breaks that activate 

the transformation related protein 53 (p53) in the course of a normal response to DNA 

damage. It has been proposed that p53 acts as a sensor for the β-selection checkpoint and 

evidence suggest that only thymocytes that express a functional pre-TCR are able to 

inactivate p53 in order to escape cell death as a consequence of DNA damage responses 

and further differentiate into DP cells [404]. In line with this hypothesis are data 
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demonstrating that ablation of p53 in CD3γ-/- [405], RAG-/- [406] or SCID mice [407-409], 

which all lack a functional pre-TCR, restores the generation of DN and DP cells. Most 

stress signals such as DNA damage response are regulated by checkpoint mechanisms [410, 

411].  

4.11.1. The p53 tumor suppressor protein 

p53 (Trp53) is a tumor suppressor protein that orchestrate the transcriptional regulation of 

target genes in response to physiological or environmental stresses. The loss of p53 results 

in a strong predisposition to cancer in both humans and mice [412]. The activation of p53 

usually leads to two outcomes: cell cycle arrest or apoptosis. In response to some stimuli, 

p53 will also induce DNA damage repair. This decision is mainly controlled by the 

differential activation or repression of p53 target genes [413]. On the one hand, a p53-

dependent cell cycle arrest is induced by the up-regulation of the cyclin-dependent kinase 

(CDK) inhibitor Cdkn1a, coding for p21CIP1 protein, an inhibitor of the cell cyclin Ckd2 

kinase. It is also mediated by the suppression of cell cycle regulatory genes such as 

CDC25C, coding for a phosphatase required for the activation of Cdk1 [414]. On the other 

hand, the apoptotic response mediated by p53 is coordinated by the up-regulation of pro-

apoptotic genes such as NOXA (Pmaip1) and PUMA (Bbc3) (Figure 8). Moreover, the 

apoptotic activity of p53 involves other mechanisms that are not related to transcriptional 

regulation. These include the capacity of p53 to act as a cytoplasmic protein that can 

participate for example in the regulation of mitochondrial membrane permeabilisation 

[415]. Although the exact mechanism for this cytoplasmic function of p53 remains to be 
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fully elucidated, it has been shown that p53 can act as a pro-apoptotic BH3-domain 

expressing protein that leads to the release of cytochrome c from the mitochondria and to 

the induction of caspases and cell death [416].  

4.11.2. DNA damage response 

Replication of the DNA may lead to a stress signal that can activate checkpoint kinase 1 

(Chk1), which promotes cell survival by blocking the start of the replication origins. This 

prevents the cell from entering mitosis, stabilizes stalled replication forks and facilitates 

DNA repair [417, 418].  Stalling of DNA replication, for example upon UV irradiation, 

leads to the accumulation of stretches of single-stranded DNA. The single-stranded DNA 

areas are coated with replication protein A (RPA) [419, 420], which in turn signals the 

recruitment of two checkpoint complexes, the ataxia-telangiectasia-mutated (Atm)-Rad3-

related kinase-Atr-interacting protein (ATR-ATRIP) complex [421] and the Rad9-Hus1-

Rad1 (9-1-1) complex [420]. Both complexes are essential for optimal ATR-mediated Chk1 

phosphorylation and activation [422]. Rad9 does not participate in clamp formation, but 

binds to Topoisomerase II binding protein 1 (TopBP1). TopBP1 was found to be required 

for loading of Cdc45 to the origins of replication [423] and for the activation of Atr kinase 

in response to stalling of the replicative DNA polymerases δ and ε [424, 425] (Figure 8).  
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Figure 8. Schematic representation of p53 activation and regulation of its downstream 
target genes. Each signal in this cascade is represented by a number starting by the 
stimulus (1) to the response (9). p53 can bind to p53 response elements (RE) to regulate the 
transcription of nearby genes or to recruit co-factors such as histone acetyltransferases 
(HAT). p53 can mediate transactivation but also transcriptional repression. ATM, ataxia 
telangiectasia mutated; Bax, Bcl-2-associated X protein; BBC3, Bcl-2 binding component-
3 (PUMA); BIRC5, survivin, Cdkn1a, cyclin-dependent kinase inhibitor-1A; CHK2, 
checkpoint kinase-2; DDB2, damage-specific DNA-binding protein-2; DDIT4, DNA-
damage-inducible transcript-4; FAS, TNF receptor superfamily, member 6; GADD45α, 
growth arrest and DNA-damage inducible α; MDM2, Double minute 2 protein or E3 
ubiquitin-protein ligase; SFN, stratifin; TP53I3, tumor protein p53-inducible protein-3; 
TRIM22, tripartite motif containing-22 (adapted from [426]).  
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4.11.3. Apoptosis versus cell cycle arrest 

Several factors can influence the regulation of p53-induced target genes. In fact, p53 

protein itself can integrate different signals which may favor apoptosis over cell cycle arrest 

or vice-versa [414]. For example, the phosphorylation of specific serine residues on p53 

can contribute to the activation of pro-apoptotic genes and tumor suppression [427]. Other 

proteins may participate in the outcome of the p53 response. For instance, ASPP proteins, 

which bind to p53 and are homologous to 53BP2 (p53-binding protein 2), shift the 

transcriptional regulation toward induction of pro-apoptotic genes while inhibiting cell 

cycle regulators [428]. In addition, other transcription factors may also regulate specific 

p53 target genes. For example, p53 can cooperate with NF-κB to induce the expression of 

the death receptor DR5. DR5 is an apoptotic target that is under the regulation of a 

promoter containing both p53- and NF-κB-binding sites [429]. Similarly, the SLUG 

repressor protein, an inhibitor of PUMA, can be induced by p53 and in turn suppresses p53-

dependent up-regulation of PUMA in hematopoietic cells [430]. Another example of the 

influence of p53 response to DNA damage can be demonstrated when c-Myc 

(myelocytomatosis viral oncogene) protein is deregulated. This deregulation represses p53-

mediated induction of p21CIP1 through binding to another transcription factor, Miz-1, 

thereby favoring apoptosis in response to p53 activation [137]. 
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5. The Myc family of oncoproteins 

The Myc protein family is composed of several nuclear phospho-proteins expressed in all 

proliferating cells. They play primordial roles in regulating cell growth, differentiation and 

proliferation [431]. These proteins are also involved in DNA damage response pathways 

and in malignant transformations [432-434]. The three main members of this family, c-, N-, 

and L-Myc, are paradigmatic examples of oncogenic transcription factors that exert their 

biological functions through the regulation of large sets of target genes in immune and 

hematopoietic cells. The structural composition of all Myc family members is conserved 

and contains a transactivating domain (TAD) at the amino terminal end and a basic region 

followed by a basic region and a helix-loop-helix and leucine-zipper motif (b-HLH-LZ) at 

the carboxy terminal end of the protein [431-434]. 

5.1 The role of c-Myc during lymphocyte development 

In lymphoid cells, the expression of c-Myc is up-regulated by various mitogens such as 

concanavalin A (ConA) or lipopolysaccharide (LPS) [435-437] and by B- and T-cell 

receptors or by cytokine receptors like IL-2Rβ and the common γ chain. This latter chain is 

shared by the interleukin receptors IL-2, IL-4, IL-7, IL-9, IL-15 and IL-21 [438, 439]. In 

response to these stimulations, c-Myc participates in the regulation of cell size [438, 440]. 

c-Myc also controls the development of CD8αα intestinal intraepithelial lymphocytes by 

regulating IL-15-dependent survival signals [441]. As for αβ-T-cell development, two 

different studies using c-Myc-deficient mice have demonstrated that c-Myc function is 



 

 

 

61 

required to ensure pre-T cell receptor-induced proliferation and expansion of both DN3 and 

DN4 thymic subpopulations [442, 443]. Although the block in the transition from DN to 

DP is observed in mice carrying a pre-T cell specific deletion of c-Myc, this effect does not 

cause a strong reduction in the overall thymic cellularity [442]. Finally, constitutive c-Myc 

expression is implicated in the induction of lymphomagenesis both in B- and T-cell 

compartments [444-452]. 

5.2. c-Myc and malignant transformation 

The deregulation of c-Myc expression has been involved in many types of cancers, in 

particular lymphomas [444-453]. The process of malignant transformation is often linked to 

the activation of c-Myc expression either by gene amplification or chromosomal alterations 

or by the action of c-Myc in cooperation with other activated oncogenes, such as HA-RAS 

[432, 433].  

 

c-Myc plays a particularly important role in the initiation of B- and T-cell lymphomas 

[434]. The paradigmatic example for the implication of c-Myc in a lymphoid malignancy is 

the B-cell Burkitt-type B-cell lymphoma, where c-Myc deregulation occurs as a 

consequence of the t(8;14) translocation juxtaposing the c-Myc gene to the vicinity of the 

immunoglobulin heavy chain enhancer (Eµ). This process can be mimicked in transgenic 

mice expressing a c-Myc gene under the control of the Eµ enhancer [444]. These mice are 

called Eµ-Myc and develop B-Acute Lymphoblastic Leukemia (B-ALL), which is similar 

to the Burkitt type lymphoma found in humans, characterized by immature B cells lacking 
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surface immunoglobulin [444, 454].  c-Myc also plays an important role in the 

development of T-cell lymphoma, in particular in T-cell Acute Lymphoblastic Leukemia. 

T-ALL develops as a consequence of hyperactivation of the Notch signaling or mutations 

in the Notch genes [455, 456], [457, 458] and c-Myc has been identified as a direct Notch1 

target gene [458]. Moreover, Notch and c-Myc expressions are induced in leukemia cells, 

as well as genes regulating cell cycle progression, protein biosynthesis and metabolism, that 

activate leukemic cell growth [459]. However, the precise implication of c-Myc in Notch-

induced T-ALL has been recently debated, since Notch1 alone seems to rather be the 

dominant oncogene in T-ALL [460]. A t(8;14)(q24;q11) translocation also occurs in T cells 

where the gene encoding for the T cell receptor α chain becomes relocated to the vicinity of 

c-Myc gene [461, 462]. This translocation in T-cell leukemia is similar to the Burkitt 

lymphoma and, as a consequence, Myc does not respond normally and is inappropriately 

transcribed [463-465]. 

 

6. Miz-1 and c-Myc as transcriptional regulators 

The protein c-Myc is a central regulator of cellular functions. The b-HLH-LZ domain of c-

Myc is responsible for DNA binding and heterodimerization of c-Myc with its interacting 

partners such as the protein Max. Max, which also possesses a b-HLH-LZ domain, interacts 

with the b-HLH-LZ of c-Myc [433]. c-Myc can both transactivate and transrepress target 

genes. The molecular mechanism underlying c-Myc’s transactivation abilities is well 

described and involves the c-Myc/Max complex, which binds to specific cognate sequences 
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called E-boxes “CACGTG” in upstream promoter regions of target genes [466]. For 

example, c-Myc can regulate factors involved in protein and ribosomal protein synthesis or 

cell cycle regulators such as the E2F family or Cyclins D and E [467]. However, the 

mechanisms by which c-Myc represses transcription are less well understood. Recent 

studies have shown that repression by c-Myc is mediated by a complex formed by the c-

Myc/Max heterodimer with the transcription factor Miz-1(Zbtb17) [431, 468, 469].  

6.1 Biochemical structure of Miz-1  

Miz-1 is composed of a BTB/POZ domain in the N-terminal part of the protein and thirteen 

zinc-finger domains at its C-terminus. BTB/POZ is an abbreviation for Broad-complex, 

Tramtrack and Bric-à-brac/Pox virus zinc finger domain. It is a conserved evolutionary 

motif found in approximately 40 zinc-finger transcription factors, among them several POZ 

domain factors with oncogenic properties implicated in cancer [470, 471]. It has been 

shown that the POZ domain mediates protein-protein interactions via homo- or hetero-

dimerization with other POZ domain-expressing proteins [470, 472, 473]. The recently 

characterized crystal structure of the Miz-1 POZ domain revealed two types of interfaces 

that mediate dimerization and tetramerization of this domain in solution [474]. In addition, 

proteins containing the BTB/POZ domain recruit histone-modifying enzymes, such as 

histone deacetylase or co-repressor complexes including N-CoR and SMRT to the promoter 

of target genes, thus enabling histone modifications. This results in the repression of 

transcription [471, 474-477].  The BTB/POZ domain is most likely not directly involved in 

any interaction of Miz-1 with DNA. Nevertheless, Miz-1 mutants that lack the BTB/POZ 
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domain are no longer able to stably bind the chromatin and lose their ability to regulate 

transcription of some target genes [478]. 

The zinc-finger domains contained in the C-terminus of Miz-1 are most likely implicated in 

the binding of the protein to DNA or for interaction with other co-factors [469]. For 

example, the interaction of Miz-1 with c-Myc has been located between the 12th and 13th 

zinc finger in the C-terminus of Miz-1, and the C-terminus helix II of the basic helix-loop-

helix motif of c-Myc [135, 469] (Figure 9). A c-Myc mutant carrying an aspartic acid 

instead of a valine at position 394 in the helix II of its helix-loop-helix motif (c-MycV394D) 

leads to the abrogation of c-Myc binding to Miz-1 [135, 479-481]. This mutation also 

validates the mapped interacting domain on the c-Myc side to Miz-1 [469]. 

 

 
 
 
 
 
 
 
 
 
Figure 9. Schematic representation of c-Myc and Miz-1.  
Upper part: c-Myc protein is composed of 439 amino acid (a.a). TAD, transactivating 
domain, b, basic region, NLS, nuclear localization signal, HLH, helix-loop-helix domain, 
LZ, leucine zipper domain. The dashed lines indicate the regions mediating the interaction 
between c-Myc and Miz-1.  
Lower part: The Miz-1 protein is composed of 794 a.a. BTB/POZ, Broad-complex, 
Tramtrack and Bric-à-brac/Pox virus zinc finger domain, C2-H2, zinc fingers (adapted from 
[431, 434, 469, 471]). 
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6.2 Miz-1 and its functions 

Miz-1 is a transcriptional transactivator or transrepressor and the best documented 

activation potential of Miz-1 is exemplified by its regulation of the expression of two genes 

encoding for the cyclin-dependent kinase inhibitors Cdkn2b (p15INK4B) and Cdkn1a 

(p21CIP1) [135-138]. Cyclin-dependent kinase inhibitors are negative regulators of cyclin 

and cyclin-dependent kinase (CDK) complexes which are grouped into two families: Ink4 

and Cip/Kip proteins [482, 483]. The Ink4 (p16INK4a, p15INK4b, p18INK4c and p16INK4d) 

proteins block the G1 to S transition of the cell cycle, while the Cip/Kip proteins (p21CIP1, 

p27KIP1 and p57KIP2) bind to the entire cyclin/CDK holoenzymes, inhibiting transitions at all 

stages of the cell cycle.  

 

Among the cyclin-dependent kinase inhibitors, p21CIP1 plays a predominant role in both cell 

cycle and apoptosis by promoting cell cycle arrest at the G1 phase, inhibiting proliferation, 

influencing apoptotic players like p53 and contributing to cellular senescence [483-486]. 

Despite all these implications and the wide range of cells that express p21CIP1 during their 

development and activation [483], Cdkn1a-deficient mice develop normally [487]. 

Nevertheless, these mice are defective in the G1 checkpoint control of their cell cycle 

[487]. p21-/- mice also exhibit enhanced primary antibody response, most likely caused by 

the accelerated proliferation of helper T cells [488]. Another study has reported that the 

homozygous deletion of Cdkn1a reduced cellular and histological diseases and increased 

survival of lupus-prone mice [488]. This resistance to autoimmunity seems related to an 
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increased susceptibility of activated/memory B and T cells to activation-induced cell death 

(AICD) [488]. The deletion of another cyclin-dependent kinase inhibitor locus, the Cdkn2b-

Cdkn2a locus, is often associated with human cancers which underscore the importance of 

the proper regulation of these cell cycle inhibitors. This locus encodes for three cell cycle 

inhibitory proteins: Cdkn2b, Cdkn2a (p16INK4a) and p19ARF another protein encoded by an 

alternative reading frame of Cdkn2a [489].  

 

Miz-1 activates the transcription of its target genes by binding to the initiator (Inr) sites in 

the promoter and by recruiting activating co-factors such as the histone acetyl transferase 

p300/CBP or the ribosomal protein L23-nucleophosmin [135, 138, 469, 478]. The c-

Myc/Max heterodimer is able to bind to Miz-1 and to silence p15INK4B and p21CIP1 

expression very likely by competing and displacing critical co-factors such as p300/CBP 

from Miz-1 [469]. This c-Myc mediated repression of gene expression is independent of E-

boxes. As a result, cell fate decisions that depend on proliferative steps, for instance 

progression through the G1/S cell cycle, are altered by c-Myc. With this new discovery of 

Miz-1 it became clear that c-Myc can exert two pathways to regulate transcription, one E-

box-dependent and another E-box-independent (Figure 10). In addition to its functions as a 

transcriptional regulator of cell cycle inhibitors, Miz-1 seems to be involved in other cell 

physiological processes than transcription. The initial discovery of Miz-1 as a c-Myc 

interacting partner showed that Miz-1 can be localized in both the cytoplasm and the 
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nucleus, indicating that the shuttling between the nucleus and the cytoplasm of Miz-1 is c-

Myc-dependent [469]. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
Figure 10. Schematic representation of the two c-Myc-dependent regulatory 
pathways.  
Left: the Miz-1-independent pathway that involves the binding of the c-Myc/Max complex 
to E-box-dependent sites on target gene promoters, which leads to transcriptional activation 
by c-Myc. 

Right: the Miz-1-dependent pathway: a trimeric c-Myc/Max/Miz-1 complex binds to 
initiator sequences (INR) located on target gene promoters. This E-box-independent 
binding leads to a repressory transcriptional regulation by c-Myc (adapted from [468, 469, 
490]). 

 

6.3 Miz-1 and its binding partners in cell regulation 

The ability of Miz-1 to function as an activator or repressor of target gene transcription 

depends on its interacting partners. For example, in a complex with L-23 nucleophosmin or 

p300/CBP, Miz-1 stimulates the transcription of genes encoding for cell cycle regulators 

such as p21CIP1 or p15INK4B or inhibitors of apoptosis such as Bcl-2 [135, 138, 469, 478, 480, 
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491]. In contrast, Miz-1 becomes a repressor of transcription when it binds to c-Myc or 

Bcl-6, which then enable the repression of p21CIP1, p15INK4B or other target genes [469, 492]. 

6.3.1. The regulation of p15INK4B by Miz-1 

Transforming growth factor beta (TGFβ) can arrest the division of epithelial cell by 

inhibiting c-Myc and turning on p15INK4B through a mechanism that involves Smad 

transcription factors. Studies suggested that Miz-1 is able to transactivate Cdkn2b which 

can be regulated by TGFβ. The Smad protein complexes containing Smad3 and Smad4 

were shown to interact with Miz-1 and regulate its transcriptional activity [136]. The 

binding of Miz-1 to the transcriptional initiator of Cdkn2b prevents the recruitment of c-

Myc which relieves the repression and enables the transcriptional activation of TGFβ 

downstream target genes [136]. Conversely, in mouse embryonic fibroblasts (MEF), c-Myc 

and Max can form a complex with Miz-1 at the initiator site of Cdkn2b promoter and 

inhibit its transcriptional activation by Miz-1. This activity of c-Myc inhibits the 

accumulation of p15INK4B that is associated with cellular senescence [138]. The SNAG 

domain repressor Gfi1 was also shown to associate with Miz-1 in a similar way as c-Myc. 

The Miz-1/Gfi1 complex seems to also repress Cdkn2b transcription [139], although 

additional experiments are needed to validate the formation of this complex in vivo. 

Another study presented finding that c-Myc, but not a mutant form of c-Myc (c-MycV394D) 

that no longer interacts with Miz-1 [135], could repress Cdkn2b in primary murine 

keratinocytes [479]. The conditional deletion of Miz-1 in keratinocytes also showed that 

Miz-1 is essential for controlling hair cell cycling and hair morphogenesis [493]. 
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6.3.2. Regulation of p21CIP1 expression by BTB/POZ domain transcription factors 

Gfi1 was also shown to bind through Miz-1 to the Cdkn1a promoter, thereby influencing 

the outcome of its transcriptional regulation [134]. Although the formation of this complex 

needs to be more carefully studied, this work has elucidated a mechanism by which Gfi1 

can control cell proliferation in response to TGFβ stimulation [134]. It has also been shown 

that the binding of Miz-1 to the proto-oncogene and BTB/POZ transcription factor Bcl-6 

suppresses Cdkn1a transcription. This regulation was demonstrated to be important to 

suppress p53-independent cell cycle arrest in germinal center B cells and therefore favor 

the proliferative expansion of germinal centers during an immune response [492]. A 

deregulation of such a Miz-1-dependent mechanism may contribute to the aberrant 

expansion of B cell and eventually to B cell lymphoma. A different study demonstrated that 

Bcl-6 can suppress Bcl-2-induced activation via its interaction with Miz-1. This function of 

Bcl-6 is required to facilitate apoptosis in germinal center B cells via the suppression of 

Bcl-2. It also suggests that blocking this regulation may be critical for lymphomagenesis, in 

particular the pathogenesis of germinal center-derived diffuse large B cell lymphoma 

(DLBCL) and follicular lymphoma [494]. 

Miz-1 heterodimerizes with another BTB/POZ transcriptional repressor factor Zbtb4 to 

repress Cdkn1a transcription in neurons. This Miz-1/Zbtb4 complex recruits histone 

deacetylases to the promoter of Cdkn1a through the interaction with the Sin3 adaptor 

protein [495]. This repression of p21CIP1 was shown to inhibit cell cycle arrest in response 

to p53 activation. These studies exemplify the many ways in which Miz-1 can exert its role 
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as a transcriptional regulator and also show that Miz-1 assumes different roles in response 

to a DNA damage signal ranging from the initiation of apoptosis to cell cycle arrest [137, 

481] (Figure 11). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Examples of positive and negative regulation by Miz-1 on p21CIP1 
transcription. Miz-1 associates with different partners at the initiator region (INR) of the 
p21CIP1 promoter. The Miz-1/p300 complex activates p21CIP1 transcription, whereas the 
association of Miz-1 with Bcl-6, c-Myc/Max or TopBP1 represses its transcription (adapted 
from [135, 468, 492, 496]). 
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6.3.3. Miz-1 is involved in regulating the DNA damage response 

The association of TopBP1 with Miz-1 was shown to be critical for the regulation of 

proliferation in mammalian UV irradiated cells. This study showed that, through its binding 

to Miz-1, c-Myc negatively regulated the transcription of Cdkn1a upon UV irradiation to 

facilitate the recovery of cells from UV-induced cell cycle arrest [135]. Another study also 

demonstrated that a complex formed by the interaction of Miz-1 and E2F1 with TopBP1 

led to transcriptional repression. The oligomerization of TopBP1 is induced by the PI3K-

AKT signaling pathway that represses Miz-1 transcriptional activation. This interaction is 

important for the specific control of E2F1-induced apoptosis. [497]. These two studies 

illustrate that the interaction of TopBP1 with Miz-1 can induce or repress Cdkn1a 

transcription depending on the cell type, signaling pathway involved and the presence of 

interacting partners such as E2F1 or c-Myc.  

 

The dissociation of TopBP1 from Miz-1 upon UV irradiation facilitates the induction of 

p21CIP1 [135]. This is consistent with the fact that the deletion of TopBP1 led to p53-

independent transcriptional activation of p21CIP1 and to the inhibition of cyclin E/CDK2 

[498]. To further characterize the implication of Miz-1 during UV irradiation response, 

Herold and colleagues demonstrated that TopBP1, an essential activator of the ATR kinase, 

requires Miz-1 for its recruitment to the chromatin [499]. The recruitment of Miz-

1/TopBP1 complex protects TopBP1 from proteasomal degradation and is required for 

ATR-dependent signal transduction. TopBP1 that is not bound to the chromatin gets 
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degraded by ubiquitin ligase HectH9 [500, 501]. These observations are in accordance with 

earlier studies showing that Miz-1 inhibits HectH9-dependent ubiquitination, an important 

regulation for controlling tumor cell proliferation [500]. The activity of the ATR 

checkpoint was shown to be inhibited by c-Myc which antagonizes the binding of TopBP1 

to Miz-1, resulting in the dissociation of TopBP1 from the chromatin and reducing the 

amount of TopBP1 available [499]. Taken together, these studies revealed that the levels of 

c-Myc and Miz-1 affect the function of the ATR-dependent DNA checkpoint through the 

regulation of TopBP1 stability. 

6.3.4. Miz-1 controls cell survival 

In addition to its function as a transcriptional activator or repressor of negative cell cycle 

regulators, Miz-1 can control cell survival by preventing apoptosis. Two independent 

studies have demonstrated that Miz-1 is required to up-regulate the anti-apoptotic protein 

Bcl-2. The c-Myc/Miz-1 complex is needed for the inhibition of this activation and the 

induction of apoptosis [480, 491]. Another study has established the implication of Miz-1 

in controlling the p53-p19ARF-MDM2 axis. Miz-1 can interact with both the cyclin-

dependent kinase inhibitor p19ARF and p53. According to these findings, Miz-1 can directly 

interact with the DNA-binding domain of p53 and thus prevents it from activating pro-

apoptotic target genes. If p19ARF is expressed in excess amounts, it binds to Miz-1 and 

therefore liberates p53 from the Miz-1/p53 complex. This enables p53 to transactivate its 

target genes and induce apoptotic responses [502].  
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All these studies helped establish Miz-1 as an important transcriptional regulator of cell 

cycle progression and apoptosis, but did not reveal many implications of Miz-1 during 

development. Miz-1 is ubiquitously expressed in all tissues and the first indication that 

Miz-1 is critical for regulating developmental processes was demonstrated by Adhikary and 

her colleagues. This study showed that the constitutive deletion of Miz-1 led to an early 

block of gestation at day E7.5 [503]. 
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7. Hypotheses and objectives 

c-Myc plays important roles in hematopoietic differentiation and in the emergence of 

lymphoma and other blood cancers. It is therefore relevant to characterize the second E-

box-independent pathway in which c-Myc regulates gene expression through Miz-1. Miz-1 

itself can control the expression of genes involved in proliferation, and c-Myc represses at 

least a subset of these genes by binding to Miz-1. The identity of most of these genes and 

their function in c-Myc lymphocyte biology are unknown.  

 

The thesis work presented here aimed to define the role of Miz-1 and the c-Myc/Miz-1 

complex in the regulation of T- and B-cell survival, commitment and differentiation. As c-

Myc has been shown to play important roles in the development of progenitor cells and T 

cells, we hypothesized that its interacting partner Miz-1 also had implications in precursor 

commitment and lymphoid development processes. The characterization of these two 

transcription factors also helped identify the interplay between Miz-1 and c-Myc at the 

major developmental checkpoint during B- and T-cell development, mainly at the cytokine 

receptor- and TCR- or BCR-dependent selection points. To reach these aims, different 

mouse models have been used for experimentation throughout this work. 
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8. Mouse models used for this project 

The targeted disruption of c-Myc results in lethality before 10.5 days of gestation in 

homozygous mice [504]. Similarly, the complete deletion of the Miz-1 gene is lethal at 

embryonic day E7.5 [503]. This early time point of lethality emphasized the importance of 

Myc-interacting zinc finger protein Miz-1 in embryonal development and demonstrated that 

Miz-1-deficiency arrested the development at the gastrulation stage [503]. These knock-out 

models represented limitations and could not support a full study of the implication of these 

transcription factors in hematopoiesis or lymphocyte development. Previous studies had 

shown that the implication of c-Myc in T-cell development could only be elucidated using 

conditional and cell type specific deletion of the gene [442, 443]. Therefore, we decided to 

address the importance of its interacting partner Miz-1 or the c-Myc/Miz-1 complex in 

lymphocyte development by conditional deletion of Miz-1 alleles.  

 

Mice carrying loxP (floxed, fl) site flanking the coding region for the BTB/POZ domain of 

Miz-1 were generated in our laboratory. Using Cre-mediated recombination, it was possible 

to conditionally induce the deletion of Miz-1 BTB/POZ domain (Miz-1ΔPOZ) in embryonic 

stem cells or in a cell specific manner in vivo. Since previous studies have shown that the 

deletion of the BTB/POZ domain of Miz-1 generated a truncated protein that was non-

functional as a transcription factor [138, 478], the deletion of this domain was chosen to 

generate Miz-1-deficient mice. To study the role of Miz-1 in T- and B-cell development, 

conditional Miz-1fl/fl mice were crossed with several Cre-transgenic mice strains. A Vav-cre 
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transgene was used to enable the deletion of the BTB/POZ domain encoding exons in all 

hematopoietic cells [505]. CD19-cre [506] and Lck-cre [507] transgenic mice were used for 

the deletion of the domain in B and T cells, respectively.   

 

To study the role of the c-Myc/Miz-1 complex in lymphocyte development, c-MycV394D 

knock-in mice were also generated. In these mice, a point mutation was introduced via 

homologous recombination into the c-Myc locus that altered the coding sequence in a way 

that the valine residue (V) at position 394 was replaced by an aspartic acid (D) (c-MycV394D 

knock-in mice). This mutation has been shown to inhibit the ability of c-Myc to bind to 

Miz-1 [135, 479-481]. Other mouse strains used in this study include the VHT-knock-in 

[508], H2K-Bcl-2 transgenic (Tg) [206, 509], OTI transgenic [510] and p21CIP1-deficient 

mice [487].  
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For this study, I actively participated in the characterization of Miz-1 requirement as a 

downstream effector of the IL-7/IL-7R signaling in B cells. I helped design the research 

and did the following experiments: i) flow cytometry analysis of phospho-Stat5 in Lin-

CD19-B220+ (Figure 3G) or in IL-7R+ bone marrow cells (Figure 3H) from control or Vav-

cre Zbtb17fl/fl mice, ii) chromatin immunoprecipitation (ChIP) showing binding of Miz-1 to 

the promoter region of SOCS1 in MIG-Zbtb17-GFP transduced 70Z/3 cells, 70Z/3 cells and 

primary B cells (B220+ cells) (Figure 4D), iii) immunoprecipitation of the Miz-1 protein in 

70Z/3 cells (Figure S4), and iv) ChIP showing the binding of Miz-1 to the promoter region 

of Bcl-2 in MIG-Zbtb17-GFP transduced 70Z/3 cells (Figure 5B). Christian Kosan 

designed the research, generated all the mice and cell lines, performed experiments, 

analyzed data, generated the figures, and wrote the manuscript. I also participated in writing 

the manuscript. Maren Godmann, Stefanie Herold and Barbara Herkert performed 

experiments. Tarik Möröy designed and supervised the research, wrote the manuscript, and 

provided funding. 
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Abstract 

B-cell development requires the coordinated action of transcription factors and cytokines, 

in particular interleukin-7 (IL-7). We report that mice lacking the POZ (Poxvirus and zinc 

finger) domain of the transcription factor Miz-1 (Zbtb17ΔPOZ/ΔPOZ) almost entirely lacked 

follicular B cells, as shown by the fact that their progenitors failed to activate the Jak-Stat5 

pathway and to up-regulate the antiapoptotic gene Bcl-2 upon IL-7 stimulation. We show 

that Miz-1 exerted a dual role in the interleukin-7 receptor (IL-7R) pathway by directly 

repressing the Janus kinase (Jak) inhibitor suppressor of cytokine signaling 1 (Socs1) and 

by activating Bcl-2 expression. Zbtb17ΔPOZ/ΔPOZ (Miz-1-deficient) B cell progenitors had 

low expression of early B cell genes as transcription factor 3 (Tcf3) and early B cell factor 1 

(Ebf1) and showed a propensity for apoptosis. Only the combined re-expression of Bcl-2 

and Ebf1 could reconstitute the ability of Miz-1-deficient precursors to develop into CD19+ 

B cells. 

 



 

 

 

80 

Graphical Abstract 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Highlights 

 

► Miz-1 is required for early B-cell development  

► Miz-1 directly represses the Jak (Janus kinase) inhibitor Socs1  

► Miz-1 is required to up-regulate Bcl-2 upon IL-7 stimulation 
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Introduction 

The development of mature functional B cells capable of producing specific antibodies is a 

highly regulated, multistep process that is initiated in the bone marrow, where early B cell 

differentiation takes place to yield immature immunoglobulin-M (IgM)+ B cells. These 

immature cells can leave the bone marrow and migrate to the peripheral lymphoid organs, 

where they complete their maturation. The earliest step on the way to become a B cell is the 

generation of multipotent progenitors (MPPs) from hematopoietic stem cells (HSCs), which 

have the potential to develop into multiple hematopoietic lineages (Christensen and 

Weissman, 2001 and Morrison and Weissman, 1994). A subset of MPPs, which expresses 

the tyrosine kinase receptor Flt3, loses its ability to differentiate into the erythro-

megakaryocytic lineage but retains myeloid and lymphoid potential. When these lymphoid-

primed multipotent progenitors (LMPPs) up-regulate Flt3 (FMS-like tyrosine kinase 3) 

expression, they lose their myeloid potential and become restricted to the lymphoid lineage 

(Adolfsson et al., 2005 and Månsson et al., 2007). The LMPP population contains the early 

lymphoid progenitors (ELPs) (Igarashi et al., 2002), which give rise to the common 

lymphoid progenitors (CLPs) and, most probably, to the early T lineage progenitors 

(ETPs). CLPs can give rise to T cells, natural killer cells (NK cells), and dendritic cells, but 

in vivo are considered the sole progenitors of NK and B cells (Allman et al., 2003 and 

Kondo et al., 1997b). CLPs retain expression of Flt3 and express the receptor for IL-7 (IL-

7R), which are both critical for B-cell development. Mice deficient for both receptors do 

not develop any B cells throughout fetal and adult life (Sitnicka et al., 2003). 
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Cytokine signaling and in particular IL-7 is indispensable for the adult B-cell development 

in the mouse bone marrow (Miller et al., 2002 and Namen et al., 1988). In CLPs, IL-7 

signaling induces the expression of the early B cell factor 1 (Ebf1) (Kikuchi et al., 2005), 

which regulates the expression of the transcription factor Pax5 (paired box gene 5) 

(O'Riordan and Grosschedl, 1999). In contrast, Malin and colleagues recently showed that 

Ebf1 regulation is independent of IL-7 signaling and suggest a role of IL-7 signaling solely 

in preventing apoptosis, as it has been shown for T cells (Malin et al., 2010). Consistent 

with this, it has been shown that the expression of Ebf1 is independent of IL-7 signaling 

during fetal B-cell development (Kikuchi and Kondo, 2006) and that Il7−/− mice still have a 

few B cells, which may however originate from a fetal or neonatal precursor (Carvalho 

et al., 2001). Also, overexpression of Ebf1 in Il7r−/− mice only partially rescues early B-

cell development (Kikuchi et al., 2005), suggesting that other factors, induced by IL-7 

signaling, must exist to support B-cell development such as E2A (Tcf3), Ebf1, and Pax5 

that are required for expression recombination-activating genes 1 and 2 (Rag1, Rag2) and 

for a proper rearrangement of the immunoglobulin heavy chain locus (IgH) (Lin and 

Grosschedl, 1995, Nutt et al., 1997 and Urbánek et al., 1994). 

The Miz-1 (Zbtb17) gene encodes a 87 kDa protein with 13 C2H2 zinc finger domains at the 

carboxy terminal half and a POZ domain at its N terminus (Peukert et al., 1997). Miz-1 

belongs to the group of POZ domain zinc finger transcription factors that can act as both 

transcriptional activators and repressors. The POZ domain is required for multimerization 

and for the interaction with other cofactors that mediate their function (Staller et al., 2001). 
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Miz-1 binds to core promoters of RNA polymerase II-dependent target genes and recruits 

the histone acetyltransferase EP300 (E1A binding protein 300) and nucleophosmin (Herold 

et al., 2002, Staller et al., 2001 and Wanzel et al., 2008), which enables transcriptional 

activation of its targets such as the genes encoding the negative cell cycle regulators p15 

(Cdkn2b) (Seoane et al., 2001 and Staller et al., 2001) or p21 (Cdkn1a) (Phan et al., 2005, 

Seoane et al., 2002 and Wu et al., 2003). Miz-1 can also form a complex with the bHLH 

(basic helix-loop-helix) leucine zipper transcription factor Myc, which displaces positive 

cofactors such as EP300 and nucleophosmin that leads to a repression of Miz-1 target genes 

(Herold et al., 2002, Seoane et al., 2001, Seoane et al., 2002, Staller et al., 2001 and 

Wanzel et al., 2008). 

In this study we wished to elucidate the role of Miz-1 during hematopoiesis and have 

generated a loss-of-function mutant mouse by gene targeting introducing an allele that 

allowed the conditional deletion of the Miz-1 POZ domain. This strategy specifically 

disrupted the activity of Miz-1 as a transcriptional transregulator. Our studies demonstrated 

that Miz-1 is required for the very early steps of adult B-cell development in the bone 

marrow. Importantly, we found that the deletion of the Miz-1 POZ domain severely 

disrupted signaling events triggered by IL-7 that substantially affected B cell survival and 

differentiation through the regulation of early B cell genes and the antiapoptotic gene Bcl-2. 
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Results 

Generation of Mice Carrying a Conditionally Deficient Allele of Zbtb17 

The complete deletion of the Zbtb17 gene leads to early embryonic lethality at E7.5 

(Adhikary et al., 2003). To overcome this limitation, we generated mice carrying loxP (fl) 

sites flanking the region encoding the POZ domain to render it amenable to cre-mediated 

deletion. Analysis of protein extracts derived from Zbtb17+/+, Zbtb17+/ΔPOZ, or 

Zbtb17ΔPOZ/ΔPOZ embryonic fibroblasts (E12.5) confirmed that this targeting strategy 

yielded a truncated Miz-1 protein lacking the POZ domain (Figures S1A and S1B available 

online). Previous studies have shown that this truncated form is non-functional as a 

transcription factor (Staller et al., 2001 and Wanzel et al., 2008) and we could show that 

this form is unable to stably bind chromatin (Figure S1C). Adult Zbtb17fl/fl or Zbtb17+/ΔPOZ 

mice were indistinguishable from wild-type (WT) littermates and were used as control 

animals throughout this study, whereas animals with two deleted Zbtb17 alleles 

(Zbtb17ΔPOZ/ΔPOZ) arrested development at around E14 (Figure S1D). Because Zbtb17+/ΔPOZ 

mice are phenotypically indistinguishable from Zbtb17fl/fl or wild-type mice, a dominant-

negative effect of the truncated Miz-1 protein could be excluded. 

Miz-1 Is Required for Early B-cell development in Adult Mice 

Zbtb17 is expressed in lymphoid cells notably in thymus, bone marrow, and spleen and in 

purified B and T cell populations (Figure S1E; data not shown). When Zbtb17ΔPOZ/ΔPOZ ES 

cells were used to generate chimeras, they did contribute to the formation of organs and 
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hematopoietic cells with the exception of T and B cells (Figure S1F), strongly suggesting 

an important role of Miz-1 in lymphoid development. Consistent with this, we observed a 

severe defect in B- and T-cell development when a Vav-cre transgene was present in the 

conditional Zbtb17fl/fl mice, which enabled the deletion of the POZ domain encoding exons 

in all hematopoietic cells as previously described (Figure S1G; de Boer et al., 2003). 

In the spleen, Vav-cre Zbtb17fl/fl mice showed a reduction of the B cell population (B220+) 

to 10% of control mice (Figure 1A). Within the residual B220+ cells of Vav-cre Zbtb17fl/fl 

mice, frequencies of mature B cells (IgM−IgD+) were reduced to half the values seen in 

wild-type mice (Figure 1B). In addition, follicular B cells (FO) were reduced in frequency 

(Figure 1B) and absolute numbers in Vav-cre Zbtb17fl/fl mice to about 4% of controls 

(Figure 1A), whereas marginal zone B cells (MZ) remained unaffected (Figures 1A and 

1B). Similarly, in the bone marrow of Vav-cre Zbtb17fl/fl mice, cellular frequencies were 

strongly reduced and absolute numbers of B220+CD19+ cells dropped to about 3% of 

controls (Figures 1C and 1D), indicating that Miz-1 deficiency leads to a severe reduction 

of the B cell compartment, particularly affecting follicular B cells. 

B-cell development Is Arrested at the Pre-Pro-B to Pro-B Cell Transition in Miz-1-

Deficient Animals 

Hematopoietic progenitors including HSCs, MPPs, and LMPPs were present in Vav-

Zbtb17fl/fl mice (Figure 2A). The frequencies and absolute numbers of CLPs (lin− IL-7R+ 

AA4.1+sca1med c-kitmed) that are the precursors for the B cell lineage (Izon et al., 2001 and 



 

 

 

86 

Kondo et al., 1997b) as well as pre-pro-B cells (lin−B220+CD43+AA4.1+CD19−BP-

1−HSA−) that are contained within Fraction A (B220+CD43+CD19−BP-1−HSA−) were not 

changed in Vav-cre Zbtb17fl/fl mice (Figures 2B–2F). However, the expression of AA4.1 on 

CLPs and pre-pro-B cells of Vav-cre Zbtb17fl/fl mice was severely reduced compared to 

control mice (Figures 2B and 2E), whereas IL-7R, c-kit, and Flt3 expression remained 

largely unchanged on pre-pro-B cells (Figure 2E). In addition, Fraction B 

(B220+CD43+HSA+BP-1−CD19+), C, and C′ cells were almost absent in Vav-cre Zbtb17fl/fl 

mice (Figures 2C and 2F) and the proportion of CD19+ cells in Fraction B was strongly 

reduced from 92.8% to 31.1% (Figure 2C). This suggested that Miz-1 is required for the 

generation of committed CD19+ B cells; a phenotype that could be confirmed by adoptive 

transfer experiments of Miz-1-deficient bone marrow cells into syngeneic recipients 

(Figures 3A and 3B; Figures S2A–S2C). These experiments also showed that 

hematopoietic stem cells from Vav-cre Zbtb17fl/fl mice are able to home to the bone marrow 

and still have T lymphoid and myeloid potential (Figures S2A–S2C). However, although T-

cell development was severely perturbed, myeloid development was not affected in the 

absence of functional Miz-1 (data not shown; Figures S2A and S2B). Conversely, transfer 

of control bone marrow cells into Vav-cre Zbtb17fl/fl mice resulted in a normal lymphoid 

and myeloid reconstitution, indicating that the observed disruption of B-cell development is 

a cell-autonomous phenotype (Figures S2D–S2F). Taken together, Miz-1 is required for the 

development of CD19+ B cells and T cells but does not affect progenitor function and 

myeloid development. 
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Adult Miz-1-Deficient B Cell Progenitors Fail to Develop In Vitro in Response to IL-7 

LSKs and CLPs from adult Vav-cre Zbtb17fl/fl were purified and cultured with IL-7 and 

Flt3L on OP9 cells. Under these conditions, Miz-1-deficient cells did not develop into 

B220+CD19+ B cells and were lost from the cultures reproducibly, whereas progenitors 

from control animals developed efficiently into B cells (Figures 3C and 3E). Under 

myeloid conditions and in the absence of IL-7, both wild-type and Miz-1-deficient LSK 

cells developed into Mac-1+ cells (Figure 3D). To further analyze the response to IL-7, we 

cultured CLPs under stroma-free conditions, which have been shown to provide a survival 

and differentiation signal, but no proliferative stimulus (Miller et al., 2002). CLPs from 

control animals differentiated in the presence of IL-7 into B220+CD19+ B cells, whereas 

Miz-1-deficient CLPs did not develop and were again lost from the culture (Figure 3F). 

Because DNA content analysis and BrdU (bromodeoxyuridine)-labeling experiments 

demonstrated that progression through the cell division cycle is not disturbed in Miz-1-

deficient CLPs or pre-pro-B cells in vivo (Figure S3), these findings suggested that loss of 

Miz-1 function affects those elements of IL-7 signaling that control differentiation and 

survival but not proliferation. 

A key event in IL-7 signaling is the phosphorylation of Stat5, which is mediated by Janus 

kinases (Jaks) upon IL-7 stimulation (Lin et al., 1995). We found that in Miz-1-deficient 

lin−CD19−B220+ or IL-7R+ bone marrow cells, Stat5 phosphorylation was reduced upon 

IL-7 stimulation compared to similarly treated control cells (Figures 3G and 3H). To 

confirm the defect in IL-7 responsiveness, we stimulated CLPs with IL-7 and found that 



 

 

 

88 

several IL-7-responsive genes such as Socs1, Socs3, and Bcl-2 were no longer IL-7- 

inducible in Miz-1-deficient cells, whereas a normal up-regulation was seen in WT control 

cells (Figure 4A). We also observed that the expression of Ebf1, Mcl1, or Bcl-2l1 was not 

dependent on IL-7 in CLP cells and their expression level in the presence of IL-7 were not 

affected by Miz-1 deficiency (Figure 4A). In freshly isolated CLPs from Vav-cre Zbtb17fl/fl 

mice, Socs1 was (35-fold) increased in comparison to CLPs from control mice (Figure 4B). 

In contrast, the Miz-1-overexpressing 70Z/3 pre-B cell line showed a strong reduction in 

Socs1 expression (Figure 4B). To identify potential binding sites of Miz-1 in the Socs1 

promoter, we performed chromatin immunoprecipitation (ChIP) with extracts from 70Z/3 

pre-B cells transduced with a Miz-1-expressing retrovirus, 70Z/3 pre-B cells, or primary B 

cells (Figures 4C and 4D; Figures S4A and S4B). Of note, Miz-1 overexpression in 70Z/3 

cells did not influence their cell cycle progression (Figure S4C). We analyzed a genomic 

region of 10 kb and found that Miz-1 bound to promoter sequences of the Socs1 gene that 

are close to the transcription initiator site (Figures 4C and 4D; data not shown). We could 

not find a similar binding site in the Socs3 promoter region (data not shown). This 

suggested that Miz-1 functions as a direct transcriptional repressor of the Socs1 gene and 

that Socs3 regulation by Miz-1 must be indirect. 

Apoptosis in Zbtb17-Deficient B Cells Can Be Partially Rescued by Bcl-2 or Inhibition 

of Socs1 

CLPs or Fraction A cells from Vav-cre Zbtb17fl/fl mice did not indicate a deregulation of 

survival genes such as Bcl-2 and Mcl1 or proapoptotic genes like Bad and Bax (Figure 5A), 
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which is also consistent with findings reported for the IL7r−/− mice (Kikuchi et al., 2005). 

One exception is Bcl-2l1, which we found slightly downregulated in CLPs from Vav-cre 

Zbtb17fl/fl mice (Figure 5A). ChIP on the promoter regions of Bcl-2l1 or Ebf1 did not show 

Miz-1 binding (data not shown); however, scanning over a 10 kb region of the Bcl-2 

promoter revealed a Miz-1 binding site about 1.4 kb upstream of the initiator site 

(Figure 5B; Figure S5A). Together with the fact that Bcl-2 can no longer be induced by IL-

7, these findings suggest that Miz-1 may be required for the up-regulation of Bcl-2 upon IL-

7 and acts by directly binding to the Bcl-2 promoter at a site different from the initiator. 

To test whether absence of a functional Miz-1 affected the survival of B lineage cells 

in vivo, we stained CLPs and pre-pro-B cells (lin−B220+CD43+CD19−) of Miz-1-deficient 

mice or controls with AnnexinV, but we did not find different rates of cell death 

(Figure 5C). In contrast, 5- to 10-fold increased frequencies of apoptotic cells (AnnexinV+) 

were observed in lin−B220+CD43+CD19+ cells (Fraction B–C′) and in B220+CD43− cells, 

respectively, in the absence of a functional Miz-1 (Figure 5C), which may explain the loss 

of committed CD19+ B cells (described in Figure 2). 

In an attempt to counteract this enhanced rate of cell death, we crossed an H2-K1-Bcl-2 

transgene, which directs a high constitutive expression of Bcl-2 throughout hematopoiesis, 

including HSCs and early lymphoid progenitors (Figure S5B; Domen et al., 1998 and 

Kondo et al., 1997a) into Vav-cre Zbtb17fl/fl mice. In the resulting combinatorial mutant 

animals, B220+CD19+ B cells were now detected in the bone marrow, reaching about 40% 

of control frequencies (Figure 6A). Importantly, lin−CD19+B220+CD43+ pro-B cells, which 
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were almost undetectable in Miz-1-deficient mice, now reappeared in the presence of the 

H2-K1-Bcl-2 transgene (Figure 6A). We also found that in contrast to CLPs from Vav-cre 

Zbtb17fl/fl, CLPs from Vav-cre Zbtb17fl/fl H2-K1-Bcl-2 mice now survived and expanded 

in vitro on OP9 cells (Figure 6B), but gave rise to only a very small number of CD19+ cells, 

possibly reflecting the partial rescue seen in vivo (Figure 6A). This indicated that Bcl-2 

alone is not sufficient to overcome the developmental block imposed by Miz-1 deficiency. 

Socs1 is a negative regulator of the IL-7 signaling pathway and we did not only observe 

high Socs1 expression in Miz-1-deficient CLPs, but our ChIP experiments also suggested 

that Miz-1 directly binds to Socs1 promoter, possibly modulating its expression. Hence, we 

reasoned that inhibition of Socs1 could restore IL-7 responsiveness in Miz-1-deficient cells 

and allow the development of CD19-positive cells. To test this, we performed a silencing 

experiment with gene-specific “Morpholino” oligonucleotides that are able to interfere with 

Socs1 protein expression (Figure 6C). LSKs from Vav-cre Zbtb17fl/fl transfected with 

Socs1-specific Morpholinos showed a higher percentage of survival compared to Vav-cre 

Zbtb17fl/fl transfected with a control Morpholino. These cells were able to expand on OP9 

cells in the presence of IL-7 but did not up-regulate CD19 (Figure 6D). This suggested that 

high Socs1 expression was at least partially responsible for the lack of survival of Miz-1-

deficient B lineage precursors on OP9 cells in vitro. 

Ebf1 and Bcl-2 Restore the Ability of Miz-1-Deficient Precursors to Generate CD19+ 

B Cells 
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The inability to fully rescue B cell differentiation in Miz-1-deficient progenitors by 

restoration of the IL-7-Stat5-Bcl-2 pathway either by providing excess Bcl-2 or by 

inhibiting Socs1 suggested that an additional defect exists (Domen et al., 1998 and Kondo 

et al., 1997a). Comparative expression analysis showed that lymphoid-specific genes such 

as Tcf3, Ebf1, Dntt, Pax5, Rag1, and Rag2 were decreased in Miz-1-deficient CLPs versus 

controls (Figure 7A). Ebf1 is essential for B-cell development and responsible for the 

expression of Pax5 and eventually also Rag1 and Rag2. Therefore, we expected to be able 

to rescue B cell differentiation in Miz-1-deficient cells by overexpressing Ebf1. We 

restored Ebf1 expression in Miz-1-deficient progenitors via a murine stem cell virus 

(MSCV) containing the Ebf1 gene and GFP as a marker (Figure S6A). However, LSK cells 

from Vav-cre Zbtb17fl/fl mice transduced with the Ebf1-expressing virus did not develop 

into CD19+ cells and almost all cells were lost when cultured on OP9-stroma cells, whereas 

control LSK cells showed an accelerated differentiation into CD19+ B cells (Figure 7B). 

Similar to this, forced expression of a rearranged transgenic V(D)J segment at the IgH 

locus (Cascalho et al., 1996) did not rescue adult B-cell development in Miz-1-deficient 

mice (Figure S6B). 

We hypothesized that because the IL-7-Stat5-Bcl-2 signaling pathway that regulates cell 

survival and the Ebf1-Pax5-Rag1-Rag2 axis that regulates differentiation are both affected 

by Miz-1 deficiency, a full rescue of B lineage differentiation might be achieved only if 

both pathways are restored. To test this, we sorted LSK cells from Vav-cre Zbtb17fl/fl H2-

K1-Bcl-2 mice and transduced them with a retroviral vector expressing Ebf1 or a virus 
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made with an empty vector control. When GFP+ cells obtained after infection were cultured 

on OP9 cells, those that had received the Ebf1-expressing retrovirus were indeed able to 

fully differentiate into CD19+ cells, but LSKs from Vav-cre Zbtb17fl/fl H2-K1-Bcl-2 infected 

with the control retrovirus alone did not (Figure 7C). This indicated that re-expression of 

both Bcl-2 and Ebf1 is needed to restore B cell differentiation from Miz-1-deficient 

progenitors and confirms that the transcription factor Miz-1 is required to regulate survival 

and developmental networks during early B-cell development. 
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Discussion 

The development of B cells in the adult bone marrow is a well-defined process, in which 

cytokine signaling, V(D)J recombination, and the regulation of gene expression by 

transcription factors play a central role (Medina et al., 2004 and Singh et al., 2007). The 

signal transduction process initiated by IL-7 and its direct and indirect downstream 

effectors and also the transcription factors Ebf1 and Pax5 are essential for the early 

commitment and differentiation stages of B-cell development. In this study, we present 

evidence that the POZ-domain protein Miz-1 (Zbtb17) is essential for B-cell development. 

Our data suggest that Miz-1 regulates IL-7 signaling by monitoring on one hand the 

expression of Socs1, a negative regulator, and on the other hand Bcl-2, a positive effector of 

IL-7 signaling. In addition, Miz-1 is required for the proper expression of Tcf3 and Ebf1 

and thus assures the functioning of the Ebf1-Pax5-Rag1-Rag2 axis. 

Cre-mediated Zbtb17 deletion initiated in hematopoietic stem cells by the Vav promoter 

confirmed this and suggested a role of Miz-1 at a stage of early uncommitted B cell 

progenitors. Flow cytometry data further supported the view that Miz-1 deficiency affects 

mainly follicular B cells and their differentiation, but not the formation of marginal zone B 

cells. This is similar to the phenotype reported in Il7- or IL7r-deficient mice (Carvalho 

et al., 2001 and Hesslein et al., 2006), where most residual peripheral B cells are marginal 

zone (MZ) B cells. MZ B cells are long-lived cells and are less affected by the absence of 

IL-7 signaling (Hesslein et al., 2006 and Lu and Cyster, 2002), which might explain their 

accumulation in Miz-1-deficient mice. Hence, the fact that we see a loss of follicular B 
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cells but not MZ B cells could point to a possible role of Miz-1 in IL-7 signaling. Along 

this line, the severe drop in absolute CD19+ pro-B cell numbers and the fact that CLP or 

pre-pro-B cell numbers were unaffected in Miz-1-deficient mice suggested a block 

precisely at the pre-pro-B to pro-B cell transition, which is very similar to the reported 

observations in mice deficient for IL7 or IL7r (Dias et al., 2005 and Kikuchi et al., 2005). 

Our data clearly show that activation of Stat5 by Jak-mediated phosphorylation in response 

to IL-7 is almost undetectable in Miz-1-deficient cells. This is probably due to the fact that 

Vav-cre Zbtb17fl/fl CLPs highly express the Jak inhibitor Socs1 and are thus unable to up-

regulate IL-7-responsive target genes. Moreover, our ChIP and mRNA expression data very 

strongly suggest that the normal function of Miz-1 during IL-7-dependent early B-cell 

development is to dampen the expression of Socs1 through direct binding to its 

transcription initiator site and to allow the activation of Stat5 and the subsequent up-

regulation of IL-7 target genes. Because the inhibition of Socs1 allows Miz-1-deficient cells 

to survive on OP9 and in the presence of IL-7, it is conceivable that Miz-1 plays an 

important role in regulating IL-7-mediated survival signals. 

In a close perspective to our findings, it has been shown that during early B-cell 

development, Bcl-2 expression is highly up-regulated in uncommitted “Fraction A” B cells 

that contain pre-pro-B cells to provide a survival signal (Li et al., 1993). It has also been 

reported that under stroma-free conditions, IL-7 alone enables CLPs to both survive and 

differentiate into B220+CD19+ pro-B cells (Kikuchi et al., 2005 and Miller et al., 2002). 

Our expression analysis showed that in the absence of Miz-1, Bcl-2 expression cannot be 
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up-regulated upon IL-7 stimulation in CLPs, and ChIP experiments demonstrated a direct 

binding of Miz-1 to the Bcl-2 promoter. This suggests that Miz-1 exerts a second function 

in the IL-7R pathway, which is different from the repression of Socs1 and acts as a direct 

transcriptional activator of Bcl-2, probably in response to IL-7. Such a role would be 

consistent with two different reports that have previously demonstrated that Bcl-2 is a direct 

effector gene of Miz-1 (Patel and McMahon, 2007 and Saito et al., 2009). 

Miz-1 has been discovered as a Myc binding protein and its function as a repressor has 

been described in a complex with Myc on the promoters of cell cycle regulator genes such 

as Cdkn1a and Cdkn2b (Phan et al., 2005, Seoane et al., 2001, Seoane et al., 2002, Staller 

et al., 2001 and Wu et al., 2003). None of these Miz-1 targets that regulate cell cycle 

progression were altered in Miz-1-deficient cells (data not shown). Consistent with this, we 

could not find evidence for disturbed cell cycle progression in Miz-1-deficient B cell 

progenitors, suggesting that the regulatory function of Miz-1 that we describe here is 

independent of Myc. In addition, the few remaining peripheral follicular B cells did not 

show a proliferation defect (data not shown) in spite of the fact that they emerged from a 

disturbed early B-cell development. To obtain further insights in the role of Miz-1 in 

peripheral follicular B cells, other Cre deleter strains will have to be used. 

The knockout of either Ebf1 or Tcf3 leads to a complete block at the pre-pro-B to pro-B 

transition (Bain et al., 1994 and Lin and Grosschedl, 1995), which resembles the phenotype 

seen in Miz-1-deficient mice. However, Tcf3 is necessary for CLP formation and E2A-

deficient mice have a marked reduction in their CLP numbers (Bain et al., 1997 and 
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Borghesi et al., 2005), which is different from our observations in the Miz-1-deficient mice. 

In addition, E2A is necessary to up-regulate Ebf1 for allowing progenitors to develop into 

B cells, and ectopic expression of Ebf1 in Tcf3-deficient progenitors rescued B lymphocyte 

differentiation (Bain et al., 1994 and Seet et al., 2004). In Miz-1-deficient CLPs, Tcf3 

expression is reduced to about 50% and this residual expression might be sufficient to 

maintain CLP numbers in Miz-1-deficient mice but may be the cause of the reduced Ebf1 

amounts. It is unlikely that Miz-1 regulates Ebf1 expression directly because ChIP 

experiments did not provide evidence for Miz-1 binding on the Ebf1 promoter. It is, 

however, possible that Miz-1 acts further upstream and interferes with the expression of 

Tcf3 via a mechanism that remains to be elucidated. 

If regulation of the E2A-Ebf1-Pax5-Rag1-Rag2 axis would fully describe the biochemical 

function of Miz-1, the retrovirally re-expression of Ebf1 or a rearranged variable heavy 

chain gene should have rescued B cell differentiation in Miz-1-deficient progenitors. 

However, this is not the case, suggesting that another defect outside the Ebf1-Pax5-Rag1-

Rag2 signaling pathway must exist in cells lacking Miz-1. A very likely solution to this is 

the role of Miz-1 in the part of IL-7 signaling that provides a survival signal to B cell 

progenitors described above. Ectopic expression of Ebf1 in IL7r−/− progenitor cells leads to 

an initial development of B220+CD19+IgM+ B cells but cannot overcome a defect in cell 

survival (Kikuchi et al., 2005). Our data are consistent with this and corroborate recent 

reports indicating that regulation of Ebf1 is independent of IL-7 (Malin et al., 2010). Our 

own findings that Ebf1 cannot be induced by IL-7 and that re-expression of Ebf1 alone was 
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not sufficient to rescue B-cell development in Miz-1-deficient mice confirm this notion 

further. 

When we crossed Miz-1-deficient mice with transgenic mice overexpressing Bcl-2, a 

substantial but still partial rescue of B cell differentiation was seen in vivo, but 

differentiation of Miz-1-deficient B cell precursors expressing Bcl-2 did not occur when 

cultured on OP9 stroma in vitro. The introduction of both Bcl-2 and Ebf1, which has been 

shown to promote B-cell development by up-regulating B cell genes like Pax5, Rag1 and 

Rag2, and Cd19 (Medina et al., 2004, O'Riordan and Grosschedl, 1999 and Pongubala 

et al., 2008) finally enabled us to fully reconstitute B cell commitment in Miz-1-deficient 

precursors when cultured in vitro. This was evident because only with Bcl-2 and Ebf1, Miz-

1-deficient progenitors were able to significantly up-regulate CD19 expression, which 

indicates that B cell lineage commitment has taken place. We found that Cd19-Cre 

Zbtb17fl/fl mice, which excise later than Vav-Cre Zbtb17fl/fl at pro-B and pre-B stages 

(Rickert et al., 1997), have normal B-cell development (data not shown), so we conclude 

that Miz-1 acts precisely at the pre-pro-B to pro-B transition, where Ebf1 is critical for 

commitment. This experiment supports a comprehensive model, in which Miz-1 exerts two 

functions in early B lineage progenitors: one in the regulation of the IL-7-independent 

E2A-Ebf1-Pax5-Rag1-Rag2 axis responsible for B cell differentiation and another role in 

the IL-7-dependent up-regulation of Bcl-2 that ensures survival of B cell progenitors. In 

summary, the evidence that we present here establishes the POZ transcription factor Miz-1 

as a regulatory element required at a critical point where signals from the IL-7 receptor 
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have to be relayed to effector genes that mediate survival (such as Bcl-2) and to be 

coordinated with signals that enable differentiation (such as Ebf1) to allow full lineage 

commitment and differentiation along the B cell lineage. 



 

 

 

99 

Experimental Procedures 

 

Mice 

All experiments performed on mice were approved by the IRCM animal care committee 

and done in accordance with the regulation of the Canadian Council of Animal Care. 

For additional information see Supplemental Experimental Procedures. 

Flow Cytometry, Cell Surface Staining, Stimulation, and Cell Sorting 

Single-cell suspensions were prepared at the time of autopsy from thymus, bone marrow, or 

spleen in PBS supplemented with 1% FCS (staining solution). Antibody incubation was 

performed at 4°C for 15 min in 1% FCS in PBS (for more detail see Supplemental 

Information). For the intracellular flow cytometry analysis of pStat5, cells were incubated 

for 1.5 hr at 37°C to shut off endogenous signaling prior to stimulation. Cells were 

harvested, washed with PBS, and incubated with or without 10 ng/ml IL-7 (Peprotech 217-

17) for 15 min at 37°C. After stimulation, cells were fixed with formaldehyde (BD cytofix) 

and additionally permeabilized with methanol (BD Phosflow Perm III). Samples were then 

stained with anti-phospho-Stat5(Y694)-Alexa488 (BD Phosflow 612598) or Alexa488 

Mouse IgG1κ isotype control (BD Phosflow). AnnexinV staining was performed with the 

AnnexinV-FITC Detection Kit I (Becton Dickinson) and by following the manufacturer's 

instructions. 

Chromatin Immunoprecipitation Assay 
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ChIP assays were performed with ChIP-IT Express (Active Motif) according to the 

manufacturer's instructions. Cells were fixed with 1% paraformaldehyde (PFA) neutralized 

with glycine, washed, and lysed with IGEPAL lysis buffer (10 mM Tris-HCl, 10 mM NaCl, 

3 mM MgCl2, 0.5% IGEPAL, 1 mM PMSF). The lysate was sonicated (Branson Digital 

Sonifier). One percent of the soluble fraction (input) was kept and the rest was precleared 

with salmon sperm DNA-Protein G-agarose (Upstate). This was then divided into two tubes 

and incubated with 15 µg/ml of rabbit anti-Miz-1 polyclonal IgG (H190, Santa Cruz) or 15 

µg/ml rabbit control IgG-ChIP grade antibodies (Abcam). The immune complexes were 

then precipitated with Protein G-agarose and eluted according to the manufacturer's 

instruction. DNA was purified with a polymerase chain reaction (PCR) purification kit 

(QIAGEN). Quantitative PCR was performed with the SYBR Green system on the 

Invitrogen Mx3005. Primers used for experiments are listed in Table S1. 

Retroviral Transduction 

Retroviruses were generated with 293-GPG cells. GP+E cells were infected with 

retroviruses from the 293-GPG cells for coculture and virus production. Hematopoietic 

cells were transduced spin-infection. For spin infection, sorted LSK cells were resuspended 

in viral supernatant in the presence of polybrene (12.5 µg/ml) and were centrifuged by 

1400 × g for 2 hr. LSK cells were washed with Opti-MEM and cocultured on OP9 cells 

(Opti-MEM [10% (vol/vol) FCS, 100 U/ml penicillin, 100 µg/ml streptomycin, 50 µM β-

mercaptoethanol] containing 10 ng/ml SCF, 10 ng/ml Flt3L, and 1 ng/ml IL-7). Four to five 

days after infection, transduced cells were cell sorted by flow cytometry on the basis of 
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GFP expression. Coculture transduced cells were plated on OP9 cells. After 4 days of 

coculture, cells were transferred onto new stroma cells supplied with new cytokine 

containing media and cultured for the indicated time periods. 

Morpholino Silencing 

LSK cells sorted by flow cytometry were cultured in the presence of SCF, Flt3L, and IL-7 

for 1 hr under stroma-free conditions. Morpholinos were added to the culture in the 

presence of EndoPorter followed the manufacturer's instructions (Gene Tools, USA). After 

4 hr progenitor cells were transferred on OP9 cells. Every 4 days, cells were transferred on 

new OP9 cells and new cytokines were added (see Supplemental Information). 

Statistics 

Two-tailed Student's t tests were used to calculate p values where indicated. A p value ≤ 

0.05 was indicated as statistically significant. 
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Figure 1. POZ Domain Transcription Factor Miz-1 Is Essential for B-cell 

development 

(A) Absolute numbers of splenic B cells (B220+), marginal zone B cells (MZ; 

B220+CD21+CD23−), and follicular B cells (Foll.; B220+CD21+CD23+) of control mice 

(black) and Vav-cre Zbtb17fl/fl (gray). A minimum of five mice was analyzed for each 

group. Error bars indicate standard deviation (±SD); p values are indicated in the figure. 

(B) Flow cytometric analysis of splenic B cells from control mice and Vav-cre Zbtb17fl/fl 

mice. B220+ cells were analyzed for surface expression of IgM and IgD or CD21 and 

CD23. Immature (I), transitional (T), mature (M), follicular (FO), and marginal zone (MZ) 

B cells. Numbers in plots indicate percentages relative to gated B220+ cells. 

(C) Absolute numbers of bone marrow B cells (B220+CD19+; femur and tibia) were 

corrected to living cells (based on forward scatter [FSC] and side scatter [SSC] gating) of 

control mice (black) and Vav-cre Zbtb17fl/fl (gray). A minimum of five mice was analyzed 

for each group. Error bars indicate standard deviation (±SD); a p value is given in the 

figure. 

(D) Flow cytometric analysis of bone marrow B cells from control mice and Vav-cre 

Zbtb17fl/fl mice. Cells were analyzed via antibodies for B220, IgM, and CD19; numbers in 

dot plots indicate percentages of each gate. (B and D) Data represent at least three 

independent experiments. Numbers in plots indicate percentages calculated on live cells 

(based on FSC and SSC gating). Controls were either WT, Vav-cre Zbtb17fl/+, or Zbtb17fl/fl 

mice. See also Figure S1. 
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Figure 2. Miz-1 Function Is Required to Generate Pro-B Cells  

 

Bone marrow cells from control and Vav-cre Zbtb17fl/fl mice were analyzed via flow 

cytometry. 

(A) Lineage-negative and IL-7R-negative cells (lin− and IL-7R−) were analyzed for c-kit, 

sca-1, CD34, and Flt3 expression. 

(B) Surface expression of lineage marker (lin), IL-7R, sca-1, c-kit, and AA4.1 on bone 

marrow cells. 

(C) Flow cytometric analysis of B220, CD43, HSA, BP-1, and CD19 surface expression on 

bone marrow cells. B220+CD43+ cells were electronically gated and analyzed for HSA and 

BP-1 expression. Fraction B (Fr. B) (B220+CD43+HSA+BP1−) cells were analyzed for 

CD19 expression. Numbers on gates represent percentages of living cells. Numbers in 

histograms represent percentages of cells in indicated gates. Fraction (Fr.) A–C′ are 

indicated on the gates. 

(D) Expression of lin, CD19, B220, and CD43 on bone marrow cells. Lineage panel for 

pre-pro-B cells contains CD11b, Gr-1, Ter119, IgM, TCR-β, TCR-γδ, CD8, CD4, CD3, 

NK1.1, Ly-6c, and CD5. Lin−CD19− cells were analyzed for the expression of B220 and 

CD43. Numbers in plots indicate percentages calculated on total cells (based on FSC and 

SSC gating). 
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(E) The expression of AA4.1, IL-7R, Flt3, and c-kit on pre-pro-B cells 

(lin−CD19−B220+CD43+). Open histograms represent the expression of each surface marker 

and filled histograms represent isotype-matched irrelevant antibodies, respectively. 

Numbers in histograms represent percentages of (lin−CD19−B220+CD43+). 

(F) Absolute numbers of CLPs (lin−IL-7R+AA4.1+sca-1medc-kitmed), pre-pro-B cells 

(lin−CD19−B220+CD43+AA4.1+), Fr. B cells (B220+CD43+HSA−BP1−CD19+), Fr. C cells 

(B220+CD43+HSA+BP1+CD19+), and Fr. C′ cells (B220+CD43+HSAhiBP1+ CD19+). 

Absolute cells numbers (femur and tibia) were corrected to living cells (based on FSC and 

SSC gating) from control mice (black) and Vav-cre Zbtb17fl/fl (gray). A minimum of five 

mice was analyzed for each group. Error bars indicate the standard deviation (±SD); a p 

value is given in the figure. See also Figure S2. 
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Figure 3. Miz-1 Is Indispensable for Progenitor Differentiation and Survival upon 

Cytokine Stimulation 

(A and B) Lethally irradiated recipients (CD45.1) were reconstituted with bone marrow 

cells (Terr119−B220−CD19−) from WT control mice or Vav-cre Zbtb17fl/fl mice (both 

CD45.2+). Bone marrow cells were analyzed 3–4 months after transplantation by flow 

cytometry with antibodies for CD45.1, CD45.2, B220, and IgM (A) and with antibodies for 

CD45.1, CD45.2, B220, and CD19 (B). Data represent three independent experiments. 

Numbers on gates indicate percentages. (D, donor; R, recipient.) 

(C) LSK (lin−sca-1+c-kit+) cells from control mice or Vav-cre Zbtb17fl/fl mice were flow 

cytometrically sorted and cocultured on OP9 cells in the presence of Flt3L and IL-7 for 10–

12 days. Cells were analyzed for forward (FSC) and side (SSC) scatter and the surface 

expression of B220 and CD19 by flow cytometry. 

(D) LSK (lin−sca-1+c-kit+) cells from control mice or Vav-cre Zbtb17fl/fl mice were flow 

cytometrically sorted and cocultured on OP9 cells in the presence of a myeloid cytokine 

cocktail for 6–8 days. Cells were analyzed for FSC and SSC and the surface expression of 

Mac1 and CD19 by flow cytometry. 

(E) CLP (lin−IL-7R+sca-1medc-kitmed) cells from control mice or Vav-cre Zbtb17fl/fl mice 

were flow cytometrically sorted and cocultured on OP9 cells in the presence of Flt3L and 

IL-7 for 10–12 days. Cells were analyzed for FSC and SSC as well as the surface 

expression of B220 and CD19 by flow cytometry. 
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(F) CLP were sorted and cultured under stroma-free conditions in the presence of Flt3L, IL-

7 or Flt3L, and IL-7 for 6 days. Cells were analyzed for the surface expression of B220 and 

CD19 by flow cytometry. Data represent at least four (C, E, F) or two (D) independent 

experiments. 

(G and H) Flow cytometry of Stat5 phosphorylation in lin−CD19−B220+ (lin: Mac1, 

Terr119) (G) or in IL-7R+ bone marrow cells (H) from control mice or Vav-cre Zbtb17fl/fl 

mice. Open histograms represent the expression of phospho-Stat5 after 15 min IL-7 

stimulation and filled histograms represent phospho-Stat5 in unstimulated cells, 

respectively. Data represent three (G) or two (H) independent experiments. See also 

Figure S3. 
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Figure 4 
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Figure 4. Miz-1 Is Required to Regulate the Expression of IL-7-Responsive Genes in 

CLPs 

(A) CLPs from the bone marrow of control and Vav-cre Zbtb17fl/fl mice were separated by 

flow cytometric cell sorting and cultured for 120 min in the absence and presence of IL-7. 

RNA was extracted and reverse-transcribed and used for quantitative PCR. Expression of 

the indicated genes was measured and normalized to the expression of the Gapdh gene and 

is presented as the fold increase relative to cDNA from control mice or unstimulated cells 

(set as 1-fold). Data represent three independent experiments each done in triplicate. Error 

bars indicate the standard deviation (±SD). 

(B) Expression of Socs1 determined by qRT-PCR in CLPs from control and and Vav-cre 

Zbtb17fl/fl mice (left), and in 70Z/3 cells transduced with empty vector (MIGR1) or with a 

MIG-Zbtb17-GFP virus (right). Error bars indicate the standard deviation (±SD). 

(C) Socs1 locus, showing coding regions (black boxes) and non-coding regions (open 

boxes) and location of primers (black triangles). 

(D) Chromatin immunoprecipitation (ChIP) showing binding of Miz-1 to the promoter 

region of Socs1. Used were α-Miz-1 antibodies (H190) and α-isotype control antibodies on 

extracts of MIG-Zbtb17-GFP transduced 70Z/3 cells (left), 70Z/3 cells (middle), or primary 

B cells (B220+ cells) (right), followed by a quantitative RT-PCR via primer pairs of 

indicated regions. Data represent two independent experiments each done in triplicate (PCR 

on primary B cells was done in duplicates). Error bars indicate the standard deviation 

(±SD). See also Figure S4 and Tables S1 and S2. 
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Figure 5 
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Figure 5. Apoptosis during B-cell development in Miz-1-Deficient Mice 

(A) CLPs or Fraction A (CD19−B220+CD43+) cells from control and Vav-cre Zbtb17fl/fl 

mice were separated by flow cytometric cell sorting. RNA was extracted and reverse 

transcribed and used for quantitative PCR with indicated primer. All values were 

normalized to the expression of the Gapdh gene and are presented as the fraction relative to 

cDNA from control mice (set as 1-fold). Data show three independent experiments, each 

done in triplicates. Error bars indicate the standard error of the mean (±SEM). 

(B) Chromatin immunoprecipitation (ChIP) of the binding of Miz-1 to the promoter region 

of Bcl-2. Used were a Miz-1 antibody (H190) and an isotype control antibody and extracts 

of MIG-Zbtb17-GFP transduced 70Z/3 cells, followed by a qRT-PCR of the indicated 

genomic regions. Data represent two independent experiments, each done in triplicate. 

Error bars indicate the standard deviation (±SD). A p value is indicated. 

(C) CLPs (lin−IL-7Rα+c-kitmedsca-1med), pre-pro-B (lin−B220+CD43+CD19−), pro-B 

(lin−B220+CD43+CD19+), and Fr. D–F B (B220+CD43−) cells were electronically gated and 

analyzed for apoptotic cells via AnnexinV staining. Numbers in histograms indicate 

percentages of each indicated gate. Data represent three independent experiments. See also 

Figure S5 and Tables S1 and S2. 
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Figure 6 
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Figure 6. Bcl-2 Expression or Socs1 Inhibition Enables Miz-1-Deficient Precursors to 

Survive with IL-7 

(A) Flow cytometry analysis of bone marrow from control, Vav-cre Zbtb17fl/fl, and Vav-cre 

Zbtb17fl/fl H2-K1-Bcl-2 mice with the indicated surface markers. Numbers in dot plots 

indicate percentages of each gate. Bone marrow cells were analyzed with the pre-pro-B 

lineage markers (CD11b, Gr-1, Ter119, IgM, TCR-β, TCR-γδ, CD8, CD4, CD3, NK1.1, 

Ly-6c, and CD5) and B220, CD43 CD19, and IgM to define the pro-B cell population. 

Numbers in histograms indicate percentages of pro-B cells for the indicated mice. Data are 

representative of three independent experiments. 

(B) CLP (lin−IL-7R+sca-1medc-kitmed) cells from control, Vav-cre Zbtb17fl/fl, and Vav-cre 

Zbtb17fl/fl H2-K1-Bcl-2 were flow cytometrically sorted and cocultured on OP9 stroma cells 

in the presence of Flt3L and IL-7 for 7–8 days. Cells were analyzed for FSC and SSC as 

well as the surface expression of B220 and CD19 by flow cytometry. Data are 

representative of two independent experiments. 

(C) Expression of Socs1 protein in 70Z/3 cells stimulated or not with IL-7 in the presence 

or absence of an anti-Socs1 Morpholino demonstrates its effect to knockdown Socs1 

protein expression in the presence of IL-7. 

(D) Sorted LSKs from control or Vav-cre Zbtb17fl/fl mice were incubated with Morpholino 

against Socs1 mRNA or a control Morpholino. Shown is the fluorescein isothyocyanate 

fluorescence after incubation, indicative of an almost complete and efficient transfer of 

morpholino. Cells from control or Vav-cre Zbtb17fl/fl treated either with control or anti-
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Socs1 Morpholinos were analyzed after 8 days of OP9 coculture (representative of at least 

three independent experiments). 
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Figure 7  
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Figure 7. Reconstitution of B-cell development in Miz-1-Deficient Precursors by Ebf1 

and Bcl-2 

(A) CLPs (lin−IL-7R+c-kitmedsca-1med) were isolated by flow cytometric cell sorting from 

the bone marrow of control mice and Vav-cre Zbtb17fl/fl mice. RNA was extracted and 

reverse-transcribed and used for quantitative PCR. All values are normalized to the 

expression of the Gapdh gene and are presented as the fraction relative to cDNA from 

control mice (set as 1-fold). Data show three independent experiments each done in 

triplicates. Error bars indicate the standard error of the mean (±SEM). 

(B) LSK cells sorted from bone marrow were infected with MIGR1-GFP or MIG-Ebf1-

GFP retroviruses. Transduced cells (GFP+) were FACS sorted (Figure S6) and equal cell 

numbers were directly cultured on OP9 cells in the presence of SCF, Flt3L, and IL-7. Cells 

were analyzed for CD19 and GFP expression by flow cytometry 10–14 days after infection. 

Numbers on gates indicate percentages. Data are representative of three independent 

experiments. 

(C) LSK cells were sorted from Vav-cre Zbtb17fl/fl H2-K1-Bcl-2 mice and were infected 

with MIGR1-GFP or MIG-Ebf1-GFP retroviruses. After infection, LSK cells were cultured 

in the presence of SCF, Flt3L, and IL-7 on OP9 cells and the GFP+ fraction was isolated by 

sorting and further cultured under the same conditions. Cells were analyzed for CD19 and 

GFP expression by flow cytometry 16 days after infection, Numbers on gates indicate 

percentages. Data are representative of two independent experiments. See also Figure S6 

and Table S2. 
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Figure S1. Deletion of the Miz-1 POZ domain leads to a loss of T and B cells in 

chimeric mice 

(A) Generation of a conditional Zbtb17 allele and Miz-1 deficient mice. Schematic 

representation of the targeting strategy at the Zbtb17 locus. Shown is the genomic locus of 

the murine Zbtb17 gene (white boxes untranslated exons; black boxes translated exons), the 

targeting construct, the targeted genomic locus after homologous recombination and the 

resulting conditional Zbtb17fl alleles. The size of different Zbtb17 

alleles before and after homologous recombination and after in vitro cre recombination is 

given in kilobases (kb) after XbaI/SpeI digestion. Southern blot analysis of embryonic stem 

(ES) cell lines with the indicated genotypes that were obtained after homologous 

recombination and in vitro cre recombination. Genomic DNA was digested with SpeI/XbaI 

and probed with the 3´-probe, indicated in panel 2. Orientation and localization of primers 

P1, P2, P3 and P4 used for genotyping on the genomic Zbtb17 locus. The different sizes of 

fragments obtained with these primers and DNA containing the WT-, Zbtb17fl and 

Zbtb17ΔPOZ alleles in a PCR reaction are indicated (1-6, different embryonic DNAs). (B) 

Scheme of the protein structure of the full-length Miz-1 protein and the truncated form 

lacking the POZ domain. Immunoprecipitation of the full length and the truncated Miz-1 

protein lacking the POZ domain from primary embryonic fibroblasts (MEFs) derived from 

day E12.5 embryos with the indicated genotypes (1) WT, (2) Zbtb17+/ΔPOZ and (3) 

Zbtb17ΔPOZ/ΔPOZ. Precipitates were generated without antibody, with a control antibody or 

an anti-Miz-1 antibody (H190), separated by SDS-PAGE and transferred to a solid support. 

Miz-1 proteins were revealed with the Miz-1 monoclonal antibody 10E2. (C) Chromatin 
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immuno-precipitation (ChIP) analysis showing the binding of Miz-1 and Miz-1ΔPOZ to the 

p15 promoter region in Hela cells. ChIP was performed using α-Miz-1 antibodies and 

isotype control antibodies followed by a QRTPCR of indicated regions. Data represent two 

independent experiments each done in triplicates. Error bars indicate the standard deviation 

(±S.D.). (D) Genotypes and numbers of offspring produced by matings between 

Zbtb17+/ΔPOZ mice. Wildtype Zbtb17+/+, Zbtb17+/ΔPOZ, Zbtb17ΔPOZ/ΔPOZ. (*), pale and much 

smaller size, (**), severe defects in development. Embryos at E18.5; a wild type and a 

Zbtb17+/ΔPOZ animal are shown side by side with a Zbtb17ΔPOZ/ΔPOZ animal, which is 

significantly smaller and displays a noticeable delay in development. Representative 

photomicrograph of wild type (WT) and Zbtb17ΔPOZ/ΔPOZ embryos at day E13.5. Sections of 

control and Zbtb17ΔPOZ/ΔPOZ embryos at day E15.5 stained with Haematoxylin and Eosin 

(HE). (E) RT-PCR analysis with RNA from different mouse tissues ((1) spleen, (2) liver, 

(3) thymus, (4) kidney and (5) lymph node). The PCR reaction was performed with 30 

cycles. (-) -RT: without reverse transcriptase; (+) +RT: with reverse transcriptase. Real-time 

PCR with cDNA from FACS sorted cells. All values are normalized to the expression of 

the Gapdh gene and are presented as the fold induction relative CD19+ respectively (set as 

1-fold). Data represent two experiments, each done in duplicates. CD19+: splenic B cells; 

Fr.A (B220+CD43+HSA-BP-1-), Fr. B (B220+CD43+HSA+BP-1-), Fr.C 

(B220+CD43+HSA+BP-1+) and Fr.C’ (B220+CD43+HSAhighBP-1+). CLPs (lin-IL7Rα+c-

kitmedsca-1med) from the bone marrow of control and Vav-cre Zbtb17fl/fl mice were separated 

by flow cytometric cell sorting and cultured in the presence and absence of IL-7. RNA was 
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extracted and reverse-transcribed and used for quantitative-PCR. Expression of Zbtb17 was 

measured and normalized to the expression of the Gapdh gene and is presented as the fold 

induction relative to cDNA from control mice or unstimulated cells (set as 1-fold). Data 

represent two independent experiments each done in triplicates. Error bars indicate the 

standard deviation (±S.D.). (F) Genotyping of embryonic stem (ES) cell lines that were 

obtained after targeting both Zbtb17 alleles and after in vitro cre recombination. ES cells 

with one deleted and one targeted, but functional (floxed) allele (Zbtb17fl/ΔPOZ) were 

injected into C57BL/6 blastocysts. ES-cells with two deleted alleles (Zbtb17ΔPOZ/ΔPOZ) were 

injected into C57BL/6 blastocysts. Depiction of PCR fragments generated with DNA from 

tail, skin and muscle as control and with DNA from FACS sorted cells from different 

hematopoietic lineages (DN, DP, CD4+, CD8+, Thy1+, B220+/IgM+, IgM+/IgD+, 

Ter119+/CD71+ and Mac1+/Gr1+ cells). The PCR reactions were performed with Zbtb17 

specific primers P1, P2 and P4 to distinguish between wt and targeted alleles or with 

primers D4Mit73 that amplify minisatellite sequences to distinguish between C57Bl/6 

(blastocysts) and 129J specific alleles (ES cells). Data represent the analysis of three 

(Zbtb17fl/ΔPOZ) or five (Zbtb17ΔPOZ/ΔPOZ) chimeras. (G) Detection of the efficiency of cre 

recombination in different cell types and FACS analysis from control mice. PCR reactions 

with genomic DNA from Zbtb17fl/ΔPOZ ES cells and FACS sorted LSK cells (lin-Sca1+c-

kit+), which contain hematopoietic stem cells, from Vav-cre Zbtb17fl/fl and from Zbtb17fl/fl 

mice. Zbtb17fl/ΔPOZ ES cells were used as a control. PCR reactions with genomic DNA from 

FACS sorted different hematopoietic cell populations derived from Zbtb17fl/fl and from 
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Vav-cre Zbtb17fl/fl mice. Splenic T cells ((1)Thy1.2+), splenic B cells ((2) B220+), bone 

marrow derived (3) Mac1+/Gr1lo cells (monocytes), (4) Mac1+/Gr1+ cells (granulocytes) 

and (5) Ter119+/CD71+ cells (erythrocytes). All cells were derived from Zbtb17fl/fl and from 

Vav-cre Zbtb17fl/fl mice. PCR reactions with genomic DNA from tail (D) and FACS sorted 

fetal liver Ter119+ckit- (T) and Ter119-c-kit+ (K) cells from mice with the indicated 

different genotypes (Zbtb17fl/fl, Zbtb17fl/+, Vav-cre Zbtb17fl/fl, Zbtb17fl/fl, Vav-cre). (H) Flow 

cytometry analysis of bone marrow a thymocytes from wildtype mice (WT), Vav-cre 

Zbtb17+/+, Vav-cre Zbtb17+/fl and Zbtb17fl/fl mice using the indicated surface markers. 

Numbers in dot plots indicate percentages of each gate. 
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Figure S2 



 

 

 

133 

Figure S2. Progenitors from Miz-1 deficient mice have homing capacity and 

reconstitute the immune system and developmental defects in Miz-1 deficient mice are 

cell intrinsic 

Lethally irradiated recipient mice (CD45.1+) were reconstituted with lineage depleted 

progenitor cells (B220-CD19-Ter119-) from either control (CD45.2+) or Vav-cre Zbtb17fl/fl 

(CD45.2+) mice. Flow cytometric analysis was performed 3-4 month after transplantation 

on CD45.1-CD45.2+ cells. (A) Thymocytes were analyzed by flow cytometry using 

antibodies against CD45.1, CD45.2, CD4 and CD8. (B) Bone marrow cells were analyzed 

by flow cytometry using antibodies against CD45.1, CD45.2, lin, ckit, sca-1, Mac-1 and 

Gr-1. (C) Flow cytometric analysis of spleen cells stained with antibodies CD45.1, CD45.2, 

CD3 and CD19. All cells were pre-gated as indicated. Numbers on gates indicate 

percentages. Data represent three independent experiments. D: donor, R: recipient.  

Lethally irradiated control (CD45.2+) mice or Vav-cre Zbtb17fl/fl (CD45.2+) were 

reconstituted with lineage depleted progenitor cells (B220-CD19-Ter119) from wild type 

mice (CD45.1+). Flow cytometric analysis was performed 3 months after transplantation on 

CD45.1+CD45.2- cells (D) Thymocytes were analyzed by flow cytometry using antibodies 

against CD45.1, CD45.2, CD4 and CD8. (E) Bone marrow cells were analyzed by flow 

cytometry using antibodies against CD45.1, CD45.2, B220, IgM, CD19. (F) Flow 

cytometric analysis of splenic B cells with antibodies against CD45.1, CD45.2, CD19, 

CD3, IgM and IgD. All cells were pre-gated as indicated. Numbers on gates indicate 

percentages. Data represent three independent experiments. D: donor, R: recipient. 
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Figure S3 
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Figure S3. Cell cycle analysis of B cell progenitors from Miz-1 deficient mice 

(A) Cell cycle analysis using Propidium iodide staining on sorted and permeabilized CLPs 

(lin-IL-7R+sca-1medc-kitmed) and pre-pro-B cells (lin-CD19-B220+CD43+). Shown are the 

percent of S-G2-M (Synthese-Mitose-Gap2 phase) cells from control mice (black) and Vav-

cre Zbtb17fl/fl (gray). Data are representing three independent experiments. (B) BrdU 

(Bromodeoxyuridine) labeling experiments were performed on control and Vav-cre 

Zbtb17fl/fl mice. LSK (lin-IL-7R-sca-1+c-kit+), CLP (lin-IL-7R+sca-1medc-kitmed) and prepro- 

B cells (lin-CD19-B220+CD43+). Bone marrow cells were analyzed for BrdU positive cells. 

Data represent four mice analyzed in two experiments for each genotype. 
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Figure S4 
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Figure S4. Expression of Miz-1 in 70Z/3 and in 70Z/3 cells retrovirally transduced to 

express Miz-1 

70Z/3 cells were tranduced with MIG-Zbtb17 and 5 days after transduction GFP+ cells were 

sorted by FACS. (A) Immuno-precipitation of the Miz-1 protein in 70Z/3 (1) cells and 

70Z/3 cells transduced with MIG-Zbtb17 (2). Precipitates were generated with an anti-Miz-

1 antibody (H190), separated by SDS-PAGE and transferred to a solid support. Miz-1 

proteins were revealed with the Miz-1 monoclonal antibody 10E2. (B) Flow cytometry of 

the expression of GFP in 70Z/3 cells (gray line) and MIG-Zbtb17 expressing 70Z/3 cells 

(green line). (C) Cell cycle analysis using Propidium iodide staining on permeabilized 

70Z/3cells and MIG-Zbtb17 expressing 70Z/3 cells. 
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Figure S5 
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Figure S5. Schema of the Bcl-2 promoter region and Bcl-2 expression in progenitor 

cells from H2-K1-Bcl-2-tg mice 

(A) Bcl-2 locus, showing the most 5’ non-coding exon (open box) and locations of primers 

(black triangles). (B) LSK cells (lin-sca-1+ kit+) or CLP (lin-sca-1+c-kitmedIL- 7Rmed) cells 

from the bone marrow of control or H2-K1-Bcl-2 transgenic mice were isolated by FACS 

sorting. RNA was extracted, reverse-transcribed and used for quantitative-PCR. Expression 

of Bcl-2 was measured in cells from H2-K1-Bcl-2 transgenic mice and was normalized to 

the expression of the Gapdh gene and is presented as the fold induction relative to cDNA 

from wt control mice (set as 1-fold). The data indicate a significantly elevated Bcl-2 

expression in the analyzed cells from the transgenic mice compared to control cells. The 

data set represent one experiments for each cell type, done in triplicates. Error bars indicate 

the standard deviation (±S.D.). 
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Figure S6 
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Figure S6. Transduction of progenitors with different retroviruses (MIGR1 and MIG-

Ebf1) and developmental defects in Miz-1 deficient mice cannot be rescued by a 

constitutively expressed immunoglobulin heavy-chain 

(A) Progenitor cells were transduced with control (MIGR1) or Ebf containing (MIGEbf1) 

retrovirus. After transduction, cells were analyzed for GFP expression before cell sorting. 

Numbers indicate percentages of transduced (GFP+) cells. (B) Flow cytometry analyzes of 

bone marrow from control mice or Vav-cre Zbtb17fl/fl VHT-KI mice were analyzed by 

FACS cells with antibodies against B220, IgM, CD43, CD19, HSA and BP-1. 

B220+/CD43+ cells were electronically gated and analyzed for HSA and BP-1 expression. 

Numbers on gates indicate percentages. Data represent three independent experiments. 
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Table S1: Primer for ChIP 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Primer names, sequences and distance to the Initiator (Inr) used in this study for 

Chromatin-immuno-precipitation (ChIP) 
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Table S2: Real-time assays on demand (Applied Biosystems) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All Real-time assays used were obtained from Applied Biosystems (“assays on demand”). 

Shown are the assay IDs, gene symbols and gene names. 
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Supplemental Experimental Procedures 

Mice. 

Mice were housed at the animal facility of the “Institut für Zellbiologie”, University of 

Essen Medical School or at the animal facility at the “Institut de recherche clinique de 

Montréal” (IRCM) in single ventilated cages and under specific pathogen free conditions. 

Unless specified otherwise, mice were used for analysis at 4 to 12 weeks of age. The 

following mice were used in this study and maintained on the C57BL/6 background: CD19-

cre (Rickert et al., 1997), Vav-cre (de Boer et al., 2003), VHT-KI (Cascalho et al., 1996) 

and H2K-Bcl-2 (Domen et al., 1998; Kondo et al., 1997). 

 

Antibodies and lineage panel. 

Monoclonal antibodies were from BD Bioscience (clone identified in parentheses): CD3 

(145-2C11), Thy1.2 (53-21), CD4 (129.19 and RM 4-5), CD8 (53- 6.7), CD25 (PC61), 

CD44 (IM7), TCRβ (H57-597), TCRγδ (GL3), CD43 (S7), CD19 (1D3), B220 (RA3-6B2), 

pre-BCR (SL156), BP-1 (6C3) Gr-1 (RB6-8C5), Mac-1 (M1/70), Ter-119 (Ter-119), Pan-

NK (DX5) NK1.1 (PK136), HSA (M1/69), CD21 (7G6), CD23 (B3B4), IgD 11-26.c2a) 

and IgM (R6-60.2). To analyze the bone marrow lineage negative population, lineage 

marker negative cells (Lin) were selected by staining cells with the biotinylated-antibodies 

against CD3, CD8, B220, Gr-1, Mac-1, Ter-119, CD5, IgM and NK1.1, followed by 

incubation with streptavidin-coupled antibody. To analyze the pre-pro-B cell population the 
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lineage marker (pre-B lin) CD11b, Gr-1, Ter119, IgM, TCRβ, TCRγδ, CD8, CD4, CD3, 

NK1.1, Ly-6c and CD5 were used. 

 

Cell cycle analysis. 

Propidium iodide (Pi) staining: Cell cycle analysis was performed using Propidium iodide 

(Pi) staining on FACS sorted and permeabilized cell. Cells were sorted in modified 

‘Krishan buffer’(Dressler et al., 1988; Krishan, 1975) (0.1% sodium citrate; 0.3% NP-40; 

0.05 mg/ml propidium iodide; 0.02 mg/ml RNaseA) and incubated on ice for 30 min. BrdU 

labeling: Mice were injected with 100 µg/g body weight. After 18h cells were collected 

from hematopoietic organs and stained with indicated antibodies. After staining with 

surface antibodies, cells were washed with Perm/wash (BD, biosciences), fixed and 

permeabilized with Cytofix/Cytoperm buffer for 20 min at 4°C. Cells were washed with 

Perm/Wash buffer and incubated with DNaseI (300 µg/ml) for 1hr at 37°C. After an 

additional washing step (Perm/wash buffer) cells were stained with anti-BrDU for 30 min 

at room temperature. 

 

Generation of conditional Zbtb17 deficient mice. 

The Zbtb17 targeting construct was generated from a 5.9-kb BamHI fragment containing 

exons 3 to 11 subcloned from 129Sv mouse genomic phage library. The distal loxP site was 

introduced in a HindIII site (insert an additional XbaI and SpeI site) 5’ of exon 3 and the 

neo-cassette was integrated in a NheI site 3’ of exon 4 (Supplementary Fig. S1). The 
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targeting construct was linearized with NotI and electroporated in R1 ES cells, which were 

screened by Southern blot analysis after neomycin/ganciclovir selection using an external 

700 bp fragment (SphI/BglII) from the 5’ region as well as an external 300 bp fragment 

(EcoRI/BamHI) from the 3’ region on XbaI/SpeI digested genomic DNA. Cre recombinase 

was transiently transfected and ES cell clones were analyzed with primers P1-P4 for 

recombination. Two independently derived embryonic stem (ES) clones were injected into 

C57BL/6 blastocysts. The resulting chimeric mice produced the expected 

heterozygous offspring (Zbtb17wt/ΔPOZ and Zbtb17wt/fl, Supplementary Figure 1), which were 

phenotypically indistinguishable from wt littermates (data not shown). Chimeric mice were 

mated with C57BL/6 mice for more than 8 generations. To generate Zbtb17ΔPOZ /ΔPOZ and 

Zbtb17fl /ΔPOZ ES cell lines, Zbtb17wt/ΔPOZ cells were targeted for a second time with same 

targeting construct. After cre recombination, the resulting ES cells were injected into 

C57BL/6 blastocysts. 

 

RNA isolation, cell sorting and real-time PCR. 

RNA was extracted using TRIZOL reagent (Invitrogen) and reverse transcribed using 

Superscript II (Invitrogen) following the manufacturer’s protocol. Real time PCR was 

performed in a 20µl reaction volume containing 900 nM of each primer, 250 nM TaqMan 

probe and 1x TaqMan Universal PCR Master Mix (Applied Biosystems) according to the 

manufacturer's instructions. Reactions were monitored on an ABI PRISM 7700 Sequence 

Detection System (Applied Biosystems) and Mx 3005 (Stratagene). Assays on Demand 
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(Applied Biosystems) were used. To correct for the amount of cDNA added to any 

individual reaction, PCR was performed in duplicates or triplicates. The expression of the 

gene of interest was calculated relative to the Gapdh mRNA (Δct). Assays used for 

experiments are listed in Supplementary Table S2. 

 

Cell culture. 

OP9 stroma cells were cultured as in αMEM containing 20% FCS (vol/vol); 100 U/ml 

Penicillin, 100 µg/ml Streptomycin, 2.2 g/l Sodium bicarbonate. Bone marrow progenitor 

cells were cell sorted and cultured on OP9 stroma cells or stroma-free conditions in Opti- 

MEM (10% (vol/vol) 100 U/ml Penicillin, 100 µg/ml Streptomycin 50µM β- 

mercaptoethanol) supplemented with 10 ng/ml SCF, and/or 5 ng/ml Ft3L and/or 5 ng/ml 

IL-7 for co-culture and with 5 ng/ml Ft3L and/or 10 ng/ml IL-7 in stroma-free conditions. 

OP9-culture for myeloid differentiation was performed in Opti-MEM (see above) 

supplemented with SCF, IL-3, IL-6, Flt3L, M-CSF, GM-CSF, G-CSF (10 ng/ml; only 

Flt3L 5ng /ml). 

 

PCR analysis. 

Genomic DNA from mouse tissues or from FACS sorted cells was analyzed using primers 

for the Zbtb17 genomic region: P1: 5’- GTATTCTGCTGTGGGGCTATC-3’, P2: 5’- 

GGCTGTGCTGGGGGAAATC-3’, P3: 5’- TGCCTGCCTCTGGGTCTCC-3’ and P4: 5’- 

GGCAGTTACAGGCTCAGGTG-3’. D3Mit73 forward: 5’-
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CCACATTCTGATAAGAATTGAGAA-3’ reverse: 5’-

GACACTGTATTCCAGAAAAACACA-3’.  Amplified PCR products were separated by 

gel electrophoresis followed by ethidium bromide staining. 

 

Morpholinos. 

anti-Socs1 Morpholino: CTGCCACCTGGTTGCGTGCTACCAT; control-Morpholino: 

CCTCTTACCTCAGTTACAATTTATA 

 

Immunoprecipitation. 

Embryonic fibroblasts (MEFs) were lysed and extracted on ice (30 min) in TNN-Lysis 

buffer (50 mM Tris-HCl; pH7,5; 120 mM NaCl; 5 mM EDTA; 0.5% NP-40; 10 mM 

Na4P2O7; 2 mM Na3VO4; 100 mM NaF). 500 µg of protein lysate was incubated with an 

antibody against Miz-1 (H-190; Santa Cruz) over night at 4°C. Proteins were separated on a 

10% SDS-PAGE and were then transferred to Immobilon-P Transfer membrane 

(Millipore). Protein blots were probed with the monoclonal anti-Miz-1 antibody (10E2). 

 

Adoptive transfer. 

Recipient mice were lethally irradiated with 9.6 Gy (CD45.1 or CD45.2). Irradiated mice 

were reconstituted with fetal liver cells or lineage depleted bone marrow cells (Ter119-

B220-CD19-). 
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Western blotting. 

Cells were lysed and extracted on ice (30 min). Lysis buffer contains 20 mM Tris-HCl (pH 

7.5); 420 mM NaCl; 2 mM EDTA; 1% NP-40 and protease inhibitors (Roche). Proteins 

were separated on a SDS-PAGE and were then transferred to Hybond-C membranes 

(Amersham) and probed with indicated antibodies. 

 

Antibodies. 

The following antibodies were used in this study: anti-Socs-1 (4H1) (Millipore), antiactin 

(I-19) (Santa-Cruz), anti-Miz-1 (H-190) (Santa-Cruz). anti-Miz-1 (10E2) (Prof. Martin 

Eilers lab, Wuerzburg, Germany). 

 

RNA isolation and RT PCR. 

Tissue RNA was isolated by preparing single cell suspension and using TRIZOL Reagent 

(Invitrogen). Cells from different developmental stages were FACS sorted and TRIZOL 

Reagent (Invitrogen) was applied. RT-PCR was performed using Superscript II (Invitrogen) 

following manufacturer’s protocol.  

Primer: 

Zbtb17-1F: 5’-CCTCTACGCTTGTGATTCCT-3’ 

Zbtb17-1R: 5’-GGAGCACCTTCTGAGTCCTA-3’ 

Mcl1-1F: 5’-TCAAAGATGGCGTAACAAACTGG-3’ (Malin et al., 2010) 

Mcl1-1R: 5’-CCCGTTTCGTCCTTACAAGAAC-3’ (Malin et al., 2010) 
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GAPDH F: 5’-TGTCTTCACCACCATGGAGA-3’ 

GAPDH R: 5’-CGGCCATCACGCCACAGCTT-3’ 
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Abstract 

T cells originate from early T lineage precursors that have entered the thymus and 

differentiate through well-defined steps. Mice deficient for the BTB/POZ domain of zinc 

finger protein-1 (Miz-1) almost entirely lack early T lineage precursors and have a 

CD4−CD8− to CD4+CD8+ block causing a strong reduction in thymic cellularity. Miz-1ΔPOZ 

pro-T cells cannot differentiate in vitro and are unable to relay signals from the interleukin-

7R (IL-7R). Both STAT5 phosphorylation and Bcl-2 up-regulation are perturbed. The high 

expression levels of SOCS1 found in Miz-1ΔPOZ cells probably cause these alterations. 

Moreover, Miz-1 can bind to the SOCS1 promoter, suggesting that Miz-1 deficiency causes 

a deregulation of SOCS1. Transgenic overexpression of Bcl-2 or inhibition of SOCS1 

restored pro-T cell numbers and their ability to differentiate, supporting the hypothesis that 

Miz-1 is required for the regulation of the IL-7/IL-7R/STAT5/Bcl-2 signaling pathway by 

monitoring the expression levels of SOCS1.  



 

 

 

155 

Introduction 

Hematopoietic precursors differentiate into mature blood cell lineages through a series of 

well-coordinated steps. T cells are generated in the thymus, which is continuously 

replenished with lymphoid progenitors from the bone marrow via the bloodstream.1 Early 

lymphoid progenitors (ELPs) enter the thymus and become early T lineage precursors 

(ETPs), defined as Lin−/low, CD117high, and CD25−.2 The capacity of ELPs to migrate to the 

thymus has been attributed to their expression of CCR9.3,4 In addition to CCR9+ ELPs, 

other progenitors, such as CLPs, may home to the thymus and generate T cells. Recently, 

Ly6D has been used to identify the branch point of CLPs that gives rise to the first stages of 

B-cell development, B cell-biased lymphoid progenitor (BLP), and all-lymphoid progenitor 

(ALP), which contribute to the T-cell development.5 

The subsequent development of ETPs starts with CD4−CD8− double-negative 1 (DN1) 

cells. DN1s are subdivided into DN1a-e according to the expression of CD24 and CD117, 

DN1a/b corresponding to the ETP subset.6 DN1s give rise to DN2a-b cells, which 

differentiate into DN3s, subdivided into DN3a-b based on their size and CD27 expression.7 

DN3a cells that have productively rearranged the T-cell receptor β-gene (TCR-β) become 

activated by TCR-dependent signals (β-selection), differentiate into DN3b, and become 

DN4 pre-T cells. The newly developed DN4s become CD4+CD8+ double-positive (DP) 

cells and undergo positive/negative selection before reaching the periphery as mature CD4+ 

or CD8+ T cells.8 
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Pro-T-cell differentiation steps depend on the expression of Notch ligands, mainly δ-like 

ligand 1 (DL1) and DL4 on thymic stroma,9 and on cytokines, such as interleukin-7 (IL-

7).10 Notch signaling assures lineage commitment, survival, and development of ETPs into 

further DN subsets.11 The IL-7/IL-7R pathway drives proliferation, survival, and 

progression of pro-T cells,12 and also induces the rearrangement and transcription of the 

TCR-γ locus.13 The IL-7R signaling activates Janus kinase 1/3 (Jak1/3), which 

phosphorylate signal transducer and activator of transcription 5 (STAT5). Phosphorylated 

STAT5 then activates the transcription of IL-7–dependent target genes.14 

A key player in IL-7R cascade is the maintenance of cell survival by promoting a favorable 

balance of B-cell lymphoma-2 (Bcl-2) family members.15 The expression of the 

antiapoptotic protein Bcl-2 is up-regulated after IL-7 stimulation. Some studies have shown 

that the up-regulation of Bcl-2 can be STAT5-dependent.16–18 Other studies have shown 

that STAT5-mediated activation of AKT protein regulates the glucose metabolism of the 

cell and maintains prosurvival and growth functions.19 Suppressor of cytokine signaling 1 

(SOCS1) is known to inhibit phosphorylation of STAT proteins by directly binding to the 

Jak proteins and therefore inhibiting all further downstream signaling events to ensure a 

return to steady-state homeostasis after cytokine responses.20 

Miz-1 (Zbtb17) is a transcription factor of 87 kDa that is composed of 13 zinc finger 

domains at its carboxy-terminal end and of a BTB/POZ domain at its N-terminus.21 It has 

originally been identified as an interacting partner of the c-Myc proto-oncogene.21 The 

BTB/POZ domain of Miz-1 is essential for its trans-activating functions and for its capacity 
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to bind to the DNA.22 Miz-1 can activate or repress the transcription of its target genes 

depending on its interacting partner. For example, Miz-1 acts as a transcriptional trans-

activator by binding to core elements of RNA Pol II–dependent target gene promoters and 

by recruiting coactivators, such as the histone deacetylase p300/CBP.22–24 Miz-1 can also be 

a transcriptional trans-repressor, for example, by recruiting c-Myc to an E-box-independent 

site around the initiator of its target gene promoters. Genes that encode the negative cell 

cycle regulators CDKN2b22,25 and CDKN1a26,27 have been validated as direct Miz-1 targets 

that are repressed by Miz-1/c-Myc complex.  

Because Miz-1 deletion is lethal,28 we have used conditional Miz-1–deficient mice, in 

which the exons coding for the BTB/POZ domain29 are deleted via Cre recombinase.30 This 

deletion generates a truncated form of Miz-1 that lacks the BTB/POZ domain and thus 

eliminates specifically its activity as a transcriptional regulator in all hematopoietic 

cells.22,31 In this report, we describe findings that identify Miz-1 as a new regulator of early 

T-cell differentiation, at stages where the IL-7/IL-7R interaction assures survival and 

lineage commitment. Our data suggest that Miz-1 regulates the expression of SOCS1 and 

thus controls the activation of STAT5 phosphorylation in response to IL-7 to gauge the 

level of Bcl-2 expression required for the survival and development of ETP/DN1 and DN2 

cells.  
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Methods 

Mice 

All mice used in this study are described in the supplemental Data (available on the Blood 

Web site; see the Supplemental Materials link at the top of the online article). Mice have 

been bred on C57BL/6 background for at least 10 generations and were maintained in 

Specific-Pathogen-Free Plus+. The Institutional Review Board approved all animal 

protocols, and experimental procedures were performed in compliance with the Institut de 

recherches cliniques de Montréal guidelines.  

Antibodies and FACS analysis 

Antibodies were from BD Biosciences, except when indicated. DN1-DN4, ETP, ELP, ALP, 

and BLP were analyzed using lineage marker-negative cells (Lin−) selected by staining with 

biotinylated antibodies described in the supplemental Data, followed by streptavidin-

peridinin-chlorophyll protein-Cy5.5 or phycoerythrin-Cy5. Cells were analyzed with a 

FACSCalibur, FACSScan, or LSR (BD Biosciences). Cell sorting was performed using a 

MoFlo cell sorter (Cytomation).  

Intracellular staining and cell activation 

After 1 hour of incubation at 37°C to shut off endogenous signaling, cells were activated 

with or without 10 ng/mL IL-7 (PeproTech 217-17) for 18 hours to detect Bcl-2 or 15 

minutes for pSTAT5. To verify Bcl-2, cells were fixed with Cyto Fixation/Permeabilization 

kit (BD 554714). For pSTAT5, cells were fixed with formaldehyde (BD cytofix 554655) 

and permeabilized with methanol (BD phosflow Perm III 558050). For gene expression 
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profiling, DN1-DN2 cells were sorted, activated, and lysed in TRIZOL Reagent 

(Invitrogen). RNA was extracted as described in the supplemental Data.  

OP9DL1 cocultures 

OP9 stromal cells expressing DL132 were plated at 2.5 × 104 cells/well and cocultured with 

sorted DN1-4 and ETPs/ELPs. The cells were incubated in Opti-α-modified Eagle medium 

supplemented with 1 to 5 ng/mL IL-7 and 5 ng/mL Fms-like tyrosine kinase 3 ligand 

(PeproTech) and charcoal-stripped fetal bovine serum.  

ChIP assay 

Assays were performed using ChIP-IT Express (Active Motif) on purified primary 

CD4−CD8− DN cells (preparation purity > 90% by Auto-MACS), which rested at 37°C 1 

hour in phosphate-buffered saline, or on SCID.adh murine thymic lymphoma (clone 

P6D4).33 Variation in the cell lysis was as follow: first lysis with 5mM piperazine-N, N-

bis[2-ethanesulfonic acid], pH 8, 85mM KCl, 0.5% NP-40, 1mM phenylmethylsulfonyl 

fluoride, protease inhibitors cocktail (complete Mini; Roche Diagnostics), and second with 

50mM Tris-HCl, 10mM ethylenediaminetetraacetic acid, and 1% sodium dodecyl sulfate, 

protease inhibitor cocktail, and 1mM phenylmethylsulfonyl fluoride. After sonication 

(Branson Digital Sonifier), immunoprecipitation was performed using salmon sperm 

DNA/Protein G-agarose (Upstate Biotechnology) and 10 µg of rabbit anti–Miz-1 (H190; 

Santa Cruz Biotechnology) or rabbit control IgG antibodies (Abcam).  

SOCS1 knockdown  
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Sorted DN1 or Lin−Sca1+c-Kit+ (LSK) were cultured in Opti-α–modified Eagle medium 

supplemented with 1 ng/mL IL-7, 5 ng/mL Fms-like tyrosine kinase 3 ligand, and 10 

ng/mL stem cell factor for 1 hour. Cells were then incubated with Endo-Porter reagent 

(Gene Tools) for delivering fluorescein isothiocyanate-morpholino oligo against SOCS1 

mRNA or a control morpholino oligo in vitro. After 4 hours, the cells were transferred on 

OP9DL1 stroma layer and cultured for 6 to 20 days.  

Statistical analysis 

Two-tailed Student t tests were used to calculate P values. A P value < .05 was considered 

statistically significant.  
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Results 

Miz-1ΔPOZ mice have severe defects in T-cell development  

To investigate the role of Miz-1 during T-cell development, we used Vav-Cre Miz-1flox/flox 

mice (described in the supplemental Data, and hereafter named Miz-1ΔPOZ). We observed 

that Miz-1ΔPOZ mice have a block at the transition from DN to DP cells (Figure 1A), which 

results in a 100-fold reduced thymic cellularity compared with a wild-type (WT) littermate 

(Figure 1B). The deletion of the POZ domain of Miz-1 also caused a 1000-fold reduction of 

αβ-T cells compared with a 7-fold reduction of γδ-T cells (Figure 1B), and a significant 

reduction of all DN subpopulations compared with controls (Figure 1C).  

One of the most striking phenotypes of Miz-1ΔPOZ mice was the reduction of the DN1 

population. DN1a-e subsets were reduced by 70- to 130-fold; and the ETP subset (DN1a/b), 

which is the most affected, showed a reduction of 230-fold compared with WT (Figure 1D-

F). Similarly, DN2a and DN2b cells were reduced by 100- and 40-fold (Figure 1G), 

respectively, whereas DN3a and DN3b cell numbers were only reduced by 3- and 10-fold, 

respectively, in Miz-1ΔPOZ mice (not shown), suggesting that Miz-1 has an important 

function in ETP/DN1 and DN2 cells.  

Lack of early T-cell precursors in the thymus of Miz-1 mutant mice 

The few thymic ETPs that are present in Miz-1ΔPOZ mice were phenotypically normal 

according to the expression of CD117, CD44, CCR9, and CD135 (supplemental Figure 

1A). Compared with ETPs, the frequencies of bone marrow ELPs or the ALP and BLP 

subsets of CLPs were not altered, and even present at higher frequencies compared with 



 

 

 

162 

WT (Figure 2A-C). Miz-1ΔPOZ ELPs showed normal expression levels of CD117 and 

CCR9, with a small reduction in CD135 expression (Figure 2A), and ALPs and BLPs 

showed normal expression of Ly6D (Figure 2B). Moreover, Miz-1ΔPOZ ELPs sorted from 

the bone marrow expressed T-lineage specific genes, such as GATA3, Notch1, Rag1, Tdt, 

and E2A, Ikaros, c-Myb, and PU.1 at WT levels (Figure 2D), suggesting that Miz-1 

deficiency does not alter the expression program related to T-lineage specification.  

Similar to ETPs, ELPs were reduced in the blood of Miz-1ΔPOZ mice compared with WT 

controls (supplemental Figure 1B). To evaluate whether a homing problem was responsible 

for the observed lack of thymic ETPs, LSK progenitor cells from WT mice were sorted and 

transplanted into Miz-1ΔPOZ irradiated mice. These cells successfully reconstituted the 

thymus of Miz-1ΔPOZ mice. Sorted Miz-1ΔPOZ LSKs transplanted into WT mice showed the 

same phenotype as Miz-1ΔPOZ mice, generating a hypocellular thymus (not shown). These 

data indicate that the effect is cell intrinsic and not caused by a defect in the thymic stroma. 

Furthermore, the absence of early T-cell differentiation in the thymus does not seem to be 

related to aberrant Notch1 signaling in Miz-1ΔPOZ mice. Indeed, the intracellular expression 

of Notch1 and Notch1 target genes, such as Notch1 itself and Hes1, were not reduced in 

Miz-1ΔPOZ cells (supplemental Figure 1C-D). In addition, no aberrant T-cell development in 

the bone marrow was noticeable, and no B-cell development was detected in the thymus of 

Miz-1ΔPOZ mice (not shown). Moreover, the expression of chemokine receptors CXCR4, 

CCR7, and CCR9 on DN subsets from Miz-1ΔPOZ mice was intact or even higher compared 
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with WT cells (supplemental Figure 2). Therefore, the observed T-cell development defects 

are most probably cell autonomous.  

Nevertheless, sorted bone marrow or blood (not shown) ELPs and thymic ETPs from Miz-

1ΔPOZ mice were unable to differentiate into mature T-cell stages in the presence of IL-7 

(Figure 2E-F). It is thus probable that Miz-1 affects cytokine-dependent survival or 

proliferation signals needed for the intrathymic differentiation of ETP/DN1 cells.  

ETP and DN1 from Miz-1ΔPOZ mice do not differentiate in vitro because of increased 

apoptosis  

The developmental defect of ETPs and ELPs in vitro was also seen when sorted thymic 

DN1 cells from Miz-1ΔPOZ mice were cultured on OP9DL1. Sorted DN2 or DN3 cells from 

Miz-1ΔPOZ thymus survived better in vitro compared with DN1 cells but were still less 

efficient at generating DP cells compared with WT (Figure 3A). The development of γδ-T 

cells from Miz-1ΔPOZ sorted DN2 and DN3 was comparable with WT levels on OP9DL1 

(not shown). This suggests that Miz-1 is important for ELP and ETP/DN1 survival and/or 

differentiation, but this requirement seems to decrease as cells reach the DN2 or DN3 stage. 

Indeed, the deletion of Miz-1 after the DN3 transition does not influence T-cell 

differentiation. The overall thymic cellularity (not shown) and development are normal in 

Lck-cre Miz-1ΔPOZ mice (supplemental Figure 3A-B).  

To explain the decrease in DN differentiation, we sorted cells from Miz-1ΔPOZ mice and 

verified their expression of T-cell genes. Rag-1, Rag-2, and Tdt and genes encoding for 

HEB, Idb2, E2A, and Egr1-3 were at WT levels, whereas Idb1, Tgfb1, Notch1, and IL-7R at 
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levels slightly higher than WT (supplemental Figure 3C). This confirms again that Miz-1 

does not regulate the expression of genes specifying the T cell lineage. The negative cell 

cycle regulators CDKN2b and CDKN1a are direct Miz-1 target genes. Whereas CDKN2b 

could not be detected in thymocytes, the expression of CDKN1a was elevated in sorted 

DN1 and DN2 subsets (supplemental Figure 3D), where T-cell differentiation in Miz-1ΔPOZ 

mice is affected the most. Because CDKN1a regulates cell cycle, we next examined 

whether the thymic atrophy in Miz-1ΔPOZ mice and the absence of ETP/DN1 differentiation 

in vitro were the result of a reduction in cell division, cell proliferation, or an increase in 

apoptosis. In vivo bromodeoxyuridine (BrdU) labeling or propidium iodide staining did not 

show significant defects in cell cycle progression of Miz-1ΔPOZ pro-T cells (Figure 3B-C). 

Moreover, crossing Vav-cre Miz-1ΔPOZ mice with CDKN1a-deficient mice did not restore 

the DN to DP transition, confirming that the block seen in Miz-1ΔPOZ mice cannot be 

explained by a cell cycle defect (supplemental Figure 3E). By contrast, annexin V staining 

revealed increased apoptosis in DN1 (37%), DN2 (60%), and DN3 (26%) subpopulations 

of Miz-1ΔPOZ thymocytes compared with WT controls, but not in Miz-1ΔPOZ DN4 cells (8%; 

Figure 3D). These results indicated that Miz-1ΔPOZ pro-T cells exhibit an excessive cell 

death, particularly at the critical cytokine-dependent step (DN1 and DN2) of pro-T-cell 

differentiation.  

Miz-1ΔPOZ pro-T cells lack an IL-7–dependent survival signal because of a deregulated 

Bcl-2 expression  
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IL-7 signaling assures survival and proliferation in DN1-3 subsets mainly by controlling 

the increased expression of antiapoptotic Bcl-2 and Mcl-1, and by redistributing the cell-

death proteins Bax and Bad.15 In Miz-1ΔPOZ thymocytes, both CD127 (IL-7Rα) and CD132 

(common γ-chain) are expressed at WT levels on all DN subsets (supplemental Figure 4). 

However, compared with the respective WT, mRNA level of Bax was elevated in particular 

in the DN2 subsets of Miz-1ΔPOZ mice, and Bcl-2 expression was either at the WT level 

(DN1) or increased (DN2; Figure 4A). Bcl-xL, Mcl-1, Bad, and Pim-1 expression levels 

were similar between WT and Miz-1ΔPOZ cells (Figure 4A). Miz-1 expression was also at 

comparable levels in DN1 and DN2 cells isolated from WT thymus, with a decrease in its 

expression in DN4 pre-T cells (supplemental Figure 5A). Miz-1 was also expressed in DP 

cells (supplemental Figure 5B), with a noticeable reduction in mature splenic CD3+ cells, 

consistent with a predominant role of Miz-1 in early pro-T-cell development. Because Miz-

1 has been described to interact with c-Myc, we have evaluated c-Myc expression, which 

was at WT levels in all DN subsets isolated from Miz-1ΔPOZ mice (supplemental Figure 

5C). Moreover, it has been shown that a mutated c-Myc allele, in which the valine residue 

(V) at position 394 is substituted by an aspartic acid (D), can no longer interact with Miz-

1.24 We have generated homozygous c-MycV394D knockin mice (described in supplemental 

Data). These mice did not show any defects in thymic development or in the overall 

cellularity of the thymus, indicating that the phenotype we observe in Miz-1ΔPOZ mice is 

probably c-Myc-independent (supplemental Figure 5D).  



 

 

 

166 

Expression levels of the Jak inhibitor SOCS1 and, to a smaller extent, SOCS3 were elevated 

in DN, but not in DP subsets of Miz-1ΔPOZ mice compared with controls (Figure 4A; 

supplemental Figure 5E). The already increased expression of SOCS1 was still further 

inducible by IL-7 in DN1-2 from Miz-1ΔPOZ mice, albeit at a much lower extent than in WT 

cells (Figure 4B-C), contributing to SOCS1 overexpression in the absence of a functional 

Miz-1. The induction of Bcl-2 expression by IL-7 was almost completely abrogated in all 

Miz-1ΔPOZ pro-T cell subsets compared with WT cells (Figure 4B-C). In contrast, Miz-1 

mRNA expression was not induced by IL-7, making it doubtful that Miz-1 itself is an IL-7 

effector gene (supplemental Figure 5F). These data suggest that the part of IL-7R signaling 

that is involved in protecting cells from apoptosis and promoting survival in early T-cell 

subsets is defective in Miz-1ΔPOZ cells. The elevated expression levels of SOCS1 could be 

the responsible factor that prevents IL-7 from initiating signal transduction in Miz-1ΔPOZ 

DNs.  

Miz-1 controls the IL-7/IL-7R signaling pathway by regulating SOCS1 

IL-7 stimulation did not activate STAT5 phosphorylation in Miz-1ΔPOZ DN1 cells and was 

also less efficient in DN2, DN3 (not shown), and TCR-γδ cells compared with the 

respective WT control cells, despite similar STAT5A/B protein expression levels (Figure 

5A-B). Similarly, even if DN2 cells expressed higher Bcl-2 levels than DN1s, IL-7-

mediated induction of Bcl-2 expression was completely blocked in all Miz-1ΔPOZ DN 

subsets at the protein level (Figure 5C). Given that Bcl-2 is a target of STAT5 and thus a 

downstream effector of IL-7R signaling, and that SOCS1 binds to the Jak proteins and 
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thereby blocks IL-7R signaling, we reasoned that one mechanism that could explain the 

lack of signaling observed in Miz-1ΔPOZ thymocytes is the regulation of SOCS1 by Miz-1 

itself.  

To determine whether Miz-1 can bind to the SOCS1 promoter, we performed chromatin 

immunoprecipitation (ChIP) on purified primary DN cells from WT thymi. Quantitative 

polymerase chain reaction (PCR) analysis, using primers located around the initiator start 

site of SOCS1 (Figure 5D), revealed a significant 1.8-fold enrichment using anti–Miz-1 

antibodies compared with control IgG (Figure 5E). DN1 and DN2 cells, where Miz-1 is 

actually promoting survival, represent a small percentage of the total DN purified, probably 

causing the little enrichment obtained. We therefore confirmed this result in SCID.adh 

murine thymic lymphoma clone P6D4 (Figure 5F; P ≤ .01), which highly expresses 

endogenous Miz-1 (supplemental Figure 6A-B) and validated the specific binding around 

the initiator using control primers upstream of SOCS1 where Miz-1 did not bind (Figure 

5E-F). As an additional control, we did not detect any enrichment with an anti–Miz-1 ChIP 

using primers designed to detect binding sites near or upstream of the initiator of SOCS3 

promoter (supplemental Figure 6C). These data indicate that Miz-1 is specifically binding 

to the initiator site of SOCS1 but not SOCS3 promoter in primary DN and P6D4 cells. To 

further validate the regulation of SOCS1 by Miz-1, we transduced P6D4 cells with a 

retroviral vector expressing Miz-1–IRES-GFP or a control empty vector (MIGR1-GFP; 

supplemental Figure 6D). Protein band intensities were quantified and, when GFP+ sorted 

cells were stimulated with IL-7, P6D4 cells overexpressing 5 times more Miz-1 were less 
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efficient in up-regulating SOCS1 compared with control cells (supplemental Figure 6E). 

This experiment provided additional evidence that increased levels of Miz-1 repress 

SOCS1 expression.  

Inhibition of SOCS1 or overexpression of Bcl-2 can restore the differentiation block of 

Miz-1ΔPOZ pro-T cells in vitro  

To further test our hypothesis, we treated sorted Miz-1ΔPOZ LSK or DN1 cells with either a 

fluorescein isothiocyanate-labeled morpholino-oligonucleotide against SOCS1 mRNA or a 

control morpholino and cocultured them on OP9DL1. After 6 to 20 days, Miz-1ΔPOZ LSK 

or DN1 cells treated with the morpholino against SOCS1 mRNA developed into DN3 cells, 

whereas the control morpholino-treated cells did not differentiate (Figure 6A; supplemental 

Figure 7A-B). The efficiency of the transfection of fluorescein isothiocyanate-labeled 

morpholinos was monitored by flow cytometry, which was diluted out as cells proliferated 

(supplemental Figure 7C). Miz-1ΔPOZ LSK or DN1 went through similar cycles of cell 

division after 19 days on OP9DL1 as WT cells, although their mean fluorescence intensities 

were slightly higher. The reason for that higher fluorescence may be attributable to fewer 

cells in culture, which are apoptotic. The cells did not survive past the DN3 stage and did 

not generate DP cells compared with WT (Figure 6A). This suggested that high SOCS1 

levels might indeed be responsible for the observed block of differentiation or lack of 

survival seen in Miz-1ΔPOZ ETP/DN1 cells by blocking IL-7R signaling.  

It has previously been shown that overexpression of Bcl-2 restores defective T-cell 

development in mice lacking IL-7 or IL-7R.34,35 Hence, to further investigate whether Miz-
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1 controls the part of the IL7-R signaling that assures survival of early T-cell subsets 

through the induction of Bcl-2, we crossed Miz-1ΔPOZ mice with H2K-Bcl-2 transgenic 

mice, which express high constitutive Bcl-2 levels throughout hematopoiesis.36 In contrast 

to the ETPs from Miz-1ΔPOZ mice, ETPs from Miz-1ΔPOZ x Bcl-2Tg animals now survived 

and expanded in vitro on OP9DL1 stroma cells, differentiated into DN3-DN4 cells, and 

gave rise to a small number of DP cells (Figure 6B). Of note, ETPs from Miz-1ΔPOZ x Bcl-

2Tg (Figure 6B), like sorted DN2 and DN3 cells from Miz-1ΔPOZ thymus (Figure 3A), 

survived better in vitro but were less efficient at generating DP cells compared with WT or 

Bcl-2Tg cells on OP9DL1. This indicates that a second differentiation block at the 

DN3/DN4 transition exists in Miz-1ΔPOZ thymus (Figure 1A-C) that can only partially be 

rescued by Bcl-2 overexpression.  

Overexpression of Bcl-2 restores T-cell differentiation in Miz-1ΔPOZ mice  

The introduction of the H2K-Bcl-2 transgene into Miz-1ΔPOZ mice reduced the DN to DP 

block observed in Miz-1ΔPOZ thymus, as demonstrated by CD4/CD8 fluorescence-activated 

cell sorter (FACS) analysis (Figure 7A), and restored the numbers of both αβ-T cells and 

TCR-γδ cells (Figure 7B). As αβ-T cells, DP cells were also significantly increased in Miz-

1ΔPOZx Bcl-2Tg, but their cell numbers remained 20-fold lower than WT or Bcl-2Tg mice, 

consistent with the few DP generated in vitro when Miz-1ΔPOZ x Bcl-2Tg ETPs were 

cocultured on OP9DL1. The second block observed at the DN3/DN4 transition in Miz-

1ΔPOZ thymus was not rescued by Bcl-2 overexpression in vivo, as demonstrated by 

CD44/CD25 FACS analysis (Figure 7A-B). Nonetheless, the ETP and blood ELP subsets, 
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which were almost undetectable in Miz-1–deficient mice, were completely restored in Miz-

1ΔPOZ x Bcl-2Tg animals, reaching more than WT levels (Figure 7A-C). The number of 

cells in DN1 and DN2 subsets, as well as their subpopulations, was also completely 

restored (supplemental Figure 7D). Therefore, increased levels of Bcl-2 are sufficient to 

rescue Miz-1ΔPOZ early ETP/DN1/DN2 defects, allowing their survival and differentiation 

both in vitro and in vivo until the DN3 stage.  
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Discussion 

ELPs initiate pro-T-cell differentiation in the thymus in response to the appropriate 

signaling pathways, such as Notch or IL-7. ELPs from the bone marrow are similar to 

thymic ETPs, exhibiting comparable gene expression patterns.37 Both Miz-1ΔPOZ ELPs and 

ETPs express normal critical markers and T-cell genes, suggesting that Miz-1 deficiency 

does not alter the expression program related to their T-lineage specification. Nevertheless, 

Miz-1ΔPOZ ELPs/ETPs and DN1s failed to differentiate into more mature pre-T cells. In this 

study, we present evidence that Miz-1 controls an IL-7–dependent survival step in pro-T 

cells, particularly at the ETP/DN1/DN2 stages, by regulating Bcl-2 induction through the 

control of SOCS1.  

It is still not clear whether ETPs, contained in the Lin−CD117+IL-7Rα−/low fraction of 

DN1s, depend on IL-7R signaling for survival, but early T-cell expansion is severely 

reduced in IL-7−/− and IL-7R−/− mice,38,39 and more recent data showed that ETPs or their 

progenitors have encountered IL-7/IL-7R priming throughout their development.40 This 

history of IL-7R signaling makes it plausible to hypothesize that progenitor cells require IL-

7 and benefit from IL-7 accessibility in the bone marrow.41 Miz-1 may be needed at or 

before thymic settling of T-cell progenitors to regulate Bcl-2 and help the cells benefit from 

IL-7 availability to survive (Figure 7D). This hypothesis would explain the lack of survival 

of blood ELPs and thymic ETPs in Miz-1ΔPOZ mice that can be rescued by Bcl-2 

overexpression.  
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One outcome of IL-7R signaling is the maintenance of cell survival by promoting a positive 

balance of Bcl-2-family members.15 Our findings indicate that the balance between 

proapoptotic and antiapoptotic factors downstream of the IL-7R signaling is altered in Miz-

1ΔPOZ pro-T cells. Miz-1–deficient DN2s express elevated levels of Bcl-2 mRNA but show 

higher levels of apoptosis. This may be the result of a selection of Miz-1ΔPOZ DN2 cells that 

express enough antiapoptotic Bcl-2, possibly through an IL-7-independent signal, to escape 

the lack of survival signals caused by Miz-1 deficiency at the ETP/DN1 stage. It is also 

possible that a residual and very inefficient IL-7–dependent signal could be responsible for 

the high Bcl-2 expression despite elevated SOCS1 expression levels because DN2 cells 

from Miz-1ΔPOZ still had a low level of STAT5 phosphorylation in response to IL-7 

stimulation.  

The Bax/Bcl-2 ratio in Miz-1ΔPOZ DN1 and DN2 cells seems to be in favor of apoptosis 

rather than survival. Because Bax is a target gene of the Gfi1 transcriptional repressor and 

Miz-1 can recruit Gfi1 to target gene promoters, it is possible that up-regulation of Bax in 

Miz-1ΔPOZ cells is the result of a disruption of the Miz-1–Gfi1 complex,42,43 and future work 

would be required to clarify such regulation. Collectively, our data led us to conclude that 

Miz-1 deficiency probably interrupts the IL-7/IL-7R/STAT5/Bcl-2 axis, which assures cell 

survival.  

Consistent with these observations, IL-7R deficiency causes a block in early T-cell 

differentiation that can be reversed by overexpressing Bcl-234,35 or by deleting the Bax 

gene.44 We could observe that transgenic overexpression of Bcl-2 restored most of the early 
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αβ-T-cell deficiencies in Miz-1ΔPOZ mice. Previous reports proposed that Bcl-2 could be an 

effector gene of Miz-1.45,46 Our data show that Miz-1 deficiency inhibits Bcl-2 up-

regulation on IL-7 treatment. However, a role of Miz-1 in Bcl-2 regulation in T cells is 

probably indirect because we did not detect binding of Miz-1 to the Bcl-2 promoter in 

primary sorted DN thymocytes (data not shown). It is however possible that such a direct 

regulation happens in T-cell progenitors that settle in the thymus because ELP survival can 

be rescued by Bcl-2 overexpression in Miz-1ΔPOZ mice.  

In the IL-7–dependent DN1 and DN2 subsets, it is more likely that Miz-1 regulates SOCS1, 

which inhibits IL-7R signaling and is highly expressed in Miz-1ΔPOZ DNs. ChIP 

experiments suggest that Miz-1 binds to the SOCS1 promoter at the initiator site. Although 

additional experimental evidence would be required to definitively prove that Miz-1 

directly represses SOCS1 transcription, our data show that Miz-1 overexpression inhibited 

SOCS1 up-regulation in response to IL-7. Moreover, Miz-1ΔPOZ LSKs and DN1 cells 

treated with a morpholino oligo against SOCS1 mRNA regain their ability to differentiate 

in vitro. Finally, high SOCS1 levels in Miz-1ΔPOZ cells correlated with an interruption of IL-

7 signaling. We could also show that Miz-1 is highly expressed in WT DN thymocytes, 

where SOCS1 levels are normally low. Although DP thymocytes express the highest 

SOCS1 levels, we did not observe an inverse correlation between SOCS1 and Miz-1 

expression in this subset, which is consistent with data from Lck-cre Miz-1ΔPOZ mice that 

argue against a role of Miz-1 in DP cells.  
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Because SOCS1 overexpression was only observed in Miz-1ΔPOZ DN not DP, and Miz-1 is 

not involved in T-cell development beyond the DN stage, our data support a model in 

which Miz-1 monitors SOCS1 expression levels to ensure a proper IL-7 response in 

ETP/DN1/DN2 cells (Figure 7D). It would have been conceivable that Miz-1 expression 

would be down-regulated in response to IL-7 to derepress SOCS1 transcription. However, 

Miz-1 expression level is not regulated after IL-7 stimulation, suggesting that Miz-1 itself is 

doubtful a direct IL-7–dependent effector gene.  

Whether Miz-1 regulates IL-7R signaling in a c-Myc–dependent manner in T cells is an 

intriguing question because Miz-1 was originally identified as a c-Myc binding protein.21 It 

has been reported that a pre-T cell–specific deletion of c-Myc leads to a block at the 

transition between DN to DP cells.47,48 However, c-Myc–deficient mice do not show a 

strong reduction in their thymic cellularity.47 Moreover, the reported DN3 and DN4 cell 

frequencies in c-Myc–deficient mice are at WT levels, and the DN4 cells have high levels 

of cytoplasmic TCR-β chain, contrary to what we observed in Miz-1ΔPOZ mice (I.S., T.M., 

unpublished data, June 2010).  

Moreover, the c-MycV394D knockin mice do not phenocopy Miz-1ΔPOZ mice and have a 

normal T-cell development. Although these data suggest a c-Myc-independent function of 

Miz-1, it could be argued that, in the absence of a functional Miz-1, there is an increase in 

c-Myc levels that do not form a complex with Miz-1, which would explain the 

developmental defects seen in Miz-1ΔPOZ mice. This also seems doubtful because: (1) 

constitutive c-Myc expression in T cells leads to T-cell lymphomas rather than to T-cell 
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depletion49; and (2) higher c-Myc activity would lead to a higher proliferation of pre-T 

cells,50 which is not the case in Miz-1ΔPOZ mice.  

In conclusion, we show that the BTB/POZ domain transcription factor Miz-1 regulates the 

part of IL-7R signaling that is involved in protecting cells from apoptosis and promoting 

differentiation of early pro-T cell subsets. Miz-1 deficiency causes a deregulation in SOCS1 

expression levels, an interruption of Jak/STAT5 signaling, an unbalanced ratio of Bcl-2 to 

Bax, and a high rate of apoptosis. Our data indicate that Miz-1 is required for the regulation 

of the IL-7/IL-7R/STAT5/Bcl-2 signaling pathway in ETP/DN1/DN2 cells by monitoring 

the expression levels of SOCS1 in a c-Myc-independent manner. Our study not only 

establishes Miz-1 as a new factor in early T-lymphoid differentiation but also implies that 

these functions are linked to the BTB/POZ domain of Miz-1.  
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Figure 1. The deletion of the POZ domain of Miz-1 disrupts T-cell development at the 

transition from DN to DP and at the ETP/DN1 stage. Flow cytometric (FACS) analysis 

(A,D) and total cell numbers (B,C,E-G) of thymic populations of wild-type (WT) and Miz-

1ΔPOZ mice. (A) CD4 and CD8 surface staining (top panel) and lineage-negative (Lin−) cells 

(bottom panel), described in supplemental Methods are analyzed for the surface expression 

of CD44 and CD25 to assess DN1 (Lin−CD44+CD25−), DN2 (Lin−CD44+CD25+), DN3 

(Lin−CD44−CD25+), and DN4 (Lin−CD44−CD25−). Numbers in quadrants indicate the 

percentage of cells. (B-C) Absolute numbers of thymocytes, TCR-αβ+, TCR-γδ+, and DN1 

to DN4 cells are calculated relative to the live cells gated according to the FSC/SSC profile 

and expressed as absolute cell count. (D) FACS analysis of ETP (Lin− no CD4, CD25− 

CD44+CD117+), DN1a-e (Lin− no CD4, CD25−, CD44+, and CD24/CD117medium/high) and 

DN2a-b (Lin− no CD4, CD44+CD117+CD25medium/high) populations. (E-G) Percentages of 

positive cells in panel D are calculated relative to the total live cells and expressed as 

absolute cell count. Average counts of at least 8 mice and error bars representing the SD are 

shown. **P ≤ .01. ***P ≤ .001. 
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Figure 2. Loss of Miz-1 POZ domain affects frequencies of bone marrow ELPs, ALPs, 

and BLPs and in vitro differentiation of ETPs and ELPs. (A) ELPs were gated on Lin− 

no CD4, CD25− Sca1+CD44+CD117+ (top panel) and further analyzed for CD135 and 

CCR9 expression (bottom panel). The plots are composed of an overlay of the CD135 or 

CCR9 staining in black (WT) or gray (Miz-1ΔPOZ) with the matching isotype control 

antibodies staining (dotted black; n = 4). (B) Bone marrow Lin−CD127+Sca1medCD117med 

CLPs were examined for the expression of Ly6D dividing the progenitor population into 

Ly6D− ALPs and Ly6D+ BLPs. (C) Percentages of positive cells in panels A and B are 

calculated relative to the total live cells and expressed as absolute cell count (n = 4 for 

ELPs and n = 2 for ALPs and BLPs). (D) Quantitative real-time PCR analysis of target 

genes involved in ELP development. RNA was extracted from 5000 sorted bone marrow 

ELPs from WT and Miz-1ΔPOZ mice. All values are presented as fold induction relative to 

values obtained with the respective wild-type control. Average of triplicate values and SD 

are shown (n = 3). FACS analysis indicating the development of sorted Lin− no CD4, 

CD25− Sca1+CD44+CD117+ ELPs (E) and ETPs (F) from the bone marrow and thymus of 

WT or Miz-1ΔPOZ mice. Fifty sorted ETPs or ELPs were cocultured on OP9DL1 stroma 

cells for 15 or 20 days in T-cell media. The developmental progression of the cells is 

evaluated by flow cytometry using T-cell markers CD44, CD25, CD4, and CD8 (n = 4). 
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Figure 3 
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Figure 3. DN1s from Miz-1ΔPOZ mice lack in vitro differentiation and/or survival 

signals on OP9DL1 cocultures. (A) Comparative differentiation kinetics of 500 cells 

sorted from DN1, DN2, and DN3 subsets after 6 days of culture on stromal OP9DL1 cells. 

Gated live cells (top panel) were further gated on CD4−CD8−TCR-γδ− and analyzed for 

CD44 and CD25 surface expression to assess DN stages of differentiation (middle panel). 

CD4 and CD8 surface expression shows developmental progression of more mature T cell 

(bottom panel). The numbers in dot plots are percentages of cells (n = 6). (B) Cell cycle 

analysis after in vivo BrdU labeling. Cells were stained for surface markers and anti-BrdU 

and gated on DN1, DN2, and DN3. Data show percentage of BrdU-positive cells (n = 2). 

(C) Cell cycle analysis using propidium iodide staining was performed on permeabilized, 

sorted DN1, DN2, and DN3 cells. Data show percentage of cells in S/G2/M phase and are 

representative of 4 independent experiments. (D) Single-cell suspensions of thymocytes 

were stained with antibodies against lineage markers, CD44 and CD25 followed by annexin 

V staining. Percentages of annexin V-positive cells are indicated (n = 4). 
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Figure 4 
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Figure 4. Miz-1ΔPOZ DN thymocytes show aberrant IL-7-related gene expression 

profile. (A) RNA was extracted from 5 to 10 × 103 sorted DN1 and DN2 cells. All values 

are normalized to the expression of GAPDH gene and are presented as fold induction 

relative to values obtained with the respective wild-type control (set as 1-fold). Average of 

triplicate values ± SD are shown (n = 5). (B-C) Quantitative real-time PCR analyses of 

indicated genes in sorted DN1 and DN2 cells non-activated (NA) or activated with IL-7 for 

4 hours. Data are presented as fold induction relative to values obtained with the respective 

NA sample for wild-type control (left panel) and for Miz-1ΔPOZ (right panel). Average of 

triplicate values ± SD are shown (n = 3). 
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Figure 5 
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Figure 5. Miz-1 is required for proper IL-7/IL-7R signaling and binds to the SOCS1 

promoter. (A) Intracellular pSTAT5 detection in WT and Miz-1ΔPOZ thymocytes after ex 

vivo stimulation with IL-7. Histograms show isotype control (ctrl) antibodies staining in 

gray, and pSTAT5 antibody stainings in unstimulated (No IL-7) and stimulated with IL-7 

(+ IL-7) cells. Mean fluorescence intensities ± SD are indicated; n = 4 for DN1 and DN2 

and n = 3 for CD4−CD8−TCR-γδ+. (B) Total STAT5 proteins in DN1, DN2, and DN3 cells. 

Cells were sorted and whole protein extracts were evaluated by Western blot for STAT5 

(top blot) and β-actin loading control (bottom blot; n = 2). (C) Bcl-2 detection in WT and 

Miz-1ΔPOZ thymocytes after ex vivo stimulation with IL-7. Mean fluorescence intensities ± 

SD are indicated. (D) ChIP analysis to identify Miz-1 binding to potential sites within 

SOCS1 promoter. Cells were rested at 37°C in phosphate-buffered saline for 1 hour, and 

ChIP was performed on primary DN cells (E) or on SCID.adh murine thymic lymphoma 

cells (F). Quantitative real-time PCR was performed using primers flanking the initiator 

region (SOCS1_3) or upstream (SOCS1_5 and _7) of SOCS1 promoter (indicated as arrows 

in panel D and described in supplemental Table 3). Data are fold enrichment of specific 

anti–Miz-1 ChIP over rabbit control Ig ChIP (set as 1-fold) from triplicates ± SD (n = 4). 

*P ≤ .05. **P ≤ .01. 
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Figure 6 
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Figure 6. Early T-cell development is restored in Miz-1ΔPOZ cells by SOCS1 

knockdown or Bcl-2 overexpression in vitro. (A) A total of 1000 sorted LSK cells from 

WT or Miz-1ΔPOZ were incubated with morpholino against SOCS1 mRNA. Comparative in 

vitro differentiation kinetics of the cells was monitored after 6 to 20 days of coculture on 

OP9DL1. (B) A total of 500 sorted ETP cells from Bcl-2Tg or Miz-1ΔPOZ x Bcl-2Tg were 

analyzed by FACS after 6 to 20 days of culture. Gated live cells were further gated on 

CD4−CD8−TCR-γδ− and analyzed for CD44 and CD25 surface expression to assess DN 

stages of differentiation. CD4 and CD8 surface expression shows development progression 

of more mature T cells. Data are representative of 4 independent experiments for panel A 

and 5 experiments for panel B. 
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Figure 7  
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Figure 7. The early T-cell differentiation block in Miz-1ΔPOZ mice is overcome by Bcl-2 

overexpression in vivo. FACS analysis (A,C) and total cell numbers (B) of thymic and 

blood lymphoid populations from Bcl-2Tg or Miz-1ΔPOZ x Bcl-2Tg mice (n = 7). (A) CD4 

and CD8 surface staining is shown (left panel). CD4−CD8− DN cells gated on lineage-

negative cells were further analyzed for the surface expression of CD44 and CD25 to assess 

the 4 DN populations (middle left panel). Within the DN populations, DN2s (Lin− no CD4, 

CD44+CD117+CD25medium/high), ETPs (Lin− no CD4, CD25− CD44+CD117+; middle right 

panel), and DN1s (Lin− no CD4, CD25−, CD44+, and CD24/CD117medium/high; right panel) 

were also characterized. (B) Numbers in rectangular gates or quadrants indicate the 

percentage of cells. Total cell numbers of the thymocyte subsets and of gated TCR-αβ+ and 

TCR-γδ+ cells are shown. (C) FACS analysis of Lin− no CD4, CD25− Sca1+CD44+CD117+ 

thymic ETPs (top panel) and peripheral blood ELPs (bottom panel; n = 5). (D) Schematic 

representation of Miz-1 implication throughout T-lineage progenitor and pro-T-cell 

development. *P ≤ .05. **P ≤ .01. ***P ≤ .001. 
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Supplemental material and methods 

 

Mice  

Generation of Miz-1ΔPOZ mice.  

We followed a triple loxP gene targeting strategy (flox) to conditionally delete exon 3 and 4 

coding for the POZ domain of Miz-1, as well as the selectable neomycin marker gene.29 

Mice carrying one deleted allele and one conditional allele (MizΔPOZ/flox) were crossed with 

Vav-Cre mice, which express the Cre recombinase in all hematopoietic cells. All 

hematopoietic stem cells, erythroid cells and myeloid cells had efficient deletion of the 

POZ domain of Miz-1, referred to as Miz-1ΔPOZ mice. Mice carrying the conditional alleles 

(Miz-1flox/flox) were also crossed with Lck-Cre mice, where the Cre recombinase starts to be 

expressed at the DN2/DN3 transition of T-cell development. This model provided mice 

with a T cell-specific deletion of the POZ domain of Miz-1. Finally, Vav- cre Miz-1ΔPOZ 

mice were crossed with the cyclin kinase inhibitor CDKN1a-deficient mice (CDKN1a−⁄−) to 

generate Vav-cre Miz-1ΔPOZx CDKN1a−⁄− mice. 

 

c-Myc V394D knock-in (KI) mice.  

Homozygous c-MycV394D KI mice were also generated and are viable. The targeting 

strategy for this model will be described elsewhere (Kosan et al. in preparation). Briefly, a 

c-Myc mutant has been generated where a Valine residue (V) at position 394 has been 

exchanged for an Aspartic Acid (D). This mutation has been shown to inhibit the ability of 

c-Myc to bind to Miz-1.24 
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Antibodies 

CD3ε (145-2C11), CD4 (RM 4-5), CD8α (53-6.7), CD25 (PC61.5 from eBioscience), 

CD44 (IM7), TCRβ (H57-597), TCRγδ (GL3), CD45R/B220 (RA3-6B2), Gr-1 (RB6-8C5), 

CD11b (Mac-1, M1/70), Ter-119, Pan-NK (DX5), NK1.1 (PK136 from e-Bioscience), 

CD19 (1D3), CD5 (53-7.3 from e-Bioscience), IgM (R6-60.2), CD24 (I, M1/69), CD135 

(Flt-3, A2F10.1), CD117 (cKit, 2B8), Sca-1 (D7), Ly6D (49-H4), CCR7 (4B12 from e-

Bioscience), CXCR4 (2B11 from e-Bioscience), CCR9 (R&D systems), Notch1 (mN1A), 

CD127 (IL-7Rα, A7R34 from e-Bioscience) and CD132 (γc, TUGm2), Bcl-2 (BD, 

556537), pSTAT5 (BD pY694, 612567), STAT5 (Cell Signaling, 9363), SOCS1 

(Millipore, 4H1), β-actin (Santa Cruz, I-19). Thymic DN lineage cocktail contained 

biotinylated antibodies against CD3ε, CD4, CD8α, CD45/B220, Gr-1, Mac-1, Ter-119, 

NK1.1, DX5, TCRγδ. ETPs were analyzed using DNs Lin- cocktail, without CD4 but with 

biotin anti- CD25. ELPs were gated on the same ETP Lin- with the addition of biotin anti-

CD19 and anti-TCRβ. CLP lineage contained CD3ε, CD8α, CD45/B220, Gr-1, Mac-1, Ter-

119, NK1.1, CD5, IgM antibodies, without CD4. ALP and BLP populations were 

distinguished by gating on Lin− CLP cocktail, Sca1med, CD117med CD127+, and Ly6D-

negative (ALP) or Ly6D-positive (BLP) cells. 

 

Retroviral transduction 

Retroviruses were generated using 293-GPG cells. GP+E cells were infected with 

retroviruses from the 293-GPG cells for co-culture and virus production. Cells were 

transduced by spin-infection. P6D4 cells were resuspended in viral supernatant (from 
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GP+E- 86 cells in DMEM containing 10% (vol/vol) FBS, 100 U/ml Penicillin, 100 µg/ml 

Streptomycin), in the presence of polybrene (12.5 µg/ml) and were centrifuged by 1400g 

for 2h. The cells were then washed with RPMI and cultured in RPMI 10% (vol/vol) FBS, 

2% Penicillin/Streptomycin, 1% Non Essential Amino Acids, 1% Na-pyruvate and 100 µM 

β- mercaptoethanol. Four to five days after infection transduced cells were sorted by flow 

cytometry on the basis of GFP expression. 

 

Cell cycle and cell death analysis 

Cell cycle analyses were performed using a FITC bromodeoxyuridine (BrdU) flow kit (BD 

559619) according to the manufacturer’s instructions. Mice were injected intraperitoneally 

with BrdU (100 µg/g body-weight) and the thymi were collected 4h after injection. 

Propidium Iodide (PI) analyses were carried out on sorted DN1-DN4. Cells were directly 

sorted in modified krishan buffer (0.1% sodium citrate, 0.3% NP-40) containing 0.05 

mg/ml PI and 0.02 mg/ml Rnase and analyzed after 30 min of incubation. Apoptosis rates 

were measured by AnnexinV apoptosis detection kit (BD 556547). 

 

RNA isolation and real-time PCR 

Cells were FACS-sorted directly in TRIZOL Reagent (Invitrogen). RT-PCR was performed 

using Superscript II (Invitrogen) and oligo (dT) 12-18 primers following manufacturer’s 

protocol. Real time PCR was performed on the Invitrogen Mx3005, in triplicates, in 20µl 

using TaqMan Universal PCR Master Mix (Applied Biosystems) or in 10µl using PerfeCTa 

SYBR Green PCR SuperMixUNG (Quanta Biosciences). The expression of the gene of 
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interest was calculated relative to the GAPDH mRNA (Δct) and is presented as fold 

induction relative to values obtained with the respective control (set as 1-fold). Primers 

used are listed in Tables S1, S2, and S3. 
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Table S1: Real-time assays used from Applied Biosystems 
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Table S2: Primer sequence for Sybrgreen assays 
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Table S3: Primer sequences and their relative location for ChIP experiments 
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Figure S1 
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Figure S1. Miz-1ΔPOZ mice have reduced blood ELPs, but phenotypically normal 

ETPs, normal thymic DN T-lineage specific gene expression profile, and an intact 

Notch1 pathway. FACS analysis of thymic ETPs (A) and peripheral blood ELPs (B). 

ETP/ELP frequencies are indicated on top of the dot plot gate (upper panel), and cells in the 

ETP/ELP gate were further analyzed for CD135 and CCR9 expression (lower panel). The 

plots are composed of an overlay of the CD135 or CCR9 staining in black (WT) or in grey 

(Miz-1ΔPOZ) with the matching isotype control antibodies staining (dotted black) (n=4). (C) 

mRNA expression levels of Notch target genes such as Hes1 and Notch1 itself in different 

thymocyte populations from Vav-cre Miz-1ΔPOZ mice (n=3). (D) Notch1 intracellular 

expression evaluated by flow cytometry in different thymocyte populations from Vav-cre 

Miz-1ΔPOZ mice. The plots are composed of an overlay of the anti-Notch1 staining in black 

(WT) or in gray (Miz-1ΔPOZ) with the matching isotype control antibodies staining (dotted 

black). Percentages of positive cells are indicated. Data are representative of four 

independent stainings. 
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Figure S2 
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Figure S2. Chemokine receptors expression during early T-cell development is normal 

in Miz-1ΔPOZ mice. FACS analysis of CXCR4 (A), CCR7 (B), and CCR9 (C) on identified 

DN population gated on lineage negative, CD44, and CD25 as indicated. The plots are 

composed of an overlay of the specific staining in black (WT) or in gray (Miz-1ΔPOZ) with 

the matching isotype control antibodies staining (dotted black). Percentages of positive 

cells are indicated. Data are representative of three stainings for CCR7 and four 

independent stainings for CXCR4 and CCR9. 
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Figure S3  
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Figure S3. The deletion of the POZ domain of Miz-1 under the control of Lck-cre does 

not disturb T-cell development at the transition from DN to DP, and CDKN1a 

regulation is not responsible for the early DN block observed in Vav-cre Miz-1ΔPOZ 

mice. (A) FACS analysis of thymic populations of WT (Lck-cre Miz-1flox/WT) and Miz-

1ΔPOZ (Lck-cre Miz-1flox/flox) mice. CD4 and CD8 surface staining (upper panel) and lineage 

negative (Lin−) cells (lower panel), described in Materials and Methods, were analyzed for 

the surface expression of CD44 and CD25 to assess DN1 to DN4 (n=4). (B) PCR results 

demonstrating the deletion of exons 3 and 4 encoding for the POZ domain of Miz-1 on one 

allele or on two alleles of Miz-1 on sorted DN2, DN3a/b, DN4, DP and SP thymic subsets 

from Lck-cre crossings. Lck-cre Miz-1flox/WT is still considered as WT, whereas Lck-cre 

Miz-1flox/flox has the POZ domain of Miz-1 deleted on both alleles and is considered Miz-

1ΔPOZ. (C) Quantitative Real-time PCR analysis of target genes involved in T-cell 

development. RNA was extracted from sorted total DN (Lin−CD4−CD8−). All values are 

presented as fold induction relative to values obtained with the respective wild type control. 

Data are average of triplicates and are representative of two independent experiments for 

total DN cells. (D) Miz-1ΔPOZ DN1 and DN2 express higher CDKN1a as evaluated by 

quantitative Real-time PCR. Data are average of triplicates ± SD (n=5). (E) Crossing Vav-

cre Miz-1ΔPOZ mice with mice deficient for CDKN1a (CDKN1a−⁄−) does not restore the DN 

to DP block. FACS analysis of thymic populations using CD4 and CD8 staining is shown 

for CDKN1a−⁄− and Miz-1ΔPOZxCDKN1a−⁄− mice (n=5). 
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Figure S4 
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Figure S4. Defects in IL-7/IL-7R pathway are not related to the incorrect expression 

of IL- 7Rα or the signaling chain γc on the surface of Miz-1ΔPOZ thymocytes. Flow 

cytometry analysis was used to evaluate surface expression of CD127 (A) and CD132 (B) 

on gated Lin− DN1-4 thymocytes. The surface expression of these two chains was also 

evaluated on TCRγδ+ cells gated on CD4−CD8−TCRγδ+ (C, D). Histograms show 

percentages of CD127+ or CD132+ cells in each thymocyte subset. FACS profiles are 

representative of six independent stainings for CD127 and of four independent stainings for 

CD132. 
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Figure S5 
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Figure S5. Miz-1 is highly expressed in immature thymocytes and its implication in T-

cell development is likely c-Myc-independent. (A) RNA was extracted from sorted 

immature double negative (DN) cells, and all values are presented as fold induction relative 

to values obtained with CD3+ splenic T cells for Miz-1 expression. Data are average of 

duplicates. (B) RNA was extracted from sorted thymic single positive (SP), double 

negative (DN) and double positive (DP), and all values are presented as fold induction 

relative to values obtained with SP cells (n=3). (C) c-Myc expression was evaluated in 

sorted DN cells, and all values are presented as fold induction relative to the respective wild 

type control (n = 4). (D) Targeting scheme showing the introduction of the knock-in (KI) 

point mutation into the exon 3 of c-Myc locus that alters the coding sequence to introduce a 

Valine (V) at position 394 in replacement of an Aspartic Acid (D) (upper panel), and FACS 

analysis of homozygous KI mice (MycV394D) (lower panel). CD4 and CD8 surface staining 

is shown (n=4). (E) SOCS1 expression was evaluated in sorted thymic CD8 single positive 

(CD8SP), double negative (DN) and double positive (DP), and all values are presented as 

fold induction relative to values obtained with CD8SP cells (n=3). (F) Quantitative Real-

time PCR analysis of Miz-1 expression in sorted DN3 cells or SCID.adh clone non-

activated (NA) or activated with IL-7 for 4 h. Data are presented as fold induction relative 

to values obtained with the respective NA sample. Average of triplicate values ± SD are 

shown. Data are representative of two independent experiments. 
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Figure S6 



 

 

 

215 

Figure S6. Overexpression of Miz-1 in SCID.adh murine thymic lymphoma P6D4 

clone inhibits SOCS1 up-regulation in response to IL-7. (A) Whole cell extracts (WCE) 

from P6D4 and P2C2 were evaluated by western blot for the expression of endogenous 

Miz-1. Upper blot shows Miz-1 expression using anti-Miz-1 antibodies (2E10) and the 

lower blot shows β-actin loading control. (B) P6D4 clone expressing the highest amount of 

endogenous Miz-1 was used for Chromatin-immunoprecipitation (ChIP) assay and an 

immunoprecipitation of Miz-1 using anti-Miz-1 (H190) is shown. (C) ChIP analysis to 

identify Miz-1 binding to potential sites within SOCS3 promoter. ChIP assays were 

performed on P6D4 cells. Quantitative Real-time PCR was performed using primers 

flanking the initiator region of SOCS3 (indicated as arrows in the promoter region). Data 

are expressed as fold enrichment of specific anti-Miz-1 ChIP over control anti-rabbit IgG 

isotype ctrl ChIP (set as 1-fold) from triplicates ± SD. Data are representative of four 

experiments. (D) Miz-1 overexpression was evaluated by western blot on P6D4 cells 

transduced with an empty retroviral vector (MIGR1-GFP) or with a Miz-1-IRES-GFP 

virus. Upper blot shows Miz-1 expression using anti-Miz-1 antibodies (2E10) and the lower 

blot shows the β-actin loading. Images with similar exposures were scanned with Agfa 

FotoLook and the protein band intensities were quantified using ImageQuant software. 

Numbers shown bellow the anti-Miz-1 blot are the density of each Miz-1 protein relative to 

β-actin protein, normalized to the MIGR1-GFP sample, set as 1-fold. Data are 

representative of 3 independent experiments. (E) Expression of SOCS1 was determined by 

western blot on P6D4 cells transduced with MIGR1-GFP or with Miz-1-GFP virus after 

resting (−) or 0.5 to 6h of IL-7 (40 ng/ml) stimulation. Upper blot shows SOCS1 expression 
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using anti-SOCS1 antibodies (4H1) and the lower blot shows β-actin loading control. 

Numbers shown bellow the anti-SOCS1 blot are the density of each SOCS1 protein relative 

to β-actin protein, normalized to the MIGR1-GFP or Miz-1-IRES-GFP untreated sample, 

set as 1-fold. Data are representative of 2 independent experiments. 
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Figure S7  
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Figure S7. SOCS1 knock-down or Bcl-2 overexpression restored cell numbers of early 

thymic subpopulations of Miz-1ΔPOZ mice to wild type levels. 1000 sorted LSK (A) or 

DN1 (B) from WT or Miz-1ΔPOZ were incubated with morpholino against SOCS1 mRNA or 

a control (Ctrl) morpholino. CD4, CD8, CD44 and CD25 surface stainings are shown. Cells 

were analyzed after indicated days of co-culture on OP9DL1, n=4. (C) Morpholino 

transfection efficiency was monitored by FITC expression. Percentages of positive-FITC 

morpholino transfected cells and Mean Fluorescence Intensities (MFI) are shown. (D) Total 

cell numbers of thymic DN populations from Bcl-2Tg mice or Miz-1ΔPOZ crossed with Bcl-

2Tg mice (Miz-1ΔPOZ x Bcl-2Tg). Total cell numbers were determined by evaluating the 

percentage of positive cells for each DN subset and corrected on living cells based on the 

forward/side scatter profile. Absolute cell counts for DN1a-e (Lin- no CD4, CD25-, CD44+, 

and CD24/CD117medium/high) and DN2a-b (Lin- no CD4, CD44+ and CD117+, 

CD25medium/high) are shown (n = 4). Error bars indicate the standard deviation. * p ≤0.05. 

 

 

 



 

 

Chapter III 

Miz-1 is Required to Coordinate the Expression of TCRβ  and p53 

Effector Genes at the Pre-TCR ''β-selection'' Checkpoint 

 

 

Ingrid Saba*†, Christian Kosan*, Lothar Vassen*, Ludger Klein-Hitpass‡ and Tarik 

Möröy*† 

 

 

* Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada, H2W 

1R7.† Département de microbiologie et immunologie, Université de Montréal, Montréal, 

Québec, Canada, H3C 3J7. ‡Institut für Zellbiologie (Tumorforschung), 

Universitätsklinikum Essen, Virchowstrasse  173, D-45122 Essen, Germany. 

 

 

Running title: Miz-1 at the β-selection checkpoint 

 

 

 

This article was submitted for publication to The Journal of Immunology on May 23, 2011, 

accepted on June 30, 2011 and published online August 12, 2011. 

 

 

 

The Journal of Immunology, Volume 187, Issue 6, September 15, 2011, Pages 2982-2992, 

Copyright©2011 by The American Association of Immunologists, Inc. 0022-

1767/11/$16.00, www.jimmunol.org/cgi/doi/10.4049/jimmunol.1101451 

 



 

 

 

220 

For this study, I generated all the figures and supplemental figures. Tarik Möröy, Christian 

Kosan and I designed the research and analyzed the results. I performed all the 

experiments, Lothar Vassen helped with the gene array analysis. Tarik Möröy and I wrote 

the paper. Tarik Möröy also provided funding. 

 



 

 

 

221 

Abstract 

 

Miz-1 is a Broad-complex, Tramtrack and Bric-à-brac/Pox virus Zinc finger domain 

(BTB/POZ) containing protein expressed in lymphoid precursors that can activate or 

repress transcription. We report in this article that mice expressing a non-functional Miz-1 

protein lacking the BTB/POZ domain (Miz-1ΔPOZ) have a severe differentiation block at the 

pre-T cell “β-selection” checkpoint, evident by a drastic reduction of CD4-CD8- double-

negative-3 (DN3) and DN4 cell numbers. T cell specific genes including Rag-1, Rag-2, 

CD3ε, pTα, and TCRβ are expressed in Miz-1-deficient cells and V(D)J recombination is 

intact, but very few DN3/DN4 cells express a surface pre-TCR. Miz-1-deficient DN3 cells 

are highly apoptotic and do not divide, which is consistent with enhanced expression of p53 

target genes such as Cdkn1a, PUMA and Noxa. However, neither co-expression of the anti-

apoptotic protein Bcl-2 nor the deletion of p21CIP1 or the combination of both relieved Miz-

1-deficient DN3/DN4 cells from their differentiation block. Only the co-expression of 

rearranged TCRαβ and Bcl-2 fully rescued Miz-1-deficient DN3/DN4 cell numbers and 

enabled them to differentiate into DN4TCRβ+ and DP cells. We propose that Miz-1 is a 

critical factor for the β-selection checkpoint and is required for both the regulation of p53 

target genes and proper expression of the pre-TCR to support the proliferative burst of DN3 

cells during T-cell development. 
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INTRODUCTION 

 

T-cell development starts from early thymic precursors (ETP), which progress through four 

CD4-CD8- double negative (DN1-DN4) subsets that differentially express c-Kit, CD25 and 

CD44 (reviewed in Ref. 1). After cytokine-dependent steps of development and 

commitment, which also require signaling through the Notch, IL-7R and Wnt pathways, 

early DNs differentiate into DN3 cells that express T cell specific genes such as Rag-1, 

Rag-2, pTα, CD3ε, Lck and Tdt (reviewed in Ref. 2). DN3 thymocytes can be subdivided 

into DN3a and DN3b based on their size and CD27 expression (3, 4). DN3a cells rearrange 

the T cell receptor (TCR) β chain locus and, if productive, become DN3b blast cells that 

express a TCRβ chain on the cell surface along with an invariant pTα chain forming the 

pre-TCR (3, 4). DN3b cells become activated by TCR-dependent signals referred to as the 

“β-selection” checkpoint, down regulate CD25 and generate DN4 cells, which in turn 

differentiate into the largest thymic subpopulation, the CD4+CD8+ double positive (DP) 

cells  (reviewed in Refs. 5, 6). DN3a cells that fail to undergo productive V(D)J 

recombination at the TCRβ locus are eliminated by apoptosis.  

 

The survival signals that assure proper T cell differentiation are promoted by increasing the 

expression of anti-apoptotic Bcl-2 and Bcl-xL, and by redistributing the cell-death proteins 

Bax and BAD (reviewed in 7). In addition, a role for the p53 tumor suppressor protein in 

the regulation of cell cycle progression and apoptosis in response to the physiological DNA 

damage generated by V(D)J recombination at the DN3 stage of pre-TCR cells has been 
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proposed (8). Interestingly, a differentiation block from DN3/DN4 to DP cells caused by 

defective pre-TCR signaling, for instance in the absence of Rag-1/2, DNA-PK (SCID) or 

the CD3γ chain, can be rescued to some extent by the simultaneous loss of p53, suggesting 

that the β-selection at the DN3 stage depends on a balance between pre-TCR signaling and 

p53 activation. Importantly, p53 activation has to be contained in the presence of ongoing 

V(D)J recombination to avoid that developing pre-T cells immediately undergo apoptosis 

(9, 10, 11, 12). However, the mechanisms to control a p53-dependent DNA damage 

response in the presence of V(D)J strand breaks have yet to be fully elucidated.   

 

A number of studies showed that the oncoprotein c-Myc plays a role in many cell lineages, 

including B and T cells, and the generation of conditionally deleted c-Myc alleles in mice 

has allowed to assess the role of c-Myc in T-cell development more precisely (13, 14). 

According to these findings, c-Myc is required to ensure pre-TCR-induced proliferation and 

expansion of both DN3 and DN4 cells (13, 14). It is known that c-Myc protein forms a 

heterodimeric complex with the transcription factor Max and that the c-Myc/Max complex 

can activate transcription by binding to E-boxes (CACGTG) in upstream enhancer elements 

of target genes (15-20). Moreover, c-Myc also interacts with the Broad-complex, Tramtrack 

and Bric-à-brac/Pox virus Zinc finger domain (BTB/POZ) domain transcription factor 

Myc-interacting zinc finger protein-1, and a ternary c-Myc/Max/Miz-1 complex has been 

shown to occupy target gene promoters in an E-box-independent manner. In contrast to c-

Myc, which is a helix-loop-helix protein and contains a leucine zipper, Miz-1 is composed 

of thirteen zinc finger domains at its carboxy-terminus and of a BTB/POZ domain at its N-
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terminus (21, 22). Whether Miz-1 activates or represses the transcription of its target genes 

depends on its interacting partner, but an intact POZ domain is required for both activities. 

The genes that encode the negative cell cycle regulators Cdkn2b (22, 23) or Cdkn1a (24, 

25) have been validated as direct Miz-1 targets. These target genes are activated by Miz-1 

and the postive cofactors histone acetyltransferase EP300 (p300) and L23-nucleophosmin 

and repressed by the c-Myc/Miz-1 complex (22, 23, 26, 27). It has also been shown that c-

Myc is recruited to the Cdkn1a promoter by Miz-1 and this interaction blocks Cdkn1a 

induction by p53 and other activators in colon cancer cells. As a result of Miz-1 actions, c-

Myc switches the cell fate from cell cycle arrest to apoptosis in response to p53-dependent 

activation (24). 

 

Since the full knockout of Miz-1 arrests development at an early stage of gastrulation (28), 

we have generated mice carrying a conditional allele of Miz-1, which produces a truncated 

protein lacking the functionally critical N-terminal BTB/POZ domain (hereafter named 

Miz-1ΔPOZ). Using these mice we were previously able to demonstrate a new c-Myc-

independent function of Miz-1 in early steps of B- and T-lymphoid development, where IL-

7R signaling regulates survival and commitment (29, 30). We now report that Miz-1ΔPOZ 

mice have an additional defect in pre T-cell development at the DN3/DN4 pre-T cell 

transition. Our data suggest that Miz-1 is important for generating survival signals by 

counteracting a p53-dependent pathway and assuring the expression of the pre-TCR β chain 

in order to support the proliferative burst of DN3 cells.  
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MATERIALS AND METHODS 

 

Mice 

Mice have been bred on C57BL/6 background for at least 10 generations and were 

maintained in Specific-Pathogen-Free Plus environment. All mice used in this study were 

previously described (29, 30). OTI mice expressing TCRαβ transgenes were purchased 

from The Jackson Laboratory (C57BL/6-Tg(TCRaTCRb)1100Mjb/J). The Institutional 

Review Board approved all animal protocols and experimental procedures were performed 

in compliance with the IRCM guidelines. 

 

Abs and cell lines 

OP9DL1 cultures and P6D4 SCID.adh murine thymic lymphoma were used and previously 

described (30). All antibodies were form BD Bioscience except when indicated. To analyze 

DN thymic subsets, CD25 (PC61.5 from eBioscience) and CD44 (IM7) plus lineage 

marker negative cells (Lin-) were selected by staining thymocytes with the biotinylated-

antibodies against CD3ε (145-2C11), CD4 (RM 4-5), CD8α (53-6.7), CD45/B220 (RA3-

6B2), Gr-1 (RB6-8C5), CD11b (Mac-1, M1/70), Ter-119 (Ly-76), NK1.1 (PK136 from 

eBioscience), Pan-NK (DX5), TCRγδ (GL3) followed by Streptavidin-PerCPCy5.5 or 

PECy5. When OTI transgenic (Tg) mice were analyzed, the same lineage cocktail without 

anti-CD3ε was used. Additional staining were performed using CD24 (Heat stable antigen: 

HSA, M1/69), CD27 (LG.3A10), pTα (2F5) and TCRβ (H57-597) antibodies. Antibody 

incubation was performed at 4°C for 20 min in PBS buffer with 1% FBS. Cells were 
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analyzed with a FACSCalibur, FACScan or LSR (Becton-Dickinson). Cell sorting was 

performed using a MoFlo cell sorter (Cytomation).  

 

TCRβ  intracellular staining and immunoblot analysis 

Cells were fixed with formaldehyde (BD cytofix 554655), blocked with 5µg of Armenian 

Hamster Ig2, λ1 (Ha4/8), washed and permeabilized with BD Cytofix 

Fixation/Permeabilization kit (Becton Dickinson). Intracellular TCRβ staining was 

performed and surface staining was done after thereafter. For immunoblot analysis, cells 

were sorted and lysed in 1% Nonidet P-40 (NP-40) containing 20 mM Tris-HCl pH 7.5, 

420 mM NaCl, 2mM EDTA, 1mM MgCl2 and 1mM EGTA in the presence of protease and 

phophatase inhibitors. Immunoblotting was performed using anti-Cdkn1a (556431 BD 

biosciences) or anti-βactin (I-19, Santa Cruz). 

 

Calcium mobilization  

2 x 106 cells were incubated in HBSS buffer containing 0.001 M CaCl2, 0.001 M MgCl2, 

0.001 M Hepes, 0.1 g BSA. Cells were loaded with Indo1-AM dye (Invitrogen) at 31 °C. 

After washing, and surface staining, the cells were coated with biotinylated anti-CD3 (145-

2C11) or biotin anti-TCRβ. Warm HBSS buffer was added and cells were aquired for 30 

sec. Avidin (Sigma) was added for the crosslinking (represented by the arrow in 

Supplemental Fig. 2C) and data recording was performed for a total time of 5 min. As 

positive control for Ca++ mobilization, ionomycin, was used at 4 µM and cells were 
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acquired for 2 min total after a first fluorescence at 405 nm (Bound Ca++) versus 510 nm 

(Free Ca++). 

 

Cell stimulation  

For pERK1/2 staining, following stimulation (CD3/CD28 biotin at 10 µg/ml followed by 

avidin crosslinking at 20µg/ml, or 25 ng/ml PMA/ 1µM ionomycin), cells were fixed with 

formaldehyde (BD cytofix 554655) and additionally permeabilized with methanol (BD 

phosflow Perm III 558050). Samples were then stained with anti-phospho-p44/42 MAPK 

(Erk1/2) Thr202/Tyr 204 mouse Ab (E10), Alexa Fluor 488 conjugate (Cell Signaling) or 

isotype control. Surface staining was performed after the intracellular staining.  

 

Cell cycle and cell death analysis 

Cell cycle analysis was performed on sorted DN3-DN4. Cells were directly sorted in 

modified Krishan buffer (0.1% sodium citrate, 0.3% NP-40) containing 0.05 mg/ml 

Propidium Iodide (PI) and 0.02 mg/ml RNase and analyzed after 30 min of incubation. 

Apoptosis rates were measured by AnnexinV staining (BD Pharmingen, AnnexinV-

allophycocyanin kit, BD Pharmingen).  

 

RNA isolation, real-time PCR and morpholino oligo knock-down. 

For RNA isolation, cells were FACS-sorted directly in TRIZOL Reagent (Invitrogen). RT-

PCR was performed using Superscript II (Invitrogen). Real time PCR was performed in 
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triplicates on the Invitrogen Mx3005 in 20µl reactions using TaqMan Universal PCR 

Master Mix (Applied Biosystems). The expression of the gene of interest was calculated 

relative to GAPDH mRNA (Δ Threshold cycle (ΔCT)) and is presented as “fold induction” 

relative to values obtained with the respective control (set as “1-fold”). Primers used for the 

experiments are available upon request. FITC-Morpholino oligo against Cdkn1a mRNA 

(GTCGGACATCACCAGGATTGGACAT 3’ Fluorescein) or a control Morpholino oligo 

(Gene Tools, LLC, USA) were used on DN3a sorted cells or P6D4 clone as previously 

described (30). 

 

V(D)J recombination 

DN3 from wild-type (WT) and Miz-1ΔPOZ thymi were sorted in 0.05% Tween-20, 0.05% 

NP-40, 50 µg/ml proteinase K and incubated overnight at 56 °C. After proteinase K 

inactivation, genomic DNA was amplified by PCR with TaKaRa Ex Taq (TAKARA BIO 

INC.). The amplification protocol (1 min 94°C, 1 min 63°C, 2 min 72°C) for Dβ2-Jβ2, 

Vβ5-Jβ2, Vβ8-Jβ2, Vβ11-Jβ2 and eF1 (primers described in Ref. 31) was repeated 31 

cycles. The amplification protocol (1 min 94°C, 1 min 63°C, 2 min 72°C) for Dβ1.1-Jβ1.7 

and Dβ2.1-Jβ2.7 was first performed with external primers and repeated 20 times. A 0.5 µL 

from the first amplification was used for a second PCR reaction with nested internal 

primers (1 min 94°C, 1 min 63°C, 2 min 72°C) for additional 31 cycles (primers described 

in Ref. 32). An aliquot of the PCR product for each reaction was fractionated on a 1.8 % 

agarose gel.  
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DNA micro-array analysis 

10 µg of cRNA from sorted DN3 cells (triplicates) were hybridized on Affymetrix 

GeneChip MG-430_2.0 arrays (GPL1261). After washing and staining, GeneChips were 

scanned using the Affymetrix GeneChip scanner 3000 (G7 update) and data were analyzed 

with GCOS 1.4 software using affymetrix default analysis settings and global scaling as 

normalization method. The data has been deposited in the public database Gene Expression 

Omnibus repository (National Center for Biotechnology Information; accession number 

GSE28342; http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE28342).  

 

Statistical analysis 

Two tailed student’s t-test was used to calculate p-values where indicated. A p-value ≤0.05 

was considered as statistically significant: * p ≤0.05, ** p ≤0.01, *** p ≤0.001. 
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RESULTS 

 

Block of pre-T-cell development at the β-selection checkpoint in Miz-1ΔPOZ mice  

Flow cytometric analysis showed a strongly reduced thymic cellularity affecting all T cell 

subsets, and an increase in the relative percentages of DN cells at the expense of DP and 

CD4 or CD8 single positive (SP) cells in Miz-1ΔPOZ mice compared to control littermates 

(Fig. 1A, 1B). In addition, it revealed a block at the transition from DN3 to DN4 cells in 

Miz-1ΔPOZ mice, most noticeable because of the relative increased frequencies of DN3 at 

the expense of DN4 cells and a strong relative accumulation of DN3a versus DN3b cells 

(Fig. 1A). In absolute cell counts and compared to WT controls, Miz-1-deficient DN3a 

cells were reduced by 13-fold, and DN3b and DN4 cells were reduced by 100- and 180-

fold, respectively (Fig. 1B). This loss of DN3 and DN4 cells and the block at DN3/DN4/DP 

transition, in combination with the recently described early ETP/DN1/DN2 differentiation 

block (30), dramatically reduced the absolute cell counts of DP, CD4 and CD8 SP cells in 

Miz-1ΔPOZ mice >100-fold compared to WT controls (Fig. 1B).  

 

DN4TCRβ+ pre-T cells are almost absent in Miz-1ΔPOZ mice but are able to produce 

DP and SP cells with intact TCR signaling 

DN3b cells, which are larger in size than DN3a cells and up-regulate CD27, were less 

frequent in Miz-1ΔPOZ mice than in WT controls (Fig. 1A). In addition, DN3b cells 

expressing surface TCRβ were decreased in frequency and numbers (Fig. 1B) and their 

TCRβ expression levels were reduced, evident by a lower mean fluorescence intensity 
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(MFI) compared to WT DN3b cells (Fig. 2A). Consequently, very few Miz-1ΔPOZ DN4 

cells expressed TCRβ on their surface compared to the respective WT subset (Fig. 2A). 

Also, the frequencies of Miz-1-deficient DN3b and DN4 cells expressing a cytoplasmic 

(intracellular; i.c.) TCRβ chain were reduced by 2 and 2.5-fold compared to WT controls 

(Fig. 2B). The expression of CD3ε on the surface of the different thymoyte subsets 

(Supplemental Fig. 1), as well as the expression of TCRβ and pTα mRNA and of other 

genes required for V(D)J recombination such as Rag1, Rag2 and Tdt were at WT levels in 

Miz-1ΔPOZ thymic subsets (Fig. 2C-E). In addition, no defects in Dβ2-Jβ2, Dβ1.1-Jβ1.7 or 

Dβ2.1-Jβ2.7 rearrangement or in Vβ5-Jβ2, Vβ8-Jβ2 or Vβ11-Jβ2 recombination were 

detected (Fig. 2F), indicating that all prerequisites for a proper pre-TCR selection are 

present in Miz-1-deficient cells. 

 

The pre-T cell differentiation block in Miz-1ΔPOZ mice is partially overcome by the 

introduction of rearranged OTI TCRαβ  transgenes. 

DP and CD4 and CD8 SP cells are still found in Miz-1ΔPOZ mice, albeit at drastically 

reduced numbers (Fig. 1B) and expressed normal levels of CD3 and TCRβ on their surface 

(Supplemental Fig. 1A, 1B). Also, Miz-1-deficient thymocytes did not show defects in 

TCR-dependent signaling, as evaluated by the phosphorylation of the MAPK ERK1/2 

(Supplemental Fig. 2A, 2B) and the mobilization of intracellular Ca++ (Supplemental Fig. 

2C). Finally, the frequency of CD4 and CD8 cells within selected populations defined by 

the expression of CD69 and TCRβ (33, 34) was comparable between WT and Miz-1ΔPOZ 
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mice (Supplemental Fig. 3). This indicated that commitment to T cell lineage, mRNA 

expression of T cell specific genes including the TCRβ chain, V(D)J recombination, TCR 

signaling and positive/negative selection are intact in Miz-1ΔPOZ mice.  

 

To further investigate the block at the Miz-1 dependent DN3/DN4 transition, we generated 

Miz-1-deficient mice expressing a transgene encoding for rearranged TCRαβ chains (OTI 

Tg x Miz-1ΔPOZ). In these mice, the frequencies and absolute numbers of DN3b, DN4 and 

DN4TCRβ+ cells were significantly increased compared to Miz-1ΔPOZ thymocytes (Fig. 3), 

but the overall cellularity of the thymus and of DN4 or DN4 TCRβ+ cells did not reach WT 

or OTI Tg levels (Fig. 3B). This indicated that a functional TCRαβ receptor can be 

expressed and processed from the cytoplasm to the cell surface of Miz-1ΔPOZ pre-T cells 

and confirmed that TCR signals driving DN3 to DN4 differentiation can be initiated in 

Miz-1-deficient mice. It also suggests that the absence of TCRβ surface expression is not 

solely responsible for the DN3/DN4 transitional block in Miz-1ΔPOZ mice. Additionally, the 

positive and negative selection was evaluated by the expression of CD69 and TCRβ in OTI 

Tg x Miz-1ΔPOZ mice expressing a less diverse TCR repertoire compared to Miz-1ΔPOZ 

mice. The FACS analyses of CD4 and CD8 expression did not reveal any obvious defects 

in the positive or negative selection processes (Supplemental Fig. 3). The efficiency of the 

positive/negative selection was also evaluated in previously described Lck-cre Miz-1ΔPOZ 

mice, where the deletion of the BTB/POZ domain of Miz-1 starts at the DN2/DN3 

transitional stage of T-cell development but is complete only at the DN4 and subsequent 
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stages (30). Consistent with a normal DN/DP T-cell development in Lck-cre Miz-1ΔPOZ 

mice (30), the positive selection was intact in mice expressing Miz-1ΔPOZ at a later point of 

T cell differentiation (Supplemental Fig. 3).  

 

The higher apoptotic rate of Miz-1ΔPOZ DN3 could result from enhanced expression of 

p53-dependent genes. 

AnnexinV staining that allows detecting cells undergoing programmed cell death was used 

to evaluate DN3a cells from Miz-1-deficient mice. Our data showed that 37.6% of Miz-

1ΔPOZ DN3a cells were apoptotic compared to only 6.8% of WT cells (Fig. 4A). In contrast, 

the DN3b subpopulation showed only 9.2% of Annexin-positive cells and the DN4 subsets 

did not contain any apoptotic cells (Fig. 4A). Consistent with this, DN3a cells sorted from 

Miz-1ΔPOZ or OTI Tg x Miz-1ΔPOZ mice were unable to differentiate on OP9DL1 cultures 

and showed low frequencies of live cells, as determined by the FSC/SSC gate, which is 

indicative of apoptosis (Supplemental Fig. 4A). This suggested that enhanced spontaneous 

cell death occurs in Miz-1ΔPOZ DN3a at the moment where V(D)J recombination and the 

β−selection checkpoint take place. 

 

Next, we compared genome wide expression profiles from Miz-1ΔPOZ and WT DN3 cells 

and observed that differently regulated genes between those two cell populations belonged 

to specific gene ontology and KEGG pathways specific for senescence, cell cycle arrest and 

cell death. As illustrated by a heat map, we noticed in particular, that the p53 target genes 

Bax, Noxa (Pmaip1), Atr, Apaf1, Atm and PUMA (Bbc3) that induce apoptosis in response 
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to a DNA damage signal were up regulated in Miz-1-deficient DN3 cells (Fig. 4B). We re-

analyzed a subset of this group by RT-PCR and confirmed up-regulation of PUMA, Noxa 

and Bax in Miz-1-deficient DN3a cells (Fig. 4C). Because the expression of 

transformation-related protein 53 itself was at comparable levels to WT (Fig. 4C), these 

findings suggested that Miz-1 might be involved in controlling the activity of p53 or the 

expression of its effector genes that mediate cell death in DN3 pre-T cells. We reasoned 

that constitutive Bcl-2 expression should counteract the enhanced cell death and restore the 

numbers of Miz-1-deficient DN3 and DN4 subsets. Indeed, co-expression of a previously 

described H2K-Bcl-2 transgene that confers pan-hematopoietic expression of Bcl-2 (35) 

significantly increased frequencies (Fig. 5A) and numbers (Fig. 5B) of DN3 and DN4 cells, 

but did not restore the numbers of DN3, DN4 (Fig. 5B) and DN4TCRβ+ cells (not shown) 

to WT levels, nor rescued the block at the DN3/DN4 transition in Miz-1ΔPOZ mice. Thus, 

although accelerated apoptosis may cause the low numbers of DN3 cells in Miz-1-deficient 

mice, it does not explain the block at the DN3/DN4 transition.  

 

A defect in cell cycle progression in Miz-1ΔPOZ pre-T cells concurs with the up-

regulation of Cdkn1a 

Our expression array data also showed that the G1 specific cyclin-dependent kinase 

inhibitor Cdkn1a, which is a downstream target of p53, was up-regulated in Miz-1ΔPOZ DN3 

cells (Fig. 4B). This could be confirmed by RT-PCR and western blot analysis on Miz-1-

deficient DN3 cells (Fig. 6A, 6B). We also found significant defects in cell cycle 

progression in Miz-1ΔPOZ DN3 and DN4 cells (Fig. 6C). To test whether the differentiation 
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block observed at the DN3/DN4 transition in Miz-1ΔPOZ mice could be attributable to the 

defect in cell cycle progression and the up-regulation of Cdkn1a expression, we generated 

combinatorial mutants deficient for both Miz-1 and Cdkn1a (Cdkn1a-/- x Miz-1ΔPOZ). 

However, we found that the DN3/DN4 differentiation block and the accumulation of DN3a 

cells at the expense of DN3b cells were not rescued in Cdkn1a-/- x Miz-1ΔPOZ mice (Fig. 

6D).  

 

To test whether a combination of Cdkn1a inhibition and ectopic TCR expression could 

rescue the Miz-1-deficient phenotype, we sorted DN3a cells from OTI Tg and OTI Tg x 

Miz-1ΔPOZ, transfected them with FITC-labeled morpholino-oligonucleotide against 

Cdkn1a mRNA, or a control morpholino, and co-cultured them on OP9DL1 cells. Although 

the knockdown of Cdkn1a was efficient (Supplemental Fig. 4B), OTI Tg x Miz-1ΔPOZ 

DN3a cells treated with the morpholino oligo against Cdkn1a were still arrested, as 

assessed by the intensity of the FITC labeling, the poor survival on OP9DL1 cells and the 

generation of only 5.6 % of DP cells compared to 20.1 % from OTI Tg DN3a cells 

(Supplemental Fig. 4C, 4D).  Similarly, a rescue of the DN/DP differentiation block was 

not obtained when we treated DN3 cells sorted from Bcl-2 x Miz-1ΔPOZ mice with the 

morpholino oligo against Cdkn1a (Supplemental Fig. 4C, 4D). Thus, high levels of Cdkn1a 

are not responsible for the observed block of differentiation at the β-selection checkpoint 

seen in Miz-1ΔPOZ DN3 cells.  
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Bcl-2 and OTI TCR expression rescues the pre-T cell differentiation block in Miz-

1ΔPOZ mice  

We next examined whether the block at the β-selection checkpoint can be restored in Miz-

1ΔPOZ mice by providing both the pro-survival protein Bcl-2 and the rearranged TCRαβ 

transgenes. Indeed, co-expression of H2K-Bcl-2 and OTI TCRαβ transgenes relieved the 

DN to DP block observed in Miz-1ΔPOZ mice and significantly enhanced the transition from 

DN3 to DN4 cells compared to controls (Fig. 7A). Both frequencies and absolute numbers 

of DN3b and DN4 cells were increased in Bcl-2 Tg x OTI Tg x Miz-1ΔPOZ compared to 

OTI x Miz-1ΔPOZ mice, and over 90% of gated DN4 cells now expressed TCRβ on their cell 

surface (Fig. 7A). The full rescue of the defect in pre-T cell differentiation by the 

introduction of both transgenes was also evident by the overall cellularity of the thymus, 

and most importantly by the re-appearance of DN3b and DN4 cells, which were almost 

undetectable in Miz-1ΔPOZ mice and now reached OTI Tg x Bcl-2 Tg levels (Fig. 7B). To 

further show that the rescue provided by the expression of both Bcl-2 and OTI transgenes 

was at the β-selection checkpoint, we compared HSA expression in DN3, DN4 and DP 

cells, as HSA is a marker that gets downregulated as thymocytes mature from DN4/DP to 

SP (36). The downregulation of HSA was much more noticeable, both in percentages and 

mean fluorescence intensities, as DN3 cells mature to DN4 and DP cells in Bcl-2 Tg x OTI 

Tg x Miz-1ΔPOZ mice compared to OTI Tg x Miz-1ΔPOZ mice (Fig. 7C). The accelerated 

transition from DN3b to DN4 in Bcl-2 Tg x OTI Tg x Miz-1ΔPOZ mice suggested that the 

introduction of the TCRαβ transgenes allowed the cells to deliver a differentiation and 
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proliferation signal, and that, together with Bcl-2 which counteracts apoptosis, these signals 

were sufficient to neutralize the effect of Miz-1 deficiency on cell survival.  
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DISCUSSION 

 

We have previously shown that the BTB/POZ transcription factor Miz-1 regulates IL-7R 

signaling by monitoring the expression levels of both SOCS1 and Bcl-2. This protects 

ETP/DN1/DN2 cells from apoptosis and enables their differentiation (30). In the present 

study, we show that Miz-1 has an additional function later in pre-T cell differentiation, at 

the β-selection stage of DN3 cells, which is the first critical checkpoint in the maturation of 

pre-T cells. DN3 cells passing this checkpoint actively rearrange the TCRβ locus and thus 

have to tightly control DNA damage response pathways such as the one induced by the 

activation of p53. After productive rearrangement, DN3 cells activate allelic exclusion (37) 

and become pre-TCR+ DN3b cells that undergo a massive proliferative expansion, 

differentiate into DN4 cells (3) and escape apoptosis. Here, we present evidence that the 

transcription factor Miz-1 is essential to coordinate the steps that assure survival of DN3 

cells and the expansion and differentiation of DN3 and DN4 cells. Our data suggest that 

Miz-1 coordinates expression of the pre-TCR and may be involved in controlling p53 target 

genes possibly induced by DNA double strand breaks initiated upon V(D)J recombination 

in DN3 cells.  

 

Miz-1 deficiency affects expansion of TCRβ  chain expressing DN3b and DN4 pre-T 

cells 
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FACS analyses demonstrated that DN cell differentiation is blocked in Miz-1ΔPOZ mice at 

the β-selection checkpoint. However, Rag-1, Rag-2, Tdt and TCRβ genes are expressed, 

and pTα and CD3ε are present in Miz-1ΔPOZ pre-T cells. Moreover, V(D)J recombination 

and TCR mediated signaling appeared to be intact in the absence of a functional Miz-1, at 

least in the cells that still emerged in Miz-1-deficient mice. Despite this, only very few 

DN3b or DN4 cells that express the TCRβ protein in the cytoplasm or at the surface were 

present in Miz-1-deficient mice. This phenotype is only detected in Vav-cre Miz-1ΔPOZ mice 

and not in the previously described Lck-cre Miz-1ΔPOZ model, where the deletion of the 

BTB/POZ domain starts occurring in the DN2/DN3 transitional stage of T-cell 

development (38). We reported that the deletion in this mouse strain started at the DN2 

stage, reached 50% in DN3a cells, and was complete at the DN4 stage (30). The residual 

expression of Miz-1 in the DN3a/b cells of Lck-cre Miz-1ΔPOZ mice may be sufficient to 

overcome the T cell differentiation block at the β-selection checkpoint. Consistent with this 

report, no obvious DN/DP defects in T-cell development were noted (30), and the positive 

and negative selection processes were not affected by Miz-1 deficiency in Lck-cre Miz-

1ΔPOZ mice.  

 

TCRβ gene is expressed at normal levels in Miz-1-deficient DN3 or DN4 cells, possibly 

implicating Miz-1 in the control of a post-transcriptional step affecting translation, stability 

or membrane transport of the TCRβ protein. Transport to the membrane and surface 

expression of TCRβ is necessary to trigger proliferation and the differentiation of DN to DP 
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cells (39). However, the introduction of a rearranged TCR receptor transgene led to a 

stable, high-level surface expression of ectopic TCRαβ in Miz-1-deficient cells. In 

addition, the DP and SP cells that still develop in Miz-1ΔPOZ mice expressed normal levels 

of TCRβ chain on their surface. Further, the frequency of CD4 and CD8 cells within 

selected populations defined by the expression of CD69 and TCRβ (33, 34) was 

comparable between WT and Miz-1ΔPOZ mice. As selected thymic populations could be 

better evaluated in mice expressing a less diverse repertoire like TCR transgenic mice, we 

could show that positive/negative selection is not affected by Miz-1 deficiency in OTI Tg x 

Miz-1ΔPOZ mice. Finally Miz-1-deficient cells did up-regulate CD69 and CD5 in response 

to TCR stimulation at comparable levels to WT controls (data not show). These data rather 

support the view that Miz-1 deficiency does not alter the expression, stability or processing 

of the pre-TCR per se.  

 

Lack of cell cycle progression in Miz-1-deficient DN3 and DN4 cells 

The presence of a transgenic OTI TCR led to an expansion of DN3 cells in Miz-1ΔPOZ mice 

but failed to rescue the DN3/DN4 block, indicating that even if the TCRβ chain is 

expressed at the cell surface and is able to transmit the appropriate signal, the cells still 

encounter a proliferative block mediated by other signals. One of the most striking findings 

that could possibly explain this observation was the significant up-regulation of Cdkn1a 

expression in Miz-1ΔPOZ DN3 cells. At high Cdkn1a levels, Miz-1-deficient DN3 cells 

would be unable to react to the proliferative burst induced by the pre-TCR signaling. 

Although compelling, a rescue attempt showed that the DN3/DN4 block and the 
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accumulation of DN3a cells at the expense of DN3b persisted in Cdkn1a-/- x Miz-1ΔPOZ 

mice. Therefore, although the Cdkn1a gene is a bona fide Miz-1 target and is occupied by 

Miz-1 on its promoter in DN thymocytes (data not shown), the de-regulation of Cdkn1a by 

Miz-1 cannot be the only cause of the Miz-1ΔPOZ DN3 cell arrest at the β-selection 

checkpoint. The Cdkn1a up-regulation may rather be a consequence of the cell cycle 

progression arrest that is caused by both the lack of surface pre-TCR expression and the up-

regulated p53-target genes at this stage.  

 

Evidence for an accelerated p53 response in Miz-1-deficient DN3 cells 

Analysis of genome wide expression array data indicated that Miz-1-deficient DN3 cells 

over-expressed not only genes mediating cell cycle arrest such as Cdkn1a but also a whole 

set of p53 target genes that can initiate apoptosis such as PUMA, Noxa and Bax. It is known 

that p53 is required for the maintenance of genomic stability and regulates apoptosis and 

growth arrest in response to DNA damage, in particular to DNA double-stranded breaks 

(DSBs; reviewed in Refs. 40, 41). Moreover, it has been shown that pre-TCR signaling 

inhibits the p53 response after a successful V(D)J recombination . Such regulation is crucial 

for pre-TCR selection and DN/DP differentiation and survival (9-12).  

 

As Miz-1-deficient cells fail to express TCRβ proteins on their cell surface, it is possible 

that these cells cannot induce pre-TCR-dependent inactivation of p53 when they have 

completed a productive rearrangement which generates physiological DSBs. One effect of 

this failure to inactivate p53 could result in the induction of pro-apoptotic genes such as 
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Bax (42) and the regulation of Bcl-2 (43). Miz-1-deficient DN3 cells express high Bcl-2 

levels (not shown) that should decline in developing αβ DN3 cells and also display high 

Bax expression, which most likely counteracts the Bcl-2 function and provokes higher 

apoptosis rates. Interestingly, the introduction of the anti-apoptotic Bcl-2 protein partially 

restored DN3a numbers but did not rescue the DN3/DN4 block in Miz-1ΔPOZ mice, which is 

consistent with the finding that Bcl-2 expression alone does not promote differentiation of 

pre-TCR deficient SCID DN3 cells (44).  

 

Miz-1 as a potential regulator of the p53 response during pre-TCR selection 

During V(D)J recombination, DSBs are generated and any p53 response that may initiate 

apoptosis has to be contained until a pre-TCR signal shuts down the p53 pathway and 

enables selected cells to expand. In this model, cells that fail to receive a pre-TCR signal 

die, which is in line with evidence showing that loss of p53 in pre-TCR deficient 

thymocytes can restore their development and survival (9-12). How the p53 response is 

controlled during V(D)J recombination is not fully understood, but our data point to the 

possibility that Miz-1 is involved in this process. Although alternative possibilities exist 

and further experimentation is needed to fully support this hypothesis, our finding that the 

ectopic expression of Bcl-2 and OTI transgenic TCR fully rescued Miz-1 deficiency 

supports this view, since both Bcl-2 and TCR can counteract the p53 initiated apoptosis and 

growth arrest in DN3 cells. A balance between the role of p53 in inducing apoptosis versus 

promoting cell survival has been shown to contribute to the normal development of the 

cells (45). Accordingly, low levels of p53 are maintained under physiological conditions 
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and normal cell proliferation to promote the induction of temporary cell cycle arrest in 

stress situations to allow for instance the repair of DNA damage. If a damage signal 

persists, a p53 mediated apoptosis program is activated to eliminate these cells. Since the 

expression levels of p53 is comparable to wild-type in Miz-1 ΔPOZ cells and as it has been 

shown that Miz-1 can bind to p53 (46), it is possible that Miz-1 is one of the factors that 

dampens the part of p53 response that promotes cell death. The precise regulation of p53 

activity by Miz-1 is presently unknown. It is possible that in the absence of a functional 

Miz-1 protein, p53-mediated cell death response may be induced and the disturbed 

expression levels of Bax and PUMA as seen in DN3 cells from Miz-1ΔPOZ mice are 

consistent with this view. Experiments that enable the detection of a co-occupation of DNA 

damage response gene promoters by p53 and Miz-1 may help clarify this point. 

 

A recent report that directly implicates Miz-1 as a mediator of the p19ARF-p53 pathway 

would also be consistent with this hypothesis. In this study, evidence show that Miz-1 is 

able to bind to p19ARF and to interfere with p53 stability. The same study also 

demonstrated that Miz-1 interacts directly with p53 and that this interaction diminishes the 

binding of p53 to its target promoters and inhibits p53-mediated gene transcription (46). It 

is therefore conceivable that Miz-1 plays a role in the regulation of p53 in pre-T cells and 

that a functional form of Miz-1 is necessary to control p53 activity at the specific β-

selection checkpoint to allow V(D)J recombination to occur without initiating apoptosis. In 

the absence of a functional form of Miz-1, particularly lacking its BTB/POZ domain, the 
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p53 response to the V(D)J recombination events is enhanced causing cell cycle arrest and 

apoptosis and this prevents TCRβ+ cells from expanding and initiating their differentiation 

into DP thymocytes. In order to understand this regulation, more experiments need to be 

done to identify the particular p53 target genes that may be dependent on the expression of 

a functional Miz-1 protein. Taken together, the data presented in this report help explain the 

DN3/DN4 block observed in Miz-1-deficient mice and would establish the BTB/POZ 

domain protein Miz-1 as a new regulator of the pre-TCR β−selection checkpoint. Whether 

this regulation is mediated by co-factors or by post-transcriptional events remains to be 

explored.  
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Figure 1. Miz-1ΔPOZ DN cells have a severe block at the β-selection check point 

between DN3a/DN3b to DN4 transition.  

Comparative thymocytes FACS analyses (A) and absolute cell counts of thymocyte subsets 

(B) from Miz-1ΔPOZ and WT littermates. (A) CD4 and CD8 expression was analyzed for 

each mouse of the indicated genotype (left panel). Gated lineage negative cells were further 

analyzed for the expression of CD44 and CD25 to assess DN1 (CD44+CD25-), DN2 

(CD44+CD25+), DN3 (CD44-CD25+) and DN4 (CD44-CD25-) (middle panel). Gated DN3 

subset was further fractionated into DN3a (FSClowCD27-) and DN3b (FSChighCD27+) (right 

panel). The percentage of positive cells for each quadrant or gate is indicated.  (B) 

Percentages in (A) are calculated relative to the total live cells (FSC/SSC gate) of the 

thymus and expressed as absolute cell counts. Data are representative of at least 8 

independent experiments. Mean average and SD are shown. * p ≤0.05, ** p ≤0.01, *** 

p≤0.001. 
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Figure 2. Lack of TCRβ  expression in Miz-1ΔPOZ DN4 pre-T cells. 

Offset histograms showing surface staining (A) and intracellular staining (i.c.) (B) of TCRβ 

expression on gated DN3a (Lin-CD44-CD25+FSClowCD27-), DN3b (Lin-CD44-

CD25+FSChighCD27+), and DN4 (Lin-CD44-CD25-) thymocytes. The percentages shown 

are % of TCRβ+ cells. Mean fluorescence intensities (MFI) are also indicated. Data 

represent five independent experiments for the surface expression and three independent 

experiments for the intracellular staining. TCRβ mRNA (C), pTα (D, upper panel) mRNA 

expression and protein levels (D, lower panel) were assessed in DN3a, DN3b and DN4 

cells. The plots are composed of an overlay of the pTα staining (black line) with the 

matching isotype isotype control Ig1κ (gray filled histogram). The numbers in the 

histograms are percentages of pTα+ cells. Data represent five independent experiments for 

the surface expression and three independent experiments for mRNA quantification in 

triplicates. (E) Quantitative Real-time PCR analysis of genes involved in the V(D)J 

recombination. RNA was extracted from 50,000 sorted DN3 cells from WT and Miz-1ΔPOZ 

mice. Average of triplicate values and SD are shown. Data are representative of five 

independent experiments. (F) Genomic DNA PCR analyses of the extent of Dβ-to-Jβ 

rearrangement or V(D)Jβ recombination in sorted 50,000 DN3 cells from WT (1) and Miz-

1ΔPOZ (2) mice. The amplification of eF-1α fragment was used as input control. Results are 

representative of three independent experiments. 
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Figure 3: The pre-T cell differentiation block in Miz-1ΔPOZ mice is partially overcome 

by the introduction of rearranged OTI TCRαβ  transgenes in vivo. 

FACS analyses (A) and total cell numbers (B) of thymic subsets from WT and Miz-1ΔPOZ or 

OTI Tg and OTI Tg x Miz-1ΔPOZ mice (n=5). (A) Lineage negative cells were analyzed for 

the surface expression of CD44 and CD25 to assess the four DN populations (upper panel). 

Within the DN populations, DN3 (middle panel) were analyzed for DN3a (FSClowCD27-) 

and DN3b (FSChighCD27+) subsets, and DN4 (lower panel) for the surface expression of 

TCRβ. (B) Percentages in (A) are calculated relative to the total live cells (FSC/SSC gate) 

of the thymus and expressed as absolute cell counts. Mean average and SD are shown. ** p 

≤0.01, *** p≤0.001. 
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Figure 4: DN3 cells from Miz-1ΔPOZ mice are highly apoptotic and show enhanced 

p53-target gene expression.  

(A) Single-cell suspensions of thymocytes were stained with antibodies against lineage 

markers, CD44 and CD25 followed by AnnexinV staining. Percentages of AnnexinV-

positive cells are indicated for DN3a, DN3b and DN4 cells (n=3). (B) RNA from sorted 

DN3 cells from WT and Miz-1ΔPOZ thymi were isolated and subjected to expression 

profiling analysis. An overview of genes differentially expressed is shown in a “heat map”. 

Red bars represent relatively high expression levels, and green bars represent low 

expression levels of triplicates. (C) Validation of some p53-dependent target genes by 

quantitative Real-time PCR. RNA was extracted from 50, 000 sorted DN3a cells of WT 

and Miz-1ΔPOZ mice. Mean average of triplicate values and SD are shown. Data are 

representative of four independent experiments. 
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Figure 5: The DN3/DN4 transitional block in Miz-1ΔPOZ mice is not rescued by the 

overexpression of the Bcl-2 transgene. 

FACS analyses (A) and total cell numbers (B) of thymic subsets from Bcl-2 Tg and Bcl-2 

Tg x Miz-1ΔPOZ (n=7). (A) Lineage negative cells were analyzed for the surface expression 

of CD44 and CD25 to assess the four DN populations (upper panel). Within the DN 

populations, DN3 cells were analyzed for DN3a (FSClowCD27-) and DN3b (FSChighCD27+) 

subsets (lower panel). (B) Percentages in (A) are calculated relative to the total live cells 

(FSC/SSC gate) of the thymus and expressed as absolute cell counts. Mean average and SD 

are shown. * p ≤0.05. 
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Figure 6: The cell cycle progression defect in Miz-1ΔPOZ pre-T cells is Cdkn1a-

independent.   

 (A) Cdkn1a mRNA expression was assessed in DN3a and DN3b cells from WT and Miz-

1ΔPOZ mice and is representative of five independent experiments done in triplicates. (B) 

Whole protein extracts from sorted DN3 cells were evaluated for Cdkn1a by western blot. 

βactin was used as loading control. (C) Cell cycle analysis using propidium iodide staining 

was performed on permeabilized, sorted DN3 and DN4 cells. Data show percentage of cells 

in S/G2/M phase ± SD, and are representative of four independent experiments. (D) 

Thymic DN analysis of Miz-1ΔPOZ mice crossed with Cdkn1a deficient mice (Cdkn1a-/-). 

FACS data of gated Lin- cells were analyzed for CD44 and CD25 expression (upper panel) 

and the gated DN3 subset was further fractionated into DN3a (FSClowCD27-) and DN3b 

(FSChighCD27+) (lower panel). The stainings for Cdkn1a-/- and Cdkn1a-/- x Miz-1ΔPOZ are 

representative of 5 independent experiments. * p ≤0.05, *** p≤0.001. 
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Figure 7: The pre-T cell differentiation block in Miz-1ΔPOZ mice is rescued by the 

overexpression of the anti-apoptotic protein Bcl-2 and the rearranged OTI TCRαβ  

transgenes in vivo. 

FACS analyses (A, C) and total cell numbers (B) of thymic subsets from OTI Tg and OTI 

Tg x Miz-1ΔPOZ or OTI Tg x Bcl-2 Tg and OTI Tg x Bcl-2 Tg x Miz-1ΔPOZ mice (n=3). (A) 

Lineage negative cells were analyzed for the surface expression of CD44 and CD25 to 

assess the four DN populations (upper panel). Within the DN populations, DN3 cells were 

analyzed for DN3a (FSClowCD27-) and DN3b (FSChighCD27+) populations (middle panel), 

and DN4 for the surface expression of surface TCRβ (lower panel). (B) Percentages in (A) 

are calculated relative to the total live cells (FSC/SSC gate) of the thymus and expressed as 

absolute cell counts. Mean average and SD are shown. (C) HSA (CD24) staining on gated 

DN3, DN4 and DP cells from Bcl-2 Tg, OTI Tg x Miz-1ΔPOZ or OTI Tg x Bcl-2 Tg x Miz-

1ΔPOZ mice (n=2). Histograms are composed of an overlay of HSA expression profile on 

gated DN3 (filled histogram), DN4 (gray line) and DP (black line). Percentages (%) of 

HSA-positive cells and mean fluorescence intensities (MFI) are indicated at the bottom of 

each histogram. *** p≤0.001. 
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Supplemental Figure 1. CD3 and TCRβ  expressions during T-cell development are 

normal in Miz-1ΔPOZ mice.  

FACS analyses of CD3 (A), and TCRβ (B) expression on the surface of identified DN 

population from WT or Miz-1ΔPOZ mice. The cells were gated on lineage negative, CD44 

and CD25 as indicated. DP and single positive CD4 or CD8 cells were also analyzed. The 

plots are composed of an overlay of the specific staining (black line) with the matching 

isotype control antibodies staining (filled histogram). Percentages of positive cells are 

indicated. Data are representative of five independent experiments. 
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Supplemental Figure 2. Miz-1ΔPOZ pre-T cells and mature single positive cells do not 

have a defect in pre-TCR-dependent signaling. 

Intracellular pERK1/2 detection in WT and Miz-1ΔPOZ thymocytes after ex vivo stimulation 

with anti-CD3/CD28 (A) or PMA/Iono (B). Histograms show non-activated (NA) staining 

in gray, and pERK1/2 antibodies staining after 10 min of stimulation at 37°C. Mean 

fluorescence intensities are indicated, n=2. (C) Intracellular calcium (Ca++) concentration 

was assessed by calculating the ratio between bound to free Ca++ after thymocytes were 

loaded with Indo1 at 31 °C and stimulated by avidin-induced crosslinking of biotinylated 

antibodies. Arrows indicate the addition of avidin or ionomycin at 30 s. The solid line 

represents WT, the dotted line represents Miz-1ΔPOZ. Data are representative of two 

independent experiments 
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Supplemental Figure 3. Thymic positive and negative selection does not seem affected 

by Miz-1 deficiency. 

Total thymocytes from different mice with the indicated genotype were stained for CD69, 

TCRβ and gated as followed: R1 (TCRnegCD69neg), R2 (TCRintCD69neg), R3 

(TCRintCD69+), R4 (TCR+CD69+) and R5 (TCR+CD69int/-) as indicated (left panel). The 

expression of CD4 and CD8 was analyzed on cells falling in each gate defined by 

CD69/TCRβ expression (right panel). Data represent three independent experiments of 

each mouse strain, except for OTI Tg and OTI Tg x Vav-cre Miz-1ΔPOZ, n=2. 
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Supplemental Figure 4. DN3 cells from Miz-1ΔPOZ mice lack in vitro differentiation 

and/or survival signals on OP9DL1 co-cultures even in the presence of a transgenic 

TCR (OTI Tg), Bcl-2 Tg or Cdkn1a knock-down.  

(A) Comparative differentiation kinetics of 500 sorted DN3a cells from WT and Miz-1ΔPOZ 

(n=6) or  OTI Tg and OTI Tg x Miz-1ΔPOZ (n=3) after 5 days of co-culture on OP9DL1 

stromal cells. Gated live cells (according to FSC/SSC) were analyzed for CD4 and CD8 

surface. The numbers in dot plots are percentages of cells. (B) Morpholino knock-down 

efficiency was evaluated by western blot analysis. SCID.Adh murine thymic lymphoma 

P6D4 cells were transfected with morpholino oligo against Cdkn1a mRNA or a control 

morpholino (Ctrl) and after 48h, the cells were irradiated for 5 min at 5Gy. After 1 h  of 

irradiation, whole protein cell extracts (WCE) were evaluated for Cdkn1a by western blot 

and βactin was used as loading control. (C) 5,000 sorted DN3a from OTI Tg or OTI Tg x 

Miz-1ΔPOZ or from Bcl-2 Tg or Bcl-2 Tg x Miz-1ΔPOZ were incubated with Cdkn1a or ctrl 

morpholino oligos. CD4 and CD8 surface staining is shown after 11 days of co-culture on 

OP9DL1, n=2 for OTI Tg mice and n=1 for Bcl-2 Tg mice. (D) Morpholino transfection 

efficiency of sorted DN3a cells was monitored by flow cytometry, measuring FITC 

expression after 3, 5 or 11 days of co-culture on OP9DL1. Percentages of FITC-positive 

morpholino transfected cells are shown for the indicated days.  
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Discussion 

1. Miz-1 is required for embryonic development 

The implication of Miz-1 in regulating embryonic development was previously suggested 

by the complete deletion of the Zbtb17 gene, which led to lethality at E7.5 [503]. To 

overcome this limitation, mutant mice were generated by gene targeting, in which the 

sequence coding for the BTB/POZ domain can be deleted. This strategy was chosen since 

previous studies had shown that a truncated Miz-1 protein lacking its BTB/POZ domain is 

non-functional [138, 478]. Surprisingly, embryos expressing two deleted Zbtb17ΔPOZ alleles 

arrested their development at around E14, showing again the critical requirement of a 

functional Miz-1 protein in embryonic development processes. Although this truncated 

form is non-functional as a transcription factor [138, 478], the remaining part of the Miz-1 

protein is still encoded. The presence of the deleted form of Miz-1 is probably sufficient for 

the enhanced survival of the embryos, but the expression of a functional full form of the 

protein is critical for the embryonic development. Moreover, when embryonic stem cells 

expressing the two deleted Zbtb17ΔPOZ alleles were used to generate chimeras, they did not 

contribute to the repopulation of B and T cells, but contributed to all the other 

hematopoietic cell lineages in peripheral organs [511].  These observations provided the 

rationale for the hypothesis that the BTB/POZ domain of Miz-1 is required for B- and T-

cell development and were the premises to begin this research project. 
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2. Miz-1ΔPOZ mice have a normal HSC pool 

Consistent with the embryonic characterization, severe defects in B- and T-cell 

development were observed in the conditional Zbtb17fl/fl mice crossed with Vav-cre 

transgenic mice [511-513], which enabled the deletion of the BTB/POZ domain in all 

hematopoietic cells [505]. To clarify whether these deficiencies in B and T cells were due 

to decreased frequencies of lymphoid progenitors, their presence in Vav-cre-Zbtb17fl/fl mice 

was evaluated. The frequencies of hematopoietic progenitors including HSC, MPP, LMPP 

[511], ELP and the ALP and BLP subsets of CLP [512] were not altered, and even present 

at higher frequencies in Miz-1ΔPOZ mice. ELP, the precursors of CLP, showed almost 

normal expression of specific markers and expressed B- and T-lineage specific genes such 

as GATA3, Notch1, Rag-1, Tdt, E2A, Ikaros, c-Myb and Pu.1. These observations suggested 

that Miz-1 deficiency does not alter the expression program related to B- or T-lineage 

specification from precursor cells. A homing defect based for example on substandard 

stromal cells or imperfect supporting microenvironment of the lymphoid progenitors was 

also excluded because the lymphopenic phenotype typical for Miz-1ΔPOZ mice was obtained 

upon adoptive transfer of Miz-1-deficient bone marrow into syngenic recipients.  Miz-1ΔPOZ 

progenitors also expressed normal levels of different chemokine receptors such as CXCR4, 

CCR7 and CCR9 that are involved in migration and homing. The opposite experiment 

using control bone marrow HSC transferred into Miz-1ΔPOZ mice resulted in a normal 

lymphoid and myeloid reconstitution, indicating that the disruption of B- and T-cell 

development is a cell-autonomous phenotype [511, 512].  
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Although the numbers of Miz-1ΔPOZ HSC are unchanged, the numbers of LSK cells are 

increased in Miz-1-deficient mice. These LSK cells are also less efficient at competing with 

normal wild-type cells in transplantation assays [Kosan, C. and Möröy, T., unpublished 

data]. Moreover, most of the progenitors from Miz-1-deficient mice failed to differentiate 

into more mature B and T cells in vitro on OP9 or OP9DL1 co-cultures, but still 

differentiated into myeloid cells when co-cultured on OP9 with the appropriate mix of 

cytokines cocktail [511, 512]. These observations pointed to a role of Miz-1 in regulating 

survival signals and differentiation of hematopoietic stem cells. It is still not clear whether 

all lymphoid progenitors depend on IL-7R signaling for survival, but early B- and T-cell 

expansion is severely reduced in IL-7-/- and IL-7R-/- mice [37, 38]. More recent findings 

showed that ETP or their progenitors, although negative for the expression of IL-7R on 

their surface, have encountered IL-7/IL-7R priming throughout their development [39]. 

This history of IL-7R signaling may be responsible for the requirement of IL-7 accessibility 

in the bone marrow in order for progenitor cells to benefit from this IL-7 to survive [514]. 

A functional Miz-1 may be needed for bone marrow precursors that migrate through the 

blood before reaching the thymus to regulate Bcl-2 and help the cells benefit from IL-7 

availability in order to survive. This would explain the lack of survival of bone marrow 

progenitors, blood ELP and thymic ETP in Miz-1ΔPOZ mice that can be rescued by Bcl-2 

overexpression [511, 512].  
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3. The importance of the BTB/POZ domain 

The Miz-1ΔPOZ mouse model clearly suggested a role of Miz-1 in the commitment and 

differentiation of the T- and B- cell lineages. These functions are specifically linked to the 

BTB/POZ domain of Miz-1 protein. The BTB/POZ domain of Miz-1 primarily serves as a 

protein-protein binding motif important for homo- and hetero-oligomerisation with other 

POZ domain-expressing proteins [470, 472, 473]. It is most likely not involved in a direct 

interaction of Miz-1 with DNA, but it is required for a stable binding of Miz-1 to the 

chromatin and to regulate the transcription of some target genes like p15INK4B [478, 511]. 

Although the explanation for this BTB/POZ-dependent loss of activity is unclear, it is 

possible that, based on the crystal structure of the BTB/POZ domain [474], the ability of 

Miz-1 to form dimers and tetramers is lost when lacking its BTB/POZ domain. The 

oligomerization of the POZ domain may stabilize Miz-1 protein complexes creating 

conformational changes that allow Miz-1 to bind to the initiator sites of its target gene 

promoter. Consequently, Miz-1ΔPOZ can no longer form either homo- or tetramers and this 

absence of oligomerization affects Miz-1 capacity to bind DNA or to form a complex with 

other co-factors required for transcriptional regulation of target genes (proposed model in 

Figure 12). 

 

 
 
 
 
 
 
 



 
 

 

279 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 12. The BTB/POZ domain of Miz-1 influences the oligomerization capacity of 
the protein. A view of the proposed model for the importance of Miz-1 tetramer formation 
via the BTB/POZ domain to assure transactivation of target genes (upper panel). In the 
absence of the BTB/POZ domain, Miz-1 may not be able to bind to the DNA. The absence 
of the tetrameric complex may also influence the capacity of Miz-1 to interact with other 
co-factors required for its binding to the DNA resulting in transcriptional repression (lower 
panel) (adapted from [515]). 

 

4. Miz-1 in early B-cell development 

B- and T-cell developmental events are orchestrated by the interplay between cytokine 

signaling (IL-7/IL-7R), V(D)J recombination and transcription factor mediated regulation 

[179, 180, 190]. Similar to the reported phenotypes of IL-7 or IL-7R-deficient mice [185, 

516], most residual peripheral B cells in Miz-1ΔPOZ mice are marginal zone B cells [511]. 
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These cells can reside in the marginal zone for a long time and are less affected by the 

absence of IL-7 signaling [516, 517], which explains their accumulation in Miz-1-deficient 

mice. In contrast, the loss of follicular B cells, but not marginal zone B cells, pointed to the 

possible role of Miz-1 as a downstream effector needed for the IL-7R signaling cascade. In 

line with these observations, the expression of the non-functional Miz-1ΔPOZ protein 

generates a block precisely at the pre-pro-B to pro-B cell transition [511], which was also 

consistent with the block reported for IL-7 or IL-7R-deficient mice [161, 162].  

 

The high expression levels of the JAK inhibitor SOCS1 in Miz-1-deficient CLP provided a 

first explanation for the lack of IL-7 responsiveness in Miz-1ΔPOZ mice. In addition to this 

observation, chromatin immunoprecipitation (ChIP) experiments suggested that Miz-1 

represses SOCS1 transcription through a direct binding to its initiator site, which inhibits 

STAT5 phosphorylation and the subsequent up-regulation of IL-7-dependent target genes. 

Parallel to these findings, it was demonstrated that uncommitted B cells need to up-regulate 

Bcl-2 expression in order to survive [518]. In the absence of a functional Miz-1 protein, 

Bcl-2 expression cannot be up-regulated in response to IL-7 in CLP [511]. Furthermore, 

ChIP experiments demonstrated that Miz-1 binds directly to the Bcl-2 promoter, not at the 

initiator site but in a region farther upstream, in immature B cells [511].  These data 

suggested that Miz-1 exerts two functions in regulating the IL-7R pathway: it represses 

SOCS1 and activates Bcl-2 transcription. This dual role is not surprising since it has been 

reported by many groups that Miz-1 can be either a transactivator or a transrepressor 

depending on its interacting partner [135, 138, 469, 478, 480, 491, 492]. A role for Miz-1 
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as an activator of Bcl-2 transcription, probably in response to IL-7, is also in agreement 

with two other studies reporting that Bcl-2 is a direct effector gene of Miz-1 [491, 494]. 

Nevertheless, neither the overexpression of Bcl-2 nor the knock-down of SOCS1 

expression were sufficient to relieve the pre-pro-B to pro-B cell transitional defect in Miz-

1ΔPOZ mice. Although these rescue attempts increased the survival of immature B cells, they 

indicated that Miz-1 is required for another B-cell specific regulatory pathway, different 

from the one initiated by IL-7. 

 

Based on the known expression patterns of B-cell specific genes, it was possible to identify 

B-cell differentiation signals that are affected by Miz-1 deficiency. EBF1 and E2A were 

prime candidates, as the deletion of these genes leads to a complete block at the pre-pro-B 

to pro-B transition [266, 519], which phenocopies the effects seen in Miz-1ΔPOZ mice. E2A 

expression is absolutely required for CLP generation, which is greatly reduced in E2A-

deficient mice [520, 521]. The expression of E2A is essential for the up-regulation of EBF1 

and the ectopic expression of EBF1 in E2A-deficient progenitors rescued B-cell 

differentiation [519, 522]. However, CLP numbers were normal in Miz-1-deficient mice 

and E2A expression was only reduced by half. This reduced expression is probably 

sufficient to maintain the CLP pool in Miz-1-deficient mice, and is possibly responsible for 

the reduced EBF1 expression in Miz-1ΔPOZ cells. The expression levels of E2A, EBF1, Pax-

5, Rag-1 and Rag-2 were all reduced in CLP from Miz-1ΔPOZ mice, suggesting that Miz-1 

acts upstream of E2A to regulate the differentiation signals initiated by the E2A/EBF1/Pax-

5/Rag-1/2 axis [511]. However, it is unlikely that Miz-1 itself directly regulates EBF1 
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expression, as evidence for a direct binding of Miz-1 to the EBF1 promoter could not be 

readily generated [Kosan, C., Saba, I. and Möröy, T., unpublished data]. Whether the 

regulation of EBF1 is IL-7-dependent or independent is unclear. First, the ectopic 

expression of EBF1 in Miz-1ΔPOZ progenitors did not rescue the B-cell differentiation 

block. Second, and consistent with the observations made in the first chapter of the results 

section of this thesis, the expression of EBF1 in IL-7R-/- progenitors allowed the 

development of some B220+CD19+IgM+ cells, but did not help them overcome their defect 

in cell survival [162]. Third and more recently, Malin and colleagues showed that the IL-

7/STAT5 signaling pathway mainly controls cell survival in pro-B cell rather than B-cell 

development per se [207]. Consistent with these findings, data from the experiments shown 

in the first results chapter also indicated that EBF1 cannot be induced by IL-7 stimulation 

and that the ectopic re-expression of EBF1 in Miz-1-deficient cells cannot rescue their 

defective B-cell development. As a consequence, these findings corroborate the study of 

Malin and his collaborators and confirm the divergence between B-cell survival and B-cell 

differentiation [511]. Furthermore, in vitro experiments in a stroma-free cell culture system 

demonstrated that CLP have B-cell potential, can develop into CD19+ cells but do not 

divide in response to IL-7. This lack of cell proliferation was not due to a cycling defect as 

originally expected since Miz-1 is know to regulate cyclin-dependent kinase inhibitors 

[511]. Taken together, these observations indicated that IL-7 relays signals for survival and 

differentiation, but not for the proliferative expansion of B cell progenitors [27].  
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A full rescue of B-cell development in Miz-1-deficient mice was achieved when both Bcl-2 

and EBF1 were co-expressed in Miz-1ΔPOZ cells [511]. It is thus likely that survival and 

differentiation signals, mediated by Bcl-2 and EBF1 respectively, are initiated by the IL-7R 

signaling and can also be controlled by other pathways. These data support a model where 

Miz-1 exerts a function in regulating the IL-7-independent E2A/EBF1/Pax-5/Rag-1/2 axis 

responsible for the induction of B-cell differentiation signals, and the IL-7-dependent up-

regulation of Bcl-2 required for the survival of B cell progenitors. Both elements need to be 

coordinated by Miz-1 to allow the full lineage commitment and differentiation of B cells 

(Figure 13).   

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 13. Miz-1 is required for early B-cell development. Miz-1 directly represses the 
JAK inhibitor SOCS1 and up-regulates Bcl-2 upon IL-7 stimulation. Both the IL-7-
independent E2A/EBF1/Pax-5/Rag1/2 axis responsible for the induction of B-cell 
differentiation signals and the IL-7-dependent IL-7/STAT5/Bcl-2 axis required for the 
survival of B cell are shown (adapted from [511]). 
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5. Miz-1 in early T-cell development 

Similar to its role in regulating IL-7R-dependent B-cell differentiation, Miz-1 controls early 

T-cell differentiation, at stages where the IL-7/IL-7R signaling coordinates survival and 

lineage commitment [512]. IL-7/IL-7R pathway not only assures the proliferation, survival 

and progression of pro-T cells very similarly to the early B-cell differentiation steps [342-

346], but it also induces the rearrangement and transcription of the TCRγ locus [523, 524].  

 

The part of IL-7R signaling that is involved in protecting cells from apoptosis and 

promoting survival in early T cell subsets of Miz-1ΔPOZ mice is severely altered due to an 

unbalanced Bcl-2-to-Bax ratio [512]. The early T cell block described in Miz-1ΔPOZ mice is 

a direct consequence of Bcl-2 deregulation, since Bcl-2 cannot be up-regulated upon IL-7 

stimulation in all Miz-1ΔPOZ pro-T cells. The thymic block induced by IL-7R deficiency can 

be reversed by overexpressing Bcl-2 protein [342, 343] or by deleting the Bax gene [525]. 

Similarly, the overexpression of Bcl-2 in Miz-1-deficient cells restored most of the early αβ 

T cells numbers to wild-type levels [512]. It is known that Bax is a target gene of the Gfi1 

transcriptional repressor and it has been described that Miz-1 can recruit Gfi1 to target gene 

promoters [134, 139, 526]. Therefore, it is possible that the up-regulation of Bax in Miz-

1ΔPOZ cells is the result of a disruption of the Miz-1/Gfi1 complex. This disruption may be 

caused by conformational changes in the mutant Miz-1 protein lacking its BTB/POZ 

domain or by the absence of the recruitment of a co-factor to the Bax promoter due to the 
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lack of the BTB/POZ domain of Miz-1. Future work would be required to clarify the details 

of this regulatory mechanism. 

 

The development of γδ-T cells strictly depends on IL-7 for its lineage-specific maintenance 

[353, 527]. IL7Rα expression is also sustained on γδ-T cells both in OP9DL1 culture [290] 

and in vivo [527]. Nevertheless, γδ-T cell lineage development is less dramatically altered 

when compared to the αβ-T cell lineage in Miz-1ΔPOZ [512]. Bcl-2 expression levels may 

represent one explanation why γδ-T cells are less affected since Bcl-2 mRNA levels are 

maintained in emerging γδ T cells, whereas it declines in developing αβ DN3 cells [290]. 

On the contrary, Bcl-XL transcription tends to decline in γδ-T cells, but remains stable in αβ 

DN3 cells, generating a lower Bcl-2-to-Bcl-XL ratio in αβ-T cells compared to γδ-T cells 

[290]. DN3 from Miz-1ΔPOZ maintain a high level of Bcl-2 transcripts and normal Bcl-XL 

levels [Saba, I. and Möröy, T., unpublished data], suggesting that the higher Bcl-2-to-Bcl-

XL ratio favors a relatively normal selection of γδ-T cells.   

 

Contrary to what was observed in B cell precursors, Miz-1 does not seem to directly bind to 

the regulatory regions of Bcl-2 in immature T cells [Saba, I. and Möröy, T., unpublished 

data]. Still, high expression levels of Bcl-2 are detected in Miz-1-deficient pro-T cells, 

possibly maintained through an IL-7-independent signal. This may provide a selection 

advantage for DN2/DN3 cells allowing them to escape the lack of survival signals caused 

by Miz-1 deficiency at the ETP/DN1 stage. It is also possible that a residual and very 

inefficient IL-7-dependent signal could be responsible for the elevated Bcl-2 expression 
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since DN2 cells from Miz-1ΔPOZ still had a low level of STAT5 phosphorylation in 

response to IL-7 stimulation despite elevated SOCS1 expression levels [512]. Taken 

together, it is likely that Miz-1 deficiency interrupts the IL-7/IL-7R/STAT5/Bcl-2 axis, 

which assures T-cell survival. 

 

Moreover, as in early B cells, Miz-1 binds to the SOCS1 promoter in pro-T cells and 

SOCS1 is overexpressed in Miz-1-deficient cells. Furthermore, the overexpression of Miz-1 

in DN3 pro-T cell line (SCID.adh murine thymic lymphoma) efficiently repressed SOCS1 

expression in response to IL-7 stimulation. These observations suggest that the lack of a 

functional Miz-1 leads to a de-repression of the SOCS1 gene [512]. Contrary to what was 

observed in the B cell compartment, transgenic overexpression of Bcl-2 in vivo or 

inhibition of SOCS1 using a morpholino oligo knock-down approach in vitro fully restored 

pro-T cell numbers and their ability to differentiate into more mature DP cells [512]. A 

definitive experiment to show SOCS1 prerequisite and its capacity to fully rescue the 

differentiation in vivo would have required testing SOCS1- and Miz-1- double deficient 

mice. However, parts of the effects of SOCS1 deficiency on thymocytes maturation are 

mediated by IFNγ [352, 528]. Therefore, SOCS1-deficient mice must also be IFNγ-deficient 

in order to be able to study T-cell development [352, 528, 529].  The crossing of Vav-cre 

Miz-1ΔPOZ to SOCS1- and IFNγ- double deficient mice, which represents over five alleles, 

would have required many mice generations before being able to analyze the first animal. 

For these reasons, the morpholino knock-down experiment was privileged. Furthermore, 

Miz-1 is the only factor required to regulate the expression of SOCS1 downstream of IL-7R 
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signaling in pro-T cells, whereas in early B-cells, another pathway is required to regulate 

EBF1. The regulation of SOCS1 by Miz-1 controls the activation of STAT5 

phosphorylation in response to IL-7 and enables the gauging of Bcl-2 levels required for the 

survival and further development of ETP/DN1/DN2 subsets (Figure 14). 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure 14. Miz-1 is required for early T-cell development. Miz-1 directly represses the 
JAK inhibitor SOCS1 and up-regulates Bcl-2 upon IL-7 stimulation. The IL-7-dependent 
IL-7/STAT5/Bcl-2 axis required for the survival and differentiation of ETP/DN1/DN2 pro-
T cells is shown (adapted from [512]). 
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6. Miz-1 functions in early B and T cells are independent of c-

Myc 

Miz-1 was originally discovered as a c-Myc interacting protein, allowing c-Myc to repress 

the transcription of genes coding for cell cycle regulators [136-138, 481, 492]. However, no 

evidence for a disturbed cell cycle progression in Miz-1-deficient B- and T-cell progenitors 

were observed, suggesting that Miz-1 does not regulate cell division or proliferation as 

originally thought in these subsets. Both early B- and T-cell differentiation are not altered 

in knock-in mice homozygous for c-MycV394D alleles, a form of c-Myc that no longer 

interacts with Miz-1 [135, 469]. These data indicate that the function of Miz-1 in early B 

and T cells is most likely c-Myc-independent [511, 512]. It could be argued that in the 

absence of a functional Miz-1, free c-Myc levels i.e. not bound to Miz-1 increase and drive 

Miz-1-deficient cells into cycling and thus initiate cell death, which could explain some of 

the phenotypes observed in Miz-1ΔPOZ mice. Nonetheless, c-Myc expression levels in Miz-

1-deficient pro-T cells are normal and it has be reported that constitutive expression or 

overexpression of c-Myc in T cells leads to T cell lymphomas rather than to T cell 

depletion [448]. Moreover, higher c-Myc activity leads to a higher proliferation of pre-T 

cells [530], which is not observed in Miz-1ΔPOZ mice, arguing against such a hypothesis. 
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7. Miz-1 at the β-selection checkpoint 

Miz-1 protein must have an additional function later in pre-T cell differentiation, namely at 

the β-selection stage of DN3 cells, which is the first critical checkpoint in the maturation of 

pre-T cells [513]. The massive block of T-cell differentiation at the DN3/DN4 transition in 

Miz-1-deficient mice is the evidence for such implication, which in contrast to the earlier 

block at the ETP/DN1/DN2 stage, cannot be restored by Bcl-2 overexpression [512, 513]. 

DN3 cells passing this checkpoint actively rearrange the TCRβ locus and thus have to 

tightly control DNA damage response pathways initiated by the V(D)J recombination 

events. After productive rearrangement, DN3 cells activate allelic exclusion [402] and 

become pre-TCR+ DN3b cells that undergo a massive proliferative expansion, differentiate 

into DN4 cells [289] and escape apoptosis. The findings described in the third results 

chapter of this thesis suggest that Miz-1 is essential to coordinate the steps that assure 

survival of DN3 cells and their expansion/differentiation into DN4/DP cells. In particular, 

Miz-1 seems important to coordinate the expression of the pre-TCR and to control p53 

expression and activity in the presence of DNA double strand breaks generated by V(D)J 

recombination events in DN3 cells [513].  

 

All the observations described in the third results chapter of this thesis point to the 

conclusion that Miz-1 deficiency does not affect the expression, stability or processing of 

the pre-TCR per se, nor does it alter TCR-dependent signaling in thymocytes [513]. The 
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absence of a pre-T cell rescue when a transgene coding for rearranged TCRαβ chains was 

introduced in Miz-1ΔPOZ mice indicated that the lack or low expression levels of surface 

TCRβ is not solely responsible for the block of T-cell differentiation at the DN3/DN4 

transition [513]. A first indication to the nature of the defect in Miz-1-deficient pre-T cells 

was that enhanced spontaneous cell death occurs in Miz-1ΔPOZ DN3a cells, at the moment 

where V(D)J recombination and β−selection checkpoint take place [513]. This correlated 

with defects in cell cycle progression in Miz-1ΔPOZ DN3 and DN4 cells and with the up-

regulation of p53 target genes that control apoptosis such as Bax, PUMA and Noxa and 

those that control cell cycle progression such as p21CIP1 [426]. This evidence suggested that 

Miz-1 exert a different function in DN3 cells compared to ETP/DN1/DN2 cells where it 

controls the IL-7R signaling pathway. This new function is related to the control of p53 

response at a cell stage implicating the generation of DNA damage response and p53 

activation that needs to be under control during V(D)J recombination events.  

 

8. p53 and the balance between survival and cell death  

The G1 specific negative regulator of cell cycle progression p21CIP1 is a p53-target gene 

[531] that plays a central role in the activation of p53-dependent cell cycle arrest. A balance 

between the well-established roles of p53 in inducing cell cycle arrest and apoptosis and its 

more recent implications in promoting cell survival [426, 532] is required to maintain the 

normal development of cells, especially to control responses to stress and DNA damage. 

Accordingly, low level of p53 activity is maintained under conditions of normal cell 
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proliferation and in the absence of stress signals. A short and transient activation of p53, for 

example when DNA damage occurs, allows a temporary cell cycle arrest of stressed cells 

for DNA double strand breaks repair. If the damage or stress signal persists, p53 activation 

will lead to the induction of genes that promote cell death to eliminate cells with damaged 

DNA, which represent a potential source of malignancies [532]. Clearly, the expression 

levels of p53 itself in Miz-1ΔPOZ cells was comparable to wild-type cells, but a number of 

p53 target genes was up-regulated suggesting that Miz-1 affects the regulation of p53 

transcriptional machinery either directly or indirectly [513]. Miz-1-deficient DN3 cells 

overexpress genes such as Bax, Noxa and PUMA, which probably results from damage or 

stress signals that persist. This sustained p53 activation leads to the induction of cell cycle 

arrest and cell death (Figure 15). 

 

A recent report that directly implicates Miz-1 as a mediator of the p19ARF-p53 pathway is 

also consistent with the potential regulation of p53 by Miz-1. In this study, it was shown 

that Miz-1 is able to bind to p19ARF and to interfere with p53 stability. The same study also 

demonstrated that Miz-1 interacts directly with p53 and that this interaction diminishes the 

binding of p53 to its target gene promoters and inhibits p53-mediated gene transcription 

[502]. It is therefore conceivable that Miz-1 plays a role in the regulation of p53 in pre-T 

cells and that a functional form of Miz-1 is necessary to control p53 activity at the β-

selection checkpoint to allow V(D)J recombination to occur without initiating apoptosis. To 

understand this regulation more deeply, more experiments need to be done. For example, 

experiments that enable the detection of a co-occupation of Miz-1 and p53 on the promoter 
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of DNA damage response genes may help clarify this point. Taken together, all the 

observations described here, together with published data, can help explain the DN3/DN4 

differentiation block observed in Miz-1-deficient mice and would establish the BTB/POZ 

domain protein Miz-1 as a new regulator of the pre-TCR β-selection checkpoint (Figure 

15). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. Implication of Miz-1 during the β-selection checkpoint. Miz-1 is required to 
regulate the p53 response during pre-TCR DN3 selection. The expression of Miz-1 lacking 
the BTB/POZ domain shifts the balance between pre-TCR signals and p53 response toward 
apoptosis. 
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9. Miz-1 regulation at the β-selection through direct protein-

protein interaction?  

The availability of a given transcription factor to interact with DNA can be influenced by 

post-translational modifications, and by interaction with other proteins. These 

modifications can lead to the sequestration, inactivation or degradation of a transcription 

factor or a complex of transcription factors that alter gene regulation [61]. Miz-1 seems to 

be involved in other physiological processes than transcriptional regulation. The 

characterization of the c-Myc/Miz-1 binding showed that Miz-1 is expressed both in the 

cytoplasm and in the nucleus, indicating that it may be involved in the nuclear/cytoplasmic 

shuttling of c-Myc [469]. A recent study pointed to a possible cytoplasmic function of Miz-

1 by showing that it can interact with the c-Jun N-terminal kinase (JNK1). This interaction 

seems to mediate specifically the TNF-α-dependent JNK1 activation and the subsequent 

induction of cell death by the inhibition of TRAF2 K63-linked polyubiquitination [533].  

 

Another example is the SLUG protein, an inhibitor of PUMA expression, which is also 

encoded by a p53 target gene. SLUG is able to antagonize p53-mediated apoptosis in 

hematopoietic progenitors by repressing PUMA [430]. Whether Miz-1 can bind to SLUG or 

to other co-factor that facilitates SLUG-induced repression of PUMA can represent a 

mechanism that implicates the cytoplasmic function of Miz-1. This cytoplasmic activity of 

Miz-1 in pre-T cells may be dependent or independent of the BTB/POZ domain. It is 

conceivable that the absence of the BTB/POZ domain of Miz-1 may inhibit a Miz-1/p53 

interaction as suggested by Miao and collaborators [502], or other Miz-1 mediated 
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interactions involved in the transcriptional regulation of p53 target genes. More 

experimentation is needed to explore this other role of Miz-1 as a cytoplasmic protein-

protein interacting regulator. 
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Perspectives 

The mouse models generated for this study allowed making a number of new observations 

regarding the implication of Miz-1 in T- and B-cell development. Several questions remain 

to be address in order to understand the molecular mechanisms by which Miz-1 exerts these 

newly discovered functions. Moreover, preliminary findings suggest that Miz-1 is involved 

in malignant transformation of lymphoid cells and thus may be a critical element necessary 

for the development and maintenance of c-Myc-dependent and -independent lymphoma. 

Some of these data and the perspectives on how to investigate these implications may help 

to elucidate whether Miz-1 can be a suitable target for future therapies. 

 

1. Implication of Miz-1 in p53 target gene regulation 

Since some target genes such as PUMA, Noxa and Cdkn1a are deregulated in Miz-1ΔPOZ 

DN3 deficient cells, it can be argued that Miz-1 regulates the p53 pathway at least in 

specific subsets of T cells. It would be interesting to perform a ChIP-seq experiment to 

identify the sites in the genome that are occupied by Miz-1 and p53, for instance sites in 

p53-dependent target genes. This would help elucidate whether Miz-1 can directly bind to 

the promoter of these genes and thus could regulate their transcription. Moreover, the 

occupancy of p53 targets by Miz-1 may be tested under conditions where p53 is at a steady 

state or activated state by exposing the cells to irradiation or other agents that induce DNA 

damage. Non-irradiated or irradiated DN3 cells could also be tested for the activation of 
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p53 by western blot analysis to detect phosphorylated forms of the protein in the presence 

or absence of a functional Miz-1 protein to conclude whether Miz-1 interferes with p53 

activation. Furthermore, comparing wild-type and Miz-1ΔPOZ DN3 cells before and after 

irradiation may determine if p53 activity behaves differently in the presence or absence of a 

functional Miz-1 protein. For example, p53 may occupy different binding sites in Miz-

1ΔPOZ DN3 compared to wild-type cells. Additionally, it is conceivable that Miz-1 acts as a 

p53 inhibitor, as proposed by Miao and collaborators [502] and that p53 becomes activated 

in DN3 cells that are undergoing β-selection checkpoint in the presence of a non-functional 

Miz-1 protein. Using p53-deficient mice crossed with Vav-cre Miz-1fl/fl, one could confirm 

that the ablation of p53 can rescue the DN3/DN4 pre-T cell differentiation block in Miz-

1ΔPOZ mice. These experiments would strengthen a new role of Miz-1 as a regulator of the 

activation of p53 in immature thymocytes under a physiological DNA damage response 

induced, in this case, by V(D)J recombination events. 

 

Miz-1 involvement in the p53 pathway is suggested by data presented in this thesis and was 

also proposed by another study showing that p53 competes with p19ARF for the binding of 

Miz-1 and that Miz-1/p53 complex prevents p53 from activating target genes [502]. The 

validation of such interaction in vivo and whether Miz-1 does indeed form a complex with 

the p53 protein in pre-T cells by co-immunoprecipitation would be of importance. If 

confirmed, this would strongly support the view that Miz-1 binds to p53 and attenuates its 

activity by interfering with its DNA binding capacity. Many tumors develop by being 

selected for the inactivation of p53-dependent target genes [534, 535]. The implication of 
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Miz-1 in such regulation of p53 activity may help explain at a the molecular level how the 

loss of this pathway accelerates c-Myc-induced tumorigenesis  

 

2. The role of Miz-1 in mature B cells  

The few follicular B cells or mature T cells that manage to populate peripheral lymphoid 

organs in Miz-1∆POZ mice did not show a proliferation defect despite the fact that they 

emerged from a disturbed early B- and T- cell development [Kosan, C., Saba, I. and Möröy, 

T., unpublished data]. Furthermore, mature B cells from Vav-cre Miz-1∆POZ have higher 

IgM titers before and after immunization. These cells are also able to do class switching to 

IgG [Kosan, C. and Möröy, T., unpublished data]. To obtain further insight into the role of 

Miz-1 in peripheral mature B cells, other Cre deleter mice strains will have to be used. For 

example, CD19-cre [506] or Mb1-cre [536] mice could be used to delete the BTB/POZ 

domain of Miz-1 at the pro-B cell or slightly earlier at the pre-pro-B cell stage, 

respectively. The frequencies and numbers of B cells in the spleen and lymph nodes of 

these pan-B cell-specific Cre deleter mice can then be evaluated without the effect of Miz-1 

disruption in earlier precursors. This would allow studying the function of Miz-1 in 

germinal center formation after in vivo antigenic stimulation, for example. Moreover, class 

switch recombination could be compared between wild-type and Miz-1ΔPOZ cells after in 

vivo antigenic stimulation or after in vitro stimulation with LPS and LPS/IL-4. The 

implication of Miz-1 in germinal center formation has previously been suggested. In fact, 

Miz-1 and Bcl-6, another BTB/POZ domain protein with defined roles in germinal center 
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formation, form a complex that binds to the Cdkn1a promoter and represses its 

transcription [492]. During these processes, germinal center B cells are released from cell 

cycle arrest and undergo massive proliferation, class switch recombination and somatic 

hypermutation [227]. As a consequence, and similar to the events occurring in DN3 pre-T 

cells, a p53-dependent DNA damage response is induced. It has been suggested that Bcl-6 

is a key-player required to coordinate this p53-dependent DNA damage response [537-

539]. In particular, it has been proposed that Bcl-6 is necessary to downregulate p53-

dependent DNA damage response genes. For example, Bcl-6 can directly bind to p53 

promoter and repress its transcription [540]. It remains to be explored how other p53 target 

genes and effectors may be controlled during physiological DNA damage responses, but 

the functions of Bcl-6 and of the Bcl-6/Miz-1 complex are compelling examples for future 

work. These studies could help understand how germinal center B cells may be protected 

from the consequences of a DNA-damage if this occurs during important physiological 

process such as class switch recombination or somatic hypermutation. Such a protection 

against DNA damage responses has to be tightly controlled to prevent malignant 

transformation as a consequence of the introduction of mutations. The observation that 

Miz-1 is one of the key factors regulating this process suggests that it may protect lymphoid 

cells from developing into leukemia or lymphoma. 
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3. Miz-1 implication in human B cell production?  

IL-7 is important for mouse B cell generation. However its role in human B lymphopoiesis 

is controversial [541]. In vitro studies of human B-cell development were carried out using 

fetal hematopoietic cells [542-548] or a hybrid co-culture system of human progenitors on 

murine stromal layers [549-551]. Moreover, in vivo data from clinical reports indicated that 

patients with severe combined immunodeficiency due to defects in the IL-7/IL-7R 

signaling lacked T cells, but had peripheral blood B cells [552-554]. These studies showed 

that IL-7 had little effect on human B cell production. The major difficulty interpreting 

these studies resides in the inability to differentiate human cord blood or adult bone marrow 

HSC without murine stroma. Moreover, samples from immunocompromised patients were 

not very abundant to conduct rigourous studies and most of the clinical data obtained from 

patients with defective IL-7/IL-7R signaling were acquired early in life. This is consistent 

with observations that fetal and neonatal B cell production is intact in mice with IL-7 

defects [185]. A recent study has established that IL-7 is essential for human B cell 

generation. Using a human-only culture model, Parrish and collaborators provided the first 

evidence that B-cell development from human HSC in adult bone marrow is dependent on 

IL-7 [555]. The authors also showed that IL-7-induced expansion of human pro-B cells is 

increasingly critical as the precursors progress through their developemental steps of 

ontogeny [555]. Human IL-7 effects were mediated through the direct action of the 

cytokine on human CD19+ pro-B cells to increase proliferation of both CD34+ and CD34- 

stages of B-cell development [555]. The work presented in this thesis suggests that Miz-1 

exerts a function in regulating the IL-7-independent E2A/EBF1/Pax-5/Rag-1/2 axis 
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responsible for the induction of adult B-cell differentiation signals in mice, and the IL-7-

dependent up-regulation of Bcl-2 required for the survival of B cell progenitors. Both 

elements need to be coordinated by Miz-1 to allow the full lineage commitment and 

differentiation of murine B cells [511]. The characterization of Miz-1 in coordinating IL-

7/IL-7R signaling in adult human HSC should elucidate the implication of Miz-1 in lineage 

commitment and differentiation of human B cells. For instance, human HSC expressing 

functional and non-functional Miz-1 could be co-cultured on human stroma cell lines. The 

differentiation of HSC towards the B lineage may be monitored by the expression of EBF, 

Pax-5 and the capacity of the developing cells to respond to IL-7 by proliferating and 

upregulating CD19. These future studies would have implications for the immune 

reconstitution following stem cell transplantation whether cord blood or bone marrow HSC 

are used in a clinical setting. 

 

4. The role of Miz-1 in peripheral T cells 

Although few T cells survive and populate the peripheral organs in Miz-1∆POZ mice, the 

proportion of mature CD4 to CD8 single positive cells is altered [Saba, I., Kosan, C. and 

Möröy, T., unpublished data]. This unbalanced ratio of mature cells probably results from 

the abnormal IL-7 signaling reported in the thymus [512]. As Miz-1 regulates SOCS1 

expression, a role of SOCS1 in modulating T cell ratio and functions in the periphery 

cannot be ruled out. In fact, SOCS1 is a critical player during T-cell development and 

maturation within the thymus, but it can also regulate mature T lymphocytes. The 
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peripheral T cell pool of SOCS1-/-IFNγ-/- mice displays defective homeostasis of CD8+ cells 

due to their accumulation, which causes a decrease in CD4 to CD8 ratio [556, 557]. The 

functions of Miz-1 in mature T cells could be studied in Miz-1∆POZ mice where the deletion 

of the BTB/POZ domain is induced by CD4-cre mice [558]. This deletion occurs as the 

thymocytes enter the double positive stage and avoids all the early T-cell development 

defects reported with the Vav-cre deleter mouse strain. IL-7 signaling can therefore be 

studied in the mature T cell compartement of a mouse strain devoid of the early pro-T cell 

block caused by Miz-1 deficiency. The magnitude and kinetics of IL-7 induced STAT5 

phosphorylation and Bcl-2 upregulation, as well as the expression and implication of 

SOCS1, can be studied in the CD4-cre Miz-1-deficient mouse. The cellularity, frequency, 

proportion of cells and their homeostasis and capacity to proliferate may also be evaluated.  

 

After stimulation, naïve CD4+ cells differentiate into helper CD4+ T cells like the Th1 and 

Th2 subset. Th1 cells are regulated by the transcription factor T-bet, mainly secrete IFNγ 

and participate in cellular immunity processes. Th2 cells express the transcription factors 

GATA3 and c-Maf, and produce IL-4, IL-5 and IL-13 [559]. Cell proliferation, cytokine 

secretion and Th polarization that produce different cytokines could be evaluated to study 

the role of Miz-1 in the differentiation of mature T cells. In vivo or in vitro antigenic 

responses could also be studied in different Miz-1-deficient mice crossed with transgenic 

mice expressing a TCR that specifically recognizes a peptide and that is MHC class I or II 

restricted, like the OTI and OTII tg mice.  
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T follicular helper cells (Tfh) have been defined as a subset of helper CD4+ T cells that is 

activated but non-polarized [560]. B cells are crucial for the development of these Tfh cells 

that express high levels of Bcl-6 and secrete IL-21 [561-563]. The cognate interaction 

between these cells occurs in the germinal centers [564], where germinal center B cells 

require T cell help to produce antibodies with high affinity. The up-regulation of Bcl-6 in 

the T cell zone is necessary for Tfh to migrate to the B cell follicule. Since, Miz-1 can 

interact with Bcl-6, this T-B cell border movement may be influenced by the expression of 

a functional or mutated Miz-1 protein. Such a hypothesis, if validated, may implicate Miz-1 

in regulating the differentiation and expansion of B and T cells in germinal centers. As 

Miz-1 is a crucial factor required for early B- and T-cell commitment, survival and 

differentiation [511-513], it would be interesting to extend the study of the role of Miz-1 in 

the survival and maturation of Tfh and B cells in the germinal center. Many groups have 

recently contributed to the identification of mechanisms that may explain how B cells 

support Tfh cell survival and maintenance [565-567]. Collectively, these efforts may 

advance our understanding of the immune response in germinal centers in order to improve 

vaccine designs. 

 

5. Conditional full deletion of the Miz-1 protein 

To further characterize the entire range of Miz-1 functions early and later in lymphoid 

development, and to clarify whether the implications of Miz-1 in regulating B- and T-cell 

commitment, survival and differentiation are entirely dependent on the presence of the 
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BTB/POZ domain of Miz-1 [511-513], mice that lack the entire Miz-1 protein have been 

generated. Briefly, the gene targeting strategy that was chosen will allow to conditionally 

invert the exon containing the translational initiation codon after Cre-recombinase 

expression. This strategy should prevent any read-through of the Zbtb17 mRNA and thus 

assures the conditional full ablation of Miz-1. The generation of a complete conditional 

Miz-1 knock-out mouse with this strategy will hopefully circumvent the embryonic 

lethality previously reported [503]. This new mouse model will also help understand the 

differences between the complete deletion of Miz-1 and the expression of Miz-1∆POZ alleles 

in regulating lymphoid development.  

 

6. Miz-1 and lymphomagenesis 

Miz-1 interacts with c-Myc and Bcl-6, both being proto-oncogenic proteins implicated in 

the emergence of leukemia and lymphoma if deregulated [433, 568]. The c-Myc/Miz-1 and 

the Miz-1/Bcl-6 complexes were shown to play important roles in cell cycle progression by 

repressing the negative cell cycle regulator p21CIP1 [492, 496]. This strongly suggested that 

Miz-1 is involved in malignant transformation. Both c-Myc and Bcl-6 genes undergo 

chromosomal translocations with the immune globulin loci. Translocations of heterologous 

chromosomes to the coding region of Bcl-6 are frequently reported in diffuse large B cell 

lymphomas that originate in germinal centers [568-574]. These translocations lead to an 

activated form of Bcl-6 which downregulates p21CIP1 via Miz-1 and cause acceleration in 

proliferation [492]. In addition to the elevated Bcl-6 expression, some DLBCL show high 

expression levels of Bcl-2 that prevent cells from undergoing apoptosis [575-577]. It was 
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shown in human germinal center centroblats and in primary biopsies from patients 

diagnosed with DLBCL that Bcl-6 does not bind directly to the Bcl-2 promoter, but was 

able to suppress its transcription via Miz-1 [494]. Bcl-6-mediated suppression of Bcl-2 can 

be altered in primary DLBCL by an additional translocation t(14;18) or by deregulated 

Miz-1 expression [494]. On the one hand, the insufficient expression of Miz-1 may inhibit 

Bcl-6 from reaching Bcl-2 promoter and repressing its transcription [494]. On the other 

hand, high Miz-1 expression levels, as observed in one third of Bcl-2+Bcl-6+ DLBCL, may 

out-titrate the capacity of Bcl-6 to suppress Bcl-2 by generating a lot of Miz-1 protein 

unbound to Bcl-6 [494]. The co-expression of Bcl-6 and Bcl-2 in DLBCL was reported and 

may identify patients with unfavorable prognosis [578]. The abnormal expression of Bcl-2 

may increase the pool of cells that can be targeted by genetic modifications in the germinal 

center. Therefore targeting the oncogenic activities of Bcl-6 and the anti-apoptotic function 

of Bcl-2 [579, 580] via Miz-1 may represent a strategy for treating some DLBCL.  

 

c-Myc has been implicated in the generation of the Burkitt-type B cell lymphoma in human 

and mice models. These studies showed that the c-Myc gene becomes deregulated after a 

t(8;14) translocation juxtaposes it close to the transcriptional regulatory elements of the 

immunoglobulin heavy chain locus [431-434]. In collaboration with the Eilers and Felsher 

groups, the implication of the c-Myc/Miz-1 complex in c-Myc-induced tumorigenesis was 

studied by using transgenic mice that overexpress c-Myc or the c-MycV394D mutant that no 

longer interacts with Miz-1 [581]. This study showed that tumor development in transgenic 

mice overexpressing c-MycV394D is delayed compared to mice expressing the wild-type 
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allele of c-Myc [581]. These data hint to the fact that the formation and maintenance of c-

Myc-induced lymphomas is dependent on the interaction between Miz-1 and c-Myc and 

very likely on the repressive function of this complex. In accordance with this proposed 

model, preliminary results with CD19-cre x Miz-1∆POZ x Eµ-Myc mice show that the 

ablation of Miz-1 impedes the development of malignancies in the lymphoma prone Eµ-

Myc transgenic mouse model [444, 450, 582, 583] and Kosan, C. and Möröy, T., 

unpublished data]. Finding candidate genes that are critical for Eµ-Myc driven B-cell 

lymphomagenesis and that are regulated by Miz-1 may provide insights into the role of 

Miz-1 in c-Myc- or Bcl-6-dependent B-cell lymphomagenesis. The molecular mechanisms 

that are exerted by Miz-1 in the development and maintenance of these tumors may help 

obtain information on whether Miz-1 may become a suitable target for therapy. 

 

c-Myc also plays an important role in the development of T-cell lymphomas and been 

recognized as a critical element in T-cell acute lymphoblastic leukemia that develop as a 

consequence of activated Notch signaling and mutations in the Notch1 gene [455, 457, 

458]. Recently though, the role of c-Myc in Notch- induced T-ALL has been debated after 

demonstrating that Notch rather than c-Myc is the dominant oncogene in T-ALL [460]. 

Evidence that Miz-1 regulates Notch1 signaling was obtained when studying Miz-1-

deficient cells in which Notch target genes such as Hes-1, Dtx-1, Dtx-2, Cdkn1a and Cyclin 

D1 were deregulated [Saba, I. and Möröy, T., unpublished data]. Moreover, in a tumor 

prone Notch1 transgenic mouse model expressing a form of Notch that lacks its c-terminal 

domain (Notch1ΔCT) [584], preliminary results were obtained showing that Miz-1 plays a 

role in the development of Notch-induced T-ALL [Rashkovan, M., Saba, I. and Möröy, T., 
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unpublished data]. Interestingly, this role is different from the one we observed in B-cell 

lymphomagenesis. These findings point to a different requirement for Miz-1 in c-Myc-

dependent versus Notch-dependent tumors. To further understand these differences, it will 

be necessary to identify the genes that are critical for Notch-induced malignant 

transformation and that are at the same time regulated by Miz-1. These targets may later be 

used to design strategies aiming to suppress Notch-induced T-cell lymphomagenesis. 
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Conclusions 
B- and T-cell differentiation is coordinated by cytokine signaling, V(D)J recombination and 

transcription factor regulation. The signal transduction cascade initiated by IL-7 and its 

direct and indirect downstream effectors are essential for the earliest commitment stages of 

these cells. Additionally, transcription factors such as EBF and Pax-5 cooperate with the 

IL-7R signaling to ensure the coordination and regulation of these early commitment and 

differentiation stages. This study showed that the BTB/POZ-domain protein Miz-1 is a 

novel and essential regulatory factor for both B- and T-cell development. The data 

presented in this thesis suggest that Miz-1 is involved in regulating Bcl-2 expression in 

bone marrow precursors that migrate through the blood before reaching the thymus to help 

the cells benefit from IL-7 availability to survive. In early B- and T- cells, Miz-1 regulates 

the survival signals induced by IL-7 signaling by monitoring, on one hand, the expression 

levels of SOCS1, a negative regulator of IL-7/IL-7R signaling and, on the other hand, Bcl-

2, an anti-apoptotic protein and a positive effector of the IL-7/IL-7R signaling. The IL-

7/STAT5/Bcl-2 axis requires the expression of a functional form of Miz-1 protein that 

exerts its transcriptional activities in a cell specific manner at the ETP/DN1/DN2 stages of 

T-cell development and in immature B cells.  In addition to the IL-7/STAT5/Bcl-2 axis 

regulation in B cells that is responsible for generating survival signals, Miz-1 is required for 

the proper expression of EBF to induce differentiation signals of committed B cells. 

Therefore, Miz-1 assures the functioning of both the IL-7/STAT5/Bcl-2 and the EBF/Pax-

5/Rag-1/2 axis for the proper commitment and differentiation of the T- and B- cell lineage. 

Miz-1 is also a critical factor for the β-selection checkpoint in differentiating pre-T cells. It 
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is required for both the regulation of the p53 response and the proper expression of the pre-

TCR to support the proliferative burst of pre-T cells (Figure 16). The regulation exerted by 

Miz-1 in B and T cells is mostly likely independent of its interacting partner c-Myc, and 

seems specifically linked to the BTB/POZ domain of Miz-1. 

 

Cancer in the immune and hematopoietic system manifests as lymphoma and leukemia. It is 

a consequence of a deregulation of particular constituents in the signaling pathways that 

control differentiation and proliferation of B and T cells. Many of these signaling pathways 

regulate the activity of transcription factors and chromatin modifiers and thus indirectly 

influence gene expression patterns. The findings exposed in this thesis on c-Myc and Miz-1 

functions may contribute to better understand the mechanisms responsible for the 

emergence of leukemia and lymphoma. These transcription factors were originally found to 

regulate cell cycle progression. The data reported here show that they also control cell 

survival and lineage commitment and differentiation of B and T cells. As transcription 

factors constitute the endpoint of specific hematopoietic signaling pathways, they have 

been causally implicated in the altered genetic programming found in hematopoietic 

malignancies. This study may therefore provide new knowledge important for the design of 

future therapeutic strategies against cancer. 
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Figure 16. A functional Miz-1 protein is required to regulate lymphoid precursors and 
early B- and T-cells functions. Miz-1 regulates Bcl-2 expression in ELP, and Bcl-2 and 
SOCS1 expression in ETP/DN1/DN2 and in pre-proB to pre-B cell transition. Miz-1 is 
required for both the IL-7-independent E2A/EBF1/Pax-5/Rag-1/2 axis responsible for the 
induction of B cell differentiation signals, and the IL-7-dependent IL-7/STAT5/Bcl-2 axis 
required for the survival of B and T cell at the cytokine-dependent steps of the 
development. An additional role of Miz-1 in regulating the pre-TCR and p53-target genes 
expression is necessary for pre-T-cell differentiation (adapted from [515]). 
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