
 - i -

Université de Montréal

Transformation by Example

par

Marouane Kessentini

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Thèse présentée à la Faculté des arts et des sciences

en vue de l’obtention du grade de Philosophiæ Doctor (Ph.D.)

en informatique

Décembre, 2010

© Marouane Kessentini, 2010

 - ii -

Université de Montréal

Faculté des arts et des sciences

Cette thèse intitulée:

Transformation by Example

Présentée par :

Marouane Kessentini

a été évaluée par un jury composé des personnes suivantes :

Jacques Ferland, président-rapporteur

Houari Sahraoui, directeur de recherche

Mounir Boukadoum, co-directeur

Ferhat Khendek, membre du jury

Jeff Gray, examinateur externe

Marléne Frigon, représentant du doyen de la FAS

 - 3 -

Résumé

La transformation de modèles consiste à transformer un modèle source en un

modèle cible conformément à des méta-modèles source et cible. Nous distinguons deux

types de transformations. La première est exogène où les méta-modèles source et cible

représentent des formalismes différents et où tous les éléments du modèle source sont

transformés. Quand elle concerne un même formalisme, la transformation est endogène. Ce

type de transformation nécessite généralement deux étapes : l’identification des éléments

du modèle source à transformer, puis la transformation de ces éléments. Dans le cadre de

cette thèse, nous proposons trois principales contributions liées à ces problèmes de

transformation. La première contribution est l’automatisation des transformations des

modèles. Nous proposons de considérer le problème de transformation comme un problème

d'optimisation combinatoire où un modèle cible peut être automatiquement généré à partir

d'un nombre réduit d'exemples de transformations. Cette première contribution peut être

appliquée aux transformations exogènes ou endogènes (après la détection des éléments à

transformer). La deuxième contribution est liée à la transformation endogène où les

éléments à transformer du modèle source doivent être détectés. Nous proposons une

approche pour la détection des défauts de conception comme étape préalable au

refactoring. Cette approche est inspirée du principe de la détection des virus par le système

immunitaire humain, appelée sélection négative. L’idée consiste à utiliser de bonnes

pratiques d’implémentation pour détecter les parties du code à risque. La troisième

contribution vise à tester un mécanisme de transformation en utilisant une fonction

oracle pour détecter les erreurs. Nous avons adapté le mécanisme de sélection négative qui

consiste à considérer comme une erreur toute déviation entre les traces de transformation à

évaluer et une base d’exemples contenant des traces de transformation de bonne qualité. La

fonction oracle calcule cette dissimilarité et les erreurs sont ordonnées selon ce score. Les

différentes contributions ont été évaluées sur d’importants projets et les résultats obtenus

montrent leurs efficacités.

Mots-clés : Transformation de modèle, par l’exemple, défauts de conception, test des

transformations, recherche heuristique, système immunitaire artificiel

 - 4 -

Abstract

Model transformations take as input a source model and generate as output a target

model. The source and target models conform to given meta-models. We distinguish

between two transformation categories. Exogenous transformations are transformations

between models expressed using different languages, and the whole source model is

transformed. Endogenous transformations are transformations between models expressed in

the same language. For endogenous transformations, two steps are needed: identifying the

source model elements to transform and then applying the transformation on them. In this

thesis, we propose three principal contributions. The first contribution aims to automate

model transformations. The process is seen as an optimization problem where different

transformation possibilities are evaluated and, for each possibility, a quality is associated

depending on its conformity with a reference set of examples. This first contribution can be

applied to exogenous as well as endogenous transformation (after determining the source

model elements to transform). The second contribution is related precisely to the detection

of elements concerned with endogenous transformations. In this context, we present a new

technique for design defect detection. The detection is based on the notion that the more a

code deviates from good practice, the more likely it is bad. Taking inspiration from

artificial immune systems, we generate a set of detectors that characterize the ways in

which a code can diverge from good practices. We then use these detectors to determine

how far the code in the assessed systems deviates from normality. The third contribution

concerns transformation mechanism testing. The proposed oracle function compares

target test cases with a base of examples containing good quality transformation traces, and

assigns a risk level based on the dissimilarity between the two. The traces help the tester

understand the origin of an error. The three contributions are evaluated with real software

projects and the obtained results confirm their efficiencies.

Keywords : Model-driven engineering, by example, design defects, search-based software

engineering, artificial immune-system

 - 5 -

Contents

Chapter 1: Introduction ... 16

1.1 Research Context ... 16

1.1.1 Automated Model Transformation ... 17

1.1.2 Automated Testing Transformation ... 21

1.2 Problem Statement ... 22

1.3 Contributions .. 25

1.4 Roadmap .. 27

Chapter 2: Related Work ... 29

2.1 Model Transformation ... 29

2.1.1 Exogenous Transformation ... 30

2.1.2 Endogenous Transformation ... 39

2.2 Correctness of Model Transformation ... 43

2.3 By-Example Software Engineering.. 48

2.4 Search-based Software Engineering .. 49

2.5 Summary .. 50

Part 1: Exogenous Transformation by Example 53

Chapter 3: Static Model Transformation by Example 55

3.1 Introduction .. 55

3.2 Class Diagram to Relational Schema Transformation by Example 55

Chapter 4: Dynamic Model Transformation by Example 100

4.1 Introduction .. 100

4.2 Sequence Diagrams to Colored Petri Nets Transformation by Example 100

REFERENCES ... 122

Part 2: Endogenous Transformation by Example 124

 - 6 -

Chapter 5: An Immune-Inspired Approach for Design

Defects Detection .. 127

5.1 Introduction .. 127

5.2 Design Defects Detection by Example: An Immune System Metaphor 127

Chapter 6: Design Defects Detection Rules Generation by

Example .. 138

6.1 Introduction .. 138

6.2 Design Defects Detection Rules Generation by Example.................................. 139

1. Introduction ... 139

2. Problem Statement .. 140

2.1 Defintions ... 140

2.2 Problem Statement ... 140

3. Approach Overview .. 140

3.1 Overview .. 141

3.2 Problem Complexity .. 141

4. Search-based Rules Generation ... 141

4.1 Harmony Search Algorithm ... 141

4.2 Solution Representation ... 142

4.3 Evaluating Solutions .. 142

5. Validation .. 143

5.1 Goals and Objectives.. 143

5.2 System Studied ... 143

5.2 Experimental Setting .. 143

5.3 Results .. 144

5.4 Discussion .. 145

6. Related Work .. 146

 - 7 -

7. Conclusion ... 146

References ... 147

Part 3: Model Transformation Correctness 148

Chapter 7: Testing Transformation by Example 150

7.1 Introduction .. 150

7.2 Testing Transformation by Example .. 150

Chapter 8: Conclusions .. 188

8.1 Contributions .. 188

8.2 Limitations and Future Research Directions .. 190

Related Publications .. 193

Bibliography ... 196

 - 8 -

List of Tables

Table 1 By-example Approaches ... 51

Search-Based Model Transformation by Example
Table 1. Solution Representation ... 67

Table 2. 12-fold cross validation with PSO .. 80

Table 3. 12-fold cross validation with PSO-SA .. 81

Example-Based Sequence Diagrams to Colored Petri Nets

Transformation Using Heuristic Search.
Table 1. Solution representation ... 107

Table 2. CPN size comparison .. 113

Deviance from Perfection is a Better Criterion than Closeness to Evil

when Identifying Risky Code.
Table 1 Program Statistics .. 129

Table 2 Results for Gantt .. 129

Table 3 Results for Xerces .. 131

Design Defects Detection Rules Generation: A Music Metaphor
Table 1 Program Statistics .. 140

Example-based Model Transformation Testing
Table 1. 12-fold cross validation ... 170

Table 2. Errors detected in SM5 ... 171

 - 9 -

List of Figures

Figure 1 Model Transformation Process .. 18

Figure 2 Automated Model-driven Engineering .. 21

Search-Based Model Transformation by Example
Fig 1. MOTOE overview .. 59

Fig 2. Illustration of the proposed transformation process ... 60

Fig 3. Class diagram metamodel .. 61

Fig 4. Relational schema metamodel ... 61

Fig 5. Example of a CLD source model .. 62

Fig 6. Equivalent RS target model to the CLD source model of Figure 5 63

Fig 7. Base of transformation examples and blocks generation in source model of TE4 .. 64

Fig 8. Example of source model (UML-class diagram) ... 67

Fig 9. Change Operator in PSO... 68

Fig. 10. Change Operator in SA .. 69

Fig 11. Fitness improvement with SA after PSO initial pass .. 82

Fig 12. Example-size variation with PSO ... 83

Fig 13. Example-size variation with PSO-SA .. 83

Fig 14. Execution time .. 84

Example-Based Sequence Diagrams to Colored Petri Nets

Transformation Using Heuristic Search.
Fig. 1. (a) Example of SD (source model) and (b) his equivalent CPN (target model) .. 100

Fig. 2. Transformation solution as blocks-to-constructs mapping 103

Fig.3. Example of source model ... 106

Fig. 4. Change Operator in PSO... 107

Fig. 5. Change Operator in SA .. 108

 - 10 -

Fig. 6. Temporal coherence ... 110

Fig. 7. Correctness of the transformations .. 112

Deviance from Perfection is a Better Criterion than Closeness to Evil

when Identifying Risky Code.
Figure 1 Approach Overview ... 125

Figure 2 Global alignment .. 125

Figure 3 Encoding ... 125

Figure 4 Best alignment sequence... 125

Figure 4 Effect of the number of detectors .. 130

Design Defects Detection Rules Generation: A Music Metaphor
Fig 1. Approach overview ... 137

Fig 2. Base of examples .. 137

Fig 3. An example of the ith harmony .. 140

Fig. 4. Results for Gantt .. 141

Fig. 5. Results for Quick UML ... 141

Fig. 6. Results for Xerces-J ... 142

Example-based Model Transformation Testing
Figure 1 Model transformation mechanism .. 149

Figure 2 Class diagram metamodel ... 151

Figure 3 Relational schema metamodel .. 151

Figure 4 Model transformation testing process ... 151

Figure 5 Overall process of our approach ... 155

Figure 6 Test case ... 157

Figure 7 Transformation unit coding .. 157

Figure 8 AIS-based algorithm overview ... 160

Figure 9 Global alignment algorithm ... 160

 - 11 -

Figure 10 Best sequence alignment between U5 and T15 .. 162

Figure 11 Transformation input: class diagram .. 167

Figure 12 Example-size variation .. 172

Figure 13 Execution time .. 172

Figure 14 Interactive transformation errors detection using our tool: (a) all traces and (b)

only risky traces .. 175

Figure 15 Detectors variation vs solution quality (precision) ... 176

Figure 16 Detectors variation vs. execution time... 177

 - 12 -

Acronyms

MT: Model Transformation

UML: Unified Modeling Language

MDE: Model-Driven Engineering

OCL: Object Constraints Language

MOTOE: MOdel Transformation as Optimization by Example

CPN: Colored Petri Nets

AIS: Artificial Immune System

RS: Relational Schema

API: Application Programming Interface

BON: Builder Object Network

ECL: Embedded Constraint Language

LHS: Left-Hand Side

RHS: Right-Hand Side

MTBE: Model Transformation by Example

ILP: Inductive Logic Programming

MTBD: Model Transformation by Demonstration

QVT: Query/View/Transformation

OO: Object-Oriented

DECOR: Defects dEtection CORrection

BBNs: Bayesian Belief Networks

MDA: Model-Driven Architecture

QBE: Query By Example

SBSE: Search-Based Software Engineering

SA: Simulated Annealing

GA: Genetic Algorithm

PSO: Particle Swarm Optimization

HS: Harmony Search

 - 13 -

Je dédie cette thèse à :

Mon père Lassâad

Ma mère Monia
Pour l’incontestable soutien, le respect et toute l’affection qu’ils ont témoignés à mon

égard. Qu’ils puissent trouver dans ce modeste travail la récompense de leurs énormes

sacrifices.

A mes frères Mohamed et Wael.

A la mémoire de mon grand-père Abdelkader.

A tous ceux qui me sont chers.

En témoignage de ma gratitude et de ma reconnaissance.

 - 14 -

 Remerciements

Je débute cette page en remerciant le ministère de l’enseignement supérieur tunisien et

l’université de Montréal pour avoir co-financé ce travail de recherche à travers plusieurs

bourses d’excellence.

Je veux remercier également les membres du jury qui ont bien voulu juger cette thèse.

Je commence la liste de remerciements par l’indescriptible et hyper-motivé Professeur

Houari Sahraoui qui m’a distingué, m’a accueilli et intégré dans son équipe. Il m’a guidé

avec un grand dévouement, une attention de chaque jour, un suivi sans faille. Il m’a

permis par son autorité respectueuse de progresser, de prendre conscience de mes

responsabilités pour parvenir à réaliser ce travail en me communiquant sa passion au

quotidien pour la recherche. Il a investi mon « mail » d’informations sans cesse renouvelées

afin de faire progresser mon travail et maintenir un lien étroit avec les chercheurs du

domaine. Les mots sont faibles pour lui exprimer ma reconnaissance.

Je tiens à remercier professeur Mounir Boukadoum pour avoir co-dirigé ma recherche et

qui n’a jamais épargné l’effort de m’aider, pour ses grandes qualités humaines, pour la

pertinence de ses orientations ainsi que pour la grande disponibilité dont il a fait preuve

tout au long du déroulement de cette thèse. Merci mille fois pour l’énorme soutien, pour

toutes les heures passées à relire les articles, ses encouragements y sont pour beaucoup

dans l’aboutissement de ce travail. J’espère que je serai toujours à la hauteur de sa

confiance. Qu’il trouve dans ces quelques lignes l’expression de mon profond respect et de

ma réelle gratitude.

 - 15 -

Je remercie les membres de l’équipe GEODES pour leur sympathie et leur gentillesse.

Merci à Stéphane pour son humanité et ses conseils, merci à Guillaume le roi de la 3D,

merci à Martin à qui je souhaite encore du courage pour sa thèse. Egalement, je remercie

spécialement Jamel, Aymen, Ahmed, Dorsaf, Omar, Fleur et Hajer pour leurs bonnes

humeurs.

J’exprime également ma gratitude à tous mes enseignants, qui ont contribué chacun dans

son domaine, à ma formation universitaire, sans laquelle je n’aurai jamais arrivé à réaliser

ce travail.

 - 16 -

Chapter 1: Introduction

1.1 Research Context

Software engineering is concerned with the development and evolution of large and

complex software-intensive systems. It covers theories, methods and tools for the

specification, architecture, design, testing, and maintenance of software systems. Today’s

software systems are significantly large, complex and critical. Such systems cannot be

developed and evolved in an economic and timely manner without automation.

Automated software engineering applies computation to software engineering

activities. The goal is to partially or fully automate software engineering activities, thereby

significantly increasing both quality and productivity. This includes the study of techniques

for constructing, understanding, adapting and modelling both software artefacts and

processes. Automatic and collaborative systems are both important areas of automated

software engineering, as are computational models of human software engineering

activities. Knowledge representations and artificial intelligence techniques that can be

applied in this field are of particular interest; they represent formal and semi-formal

techniques that provide or support theoretical foundations.

Automated software engineering approaches have been applied in many areas of

software engineering. These include requirements engineering, specification, architecture,

design and synthesis, implementation, modelling, testing and quality assurance, verification

and validation, maintenance and evolution, reengineering, and visualisation [40], [64]. This

thesis is concerned with two important fields of automated software engineering: (1) model

driven engineering and (2) maintenance. The contributions to the first field consist of model

transformation automation and testing using different techniques; those to the second field

include two tasks, of which the improvement of code quality by automating the detection

and correction of bad programming practices. This task can be viewed as a special kind of

 - 17 -

transformation, called endogenous transformation, where the source and target models

are the same. The second task is the validation of a transformation mechanism in order to

detect potential errors.

1.1.1 Automated Model Transformation

A first distinction concerns the kinds of software artefacts being transformed. If they

are programs (i.e., source code, bytecode, or machine code), we use the term program

transformation; if they are models, we use the term model transformation (MT). In our

view, the latter term encompasses the former, since a model can range from abstract

analysis models to very concrete models of source code. Hence, model transformations also

include transformations from a more abstract to a more concrete model (e.g., from design to

code) and vice versa (e.g., in a reverse engineering context). Model transformations are

obviously needed in common tools such as code generators and parsers.

Kleppe et al. [5] provide the following definition of model transformation, as

illustrated in Figure 17: a transformation is the automatic generation of a target model from

a source model, according to a transformation definition. A transformation definition is a

set of transformation rules that together describe how a model in the source language can

be transformed into a model in the target language. A transformation rule is a description of

how one or more constructs in the source language can be transformed into one or more

constructs in the target language.

 - 18 -

Figure 17 Model Transformation Process

In order to transform models, they need to be expressed in some modeling language

(e.g., UML for design models, and programming languages for source code models). The

syntax and semantics of the modeling language itself are expressed by a meta-model (e.g.,

the UML meta-model). Based on the language in which the source and target models of a

transformation are expressed, a distinction can be made between endogenous and

exogenous transformations.

Endogenous transformations are transformations between models expressed in the

same language. Exogenous transformations are transformations between models expressed

using different languages. This distinction is essentially the same as the one that is

proposed in the “Taxonomy of Program Transformation” [113], but ported to a model

transformation setting. In this taxonomy, the term rephrasing is used for an endogenous

transformation, while the term translation is used for an exogenous transformation.

Typical examples of translation (i.e., exogenous transformation) are:

– Synthesis of a higher-level, more abstract, specification (e.g., an analysis or design

model) into a lower-level, more concrete, one (e.g., a model of a Java program). A typical

example of synthesis is code generation, where the source code is translated into byte-code

 - 19 -

(that runs on a virtual machine) or executable code, or where the design models are

translated into source code.

– Reverse engineering is the inverse of synthesis and extracts a higher-level

specification from a lower-level one.

– Migration from a program written in one language to another, but keeping the

same level of abstraction.

Typical examples of rephrasing (i.e., endogenous transformation) are:

– Optimization, a transformation aimed to improve certain operational qualities

(e.g., performance), while preserving the semantics of the software.

– Refactoring, a change to the internal structure of software to improve certain

software quality characteristics (such as understandability, modifiability, reusability,

modularity, adaptability) without changing its observable behaviour.

As shown in Figure 18, there is a principal difference between endogenous and

exogenous transformation. In the first category, we transform the whole source model to

this equivalent target model conforming to different meta-models. However, for the second

category we have two steps. The first one consists of identifying the elements to transform

in the source model and then the second step consists of transforming these elements.

The endogenous transformations are principally related to maintenance activities

(refactoring, performance, etc). In modern software development, maintenance accounts for

the majority of the total cost and effort in a software project. Especially burdensome are

those tasks which require applying a new technology in order to adapt an application to

changed requirements or a different environment. The high cost of software maintenance

could be reduced by automatically improving the design of object-oriented programs

without altering their behaviour [64].

The potential benefit of automated adaptive maintenance tools is not limited to a

single domain, but rather spans a broad spectrum of modern software development. The

primary concern of developers is to produce highly efficient and optimized code, capable of

solving intense scientific and engineering problems in a minimal amount of time. One of

 - 20 -

the important issues in automated software maintenance is to propose automated tools

that improve software quality. Indeed, in order to limit costs and improve the quality of

their software systems, companies try to enforce good design development practices and

similarly to avoid bad practices.

The underlying assumption is that good practices will produce good software. As a

result, these practices have been studied by professionals and researchers alike with a

special attention given to design-level problems. There has been much research focusing on

the study of bad design practices sometimes called defects, antipatterns [61], smells [10], or

anomalies [84] in the literature. Although bad practices are sometimes unavoidable, in most

cases, a development team should try to prevent them and remove them from their code

base as early as possible. Thus, we define code transformation as the process related to

modifying the code in order to eliminate detected defects and improve the quality of the

software. Hence, many fully-automated detection and correction techniques have been

proposed [89]. Like in model transformation, the vast majority of existing work in design

defects detection and correction is rule-based. Different rules identify key features that

characterize anomalies using combinations of techniques like metrics, structural analysis,

and/or lexical information.

 - 21 -

Figure 18 Automated Model-driven Engineering

Figure 2 summarizes the different tasks to automate in this thesis. We have detailed

in this section the first part about endogenous and exogenous transformations. The second

part about validating a transformation mechanism will be detailed in the next section.

1.1.2 Automated Testing Transformation

As the specification of automated model transformations can also be erroneous, it

necessitates finding automated ways to verify the correctness of a model transformation.

Indeed, the automated verification of model transformation results represents another

 - 22 -

important issue in automated model driven engineering. If a transformation is not

correct, it may inject errors in the system design. Thus, it is pertinent to have an upstream

validation and verification process in order to detect errors as soon as possible, rather than

dragging them on all along. The verification increases the reliability and the usability of

model transformations [40]. Furthermore, automated verification may significantly reduce

the duration, and ultimately the total cost, of performing a model transformation.

To validate the transformation mechanisms, we distinguish between two main

categories: formal verification and testing. For proving the correctness of a system model

by formal verification, a large number of semi-automated tools exist, based on model

checking or theorem proving [22],[3]. They can typically draw more general conclusions on

a model by using theorem provers. However, their use requires a significant amount of

mathematical expertise and user interaction (not fully automated). Model transformation

testing typically consists of synthesizing a large number of different input models as test

cases, running the transformation mechanism and verifying the result using an oracle

function. In this context, two important issues must be addressed: the efficient

generation/selection of test cases and the definition of the oracle function to analyze the

validity of transformed models. Testing transformation mechanisms is an approximate

method and represents the main difference with formal methods. The definition of an oracle

function for model transformation testing is a challenge [64],[89] and requires addressing

many problems as detailed in the next section.

1.2 Problem Statement

As shown in the previous section, we distinguish between three main problems.

Part 1: Automating model transformation

Problem 1.1: Most of the available work on model transformation is based on the

hypothesis that transformation rules exist and that the important issue is how to express

them. However, in real problems, the rules may be difficult to define; this is often the case

 - 23 -

when the source and/or target formalisms are not widely used or proprietary. Indeed,

as for any rule-based system, defining the set of rules is not an obvious task and the

following obstacles may hinder the results:

(1) Incompleteness or missing rules in a rule base. As a result, useful information

cannot be derived from the rule base. In the context of model transformation, the

result of incompleteness can be viewed as a partial generation of the target model.

(2) Inconsistency or conflicting rules. Defining individual transformation rules is not a

fastidious task. However, ensuring coherency between the individual rules is not

obvious and can be very difficult given the dependencies between model elements

while applying transformation rules.

(3) Redundancy or the existence of duplicated (identical) or derivable (subsumed)

rules in the rule base. Redundant rules not only increase the size of the rule base but

may cause useless additional inferences.

Problem 1.2: In the case of dynamic models (e.g., sequence diagram to colored

Petri nets), the definition of transformation rules is more difficult: In addition to the

problems mentioned previously, dynamic models must consider order (time sequencing)

while transforming model elements (composition). Furthermore, in the case of dynamic

models, the systematic use of rules generates target models that may need to be optimized

in terms of size and structures.

Part 2: Exogenous transformation (design defects detection)

The next five problems are related to design defect detection related to exogenous

transformation.

Problem 2.1: There is no exhaustive list of all possible types of design defects.

Although there has been a significant work to classify defect types, programming practices,

paradigms and languages evolve making it unrealistic for them to permanently support the

detection of all possible defect types. Furthermore, there might be company or application-

specific design practices.

 - 24 -

Problem 2.2: For those design defects that are documented, there is no

consensual definition of the symptoms and their severity of impact on the code. Defects are

generally described using natural language and their detection relies on the interpretation of

the developers. This is a major setback for automation.

Problem 2.3: The majority of detection methods do not provide an efficient manner

to guide the manual inspection of the candidate list. Potential defects are generally not

listed in an order that helps developers address the most important ones first. There exist

few works, such as the one of Khomh et al [89], where probabilities are used to order the

results.

Problem 2.4: How to define thresholds when dealing with quantitative information?

For example, the Blob [8] detection involves information such as class size. Although, we

can measure the size of a class, an appropriate threshold value is not trivial to define. A

class considered large in a given program/community of users could be considered average

in another.

Problem 2.5: How to deal with the context? In some contexts, an apparent violation

of a design principle is considered as a consensual practice. For example, a class Log

responsible for maintaining a log of events in a program, used by a large number of classes,

is a common and acceptable practice. However, from a strict defect definition, it can be

considered as a class with abnormally large coupling.

Part 3: Testing model transformation

After defining a transformation mechanism, it is necessary to validate it. However,

some limitations in exiting work:

Problem 3.1: Current model-driven engineering (MDE) technologies and model

repositories store and manipulate models as graphs of objects. Thus, when the expected

output model is available, the oracle compares two graphs. In this case, the oracle definition

problem has the same complexity as the graph isomorphism problem, which is NP-hard

[121]. In particular, we can find a test case output and an expected model that look different

 - 25 -

(contain different model elements), but have the same meaning. So, the complexity of

these data structures makes it difficult to provide an efficient and reliable tool for

comparison.

Problem 3.2: the majority of existing works are based on constraints verification.

The constraints are defined at the metamodel level and conditions are generally expressed

in OCL. However, the number of constraints to define can be very large to cover all rules

and patterns. This is especially the case of contracts related to one-to-many mappings.

Moreover, being formal specifications, these constraints are difficult to write in practice

[21].

 Problem 3.3: transformation errors can have different causes: transformation logic

(rules) or source/ target meta-models [23]. To be effective, a testing process should allow

the identification of the cause of errors.

1.3 Contributions

To overcome the previously identified problems, we propose the following contributions,

organized in three major parts:

Part 1: Model transformation by example

Contribution 1.1 We propose an approach for model transformation that does not use

or produce transformation rules. We start from the premise that experts give transformation

examples more easily than complete and consistent transformations rules. In the absence of

rules or an exhaustive set of examples, an alternative solution is to derive a partial target

model from the available examples. The generation of such a model consists of finding

situations in the examples that best match the model to transform. Thus, we propose the

alternative view of MT as an optimization problem where a (partial) target model can be

automatically derived from available examples. For this, we introduce a search-based

approach to automate MT called MOTOE (model transformation as optimization by

examples) [79],[74].

 - 26 -

Contribution 1.2 We extend MOTOE to the case of dynamic model

transformation, e.g., sequence diagram to colored petri net (CPN). The primary goal is to

add to contribution 1.1 the constraint of temporal coherence during the transformation

process. Another goal is to generate optimal target models (in terms of size) by using good

example bases.

Part 2: Design Defects Detection by example

Contribution 2.1 In this effort, we view the detection of design defects as one that can

be addressed by the mechanisms of detection-identification-response of an artificial

immune system (AIS), which use the metaphor of a biological immune system. In both

cases, known and unknown problems should be discovered. Instead of trying to find all

possible infections, an immune system starts by detecting what is not normal. The more an

element is abnormal, the more it is considered risky. This first phase is called discovery.

After the risk has been assessed, the next phases consist of identifying if the risk

corresponds to a known category of problems and subsequently producing the proper

response. Similarly, our contribution is built on the idea that the higher the dissimilarity

between a code fragment and a reference (good) code, the higher is the risk that this code

could constitute a design defect. The efficiency of our approach is evaluated by studying

the relationship between dissimilarity and risk for different open source projects.

Contribution 2.2 we propose another solution by using examples of manually found

design defects to derive detection rules. Such examples are in general available as

documents as par of the maintenance activity (version control logs, incident reports,

inspection reports, etc.). The use of examples allows the derivation of rules that are specific

to a particular company rather than rules that are supposed to be applicable to any context.

This includes the definition of thresholds that correspond to the company best practices.

Learning from examples aims also at reducing the list of detected defect candidates. Our

approach allows to automatically find detection rules, thus relieving the designer from

doing so manually. Rules are defined as combinations of metrics/thresholds that better

conform to known instances of design defects (defect examples). In our setting, we use a

 - 27 -

music-inspired algorithm [56] for rule extraction. We evaluate our approach by finding

potential defects in three different open-source systems.

Part 3: Testing Transformation by example

Contribution 3. We also adapt the by-example approach based on the immune system

metaphor to automate the test of transformation mechanisms. We propose an oracle

function that compares target test cases to the elements of a base of examples containing

good quality transformation traces, and then assigns a risk level to the former, based on

dissimilarity between the two as determined by an AIS algorithm. As a result, one no

longer needs to define an expected model for each test case and the traceability links help

the tester understand the origin of an error. Furthermore, the detected faults are ordered by

degree of risk to help the tester perform further analysis. For this, a custom tool was

developed to visualize the risky fragments found in the test cases with different colors, each

related to an obtained risk score. We illustrate and evaluate our approach with different

transformation mechanisms.

1.4 Roadmap

The remainder of this dissertation is organized as follows:

Chapter 2 reviews related work on model transformation, design defect detection,

transformation testing, by-example software engineering and search-based software

engineering; Chapter 3 reports our contribution for automating model transformation using

examples and search-based techniques. We present our Software and System Modeling

journal paper [79] that shows an illustration of our approach for the case of static

transformation. For dynamic transformation, our European Conference on Modelling

Foundations and Applications [74] illustrates the application of our approach to sequence

diagram to colored Petri nets transformation. Chapter 4 presents our approach to design

defects detection based on an immune system metaphor. This contribution is illustrated via

our Automated Software Engineering conference paper [82]. Chapter 5 details our

 - 28 -

contribution for design defects rules generation. We present in this chapter our

European Conference on Software Maintenance and Reengineering paper [80]. Chapter 6

presents a description for our contribution about testing transformation mechanism by

example [78]. It is subject to a paper accepted in the Journal of Automated Software

Engineering. Chapter 7 presents the conclusions of this dissertation and outlines some

directions for future research.

 - 29 -

Chapter 2: Related Work

This chapter gives an overview of basic works related to this thesis. The work

proposed in this thesis crosscuts four research areas: (1) endogenous and exogenous

transformations; (2) correctness of model transformation; (3) by-example software

engineering; and (4) search-based software engineering. The chapter provides a survey of

existing works in these four areas and identifies the limitations that are addressed by our

contributions.

The structure of the chapter is as follows: Section 2.1 summarises exiting works in

model transformation, including endogenous and exogenous transformations. We identify

different criteria to identify them and we focus on by-example approaches. Section 2.2

discusses the state of the art in validating transformation mechanisms; Section 2.3 is

devoted toward describing work based on the use of examples; Section 2.4 provides a

description of leading work in search-based software engineering.

2.1 Model Transformation

Model transformation programs take as input a model conforming to a given source

meta-model and produce as output another model conforming to a target meta-model. The

transformation program, composed of a set of rules, should itself be considered a model.

Consequently, it has a corresponding meta-model that is an abstract definition of the used

transformation language.

As previously stated, we distinguish between two model transformation categories:

(1) exogenous transformations in which the source and target meta-models are not the

same, e.g., transforming a UML class diagram to Java code, and (2) endogenous

transformations in which the source and target meta-models are the same, e.g., refactoring a

 - 30 -

UML class diagram or code. Exogenous transformations are used to exploit the

constructive nature of models in terms of vertical transformations, thereby changing the

level of abstraction and building the bases for code generation, and also to allow horizontal

transformation of models that are at the same level of abstraction [13]. Horizontal

transformations are of specific interest to realize different integration scenarios such as

model translation, e.g., translating a relational schema (RS) model into a UML class model.

In contradistinction to exogenous transformations where the entire source model elements

must be transformed to their equivalents in the target model, we distinguish two steps in

endogenous transformations. The first step is the identification of source model elements

(only some model fragments) to transform, and the second step is the transformation itself.

In most cases, the endogenous transformations correspond to model refactoring where the

input and output meta-model are the same. In this case, the first step is the detection of

refactoring opportunities (e.g., design defects), and the second one is the application of

refactoring operations (transformation).

We now describe existing work according to these two categories: endogenous and

exogenous transformation. For endogenous transformation, we focus on refactoring

activities.

2.1.1 Exogenous Transformation

2.1.1.1 Classification and Languages

In the following, a classification of endogenous transformation approaches is briefly

reported. Then, some of the available endogenous transformation languages are separately

described. The classification is mainly based upon [110] and [13].

Several endogenous transformation approaches have been proposed in the literature.

In the following, classifications of model-to-model endogenous transformation approaches

discussed by Czarnecki and Helsen [110] are described:

 - 31 -

Direct manipulation approach. It offers an internal model representation and

some APIs to manipulate it. It is usually implemented as an object-oriented framework,

which may also provide some minimal infrastructure. Users have to implement

transformation rules, scheduling, tracing and other facilities in a programming language.

An example of used tools in direct manipulation approaches is Builder Object

Network (BON), a framework which is relatively easy to use and is still powerful enough

for most applications. BON provides a network of C++ objects. It provides navigation and

update capabilities for models using C++ for direct manipulation.

Operational approach. It is similar to direct manipulation, but offers more

dedicated support for model transformation. A typical solution in this category is to extend

the utilized meta-modeling formalism with facilities for expressing computations. An

example would be to extend a query language such as OCL with imperative constructs.

Examples of systems in this category are Embedded Constraint Language (ECL) [50], QVT

Operational mappings[91], XMF [122], MTL [26] and Kermeta [49].

Relational approach. It groups declarative approaches in which the main concept

is mathematical relations. In general, relational approaches can be seen as a form of

constraint solving. The basic idea is to specify the relations among source and target

element types using constraints that, in general, are non-executable. However, the

declarative constraints can be given executable semantics, such as in logic programming

where predicates can describe the relations. All of the relational approaches are side-effect

free and, in contrast to the imperative direct manipulation approaches, create target

elements implicitly. Relational approaches can naturally support multidirectional rules.

They sometimes also provide backtracking. Most relational approaches require strict

separation between source and target models, that is, they do not allow in-place update.

Examples of relational approaches are QVT Relations and ATL [36]. Moreover, in 14] the

application of logic programming has been explored for the purpose.

Graph-transformation based approaches. They exploit theoretical work on graph

transformations and require that the source and target models be given as graphs.

Performing model transformation by graph transformation means to take the abstract syntax

 - 32 -

graph of a model, and to transform it according to certain transformation rules. The

result is the syntax graph of the target model. More precisely, graph transformation rules

have an LHS and an RHS graph pattern. The LHS pattern is matched in the model being

transformed and replaced by the RHS pattern in place. In particular, LHS represents the

pre-conditions of the given rule, while RHS describes the post-conditions. LHS∩RHS

defines a part which has to exist to apply the rule, but which is not changed. LHS − LHS ∩

RHS defines the part which shall be deleted, and RHS − LHS ∩ RHS defines the part to be

created. The LHS often contains conditions in addition to the LHS pattern, for example,

negative conditions. Some additional logic is needed to compute target attribute values such

as element names. GReAT [38] and AToM3 [54] are systems directly implementing the

theoretical approach to attributed graphs and transformations on such graphs. They have

built-in fixed point scheduling with non-deterministic rule selection and concurrent

application to all matching locations.

Mens et al [13] provide a taxonomy of model transformations. One of the main

differences with the previous taxonomy is that Czarnecki and Helsen propose a hierarchical

classification based on feature diagrams, while the Mens et al. taxonomy is essentially

multi-dimensional. Another important difference is that Czarnecki et al. classify the

specification of model transformations, whereas Mens et al. taxonomy is more targeted

towards tools, techniques and formalisms supporting the activity of model transformation.

For these different categories, many languages and tools have been proposed to

specify and execute exogenous transformation programs. In 2002, OMG issued the

Query/View/Transformation request for proposal [91] to define a standard transformation

language. Even though a final specification was adopted at the end of 2008, the area of

model transformation continues to be a subject of intense research. Over the last years, in

parallel to the OMG effort, a number of model transformation approaches have been

proposed both from academia and industry. They can be distinguished by the used

paradigms, constructs, modeling approaches, tool support, and suitability for given

problems. We briefly describe next some well-known languages and tools.

 - 33 -

ATL (ATLAS Transformation Language) [35] is a hybrid model

transformation language that contains a mixture of declarative and imperative constructs.

The former allows dealing with simple model transformations, while the imperative part

helps in coping with transformations of higher complexity. ATL transformations are

unidirectional, operating on read-only source models and producing write-only target

models. During the execution of a transformation, source models may be navigated

through, but changes are not allowed. Transformation definitions in ATL form modules. A

module contains a mandatory header section, import section, and a number of helpers and

transformation rules. There is an associated ATL Development Toolkit available as open

source from the GMT Eclipse Modeling Project [28]. A large library of transformations is

available at [15], [43].

GReAT [1] (Graph Rewriting and Transformation Language) is a meta-model-

based graph transformation language that supports the high-level specification of complex

model transformation programs. In this language, one describes the transformations as

sequenced graph rewriting rules that operate on the input models and construct an output

model. The rules specify complex rewriting operations in the form of a matching pattern

and a subgraph to be created as the result of the application of a rule. The rules (1) always

operate in a context that is a specific subgraph of the input, and (2) are explicitly sequenced

for efficient execution. The rules are specified visually using a graphical model builder tool

called GME [2].

AGG is a development environment for attributed graph transformation systems

that support an algebraic approach to graph transformation. It aims at specifying and rapid

prototyping applications with complex, graph structured data. AGG supports typed graph

transformations including type inheritance and multiplicities. It may be used (implicitly in

“code”) as a general-purpose graph transformation engine in high-level Java applications

employing graph transformation methods.

The source, target, and common meta-models are represented by type graphs.

Graphs may additionally be attributed using Java code. Model transformations are specified

by graph rewriting rules that are applied non-deterministically until none of them can be

 - 34 -

applied anymore. If an explicit application order is required, rules can be grouped in

ordered layers. AGG features rules with negative application conditions to specify patterns

that prevent rule executions. Finally, AGG offers validation support that is consistency

checking of graphs and graph transformation systems according to graph constraints,

critical pair analysis to find conflicts between rules (that could lead to a non-deterministic

result) and checking of termination criteria for graph transformation systems. An available

tool support provides graphical editors for graphs and rules and an integrated textual editor

for Java expressions. Moreover, visual interpretation and validation is supported.

VIATRA2 [118] is an Eclipse-based general-purpose model transformation

engineering framework intended to support the entire life-cycle for the specification,

design, execution, validation and maintenance of transformations within and between

various modelling languages and domains. Its rule specification language is a unidirectional

transformation language based mainly on graph transformation techniques. More precisely,

the basic concept in defining model transformations within VIATRA2 is the (graph)

pattern. A pattern is a collection of model elements arranged into a certain structure

fulfilling additional constraints (as defined by attribute conditions or other patterns).

Patterns can be matched on certain model instances, and upon successful pattern matching,

elementary model manipulation is specified by graph transformation rules. There is no

predefined order of execution of the transformation rules. Graph transformation rules are

assembled into complex model transformations by abstract state machine rules, which

provide a set of commonly used imperative control structures with precise semantics.

VIATRA2 is a hybrid language since the transformation rule language is

declarative, but the rules cannot be executed without an execution strategy specified in an

imperative manner. Important specification features of VIATRA2 include recursive (graph)

patterns, negative patterns with arbitrary depth of negation, and generic and meta-

transformations (type parameters, rules manipulating other rules) for providing reuse of

transformations [118].

A conclusion to be drawn from studying the existing endogenous transformation

approaches, tools and techniques is that they are often based on empirically obtained rules

 - 35 -

[5]. In fact, the traditional and common approach toward implementing model

transformations is to specify the transformation rules and automate the transformation

process by using an executable model transformation language. Although most of these

languages are already powerful enough to implement large-scale and complex model

transformation tasks, they may present challenges to users, particularly to those who are

unfamiliar with a specific transformation language. Firstly, even though declarative

expressions are supported in most model transformation languages, they may not be at the

proper level of abstraction for an end-user, and may result in a steep learning curve and

high training cost. Moreover, the transformation rules are usually defined at the meta-model

level, which requires a clear and deep understanding about the abstract syntax and semantic

interrelationships between the source and target models. In some cases, domain concepts

may be hidden in the meta-model and difficult to unveil (e.g., some concepts are hidden in

attributes or association ends, rather than being represented as first-class entities). These

implicit concepts make writing transformation rules challenging. Thus, the difficulty of

specifying transformation rules at the meta-model level and the associated learning curve

may prevent some domain experts from building model transformations for which they

have extensive domain experience.

To address these challenges inherent from using model transformation languages, an

innovative approach called Model Transformation By Example (MTBE) is proposed that

will be described in the next section.

2.1.1.2 Model Transformation by Example

The commonalities of the by-example approaches for transformation can be

summarized as follows: All approaches define an example as a triple consisting of an input

model and its equivalent output model, and traces between the input and output model

elements. These examples have to be established by the user, preferably in concrete syntax.

Then, generalization techniques such as hard-coded reasoning rules, inductive logic, or

 - 36 -

relational concept analysis are used to derive model transformation rules from the

examples, in a deterministic way that is applicable for all possible input models which have

a high similarity with the predefined examples.

Varrò and Balogh [23] propose a semi-automated process for MTBE using

Inductive Logic Programming (ILP). The principle of their approach is to derive

transformation rules semi-automatically from an initial prototypical set of interrelated

source and target models. Another similar work is that of Wimmer et al [31] who derive

ATL transformation rules from examples of business process models. Both contributions

use semantic correspondences between models to derive rules. Their differences include the

fact that [31] presents an object-based approach that finally derives ATL rules for model

transformation, while [41] derives graph transformation rules. Another difference is that

they respectively use abstract versus concrete syntax: Varro uses IPL when Wimmer relies

on an ad hoc technique. Both models are heavily dependent on the source and target

formalisms. Another similar approach is that of Dolques et al. [123] which aims to alleviate

the writing of transformations, and where engineers only need to handle models in their

usual (concrete) syntax and to describe the main cases of a transformation, namely the

examples. A transformation example includes the source model, the target model and trace

links that make explicit how elements from the source model are transformed into elements

of the target model. The transformation rules are generated from the transformation traces,

using formal concept analysis extended by relations, and they are classified through a

lattice that helps navigation and choice. This approach requires the examples to cover all

the transformation possibilities and it is only applicable for one-to-one transformations.

Recently, a similar approach to MTBE, called Model Transformation by

Demonstration (MTBD), was proposed [124]. Instead of the MTBE idea of inferring the

rules from a prototypical set of mappings, users are asked to demonstrate how the MT

should be done, through direct editing (e.g., add, delete, connect, update) of the source

model, so as to simulate the transformation process. A recording and inference engine was

developed, as part of a prototype called MT-Scribe, to capture user operations and infer a

user’s intention during a MT task. A transformation pattern is then generated from the

 - 37 -

inference, specifying the preconditions of the transformation and the sequence of

operations needed to realize the transformation. This pattern can be reused by automatically

matching the preconditions in a new model instance and replaying the necessary operations

to simulate the MT process. However, this approach needs a large number of simulated

patterns to be efficient and it requires a high level of user intervention. In fact, the user

must choose the suitable transformation pattern. Finally, the authors do not show how

MTBD can be useful to transform an entire source model and only provide examples of

transforming model fragments. On the other hand, the MTBD approach, in contradiction

with others by-example approaches is applied to endogenous transformations. Another very

similar by demonstration approach was proposed by Langer et al. [97]. The difference with

Sun et al. work, that uses the recorded fragments directly, Langer et al. use them to generate

ATL rules. Another difference is that Langler approach is related to exogenous

transformation.

Brosch et al.[96] introduced a tool for defining composite operations, such as

refactorings, for software models in a user-friendly way. This by-example approach

prevents modelers from acquiring deep knowledge about the metamodel and dedicated

model transformation languages. However, this tool able only to apply refactoring

operations and do not detect automatically refactoring operations.

The commonalities of the by-example approaches for exogenous transformation can

be summarized as follows: All approaches define an example as a triple consisting of an

input model and its equivalent output model, and traces between the input and output model

elements. The examples have to be established by the user, preferably in concrete syntax.

Then, generalization techniques such as hard-coded reasoning rules, inductive logic or

relational concept analysis are used to derive model transformation rules from the

examples, in a deterministic way that is applicable to all possible input models which have

a high similarity with the predefined examples.

None of the mentioned approaches claims that the generation of the model

transformation rules is correct or complete. In particular, all approaches explicitly state that

some complex parts of the transformation involving complex queries, attribute calculations

 - 38 -

such as aggregation of values, non-deterministic transformations, and counting of

elements have to be developed by the user, by changing the generated model

transformations. Furthermore, the approaches recommend developing the model

transformations using an iterative methodology. This means that, after generating the

transformations from initial examples, the examples must be adjusted or the transformation

rules changed if the user is not satisfied with the outcome. However, in most cases,

deciding that the examples or the transformation rules need changing is not an obvious

process to the user.

2.1.1.3 Traceability-based Model Transformation

Some other meta-model matching works can also be considered as variants of by-

example approaches. Garcia-Magarino et al. [46] propose an approach to generate

transformation rules between two meta-models that satisfy some constraints introduced

manually by the developer. In [47], the authors propose to automatically capture some

transformation patterns in order to generate matching rules at the meta-model level. This

approach is similar to MTBD, but it is used at the meta-model level.

Most current transformation languages [66],[37],[58] build an internal traceability

model that can be interrogated at execution time, for example, to check if a target element

was already created for a given source element. This approach is specific to each

transformation language and sometimes to the individual transformation specification. The

language determines the traceability meta-model and the transformation specification

determines the label of the traces (in case of QVT/Relational the traceability meta-model is

deduced from the transformation specification). The approach taken only provides access to

the traces produced within the scope of the current transformation. Marvie describes a

transformation composition framework [100] that allows manual creation of linkings

(traces). These linkings can then be accessed by subsequent transformation, although this is

 - 39 -

limited to searching specific traces by name, introducing tight coupling between sub-

transformations.

2.1.2 Endogenous Transformation

In contradistinction to exogenous transformations where the entire source model

elements must be transformed to their equivalents in the target model, we distinguish two

steps in endogenous transformations. The first step is the identification of source model

elements (only some model fragments) to transform, and the second step is the

transformation itself. In most cases, the endogenous transformations correspond to model

refactoring where the input and output meta-model are the same. In this case, the first step

is the detection of refactoring opportunities (e.g., design defects) and the second one is the

application of refactoring operations (transformation).

In this thesis, we focus on program-code transformation that represents the major

parts of existing work in exogenous transformation.

Code transformation can be performed as model transformations. In fact, a

programming language have a defined meta-model (for example: JAVA) and a program

can be considered as an instance of this metamodel. Given that all code transformations can

be performed as model transformations, one can classify the source and target models of a

transformation in terms of their structure. Code transformation has applications in many

areas of software engineering such as compilation, optimization, refactoring, program

synthesis, software renovation, and reverse engineering. The aim of code transformation is

to increase programmer productivity by automating programming tasks, thus enabling

programming at a higher-level of abstraction, and increasing maintainability and re-

usability. In our work, we are interested in code transformation as the identification and

correction of design defects in code using refactoring. The term refactoring, introduced by

Opdyke in his PhD thesis [90], refers to “the process of changing an [object-oriented]

software system in such a way that it does not alter the external behaviour of the code, yet

 - 40 -

improves its internal structure”. Refactoring can be regarded as the object-oriented

equivalent of restructuring, which is defined by Chikofsky and Cross [31] as “the

transformation from one representation form to another at the same relative abstraction

level, while preserving the subject system’s external behaviour (functionality and

semantics). [...] it does not normally involve modifications because of new requirements.

However, it may lead to better observations of the subject system that suggest changes to

improve aspects of the system.” In other words, the refactoring process consists of a

number of activities: (1) identify where the software should be refactored; (2) determine

which refactorings should be applied to the identified places; (3) guarantee that the applied

refactoring preserves behaviour; (4) apply the refactoring; (5) assess the effect of

refactoring on software quality characteristics; (6) maintain consistency between refactored

program code and other software artifacts (or vice versa). Each of these activities could be

automated to a certain extent.

Several studies have recently focused on detecting and correction (by applying

refactorings) of design defects in software using different techniques. These techniques

range from fully automatic detection techniques [99],[89], to manual inspection techniques.

This section can be separated in three broad categories: metric-based approaches, correction

opportunity based approaches, graph transformation and visualization.

2.1.2.1 Metric-based Approaches

Marinescu [99] defined a list of rules based on metrics to detect design flaws of OO

design at method, class and subsystem levels. However, the choice of the metrics to use and

the proper threshold values for those metrics are not addressed explicitly in his research.

Erni et al. [31] introduce the concept of multi-metrics, as an n-tuple of metrics expressing a

quality criterion (e.g., modularity). Unfortunately, multi-metrics neither encapsulate metrics

in a more abstract construct, nor do they allow a flexible combination of metrics. Alikacem

et al. [64] express metrics in a generic manner based on fuzzy logic rules. However, they

 - 41 -

use their technique only for rule activation to detect a defect and not to estimate the

probability of design defect occurrence.

In general, many limitations are related to the use of metrics. Also, the use of

specific metrics does not consider context, and we need to adapt the related rules by hand to

the context of use. Even for a single system, this task can be costly because of constant

evolution. Another issue is the different interpretations of defect definitions by analysts. A

final problem is the use of threshold values. Different systems can follow different

development practices. Consequently, different thresholds might apply. These issues were

partially addressed by Moha et al. [88] in their framework DECOR. They automatically

convert high-level defect specifications into detection algorithms. Theoretically, the exact

metrics used for the detection could vary, but this issue was almost not studied in practice.

This explains the high number of false positives they detected. An additional problem is

that the detected defects are not ordered. This implies that a maintainer does not have a

clear idea of which possible defects should be inspected first. Khomh et al. [89] extended

DECOR to support uncertainty in smell detection: they used Bayesian belief networks

(BBNs) to implement rules from DECOR. The output of their model is probabilities that

classes are occurrences of design defects. Although the technique allows ranking of the

results (by probability), it still suffers from the problem of selecting specific metrics to

conduct a detection.

2.1.2.2 Visualization-based techniques

The need for visualization-based defect detection has been proposed to take

advantage of the expertise of analysts. Visualization is considered to be a semi-automatic

technique since the information is automatically extracted and then presented to an analyst

for interpretation. Kothari et al. [60] present a pattern-based framework for developing tool

support to detect software anomalies by representing potential defects with different colors

using a specific metaphor. Dhambri et al. [57] propose a visualization-based approach to

 - 42 -

detect design anomalies for cases where the detection effort already includes the

validation of candidates. However, these approaches need a lot of human intervention and

expertise. Their results show that by using visualization, instead of directly using metrics,

the anomaly detection process suffers from fewer variations between maintainers, but the

detection results are the same.

2.1.2.3 Correction Opportunity-based Approaches

The authors in [73] introduce the concept of considering defect detection as an

optimization problem; they use a combination of 12 metrics to measure the improvements

achieved when methods are moved between classes. A fitness function (score) is computed

by applying the sequence of transformations to the program at hand and by measuring the

improvement in the metrics of interest [69]. Indeed, this search-based approach combines

the detection and correction steps because an opportunity of refactoring is detected if a

randomly selected correction improves the design quality. This is because the order of

detected defects is related to the quality of improvements (difference in fitness).

Furthermore, the problems mentioned before for metrics still apply for search-based

techniques since they use a fitness function that consists of a combination of metrics.

Graph transformations can lead to an underlying theory of refactoring [107] where

each refactoring corresponds to a graph production rule, and each refactoring application

corresponds to a graph transformation. The theory of graph transformation can be used to

reason about applying refactorings in parallel, using theoretical concepts such as confluence

and critical pair analysis. These categories of approaches combine the identification of code

to refactor and which refactorings to apply. In them, programs can be expressed as graphs,

and refactorings correspond to graph production rules or graph transformations. Mens et al

[64] use graph rewriting formalism to prove that refactorings preserve certain kinds of

relationships (updates, accesses and invocations) that can be inferred statically from the

source code. Bottoni et al [110] describe refactorings as coordinated graph transformation

 - 43 -

schemes in order to maintain consistency between a program and its design when any

of them evolves by a refactoring. Heckel [102] uses graph transformations to formally

prove the claim (and corresponding algorithm) of Roberts [27] that any set of refactoring

post-conditions can be translated into an equivalent set of preconditions. Van Eetvelde and

Janssens [116] propose a hierarchical graph transformation approach to be able to view and

manipulate the software and its refactorings at different levels of detail.

2.2 Correctness of Model Transformation

Correctness of model transformations can be analyzed from different perspectives.

Existing works can be classified into categories: formal verification-based approaches and

testing approaches.

We start by describing existing work in the first category. Baleani et al. argue in

[86] that correctness of model transformations for industrial tools should be based on

formal models in order to ensure correctness by construction. For this purpose, they suggest

to use a block diagram formalism called synchronous reactive model of computation.

However, correct interpretation of the model transformation rules does not imply a correct

result, one that is a model of the target language. Semantic correctness is discussed by

Karsai et al. in [59], where specific behavior properties of the source model shall be

reflected in the target model. In [42], semantic correctness is ensured by using the same

rules for the model transformation, also for the transformation of the operational semantics,

which is given by graph rules. By doing this, the behaviour of the source model can be

compared with the one of the target model by checking mixed confluence. However, this

paper concentrates on syntactical correctness based on the integrated language generated by

the triple rules. [9],[118] are some works on using graph transformation rules to specify the

dynamic behavior of systems. For example, [118] presents a meta-level analysis technique

where the semantics of a modeling language are defined using graph transformation rules.

A transition system is generated for each instance model, which can be verified using a

 - 44 -

model checker. Furthermore, [9] verifies if a transformation preserves certain dynamic

consistency properties by model checking the source and target models for properties p and

q, where property p in the source language is transformed into property q in the target

language. This transformation requires validation by a human expert. Especially in the area

of graph transformations some work has been conducted that uses Petri Nets to check

formal properties of graph production rules. Thereby, the approach proposed in [105]

translates individual graph rules into a Place/-Transition Net and checks for its termination.

Another approach is described in [117], where the operational semantics of a visual

language in the domain of production systems are described with graph transformations.

Varrò presents in [10] a translation of graph transformation rules to transition systems,

serving as the mathematical specification formalism of various model checkers to achieve

the formal verification of model transformation. Thereby, only the dynamic parts of the

graph transformation systems are transformed to TS in order to reduce the state space. In

[40], a simple error taxonomy for model transformations is presented, which is then used to

automatically generate test cases for model transformations. A very similar approach is

presented by Darabos et al. in [10], focusing on common errors in graph transformation

languages in general, and on errors in the graph pattern matching phase in particular. Both

taxonomies are, however, rather general and only describe possible errors in graph

transformation specifications.

After studying the existing work in formal verification-based approaches, we can

conclude that one its important problem is that the results of a formal analysis can be

invalidated by erroneous model transformations. In fact, the systems' engineers cannot

distinguish whether an error is in the design or in the transformation. Furthermore, existing

work requires a significant amount of mathematical expertise and user interaction (not fully

automated). In addition, the existing work based on model checking and graph

transformation does not combine the syntactic and semantic correctness of model

transformations in one approach. For a syntactic correctness analysis, one has to decide

whether the result of the transformation is a well-formed model of the target language. In

case of semantic correctness analysis, we need to decide if the model transformation

preserves (transformation specific) correctness properties.

 - 45 -

Many works exist on model transformation testing [125],[32]. Fleurey et al.

[34] and Steel et al. [14] discuss the reasons why testing model transformation is distinct

from testing traditional implementations: the input data are models that are complex when

compared to simple data types. Both papers describe how to generate test data in MDA by

adapting existing techniques, including functional criteria and bacteriologic approaches

[14]. Lin et al. [125] propose a testing framework for model transformation, built on their

modeling tools and transformation engine, that offers a support tool for test case

construction, test execution and test comparison; but the test models are manually

developed in their work.

One of the widely-used techniques for test generation is mutation analysis. Mutation

analysis is a testing technique that was designed to evaluate the efficiency of a test set.

Mutation analysis consists of creating a set of faulty versions or mutants of a program with

the ultimate goal of designing a test set that distinguishes the program from all its mutants.

Mottu et al. [113] have adapted this technique to evaluate the quality of test cases. They

introduce some modifications in the transformation rules (program-mutant). Then using the

same test cases as input an oracle function compares between the results (target models). If

all results are the same, we can assume that the input cases were not sufficient to cover all

the transformation possibilities (rules). Comparing to our work, our goal is not to evaluate

the quality of a data set but to propose a generic oracle function to detect transformation

errors. Our oracle function compares between some potential errors (detectors) and

transformation traces to evaluate. However, in mutation analysis the oracle function

compares between two target models, one generated by the original mechanism (rules) and

another after modifying the rules. In addition, our technique does not create program

variation (rules modifications) but traces variation that differs from good ones.

Furthermore, the mutation analysis technique needs to define an expected model for each

test case in order to compare it with another target model obtained from the same test case

after modifying the rules (mutant).

Some other approaches are specific to test case generation for graph-transformation

mechanism. Küster[58], addresses the problem of model transformation validation in a way

 - 46 -

that is very specific to graph transformation. He focuses on the validation of the rules

that define the model transformation with respect to termination and confluence. His

approach aims at ensuring that a graph transformation will always produce a unique result.

Küster’s work is an important step for model transformation validation but it does not aim

at validating the functionality of a transformation (i.e., it does not aim at running a

transformation to check if it produces a correct result). Darabos et al. [25] also investigate

the testing of graph transformations. They consider graph transformation rules as the

specification of the transformation and propose to generate test data from this specification.

Their testing technique focuses on testing pattern matching activity that is considered the

most critical of a graph transformation process. They propose several fault models that can

occur when computing the pattern match as well as a test generation technique that targets

those particular faults. However, the Darabos’ approach is specific to test only graph

transformation mechanisms. Sturmer et al. [22] propose a technique for generating test

cases for code generators. The criterion they propose is based on the coverage of graph

transformation rules. Their approach allows the generation of test cases for the coverage of

both individual rules and rule interactions but it requires the code generator under test to be

fully specified with graph transformation rules. Sampath et al. [11] propose a similar

method for verification of model processing tools such as simulators and code-generators.

They use a meta-model based test-case generation method that generates test-cases for

model processors.

Mottu et al. [32] describes six different oracle functions to evaluate the correctness

of an output model. These six functions can be classified in three general categories. For

the first category, current MDE technologies and model repositories store and manipulate

models as graphs of objects. Thus, when the expected output model is available, the oracle

compares two graphs. In this case, the oracle definition problem has the same complexity as

the graph isomorphism problem, which is NP-hard [6]. In particular, we can find a test case

output and an expected model that look different (contain different model elements) but

have the same meaning. So, the complexity of these data structures makes it difficult to

provide an efficient and reliable tool for comparison [22]. Still, several studies have

proposed simplified versions with a lower computation cost [12]. For example, Alanen et

 - 47 -

al. [4] present a theoretical framework for performing model differencing. However,

they rely on the use of unique element identifiers for the model elements. To illustrate the

specification conformance category, we present two contributions: design by contract and

pattern matching [112]. For design by contract, the transformation is specified by pre- and

post-conditions, and transformation invariants that must be satisfied. The constraints are

defined at the meta-model level and expressed in OCL. For pattern matching, templates are

used to specify the expected features of the input and output models with pre- and post-

conditions for the transformation. The difference with design by contract approaches is that

specific constraints must be defined for each output model. Both oracles are difficult to

define. Indeed, the number of constraints to define can be very large to cover all rules and

patterns [112]. This is especially the case of contracts related to one-to-many mappings.

Moreover, being formal specifications, these constraints are difficult to write in practice. In

pattern matching, the constraints are described at the model level and may lead to a

fastidious task to define them for each model instance [112].

More general, when many test models are necessary, at least many test cases are

created. To reduce the effort and the risk of making an error, it is necessary that each test

case does not have its own oracle, but that an oracle is reused in different test cases. Such

an oracle is generic and not dedicated to a test case, its test model, and its corresponding

output model. Oracle functions using patterns or expected models are not adapted since

they need the writing of at least one oracle data for each test case. Generic oracle data are

preferable since they are written only once, and could be used with their corresponding

oracle function in any test case. In addition, all these approaches to model transformation

validation and testing consider a particular technique for model transformation and leverage

the specificities of this technique to validate the transformation. This has the advantage of

having validation techniques that are well-suited to the specific faults that can occur in each

of these techniques. The results of these approaches are difficult to adapt to other

transformation techniques (that are not rule-based).

 - 48 -

2.3 By-Example Software Engineering

Examples play a key role in the human learning process. There exist numerous

theories on learning styles in which examples are used. For a description of today’s popular

learning style theories, see [95],[7].

Our work is based on using past transformation examples. Various “by-example”

approaches have been proposed in the software engineering literature.

What does by-example really mean? What do all by-example approaches have in

common? The main idea, as the name already suggests, is to give the software examples of

how things are done or what the user expects, and let it do the work automatically. In fact

this idea is closely related to fields such as machine learning or speech recognition.

Common to all by-example approaches is the strong emphasis on user friendliness and a

“short” learning curve. According to [20] the by-example paradigm dates back to 1970 -

see “Learning Structure Descriptions from Examples” in [90].

Programming by example [95] is the best known by-example approach. It is a

technique for teaching the computer new behavior by demonstrating actions on concrete

examples. The system records user actions and generalizes a program that can be used for

new examples. The generalization process is mainly based on user responses to queries

about user intentions. Another well-known approach is Query by Example (QBE) [7]. It is a

query language for relational databases constructed from sample tables filled with example

rows and constraints. QBE is especially suited for queries that are not too complex and can

be expressed in terms of a few tables. In web-engineering, Lechners et al [62] present the

language TBE (XML transformers by example) that allows defining transformers for

WebML schemes by example, i.e., stating what is desired instead of specifying the

operations to get it. Advanced XSLT tools are also capable of generating XSLT scripts

using examples from schema level (like MapForce from Altova) or document (instance)

level mappings (such as the pioneering XSLerator from IBM Alphaworks, or the more

recent StylisStudio).

 - 49 -

The problems addressed by the above-mentioned approaches are different from

ours in both the nature and the objectives.

2.4 Search-based Software Engineering

Our approach is largely inspired by contributions in Search-Based Software

Engineering (SBSE). SBSE is defined as the application of search-based approaches to

solving optimization problems in software engineering [72]. Once a software engineering

task is framed as a search problem, there are numerous approaches that can be applied to

solving that problem, from local searches such as exhaustive search and hill-climbing to

meta-heuristic searches such as genetic algorithms (GAs) and ant colony optimisation [70].

Many contributions have been proposed for various problems, mainly in cost estimation,

testing, and maintenance [101] ,[72]. Module clustering, for example, has been addressed

using exhaustive search [70], genetic algorithms [72] and simulated annealing (SA)[103].

In those studies that compared search techniques, hill-climbing was perhaps surprisingly

found to produce better results than meta-heuristic GA searches. Model verification has

also been addressed using search-based techniques. Shousha et al. [70] propose an approach

to detect deadlocks in UML models, but the generation of a new quality predictive model

starting from a set of existing ones by using simulated annealing (SA) that is reported in

[103] is probably the problem that is the most similar to MT by examples. In that work, the

model is also decomposed into fine-grained pieces of expertise that can be combined and

adapted to generate a better prediction model. To the best of our knowledge, inspired

among others by the road map paper of Harman [72], the idea of treating model

transformation as a combinatorial optimization problem to be solved by a search-based

approach was not studied before our proposal.

 - 50 -

2.5 Summary

This chapter has introduced the existing work in different domains related to our

work. The closest work to our proposal is model transformation by example (MTBE). The

commonalities of the by-example approaches for model transformation can be summarized

as follows: All approaches define an example as a triple consisting of an input model and

its equivalent output model, and traces between the input and output model elements. These

examples have to be established by the user, preferably in concrete syntax. Then,

generalization techniques such as hard-coded reasoning rules, inductive logic [23], or

relational concept analysis or pattern are used to derive model transformation rules from the

examples, in a deterministic way that is applicable for all possible input models which have

a high similarity with the predefined examples. One conclusion to be drawn from studying

the existing by-example approaches is that they use semi-automated rules generation, with

the generated rules further refined by the user. In practice, this may be a lengthy process

and require a large number of transformation examples to assure the quality of the inferred

rules. In this context, the use of search-based optimization techniques can be a more

preferable transformation approach since it directly generates the target model from the

existing examples, without using the rules step. This also leads to a higher degree of

automation than exiting by-example approaches. Table 1 summarizes existing

transformation by-example approaches according to given criteria. The majority of these

approaches are specific to exogenous transformation and based on the use of traceability.

 - 51 -

By-example

approaches

Exogenous

transformat

ion

Endogenous

transformation

Traceability Rules

generation

Varrò et al. [23] X X X

Wimmer et al.[65] X X X

Sun et al. [124] X X

Dolques et al.[123] X X X

Langler et al.[97] X X X

Brosch et al. [96] X X

Table 2 By-example Approaches

As shown in the search-based section, like many other domains of software

engineering, MDE is concerned with finding exact solutions to these problems, or those

that fall within a specified acceptance margin. Search-based optimization techniques are

well-suited for the purpose. For example, when testing model transformations, the use of

deterministic techniques can be unfeasible due to the number of possibilities to explore for

test case generation, in order to cover all source meta-model elements. However, the

complex nature of MDE problems sometimes requires the definition of complex fitness

functions [73]. Furthermore, the definition is specific to the problem to solve and

necessitate expertise in both search-based and MDE fields. It is thus desirable to define a

generic fitness function, evaluating a quality of a solution that can be applied to various

MDE problems with low adaptation effort and expertise.

 - 52 -

To tackle these challenges, our contribution combines search-based and by-

example techniques. The difference with case-based reasoning approaches is that many

sub-cases can be combined to derive a solution, not just the most adequate case. In addition,

if a large number of combinations have to be investigated, the use of search-based

techniques becomes beneficial in terms of search speed to find the best combination. In the

next chapters, we detail our contribution based on this combination between by-example

and search-based techniques.

 - 53 -

Part 1: Exogenous

Transformation by Example

The first part of this thesis presents our solution for the problem of automating

exogenous transformation based on the use of examples. Most of the available work on

model transformation is based on the hypothesis that transformation rules exist and that the

important issue is how to express them. However, in real problems, the rules may be

difficult to define as is often the case when the source and/or target formalisms are not

widely used or proprietary. Indeed, as for any rule-based system, defining the set of rules is

not an obvious task and many difficulties accompany the results [24].

As a solution, we described MOTOE (Model Transformation as Optimization by

Example), a novel approach to automate model transformation (MT) using heuristic search.

MOTOE uses a set of transformation examples to derive a target model from a source

model. The transformation is seen as an optimization problem where different

transformation possibilities are evaluated and, for each possibility, a quality is associated

depending on its conformance with the examples at hand. The search space is explored with

two methods. In the first one, we use PSO (Particle Swarm Optimization) with

transformation solutions generated from the examples at hand as particles. Particles

progressively converge toward a good solution by exchanging and adapting individual

construct transformation possibilities. In the second method, a partial run of PSO is

performed to derive an initial solution. This solution is then refined using a local search

with SA (Simulated Annealing). The refinement explores neighboring solutions obtained

by trying individual construct transformation possibilities derived from the example base.

In both methods, the quality of a solution considers the adequacy of construct

transformations as well as their mutual consistency.

 - 54 -

We distinguish two types of models to transform: dynamic and static. The

dynamic model is used to express and model the behaviour of a problem domain or system

over time, whereas the static model shows those aspects that do not change over time. UML

static models are mainly expressed using a class diagram that shows a collection of classes

and their interrelationships, for example generalization/specialization and association.

The transformation of dynamic models is more difficult than static ones. It may be

not obvious to realize, due to two main reasons [29]. First, defining transformation rules,

for dynamic models, can be difficult since the source and target languages have constructs

with different semantics; therefore, 1-to-1 mappings are not sufficient to express the

semantic equivalence between constructs. Second, in addition to ensuring structural (static)

coherence, it should guarantee behavioral coherence in terms of time constraints and weak

sequencing.

We evaluate our by example-approach to the two kind of models. For static models,

we consider class diagram to relational schema transformation; for dynamic models, we

adapt our approaach to sequence diagram to colored Petri nets transformation. We detail

these two contributions in the next two chapters.

 - 55 -

Chapter 3: Static Model

Transformation by Example

3.1 Introduction

In this chapter, we describe our solution for the problem of automating static model

transformation using examples. This contribution has been accepted for publication in the

Journal of System and Software Modeling (SOSYM) [79]. The paper, entitled “Search-

based Model Transformation by Example”, is presented next.

3.2 Class Diagram to Relational Schema Transformation by
Example

 - 56 -

Search-based Model Transformation by Example

MAROUANE KESSENTINI1, HOUARI SAHRAOUI1, MOUNIR BOUKADOUM2 AND OMAR BEN OMAR1

Abstract Model transformation (MT) has become an important concern in software engineering. In addition
to its role model driven development, it is useful in many other situations such as measurement, refactoring,
and test-case generation. Roughly speaking, MT aims to derive a target model from a source model by
following some rules or principles. So far, the contributions in MT have mostly relied on defining languages
to express transformation rules. However, the task of defining, expressing, and maintaining these rules can be
difficult, especially for some formalisms. In other situations, companies have accumulated examples from
past experiences. Our work starts from these observations to view the transformation problem as one to solve
with fragmentary knowledge, i.e. with only examples of source-to-target model transformations. Our proposal
has two main advantages: 1) for any source model, it always proposes a transformation, even when rule
induction is impossible or difficult to achieve. 2) it is independent from source and target formalisms; aside
from the examples, no extra information is needed. In this context, we propose an optimization-based
approach that consists of finding in the examples combinations of transformation fragments that best cover
the source model. To this end, we use two strategies based on two search-based algorithms: Particle Swarm
Optimization (PSO) and Simulated Annealing (SA). The results of validating our approach on industrial
projects show that the obtained models are accurate.

Keywords Search-based software engineering, Automated model transformation, Transformation by
example.

1 Introduction
In the context of model driven development (MDD) [37], the creation of models and model

transformations is a central task that requires a mature development environment, based on

the best practices of software engineering principles. For a comprehensive approach to

MDD, models and model transformations must be designed, analyzed, synthesized, tested,

maintained and subjected to configuration management to ensure their quality. This makes

model transformation a central concern in the MDD paradigm: not used only in forward

engineering, it allows concentrating the maintenance effort on models and using

transformation mechanisms to generate code. As a result, many transformation languages

are emerging.

 - 57 -

 Practical model-to-model transformation languages are of prime importance.

Despite the many approaches [33,36,20] that addressed the request for proposals of OMG

QVT RFP[34,35], the MT problem has no universal solution because the majority of

exisiting approaches are dependent to the source and target metamodels. A popular view

attributes the situation to the difficulty of defining or expressing transformation rules,

especially for proprietary or non-widely used formalisms. Indeed, most contributions in MT

are concerned with defining languages to express transformation rules. Transformation

rules can be implemented using: (1) general programming languages such as Java or C#;

(2) graph transformation languages like AGG [19] and VIATRA [14]; (3) specific languages

such as ATL [18] and QVT [35]. Sometimes, transformations are based on invariants: pre-

conditions and post-conditions specified in languages such as OCL [43]. These approaches

have been successfully applied to transformation problems where there exists knowledge

about the mapping between the source and target models. Still, there exist situations where

defining the set of rules is a complex task and many difficulties accompany the results [45]

(incompleteness, redundancy, inconsistency, etc.). In particular, the experts may find it

difficult to master both the source and target meta-models [15].

 On the other hand, it is recognized that experts can more easily give transformation

examples than complete and consistent transformations rules [2]. This is particularly true

for industrial organizations where a memory of past transformation examples can be found,

and it is the main motivation for transformation-by-examples approaches such as the one

proposed in [13]. The principle of this approach is to semi-automatically derive

transformation rules from an initial set of examples (interrelated source and target models),

using inductive logic programming (ILP). However, it is not adaptable to new situations

where no examples are available.

 We can alternatively view MT as an optimization problem where a (partial) target model

is to be automatically derived from available examples. In this context, we recently

introduced an optimization-based approach to automate MT called MOTOE (model

transformation as optimization by examples) [29]. MOTOE views MT as essentially a

combinatorial optimization problem where the transformation of a source model is obtained

by finding, for each of its constructs, a similar transformation in an example base. Due to

 - 58 -

the large number of possible combinations, a heuristic-search strategy is used to build

the transformation solution as a set of individual construct transformations. Comparing to

our pervious paper [29], we extend MOTOE with a more sophisticated transformation

building process and use a larger scale validation with industrial data. In particular, we

compare two strategies: (1) parallel exploration of different transformation possibilities

(call it population-based MT) by means of a global search heuristic implemented with PSO

(Particle Swarm Optimization) [22], and (2) initial transformation possibility improvements

(call it adaptation-based MT) implemented with a hybrid heuristic search that combines

PSO with the local search heuristic SA (Simulated Annealing) [17].

 The approach we propose has the advantage over rule-based algorithms that, for any

source model, it always proposes a transformation, even when rule induction is impossible

or difficult to achieve. Although, it can be seen as a form of case-based reasoning (CBR)

[8], it actually differs from CBR approaches in that all the existing models are used to

derive a solution, not only the most similar one. Another interesting advantage is that our

approach is independent from source and target formalisms; aside from the examples, no

extra information is needed. In conclusion, our approach is not meant to replace rule-based

approaches; instead, it applies to situations where rules are not available, difficult to define,

or non-consensual.

 In this paper, we illustrate and evaluate our approach on the well-known case of

transforming UML class diagrams (CLD) to relational schemas (RS). As will be shown in

Section 4, the models obtained using our transformation approach are comparable to those

derived by transformation rules. Although transformation rules exist in this case, our choice

of CLD-to-RS transformation is motivated by the fact that it is well-known and reasonably

complex; this allows us to focus on describing the technical aspects of out approach and

comparing its results with a well-known alternative. However, our approach can also be

applied to more complex transformations such as sequence diagrams-to-colored Petri-nets

[47].

 The remainder of this paper is structured as follows. Section 2 is dedicated to the MT-

problem statement. In Section 3, we describe the principles of our approach. The details are

discussed in Section 4; they include the adaptation of two search algorithms for the MT

 - 59 -

problem. Section 5 contains the validation results of our approach with industrial

projects and a comparison between the global- and adaptation-based strategies. In Section

6, the related work in model transformation is discussed. We conclude and suggest research

directions in Section 7.

2 Approach Overview
This section shows how, under some circumstances, MT can be seen as an optimization

problem. We also show why the size of the corresponding search space makes heuristic

search necessary to explore it. Finally, we give the principles of our approach.

2.1 Problem Statement

 Defining transformations for domain-specific or complex languages requires proficiency

in high programming languages, knowledge of the underlying metamodels, and knowledge

of the semantic equivalency between the meta-models concepts [37]. Therefore, creating

MT rules may become a complex task [30]. On the other hand, it is often easier for experts

to show transformation examples than to express complete and consistent transformation

rules [15]. This observation has led to a new research direction: model transformation by

example (MTBE), where, like in [13], rules are semi-automatically derived from examples.

 In the absence of rules or an exhaustive set of examples that allows rule extraction, an

alternative solution is to derive a partial target model from the available examples. The

generation of such models consists of finding, in the examples, some model fragments that

best match the model to transform. To characterize the problem, we start with some

definitions.

Definition 3.1 (Model to Transform). A model to transform, M, is a model composed of n

constructs expressed in a predefined abstract syntax.

 - 60 -

Definition 3.2 (Model Construct). A construct is a source or target model element.

For example, a class in a CLD. It may contain properties that describe it, e.g. its name.

Complex constructs may contain sub-constructs; for example, a class could have attributes.

For graph-based formalisms, constructs are typically nodes and links between nodes. For

instance, classes, associations, and generalizations are model constructs in UML class

diagrams.

Definition 3.3 (Block). A block defines a previously performed transformation trace

between a set of constructs in the source model and a set of constructs in the target model.

Constructs that should be transformed together are grouped within the same block.

For example, a generalization link g between two classes A and B cannot be mapped

independently from the mapping of A and B. In our case, we assume that blocks are

manually defined by domain experts when transforming models. Finally, blocks are not

general rules since they involve concept instances (e.g., class Student) instead of just

concepts (e.g., class concept). In other words, where transformation rules are expressed in

terms of metamodels, blocks are expressed in terms of concrete models.

Definition 3.4 (Transformation Example). A transformation example, TE, is a mapping of

constructs from a source model to the corresponding target model. Formally, we view a TE

as a triple <SMD, TMD, MB>, where SMD denotes the source model, TMD denotes the

target model, and MB is a set of mapping blocks that relate sets of constructs in SMD to

their equivalents in TMD.

For example, the creation of a database schema from a UML class diagram describing

student records is a transformation example. The Base of examples is a set of

transformation examples.

Our goal is to combine and adapt transformation blocks - which are fragments coming from

one or more model transformations in the base of examples - to generate a new transformed

 - 61 -

model by similarity. A fragment from an example model is considered as similar to

one from the source model if it shares the same construct types with similar properties. For

instance, in a class diagram, a fragment with an association pays between two classes Client

and Bill is similar to a fragment from another diagram containing an association evaluates

relating classes ControlExam and Module. The degree of similarity depends on the

properties of the classes and associations (attributes types, cardinalities, etc.). In the

absence of transformation rules, any combination of blocks is a transformation possibility.

For example, when transforming a class diagram into a database schema, any class can be

translated into a table, a foreign key in an existing table, two tables, or any other possible

combination of target constructs. However, with transformation examples, possibilities are

reduced to transformations of similar constructs in these examples.

The transformation of a model M with n constructs, using a set of examples that globally

define m possibilities (blocks), consists of finding the subset from the m possibilities that

best transforms each of the n constructs of M. “Best transforms” means that each construct

can be transformed by one of the selected possibilities and that construct transformations

are mutually consistent. In this context, mn possible combinations have to be explored. This

number can quickly become huge. For example, an average UML class diagram with 40

classes and 60 links (generalization, associations, and aggregations) defines 100 constructs

(40 + 60). At the same time, an example base with a reasonable number of examples may

contain hundreds of blocks, say 300. In this case, 300100 possible combinations should be

explored. If we limit the possibilities for each construct to only blocks that contain similar

constructs, the number of possibilities becomes m1 × m2 × m3 × … × mn where each mi ≤ m

represents the number of transformation possibilities for construct i. Although the number

of possibilities is reduced, it could still be very large for large CLDs. In the same example,

assuming that each of the 100 constructs has 8 or more mapping possibilities leads to

exploring at least 8100 combinations. Considering these magnitudes, exploring all the

possibilities cannot be done within a reasonable time frame. This calls for alternative

approaches such as heuristic search.

 - 62 -

2.2 Approach Overview
 We propose an approach that uses knowledge from previously solved transformation

cases (examples) so that a new MT problem is solved using a combination of the past

problem solutions, and the (partial) target model is automatically derived by an

optimization process that exploits the available examples.

Figure 1 shows the general structure of MOTOE. The approach takes as inputs a base of

examples (i.e., a set of transformation examples) and a source model to transform, and

generates as output a target model. The generation process can be viewed as the selection of

the subset of transformation fragments (blocks) in the example base that best matches the

constructs of the source model (using a similarity function). In other words the

transformation is done as an assembly of building blocks. The quality of the produced

target model is measured by the conformance of the selected fragments to structural

constraints, i.e., by answering the following two questions: (1) did we choose the right

blocks? and (2) did they fit together?

Fig 1. MOTOE overview

Figure 2 illustrates the case of a source model with 6 constructs to transform represented by

dots. A transformation solution consists of assigning to each construct ci a mapping block,

i.e. a transformation possibility from the example base (blocks are represented by

rectangles in Figure 2). A possibility is considered to be adequate if the assigned block

contains a construct similar to ci (similarity evaluation is discussed in Section 3.3).

Heuristic search Target model
Base of examples

Internal coherence constraints External coherence constraints

Source model

Similarities

 - 63 -

Fig 2. Illustration of the proposed transformation process

As many block assembly schemes are possible, the transformation is a combinatorial

optimization problem. In fact, the number of possible solutions becomes very high. Thus, a

deterministic search is unfeasible and a heuristic search is needed to find an acceptable

solution. The dimensions of the solution space are the constructs of the source model to

transform. A solution is determined by the assignment of a transformation fragment (block)

to each source model construct. The search is guided by the quality of the solution

according to internal coherence (inside a block), and external coherence (between blocks).

 To explore the solution space, we study two different search strategies in this work. The

first one uses a global heuristic search by means of the PSO algorithm [22]. The second one

first uses a global search to reduce the search space and find a first transformation solution;

then it uses a local heuristic search, using SA algorithm [17], to refine the first solution.

To illustrate our example-based transformation mechanism, consider the case of model

transformation between UML class diagrams (CLD) and relational schemas (RS). Figure 3

shows a simplified metamodel of the UML class diagram, containing concepts like class,

attribute, relationship between classes, etc. Figure 4 shows a partial view of the relational

schema metamodel, composed of table, column, attribute, etc. The transformation

mechanism, based on rules, will then specify how the persistent classes, their attributes and

their associations should be transformed into tables, columns and keys.

 - 64 -

Fig 3. Class diagram metamodel

Fig 4. Relational schema metamodel

The choice of this particular example is only motivated by considerations of clarity. As

MOTOE is independent from the nature of the transformation problem because it does not

depend from the source and target metamodels, it is applicable to any kind of formalisms

where prior examples of successful transformation are available.

A transformation example of a CLD to a RS is presented in Figures 5 and 6. The CLD is

the source model (a) and the RS is the target one (b). The CLD contains 12 constructs that

represent 7 classes (including 2 association classes), 3 associations, and 2 generalization

links. The five non-associative classes are mapped to tables with the class attributes

mapped to columns of the tables. The associations between Student and Module, and

between Teacher and Module, are respectively translated into tables Register and Intervene

with, as columns, the attributes of the associative classes. Each of these tables also contains

two foreign keys to their related tables. Association evaluate becomes a foreign key in table

ControlExam. Finally, the generalization links are mapped as foreign keys in the tables

corresponding to the subclasses.

 The decisions made in this transformation example are not unique alternatives. For

instance, we can find many rules (point of views) to transform a generalization link. One of

them maps abstract class Person as a duplication of its attributes in the tables that

correspond to classes Student and Teacher.

 Following Definition 3.4 of Section 2.1, SMD corresponds to the CLD, TMD represents

the corresponding RS and MB is the set of mapping blocks between the two models. For

example, a block describes the mapping of the association evaluate and classes Module and

ControlExam in Figure 5. This block respectively assigns tables Module and ControlExam

 - 65 -

to the two classes, and foreign key IDModule to the association (Figure 5). As

mentioned earlier, the transformations of the three constructs are grouped within the same

block since they are interdependent.

Fig 5. Example of a CLD source model

Fig 6. Equivalent RS target model to the CLD source model of Figure 5

 - 66 -

 To ease the manipulation of the source and target models and their transformation,

the models are described using a set of predicates that correspond to the included

constructs. Each construct is represented by one or more predicates. For example, Class

Teacher in Figure 5 is described as follows:

Class(Teacher).

Attribute(Level, Teacher,_).

The first predicate indicates that Teacher is a class. The second states that Level is an

attribute of that class and that its value is not unique (“_” instead of “unique”).

Fig 7. Base of transformation examples and blocks generation in source model of TE4

 - 67 -

 The mapping blocks relate the predicates in the source model to their equivalent

constructs in the target model. In Figure 7, for instance, block B371 which contains the

generalization link and the two classes Teacher and Person is described as follows:

Begin b37

Class(Person) : Table(Person).

Attribute(IDPerson, Person, unique) : Column(IDPerson,

Person,pk).

Attribute(Name, Person,_) : Column(Name, Person,_).

Attribute(FirstName, Person,_) : Column(FirstName, Person,_).

Attribute(Address, Person,_) : Column(Address, Person,_).

Class(Teacher) : Table(Teacher).

Attribute(Level, Teacher,_) : Column(Level, Teacher,_).

Generalization(Person, Teacher) : Column(IDPerson, Teacher,

pfk).

End b37

 Mappings are expressed with the ‘:’ character. So, the mapping between predicates

Attribute(IDPerson, Person, unique) and Column(IDPerson, Person, pk) indicates that

the “unique” attribute IDPerson in class Person is transformed into the column IDPerson

in table Person with the status of primary key. Similarly, the mapping between

Generalization(Person, Teacher) and Column(IDPerson, Teacher, pfk) indicates that

the generalization link is represented by the primary-foreign key (pfk) IDPerson in table

Teacher.

1 For ease of traceability, blocks are sequentially numbered, starting from the first

transformation example in the example base. For instance, the 9 blocks of example TE1 are

labeled B1 to B9. The 13 blocks of TE2 B10 to B22, and so on. When a solution is produced,

it is relatively easy to determine which examples contributed to it.

 - 68 -

 A model Mi to transform is characterized only by its description SMDi, i.e. a set of

constructs expressed by predicates. A construct can be transformed in many ways, each

having a degree of relevance. This depends on three factors: (1) the adequacy of the

individual construct transformations; (2) the internal consistency of the individual

transformations inside the blocks; (3) the transformation (external) coherence between the

related blocks, i.e., blocks sharing the same constructs. For example, consider a model to

transform that has two classes, Dog and Animal, related by a generalization link g. g could

become a table, many tables, a column, a foreign key, or any other possibility. A possibility

is considered adequate if there exists a block in the example base that maps a generalization

link. For instance, the mapping of block B37 (Figure 7(b)) is adequate because it also

involves a generalization link. It is also internally consistent since it maps a similar pair of

classes. Finally, it is externally coherent if Dog and Animal are only mapped to tables in the

other blocks that contain them.

 The transformation quality of a source model is the sum of the transformation qualities of

its constructs. Consequently, finding a good transformation is equivalent to finding the

combination of construct transformations that maximizes the global quality. But since the

number of combinations may be very large because of multiple mapping possibilities, it

may become difficult, if not impossible, to evaluate them exhaustively. As stated

previously, heuristic search offers a good alternative in this case. The search space

dimensions are the constructs and the possible coordinates in these dimensions are the

block numbers. A solution then consists of choosing a block number for each construct.

The exploration of the search space using heuristic algorithms is presented next.

3 Transformation using Search-Based Methods
 We describe in this section the adaptation of PSO and SA to automate MT. To apply

them to a specific problem, one must specify the encoding of solutions, the operators that

allow movement in the search space so that new solutions are obtained, and the fitness

function to evaluate a solution’s quality. These three elements are detailed in subsections

 - 69 -

3.1, 3.2, and 3.3, respectively. Their use by PSO and SA to solve the MT problem is

presented in subsections 3.4 and 3.5.

3.1 Representing Transformation Solutions
One key issue when applying a search-based technique is finding a suitable mapping

between the problem to solve and the techniques to use, i.e., in our case, encoding a

transformation between a source and a target model. As stated in Section 2, we view the set

of potential solutions as points in a n-dimensional space where each dimension corresponds

to one of the n constructs of the model to transform. Each construct could be mapped

according to a finite set of blocks, which means that each dimension could take set of

discrete values b = {i | 1 ≤ i ≤ m}, where m is the number of blocks extracted from

transformation examples. For instance, the transformation of the model shown in Figure 8

will generate a 7-dimensional space that accounts for the four classes and the 3

relationships.

 To define a particular solution, we associate with each dimension (construct) a block

number that contains a transformation possibility. Each block number defines a coordinate

in the corresponding dimension, and the resulting n-tuple of block numbers then defines a

vector position in the n-dimensional space. For instance, the solution shown in Table 1

suggests that construct1 (class Command) be transformed according to block28, construct2

(class Bill) according to block3, etc. Thus concretely, a solution is implemented as a vector

where the constructs of the model to transform are the elements and the block numbers that

refer to transformation possibility from the example base are the element values.

 - 70 -

Fig 8. Example of source model (UML-class diagram)

Dimension Construct Block number

1 Class(Command) 28

2 Class(Bill) 3

3 Class(Article) 21

4 Class(Seller) 13

5 Aggregation 9

6 Association(payable_by) 42

7 Association(pays) 5
Table 1. Solution Representation

The proposed coding is valid for both heuristics. In the case of PSO, as an initial

population, we create k solution vectors with a random assignment of blocks.

Alternatively, SA starts from a solution vector produced by PSO.

3.2 Deriving A Transformation Solution
A change operator is a modification brought to a solution in order to produce a new one. In

our case, it is the modification of a transformation of the source model in order to produce a

new one. This is done by changing the blocks for some constructs, which is equivalent to

changing the coordinates of the solution in search space. Unlike solution encoding, change

operators are implemented differently by the PSO and SA heuristics. PSO changes blocks

as a result of movement in the search space driven by a velocity function; SA performs the

change randomly.

In the case of PSO, a translation (velocity) vector is regularly updated and added to a

position vector to define new solutions (see Section 3.4, Equations 3 and 4 for details). For

example, the solution sown in Table 1 may lead to the new solution shown at the bottom of

 - 71 -

Figure 9. The velocity vector V assigns a real-valued translation for each element of

the position vector. After adding the two vectors, the elements of the result are each

rounded to the nearest integer to represent block numbers (The allowable values are bound

by 1 and the maximum number of available blocks). As shown in Figure 9, the new

solution updates the block numbers of all construct. Thus, block 42 replace block 19, block

7 remains here, block 49 replaces block 51, etc.

19 7 51 105 16 83 33

23.5 0 -1.7 14.2 0 -3.1 0

42 7 49 119 16 80 33

+

=

X

V

X’

Fig 9. Change Operator in PSO

For SA, the change operator involves randomly choosing l dimensions (l < n) and

replacing their assigned blocks by randomly selected ones from the example base. For

instance, Figure 10 shows a new solution derived from the one of Table 1. Constructs 1, 5

and 6 are selected for change. They are assigned respectively blocks 52, 24, and 11 in place

of 19, 16, and 83. The other constructs keep their transformation blocks. The number of

blocks to change is a parameter of the SA algorithm (three in this example).

19 7 51 105 16 83 33

52 7 51 105 24 11 33

X

X’

Fig. 10. Change Operator in SA

In summary, regardless of the search heuristic, a change consists of assigning new block

numbers to one or more dimensions. Said otherwise, it drives new transformation solution

Xi+1 drived from the previous one Xi+1.

 - 72 -

3.3 Evaluating Transformation Solutions
The fitness function quantifies the quality of a transformation solution, which basically is a

1-to-1 assignment of blocks from the example base to the constructs of the source model.

As discussed in Section 2, the fitness function must consider the three following aspects for

a construct j to transform:

• Adequacy of the assigned block to the construct j (aj).
• Internal coherence of the individual construct transformation (icj) .
• External coherence with the other construct transformations (ecj).

 In this context, we define the fitness function of a solution as the sum of qualities of the

n individual construct transformations. Formally,

∑
=

+×=
n

j
jjj ecicaf

1
)((1)

 In this equation, aj represents the adequacy factor with value 1 if the associated block

contains a construct containing at least one construct of the same type as the jth construct,

and value 0 otherwise. This factor basically penalizes the assignment of blocks that do not

contain constructs of the same type as the construct to transform (by giving them a zero

value). This is a way to reduce the search space.

 The internal-coherence factor icj measures the similarity, in terms of properties, between

the construct to transform and the construct in the assigned block that has the same type. As

shown in Section 3.1, the properties of the constructs are represented by the parameters of

the predicates. Formally:

constrcut j theof predicates in the parameters ofnumber total
j theof predicates in the parameters matched ofnumber

th

th constructic j =

 In general, a block assigned to a construct j contains more constructs than the one that is

adequate with j. The external-coherence factor ecj evaluates to which extent these

constructs match the constructs that are linked to j in the source model . ecj is defined as

construct j torelated constructs ofnumber total
construct j the torelated constructs matched ofnumber

th

th

=jec

 - 73 -

 To illustrate the fitness calculation, consider again the example of Figure 8. The

association payable_by (6th dimension) is defined by the predicate

Association (1,n,1,1,_,Command, Bill)

where the first four parameters indicates the multiplicities (1..n and 1..1), the fifth the name

of the associative class if it exists, and the two last the source and target classes (Command

and Bill). Consider a solution s1 that assigns block 42 to this association:

Begin b42

Class(Client) : Table(Client).

Attribute(NClient, Client, unique) : Column(NClient, Client,

pk).

Attribute(ClientName, Client,) : Column(ClientName, Client,

).

Attribute(Address, Client,_) : Column(Address, Client,_).

Attribute(Tel, Client,_) : Column(Tel, Client,_).

Class(Reservation) : Table(Reservation).

Attribute(NReservation, Reservation, unique) :

Column(NReservation, Reservation, pk).

Attribute(StartDate, Reservation,_) : Column(StartDate,

Reservation,_).

Attribute(EndDate, Reservation,_) : Column(EndDate,

Reservation,_).

Attribute(Region, Reservation,_) : Column(Region,

Reservation,_).

Association (1,n,0,n,_, Client, Reservation) :

Column(N_Client, reservation, fk).

End b42

 - 74 -

In this case, a6 (adequacy for the 6th construct) is equal to 1 because block 42 contains

a predicate Association that relates classes Client and Reservation. This association

predicate has five parameters over seven that match the ones of pays (1,n,x,x,_, origin and

destination class names). As a result, we have ic6=5/7=0.71. Moreover, according to block

42, to be consistent with the transformation of payable_by, classes Bill and Command have

to be mapped to tables. On the other hand, s1 also assigns blocks 28 and 3 to classes Bill

(dimension 2) and Client (dimension 4), respectively. These two blocks are defined as

follows.

Begin b28

Class(Position) : Table(Position).

….

Class(Employee) : Table(Employee).

…

Association(0,1, ,n,_, Position, Employee) :

Column(IDPosition, Employee, fk).

End b28

Begin b3

Class(Manager) : Table(Manager).

…

Class(Employee) : Table(Employee).

…

Generalization(Employee, Manager) : Column(IDEmployee,

Manager, fk).

End b3

In both blocks, classes are transformed into tables. Since this does not conflict with block

42, we have for the two related constructs c6=2/2=1.

 - 75 -

The fitness function also evaluates the completeness of a transformation indirectly.

A solution that does not transform a subset of constructs will be penalized. Those

constructs will have null values (aj being always equal to 0). Finally, to make the values

comparable across models with different numbers of constructs, a normalized version of the

fitness function is used. For a particular construct, the fitness varies between 0 and 2 (icj

and ecj can be both equal to 1). Considering the n constructs, we normalized the fitness

function as follows:

n
ffnor ∗

=
2

 (2)

We used this normalized fitness function for both PSO and SA.

3.4 Global Search (Particle Swarm Optimization)

3.4.1 PSO Principles
PSO is a parallel population-based computation technique [22]. It was originally inspired

from the flocking behavior of birds, which emerges from very simple individual conducts.

Many variations of the algorithm have been proposed over the years, but they all share a

common basis. First, an initial population (named swarm) of random solutions (named

particles) is created. Then, each particle flies in the n-dimensional problem space with a

velocity that is regularly adjusted according to the composite flying experience of the

particle and some, or all, the other particles. All particles have fitness values that are

evaluated by the objective function to be optimized. Every particle in the swarm is

described by its position and velocity. A particle position represents a possible solution to

the optimization problem, and velocity represents the search distances and directions that

guide particle flying. In this paper, we use basic velocity and position update rules defined

by [22]:

)(var)(var 22111 idgdidididid XPCXPCVWV −∗∗+−∗∗+∗=+ (3)

ididid VXX +=+1 (4)

 - 76 -

At each time (iteration), Vid represents the particle velocity and Xid its position in the

search space. Pid (also called pbest for local best solution), represents the ith particle’s best

previous position, and Pgd (also called gbest for global best solution), represents the best

position among all particles in the population. w is an inertia term; it sets a balance between

the global and local exploration abilities in the swarm. Constants c1 and c2 represent

cognitive and social weights associated to the individual and global behavior, respectively.

There are also two varaibles var1 and var2 (normally uniform in the interval [0, 1]) that

represent stochastic acceleration during the attempt to pull each particle toward the pbest

and gbest positions. For a n-dimensional search space, the ith particle in the swarm is

represented by a n-dimensional vector, xi=(xi1,xi2,…,xid). The velocity of the particle, pbest

and gbest are also represented by n-dimensional vectors. Algorithm 1 summarizes the

generic PSO procedure.

PSO algorithm

1: Initial population (particles) creating (initialization)

2: while Termination criterion not met do

3: for each particle do

4: Evaluate fitness

5: Update local/global best (if necessary)

6: Update velocity and position

 - 77 -

7: end for

8: end while

9: Return solution corresponding to the global best

Algorithm 1. PSO algorithm

3.4.2 PSO for Model transformation
The PSO swarm is represented as a set of K particles, each defined by a position vector

corresponding to the n constructs of the model to transform. For a particle position, the

values of the vector elements are the mapping blocks selected for each construct. Our

version of PSO starts by randomly generating the particle positions and velocities in the

swarm. This is done by randomly affecting a block number to each of the n constructs

(dimensions). Thus, the initial particle population represents K different possibilities

(solutions) to transform the source model by combining blocks from the transformation

examples. The fitness of each particle is measured by the fitness function defined by

Equations 1 and 2.

The particle with the highest fitness is memorized as the global best solution during the

search process. At each iteration, the algorithm compares the fitness of each particle with

those of the other particles in the population to determine the gbest position for use to

update the swarm. Then, for each particle, it compares its current positions with pbest, and

update the latter if an improvement is found. The new positions affect the velocity of each

particle according to Equation 3. The algorithm iterates until the particles converge towards

a good transformation solution of the source model. In our case, we define a maximum

number of iterations after which we select the gbest as the transformation solution. The

algorithm stops before if all the particles converge to the same solution.

The parameters in Equation 3 have an important effect on the search efficiency of the

PSO algorithm. Acceleration constants c1 and c2 adjust the amount of “tension” in the

system. Low values allow particles to roam far from target regions before being tugged

back, while high values result in abrupt movement toward, or past, target regions [40].

Based on past research experience, we set both constants to 1. Equations 3 and 4 may lead

to large absolute values for Vid and Xid, so that a particle may overshoot the problem space.

 - 78 -

Therefore, Vid and Xid should be confined to a maximum velocity Vmax, and a

maximum position Xmax, such that

)max),,0min(max(;max XidVidXidXNX +== (5)

Vmax serves as a constraint to control the global exploration ability of a particle swarm. It

should take values in the interval [-m, m], m being the number of blocks in the existing

transformation examples. Xid represents the block number affected to a construct; it must be

a positive integer. Hence, a real value for Xid is rounded to the closest block number by

dropping the sign and the fractional part.

The inertia weight (w) is another important parameter of the PSO search. A proper value

for w provides a balance between global and local exploration, and results in less iterations

to find a solution on average. In practice, it is often linearly decreased through the course of

the PSO, for the PSO to have more global search ability at the beginning of the run and

more local search ability near the end. For the validation experience in this paper, the

parameter was set as follows [40]:

iter
iter

WWWW ∗⎟⎟
⎠

⎞
⎜
⎜
⎝

⎛ −−=
max

minmax
max (6)

where Wmax is the initial value of weighting coefficient, Wmin is a minimal value of

weighting coefficient, itermax is the maximum number of iterations, and iter is the current

iteration.

3.5 Local Search (Simulated Annealing)

3.5.1 SA Principles
In the case of a quick run of PSO (only a few iterations), the best transformation solution

can be improved by using another search heuristic. We propose in this work to use SA in

combination with PSO. SA [17] is a search algorithm that gradually transforms a solution

following the annealing principle used in metallurgy.

The generic behavior of this heuristic is shown by Algorithm 2. After defining an initial

solution, the algorithm iterates on the following three steps:

 - 79 -

1 Determine a new neighboring solution,
2 Evaluate the fitness of the new solution
3 Decide on whether to accept the new solution in place of the current one based on

the fitness gain/lost.

SA algorithm

1: current_solution ← initial_solution

2: current_cost ← evaluate (current_solution)

3: T ← Tinitial

4: while (T > Tfinal) do

5: for i=1 to iterations (T) do

6: new_solution ← move (current_solution)

7: new_cost ← evaluate(new_solution)

8: ∆cost ← new_cost – current_cost

9: if (∆cost≤0 OR e-∆cost/<T < random())

10: current_solution ← new_solution

11: current_cost ← new_cost

12: end if

13: end for

14: T← next_temp(T)

15: end while

Algorithm2. SA algorithm

When ∆cost < 0, the new solution has lower cost than the current solution and it is

accepted. For ∆cost > 0 the new solution has higher cost. In this case, the new solution is

accepted with probability e -∆cost /T. The introduction of a stochastic element in the decision

process avoids being trapped in a local minimum solution. Parameter T, called temperature,

controls the acceptance probability of a lesser good solution. T begins with a high value, for

a high probability of accepting a solution during the early iterations. Then, it decreases

gradually (cooling phase) to lower the acceptation probability as we advance in the iteration

 - 80 -

sequence. For each temperature value, the three steps are repeated for a fixed number

of iterations.

One attractive feature of the simulated annealing algorithm is that it is problem-

independent and can be applied to most combinatorial optimization problems [42, 12].

However, SA is usually slow to converge to a solution.

3.5.2 SA for Model Transformation
To obtain a more robust optimization technique, it is common to combine different

search strategies in an attempt to compensate the deficiencies of individual algorithms [12].

In our context, the search for a solution is done in two steps. First, a global search is

quickly performed to locate the portion of search space where good solutions are likely to

be found. This is performed by PSO and results in a near-optimal solution. In the second

step, the obtained solution is refined by the SA algorithm.

As described in Section 3.1, solutions are coded by assigning a block number to each

construct to form a vector. The SA algorithm starts with an initial solution generated by a

quick run of PSO. As for PSO, the fitness function presented in section 3.3 measures the

quality of the solution at the end of each iteration. The generation of a neighboring solution

is obtained by randomly changing a number of dimensions with new randomly selected

blocks.

The way in which we decrement our temperature is critical to the success of the

algorithm. Theory states that we should allow enough iteration at each temperature so that

the system stabilises at that temperature. Unfortunately, theory also states that the number

of iterations at each temperature to achieve this might be exponential to the problem size.

As this is impractical we need to compromise. We can either do this by doing a large

number of iterations at a few temperatures, a small number of iterations at many

temperatures or a balance between the two. One way to decrement the temperature is use a

geometric cooling schedule [17]. The temperature is reduced using:

iTiT ∗=+ α1 (7)

where α is a constant less than 1. Experience has shown that α should be between 0.8

and 0.99, with better results being found in the higher end of the range. Of course, the

 - 81 -

higher the value of α, the longer it will take to decrement the temperature to the

stopping criterion.

4 Evaluation and comparison
To evaluate the feasibility of our approach, we conducted an experiment on industrial data.

We start by presenting our experimental setting. Then, we describe and discuss the obtained

results. We compare in particular the results of PSO with the PSO-SA combination.

Finally, we evaluate the impact of the example base size on transformation quality.

4.1 Setting
We used 12 examples of class-diagrams to relational schemas transformations to build an

example base EB = {<CLDi, SRi> | 1 ≤ i ≤ 12}. The examples were provided by an

industrial partner. As showed in Table 2, the size of the CLDs varied from 28 to 92

constructs, with an average of 58. Altogether, the 12 examples defined 257 mapping

blocks. Because our industrial partner uses Rational Rose to derive relational schemas from

UML class models, we did not have transformation blocks defined by experts during the

transformation. For the need of the experience, we automatically extracted the

transformation traces from XMI files produced by Rational Rose. Then, we manually

partitioned the traces into blocks.

To evaluate the quality of transformations produced by MOTOE, we used a 12-fold cross

validation procedure. For each fold, one class diagram CLDj is transformed by using the

remaining 11 transformation examples (EBj = {<CLDi, RSi> | i≠j}). Then the

transformation result of each fold is checked for correctness. The correctness of a

transformation tCLDj was measured by two methods: automatic correctness (AC) and

manual correctness (MC). Automatic correctness consists of comparing the derived

transformation tCLDj to the known RSj, construct by construct. This method has the

advantage of being automatic and objective. However, since a given CLDj may have

different transformation possibilities, AC could reject a valid construct transformation

because it yields a different RS from the one provided. To account for those situations, we

also use MC which manually evaluates tCLDj, here again construct by construct. In both

 - 82 -

cases, the correctness of a transformation is the proportion of constructs that are

correctly transformed.

To set the parameters of PSO for the global search strategy, we started with commonly

found values in the literature [6, 7] and adapted some of them to the particularities of the

transformation problem. The final parameters values were set as follows:

• The swarm is composed of 40 particles. We found this number to provide a good
balance between population diversity and the quantity of available examples.

• The inertia weight W is initially set to 1.3 and gradually decreased after each
iteration according to Equation 6), until it reaches 0.3,

• C1 and C2 are both equal to 1 to give equal importance to local and global search.
• The maximum number of iterations is set to twice the size of the population, i.e. 80.

This is a generally accepted heuristic [40].
• Since two different executions of a search heuristic may produce different results

for the same model, we decided, for each of 12 folds, to take the best result from 5
executions.

As mentioned previously, the initial particle positions are randomly generated. The range

of values for each particle coordinate (construct) is defined as [0, MaxBlocks] where

MaxBlocks is the total number of blocks extracted from the 11 examples of the fold. In our

case, MaxBlocks is 257 minus the number of blocks of the fold example.

For the hybrid search strategy, the SA algorithm was applied using the following

parameters:

• The initial temperature of the process is randomly selected in the range [0, 1]
• The geometric cooling coefficient α is 0.98.
• The iteration interval for temperature update is 10000 (to account for SA’s

slowness).
• The number of dimensions to change for generating a neighboring solution is set to

2. This value offers a good balance with the large number of iterations.
• The stopping criterion (temperature threshold) is 0.1

To quickly generate an initial solution for SA, we limited the number of particles to 10

and the number of iterations to 20 for PSO.

 With these parameter values, the transformation of largest diagrams took only a few

seconds of run time. We also tried other parameters and obtained similar results each time.

 - 83 -

4.2 Results and Discussion

4.2.1 Results
Tables 2 and 3 respectively show the obtained correctness for each of the 12 folds, when

using global and hybrid search. Both automatic and manual correctness values were high

and, as expected, manual evaluation yielded better correctness since it considered all

correct transformations and not only the specific alternatives chosen by our industrial

partner. We consider correctness values (74% and 94% for respectively the automatic and

the manual validation) as relatively high relatively given the context of no transformation

rules and the limited number of used examples.

 Table 2 shows the correctness of the generated transformations using the PSO heuristic.

The automatic correctness measure had an average value of 73.3%, with most of the models

transformed with at least 70% precision. The manual correctness measure was much

greater, with an average value of 93.2%; this indicates that the proposed transformations

were almost as correct as the ones given by experts. The worst model (SM9) had an

acceptable MC of 87% and four models obtained an MC greater than 95%, with a value of

98,1% for SM8.

Source

Model

Number

of

constructs

Fitness AC MC

SM 1 72 0.696 0.618 0.882

SM 2 83 0.714 0.682 0.928

 - 84 -

SM 3 49 0.762 0.721 0.943

SM 4 53 0.796 0.719 0.931

SM 5 38 0.773 0.789 0.952

SM 6 47 0.746 0.652 0.918

SM 7 78 0.715 0.772 0.957

SM 8 34 0.896 0.822 0.981

SM 9 92 0.61 0.634 0.87

SM 10 28 0.892 0.908 0.969

SM 11 59 0.773 0.717 0.915

SM 12 63 0.805 0.762 0.938

Average 58 0.764 0.733 0.932
Table 2. 12-fold cross validation with PSO

 The hybrid search gave slightly better correctness results as shown in Table 3. Both

automatic and manual correctness were slightly better on average (93.4% for AC and 94.8

for MC). With regards to MC, the quality of 8 model transformations was improved while

that of 4 was slightly degraded. For instance, MC for the worst transformed model (SM9)

improved from 87% to 93.1%, while that for the best transformed model (SM5) decreased

from 95.2% to 93%.

Source

Model

Number

of

constructs

Fitness AC MC

SM 1 72 0.735 0.696 0.947

SM 2 83 0.784 0.723 0.962

SM 3 49 0.632 0.69 0.912

 - 85 -

SM 4 53 0.619 0.672 0.956

SM 5 38 0.742 0.733 0.93

SM 6 47 0.737 0.704 0.953

SM 7 78 0.743 0.79 0.942

SM 8 34 0.845 0.813 0.975

SM 9 92 0.648 0.667 0.931

SM 10 28 0.846 0.873 0.983

SM 11 59 0.796 0.73 0.92

SM 12 63 0.772 0.72 0.964

Average 58 0.742 0.734 0.948

Table 3. 12-fold cross validation with PSO-SA

4.2.2 Discussion
One observation to be made from the results in Tables 2 and 3 is that, with the exception of

model SM7, hybrid search yielded better results than global search for the models with the

highest numbers of constructs. This may be due to the fact that, when the number of

dimensions is high, the search space is very large and the use of PSO leads to particle

movement steps that can only approximate the location of the target solution. A more

focused search consisting of global search followed by local exploration produces better

results in this case. In contrast, for a smaller search space (less dimensions), area coverage

by the particles is easier, and a global search appears to be more efficient to zero in on the

solution.

 - 86 -

Fig 11. Fitness improvement with SA after PSO initial pass

 To better analyze the performance of the hybrid strategy, Figure 11 shows, for all

models, the average final values of the fitness function after the quick global search with

PSO and their corresponding values after the refinement made by SA. As one can see,

substantial fitness improvement occurred (more than 50% in many cases) in each case of

the 12-fold cross validation. It appears then that the hybrid strategy brings a good

compromise between correctness and execution time. Indeed, it allows improving the

transformation correctness with a slight increase in the execution time. The obtained results

also show that our fitness function is a good estimator of transformation correctness.

 An important consideration is the impact of the example base size on transformation

quality. Drawn for SM7, the results of Figures 12 and 13 show that our approach also

proposes transformation solutions in situations where only few examples are available.

When using the global search strategy, AC seems to grow steadily and linearly with the

number of examples. For the hybrid strategy, the correctness seems to follow an

exponential curve; it rapidly grows to acceptable values and then slows down. Indeed, AC

improved from roughly 30% to 65% as the example base size went from 1 to 4 examples.

Then, it grew only by an additional 15% as the size varied from 6 to 11 examples.

 - 87 -

Fig 12. Example-size variation with PSO

Fig 13. Example-size variation with PSO-SA

When manually analyzing the results, we noticed that some of the 12 models had

constructs not present in the other models. Those constructs were generally not transformed

as not adequate block could be found for them. However, some others were transformed by

adapting the transformation of constructs of the same nature. This was the case, for

instance, for an association with multiplicity (1..N, 1..N). Since the multiplicity elements

are considered as parameters of the construct, the transformation of an association (0..N,

 - 88 -

0..N) was applied with a penalty on the fitness function. Although these few cases of

adaptation improved the global correctness scores, we did not specifically address the issue

at the current stage of our research.

Execution Time (seconds)

0

10

20

30

40

50

60

28 34 38 47 49 53 59 63 72 78 83 92

Constructs

Ti
m

e
(s

)

PSO
SA

Fig 14. Execution time

Finally, since we viewed the transformation problem as a combinatorial problem

addressed with heuristic search, it is important to contrast the correctness results with the

execution time. We executed our algorithm on a standard desktop computer (Pentium CPU

running at 2 GHz with 1GB of RAM). The execution time is shown in Figure 14. As

suggested by the curve shape, there were no performance problems when transforming

models up to 100 elements that corresponds to small and medium models. It should be

noted, however, that more important execution times may be obtained in comparison with

using rule-based tools for small-dimensional problems. In any case, our approach is meant

to apply to situations where rule-based solutions are normally not readily available.

 - 89 -

5 Related Work
The work proposed in this paper can be related to three research areas in software

engineering, of which the most relevant one is MT in the context of MDD. Some links can

also be found with by-example and search-based software engineering, but our concerns are

different as will be discussed below. As a result, only a comparison to alternatives in the

first area is warranted.

5.1 Model Transformation
Several MT approaches can be found in the literature (see, for example, the classifications

given in [24, 44]). Czarnecki and Helsen [24] distinguish between two main types: model-

to-model and model-to-code. They describe five categories of the former: Graph-

transformation-based [25], relational [11], structure-driven [21], direct-manipulation and

hybrid. They use various criteria to analyze them, like the consideration of Model Driven

Architecture (MDA) as a basis for transformation, the complexity and scalability of the

transformation mechanism, the use or not of annotations, the level of automation, and the

used languages and implementation techniques. In general, the reported approaches are

based on empirically obtained rules [2, 3] in contradistinction to block transformation in

MOTOE. In rules-based approaches, the rules are defined in metamodels while our blocks

relate to specific problems, with a varying structure, for different problems.

In existing transformation approaches, likes graph-transformation [25, 58, 59], a

transformation rule consists of two parts: a left-hand side (LHS) and a right-hand side

(RHS). The LHS accesses the source model, whereas the RHS expands in the target model.

By comparison, each block in MOTOE contains a transformation of source elements (LHS)

to their equivalents target elements (RHS). However, in a graph-transformation approach,

potentials conflicts between transformation elements are verified with pre and post

condition. In our case, pre and post conditions are replaced by the fitness function that

ensures transformations coherency.

 In rule based approaches, a rule is applied to a specific location within its source scope.

Since there may be more than one match for a rule within a given source scope, we need an

application strategy. The strategy could be deterministic, non-deterministic or even

 - 90 -

interactive [60]. For example, a deterministic strategy could exploit some standard

traversal strategy (such as depth-first) over the containment hierarchy in the source. In our

work, the transformation possibilities (blocks) are randomly chosen with .no strategy for

rules application (rules scheduling, etc).

Transformation rules are usually designed to have a functional character: given some input

in the source model, they produce a concrete result in the target model [18]. A declarative

rule (i.e., one that only uses declarative logic and/or patterns) can often be applied in the

inverse direction. However, since different inputs may lead to the same output, the inverse

of a rule may not be a function. We have the same problem in our approach since, blocks

only defined in one direction (from CLD to RS for example). To ensure a bidirectional

transformation property, we need to apply our methodology to examples from the other

direction.

If we define cognitive complexity as the level of difficulty to design a model

transformation, we believe that collecting/recording transformation examples may be less

difficult than producing and maintaining consistent transformation rule sets. This is

consistent with recent trend in industry where we find several tools to record

transformations and automatically generate transformation traceability records [61].

The traditional approach for implementing model transformations is to specify

transformation rules and automate the transformation process by using a model

transformation language [23]. Most of these languages are powerful enough to implement

large-scale and complex model transformation tasks. However, the transformation rules are

usually defined at the metamodel level, which requires a clear and deep understanding

about the abstract syntax and semantic interrelationships between the source and target

models. In some cases, domain concepts may be hidden in the metamodel and difficult to

unveil [2, 3] (e.g., some concepts are hidden in attributes or association ends, rather than

being represented as first-class entities). These implicit concepts may make writing

transformation rules difficult.

To help address the previous challenges, an alternative approach called Model

Transformation By Example (MTBE) was proposed in [13, 15].In it, users are asked to

build a prototypical set of interrelated mappings between the source and target model

 - 91 -

instances, and then the metamodel-level transformation rules will be semi-

automatically generated. Because users configure the mappings at the instance level,

without knowing any details about the metamodel definition or the hidden concepts,

combined with the generated rules, the simplicity of specifying model transformations can

be improved. Varrò and Balogh [13, 15] propose a semi-automated process for MTBE

using Inductive Logic Programming (ILP). The principle of their approach is to derive

transformation rules semi-automatically from an initial prototypical set of interrelated

source and target models. Another similar work is that of Wimmer et al. [31] who derive

ATL transformation rules from examples of business process models. Both works use

semantic correspondences between models to derive rules. Their differences include the

fact that [31] presents an object-based approach that finally derives ATL rules for model

transformation, while [13] derives graph transformation rules. Another difference is that

they respectively use abstract versus concrete syntax: Varro uses IPL when Wimmer relies

on an ad hoc technique. Both approaches provide a semi-automatic generation of model

transformation rules that needs further refinement by the user. Also, since both approaches

are based on semantic mappings, they are more appropriate in the context of exogenous

model transformations between different metamodel. Unfortunately, the generation of rules

to transform attributes is not well supported in most MTBE implementations. Our model is

different from both previous approaches to MTBE. We do not create transformation rules to

transform a source model, directly using examples instead. As a result, our approach is

independent from any source or target formalisms.

Recently, a similar approach to MTBE, called Model Transformation By Demonstration

(MTBD), was proposed [62]. Instead of the MTBE idea of inferring the rules from a

prototypical set of mappings, users are asked to demonstrate how the model transformation

should be done, through direct editing (e.g., add, delete, connect, update) of the source

model, so as to simulate the transformation process. A recording and inference engine was

been developed, as part of a prototype called MT-Scribe, to capture all user operations and

infer a user’s intention during a model transformation task. A transformation pattern is

generated from the inference, specifying the preconditions of the transformation and the

sequence of operations needed to realize the transformation. This pattern can be reused by

 - 92 -

automatically matching the preconditions in a new model instance and replaying the

necessary operations to simulate the model transformation process. However, this approach

needs a large number of simulated patterns to be efficient and it requires a high level of

user intervention. In fact, the user must choose the suitable transformation pattern. Finally,

the authors do not show how MTBD can be useful to transform an entire source model and

only provide examples of transforming model fragments.

Some others metamodel matching works can be also considered as a variant of By-example

approaches. Garcia-Magarino et al. [66] proposes an approach that generates transformation

rules between two meta-models that satisfies some constraints introduced manually by the

developer. In [65], authors propose to capture automatically some transformation patterns

in order to generate some matching rules in the metamodel level. This approach is similar

to MTBD but it is used in the meta-model level. The difference of this category of

approaches with our proposal that we do not generates transformation rules and MOTOE

do not need to specify the source and target metamodels as input.

To conclude, the previous problems limit the applicability of MTBE/MTBD for some

transformation problems. In such situations, MOTOE may leads to more relevant solutions.

In our approach, the definition of transformation examples is based on the use of

traceability information [61]. Traceability usually allows tracing artifacts within a set of

chained operations, where the operations may be performed manually (e.g., crafting a

software design for a set of software requirements) or with automated assistance (e.g.,

generating code from a set of abstract descriptions). For example, Triple Graph Grammars

(TGG) [63] explicitly maintains the correspondence of two graphs by means of

correspondence links. These correspondence links play the role of traceability links that

map elements of one graph to elements of the other graph and vice versa. With TGG, one

has to explicitly describe correspondence between the source and target models, which is

difficult if the transformation is complex and the intermediate models are required during

the transformation. In [52], a traceability framework for Kermeta is discussed. This

framework supports the creation of traces throughout a transformation chain. Marvie

describes a transformation composition framework [64] that allows manual creation of

linkings (traces). However, this framework do not support the automatic generation of

 - 93 -

traces. In conclusion, A large part of the work on traceability in MDE uses it for

detecting model inconsistency and fault localization in transformations. In MOTOE, this is

not the goal as the purpose is to use trace information as input to automate the

transformation process. The traces information (model correspondence) between a source

and target models define a transformation example that is decomposed in some independent

blocks as explained before.

Our approach is different from case-based reasoning methods where the level of granularity

must be the example as a whole, i.e., a transformation example [8]; in our case, we do not

select the most similar example and adapt its transformation; rather, we aggregate the best

transformation possibilities coming from different examples.

5.2 By-Example Software Engineering
The approach proposed in this paper is based on using past transformation examples.

Various such “by-example” approaches have been proposed in the software engineering

literature. However, the problems addressed by them differ from ours in both nature and

objectives. The closest work to ours is program transformations by demonstration [1, 5], in

which a user manually changes program examples while a monitoring plug-in to the

development environment records the changes . Then, the recorded data are analyzed to

create general transformations that can be reused in subsequent programs. However, the

overall process is not automated and requires frequent interaction with the user, and the

generated transformation patterns are found via a different algorithms than the one used by

MOTOE.

5.3 Search-Based Software Engineering
Our approach is inspired by contributions in Search-Based Software Engineering (SBSE)

[26, 28]. As the name indicates, SBSE uses a search-based approach to solve optimization

problems in software engineering. Once a software engineering task is framed as a search

problem, by defining it in terms of solution representation, fitness function and solution

change operators, there are many search algorithms that can be applied to solve that

problem. To the best of our knowledge, inspired among others by the road map paper of

 - 94 -

Harman [28], the idea of treating model transformation as a combinatorial

optimization problem to be solved by a search-based approach was not studied before our

proposal in [29]. For this reason, we can not compare our approach to existing works in

SBSE because the application domain is very different.

6 Summary and Conclusion
In summary, we described MOTOE, a novel approach to automate MT using heuristic-

based search. MOTOE uses a set of transformation examples to derive a target model from

a source model. The transformation is seen as an optimization problem where different

transformation possibilities are evaluated and, for each possibility, a quality is associated

depending on its conformance with the examples at hand. The search space is explored with

two methods. In the first one, we use PSO with transformation solutions generated from the

examples at hand as particles. Particles progressively converge toward a good solution by

exchanging and adapting individual construct transformation possibilities. In the second

method, a partial run of PSO is performed to derive an initial solution. This solution is then

refined using a local search with SA. The refinement explores neighboring solutions

obtained by trying individual construct transformation possibilities derived from the

example base. In both methods, the quality of a solution considers the adequacy of

construct transformations as well as their mutual consistency.

 We illustrated MOTOE with the transformation of UML class diagrams to relational

schemas. In this context, we conducted a validation with real industrial models. The

experiment results clearly indicate that the derived models are comparable to those

proposed by experts (correctness of more than 90% with manual evaluation). They revealed

also that some constructs were correctly transformed although no transformation examples

were available for them. This was possible because the approach uses syntactic similarity

between construct types to adapt their transformations. We also showed that the two

methods used for the space search produced comparable results when properly applied, and

that PSO alone is enough with small-to-medium models while the combination PSO-SA is

more suitable when the size of the models to transform is larger. For both methods, our

 - 95 -

transformation process derives a good quality transformation in an acceptable

execution time. Finally, the validation study showed that the quality of MT improves with

the number of examples. However, it reaches a stable score after as few as nine examples.

Also, there were no performance problems when transforming models up to 100 elements

that corresponds to small and medium models.

 Our proposed method also has limitations. First, MOTOE’s performance depends on

the availability of transformation examples, which could be difficult to collect. Second, the

generation of blocks from the examples is done manually in our present work; we could

partially automate this task using decomposition heuristics. Third, due to the nature of our

solution, i.e., an optimization technique, the transformation process could be time

consuming for large models. Finally, as we use heuristic algorithms, different execution for

the same source models could lead to different target models. Nevertheless, we showed in

our validation that solutions that have high fitness values also have good correctness.

Moreover, this is close to what happens in the real world where different experts could

propose different target models.

From the applicability point of view, our approach can theoretically be applied to the

transformation of any pair of formalisms. To practically assess this clam, we are currently

experimenting with other formalisms such as sequence diagrams to Petri nets. We also plan

to work on adapting our approach to other transformation problems such as code generation

(model-to- code), refactoring (code-to-code), and reverse engineering (code-to-model). The

refactoring problem also has the advantage of exploring endogenous transformations where

source and target models conform to the same metamodel. Regarding the quality evaluation

of transformations, the fitness function we used could be improved. In this work, we gave

equal importance to all constructs. In the real world, some construct types may be more

important than others.

References

1. A. Cypher (ed.). Watch What I Do: Programming by Demonstration. The MIT Press, (1993)
2. A. Egyed, Automated abstraction of class diagrams. ACM Trans. Softw. Eng.Methodol. 11(4): 449-

491 (2002).

 - 96 -

3. A. Egyed, Heterogeneous Views Integration and its Automation, Ph.D. Thesis,Univ. of

Southern California, (2000)
4. A. Kleppe , J.Warmer J and W. Bast MDA Explained. The model driven architecture: practice and

promise. Addison-Wesley, (2003)
5. A. Repenning and C. Perrone. Programming by example: programming by analogous examples.

Comm. of the ACM, vol. 43(3):pp. 90–97, (2000)
6. A. Salman, A. Imtiaz, and Al-Madani, S.: Particle swarm optimization for task assignment problem.

In: IASTED Intl. Conf. on Artificial Intelligence and Applications (2001)
7. A. Windisch,, S. Wappler, and J. Wegener,. Applying particle swarm optimization to software

testing. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation
(London, England, July 07 - 11, 2007). GECCO '07. ACM, New York, NY, pp. 1121-1128, (2007)

8. A.Aamodt and E.Plaza, "Case-Based Reasoning: Foundational Issues, Methodological Variations,
and System Approaches," Artificial Intelligence Communications 7 : 1, 39-52(1994)

9. ATLAS Group. The ATLAS Transformation Language. http://www.eclipse.org/gmt.
10. Compuware, SUN. MOF 2.0 Query/Views/Transformations RFP, Revised Submission. OMG

Document ad/2003-08-07, http://www.omg.org/cgi-bin/doc?ad/2003-08-07 (2003)
11. D. H. Akehurst and S.Kent. A Relational Approach to Defining Transformations in a Metamodel. In

J.-M. Jézéquel, H. Hussmann, S. Cook (Eds.): UML 2002 – The Unified Modeling Language 5th
International Conference, Dresden, Germany, September 30 - October 4, 2002. Proceedings, LNCS
2460, 243-258, (2002)

12. D. Mitra, F. Romeo, and A. Sangiovanni-Vincentelli, “Convergence and Finite-Time Behaviour of
Simulated Annealing,” Proc 1985 Decision and Control Con5 , (1985).

13. D. Varro and Z. Balogh, Automating Model Transformation by Example Using Inductive Logic
Programming, ACM Symposium on Applied Computing | Model Transformation Track, (2007)

14. D. Varro, A. Pataricza : Generic and meta-transformations for model transformation engineering. In:
Baar, T., Strohmeier, A., Moreira, A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273. Springer,
Heidelberg (2004)

15. D. Varro. Model transformation by example. In Proc.MODELS 2006, pp. 410–424, Vol. 4199 of
LNCS. Springer, (2006)

16. D.S. Coming and O.G. Staadt, "Velocity-Aligned Discrete Oriented Polytopes for Dynamic
Collision Detection," IEEE Trans. Visualization and Computer Graphics, vol. 14, no. 1, pp. 1-12 ,
doi:10.1109/TVCG.2007.70405, (2008)

17. D.S. Kirkpatrick, Jr. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,
220(4598):671680, (1983)

18. F. Jouault, and I. Kurter,: Transforming models with ATL. In: Proc. Of the Model Transformations
in Practice Workshop at MoDELS 2005, Jamaica (2005)

19. G. Taentzer : AGG: a graph transformation environment for system modeling and validation. In:
Proc. Tool Exihibition at Formal Methods 2003, Pisa, Italy (2003)

20. Interactive Objects and Project Technology, MOF Query/Views/Transformations, Revised
Submission. OMG Document: ad/03-08-11, ad/03-08-12, ad/03-08-13 (2003)

21. Interactive Objects Software GmbH, Project Technology, Inc. MOF 2.0
Query/Views/Transformations RFP, Revised Submission. OMG Document ad/2003-08-11,
http://www.omg.org/cgi-bin/doc?ad/2003-08-11 (2003)

22. J. Kennedy, and R.C Eberhart : Particle swarm optimization. In: Proc. IEEE Intl.Conf. on Neural
Networks, pp. 1942–1948 (1995)

23. K. Czarnecki and S. Helsen. Feature-Based Survey of Model Transformation Approaches. IBM
Systems Journal, special issue on Model-Driven Software Development. 45(3), pp. 621-645 (2006)

24. K. Czarnecki, and S. Helsen, Classification of model transformation approaches.OOSPLA'03
Workshop on Generative Techniques in the Context of Model-Driven Architecture, Anaheim, USA,
(2003)

 - 97 -

25. M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D. Kuske, D.

Plump, A. Schürr, and G. Taentzer. Graph Transformation for Specification and Programming.
Technical Report 7/96, Universität Bremen, see
http://citeseer.nj.nec.com/article/andries96graph.html (1996)

26. M. Harman and B. F. Jones, Search-based software engineering, Information & Software
Technology, Vol. 43, No. 14, pp. 833-839 (2001).

27. M. Harman and L. Tratt. Pareto optimal search based refactoring at the design level. In GECCO'07:
Proceedings of the 9th annual conference on Genetic and evolutionary computation, pages
1106{1113,New York, NY, USA ACM Press, (2007)

28. M. Harman, The Current State and Future of Search Based Software Engineering, In Proceedings of
the 29th International Conference on Software Engineering (ICSE 2007), 20-26 May, Minneapolis,
USA (2007)

29. M. Kessentini, H.Sahraoui and M.Boukadoum Model Transformation as an Optimization Problem.
In Proc.MODELS 2008, pp. 159-173 Vol. 5301 of LNCS. Springer, (2008)

30. M. Siikarla and T. Syst, Decision Reuse in an interactive Model Transformation, 12th European
Conference on Software Maintenance and Reengineering, CSMR 2008, April 1-4, 2008, Athens,
Greece, 123-132, (2008)

31. M. Wimmer, M. Strommer, H. Kargl, and G. Kramler.Towards model transformation generation by-
example. In Proc. of HICSS-40 Hawaii International Conference on System Sciences. Hawaii,
USA., (2007)

32. O. Seng, J. Stammel, and D. Burkhart. Search-based determination of refactorings for improving the
class structure of object-oriented systems. In GECCO '06: Proceedings of the 8th annual conference
on Genetic and evolutionary computation, pages 1909{1916, New York, NY, USA, (2006)

33. Object Management Group (OMG), Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification Final Adopted Specification, ptc/05-11-01, http://www.omg.org/docs/ptc/05-11-01.pdf
(2005)

34. OMG: Meta Object Facility (MOF). Version 1.4.
www.omg.org/technology/documents/formal/mof.htm

35. OMG: Request For Proposal: MOF 2.0/QVT. OMG Document ad/2002-04-10,
http://www.omg.org/cgi-bin/doc?ad/2002-04-10 (2002)

36. QVT-Merge Group. MOF 2.0 Query/Views/Transformations RFP, Revised submission, version 1.0.
OMG Document ad/2004-04-01, http://www.omg.org/cgi-bin/doc?ad/2004-04-01 (2004)

37. R. France, and B. Rumpe,: Model-driven Development of Complex Software: A Research
Roadmap. In: Briand, L., Wolf, A. (eds.) Intl. Conf. on Software Engineering (ICSE 2007): Future
of Software Engineering. IEEE Computer Soceity Press,Los Alamitos (2007)

38. R. Heckel, J.M .Kuster, and G.Taentzer, Confluence of Typed Attributed Graph Transformation
Systems. Proc. ICGT’02, LNCS 2505, pp.: 161-176, Springer, (2002)

39. R. Krishnamurthy, S.P. Morgan, M.M. Zloof: Query-By-Example: Operations on Piecewise
Continuous Data. Proc. 9th International Conference on Very Large Data Bases, October 31 -
November 2, Florence, Italy., pp. 305-308 (1983)

40. R.C. Eberhart and Y. Shi : Particle swarm optimization: developments, applications and resources.
In: Proc. IEEE Congress on Evolutionary Computation (CEC 2001), pp. 81–86 (2001)

41. S. Bouktif, H. Sahraoui, and G. Antoniol. Simulated annealing for improving software quality
prediction. In GECCO2006: Proceedings of the 8th annual conference on Genetic and evolutionary
computation, volume 2, pages 1893–1900, (2006)

42. S. Geman and D. Geman, “Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration
of Images,’’ IEEE Trans. Pat. Ana. and Mach. Intel. PAMI-6(6) pp. 721-741 (1984).

43. T. Clark and J. Warmer, Object Modeling with the OCL, The Rationale behind the Object
Constraint Language. Springer-Verlag, London, UK (2002)

44. T. Mens and P. Van Gorp, A Taxonomy of Model Transformation, Proc. Intl. Workshop on Graph
and Model Transformation, (2005)

 - 98 -

45. U. Behrens, M. Flasinski, L.Hagge, J. Jurek, and K.Ohrenberg, Recent developments of the

ZEUS expert system ZEX, IEEE Trans. Nucl. Sci., NS-43, pp. 65-68, (1996)
46. Y. DuanCheung, X. Fu and Y. Gu, A metamodel based model transformation approach, Proc. ACIS

Intl. Conf. on Software Engineering Research, Management and Applications,pp.184-191, (2005)
47. M. Kessentini, A. Bouchoucha, H. Sahraoui and M. Boukadoum Example-based Sequence

Diagrams to Colored Petri Nets Transformation using Heuristic Search, proceedings of 6th
European Conference on Modeling Foundations and Applications (ECMFA 2010) , Paris.

48. J.R Falleri, M. Huchard, M. Lafourcade, Clémentine Nebut Meta-model Matching for Automatic
Model Transformation Generation, ACM/IEEE 11th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2008), (2008)

49. I. Galvão and A. Goknil, “Survey of Traceability Approaches in Model-Driven Engineering”.
EDOC’07, pages 313-326, (2007)

50. F. Jouault, Loosely coupled traceability for atl. In: Proceedings of the European Conference on
Model Driven Architecture (ECMDA) workshop on traceability. (2005)

51. R. Marvie, A transformation composition framework for model driven engineering. Technical
Report LIFL-2004-10, LIFL (2004)

52. J.R Falleri., M. Huchard, C. Nebut, Towards a traceability framework for model transformations in
kermeta, HAL - CCSd - CNRS (2006)

53. S. Lechner and M. Schrefl. Defining web schema transformers by example. In Proceedings of
DEXA'03. Springer, (2003)

54. M. Shousha, L. Briand, Y. Labiche, A UML/SPT Model Analysis Methodology for Concurrent
Systems Based on Genetic Algorithms. In Proceedings of the 11th international Conference on
Model Driven Engineering Languages and Systems MODELS08, 475-489, (2008)

55. J. M. Küster, S. Sendall, M. Wahler Comparing Two Model Transformation Approaches
Proceedings UML 2004 Workshop OCL and Model Driven Engineering, Lisbon, Portugal, October
12, (2004)

56. H. Bunke, Graph matching: theoretical foundations, algorithms, and applications, in: Proceedings of
the Vision Interface 2000, Montreal/Canada, pp. 82–88, (2000)

57. T. Mens, P. Van Gorp, D. Varro, and G. Karsai. Applying a Model Transformation Taxonomy to
Graph Tansformation Technology. In G. Karsai, and G. Taentzer, editors, Proceedings of Graph and
Model Transformation Workshop, to appear in ENTCS, (2005)

58. Gabriele Taentzer, Karsten Ehrig, Esther Guerra, Juan de Lara, Laszlo Lengyel, Tihamer
Levendovsky, Ulrike Prange, Daniel Varro, and Szilvia Varro-Gyapay. Model transformation by
graph transformation: A comparative study. In Workshop on Model Transformations in Practice,
September 2005.

59. T. Mens, P. Van Gorp, D. Varro, and G. Karsai. Applying a Model Transformation Taxonomy to
Graph TRansformation Technology. In G. Karsai, and G. Taentzer, editors, Proceedings of Graph
and Model Transformation Workshop, ENTCS, 2005.

60. E. Visser. Program Transformation with Stratego/XT: Rules, Strategies, Tools, and Systems in
StrategoXT-0.9. In C. Lengauer et al., editors, Domain-Specific Program Generation, volume 3016
of Lecture Notes in Computer Science, pages 216--238. Spinger-Verlag, June 2004.

61. B Vanhoof, S Van Baelen, W Joosen, Y Berbers. Traceability as Input for Model Transformations.
In Proc. Traceability Workshop, European Conference in Model Driven Architecture (EC-MDA),
2007.

62. Yu Sun, Jules White, and Jeff Gray, "Model Transformation by Demonstration," MoDELS09,
Denver, CO, October 2009, pp. 712-726.

63. H. Giese and R. Wagner. Incremental model synchronization with triple graph grammars. In O.
Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors, Models ’06: Proc. of the 9th International
Conference on Model Driven Engineering Languages and Systems, volume 4199 of LNCS, pages
543–557. Springer Verlag, October 2006.

 - 99 -

64. D. Hearnden, M. Lawley, and K. Raymond. Incremental model transformation for the

evolution of model-driven systems. In O. Nierstrasz, J. Whittle, D. Harel, and G. Reggio, editors,
Model Driven Engineering Languages and Systems, 9th International Conference, MoDELS 2006,
Genova, Italy, October 1-6, 2006, Proceedings, volume 4199 of LNCS, pages 321{335. Springer,
Oct. 2006.

65. Marcos Didonet Del Fabro, Patrick Valduriez: Towards the efficient development of model
transformations using model weaving and matching transformations. Software and System
Modeling 8(3): 305-324 (2009)

66. I. Garcia-Magarino, J. J. Gomez-Sanz, and R. Fuentes-Fernandez: Model Transformation By-
Example: An Algorithm for Generating Many-to-Many Transformation Rules in Several Model
Transformation Languages. In Proc. of the 2nd Int. Conf. on Theory and Practice of Model
Transformations (ICMT'09), volume 5563 of LNCS, pages 52-66. Springer, 2009.

 - 100 -

Chapter 4: Dynamic Model

Transformation by Example

4.1 Introduction

After presenting the case of static models chapter3, we describe in this chapter our

solution for the problem of automating dynamic model transformation using examples. We

adapt our approach MOTOE to the sequence diagram to colored Petri Nets transformation.

This contribution was accepted for publication in the Sixth European Conference on

Modelling Foundations and Applications (ECMFA 2010) [74]. The paper, entitled

“Example-based Sequence Diagrams to Colored Petri Nets Transformation using Heuristic

Search”, is presented next.

4.2 Sequence Diagrams to Colored Petri Nets
Transformation by Example

 - 101 -

Example-based Sequence Diagrams to Colored Petri
Nets Transformation using Heuristic Search

Marouane Kessentini1, Arbi Bouchoucha1, Houari Sahraoui1 and Mounir Boukadoum2

Abstract. Dynamic UML models like sequence diagrams (SD) lack sufficient formal semantics, making
it difficult to build automated tools for their analysis, simulation and validation. A common approach to
circumvent the problem is to map these models to more formal representations. In this context, many
works propose a rule-based approach to automatically translate SD into colored Petri nets (CPN).
However, finding the rules for such SD-to-CPN transformations may be difficult, as the transformation
rules are sometimes difficult to define and the produced CPN may be subject to state explosion. We
propose a solution that starts from the hypothesis that examples of good transformation traces of SD-to-
CPN can be useful to generate the target model. To this end, we describe an automated SD-to-CPN
transformation method which finds the combination of transformation fragments that best covers the SD
model, using heuristic search in a base of examples. To achieve our goal, we combine two algorithms for
global and local search, namely Particle Swarm Optimization (PSO) and Simulated Annealing (SA). Our
empirical results show that the new approach allows deriving the sought CPNs with at least equal
performance, in terms of size and correctness, to that obtained by a transformation rule-based tool.

Keywords: Model transformation, Petri nets, Sequence diagrams, Search-based software engineering

1 Introduction
Model Transformation plays an important role in Model Driven Engineering (MDE) [1].

The research efforts by the MDE community have produced various languages and tools,

such as ATL [2], KERMETA [3] and VIATRA [4], for automating transformations

between different formalisms. One major challenge is to automate these transformations

while preserving the quality of the produced models [1, 6].

Many transformation contributions target UML models [1, 6]. From a transformation

perspective, UML models can be divided into two major categories: static models, such as

class diagrams, and dynamic models, such as activity and state diagrams [7]. Models of the

second category are generally transformed for validation and simulation purposes. This is

because UML dynamic models, such as sequence diagrams (SDs) [7], lack sufficient formal

semantics [8]. This limitation makes it difficult to build automated tools for the analysis,

simulation, and validation of those models [9]. A widely accepted approach to circumvent

the problem uses concomitant formal representations to specify the relevant behavior [11];

Petri Nets (PNs) [10] are well suited for the task. PNs can model, among others, the

behavior of discrete and concurrent systems. Unlike SDs, PNs can derive new information

about the structure and behavior of a system via analysis. They can be validated, verified,

 - 102 -

and simulated [11]. Moreover, they are suitable for visualization (graphical formalism)

[11]. These reasons motivate the work to transform UML SDs to PNs.

SD-to-PN transformation may be not obvious to realize, due to two main reasons [29].

First, defining transformation rules can be difficult since the source and target languages

have constructs with different semantics; therefore, 1-to-1 mappings are not sufficient to

express the semantic equivalence between constructs. The second problem is the risk of a

state explosion [11]. Indeed, when transformation rules are available for mapping dynamic

UML models to PNs, systematically applying them generally results in large PNs [11]. This

could compromise the subsequent analysis tasks, which are generally limited by the number

of the PNs’ states. Obtaining large PNs is not usually related to the size of the source

models [29]. In fact, small sequence diagrams containing complex structures like

references, negative traces or critical regions can produce large PNs. To address this

problem, some work has been done to produce reduction rules [35].

In this paper, we explore a solution based on the hypothesis that traces of valid

transformations of SD-to-PN (performed manually for instance), called transformation

examples, can be used by similarity to derive a PN from a particular SD. In this context, our

approach, inspired by the Model-Transformation-by-Examples (MTBE) school [12, 13,

14], helps define transformations without applying rules. Because it reuses existing valid

model transformation fragments, it also limits the size of the generated models.

More concretely, to automate SD-to-PN transformations, we propose to adapt, the MOTOE

approach [14, 15]. MOTOE views a model transformation as an optimization problem

where solutions are combinations of transformation fragments obtained from an example

base. However, the application of MOTOE to the SD-to-PN transformation problem is not

straightforward. MOTOE was designed for and tested with static-diagram transformations

such as class-diagrams-to-relational schemas [14, 15]. The transformation of a dynamic

diagram is more difficult [8] because, in addition to ensuring structural (static) coherence, it

should guarantee behavioral coherence in terms of time constraints and weak sequencing.

For instance, the transformation of a SD message depends on the order (sequence) inside

the diagram and the events within different operands (parallel merge between the behaviors

of the operands, choice between possible behaviors, etc.).

 - 103 -

This paper adapts and extends MOTOE to supports SD-to-CPN transformation. The

new version, dMOTOE, preserves behavioral coherence. We empirically show that the new

approach derives the correct models, and that the obtained CPNs have a significantly lower

size than those obtained with a rule-based tool [16] taken for comparison.

The remainder of this paper is structured as follows. In section 2, we provide an overview

of the proposed approach for automating SD-to-CPN transformations and discuss its

rationale in terms of problem complexity. Section 3 describes the transformation algorithm

based on the combined PSO and SA search heuristics. An evaluation of the algorithm is

explained and its results are discussed in Section 4. Section 5 is dedicated to the related

work. Finally, concluding remarks and future work are provided in section 6.

2 SD-to-CPN Transformation Overview
A model transformation takes a model to transform as input, the source model, and

produces another model as output, the target model. In our case, the source model is a UML

sequence diagram and the target model is a colored Petri net. First, we describe the

principles of our approach and discuss the rationale behind given the complexity of the

transformation problem.

2.1 Overview
dMOTOE takes a SD to transform and a set of transformation examples form an example

base as inputs, and generates an equivalent CPN as output. The generation process can be

viewed as selecting the subset of the transformation fragments (mapping traces) in the

example base that best matches the constructs of the SD according to a similarity function.

The outcome is a CPN consisting of an assembly of building blocks (formally defined

below). The quality of the produced target model is measured by the level of conformance

of the selected fragments to structural and temporal constraints, i.e., by answering the

following three questions: 1) Did we choose the right blocks? 2) Did they fit together? 3)

Did we perform the assembly in the right order?

As many block assembly schemes are possible, the transformation process is a

combinatorial optimization problem where the dimensions of the search space are the

 - 104 -

constructs of the SD to transform. A solution is determined by the assignment of a

transformation fragment (block) to each SD construct. The search is guided by the quality

of the solution in terms of its internal coherence (individual construct vs. associated

blocks), external coherence (between blocks) and temporal coherence (message sequence).

To explore the solution space, the search is performed in two steps. First, we use a global

heuristic search by means of the PSO algorithm [18] to reduce the search space size and

select a first transformation solution. Then, a local heuristic search is done using the SA

algorithm [19] to refine this solution. In order to provide the details of our approach, we

define some terms.

A construct is a source or target model element; for example, messages or objects in a SD.

An element may contain properties that describe it such as its name. Complex constructs

may contain sub-constructs. For example, a message could have a guard that conditions its

execution.

A Transformation example (TE) is a mapping of constructs from a particular SD to a CPN.

Formally, we view a TE as a triple <SMD, TMD, MB> where SMD denotes the source

model (SD in our case), TMD denotes the target model (optimal CPN in our case), and MB

is a set of mapping blocks that relate subsets of constructs in SMD to their equivalents in

TMD. The Base of examples is a set of transformation examples. The transformation

examples can be collected from different experts or by automated approaches.

Each TE is viewed as a set of blocks. A block defines a transformation trace between a

subset of constructs in the source model and a subset of constructs in the target model.

Constructs that should be transformed together are grouped into the same block. For

example, a message m that is sent from an object A to an object B cannot be mapped

independently from the mapping of A to B. In our examples, blocks correspond to concrete

traces left by experts when transforming models. They are not general rules as they involve

concept instances (e.g., a message m) instead of concepts (e.g., message concept). In other

words, where transformation rules are expressed in terms of meta-models, blocks are

expressed in terms of concrete models.

 - 105 -

Fig. 1. (a) Example of SD (source model) and (b) his equivalent CPN (target model).

In a SD-to-CPN transformation, blocks correspond to transformation traces of loops (loop),

alternatives (alt), concurrent interactions (par), activation boxes, and messages (see

UML2.0 SD specification for more details about these constructs [7]). In the case where the

constructs are imbedded, a single block is created for the higher-level construct. Blocks can

be derived automatically from the transformation trace of the whole model.

An example of a SD-to-CPN transformation is presented in Figure 1. For legibility reasons,

we present an example containing only one complex fragment loop. In the validation

section, we will use more complex SDs that involve different CPN constructs. The SD in

Figure 1.a contains 10 constructs that represent 3 objects, 3 messages, 1 loop and 3

activation boxes. Three blocks are defined2: B51 for message Arrival of a new Order and

2 For traceability purpose, blocks are sequentially numbered. For instance, the 3 blocks of this example TEi
are B51 to B53. Those of TEi+1 are B54 to Bxx, and so on and so forth. When a solution is produced, it is easy to
determine which examples contributed to it.

 - 106 -

activation box Wait, B52 for the loop with guard [Busy], message Start order

treatment, and activation box Treatment in progress, and B53 for message Send and

activation box Storage. Notice that only one block is defined in B52 as the activation box is

inside the loop.

In block B51, for example, Arrival of a new Order was transformed by an expert into the

transition New order and Wait into the place Wait() (Figure 1.b).

To manipulate them more conveniently, the models (source or target) are described by sets

of predicates, each corresponding to a construct (or a sub-construct) type. The order of

writing predicates is important in the case of a dynamic model. The predicate types for SDs

are:

Object (ObjetName, ObjetType);
Message (MessageType, Sender, Receiver, MessageName,
ActivityName);

Activity (ActivityName, ObjectName, Duration, MessageNumber);
Loop (StartMessageName, EndMessageName, ConditionValue);
Par (StartMessageName, EndMessageName, ConditionValue,
ConditionType);

Similarly, those of CPN are:

Place (PlaceName);
Transition (TransitionName);
Input(TransitionName, PlaceSourceName)
Output(TransitionName, PlaceDestinationName)
For example, the message Arrival of a new Order in Figure 1.a can be described by

Message (Synchronic,_, Order, ArrivalOfNewOrder, Wait);
The predicate indicates that Arrival of a new Order is a synchronic message sent to Order

(with “_” meaning no sender) and connected to activation box Wait. Mapping traces are

also expressed using predicate correspondences with the symbol “:”. In Figure 1.b, for

instance, block B51 is defined as follows:

Begin B51
Message (Synchronic, _, Order, ArrivalOfNewOrder, Wait). :
Transition (NewOrder, Coulor1), Input(NewOrder, _),
Output(NewOrder, Wait).

Activity (Wait, Order, 10, 2). : Place (Wait).
End B51
In the absence of transformation rules, a construct can be transformed in many ways, each

having a degree of relevance. A SD Mi to transform is characterized by its description

 - 107 -

SMDi, i.e., a set of predicates. Figure 2 shows a source model with 6 constructs to

transform represented by circles. A transformation solution consists of assigning to each

construct a mapping block transformation possibility from the example base (blocks are

represented by rectangles in Figure 2). A possibility is considered to be adequate if the

block maps a similar construct.

Fig. 2. Transformation solution as blocks-to-constructs mapping

2.2 Transformation Complexity
Our approach is similar to case-based reasoning [21] with the difference that we do not

select and adapt the whole transformation of a similar SD. Instead, we combine and adapt

fragments of transformations coming from the transformations of several SDs.

The transformation of a SD Mi with n constructs, using a set of examples that globally

define m possibilities (blocks), consists of finding the subset from the m possibilities that

better transforms each of the n constructs of Mi. In this context, mn possible combinations

have to be explored. This value can quickly become huge.

If we limit the possibilities for each construct to only blocks that contain similar constructs,

the number of possibilities becomes m1 × m2 × m3 ×…× mn where each mi ≤ m represents

the number of blocks containing constructs similar to construct i. Although the number of

possibilities is reduced, it could still be very large for big SDs. A sequence diagram with 50

constructs, each having 8 or more mapping possibilities, necessitates exploring at least 850

combinations. Considering these magnitudes, an exhaustive search cannot be used within a

reasonable time frame. This motivates the use of a heuristic search when a more formal

approach is either not available or hard to deploy.

 - 108 -

3 Heuristic-based Transformation
We describe in this section the adaptation of two heuristics, PSO [18] and SA [19], to

automate SD-to-CPN transformation. These methods each follow a generic strategy to

explore the search space. When applied to a given problem, they must be specialized by

defining: (1) the coding of solutions, (2) the operators that allow moving in the search

space, and (3) the fitness function that measures the quality of a solution. In the remainder

of this section we start by giving the principles of PSO and SA. Then, we describe the three

above-mentioned heuristic components.

3.1 Principle
To obtain a more robust optimization technique, it is common to combine different search

strategies in an attempt to compensate for deficiencies of the individual algorithms [20]. In

our context the search for a solution is done in two steps. First, a global search with PSO is

quickly performed to locate the portion of the search space where good solutions are likely

to be found. In the second step, the obtained solution is refined with a local search

performed by SA.

PSO, Particle Swarm Optimization, is a parallel population-based computation technique

proposed by Kennedy and Eberhart [18]. The PSO swarm (population) is represented by a

set of K particles (possible solutions to the problem). A particle i is defined by a position

coordinate vector Xi, in the solution space. Particles improve themselves by changing

positions according to a velocity function that produces a translation vector. The

improvement is assessed by a fitness function.

The particle with the highest fitness is memorized as the global best solution (gbest) during

the search process. Also, each particle stores its own best position (pbest) among all the

positions reached during the search process. At each iteration, all particles are moved

according to their velocities (Equation 1). The velocity Vi
’ of a particle i, depends on three

factors: its inertia corresponding to the previous velocity, its pbest, and the gbest. Factors

are weighted respectively by W, C1, and C2. The importance of the local and global position

factors varies and is set at each iteration by a random function. The weight of inertia

decreases during the search process. The derivation of Vi
’ is given by Equation 2. After

 - 109 -

each iteration, the individual pbests and the gbest are updated if the new positions

bring higher qualities than the ones before.

iii VXX ′+=′ (1)

)(())(() 21 iiiii XgbestrandCXpbestrandCVWV −∗×+−××+×=′ (2)

The algorithm iterates until the particles converge towards a unique position that

determines the solution to the problem.

Simulated Annealing (SA) [19] is a local search algorithm that gradually transforms a

solution following the annealing principle used in metallurgy. Starting from an initial

solution, SA uses a pseudo-cooling process where a pseudo temperature is gradually

decreased. For each temperature, the following three steps are repeated for a fixed number

of iterations: (1) determine a new neighboring solution; (2) evaluate the fitness of the new

solution; (3) decide on whether to accept the new solution in place of the current one based

on the fitness function and the temperature value. Solutions are accepted if they improve

quality. When the quality is degraded, they can still be accepted, but with a certain

probability. The probability is high when the temperature is high and the quality

degradation is low. As a consequence, quality-degrading solutions are easily accepted in the

beginning of process when the temperatures are high, but with more difficulty as the

temperature decreases. This mechanism prevents reaching a local optimum.

3.2 Adaptation
To adapt PSO and SA to the SD-to-CPN transformation problem, we must define the

following: a solution coding suitable for the transformation problem, a neighborhood

function to derive new solutions, and a fitness function to evaluate these solutions.

As stated in Section 2, we model the search space as an n-dimensional space where each

dimension corresponds to one of the n constructs of the SD to transform. A solution is then

a point in that space, defined by a coordinate vector whose elements are blocks numbers

from the example base assigned to the n constructs. For instance, the transformation of the

SD model shown in Figure 3 will generate a 7-dimensional space that accounts for the two

objects, three messages and two activities. One solution is this space, shown in Table 1,

suggests that message CheckDriver should be transformed according to block B19, activity

 - 110 -

Positioning, according to block B7, etc. Thus concretely, a solution is implemented as a

vector where constructs are the dimensions (the elements) and block numbers are the

element values.

The association between a construct and a block does not necessarily mean that a

transformation is possible, i.e., the block perfectly matches the contest of the construct.

This is determined by the fitness function described in subsection 3.2.3.

The proposed coding is valid for both heuristics. In the case of PSO, as an initial

population, we create k solution vectors with a random assignment of blocks.

Alternatively, SA starts from the solution vector produced by PSO.

Fig.3. Example of source model

Table 3. Solution representation

 - 111 -

Dimensions Constructs Block

numbers

1 Message(CheckDriver) B19

2 Activity(Positioning) B7

3 Message(GetStarted) B51

4 Activity(Treatment) B105

5 Message(Confirmation) B16

6 Object(Driver) B83

7 Object(Car) B33

Change Operators. Modifying solutions to produce new ones is the second important

aspect of heuristic search. Unlike coding, change is implemented differently by the PSO

and SA heuristics. While PSO sees change as movement in the search space driven by a

velocity function, SA sees it as random coordinate modifications.

In the case of PSO, a translation (velocity) vector is derived according to equation 2 and

added to the position vector. For example, the solution of Table 1 may produce the new

solution shown in Figure 4. The velocity vector V has a translation value for each element

(real values). When summed with the block numbers, the results are rounded to integers.

They are also bounded by 1 and the maximum number of available blocks.

19 7 51 105 16 83 33

23.5 0 -1.7 14.2 0 -3.1 0

42 7 49 119 16 80 33

+

=

X

V

X’

Fig. 4. Change Operator in PSO

 - 112 -

19 7 51 105 16 83 33

52 7 51 105 24 11 33

X

X’

Fig. 5. Change Operator in SA

For SA, the change operator randomly chooses l dimensions (l < n) and replaces their

assigned blocks by randomly selected ones from the example base. For instance, Figure 5

shows a new solution derived from the one of Table 1. Constructs 1, 5 and 6 are selected to

be changed. They are assigned respectively blocks 52, 24, and 11 instead of 19, 16, and 83.

The other constructs remain unchanged. The number of blocks to change is a parameter of

SA (three in this example). In our validation, we set it to 4 considering that the average

number of constructs per SD is 36.

Fitness Function. The fitness function allows quantifying the quality of a transformation

solution. As explained in the previous paragraph, solutions are derived by random

assignment of new blocks to some constructs. The quality of a transformation solution is

then the sum of the individual transformation qualities of the n constructs of the SD. To

evaluate if assigned block Bi is a good transformation possibility for construct Cj, the

fitness function first evaluates the adequacy, i.e., does Bi contains a construct Ck from the

same type as Cj? if the answer is “no”, the assigned block is unsuitable. Otherwise, the

fitness function checks the three following coherence aspects: (1) internal coherence

(what is the degree of similarity between Cj and Ck in terms of properties?), (2) external

coherence (to what extent the transformation proposed by Bi contradicts the

transformations of constructs related to Cj?), and (3) temporal coherence (to what extent

the transformation proposed by Bi preserves the temporal constraints of message sequences

in SD?). The fitness function is formally defined as follows:

 - 113 -

∑
=

++×=
n

j
jjjj tcecicaf

1
)((3)

where aj is the adequacy of assigning Bi to Cj (1 if Bi is adequate, 0 otherwise), and icj, ecj,

and tcj are respectively the internal, external, and temporal coherences of the assignment. icj

is defined as the ratio between the number of parameters of the predicate Pj representing Cj

that match the parameters of the associated construct in block Bi and the total parameters of

Pj.

Consider the SD example shown in Figure 3. Message GetStarted is defined by predicate

Message(Synchronic, Driver, Car, GetStrated, Positioning).

This predicate indicates that the message GetStarted, which is synchronic, is sent by object

Driver to Car from the activity Positioning. The solution in Table 1 assigns the block B51 to

this message. Block B51 is described in section 2.1 as follows:

Begin B51
Message (Synchronic, _, Order, ArrivalOfNewOrder, Wait). :
Transition (NewOrder, Coulor1), Input(NewOrder, _),
Output(NewOrder, Wait).

Activity (Wait, Order, 10, 2). : Place (Wait).
End B51

The adequacy a3 of the transformation of GetStarted (3rd construct) is equal to 1 because

block B51 also contains predicate message (ArrivalOfNewOrder). The parameters of the two

messages are similar except for the sender which is not an object in the case of

ArrivalOfNewOrder. As a result, internal coherence ic3=4/5=0.8 (four parameters that

match over 5).

For external coherence ecj, let RConsj be the set of constructs related to Cj and RConsMij,

the subset of constructs in RConsj whose transformations are consistent with the one of Cj,

i.e., we compares the transformation proposed by the block assigned to Cj with the ones

suggested by the blocks assigned to the related constructs. ecj is calculated as the ratio

between RConsMij and RConsj.

In our example, GetStarted involves three constructs (sender, receiver, and activity).

According to B51, only Positioning activity is related (has a predicate) and should be

 - 114 -

transformed into a place similarly to Wait activity. In the solution of , the construct

Positioning is assigned the block B7 (dimension 2 of the solution vector). This block is

defined as follows:

Begin B7
Message (Asynchronic, User, Printer, NewPrint, Progress). :
Transition (NewPrint, Coulor7), Input(NewPrint, _),
Output(NewPrint, Progress).

Activities (Progress, Printer, 8, 1). : Place (Progress).
End B7

According to B7, Positioning should also be mapped to a place. Thus there is no conflict

between B51 and B7, and ec3=1 (1/1).

tcj represents the temporal coherence. It reflects the time constraint specific to dynamic

models. To preserve the temporal coherence, we ensure that the transformation of elements

that are contiguous to Cj preserve the temporal semantics. To this end, we first consider the

block Binc that includes Cj and the blocks Bpre and Bfol that respectively precedes and

follows Binc. Although the model to transform is not in the example base, we identify

blocks with only the source part according to the rules given in Section 2.1. Then we

consider the block Bi, assigned to Cj by the evaluated solution, and the two blocks Bpre_i and

Bfol_i preceding and following Bi. tcj is obtained by comparing Bpre to Bpre_i, Binc to Bi, and

Bfol to Bfol_i. For example, let Ppre(k) be the predicate having the kth position in Bpre and

Ppre_i(k) be the predicate having the kth position in Bpre_i, the number of pairs of predicates

PMatch(Bpre, Bpre_i) that match in the two blocks is defined as

{ })()())(),((__ kPkPkPkP iprepreiprepre = (4)

tci is then defined as follows:

),max(),max(),max(

),(),(),(

__

__

ifolfoliinciprepre

ifolfoliinciprepre
j BBBBBB

BBPMatchBBPMatchBBPMatch
tc

++

++
= (5)

 - 115 -

Figure 6 shows an example of the calculation of tcj. Going back to the example of

message GetStarted, to derive the tc3, we identify in the SD to transform two blocks: Bs

which contains GetStarted and Bs-1 which precedes Bs. Consequently, block B51 will be

compared to Bs. Bs contains a message followed by an activity and another message. B51

contains a message followed by an activity. Then, two pairs of predicates match and the

max size between the two blocks is 3. As B51 has no preceding block, we consider that no

match exists with Bs-1, and the corresponding max size is that of Bs-1, i.e., 2 for the message

and the activity. Finally, as Bs has no following block, no match exists with B52, which

follows B51. We take then as max size, the size of B52 (3 corresponding to the loop, the

message, and the activity). According to equation 5, tc3=(0+2+0)/(2+3+3)=0.25. This

temporal coherence factor is standard and works with any combined fragments of SDs.

Fig. 6. Temporal coherence

The fitness function does not need a considerable effort to be adapted for other

transformations (e.g. state machine to PNs). However, the block definition must be adapted

to the semantics of the new transformation.

 - 116 -

4 Validation
To evaluate the feasibility of our approach, we conducted an experiment on the

transformation of 10 UML sequence diagrams3. We collected the transformations of these

10 sequence diagrams from the Internet and textbooks and used them to build an example

base EB = {<SDi, CPNi> | i=1,2,...,10}. We ensured by manual inspection that all the

transformations are valid. The size of the SDs varied from 16 to 57 constructs, with an

average of 36. Altogether, the 10 examples defined 224 mapping blocks. The 10 sequence

diagrams contained many complex fragments: loop, alt, opt, par, region, neg and ref.

To evaluate the correctness of our transformation method, we used a 10-fold cross

validation procedure. For each fold, one sequence diagram SDj is transformed using the

remaining 9 transformation examples. Then, the transformation result for each fold is

checked for correctness using two methods: automatic correctness (AC) and manual

correctness (MC). Automatic correctness consists of comparing the derived CPN to the

known CPN, construct by construct. This measure has the advantage of being automatic

and objective. However, since a given SDj may have different transformation possibilities,

AC could reject a valid construct transformation because it yields a different CPN from the

one provided. To prevent this situation, we also perform manual evaluation of the obtained

CPN. In both cases, the correctness is the proportion of constructs that are correctly

transformed.

In addition to correctness, we compare the size of the obtained CPNs with the ones

obtained by using the rule-based tool WebSPN for mapping UML diagrams to CPN [16].

The size of a CPN is defined by the number of constructs.

Figure 7 shows the correctness for the 10 folds. Both automatic and manual correctness

had values greater than 90% in average (92.5% for AC and 95.8% for MC). Although few

examples were used (9 for each transformation), all the SDs had a transformation

correctness greater than 90%, with 3 of them perfectly transformed.

3 The reader can find in this link www.marouane-kessentini.com/ecmfa2010 all the materials used in our
experiments

 - 117 -

Figure 7 also shows that, in general, the best transformations are obtained with smaller

SDs. After 36 constructs, the quality degrades slightly but steadily. This may indicate that

the transformation correctness of complex SDs necessitates more examples in general.

However, the largest and most complex SD (57 constructs and 19 complex fragments) has a

MC value of 96%.

Corectness vs Diagram Size and Complexity

75

80

85

90

95

100

105

Diagrame Size

Co
rr

ec
tn

es
s

0
2
4
6
8
10
12
14
16
18
20

N
um

be
r o

f C
om

pl
ex

Fr

ag
m

en
ts

AC-dMOTOE 100 100 94 95 93 93 88 86 84 92

MC-dMOTOE 100 100 98 100 93 98 92 91 90 96

MC-WebSPN 100 100 100 100 100 96 94 93 95 94

Number of complex
fragments

3 5 7 10 9 13 16 15 19 19

16 18 27 29 36 36 42 49 53 57

Fig. 7. Correctness of the transformations

In addition, our results show that the correctness of our transformations is equivalent that of

WebSPN. Another interesting finding during the evaluation is that, in some cases, a higher

fitness value does not necessarily imply higher transformation correctness. This was the

case for the transformations of SD3 (fitness of 82% and MC = 98%) and SD5 (fitness of

92% and MC = 93%). This is probably due to the fact that we assign the same weight to

simple constructs such as messages and complex constructs such as loops in the fitness

function. Indeed, temporal coherence is more difficult to assess for complex constructs.

Manual inspection of the generated CPNs showed that the different transformation errors

are easy to fix. They do not require considerable effort and the majority of them is related

to the composition of complex fragments. For example, as we did not have an example that

 - 118 -

mapped two alts situated in a loop, the optimization technique used one that contained

only one alt in a loop. Almost the same errors were made by WebSPN, including the case

of two alts in a loop.

When developing our approach, we conjectured that the example-based transformation

produce CPNs smaller than the one obtained by systematic rule application. Table 2

compares the obtained CPN sizes by using dMOTOE and WebSPN for the 10

transformations. In all cases, a reduction in size occurs when using dMOTOE, with an

average reduction of 28.3% in comparison to WebSPN. Although the highest reduction

corresponded to the smallest SD, the reductions for larger diagrams were important as well

(e.g., 39% for 36 constructs, 38% for 39 constructs, and 29% for 76 constructs). These

reductions should be viewed in the context of the correctness equivalence between our

approach and WebSPN.

Table 2. CPN size comparison

Size(WebSPN) Size(dMOTOE) Variation

22 13 41%

36 22 39%

39 24 38%

43 31 28%

51 36 30%

50 39 22%

56 39 30%

53 44 16%

58 52 10%

76 54 29%

Average Reduction : 28.3%

 - 119 -

The obtained results confirm our assumption that systematic application of rules

results in CPNs larger than needed and that reusing valid transformed examples attenuates

the state explosion problem.

As for execution time, we ran our algorithm on a standard desktop computer (Pentium CPU

running at 2 GHz with 2 GB of RAM). The execution time was of the order of a few

seconds and increased linearly with the number of constructs, indicating that our approach

is scalable from the performance standpoint.

5 Related Work
The work proposed in this paper crosscuts two main research areas: model transformation

and traceability in the context of MDD.

In [5], five categories of transformation approaches were identified: graph-based [22],

relational [23], structure-driven [24], direct-manipulation, and hybrid. One conclusion to be

drawn from studying the existing MT approaches is that they are often based on empirically

obtained rules [25].

Recently, traceability gained popularity in model transformation [26]. Usually, trace

information are generated manually and stored as models [27]. For example, Marvie et al.

[28] propose a transformation composition framework that allows the manual creation of

linkings (traces). In the studied approaches and frameworks based on traceability, trace

information is used in general for detecting model inconsistency and fault localization in

transformations. On the other hand, dMOTO uses traces to automate the transformation

process.

More specifically, in the case of SD-to-PN, several approaches were proposed in addition

to WebSPN. In [29], the authors describe a meta-model for the SD-to-PN mapping. It

defines rules involving concepts of the meta-models representing respectively sequence

diagrams and Petri nets. One of the limitations of this approach is that temporal coherence

is not addressed explicitly. Additionally, the meta-model representing the rules tends to

generate large PNs, as noticed by the authors. In [11], a set of rules to transform UML 2.0

SDs into PNs is proposed. The goal is to animate SDs using the operational semantics of

PNs. In our case, we can generate the structure of the targeted CPN in an XMI file that can

 - 120 -

be used as input for some simulation tools like CPN tools [38]. Other UML dynamic

diagrams are also considered for the transformation to PNs. For example, use case

constructs are mapped to PN using a multi-layer technique [8].

There are other research contributions that concentrate on supporting validation and

analysis of UML statecharts by mapping them to Petri nets of various types [36, 37]. Unlike

our approach, this work uses information extracted from different UML diagrams to

produce the Petri nets. A general conclusion on the transformation of dynamic models to

PNs is that, in addition to the fact that no consensual transformation rules are used, a

second step is usually required to reduce the size of the obtained PNs.

dMOTOE uses the “by example” principle to transform models, but what we propose is

completely different from other contributions to model transformation by example

(MTBE). Varro and Balogh [12, 13] propose a semi-automated process for MTBE using

Inductive Logic Programming (ILP). The principle of their approach is to derive

transformation rules semi-automatically from an initial prototypical set of interrelated

source and target models. Wimmer et al. [30] derive ATL transformation rules from

examples of business process models. Both works use semantic correspondences between

models to derive rules, and only static models are considered. Moreover, in practice, a large

number of transformation learning-examples may be required to ensure that the generated

rules are complete and correct. Both approaches provide a semi-automatic generation of

model transformation rules that needs further refinement by the user. Also, since both

approaches are based on semantic mappings, they are more appropriate in the context of

exogenous model transformations between different metamodel. Unfortunately, the

generation of rules to transform attributes is not well supported in most MTBE

implementations. Our model is different from both previous approaches to MTBE. We do

not create transformation rules to transform a source model, directly using examples

instead. As a result, our approach is independent from any source or target

metamodels.Recently, a similar approach to MTBE, called Model Transformation By

Demonstration (MTBD), is proposed [34]. Instead of the MTBE idea of inferring the rules

from a prototypical set of mappings, users are asked to demonstrate how the model

transformation should be done by directly editing (e.g., add, delete, connect, update) the

 - 121 -

model instance to simulate the model transformation process step by step. This

approach needs a large number of simulated patterns to give good results and, for instance,

MTBD cannot be useful to transform an entire source model.

6 Conclusion
In this paper, we propose the approach dMOTOE, to automate SD-to-CPN transformation

using heuristic search. dMOTOE uses a set of existing transformation examples to derive a

colored Petri net from a sequence diagram. The transformation is seen as an optimization

problem where different transformation possibilities are evaluated and, for each possibility,

a quality is associated depending on its conformance with the examples at hand.

The approach we propose has the advantage that, for any source model, it can be used when

rules generation is difficult. Another interesting advantage is that our approach is

independent from source and target formalisms; aside from the examples, no extra

information is needed. Moreover, as we reuse existing transformations, the obtained CPN

are smaller than those obtained by transformation rules.

We have evaluated our approach on ten sequence diagrams. The experimental results

indicate that the derived CPNs are comparable to those defined by experts in terms of

correctness (average value of 96%). Our results also reveal that the generated CPNs are

smaller than the ones generated by the tool WebSPN [16].

Although, the obtained results are very encouraging, many aspects of our approach could

be improved. Our approach currently suffers from the following limitations: 1) in the case

of SD-to-PNs transformation, it provides less clean semantics than a rules-based approach;

2) coverage of complex fragments examples is needed for completeness and to ensure

consistently good results; 3) the base of examples is difficult to collect especially for

complex and not widely used formalisms; 4) the fitness function could weight complex

constructs more heavily when evaluating a solution. In addition, a validation on a larger

example base is in project to better assess the adaptation capability of the approach, and we

can compare the sizes of the reachability graph of the produced CPNs by dMOTOE and

WebSPN in order to treat the richer behaviors (in fact, a bigger net is not necessarily worse

in some cases). In a broader perspective, we plan to experiment and extend dMOTOE to

 - 122 -

other transformations involving dynamic models: code generation (model-to-code),

refactoring (code-to-code), or reverse-engineering (code-to-model).

REFERENCES
1. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research Roadmap.

ICSE 2007 : Future of Software Engineering. (2007)
2. Jouault, F., Kurter, I.: Transforming models with ATL. In: Proc. Of the Model Transformations in

Practice Workshop at MoDELS 2005, Jamaica (2005)
3. Muller, P., F.Fleurey, et J. M. Jezequel (2005). Weaving Executability into Object-Oriented Meta-

languages. Proc. of MoDELS’05, Montego Bay, Jamaica, pp 264-278.
4. Varro, D., Pataricza, A.: Generic and meta-transformations for model transformation engineering.

UML 2004. LNCS, vol. 3273. Springer, Heidelberg (2004)
5. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: OOSPLA 2003,

Anaheim, USA (2003)
6. Ehrig, Hartmut; Ehrig, Karsten; de Lara, Juan; Taentzer, Gabriele; Varró, Dániel; Varró-Gyapay,

Szilvia: Termination Criteria for Model Transformation. Vol. 3442FASE 2005
7. Booch, Grady, Jacobson, Ivar and Rumbaugh,James: "The Unified Modeling Language Users

Guide", Addison Wesley 1998.
8. J. Saldhana and S. M. Shatz. UML Diagrams to Object Petri Net Models: An Approach for

Modeling and Analysis. SEKE, pages 103–110, July 2000.
9. J. Lilius and I. P. Paltor. vUML: A Tool for Verifying UML Models. ASE99.
10. T. Murata. Petri Nets: Properties, Analysis, and Applications. Proceedings of the IEEE, 77(4):541–

580, April 1989.
11. Ribeiro OR, Fernandes JM; Some Rules to Transform Sequence Diagrams into Coloured Petri Nets,

CPN2006, Jensen K (ed.), Aarhus, Denmark, pp. 237-56, Oct/2006.
12. D. Varro. Model transformation by example. In Proc.MODELS 2006, pp. 410–424.
13. D. Varro and Z. Balogh, Automating Model Transformation by Example Using Inductive Logic

Programming, ACM Symposium, 2007 (SAC 2007).
14. M. Kessentini, H.Sahraoui and M.Boukadoum Model Transformation as an Optimization Problem.

In Proc.MODELS 2008, pp. 159-173 Vol. 5301 of LNCS. Springer, 2008.
15. M. Kessentini, H.Sahraoui and M.Boukadoum, Search-based Model Transformation by Example.

Submitted to SoSym (under review)
16. Salvatore Distefano, Marco Scarpa, Antonio Puliafito: Software Performance Analysis in UML

Models. FIRB-Perf 2005: 115-125 (https://mdslab.unime.it/webspn/mapping.htm)
17. K. Jensen: Coloured Petri Nets. Basic Concepts, Analysis Methods and Practical Use. Volume 1,

Basic Concepts. Monographs in Theoretical Computer Science , 1997.
18. J. Kennedy, and R.C Eberhart : Particle swarm optimization. In: Proc. IEEE Intl.Conf. on Neural

Networks, pp. 1942–1948 (1995)
19. D.S. Kirkpatrick, Jr. Gelatt, and M. P. Vecchi. Optimization by simulated annealing. Science,

220(4598):671-680, 1983.
20. Kelner, V., Capitanescu, F., Léonard, O., and Wehenkel, L. 2008 A hybrid optimization technique

coupling an evolutionary and a local search algorithm. J. Comput. Appl. Math.
21. A.Aamodt and E.Plaza, "Case-Based Reasoning: Foundational Issues, Methodological Variations,

and System Approaches," AIC (1994), 39-52.
22. M. Andries, G. Engels, A. Habel, B. Hoffmann, H.-J. Kreowski, S. Kuske, D. Kuske, D. Plump, A.

Schürr, and G. Taentzer. Graph Transformation for Specification and Programming. Technical
Report 7/96, Universität Bremen, 1996

 - 123 -

23. D. H. Akehurst and S.Kent. A Relational Approach to Defining Transformations in a

Metamodel. UML 2002 Proceedings, LNCS 2460, 243-258, 2002
24. Interactive Objects Software GmbH, Project Technology, Inc. MOF 2.0

Query/Views/Transformations RFP, Revised Submission.
25. Egyed, A.: Heterogeneous Views Integration and its Automation, Ph.D. Thesis (2000)
26. I. Galvão and A. Goknil, “Survey of Traceability Approaches in Model-Driven Engineering”.

EDOC’07, pages 313-326,
27. Jouault, F.: Loosely coupled traceability for atl. In: (ECMDA). (2005)
28. Marvie, R.: A transformation composition framework for model driven engineering. Technical

Report LIFL-2004-10, LIFL (2004)
29. Adel Ouardani, Philippe Esteban, Mario Paludetto, Jean-Claude Pascal, “A Meta-modeling

Approach for Sequence Diagrams to Petri Nets Transformation”, ESMC 2006.
30. M. Wimmer, M. Strommer, H. Kargl, and G. Kramler.Towards model transformation generation by-

example. HICSS-40 Hawaii International Conference on System Sciences.
31. M. Harman and B. F. Jones, Search-based software engineering, Information & Software

Technology, Vol. 43, No. 14, pp. 833-839 (2001).
32. O. Seng, J. Stammel, and D. Burkhart. Search-based determination of refactorings for improving the

class structure of object-oriented systems. GECCO '06, pages 1909-1916..
33. M. Harman, The Current State and Future of Search Based Software Engineering, In Proceedings of

ICSE 2007, 20-26 May, Minneapolis, USA (2007)
34. Yu Sun, Jules White, and Jeff Gray, "Model Transformation by Demonstration," MoDELS09,

Denver, CO, October 2009, pp. 712-726.
35. Uzam, M. The use of Petri net reduction approach for an optimal deadlock prevention policy for

flexible manufacturing systems. Int. J. Adv. Manuf. Technol., 23, 204–219.
36. Z. Hu and S. M. Shatz, “Mapping UML Diagrams to a Petri Net Notation for System Simulation”,

(SEKE), Banff, Canada, June 2004, pp. 213-219
37. S. Bernardi, S. Donatelli, J. Merseguer, From UML Sequence Diagrams and StateCharts to

analysable Petri Net models, WOSP02, pages 35-45, Rome (Italy), July 2002.
38. http://wiki.daimi.au.dk/cpntools/cpntools.wiki

 - 124 -

Part 2: Endogenous

Transformation by Example

In part 1 of this thesis, we described our contributions to exogenous transformation.

In this part, we focus on endogenous transformations. In an endogenous transformation,

the source and target meta-models are the same. Furthermore, they require two steps: 1)

identify the elements to transform in the source model; 2) transform the identified elements.

Endogenous transformations are principally related to the following maintenance activities:

1) Optimization (a transformation aimed to improve certain operational qualities (e.g.,

performance), while preserving the semantics of the software); 2) Refactoring (a change to

the internal structure of software to improve certain software quality characteristics such as

understandability, modifiability, reusability, modularity, adaptability) without changing its

observable behaviour.

In this thesis, we focus on code transformation in order to improve quality. We

distinguish two steps for this task: 1) detecting refactoring opportunities that correspond to

design defects; 2) applying some refactoring methods (move method, add super class, etc)

to modify the defected classes. The second step is out of the scope of this work and we will

only address the first one.

The first step related to detecting design defects is important. In fact, detecting and

fixing defects is a difficult, time-consuming, and to some extent, manual process. The

number of outstanding software defects typically exceeds the resources available to address

them. In many cases, mature software projects are forced to ship with both known and

unknown defects for lack of the development resources to deal with everyone. For example,

one Mozilla developer claimed that “everyday, almost 300 bugs and defects appear . . . far

too much for only the Mozilla programmers to handle” [53]. To help cope with this

magnitude of activity, several automated detection techniques have been proposed [27].

 - 125 -

Although there is a consensus that it is necessary to detect design anomalies,

our experience with industrial partners has shown that there are many open issues that need

to be addressed when developing a detection tool. Design anomalies have definitions at

different levels of abstraction. Some of them are defined in terms of code structure, others

in terms of developer/designer intentions, or in terms of code evolution. These definitions

are in many cases ambiguous and incomplete. However, they have to be mapped into

rigorous and deterministic rules to make the detection effective.

In the following, we discuss some of the open issues related to the detection.

How to decide if a defect candidate is an actual defect? Unlike software bugs, there is

no general consensus on how to decide if a particular design violates a quality heuristic.

There is a difference between detecting symptoms and asserting that the detected situation

is an actual defect.

Are long lists of defect candidates really useful? Detecting dozens of defect

occurrences in a system is not always helpful. In addition to the presence of false positives

that may create a rejection reaction from development teams, the process of using the

detected lists, understanding the defect candidates, selecting the true positives, and

correcting them is long, expensive, and not always profitable.

What are the boundaries? There is a general agreement on extreme manifestations of

design defects. For example, consider an OO program with a hundred classes from which

one implements all the behavior and all the others are only classes with attributes and

accessors. There is no doubt that we are in presence of a Blob. Unfortunately, in real

industrial systems, we can find many large classes, each one using some data classes and

some regular classes. Deciding which ones are Blob candidates depends heavily on the

interpretation of each analyst.

 - 126 -

How to define thresholds when dealing with quantitative information? For

example, Blob detection involves information such as class size. Although, we can measure

the size of a class, an appropriate threshold value is not trivial to define. A class considered

large in a given program/community of users could be considered average in another.

How to deal with the context? In some contexts, an apparent violation of a design

principle is considered as a consensual practice. For example, a class Log responsible for

maintaining a log of events in a program, used by a large number of classes, is a common

and acceptable practice. However, from a strict defect definition, it can be considered as a

class with abnormally large coupling.

In addition to these issues, the process of defining rules manually is complex, time-

consuming and error-prone. Indeed, the list of all possible defect types can be very large

and each type requires specific rules.

To address or circumvent the above mentioned issues, we propose two different

automated detection approaches that are completely different from the state of art.

For the first one, instead of characterizing each symptom of each possible defect type,

we apply the principle of negative selection, the process used by biological immune

systems to identify antigens. An immune system does not try to detect specific bacteria and

viruses. Rather, it starts by detecting what is abnormal, i.e., what is different from the

healthy cells of the body. The more something is different, the more it is considered risky.

For the second approach, we propose a solution that uses knowledge from previously

manually inspected projects, called defects examples, in order to detect design defects that

will serve to generate new detection rules based on combinations of software quality

metrics. In short, the detection rules are automatically derived by an optimization process,

based on the Harmony search algorithm [56] that exploits the available examples.

In the next chapter, we provide the details of our proposal for automating design defects

detection based on the immune system metaphor.

 - 127 -

Chapter 5: An Immune-Inspired

Approach for Design Defects

Detection

5.1 Introduction

We describe our solution to the problem of design defects detection. This problem is

considered as an endogenous transformation problem where, as mentioned earlier, two

steps are needed. We focus on the first step that consists of finding the elements to

transform. Our solution is based on the use of well-designed code examples and on

considering each deviation from these examples as risky. This mechanism corresponds to

the immune system process where foreign substances are detected via deviations from

normal cell behaviour. This contribution was accepted for publication in the 25th

IEEE/ACM International Conference on Automated Software Engineering (ASE 2010)

[82]. The paper, entitled “Deviance from Perfection is a Better Criterion than Closeness to

Evil when Identifying Risky Code”, is presented in the next section.

5.2 Design Defects Detection by Example: An Immune
System Metaphor

 - 128 -

 - 129 -

 - 130 -

 - 131 -

 - 132 -

 - 133 -

 - 134 -

 - 135 -

 - 136 -

 - 137 -

 - 138 -

Chapter 6: Design Defects

Detection Rules Generation by

Example

6.1 Introduction

In this chapter, we propose another automated approach to derive rules for design defect

detection. Instead of specifying rules manually for detecting each defect type, or semi-

automatically using defect definitions, we extract them from valid instances of design

defects. In our setting, we view the generation of design defect rules as an optimization

problem, where the quality of a detection rule is determined by its ability to conform to a

base of examples that contains instances of manually validated defects (classes). The

generation process starts from an initial set of rules that consists of random combinations of

metrics. Then, the rules evolve progressively according to the set’s ability to detect the

documented defects in the example base. Due to the potentially huge number of possible

metric combinations that can serve to define rules, a heuristic approach is used instead of

exhaustive search to explore the space of possible solutions. To that end, we use a rule

induction heuristic based on Harmony Search (HS) [56] to find a near-optimal set of

detection rules.

This contribution was accepted for publication in the 13th IEEE European

Conference on Software Maintenance and Reengineering (CSMR 2011) [80]. The paper,

entitled “Design Defects Rules Generation: A Music Metaphor”, is presented in the next

section.

 - 139 -

6.2 Design Defects Detection Rules Generation by
Example

Design Defects Detection Rules Generation:

A Music Metaphor
MAROUANE KESSENTINI1, MOUNIR BOUKADOUM2,

HOUARI SAHRAOUI1 AND MANUEL WIMMER3,

Abstract — We propose an automated approach for design defect
detection. It exploits an algorithm that automatically finds rules for
the detection of possible design defects, thus relieving the designer
from doing so manually. Our algorithm derives rules in the form of
metric/threshold combinations, from known instances of design
defects (defect examples). Due to the large number of possible
combinations, we use a music-inspired heuristic that finds the best
harmony when combining metrics. We evaluated our approach on
finding potential defects in three open-source systems (Xerces-J,
Quick UML and Gantt). For all of them, we found more than 80%
of known defects, a better result when compared to a state-of-the-
art approach, where the detection rules are manually specified.

Keywords — design defects; software maintenance; search-based
software engineering;

1. Introduction
There has been much research focusing on the study of bad
design practices, also called defects, antipatterns [1], smells
[2], or anomalies [3] in the literature. Although these bad
practices are sometimes unavoidable, they should otherwise
be prevented by the development teams and removed from
their code base as early as possible. Hence, several fully-
automated detection techniques have been proposed [4, 5,
6].
Problems exist that may limit the effectiveness of the
existing techniques. Indeed, the vast majority of existing
work relies on rule-based detection [5, 7], where different
rules identify the key symptoms that characterize a defect
using combinations of mainly quantitative (metrics),
structural, and/or lexical information. However, it may be
difficult to express these symptoms as rules [8], and the
number of possible defects to manually characterize with
rules can be so large as to make it difficult to decide what
type of defect is detected. In addition, after manually finding
the best metrics combination for detecting each design
defect, substantial calibration efforts are needed to define a
threshold for each metric. These difficulties explain a large
portion of the high false-positive rates mentioned in existing
research [6]. On the other hand, many defect repositories
exist and in many companies, the defects that are identified

and corrected are documented. This represents a good
source of examples that can be exploited to derive rules
automatically.
In this paper, we propose a new automated approach for
design defects detection. Instead of specifying rules
manually for detecting each defect type, we explore a
solution for automating the rule generation process, starting
from the hypothesis that valid instances of design defects,
called defects examples, can be used to generate detection
rules. Indeed, we propose to view design defect rule
generation as an optimization problem where rules are
automatically derived from available examples. In our case,
each example corresponds to an instance of defects (classes)
that was validated manually. Then, our contribution starts
by randomly generating a set of rules that corresponds to
metrics combination and executing them to detect some
potential design defects (classes). Then, it evaluates the
quality of the proposed solution (rules) by comparing the
detected classes and the expected ones from the base of
defects examples. Due to the large number of possible rules
(metrics combination), a computational method is used to
build the solution. To achieve this goal, we used a music-
inspired heuristic, called Harmony Search (HS) [9], for
finding the best “harmony” when combining metrics. Thus,
we draw an analogy with music composition by considering
each rule (set of metrics combination) to be a musician, and
the various sets of metrics threshold values to be a
collection of notes in a musicians’ memories. Then, finding
the optimal set of rules for detecting design defects rules is
akin to the orchestra trying to find the best harmony when
playing music. In the musical metaphor, this is
accomplished
by the musicians polishing their pitches in order to obtain
better harmony [9]. In doing so, HS transforms the
qualitative improvisation process into quantitative rules by
idealization, and thus turning the beauty and harmony of
music into an optimization procedure through the search for
perfect harmony. HS has solved an impressive range of
problems (e.g., see [9]); however, to our best knowledge, its
use in software engineering is a relatively unexplored area.

 - 140 -

We believe that this is a promising approach for automating
defects detection, due to HS effectiveness in searching very
large spaces, such as in the case of quality metrics
combination [10].
To evaluate our approach, we used classes from three open
source projects, Gantt [11], Quick UML [26] and Xerces-J
[12], as examples of badly-designed and implemented code.
We used a 3-fold cross validation procedure. For each fold,
one open source project is evaluated by using the remaining
two systems as bases of examples. For example, Xerces-J is
analyzed using some defects examples from Gantt and
Quick UML. Almost all the identified classes were found,
with a precision superior to 80% in a list of classes tagged
as defects (blobs, spaghetti code and functional
decomposition) in previous projects [5]. The recall also was
more than 80%.
The benefits of our approach are as follows: 1) it is fully
automatable; 2) it does not require an expert to write rules
manually, for every defect type, and adapt them to different
systems; 3) the rules generation process is executed once,
and the obtained rules can then be used to evaluate any
system; 4) our technique outperforms an existing technique
[5] in terms of precision as shown in the validation section.
The major limitations of our approach are: 1) we require a
code base for representing bad design practices. 2) our rules
are solely based on metrics and some defects may require
additional or different knowledge to be detected 3) we must
ensure that all possible design defects are detected manually
in the code base. Nevertheless, our results indicate that some
defects examples from Gantt and Xerces-J appear to be
usable and could serve as a starting point for a company
wishing to use our approach.
The remainder of this paper is structured as follows. Section
2 is dedicated to the problem statement. In Section 3, we
describe the overview of our proposal. Then, Section 4
describes the principles of the HS algorithm used in our
approach and the adaptations needed to our problem.
Section 5 presents and discusses the validation results. A
summary of the related work in defect detection is given in
Section 6. We conclude and suggest future research
directions in Section 7.

2. Problem Statement
In this section, we describe the problem of defect detection.
We start by defining important concepts. Then, we detail the
specific problems that are addressed by our approach.

2.1 Defintions
Design defects, also called design anomalies, refer to design
situations that adversely affect the development of software.
In general, they make a system difficult to change, which
may in turn introduce bugs.
Different types of defects, presenting a variety of symptoms,
have been studied in the intent of facilitating their detection
[13] and suggesting improvement paths. The two following

types of defects are commonly mentioned. In [2], Beck
defines 22 sets of symptoms of common defects, named
code smells. These include large classes, feature envy, long
parameter lists, and lazy classes. Each defect type is
accompanied by some refactoring suggestions to remove it.
Brown et al. [1] define another category of design defects,
named anti-patterns, which includes blob classes, spaghetti
code, and cut & paste programming. In both books, the
authors focus on describing the symptoms to look for, in
order to identify specific defects.
The design defects detection process itself consists of
finding bad code fragments in the system. In general, this
process is based on the use of software metrics, each one
measuring some property of a piece of software or its
specifications [14]. Different kinds of metrics are available
to use for identifying design defects: coupling, cohesion,
program size, etc [14].

2.2 Problem Statement
Any technique to detect design defect should
address/circumvent difficulties that are inherent in the
defects. Next is a description of the most important
difficulties and how they affect an automation process.

• Different design defects have the same symptoms
and it is difficult to manually define rules for
similar ones. Although there has been significant
work to classify defect types [13, 15, 16],
programming practices, paradigms and languages
evolve, making unrealistic to support the detection
of all possible similar defect types. Furthermore,
there might be company- or application-specific
(bad) design practices.

• For those design defects that are documented, there
is no consensual definition of symptom detections.
Defects are generally described using natural
language and their detection relies on the
interpretations of the developers. As a result, it is
difficult for an expert to define the detection rules
manually. This limits the automation of the
detection process.

• The list of possible defects can be very large [8].
This makes it a a fastidious task to specify rules
manually for each defect.

• It is recognized that experts can more easily
provide examples than complete and consistent
rules [8]. This is particularly true for industrial
organizations where a memory of past detected
defects examples can be found.

3. Approach Overview
This section shows how, under some circumstances,

design defects detection can be seen as an optimization
problem. We also show why the size of the corresponding
search space makes heuristic search necessary to explore it.

 - 141 -

3.1 Overview
We propose an approach that uses knowledge from
previously manually inspected projects, called defects
examples, in order to detect design defects to generate new
detection rules based on a combinations of software quality
metrics. More specifically, the detection rules are
automatically derived by an optimization process that
exploits the available examples.

Figure 1 shows the general structure of our approach. The
approach takes as inputs a base of examples (i.e., a set of
defects examples) and a set of quality metrics, and generates
as output a set of rules. The generation process can be
viewed as the combination of the metrics that best detect the
defects examples. In other words, the best set of rules is the
one that detect the maximum number of defects.

Fig 1. Approach overview

As showed in Figure 2, the base of examples contains
projects (systems) that were inspected manually to detect
possible defects. In the training process, these systems are
iteratively evaluated using rules generated by the algorithm.
A fitness functions calculates the quality of each solution
(rules) by comparing the list of detected defects with the
expected ones from the base.

Fig 2. Base of examples

As many metrics combinations are possible, the rules
generation process is a combinatorial optimization problem.
The number of possible solutions quickly becomes huge as
the number of metrics increases. A deterministic search is
not practical in such cases, and the use of heuristic search is
warranted (see Problem Complexity below). The
dimensions of the solution space are set by the metrics and
logical operations between them: union (metric1 OR
metric2) and intersection (metric1 AND metric2). A
solution is determined by assigning a threshold value to
each metric. The search is guided by the quality of the
solution according to the number of detected defects in

comparison to expected ones in the base of examples.
To explore the solution space, we use a global heuristic
search by means of the Harmony Search algorithm [9] that
was introduced previously and that will be detailed in
Section 4.

3.2 Problem Complexity
Our approach assigns to each metric a corresponding
threshold value. The number m of possible threshold values
is usually very large. Furthermore, the rules generation
process consists of finding the best combination between n
metrics. In this context, (n!) m possible solutions have to be
explored. This value can quickly become huge. A list of 5
metrics with 6 possible thresholds necessitates exploring at
least 1206 combinations. Considering these magnitudes, an
exhaustive search cannot be used within a reasonable time
frame. In such situations, or when a formal approach is not
possible, heuristic search can be used.

4. Search-based Rules
Generation

We describe in this section the adaptation of HS to the
automatic generation of design defects detection rules. As a
first step, one must specify the encoding of solutions and the
fitness function to evaluate a solution’s quality. These two
elements are detailed in subsections B and C, respectively.

4.1 Harmony Search Algorithm
The HS algorithm is based on musical performance
processes that occur when a musician searches for a better
state of harmony, such as during jazz improvisation [9]. Jazz
improvisation seeks to find a musically-pleasing harmony as
determined by an aesthetic standard, just as the optimization
process seeks to find a global solution as determined by a
fitness function. The pitch of each musical instrument
determines the aesthetic quality, just as the fitness function
value that determines the quality of a solution.
In music improvisation, each player tries pitches within the
possible range, collectively creating a harmony vector. If all
the pitches make for a good harmony, the experience is
stored in each player’s memory, and the possibility to create
a good harmony is increased next time. Similarly, in an
engineering optimization, each dimension initially chooses
values within the possible range to collectively create a
solution vector. If this set of the values from the different
dimensions represents a good solution, that experience is
stored, and the possibility to find a good solution is also
increased next time.

The general HS algorithm works as follows:
Step1: Problem and algorithm parameter initialization.
The HS algorithm parameters are specified in this step.
They are the harmony memory size (HMS) or number of
solution vectors in the harmony memory; the harmony

 - 142 -

memory consideration rate (HMCR); the bandwidth (bw);
the pitch adjustment rate (PAR); and the number of
improvisations (K) or stopping criterion.

Step 2: Harmony memory initialization.
The initial harmony memory is generated from a uniform
distribution in the range [ximin,ximax] (i = 1,2, . . .,N) , as
shown in Equation 1 :

HM =

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

1-HMS
N

 HMS
21

1
N

1
2

1
1

 x. x
.
.

 x. . x

HMSx

x

 (1)

Step 3: New harmony improvisation.
Generating a new harmony is called improvisation. The new
harmony vector x’ = (x’1, x’2,…, x’N) is determined by the
memory consideration, the pitch adjustment and random
selection. Algorithm 1 summarizes the generic HS
procedure [9].

HS algorithm
1: for each i ∈[1,N] do
2: if rand() ≤ HMCR then
3: x’i =

i
jx (j= 1,2,…,HMS)%memory consideration

4: if rand() ≤ PAR then
5: x’i =

i
jx ± rand()∗ bw%pitch adjustment

6: if x’i ≤ ximin then
7: x’i = ximin
8: elseif x’i ≥ ximax then
7: x’i = ximax
9: else
 10: x’i = ximin ± rand()∗ (ximax – xmin)%random
selection
Algorithm 1. HS algorithm

Step 4: Harmony memory update
If the fitness of the improvised harmony vector x’ = (x’1,
x’2,…, x’N) is better than the worst harmony, replace the
worst harmony in the IHM with x’.

Step 5:.Stopping criterion check
If the stopping criterion (e.g., the maximum number of
iterations K) is satisfied, the algorithm stops; otherwise, step
3 is repeated.
The most important step of the HS algorithm is Step 3, and
it includes memory consideration, pitch adjustment and
random selection. PAR and bw have a profound impact on
the performance of the HS algorithm. [10] proposes to
dynamically update PAR and bw as follows:

K
PARPAR

PARkPAR
−

+= max
min)((2)

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛

=
K

bw
bw

bwkbw
)ln(

exp)(max

min

max (3)

4.2 Solution Representation
One key issue when applying a search-based technique is to
find a suitable mapping between the problem to solve and
the techniques to use, i.e., in our case, generating design
defects detection rules. As stated in Section 3, we view the
set of potential solutions as points in a n-dimensional space,
where each dimension corresponds to one metric or operator
(union or intersection) applied to them. Figure 3 shows an
example where the ith harmony vector, HMi, stands for the
rule: if (WMC≥4) AND (TCC≥7) AND (ATFD≥1) Then
Defect_Type(1)_detected. The WMC, TCC and ATFD are
metrics defined as [14]:

• Weighted Method Count (WMC) is the sum of
the statical complexity of all methods in a class.
We considered the McCabe’s cyclomatic
complexity as a complexity measure.

• Tight Class Cohesion (TCC) is the relative
number of directly connected methods.

• Access to Foreign Data (ATFD) represents the
number of external classes from which a given
class accesses attributes, directly or via accessor-
methods.

We used three types of defects: blob, spaghetti code and
functional decomposition.

Fig 3. An example of the ith harmony

The default operator used is the intersection (AND). The
other operator (union or OR) can be used as a dimension.
The harmony vector presented in Figure 3 generates only
one rule. However, a vector may contain many rules
separated by the dimension “Type”.

4.3 Evaluating Solutions
The fitness function quantifies the quality of the generated
rules. As discussed in Section 3, the fitness function checks
to maximize the number of detected defects in comparison
to the expected ones in the base of examples. In this context,
we define the fitness function of a solution as

 - 143 -

∑
=

=
p

i
iaf

1
 (4)

where p is the number of detected classes, and ai has value 1
if the ith detected classes exists in the base of examples, and
value 0 otherwise.

5. Validation
To test our approach, we studied its usefulness to guide
quality assurance efforts for an open-source program. In this
section, we describe our experimental setup and present the
results of an exploratory study.

5.1 Goals and Objectives
The goal of the study is to evaluate the efficiency of our
approach for the detection of design defects from the
perspective of a software maintainer conducting a quality
audit. We present the results of the experiment aimed at
answering the following research questions:
RQ1: To what extent can the proposed approach detect
design defects?
RQ2: What types of defects does it locate?
To answer RQ1, we used an existing corpus of known
design defects to evaluate the precision and recall of our
approach. We compared our results to those produced by an
existing rule-based strategy [5]. To answer RQ2, we
investigated the type of defects that were found.

5.2 System Studied
We used three open-source Java projects to perform our
experiments: GanttProject (Gantt for short) v1.10.2, Quick
UML v2001 and Xerces-J v2.7.0. Gantt is a tool for creating
project schedules by means of Gantt charts and resource-
load charts. Gantt enables breaking down projects into tasks
and establishing dependencies between them. Xerces-J is a
family of software packages for parsing and manipulating
XML. It implements a number of standard APIs for XML
parsing. Table 1 provides some relevant information about
the programs.

TABLE I. PROGRAM STATISTICS.

Systems Number of classes KLOC

GanttProject v1.10.2 245 31

Xerces-J v2.7.0 991 240

Quick UML v2001 142 19

We chose the Xerces-J, Quick UML and Gantt libraries
because they are medium-sized open-source projects and
were analysed in related work. The version of Gantt studied
was known to be of poor quality, which has led to a new

major revised version. Xerces-J and Quick UML, on the
other hand, has been actively developed over the past 10
years and their design has not been responsible for a
slowdown of their developments. Consequently, we used
some of the classes in Gantt for our example set of design
defects in our experiments. The examples were manually
validated by a group of experts [17].
In [5], Moha et al. asked three groups of students to analyse
the libraries to tag instances of specific antipatterns to
validate their detection technique, DECOR. For replication
purposes, they provided a corpus of describing instances of
different antipatterns that includes blob classes, spaghetti
code, and functional decompositions. Blobs are classes that
do or know too much; spaghetti Code (SC) is code that does
not use appropriate structuring mechanisms; finally,
functional decomposition (FD) is code that is structured as a
series of function calls. These represent different types of
design risks. In our study, we verified the capacity of our
approach to locate classes that corresponded to instances of
these antipatterns. As previously mentioned in Introduction,
we used a 3-fold cross validation procedure. For each fold,
one open source project is evaluated by using the remaining
two systems as base of examples. For example, Xerces-J is
analyzed using some defects examples from Gantt and
Quick UML.
The obtained results were compared to those of DÉCOR.
Since [5] reported the number of antipatterns detected, the
number of true positives, the recall (number of true positives
over the number of design defects) and the precision (ratio
of true positives over the number detected), we determined
the values of these indicators when using our algorithm for
every antipattern in Xerces-J, Quick UML and Gantt,

5.2 Experimental Setting
To set the parameters of the HS algorithm, we started with
commonly found values in the literature [10] and adapted
them to the particularities of the design defects detection
problem. The final parameters values were set as follows:

• The harmony memory size (HMS), or number of
solution vectors in each iteration, was set to 50. We
found this number to provide a good balance
between population diversity and the quantity of
used metrics.

• The harmony memory considering rate (HMCR),
the pitch adjusting rate (PAR) and the bandwidth
(bw) were set to 1.1, 1.4 and 0.8, respectively.

• The maximum number of iterations was set to 500.
This is a generally accepted heuristic [9].

• Since two different executions of a search heuristic
may produce different results, we decided to take
the best result from 5 executions.

The list of metrics used for our experiments can be found in
[18].

 - 144 -

5.3 Results
Figures 3, 4 and 5 summarize our findings. Each class is
presented with the associated defect types. Theses classes
correspond to about 5% of the classes in the system. For
Gantt, our average antipattern detection precision was 87%.
DÉCOR, on the other hand, had a combined precision of
59% for the same antipatterns. The precision for Quick
UML was about 86%, over twice the value of 42% obtained
with DECOR. In particular, DÉCOR did not detect any
spaghetti code in contradistinction with our approach. For
Xerces-J, our precision average was 81%, while DECOR
had a precision of 67% for the same dataset. However, the
recall score for both systems was less than that of DECOR.
In fact, the rules defined in DECOR are large and this is
explained by the lower score in terms of precision. In the
context of this experiment, we can conclude that our
technique was able to identify design anomalies more
accurately than DECOR (answer to research question RQ1
above).

Fig. 3. Results for Gantt

Fig. 4. Results for Quick UML

 - 145 -

Fig. 5. Results for Xerces-J

We noticed that our technique does not have a bias towards
the detection of specific anomaly types. In Xerces-J, we had
an almost equal distribution of each antipattern (14 SCs, 13
Blobs, and 13 FDs). On Gantt, the distribution was not as
balanced, but this is principally due to the number of actual
antipatterns in the system. We found all four known blobs
and nine SCs in the system, and eight of the seventeen FDs,

four more than DECOR. In Quick UML, we found three out
five FDS; however DÉCOR detected three out of ten FDs.
 The detection of FDs by only using metrics seems
difficult. This difficulty is alleviated in DÉCOR by
including an analysis of naming conventions to perform the
detection process. However, using naming conventions
leads to results that depend on the coding practices of the
development team. We obtained comparable results without
having to leverage lexical information. The complete results
of our experiments, including the comparison with DÉCOR,
can be found in [18].

5.4 Discussion
The reliability of the proposed approach requires an
example set of bad code. It can be argued that constituting
such a set might require more work than identifying,
specifying, and adapting rules. In our study, we showed that
by using Gantt or Quick UML or Xerces-J directly, without
any adaptation, the technique can be used out of the box and
will produce good detection and recall results for the
detection of antipatterns for the studied systems.
 The performance of this detection was superior to that of
DECOR. In an industrial setting, we could expect a
company to start with Xerces-J or Quick UML or Gantt, and
gradually migrate its set of bad code examples to include
context-specific data. This might be essential if we consider
that different languages and software infrastructures have
different best/worst practices.
 Another issue is the rules generation process. The
detection results might vary depending on the rules used,
which are randomly generated, though guided by a meta-
heuristic. To ensure that our results are relatively stable, we
compared the results of multiple executions for rules
generation. We observed an average precision of 84% for
Gantt, 80% for Quick UML and 81% for Xerces-J.
Furthermore, we found that the majority of defects detected
are found in every execution (69%, 80% and 62% of
average recall scores respectively for Gantt, Quick UML
and Xerces-J). We consequently believe that our technique
is stable, since the precision and recall scores are
approximately the same for different executions.
Another important advantage in comparison to machine
learning techniques is that our HS algorithm does not need
both positive (good code) and negative (bad code) examples
to generate rules like, for example, Inductive Logic
Programming [19].
Finally, since we viewed the design defects detection
problem as a combinatorial problem addressed with
heuristic search, it is important to contrast the results with
the execution time. We executed our algorithm on a
standard desktop computer (Pentium CPU running at 2 GHz
with 2GB of RAM). The execution time for rules generation
with a number of iterations (stopping criteria) fixed to 500
was less than two minutes (1min49s). This indicates that our
approach is reasonably scalable from the performance

 - 146 -

standpoint. However, the execution time depends on the
number of used metrics and the size of the base of
examples. It should be noted that more important execution
times may be obtained than when using DECOR. In any
case, our approach is meant to apply mainly in situations
where manual rule-based solutions are not easily available.

6. Related Work
Several studies have recently focused on detecting design
defects in software using different techniques. These
techniques range from fully automatic detection to guided
manual inspection. The related work can be classified into
three broad categories: metric-based detection, detection of
refactoring opportunities, visual-based detection.
In the first category, Marinescu [7] defined a list of rules
relying on metrics to detect what he calls design flaws of
OO design at method, class and subsystem levels. Erni et al.
[20] use metrics to evaluate frameworks with the goal of
improving them. They introduce the concept of multi-
metrics, n-tuples of metrics expressing a quality criterion
(e.g., modularity). The main limitation of the two previous
contributions is the difficulty to manually define threshold
values for metrics in the rules. To circumvent this problem,
Alikacem et al. [21] express defect detection as fuzzy rules,
with fuzzy labels for metrics, e.g., small, medium, large.
When evaluating the rules, actual metric values are mapped
to truth values for the labels by means of membership
functions. Although no crisp thresholds need to be defined,
still, it is not obvious to determine the membership
functions.
The previous approaches start from the hypothesis that all
defect symptoms could be expressed in terms of metrics.
Actually, many defects involve notions that cannot be
quantified. This observation was the foundation of the work
of Moha et al. [5]. In their DÉCOR approach, they start by
describing defect symptoms using an abstract rule language.
These descriptions involve different notions, such as class
roles and structures. The descriptions are later mapped to
detection algorithms. In addition to the threshold problem,
this approach uses heuristics to approximate some notions
which results in an important rate of false positives. Khomh
et al. [4] extended DECOR to support uncertainty and to
sort the defect candidates accordingly. Uncertainty is
managed by Bayesian belief networks that implement the
detection rules of DECOR. The detection outputs are
probabilities that a class is an occurrence of a defect type. In
our approach, the above-mentioned problems related to the
use of rules and metrics do not arise. Indeed, the symptoms
are not explicitly used, which reduces the manual
adaptation/calibration effort.
In the second category of work, defects are not detected
explicitly. They are so implicitly because the approaches
refactor a system by detecting elements to change to
improve the global quality. For example, in [22], defect
detection is considered as an optimization problem. The

authors use a combination of 12 metrics to measure the
improvements achieved when sequences of simple
refactorings are applied, such as moving methods between
classes. The goal of the optimization is to determine the
sequence that maximizes a function, which captures the
variations of a set of metrics [23]. The fact that the quality
in terms of metrics is improved does not necessary means
that the changes make sense. The link between defect and
correction is not obvious, which make the inspection
difficult for the maintainers. In our case, we separate the
detection and correction phases. In [8], we have proposed an
approach for the automatic detection of potential design
defects in code. The detection is based on the notion that the
more code deviates from good practices, the more likely it is
bad. Taking inspiration from artificial immune systems, we
generated a set of detectors that characterize different ways
that a code can diverge from good practices. We then used
these detectors to measure how far the code in the assessed
systems deviates from normality.
The high rate of false positives generated by the automatic
approaches encouraged other teams to explore
semiautomatic solutions. These solutions took the form of
visualization-based environments. The primary goal is to
take advantage of the human ability to integrate complex
contextual information in the detection process. Kothari et
al. [24] present a pattern-based framework for developing
tool support to detect software anomalies by representing
potentials defects with different colors. Later, Dhambri et al.
[25] propose a visualization-based approach to detect design
anomalies by automatically detecting some symptoms and
letting others to the human analyst. The visualization
metaphor was chosen specifically to reduce the complexity
of dealing with a large amount of data. Still, the
visualization approach is not obvious when evaluating large-
scale systems. Moreover, the information visualized is for
the most part metric-based, meaning that complex
relationships can still be difficult to detect. In our case,
human intervention is needed only to provide defect
examples.

7. Conclusion
In this article, we presented a novel approach to the problem
of detecting design defects. Typically, researchers and
practitioners try to characterize different types of common
design defects and present symptoms to search for in order
to locate the design defects in a system. In this work, we
have shown that this knowledge is not necessary to perform
the detection. Instead, we use examples of design defects to
generate detection rules. Our study shows that our technique
outperforms DECOR [5], a state-of-the-art, metric-based
approach, where rules are defined manually, on its test
corpus.
By ignoring the detection of specific defect types, we avoid
two problems with existing detection techniques. First, the
detection of most defects is difficult to automate because

 - 147 -

their definitions are expressed informally; second, even with
a precise definition, it may be difficult to express these
symptoms as rules.
The proposed approach was tested on open-source systems
and the results are promising. The detection process
uncovered different types of design defects more efficiently
than DECOR. For example, for Xerces-J, the average of our
precision is 81%. DECOR on the other hand has a combined
precision of 67% for its detection of the same set of
antipatterns. Furthermore, DECOR needed an expert to
define rules, while our results were achieved without any
expert knowledge, relying only on the bad structure of Gantt
to guide the detection process.
As part of future work, we plan to explore the second step:
correction of the detected design defects (refactoring). We
also need to extend our base of examples with additional
badly-designed code in order to take into consideration
more programming contexts.

References

• W. J. Brown, R. C. Malveau, W. H. Brown, H. W. McCormick III,

and T. J. Mowbray: Anti Patterns: Refactoring Software,
Architectures, and Projects in Crisis, 1st ed. John Wiley and Sons,
March 1998.

• M. Fowler: Refactoring – Improving the Design of Existing Code, 1st
ed. Addison-Wesley, June 1999.

• N. Fenton and S. L. Pfleeger: Software Metrics: A Rigorous and
Practical Approach, 2nd ed. London, UK: International Thomson
Computer Press, 1997.

• F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and H. Sahraoui: A
Bayesian Approach for the Detection of Code and Design Smells, n
Proc. of the ICQS’09.

• N. Moha, Y.-G. Guéhéneuc, L. Duchien, and A.-F. L. Meur: DECOR:
A method for the specification and detection of code and design
smells, Transactions on Software Engineering (TSE), 2009, 16 pages.

• H. Liu, L. Yang, Z. Niu, Z. Ma, and W. Shao: Facilitating software
refactoring with appropriate resolution order of bad smells, in Proc. of
the ESEC/FSE ’09, pp. 265–268.

• R. Marinescu: Detection strategies: Metrics-based rules for detecting
design flaws, in Proc. of ICM’04, pp. 350–359.

• Kessentini, M., Vaucher, S., and Sahraoui, H.:. Deviance from
perfection is a better criterion than closeness to evil when identifying
risky code, in Proc. of the International Conference on Automated
Software Engineering. ASE'10, 2010.

• Lee, K. S. and Geem, Z. W.: A new meta-heuristic algorithm for
continuous engineering optimization: harmony search theory and
practice, Comput Method Appl M, 194(36-38), 3902-3933, 2005.

• Lee, K. S., Geem, Z. W., Lee, S. H. and Bae, K. W.: The harmony
search heuristic algorithm for discrete structural optimization, Eng
Optimiz, 37(7), 663-684, 2005.

• http://ganttproject.biz/index.php
• http://xerces.apache.org/
• A. J. Riel: Object-Oriented Design Heuristics. Addison-Wesley,

1996.
• Gaffney, J. E.: Metrics in software quality assurance, in Proc. of the

ACM '81 Conference, ACM, 126-130, 1981.

• M. Mantyla, J. Vanhanen, and C. Lassenius: A taxonomy and an
initial empirical study of bad smells in code, in Proc. of ICSM’03,
IEEE Computer Society, 2003..

• W. C. Wake: Refactoring Workbook. Boston, MA, USA: Addison-
Wesley Longman Publishing Co., Inc., 2003.

• http://www.ptidej.net/research/decor/index_html
• http://www.marouane-kessentini/CSMR11.zip
• Raedt, D.:Advances in Inductive Logic Programming, 1st. IOS Press,

1996.
• K. Erni and C. Lewerentz: Applying design metrics to object-oriented

frameworks, in Proc. IEEE Symp. Software Metrics, IEEE Computer
Society Press, 1996.

• H. Alikacem and H. Sahraoui: Détection d’anomalies utilisant un
langage de description de règle de qualité, in actes du 12e colloque
LMO, 2006.

• M. O’Keeffe and M. . Cinnéide: Search-based refactoring: an
empirical study, Journal of Software Maintenance, vol. 20, no. 5, pp.
345–364, 2008.

• M. Harman and J. A. Clark: Metrics are fitness functions too. in IEEE
METRICS. IEEE Computer Society, 2004, pp. 58–69.

• S. C. Kothari, L. Bishop, J. Sauceda, and G. Daugherty: A pattern-
based framework for software anomaly detection, Software Quality
Journal, vol. 12, no. 2, pp. 99–120, June 2004.

• K. Dhambri, H. A. Sahraoui, and P. Poulin: Visual detection of
design anomalies, in Proc. of CSMR’08. IEEE, 2008, pp. 279–283.

• http://sourceforge.net/projects/quj

 - 148 -

Part 3: Model Transformation

Correctness

Due to the critical role that model transformations play in software development,

validation techniques are required to ensure their correctness. A fault in a transformation

can introduce a fault in the transformed model, which, if undetected and not removed, can

propagate to other models in successive development steps. As a fault propagates further, it

becomes more difficult to detect and isolate. Since model transformations are meant to be

reused, faults present in them may result in many faulty models. Several studies have

investigated static verification techniques for model transformations. For example, Küster

[24], focuses on the formal proof of the termination and confluence of graph

transformation. Another alternative is transformation testing where the goal is to find the

majority of errors instead of formally proving that all errors are detected. This solution is

more adaptable for large-scale projects in industry.

Model transformation testing typically consists of synthesizing a large number of

different models as test cases, running the transformation mechanism on them, and

verifying the result using an oracle function. In this context, two important issues must be

addressed: the efficient generation/selection of test cases and the definition of the oracle

function to assess the validity of transformed models. This work is concerned with the

latter.

Defining the oracle function for model transformation testing is a challenge [86].

Many problems need to be solved. First, the definition of reference models to compare with

the transformation outputs is not obvious [84]. Second, for large models, if the candidate

transformation errors are given without any risk quantification, inspecting them could be

time and resource-consuming. Finally, transformation errors can have different causes such

as transformation logic (rules) or source/ target meta-models. Finally, to be effective, the

testing process should allow identification of the error causes.

 - 149 -

We propose an oracle function that compares target test cases with a base of

examples containing good quality transformation traces and assigns a risk level - which will

define the oracle function - to the former based on the dissimilarity between the two, as

determined by an artificial immune system-based algorithm. As a result, we no longer need

to define an expected model for each test case. Also, the traceability links help the tester to

understand the origin of an error, and the detected faults are ordered by degree of risk to

help address them.

The previous chapters are concerned with the definition of transformation

mechanisms. In the next chapter we detail our proposal to test these mechanisms based on

the use of examples. These examples represent good quality of transformation traces and

each deviation of the evaluated traces from them is considered to be risky.

 - 150 -

Chapter 7: Testing Transformation

by Example

7.1 Introduction

One of the major challenges after defining a transformation mechanism is how to

validate it. One of the efficient techniques is testing. In this chapter, we describe our

solution to the problem of testing model transformation. As mentioned previously, this

problem has two steps. The first one is the generation of test cases and is out of the scope in

this work. We focus on the second step that consists of defining an oracle function to

detect errors. Our solution is based on the use of examples of good transformation traces

and on considering each deviation from these examples to be risky. This contribution has

been accepted to the Journal of Automated Software Engineering (JASE) [78]. The paper,

entitled “Example-based Model-Transformation Testing”, is presented in the next section.

7.2 Testing Transformation by Example

 - 151 -

Example-based Model-Transformation Testing
MAROUANE KESSENTINI1, HOUARI SAHRAOUI1 AND MOUNIR BOUKADOUM2

Abstract. A major concern in model-driven engineering is how to ensure the quality of the model-
transformation mechanisms. One validation method that is commonly used is model transformation testing.
When using this method, two important issues need to be addressed: the efficient generation/selection of test
cases and the definition of oracle functions that assess the validity of the transformed models. This work is
concerned with the latter. We propose a novel oracle function for model transformation testing that relies on
the premise that the more a transformation deviates from well-known good transformation examples, the more
likely it is erroneous. More precisely, the proposed oracle function compares target test cases with a base of
examples that contains good quality transformation traces, and then assigns a risk level to them accordingly.
Our approach takes inspiration from the biological metaphor of immune systems, where pathogens are
identified by their difference with normal body cells. A significant feature of the approach is that one no
longer needs to define an expected model for each test case. Furthermore, the detected faulty candidates are
ordered by degree of risk, which helps the tester inspect the results. The validation results on a transformation
mechanism used by an industrial partner confirm the effectiveness of our approach.

Keywords: Model transformation testing, artificial immune system, traceability

1 Introduction
Model-Driven Engineering (MDE) aims to provide automated support for the creation,

refinement, refactoring, and transformation of software models [1]. One of the major

challenges of MDE is to automate these procedures while preserving the quality of the

produced models [2]. In particular, efficient techniques and tools for validating model

transformations are needed. One of them is model transformation testing [4].

Model transformation testing typically consists of synthesizing a large number of different

models as test cases, running the transformation mechanism on them, and verifying the

result using an oracle function. In this context, two important issues must be addressed: the

efficient generation/selection of test cases and the definition of the oracle function to assess

the validity of transformed models. This work is concerned with the latter.

Defining the oracle function for model transformation testing is a challenge [3, 22]. Many

problems need to be solved. First, the definition of reference models to compare with the

transformation outputs is not obvious [3, 4, 5]. Second, for large models, if the candidate

transformation errors are given without any risk quantification, inspecting them could be

time and resource-consuming [22]. Finally, transformation errors can have different causes

 - 152 -

such as transformation logic (rules) or source/ target metamodels [23]. Finally, to be

effective, the testing process should allow identification of the error causes [22].

The primary contribution of this paper is to generate an oracle function “by example” that

addresses the above-mentioned issues. The presented work draws an analogy between the

detection of transformation errors and the detection of pathogens in the human body. In the

human immune system, the process relies on detecting abnormal conditions; the more

abnormal something is, the riskier it is considered. By analogy, we propose an oracle

function that compares target test cases with a base of examples containing good quality

transformation traces, and then assigns a risk level to the former, based on the dissimilarity

between the two as determined by an artificial immune system-based algorithm [15].

Consequently, one no longer needs to define an expected model for each test case, and the

traceability links help the tester understand the error origins. Furthermore, the detected

faults are ordered by degree of risk to help the tester perform further analysis. For this, a

custom tool was developed to visualize the risky fragments found in the test cases in

different colors, each related to an obtained risk score.

The proposed approach is illustrated and evaluated with the known case of transforming

UML class diagrams (CD) to relational schemas (RS). The choice of CD-to-RS

transformation is motivated by the fact that it has been investigated by other means and is

reasonably complex; this allows focusing on describing the technical aspects of the

approach and comparing it with alternatives.

The remainder of this paper is as follows: Section 2 presents the relevant background and

the motivation for the presented work; Section 3 describes the AIS-based algorithm; an

evaluation of the algorithm with industrial validation is explained and its results are

discussed in Section 4; the benefits and also the limitations of the approach are presented in

Section 5; Section 6 is dedicated to related work. Finally, concluding remarks and future

work are provided in Section 7.

2 Background and Motivation
As showed in Figure 19, a model transformation mechanism takes as input a model to

transform, the source model, and produces as output another model, the target model. The

 - 153 -

source and target models must conform, respectively, to specific metamodels and, usually,

relatively complex transformation rules are defined to insure this.

Figure 19 Model transformation mechanism

We can illustrate this definition of the model transformation mechanism with the case of

class diagram to relational schema transformation. Figure 20 shows a simplified metamodel

of the UML class diagram [24], containing concepts like class, attribute, relationship

between classes, etc. Figure 21 shows a partial view of the relational schema metamodel

[24], composed of table, column, attribute, etc. The transformation mechanism, based on

rules, will then specify how the persistent classes, their attributes and their associations

should be transformed into tables, columns and keys.

 - 154 -

Figure 20 Class diagram metamodel

Figure 21 Relational schema metamodel

Once defined, the transformation mechanism needs to be tested to detect potential errors.

As described in Figure 22, the basic testing activities consist of designing test cases,

executing the model transformation on them, and examining the obtained results [4]. This

requires an oracle function that analyzes the validity of the transformed models.

Figure 22 Model transformation testing process

Much work has addressed the automatic generation of test cases [4, 8, 9, 10]. This paper

focuses on the complementary issue of defining the oracle function, assuming that a set of

test data can be provided. There are many different ways to define this function, depending

on the effort provided and the amount of information that is available (formal specification,

expected output, etc.) [3]. We distinguish between two main categories of oracle function

 - 155 -

definitions for model transformation testing: model comparison [5] and specification-

conformance checking [25, 22].

For the first category, current MDE technologies and model repositories store and

manipulate models as graphs of objects. Thus, when the expected output model is available,

the oracle compares two graphs. In this case, the oracle definition problem has the same

complexity as the graph isomorphism problem, which is NP-hard [6]. In particular, we can

find a test case output and an expected model that look different (contain different model

elements) but have the same meaning. So, the complexity of these data structures makes it

difficult to provide an efficient and reliable tool for comparison [22]. Still, several studies

have proposed simplified versions with a lower computation cost [12]. For example,

Alanen et al. [12] present a theoretical framework for performing model differencing.

However, they rely on the use of unique identifiers for the model elements.

To illustrate the specification conformance category, we present two contributions: design

by contract [25] and pattern matching [22].

For design by contract, the idea is that the transformation of source models into target

models is coupled with a contract consisting of pre- and post-conditions. Hence, the

transformation is tested with a range of source models that satisfy the pre-conditions to

ensure that it always yield target models that satisfy the post-conditions. If the

transformation produces an output model that violates a post-condition, then the contract is

not satisfied and the transformation needs to be corrected. The contract is defined at the

metamodel level and conditions are generally expressed in OCL.

The second method of specification-conformance checking uses patterns that are defined as

model fragments, instead of pre-conditions, and for each pattern, a set of post-conditions.

Then, the process of pattern matching consists in checking the presence of a pattern in a

source model. When a pattern is present, the oracle function evaluates the associated post-

conditions on the output model. The difference with design by contract approaches is that

both patterns and post-conditions are specified in terms of example of models rather than in

terms of metamodel concepts.

Specification-based oracles are difficult to define. Indeed, the number of constraints to

define can be very large to cover all transformation possibilities [22]. This is especially the

 - 156 -

case of contracts related to one-to-many mappings. Moreover, being formal specifications,

these constraints are difficult to write in practice [25]. In pattern matching, the constraints

are described at the model level and may lead to a fastidious task to define them for each

possible instance of the source metamodel [25].

To address the preceding issues, we propose a new oracle definition inspired from the

immune system (IS) paradigm that will be described in the next section.

3 Approach
This section describes the principles that underlie the proposed method for model

transformation testing. It starts by presenting the metaphor that inspired our work, the

artificial immune system (AIS). Then, we provide the details of the approach and our

adaptation of the AIS algorithm to the model transformation testing problem.

3.1 Immune System Metaphor
The role of an immune system (IS) is to protect its host organism against harmful disease

caused by invaders (pathogens) and/or malfunctioning cells. A biological immune system

reacts to adverse environmental changes by identifying and eliminating antigens, which are

substances or organisms that are recognized by the body as foreign, and which stimulate the

immune response. A detailed presentation of the biological immune system is provided in

[13]. This paper adapts the first phase of AIS operation to identify/detect transformation

traces that present a high-risk of containing errors, when testing a transformation outcome.

The main task of the immune system is to survey the organism using detectors, in search of

malfunctioning cells and invaders such as bacteria or viruses. Every element that is

recognizable by the immune system is called an antigen. The original body cells that are

harmless to it are termed self (or self antigens) while the disease-causing elements are

named non-self (or antigens). The immune system is able to sort them out.

The classification process into self/non-self is complex and produces a large number of

randomly created detectors. A negative selection mechanism eliminates detectors that

match the cells in a protected environment where only self cells are assumed to be present.

Non-eliminated detectors become naive detectors and die after some time. Furthermore,

 - 157 -

detectors that do match an antigen are quickly multiplied; this accelerates the response to

further attacks. Also, the newly-produced detectors are not exact replicates of each other,

with the mutation rate being an increasing function of detector-antigen affinity [14].

The elements of the natural immune system that are used in our model transformation

testing procedure are mapped as follows.

• Body: the transformation mechanism to evaluate.

• Self-Cells: model transformation traces without faults.

• Non-Self Cells (Antigen): model transformation traces that present a

high-risk of having faults.

• Detector: example of transformation trace that is very dissimilar to all

“clean” traces (self-cells).

• Affinity: similarity between a detector and a model transformation trace

to evaluate.

The next section presents the principle of our AIS-inspired approach.

3.2 Traceability-based Approach for Model Transformation
Testing
We start by describing the overall process of the proposed procedure, illustrating it with the

case of class diagram to relational schema transformation. Then, we detail our adaptation of

the negative selection algorithm to the model transformation testing problem.

3.2.1 Overview
As showed in Figure 23, our approach can be divided into three important components: the

input/output of the testing process, the base of examples, and the main algorithm. We

describe these components next.

 - 158 -

Figure 23 Overall process of our approach

3.2.1.1 Input/Output

The Input of our testing mechanism is a test case (TC). A TC includes a source model, its

equivalent target model generated using the transformation mechanism to test, and the

traceability links between the two models. More formally, a TC is a triple <SMT, TMT,

UT>, where SMT denotes the source model to test, TMT denotes the generated target

model, and UT is a set of test units. A test unit defines the mappings to produce a

particular element in the target model (Thus, there exists one test unit per element). Since a

model element (e.g., Table) may contain sub-elements (e.g., Columns), an element test unit

also includes the mapping for the sub-elements.

 - 159 -

The creation of a database schema from a UML class diagram, as described in the example

of Figure 24, is a TC where SMT is the class diagram and TMT is the relational schema

generated by the transformation mechanism to evaluate. This TC contains five test units UT

that correspond to the number of tables.

To ease manipulation of the test cases, the source and target models are described using a

set of predicates that encode the included elements. The predicate types correspond to the

different concepts of the source and target metamodels (class, attribute, etc. for class

diagrams). The definition of their parameters has to be decided according to the properties

and relationships of these concepts. For example, Class Position in Figure 24 is described

as follows:

Class(Position).

Attribute(Title, Position, String, _).

Attribute(SalaryMin, Position, Int, _).

Attribute(SalaryMax, Position, Int, _).

The first predicate indicates that Position is a class, and the second that Title is an attribute

of that class with a non-unique value (“_” instead of “unique”). The two other predicates

describe the remaining two attributes of class Position.

 - 160 -

Figure 24 Test case

Figure 25 Transformation unit coding

The traceability links relate the predicates in the source model to their equivalents in the

target model. In our work, these links are automatically generated by adapting an existing

metamodel, implemented in Kermeta [32]. An example traceability link that relates an

association link to a column is as follows:

Association(0,1, ,n,_ , Position, Employee) : Column(idPosition, employee, fk).

The mappings are specified by the sign “:”. For instance, the mapping between

Association(0,1, ,n,_ , Position, Employee) and Column(idPosition, employee, fk) means

that the association link between Position and Employee maps to the primary-foreign key

(pfk) idPosition in table Employee.

The different test units are sets of these mappings. For example, UT5 is described as

follows:

Begin UT5

Class(Position) : Table(position).

Attribute(SalaryMin, Position, Int,_) : Column(idPosition, position, pk),

Column(salaryMin, position,_).

Attribute(SalaryMax, Position, Int,_) : Column(salaryMax, position,_).

Attribute(Title, Position,String,_) : Column(title, position,_).

End UT5

 - 161 -

Each test unit can be viewed as a sequence (string) composed of the following predicate

types: class (C), attribute (A), method (M), generalization (G), aggregation (F), and

association (S). For example, in Figure 25, we present U5 as the sequence of predicates

CAAA, which corresponds to the transformation of a class with three attributes.

The sequence of predicates must follow the specified order of predicate types (C, A, M, G,

F, S) to ease the comparison between predicate sequences. When several predicates of the

same type exist, we order them according to their parameters. For example, if a class

contains several attributes, the corresponding predicates are ordered by considering first the

uniqueness, and then the types. In the example of class Position, as all the attributes are not

unique, the predicates of SalaryMin and SalarityMax (Int) appear before the one of Title

(String).

The output of our transformation mechanism is a set of test units containing risky traces,

i.e. traces with potential transformation errors. Their risk score is determined by an AIS-

based algorithm based on dissimilarity with the base of examples. These two components

of our approach are described in the next subsections.

3.2.1.2 Base of Examples

The base of examples (BE) is composed of a set of transformation examples (TE). A

transformation example is a mapping of model elements from a source model to a target

model. Similar to a test case, a TE is essentially made of transformation units. Thus, it is a

triple <SME, TME, UE>, where SME denotes the source-model example, TME denotes

the corresponding target model, and UE is a set of example units that relate model

elements in SME to their equivalents in TME. The definition of a transformation example

is similar to that of a test case, and the same predicates representation is used, as described

above. However, the target model and the test units of TC are generated by the

transformation mechanism whereas those of TE exist independently from the mechanism to

test.

3.2.1.3 Main Algorithm

Figure 26 gives the overview of our AIS-based algorithm. The detection process has two

main steps: detector generation and risk estimation (similarity function). Detectors are a

 - 162 -

set of units generated from those in the base of examples. These units define the reference

for good transformation traces. The detector generation process is accomplished by using a

heuristic search that simultaneously maximizes the difference between the detectors and the

units, and between the detectors themselves. The same set of detectors could be used to

evaluate different transformation mechanisms based on different formalisms, and it could

be updated as the base of examples grows.

The second step of the detection process consists of comparing the test case units to all the

detectors. A test case unit that shows similarity with a detector is considered to be risky; the

higher the similarity, the riskier the test case unit is. Both detector generation and risk

estimation steps use similarity scores. Before detailing the two steps, we describe the

similarity function used in this work.

Figure 26 AIS-based algorithm overview

3.2.2 AIS-based Algorithm
In this section, we start by explaining how to determine the similarity between two units.

The resulting similarity score is used for detector generation and risk estimation as

described later.

3.2.2.1 Similarity between Transformation Units

To calculate the similarity between two units, we adapted to our context a dynamic

programming algorithm used in bioinformatics to find similar regions between two

 - 163 -

sequences of DNA, RNA or proteins: the Needleman-Wunsch alignment technique [27].

Figure 27 provides an illustration of the algorithm.

Figure 27 Global alignment algorithm [27]

The Needleman-Wunsch global alignment algorithm recursively updates a matrix S of

similarity scores for already-matched sub-sequences. The dimensions of S are set by the

lengths of the sequences to align. For two sequences a = (a1,...,an) and b = (b1,...,bm), S is

of dimensions n x m, and each of its element si,j corresponds to the best alignment score for

sub-sequences of a and b, ai to bj, of lengths i et j, respectively, considering the previously

aligned elements of the sequences. The algorithm can introduce gaps (represented by ”-”) to

improve sub-sequence matching. The number of introduced gaps corresponds to the

number of times that the maximum value for each line in the matrix is not in the diagonal.

The alignment algorithm depends on the predicate order in the sequences, hence the precise

order that is described in the previous section.

The algorithm operates as follows: If a gap is inserted in a or b, it introduces a penalty of g

in the similarity assessment (see below). In our adaptation, we choose the widely-used

value of 1 for the penalty g [27]. Then the algorithm attempts to match the predicates of

each pair of sub-sequences ai and bj, by using a similarity function simi,j to return the

reward or cost of matching ai to bj, and the similarity score for ai and bj is updated.

Formally, si,j is defined as follows :

⎪
⎩

⎪
⎨

⎧

+

−

−

=

−−

−

−

//match

afor gap//insert

bfor gap//insert

,1,1

i1,

j,1

,

jij

ji

ji

ji

sims

gs

gs

Maxs

 - 164 -

Where 00, =is and 0,0 =js .

Our adaptation of the Needleman-Wunsch algorithm is straightforward. We simply assign a

value to g and a way to measure similarity between individual predicates to derive simi,j.

Since our model description uses predicate logic, we define a predicate-specific function to

measure similarity. First, if the types differ, the similarity is 0. Since we manipulate

sequences of predicates, and not strings, simi,j behaves as a predicate-matching function

PMij that measures the sought similarity in terms of the parameters of predicates pk and qk

associated to the different characters of ai and bj. This similarity is the ratio of common

parameters in both predicates. Formally, simi,j is defined as follows:

),max(ji

ij
ij ba

PM
sim =

where,

∑
=

=
),max(

1 kk

kk

)q,pmax(
)q,(p parametres predicates equivalent ofnumber ji ba

k
ijPIM

The similarity between sequences a and b is obtained by normalizing this absolute measure

sn,m with respect to the maximum of their lengths n and m:

),max(
),(,

mn
s

baSim mn=

To illustrate the use of the global alignment algorithm, consider the evaluation of test unit

UC5 described previously, based on its similarity to unit UE15 taken as an example unit

(reference traces). UE15 is defined as follows:

Begin UE15

Class(Teacher) : Table(Teacher).

Attribute(Level, Teacher, String,_) : Column(Level, Teacher,_).

Attribute(Name, Teacher, String,_) : Column(Name, Teacher,_).

Generalization(Person, Teacher) : Column(IDTeacher, Person, _).

 - 165 -

End UE15

Figure 28 Best sequence alignment between U5 and T15

Using the sequence coding described in Subsection 3.2.1.1, the predicate sequence for UC5

is CAAA and the one for UE15 is CAAG. The alignment algorithm finds the best sequence

alignment as shown in Figure 28. There are three matched predicates between UC5 and

UE15: one class (C), and two attributes (A). If we consider the second matched predicates

Attribute(Title, Position, String,_) : Column(idPosition, position, pk), Column(title,

position,_) from UC5 and Attribute(Level, Teacher, String,_) : Column(Level, Teacher,_)

from UE15, their matching corresponds to element (2, 2) in the matrix. The attribute

predicates (and their parameters) are similar, but not the transformation of these attributes

since we do not have a primary key created in the second trace. The resulting similarity is

consequently (1+1+0)/3=0.66, and this value is added to the maximum of elements (1, 2),

(1, 1) and (2, 1) which is 1. Thus, the value of the matching is 1.66.

In our example, we have after normalization:

Sim (UC5 ,UE15) = s4,5/max(4,4) = 2.66/4 = 0.65.

3.2.2.2 Detectors Generation

This section describes how a set of detectors is produced starting from the base of

examples. The generation is inspired by the work of Gonzalez and Dasgupta [29], and

follows a genetic algorithm [28]. The idea is to produce a set of detectors that best covers

 - 166 -

the possible deviations from the base of examples. As the set of possible deviations can be

very large, its coverage may require a huge number of detectors, which is infeasible in

practice. For example, pure random generation was shown to be infeasible in [29] for

performance reasons.

We therefore consider detector generation as a search problem. A generation algorithm

should seek to optimize the following two objectives:

• Maximize the generality of the detector to cover the non-self by minimizing the

similarity with the self.

• Minimize the overlap (similarity) between detectors.

These two objectives define the cost function that evaluates the quality of a solution and,

then, guides the search. The cost of a solution D (set of detectors) is evaluated as the

average cost of the included detectors. We derive the cost of a detector di as an average

between the scores of the lack of generality and the overlap, respectively. Formally, we

have:

2
)()()(cos ii

i
dOdLGdt +=

The lack of generality is measured by the matching score LG(di) between the predicate

sequence of a detector di and those of all units UEj in the base of examples (BE). It is

defined as the average value of the alignment scores Sim(di, UEj) between di and units

UEj in BE:

BE

UEdSim
LG BEUE ji

d
j

i

∑ ∈=
),(

Similarly, the overlap Oi is measured by the average value of the individual Sim(di, dj)

between detector di and all the other detectors dj in solution D:

 - 167 -

D

ddSim
O ijd

ji

i
j

∑
≠−= ,

),(
1

The preceding cost function is used in our genetic-based search algorithm. Genetic

algorithms (GA) implement the principle of natural selection [28]. Roughly speaking, a GA

is an iterative procedure that generates a population of individuals from the previous

generation using two operators, crossover and mutation. Individuals having a high fitness

have higher chances to reproduce themselves (by crossover), which improves the global

quality of the population. To avoid falling in local optima, mutation is used to randomly

change individuals. Individuals are represented by chromosomes containing a set of genes.

For the particular case of detector generation, we use the predicate sequences as

chromosomes, with each predicate representing a gene. We start by randomly generating an

initial population of detectors. The size of this population will be discussed in Section 4. It

is maintained constant during the evolution. The fitness of each detector is evaluated by the

inverse function of cost.

The fitness determines the probability of being selected for crossover. We implement the

selection process using a wheel-selection strategy [28]. In fact, for each crossover, two

detectors are selected by applying the wheel selection twice. Even though detectors are

selected, crossover only happens with a certain probability. Sometimes, based on a set

probability, no crossover occurs and the parents are directly copied to the new population.

The crossover operator allows creating two offspring o1 and o2 from the two selected

parents p1 and p2. We used the 1-point crossover procedure, defined as follows:

• A random position k, is selected in the predicate sequences.

• The first k elements of p1 become the first k elements of o1. Similarly, the first k

elements of p2 become the first k elements of o2.

• The remaining elements of, respectively, p1 and p2 are added as second parts of,

respectively, o2 and o1.

 - 168 -

For instance, if k = 2, p1 = CCAAGS and p2 = CAAAS, then o1 = CCAAS and o2 =

CAAAGS.

The mutation operator consists of randomly changing the traceability links associated to

some characters. For example, we change a trace that transforms a class to table by another

one that transforms an association link to a table.

3.2.2.3 Risk Estimation

The second step for detecting a potential transformation error is risk assessment. Since the

test units are also represented by predicate sequences, each sequence is compared to the

detectors obtained in the previous step by using the alignment algorithm. The risk for

potential errors associated to test unit UCi is defined as the average value of the alignment

scores Sim(UCi, dj), obtained by comparing UCi to respectively all the detectors of a set D.

Formally,

D

dUCSim
risk Dd

ji

UC
j

i

∑
∈=

),(

By using the previous definition, the test units can be ranked according to their risks of

containing potential transformation errors.

4 Evaluation
To evaluate our approach, we conducted an experiment with industrial data. We start this

section by presenting the two kinds of transformation errors we considered in this study.

Then we describe our experimental setting. Finally, we report and discuss the obtained

results.

In addition to our oracle performance, we evaluate the impact of the example base size on

transformation error detection quality. Furthermore, we show how a human tester can easily

validate the detected faults using our visualization tool. Finally, we discuss the benefits and

limitations of the proposed approach to model transformation testing.

 - 169 -

4.1 Considered Transformation Errors
We considered errors belonging to the two following categories:

4.1.1 Metamodel Coverage
This type of error occurs when the transformation is defined without a complete coverage

of the metamodel elements. This leads to the problem that parts of some input models

cannot be transformed. To illustrate metamodel coverage errors, consider the class diagram

metamodel presented in Figure 20. Figure 29 shows a class diagram instance that conforms

to this metamodel. Suppose that the transformation mechanism does not include rules

transforming the metamodel element Association. When executing the transformation

mechanism, we have these two incomplete traces:

Association(payable_by, Command, Bill, 1..n, _) : _

Association(pays, Client, Bill, 1, _) : _

However, in our base of examples all association links have corresponding transformations.

Thus, one of the generated detectors has an example of this faulty trace. The result is that

this trace will be considered to be risky.

Figure 29 Transformation input: class diagram

 - 170 -

4.1.2 Transformation Logic Errors
These errors happen when the transformation, or part of it, is not implemented correctly.

This can lead to models that do not conform to the target metamodel. This includes

constraints violation. For example, an important constraint in relational models is that each

table should have a primary key. Consider a transformation with a rule that maps attributes

to columns and another rule that maps unique attributes to primary keys. If we consider

class Bill in Figure 29, this does not contain a unique attribute. We end-up then with a

table without a primary key:

Class(Bill) : Table(Bill).

Attribute(Amount, Bill,_) : Column(Amount, Bill,_).

Attribute(IssueDate, Bill,_) : Column(IssueDate, Bill,_).

Attribute(DeliveryDate, Bill,_) : Column(DeliveryDate, Bill,_).

However, in our base of examples, all tables have primary keys. Thus, one of the generated

detectors has an example of this faulty trace. Thus this trace will be considered to be risky.

4.2 Experimental Setting
We used 12 examples of CD-to-RS transformations, provided by an industrial partner

acting in the beverage industry, to build an example base EB = {<SMEi, TMEi, UEi> |

1 ≤ i ≤ 12 }. This company decided to migrate all its existing applications to distributed

ones (intra-web) with a common database. As a result, different database schemas had to be

generated from the existing applications written in object-oriented code. To this end, the

development and maintenance department started by reverse-engineering these projects to

class diagrams. Then they transformed the obtained diagrams to relational schema using a

commercial tool. In a third step, they completed and corrected the schemas manually.

The projects we obtained from the company are related to three application domains:

product management, marketing, and fleet management including geolocalization. For each

transformation example, we had the class diagram and the manually corrected relational

schema. After receiving the examples, we inspected them manually to ensure that they were

free of transformation errors.

 - 171 -

As Table 1 shows, the size of class diagrams varies from 28 to 92 elements, with an

average of 58. Altogether, the 12 examples defined 193 test units corresponding to the

number of tables in the 12 schemas (ref. section 3).

We selected as transformation mechanism to test, MTIP, a tool written in Kermeta [34].

Kermeta implements a state-of-the-art declarative model transformation language suitable

for Model-Driven Development (MDD) and data transformation. It is implemented as an

Eclipse plugin that leverages the Eclipse Modelling Framework (EMF) to handle models

based on MOF, UML2, and XML Schema. The transformation traces are collected

automatically by adapting an existing metamodel in Kermeta [32].

We used a 12-fold cross validation procedure. For each fold, we manually introduced

different transformation errors into the transformation mechanism (rules) and subsequently

transformed one of the 12 examples (test case <SMTk, TMTk, UTk>). The 11 remaining

ones formed the base of examples for the testing ({<SMEj, TMEj, UEj> | j ≠ k }). Thus,

each fold concerned one different example. The test units were ranked by order of risk, and

those that were reported to have a risk higher than 0.75 were checked for correctness. The

correctness of our testing method was based on precision and recall capabilities

assessments. These were defined as follows:

errorsation transformdetectedofnumber total
 errorsation transformpositive trueofnumber Precison =

errorsation transformactualofnumber total

 errorsation transformpositive trueofnumber Recall =

Are considered as true positive all units that have a risk higher than 0.75 and that were

actual errors. For our experiment, we randomly generated 50 detectors (about a quarter of

the number of existing units in the base of examples) with a maximum size of 15 predicates

(ref. section 3).

 - 172 -

4.3 Transformation Errors Detection Results
As showed in Table 1, the riskiest test units detected by our approach contained

transformation errors in all folds of the validation procedure. The measured average

precision was 91%, with most errors detected with at least 82% precision. The measured

average recall of 98% was greater, indicating that nearly all the errors were detected. For

over half the total number of folds, 100% recall was obtained, indicating the detection of all

expected errors. Furthermore, the precision and recall scores were not correlated with the

size of the source model.

Table 1. 12-fold cross validation

Source Model Number of

elements

Number of transformation

errors introduced manually

Precision Recall

SM1 72 13 82% 93%

SM2 83 14 93% 94%

SM3 49 11 92% 100%

SM4 53 16 88% 100%

SM5 38 9 90% 100%

SM6 47 12 100% 100%

SM7 78 16 84% 95%

SM8 34 8 100% 100%

SM9 92 14 82% 93%

SM10 28 9 100% 100%

SM11 59 13 93% 100%

SM12 63 15 94% 100%

 - 173 -

Average 58 12 91% 98%

We also investigated the types of transformation errors that were identified. As mentioned

previously, the possible error sources were during specification of the model transformation

mechanism: (i) the metamodels; (ii) the transformation logic (rules). Table 2 shows that, for

fold SM5, chosen because it represent the average size and precision/recall scores, our

affinity function (risk score) can be a good estimator for detecting transformation errors. In

fact, the units located at the top of the list are all true positive, and the unique incorrect

(unexpected) detected error is located last. Furthermore, the units containing two kinds of

errors are typically detected with higher risk values (UC68 and UC69). The same

observations can be drawn for all folds, showing that the used risk score offers an effective

and efficient manner for the tester to validate the detected errors.

An important consideration is the impact of the example base size on transformation error

detection quality. Drawn for SM5, the results of Figure 30 show that our approach had

good precision in situations where only few examples were available. As the results shows,

the precision score seems to follow an exponential curve: it rapidly grows to acceptable

values and then slows down. First, it improved from 22% to 75% as the example base size

increased from 1 to 6 examples. Then, it only grew by an additional 18% as the size went

from 6 to 11 examples.

Table 2. Errors detected in SM5

Test units with

numbers

Risk Met-model

error

Transformation logic

error

UC68 0.93 X X

UC69 0.91 X X

UC70 0.96 X

UC71 0.91 X

UC72 0.89 X

UC73 0.94 X

 - 174 -

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9

Number of examples

Precision

Figure 30 Example-size variation

UC74 0.96 X

UC75 0.89 X

UC76 0.77

 - 175 -

Execution Time

0

10

20

30

40

50

60

70

80

90

28 34 38 47 49 53 58 59 63 72 78 83 92

Number of elements

Ti
m

e
(s

)

Precision

Figure 31 Execution time

We executed our algorithm on a standard desktop computer (Pentium CPU running at 2

GHz with 1GB of RAM). The execution time is shown in Figure 31. As suggested by the

curve shape, the time increased linearly with the number of elements. Thus, our approach

appears to be scalable from the performance standpoint. Only a few seconds were needed to

test the transformation mechanism to evaluate. This execution time does not include that for

detector generation since the detectors are only generated once and can serve to evaluate

several transformation mechanisms afterwards. This feature is a major advantage of using

detectors versus comparing the test units to all units in the base of examples, which can be

infeasible in time when the number of units is very large [15].

As showed in Figure 32, a human tester can analyze the detected risky test units with a

graphical visualization tool. We developed a custom utility that displays the risky test units

with different colors related to the obtained risk score, and with the “clean” traces colored

in green. The human tester can validate, for example, only units that present a potential risk

that are colored in red. Furthermore, the traces help the tester understand the origin of an

error. To allow dealing with the transformation of large models, the traces can be viewed at

 - 176 -

different levels of granularity. For example, the tester can only show the links between

model elements, or between sub-elements. Furthermore, he can only visualize the traces

having potential risk (Figure 32-b).

(a)

 - 177 -

(b)

Figure 32 Interactive transformation errors detection using our tool: (a) all traces and (b)

only risky traces

5 Discussion
In this section, we discuss several issues concerning the detection of transformation errors.

Especially, we describe some advantages and limitations related to our approach.

In our approach, there is no need to define an expected model for each test-case or to define

pre- and post-conditions as oracles; we only use similarity to good transformation

examples. The approach can be seen to propose a way to detect and order transformation

errors by importance, using a risk score. Moreover, our oracle definition is independent

from the transformation mechanism to evaluate or the source/target formalisms, and it helps

the tester understand the origin of errors by visualizing the traceability links with different

colors.

Still, our approach has issues that need to be addressed. First, its performance depends on

the availability of good transformation examples, which could be difficult to collect.

Second, the assumption that the base of examples does not contain transformation errors

may be too strong, and not easily verified in practice. On the positive side, our results show

that a small number of examples may be sufficient to obtain good testing results. This

alleviates the two previous limitations, and may even offer a solution because the number

of needed examples is small. It consists of generating a few test cases using the

transformation mechanism to test and, then, of manually detecting and correcting potential

transformation errors. The resulting cases then form the base of examples.

To reduce the number of necessary examples, these examples are decomposed into units.

However, the definition of units sometimes depends on the source/target metamodels of the

test-case. Thus, our proposed methodology could sometimes be dependent on the

source/target metamodels, but this potential dependency is acceptable in comparison to the

state of the art that will be discussed in the next section.

 - 178 -

Another potentially important aspect of our detection technique is the generation of a

sufficient number of detectors. In our experiments, we generated 50 detectors, which

corresponds to a quarter of the units present in the base of examples. We evaluated the

precision of our approach when varying the number Nd of detectors, with Nd = {20, 50, 90,

120}. Our results, shown in Figure 33, reveal that precision stops improving when the

number of detectors is higher than the quarter of the total number of units in the base of

examples. In addition, Figure 34 shows the execution time necessary to generate different

numbers of detectors. We observe that this time appears to vary linearly with respect to the

diagram sizes for all the number of detectors. In conclusion, our experimentation results

indicate that a reasonable number of detectors (quarter of the transformation units in the

base of examples), generated in less than one minute, is sufficient to obtain good detection

results.

Solution Quality

0

20

40

60

80

100

120

28 34 38 47 49 53 58 59 63 72 78 83 92

Number of elements

P
re

ci
si

on

Detectros=20
Detectros=50
Detectros=90
Detectros=120

Figure 33 Detectors variation vs solution quality (precision)

 - 179 -

Execution Time

0

50

100

150

200

250

8 14 19 22 26 28 30 34 37 39 43 47 50

Maximum number of elements

Ti
m

e
(s

) Detectros=20
Detectros=50
Detectros=90
Detectros=120

Figure 34 Detectors variation vs. execution time

An additional issue is the selection of interesting detectors since the detection results might

vary depending on which detectors are used, and ours were randomly generated (though

guided by a meta-heuristic). To ensure that our results are relatively stable, we compared

the results of multiple executions for detector generation. We found that approximately the

same transformation errors are found after every execution and the differences only exist

for low-risk test units. We therefore believe that our technique is stable with regard to

detector choice since the result variability only relates to the least risky classes.

6 Related Work
The work proposed in this paper crosscuts many research topics. In the remainder of this

section, we present representative contributions in five of these topics: test-case generation,

oracle function definition, search-based testing, by-example model transformation, and

traceability and transformation.

 - 180 -

6.1Test Case Generation
Fleurey et al. [10, 44] and Steel et al. [16] discuss the reasons why testing model

transformation is distinct from testing traditional implementations: the input data are

models that are complex in comparison to simple-type data. Both papers describe how to

generate test data in MDA by adapting existing techniques, including functional criteria

[10] and bacteriologic approaches [9]. Lin et al. [4] propose a testing framework for model

transformation, built on their modeling tools and transformation engine, that offers a

support tool for test case construction, test execution and test comparison; but the test

models are manually developed in their work. As our work does not address test case

generation, it can be integrated with the previous approaches without the need to define the

expected model for each test case.

One of the most widely-used techniques for test-case generation is mutation analysis.

Mutation analysis is a testing technique that aims to evaluate the efficiency of a test set.

Mutation analysis consists of creating a set of faulty versions, or mutants, of a program

with the ultimate goal of designing a test set that distinguishes the program from all its

mutants. Mottu et al. [35] have adapted this technique to evaluate the quality of test cases.

They introduce some modifications in the transformation rules (program-mutant). Then,

using the same test cases as input, an oracle function compares the results (target models).

If all the results are the same, we can assume that the input cases were not sufficient to

cover all the transformation possibilities. In our work, the goal is not to evaluate the quality

of a data set but to propose a generic oracle function to detect transformation errors. Our

oracle function compares between some potential errors (detectors) and transformation

traces to evaluate. However, in mutation analysis, the oracle function compares between

two target models, one generated by the original mechanism (rules) and another after

modifying the rules. In addition, our technique does not create program variations (rules

modifications) but traces variation that differs from good ones. We modified the

transformation mechanism to introduce errors artificially only to validate our approach.

Finally, the mutation analysis technique needs to define an expected model for each test

case in order to compare it with another target model obtained from the same test case after

modifying the rules (mutant).

 - 181 -

Some other approaches are specific to test case generation for graph-transformation

mechanism. Küster [61], addresses the problem of model transformation validation in a

way that is very specific to graph transformation. He focuses on the verification of

transformation rules with respect to termination and confluence. His approach aims at

ensuring that a graph transformation will always produce a unique result. Küster’s work is

concerned with the verification of transformation properties rather than the validation

(testing) of their correctness. Darabos et al. [25] investigate the testing of graph

transformations. They consider graph transformation rules as the transformation

specification and propose to generate test data from this specification. Their technique

focuses on testing the pattern matching activity that is considered the most critical of a

graph transformation process. They propose several faulty models that can occur when

performing the pattern matching as well as a test-case generation technique that targets

those particular faults. Compared to our approach, Darabos’ work is specific to graph-based

transformation testing. Sturmer et al. [22] propose a technique for generating test cases for

code generators. The criterion they propose is based on the coverage of graph

transformation rules. The generated test cases consider both individual rules and rule

interactions. Sampath et al. [[11]] propose a similar method for the verification of model

processing tools such as simulators and code-generators. They use a method that generates

test-cases for model processors starting from a metamodel. This method, like the previous

contributions, is concerned with test-case generation which is not the goal of our

contribution.

6.2 Oracle Function Definition

Mottu et al. [3] describe six different oracle functions to evaluate the correctness of an

output model. These six functions can be classified in the three categories discussed in

Section 2. Thus, they are completely different from our proposal.

In [8], the authors suggest to manually determine the expected outcome of the

transformation and compare it with the actual outcome of the transformation by using a

simple graph-comparison algorithm, since the compared models conform to the same

 - 182 -

metamodel. While this makes model transformation testing feasible, our view is that

manually constructing the expected outcome is not an efficient and scalable approach.

Varró et al. [33] have developed a formal framework for describing model transformation.

The formal framework relies on models represented as typed attributed graphs. Concerning

the transformation correctness, they have developed an approach based on planner

algorithms to prove the syntactic correctness of a transformation. Syntactic correctness

refers to the property that the result of a transformation corresponds to a certain previously

specified syntax, and can be achieved by specifying a graph grammar for both the source

and target languages.

More generally, when many test models are necessary, writing an oracle for each test case

is time consuming and error prone. Generic oracles are more interesting since they are

written only once, and could be used with all the test cases. Another limitation of the

existing approaches is that they consider a particular model transformation technique and

use its specificities to validate the corresponding transformation mechanisms. This has the

advantage of having specific validations but make these approaches difficult to adapt to

other transformation techniques. For our approach, the oracle function is generic and

independent from the transformation techniques. Moreover, we do not have an explicit

specification of the transformation mechanism to evaluate (properties, constraints, or

contracts).

6.3 Search-based Testing
Our approach is inspired by contributions in the domain of Search-Based Software

Engineering (SBSE) [39]. SBSE uses search-based approaches to solve optimization

problems in software engineering. Once a software engineering task is framed as a search

problem, many search algorithms can be applied to solve that problem. Search-based

techniques are have been used for problems in software testing [40, 41, 42]. Especially,

genetic algorithms have been extensively used for test data generation. The general idea

behind the proposed approaches is that possible test suites define a search space and that a

test adequacy criterion is coded as a fitness function. This later guides the selection of the

best test suite in this space. A wide variety of testing problems have been targeted using

 - 183 -

search techniques, including structural, functional and non functional testing, safety testing,

mutation testing, integration testing and exception testing [42]. In our work, we use a

genetic algorithm with a completely different perspective. Indeed, the idea is to generate

artificial situations that are different from known good-transformation traces. Then, these

artificial traces are used not as test cases but as oracle functions.

To our knowledge, there exist very few works in software engineering that use an AIS

techniques. The closest one to our work proposes a software defect prediction model by

means of an artificial immune recognition system (AIRS) along with correlation-based

feature selection (CFS) [30]. In our work, in addition to target a different problem, we do

not use AIRS, but the negative selection algorithm.

6.4 By Example Model Transformation
The AIS approach proposed in this paper is based on using examples. Various such by-

example approaches have been described in the literature [17, 18, 19, 20, 31, 43]. The most

similar one is Model Transformation By Example (MTBE), which was proposed in [18,

31]. Varrò and Balogh [17] propose a semi-automated process for MTBE using Inductive

Logic Programming (ILP). The principle of their approach is to derive transformation rules

semi-automatically from an initial prototypical set of interrelated source and target models.

In a previous work [18, 31, 43] we proposed MOTOE (MOdel Transformation as

Optimization by Example), a novel approach to automate model transformation using

heuristic-based search. MOTOE uses a set of transformation examples to derive a target

model from a source model. The transformation is seen as an optimization problem where

different transformation possibilities are evaluated and a quality associated to each one

depending on its conformance with the examples at hand. A similar approach to MTBE,

called Model Transformation By Demonstration (MTBD), was proposed in [20]. Instead of

the MTBE idea of inferring the rules from a prototypical set of mappings, users are asked to

demonstrate how the model transformation should be done, through direct editing (e.g. add,

delete, connect, update) of the source model so as to simulate the transformation process.

 - 184 -

In conclusion, when compared to existing by-example approaches, our proposal appears to

present the first contribution that uses examples for model transformation testing.

Despite these efforts in MTBE work, and considering the nature of the algorithms that are

used, there is no evidence that a solid base of examples can generate target models without

errors.

6.5 Traceability and Transformation
In our approach, the definition of transformation examples is based on traceability [33].

Traceability usually allows tracing artifacts within a set of chained operations, where the

operations may be performed manually (e.g. crafting a software design for a set of software

requirements) or with automated assistance (e.g., generating code from a set of abstract

descriptions). Most work on traceability in MDE uses it for detecting model inconsistency

and fault localization in transformations. In our proposal, the goal is not to generate traces

but to use clean trace information as input in order to detect transformation errors.

7 Summary
In this article, we presented a new oracle function definition for model transformation

testing that does not need to define the expected model for each test case. The technique is

based on the metaphor of a biological immune system using negative selection. We propose

an oracle function that compares between the targeted test cases and a base of examples

containing good quality transformation traces and assigns a risk level, which will define the

oracle function to the former based on the dissimilarity between the two. Furthermore, we

use a custom tool to help the human tester visualize the detected risky fragments in test

cases, using different colors related to the obtained risk scores.

We illustrated our approach with a transformation mechanism for UML class diagrams to

relational schemas. In this context, we conducted a validation with real industrial models.

The experiment results clearly indicated that the detected risky fragments (transformation

errors) are comparable to those detected by a human tester (precision and recall of more

than 90%).

 - 185 -

Our method also suffers from some limitations as discussed in section 5. In particular, our

oracle function may require considerable effort to find and collect transformation examples.

Future work should validate our approach with more complex transformation mechanisms

like sequence diagram to colored Petri nets in order to conclude about the general

applicability of our methodology. Also, in this paper, we only looked at the first step of

immune systems: the detection of risk. The second step is problem correction. The colonal

selection algorithm [20] could be adapted for finding the best immune response, i.e. the one

corresponding to the optimal sequence of corrections to apply for correcting errors by

automatically regenerating some rules from examples.

References
1. France, R., Rumpe, B.: Model-driven Development of Complex Software: A Research Roadmap. ICSE 2007 :

Future of Software Engineering. (2007)

2. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In: OOSPLA 2003, Anaheim,

USA (2003)

3. Mottu, J.M., Baudry, B., Traon, Y.L.: Model transformation testing: Oracle issue. In Proc. of ICST08.

4. Y. Lin, J. Zhang, and J. Gray. A Testing Framework for Model Transformations, in Model-driven Software

Development. 2005, Springer.

5. Dimitrios S. Kolovos, Richard F. Paige, Fiona A.C. Polack. Model Comparison: A Foundation for Model

Composition and Model Transformation Testing. In Proc. GaMMa, 2006.

6. Samir Khuller and Balaji Raghavachari. Graph and network algorithms. ACM Computing Surveys, pages

43{45, March 1999.

7. F. Azuaje, “Review of artificial immune systems: a new computational intelligence approach” by l.n. de castro

and j.timmis (eds) springer, london, 2002.

8. Brottier, E., Fleurey, F., Steel, J., Baudry, B., and Traon, Y. L. Metamodel-based Test Generation for Model

Transformations: an Algorithm and a Tool. In Proceedings of SSRE 2006

9. B. Baudry, F. Fleurey, J.-M. Jezequel, and Y. L. Traon. Automatic test cases optimization using a

bacteriological adaptation model: Application to . net components. In ASE 2002.

10. Fleurey, F., J. Steel and B. Baudry, Validation in Model-Driven Engineering: Testing Model Transformations,

In 15th IEEE International Symposium on Software Reliability Engineering. 2004

11. Andrews, R. France, S. Ghosh, and G. Craig. Test adequacy criteria for uml design models. Technical report,

Computer Science Department, Colorado State University, 2006

12. Alanen, M. and I. Porres. Difference and Union of Models. in UML'03, USA.

13. Kuby, Janis, Thomas J Kindt, Barbara A Osborne, & Richard A Goldsby (1997) “Immunology,” 3 rd ed, WH

Freeman & Co, New York.

 - 186 -

14. D. Dasgupta, Z. Ji, and F. Gonzalez, “Artificial immune system (ais) research in the last five years.” in IEEE

Congress on Evolutionary Computation (1). IEEE, 2003, pp. 123–130.

15. S. Forrest, A. S. Perelson, L. Allen, and R. C. Kuri, “Self nonself discrimination in a computer,” in Proceedings

of the 1994 IEEE Symposium on Resarch in Security and Privacy.

16. Steel, J. and M. Lawley. Model-Based Test Driven Development of the Tefkat Model- Transformation Engine.

In ISSRE'04, pp. 151-160, 2004. IEEE.

17. D. Varro and Z. Balogh, Automating Model Transformation by Example Using Inductive Logic Programming,

ACM Symposium, 2007 (SAC 2007).

18. M. Kessentini, H.Sahraoui and M.Boukadoum Model Transformation as an Optimization Problem. In

Proc.MODELS 2008, pp. 159-173 Vol. 5301 of LNCS. Springer, 2008.

19. M. Wimmer, M. Strommer, H. Kargl, and G. Kramler.Towards model transformation generation by-example.

HICSS-40 Hawaii International Conference on System Sciences.
20. Yu Sun, Jules White, and Jeff Gray, "Model Transformation by Demonstration," MoDELS09

21. W. Pang and G. M. Coghill, “Modified clonal selection algorithm for learning qualitative compartmental

models of metabolic systems,” in GECCO ’07.

22. B. Baudry, T. Dinh-Trong, J.-M. Mottu, D. Simmonds, R. France, S. Ghosh, F. Fleurey, and Y. L. Traon. Model

Transformation Testing Challenges. In IMDT workshop, 2006.

23. J. Kuster and M. Abd-El-Razik. Validation of model transformations- first experiences using a white box

approach.In MoDeVa’06.

24. J. Bezivin, F. Jouault, and P. Valduriez. On the need for megamodels. In OOPSLA/GPCE 2004 Workshop,

2004.

25. E. Cariou, R. Marvie, L. Seinturier, and L. Duchien. OCL for the Specification of Model Transformation

Contracts. Proceedings of Workshop OCL and MDE, 2004.

26. Solberg, R. Reddy, D. Simmonds, R. France, and S. Ghosh. Developing Service Oriented Systems Using an

Aspect-Oriented Model Driven Framework., 2006.

27. Carrillo H. and Lipman D. The multiple sequence alignment problem in biology. SIAM Journal on Applied

Mathematics, 48(5):1072-1082, 1988.

28. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Pub Co,

Jan 1989.

29. F. Gonzalez, D. Dasgupta, Anomaly detection using real-valued negative selection, Genetic Programming and

Evolvable Machines (2003) 383–403.

30. Catal, C. and Diri, B. 2007. Software defect prediction using artificial immune recognition system. In

Proceedings of IASTED international Multi-Conference, 285-290,2007

31. M. Kessentini, A.Bouchoucha, H.Sahraoui and M.Boukadoum. Example-based Sequence Diagram to Colored

Petri Nets Transformation Using Heurisitc Search. In Proc.ECMFA 2010, Springer, 2010.

32. Jean-Remi Falleri, Marianne Huchard, Clementine Nebut: Towards a traceability framework for model

transformations in Kermeta In: Proceedings of the European Conference on MDA Traceability Workshop,

Bilbao, Spain (2006)

 - 187 -

33. Varró, D., Pataricza, A.: Automated formal verification of model transformations. In: Jürjens, J., Rumpe, B.,

France, R., Fernandez, E.B. (eds.) CSDUML 2003: critical systems development in UML; proceedings of

theUML’03 workshop, Technical Report, pp. 63–78. Technische Universität München, September 2003

34. Bézivin, J., Rumpe, B., Schürr, A., Tratt, L.: MTIP workshop. Available from:

http://sosym.dcs.kcl.ac.uk/events/mtip05/long_cfp.pdf (2005)

35. Mottu, J.-M.,Baudry, B.,LeTraon,Y.: Mutation analysis testing for model transformations. In: Proceedings of

ECMDA’06 (European Conference on Model Driven Architecture). Bilbao, Spain (2006)

36. Küster, J.M.: Definition and validation of model transformations. Softw. Syst. Model. 5(3), 233–259 (2006)

37. Darabos, A., Pataricza, A., Varro, D.: Towards testing the implementation of graph transformations. In:

Proceedings of GT-VMT Workshop Associated to ETAPS’06, pp. 69–80. Vienna, Austria (2006)

38. P. Sampath, A. C. Rajeev, S. Ramesh, and K. C. Shashidhar. Testing model-processing tools for embedded

systems. In IEEE Real-Time and Embedded Technology and Applications Symposium, pages 203– 214, 2007.

39. M. Harman, The Current State and Future of Search Based Software Engineering, In Proceedings of the 29th

International Conference on Software Engineering (ICSE 2007), 20-26 May, Minneapolis, USA (2007)

40. A. Baresel, D. W. Binkley, M. Harman, and B. Korel. Evolutionary testing in the presence of loop–assigned

flags: A testability transformation approach. In International Symposium on Software Testing and Analysis

(ISSTA 2004), pages 108–118, Omni Parker House Hotel, Boston, Massachusetts, July 2004. Appears in

Software Engineering Notes, Volume29, Number 4.

41. A. Baresel, H. Sthamer, and M. Schmidt. Fitness function design to improve evolutionary structural testing. In

GECCO 2002: Proceedings of the Genetic and Evolutionary Computation Conference, pages 1329–1336.

42. P. McMinn. Search-based software test data generation: A survey. Software Testing, Verification and

Reliability, 14(2):105–156, June 2004.

43. M. Kessentini, H.Sahraoui and M.Boukadoum Search-based Model Transformation by example. In Journal of

Software and System Modeling, 2010 DOI: 10.1007/s10270-010-0175-7

44. Fleurey, F., Baudry, B., Muller, P.A., Traon, Y.: Qualifying input test data for model transformations. In:

Software and Systems Modeling (2008)

 - 188 -

Chapter 8: Conclusions

In this chapter, we summarise the results and conclusions of the dissertation. We also

discuss opportunities for extending our work.

8.1 Contributions

The main objective of this thesis was to define approaches for automating model

and code transformation, and for testing model transformation. We defined as requirements

the following properties: (1) The automatic model and code transformation should not

require a lot of knowledge (rule definition, exhaustive design defect list, etc); (2) Data and

mechanisms used for transformations also should be used to test the correctness of these

transformations; and (3)The transformation mechanism should be adaptable to different

software artefacts and transformation categories.

The first contribution of the thesis is about defining a new exogenous

transformation mechanism that does not require rules definition. This contrasts with the

majority of the available work on model transformation that is based on the hypothesis that

transformation rules exist and that the important issue is how to express them. In our

solution, the transformation process is seen as an optimization problem where different

transformation possibilities are evaluated and, for each possibility, a quality is associated

depending on its conformance with the examples at hand. The search space is explored

using two methods. In the first one, we use Particle Swarm Optimization (PSO) with

transformation solutions generated from the examples at hand as particles. Particles

progressively converge toward a good solution by exchanging and adapting individual

construct transformation possibilities. In the second method, a partial run of PSO is

performed to derive an initial solution. This solution is then refined using a local search

 - 189 -

with simulated annealing (SA). We have illustrated our approach with the transformation of

static models (UML class diagrams to relational schemas) and dynamic ones (UML

sequence diagram to colored petri net). In this context, we conducted a validation with real

industrial models. The experiment results clearly indicate that the derived models are

comparable to those proposed by experts (correctness of more than 90% with manual

evaluation). They also reveal that some constructs were correctly transformed although no

transformation examples were available for them. This was possible because the approach

uses syntactic similarity between construct types to adapt their transformations. We also

showed that the two methods used for the space search produced comparable results when

properly applied, and that PSO alone is enough with small-to-medium models while the

combination PSO-SA is more suitable when the size of the models to transform is larger.

For both methods, our transformation process derives a good quality transformation in an

acceptable execution time. Finally, the validation study showed that the quality of MT

improves with the number of examples. However, it reaches a stable score after as few as

nine examples.

The second contribution is about endogenous transformation. We have proposed

two principale solutions.

In the first one, we proposed a new detection mechanism for design defects

detection. The solution is based on the metaphor of biological immune systems using

negative selection theory. As with immune systems, the technique does not look for design

that follows specific definitions, but rather for abnormal designs. By ignoring the detection

of specific defect types, we avoid two problems with existing detection techniques. First,

we do not need to code informal specifications into rules. Second, we do not have to cover

exhaustively the set of possible defects. To evaluate our approach, we used classes from the

JHot-Draw library as our examples of well-designed and implemented code. Two systems,

Xerces-J and Gantt, were then analyzed using our approach. Almost all the identified

riskiest classes (precision> 90%) were found in a list of classes tagged as defects (blobs,

spaghetti code and functional decomposition) in DECOR [88].

 - 190 -

In the second solution, we proposed an automated approach for design defect

detection rules generation. It exploits an algorithm that automatically finds rules for the

detection of possible design defects, thus relieving the designer from doing so manually.

Our algorithm derives rules in the form of metric/threshold combinations, from known

instances of design defects (defect examples). Due to the large number of possible

combinations, we use a music-inspired heuristic that finds the best harmony when

combining metrics. We evaluated our approach on finding potential defects in three open-

source systems (Xerces-J, Quick UML and Gantt). The detection process uncovered

different types of design defects more efficiently than DECOR. For example, for Xerces-J,

the average of our precision is 81%. DECOR on the other hand has a combined precision of

67% for its detection of the same set of antipatterns.

After defining a transformation mechanism, one of the challenges is how to validate

it. One of the efficient techniques is testing based on an oracle function to detect errors. We

presented an approach that does not need to define an expected model for each test case and

also without specifying constraints to evaluate. Our oracle function compares target test

cases with a base of examples containing good quality transformation traces, and then

assigns a risk level to the former, based on dissimilarity between the two. The traces help

the tester to understand the origin of an error. We illustrated our approach with a

transformation mechanism for UML class diagrams to relational schemas. In this context,

we conducted a validation with real industrial models. The experiment results clearly

indicated that the detected risky fragments (transformation errors) are comparable to those

detected by a human tester (precision and recall of more than 90%).

8.2 Limitations and Future Research Directions

In this section, we discuss some limitations and open research directions related to

our proposal. First, all our performance contribution depends on the availability of

examples, which could be difficult to collect. However, as we have shown in the

 - 191 -

experiments, only few examples are needed to obtain good results. Second, due to the

nature of our solution, i.e., an optimization technique, the process could be time consuming

for large models. Furthermore, as we use heuristic algorithms, different executions for the

same input could lead to different outputs. This can be a disadvantage for some model-

driven engineering applications, e.g., when model transformation is a deterministic process

and the generated target model is unique. Nevertheless, having different and equivalent

output models is close to what happens in the real world where different experts may

propose different target models.

Different future work directions can be explored. The application of new search-

based techniques like artificial immune system to model evolution or model refactoring is

challenging. We are working on an extension of our first contribution about exogenous

transformation by example. The idea is to generate transformation rules from examples

using heuristic search. Our approach starts by randomly generating a set of rules, executing

them to generate some target models. Then, it evaluates the quality of the proposed solution

(rules) by comparing the generated target models to the expected ones in the base of

examples. In this case, the search space is large and heuristic-search is needed.

We are actually working to extend our proposal to other problems. A new technique

for predicting “buggy” changes, when modifying an existing version of a model, can be

proposed. The idea is to classify the changes as clean or not. The Change classification

determines whether a new model change is more similar to prior “buggy” or clean changes

in the base of examples. In this manner, change classification can predict the existence of

“bugs” in models changes.

Furthermore, we are working on transformation composition using examples. We

propose a solution based on a music-inspired approach. We draw an analogy between the

transformation composition process and finding the best harmony when composing music.

Say, for example, that we have a transformation mechanism M1 that transforms formalism

T1 into T2, but the meta-model of T2 evolved into T3, after deleting or adding elements.

We want to generate new transformation rules that transform T1 into T3. The idea is to

compose two transformation mechanisms T1 to T2 and T2 to T3. To this end, we propose

 - 192 -

to view transformation rules generation as an optimization problem where rules are

automatically derived from available examples. Each example corresponds to a source

model and its corresponding target model, without transformation traces from T1 to T3.

Our approach starts by composing a set of rules (T1 to T2 and T2 to T3), executing them to

generate some target models, and then evaluating the quality of the proposed solution

(rules) by comparing the generated target models and the expected ones in the base of

examples.

Finally, we can extend our work related to endogenous transformation. In this

thesis, we only looked at the first step of immune systems: the discovery of risk. As part of

our future work, we plan to explore the other two steps: identification and correction of

detected design defects (refactoring) that corresponds to the code transformation step.

 - 193 -

Related Publications
I have started my PhD in January 2008. The following is a list of our publications

related to this dissertation.

Articles in Journals

1. Kessentini, M., Sahraoui, H., and Boukadoum, M. 2010. Search-Based

Model Transformation by Example, Software and System Modeling Journal-

Special Issue of MODELS08 (Accepted, to appear)

2. Kessentini, M., Sahraoui, H., and Boukadoum, M. 2010. Example-based

Model Transformation Testing, Automated Software Engineering Journal

(Accepted. To appear)

3. Kessentini, M., Vaucher, S., Sahraoui, H., and Boukadoum, M. 2010.

Immune-Inspired Approach for Design Defect Detection , ACM

Transactions on Software Engineering and Methodology (To be submitted-

December 2010)

4. Kessentini, M., Vaucher, S., Sahraoui, H., and Boukadoum, M. 2010. Design

Defect Detection Rules Generation Using Genetic Programming , Automated

Software Engineering Journal (To be submitted-December2010)

Book Chapters

1. Kessentini, M., Sahraoui, H., Boukadoum, M., Faunes, M., and Wimmer, M.

2010. Maintenance, Evolution and Reengineering of Software Models by

Example. In ”Emerging Technologies for the Evolution and Maintenance of

Software Models” book, edited by Jorg Rech and Christian Bunse

(Submitted).

 - 194 -

Articles in Refereed Conference:

1. Kessentini, M., Vaucher, S., and Sahraoui, H. 2010. Deviance from

Perfection is a Better Criterion than Closeness to Evil when Identifying

Risky Code. (Considered as one of best contributions). The 25th

IEEE/ACM International Conference on Automated Software Engineering

ASE2010 (acceptance rate : 18%)

2. Kessentini, M., Sahraoui, H., and Boukadoum, M. 2010. Testing Sequence

Diagram to Colored Petri Nets Transformation: An Immune System

Metaphor. (Best paper award) In Proceedings of the 20th Annual

International Conference on Computer Science and Software Engineering

(CASCON2010). (acceptance rate : 26%)

3. Kessentini, M., Sahraoui, H., and Boukadoum, M. 2008. Model

Transformation as an Optimization Problem. (Considered as one of best

contributions) In Proceedings of the 11th international Conference on

Model Driven Engineering Languages and Systems (2008), 159-173.

MODELS08 (acceptance rate : 21%)

4. Kessentini, M., Wimmer, M., Sahraoui, H., and Boukadoum, M. 2010.

Generating Transformation Rules from Examples for Behavioral Models.

(Best paper Award) In Proceedings of Behavioural Modelling -

Foundations and Application (BM-FA 2010)

5. Kessentini, M., Sahraoui, H., Boukadoum, and M. Wimmer, M. 2011.

Design Defects Detection Rules Generation : A Music Metaphor, 15th IEEE

European Conference on Software Maintenance and Reengineering

CSMR11 (acceptance rate : 28%)

6. Kessentini, M., Sahraoui, H., Boukadoum, and M. Wimmer, M. 2011.

Design Defects Detection by Example. 14th IEEE International Conference

 - 195 -

on Fundamental Approaches to Software Engineering FASE 2011

(acceptance rate : 28%)

7. Kessentini, M., Bouchoucha, A., Sahraoui, H., and Boukadoum, M. 2010.

Example-Based Sequence Diagrams to Colored Petri Nets Transformation

Using Heuristic Search. In Proceedings of the Sixth European Conference on

Modelling Foundations and Applications ECMFA2010 (acceptance rate :

28%)

8. Kessentini, M., Sahraoui, H., and Boukadoum, M. 2009. Transformation de

modèle par l’exemple: approche par metaheuristique. Actes du 15e

conférence francophone sur les Langages et Modèles à Objets, mars 2009.

éditions Cépadues.

 - 196 -

Bibliography
[1] Aditya Agrawal and G'{a}bor Karsai and Sandeep Neema and Feng Shi and

Attila Vizhanyo. The Design of a

[2] Ákos Lédeczi, Arpad Bakay, Miklos Maroti, Péter Völgyesi, Greg Nordstrom,

Jonathan Sprinkle, Gabor Karsai. 2001. In Proc of Composing Domain-Specific

Design Environments. IEEE Computer 34(11). pp 44-51.

[3] Akos Schmidt, Dániel Varró. 2003. “CheckVML: A Tool for Model Checking

Visual Modeling Languages”, In Proc. UML 2003: 6th International Conference on

the Unified Modeling Language, LNCS, vol. 2863, pp. 92-95.

[4] Alex Sellink and Chris Verhoef. 1999. An Architecture for Automated

Software Maintenance. In Proceedings of the 7th International Workshop on Program

Comprehension (IWPC '99). IEEE Computer Society, Washington, DC, USA, 38-.

[5] Alexander Egyed. 2002. Automated abstraction of class diagrams. ACM Trans.

Softw. Eng. Methodol. 11, 4 (October 2002), 449-491.

[6] Alexander Franz Egyed. 2000. Heterogeneous View Integration and its

Automation. Ph.D. Dissertation. University of Southern California, Los Angeles, CA,

USA. Advisor(s) Barry William Boehm.

[7] Alexander Repenning and Corrina Perrone. 2000. Programming by example:

programming by analogous examples. Commun. ACM 43, 3 (March 2000), 90-97.

[8] Anantha Narayanan and Gabor Karsai. 2008. Towards Verifying Model

Transformations. Electron. Notes Theor. Comput. Sci. 211 (April 2008), 191-200.

[9] Andrea Corradini , Reiko Heckel , Ugo Montanari. 2000. “Graphical

operational semantics”, In Proc. ICALP2000 Workshop on Graph Transformation and

Visual Modelling Techniques.

[10] Andrea Darabos and Andras Pataricza and Daniel Varro. 2008. Towards

Testing the Implementation of Graph Transformations. Electronic Notes in Theoretical

Computer Science, pp 211.

 - 197 -

[11] Andrea Darabos, Andres Pataricza, and Daniel Varro. 2008. Towards Testing

the Implementation of Graph Transformations. Electron. Notes Theor. Comput. Sci.

211 (April 2008), 75-85.

[12] Anna Gerber, Michael Lawley, Kerry Raymond, Jim Steel, and Andrew Wood.

2002. Transformation: The Missing Link of MDA. In Proceedings of the First

International Conference on Graph Transformation (ICGT '02), Andrea Corradini,

Hartmut Ehrig, Hans Kreowski, and Grzegorz Rozenberg (Eds.). Springer-Verlag,

London, UK, 90-105.

[13] Anneke G. Kleppe, Jos Warmer, and Wim Bast. 2003. MDA Explained: The

Model Driven Architecture: Practice and Promise. Addison-Wesley Longman

Publishing Co., Inc., Boston, MA, USA.

[14] Anneliese Amschler Andrews and Robert B. France and Sudipto Ghosh and

Gerald Craig. 2006. Test adequacy criteria for uml design models. Technical report,

Computer Science Department, Colorado State University.

[15] ATLAS Group. The Atlantic Zoo. http://www.eclipse.org/gmt/am3/

zoos/atlantic Zoo/.

[16] Behrens, Ulf, Flasinski, Marillsz, Hagge, Lars, Jurek, Janusz, and Ohrenberg,

Kars. 1996. Recent Developments of the ZEUS Expert System ZEX. IEEE

Transactions on Nuclear Science, Vol 43.

[17] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. 2003. Bug

isolation via remote program sampling. In Proceedings of the ACM SIGPLAN 2003

conference on Programming language design and implementation (PLDI '03). ACM,

New York, NY, USA, 141-154.

[18] Benoit Baudry, Dinh-Trong, Trung and Mottu, Jean-Marie and Simmonds,

Devon, Robert France, Ghosh, Sudipto, Franck Fleurey and Yves Le Traon. 2006.

Model Transformation Testing Challenges. In ECMDA workshop on Integration of

Model Driven Development and Model Driven Testing.

[19] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. 2002.

Automatic Test Cases Optimization Using a Bacteriological Adaptation Model:

Application to .NET Components. In Proceedings of the 17th IEEE international

 - 198 -

conference on Automated software engineering (ASE '02). IEEE Computer Society,

Washington, DC, USA, 253-.

[20] Benoit Baudry, Franck Fleurey, Jean-Marc Jézéquel, and Yves Le Traon. 2002.

Automatic Test Cases Optimization Using a Bacteriological Adaptation Model:

Application to .NET Components. In Proceedings of the 17th IEEE international

conference on Automated software engineering (ASE '02). IEEE Computer Society,

Washington, DC, USA, 253-.

[21] Benoit Baudry, Sudipto Ghosh, Franck Fleurey, Robert France, Yves Le

Traon, and Jean-Marie Mottu. 2009. Barriers to systematic model transformation

testing. Commun. ACM 53, 6 (June 2009), 139-143.

[22] Dániel Varró and Andras Pataricza. 2003. “Automated Formal Verification of

Model Transformations”, In Critical Systems Development workshop in UML03: 6th

International Conference on the Unified Modeling Language, LNCS, vol. 2863, 63-78.

[23] Dániel Varró and Zoltán Balogh, Automating model transformation by

example using inductive logic programming. In Proceedings of the 2007 ACM

symposium on Applied computing (SAC '07). ACM, New York, NY, USA, 978-984.

[24] Dániel Varró. Model transformation by example. 2006. In Proceedings of the

9th international conference on Model Driven Engineering Languages and Systems

(MoDELS '06), Vol. 4199 of LNCS. Springer, pp. 410–424.

[25] Devon Simmonds, Raghu Reddy, Robert France, Sudipto Ghosh, and Arnor

Solberg. 2005. An Aspect Oriented Model Driven Framework. In Proceedings of the

Ninth IEEE International EDOC Enterprise Computing Conference (EDOC '05).

IEEE Computer Society, Washington, DC, USA, 119-130

[26] Didier Vojtisek and Jean-Marc Jézéquel. 2004. MTL and Umlaut NG: Engine

and Framework for Model Transformation. INRIA Tech.Report

http://www.ercim.org/publication/Ercim News/enw58/vojtisek.html.

[27] Don Roberts. 1999. Practical Analysis for Refactoring, Ph.D. thesis, University

of Illinois at Urbana-Champaign.

[28] Eclipse. Generative Modeling Technologies (GMT) project, 2006.

 - 199 -

[29] Eelco Visser. 2005. A survey of strategies in rule-based program

transformation systems. J. Symb. Comput. 40, 1 (July 2005), 831-873.

[30] Eelco Visser. 2005. A survey of strategies in rule-based program

transformation systems. J. Symb. Comput. 40, 1, 831-873.

[31] Elliot J. Chikofsky and James H. Cross. 1990. Reverse engineering and design

recovery: A taxonomy, IEEE Software, vol. 7, no. 1, pp. 13–17.

[32] Erwan Brottier, Franck Fleurey, Jim Steel, Benoit Baudry, and Yves Le Traon.

2006. Metamodel-based Test Generation for Model Transformations: an Algorithm

and a Tool. In Proceedings of the 17th International Symposium on Software

Reliability Engineering (ISSRE '06). IEEE Computer Society, Washington, DC, USA,

85-94.

[33] Foutse Khomh, Stéphane Vaucher, Yann-Gael Guéneuc, and Houari Sahraoui.

2009. A Bayesian Approach for the Detection of Code and Design Smells. In

Proceedings of the 2009 Ninth International Conference on Quality Software (QSIC

'09). IEEE Computer Society, Washington, DC, USA, 305-314.

[34] Franck Fleurey, Jim Steel and Benoit Baudry. 2004. Validation in Model-

Driven Engineering: Testing Model Transformations. Model, Design and Validation,

2004. Proceedings. 2004 First International Workshop on In Model, Design and

Validation, pp. 29-40.

[35] Frédéric Jouault and Ivan Kurtev. 2005. Transforming Models with ATL. In J.-

M. Bruel, editor, MoDELS Satellite Events, volume 3844 of LNCS, Springer-Verlag,

pages 128–138.

[36] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, Ivan Kurtev. 2008. ATL: A

model transformation tool. Science of Computer Programming. 72(1-2), pp 31-39.

[37] Frédéric Jouault. 2005. Loosely coupled traceability for ATL. In: Proceedings

of the European Conference on ModelDrivenArchitecture (ECMDA) Workshop on

Traceability.

[38] Gabor Karsai. 2010 Lessons Learned from Building a Graph Transformation

System. In Proc of Graph Transformations and Model-Driven Engineering 2010, pp

202-223

 - 200 -

[39] Gabriele Taentzer. 2003. AGG: A graph transformation environment for

modeling and validation of software. In J. L. Pfaltz, M. Nagl, and B. Böhlen, editors,

AGTIVE, volume 3062 of LNCS, Springer, pages 446–453.

[40] Guillaume Langelier, Houari Sahraoui, and Pierre Poulin. 2005. Visualization-

based analysis of quality for large-scale software systems. In Proceedings of the 20th

IEEE/ACM international Conference on Automated software engineering (ASE '05).

ACM, New York, NY, USA, 214-223.

[41] Hachmi AliKacem and Houari Sahraoui. 2006. Détection d’anomalies utilisant

un langage de description de règle de qualité. in actes du 12e colloque LMO, LMO,

Ed.

[42] Hartmut Ehrig and Claudia Ermel. 2008. Semantical Correctness and

Completeness of Model Transformations using Graph and Rule Transformation. In:

Proc. International Conference on Graph Transformation (ICGT'08). Volume 5214 of

LNCS., Heidelberg, Springer Verlag, pp 194-210

[43] http://www.eclipse.org/gmt/.

[44] Ismenia Galvao and Arda Goknil. 2007. Survey of Traceability Approaches in

Model-Driven Engineering. In Proceedings of the 11th IEEE International Enterprise

Distributed Object Computing Conference (EDOC '07). IEEE Computer Society,

Washington, DC, USA, 313-.

[45] Iván García-Magariño, Jorge J. Gómez-Sanz, Rubén Fuentes-Fernández. 2009.

Model Transformation By-Example: An Algorithm for Generating Many-to-Many

Transformation Rules in Several Model Transformation Languages. In Proceedings of

the 2nd International Conference on Theory and Practice of Model Transformations

(ICMT '09), Richard F. Paige (Ed.). Springer-Verlag, Berlin, Heidelberg, 52-66.

[46] James Kennedy and Russell C. Eberhart. 1995. Particle swarm optimization. In

Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–

1948.

[47] Jean-Marie Mottu and Benoit Baudry and Yves Le Traon. 2006. Mutation

analysis testing for model transformations. In Model Driven Architecture -

 - 201 -

Foundations and Applications, Second European Conference, ECMDA-FA 2006,

LNCS 4066, pp 376-390. Springer.

[48] Jean-Marie Mottu, Benoit Baudry, and Yves Le Traon. 2008. Model

transformation testing: oracle issue. In Proceedings of the 2008 IEEE International

Conference on Software Testing Verification and Validation Workshop (ICSTW '08).

IEEE Computer Society, Washington, DC, USA, 105-112.

[49] Jean-Remy Falleri, Marianne Huchard, Mathieu Lafourcade, and Clementine

Nebut. 2008. Metamodel Matching for Automatic Model Transformation Generation.

In Proceedings of the 11th international conference on Model Driven Engineering

Languages and Systems (MoDELS '08). Springer-Verlag, Berlin, Heidelberg, 326-340.

[50] Jeff Gray. 2002. Aspect-Oriented Domain-Specific Modeling: A Generative

Approach Using a Meta-weaver Framework. Phd, Vanderbilt University.

[51] Jochen M. Kuster and Mohamed Abd-El-Razik. 2006. Validation of model

transformations: first experiences using a white box approach. In Proceedings of the

2006 international conference on Models in software engineering (MoDELS'06),

Thomas Kuhne (Ed.). Springer-Verlag, Berlin, Heidelberg, 193-204.

[52] Jochen M. Kuster. 2006. Definition and validation of model transformations.

Software and Systems Modeling, vol 5(3), pp 233–259.

[53] John Anvik, Lyndon Hiew, and Gail C. Murphy. 2006. Who should fix this

bug?. In Proceedings of the 28th international conference on Software engineering

(ICSE '06). ACM, New York, NY, USA, 361-370.

[54] Juan de Lara and Hans Vangheluwe. 2002. AToM3: A tool for multi-

formalism and meta-modelling. In R.-D. Kutsche and H. Weber, editors, FASE,

volume 2306 of LNCS, Springer, pages 174–188.

[55] K. Czarnecki and S. Helsen. 2006. Feature-based survey of model

transformation approaches. IBM Syst. J. 45, 3 (July 2006), 621-645.

[56] Kang Seok Lee and Zong Woo Geem. 2005. A new meta-heuristic algorithm

for continuous engineering optimization: harmony search theory and practice, Comput

Method Appl M, 194(36-38), 3902-3933.

 - 202 -

[57] Karim Dhambri, Houari Sahraoui, and Pierre Poulin. 2008. Visual Detection of

Design Anomalies. In Proceedings of the 2008 12th European Conference on

Software Maintenance and Reengineering (CSMR '08). IEEE Computer Society,

Washington, DC, USA, 279-283.

[58] Karin Erni and Claus Lewerentz. 1996. Applying design-metrics to object-

oriented frameworks. In Proceedings of the 3rd International Symposium on Software

Metrics: From Measurement to Empirical Results (METRICS '96). IEEE Computer

Society, Washington, DC, USA, 64-.

[59] Karsai, Gabor and Narayanan, Anantha. 2006. On the correctness of model

transformations in the development of embedded systems. In Kordon, F., Sokolsky,

O., eds.: Monterey Workshop. Volume 4888 of LNCS., Springer.

[60] Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. 1999.

Optimizing for reduced code space using genetic algorithms. In Proceedings of the

ACM SIGPLAN 1999 workshop on Languages, compilers, and tools for embedded

systems (LCTES '99). ACM, New York, NY, USA, 1-9.

[61] Keith H. Bennett and Václav T. Rajlich. 2000. Software maintenance and

evolution: a roadmap. In Proceedings of the Conference on The Future of Software

Engineering (ICSE '00). ACM, New York, NY, USA, 73-87.

[62] Kiczales, Gregor; John Lamping, Anurag Mendhekar, Chris Maeda, Cristina

Lopes, Jean-Marc Loingtier, and John Irwin. 1997. Aspect-Oriented Programming. In

proceedings of the European Conference on Object-Oriented Programming, vol.1241.

pp. 220–242.

[63] Language for Model Transformations. 2006. Journal of Software and System

Modeling, pp 261--288.

[64] Maher Lamari. 2007. Towards an automated test generation for the verification

of model transformations. In Proceedings of the 2007 ACM symposium on Applied

computing (SAC '07). ACM, New York, NY, USA, 998-1005.

[65] Manuel Wimmer, Michael Strommer, Horst Kargl, and Gerhard Kramler.

2007. Towards Model Transformation Generation By-Example. In Proceedings of the

 - 203 -

40th Annual Hawaii International Conference on System Sciences (HICSS '07). IEEE

Computer Society, Washington, DC, USA, 285b-.

[66] Marcos Didonet Del Fabro and Patrick Valduriez. 2009. Towards the efficient

development of model transformations using model weaving and matching

transformations. Softw. Syst. Model. 8(3), 305–324.

[67] Marcos Didonet Del Fabro, Jean Bezivin, Frederic Jouault, Erwan Breton, and

Guillaume Gueltas. 2005. AMW: A generic Model Weaver. In Int. Conf. on Software

Engineering Research and Practice (SERP05).

[68] Marcus Alanen and Ivan Porres. 2003. Difference and Union of Models. In

International conference on the unified modeling language UML03, San Francisco CA

, ETATS-UNIS , vol. 2863, pp. 2-17.

[69] Mark Harman and John A. Clark. 2004. Metrics are fitness functions too. In

IEEE METRICS. IEEE Computer Society, pp. 58–69.

[70] Mark Harman and Laurence Tratt. 2007. Pareto optimal search based

refactoring at the design level. In Proceedings of the 9th annual conference on Genetic

and evolutionary computation (GECCO '07). ACM, New York, NY, USA, 1106-1113.

[71] Mark Harman. 2001. Search-based software engineering, Information &

Software Technology, Vol. 43, No. 14, pp. 833-839.

[72] Mark Harman. 2007 The Current State and Future of Search Based Software

Engineering, In Proceedings of the 29th International Conference on Software

Engineering (ICSE 2007), 20-26 May, Minneapolis, USA.

[73] Mark O'Keeffe and Mel Ó Cinnéide. 2008. Search-based refactoring: an

empirical study. Journal of Software Maintenance, vol. 20, no. 5, pp. 345–364.

[74] Marouane Kessentini, Arbi Bouchoucha, Houari Sahraoui and Mounir

Boukadoum. 2010. Example-based Sequence Diagram to Colored Petri Nets

Transformation Using Heurisitc Search. In Proc. of Modelling Foundations and

Applications ECMFA 2010, Volume 6138, Springer, Pages 156-172, 2010.

[75] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. 2008. Model

Transformation as an Optimization Problem. In Proceedings of the 11th international

conference on Model Driven Engineering Languages and Systems (MoDELS '08),

 - 204 -

Krzysztof Czarnecki, Ileana Ober, Jean-Michel Bruel, Axel Uhl, and Markus (Eds.).

Springer-Verlag, Berlin, Heidelberg, 159-173.

[76] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. 2009.

Transformation de modèle par l’exemple: approche par métaheuritique. Actes du 15e

conférence francophone sur les Langages et Modèles Objets, mars 2009. éditions

Cépadués.

[77] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. 2010.

Testing Sequence Diagram to Colored Petri Nets Transformation: An Immune System

Metaphor. In Proceedings of the 20th Annual International Conference on Computer

Science and Software Engineering (CASCON2010).

[78] Marouane Kessentini, Houari Sahraoui, and Mounir Boukadoum. 2010.

Example-based Model Transformation Testing, In Automated Software Engineering

Journal (Accepted. To appear)

[79] Marouane Kessentini, Houari Sahraoui, and Omar Ben Omar. 2010. Search-

based Model Transformation by Example. 2010. In SoSym Journal, Special Issue of

Models08 (To appear).

[80] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Manuel

Wimmer. 2011. Design Defects Detection Rules Generation : A Music Metaphor, 15th

IEEE European Conference on Software Maintenance and Reengineering CSMR11.

[81] Marouane Kessentini, Houari Sahraoui, Mounir Boukadoum, and Manuel

Wimmer. 2011. Design Defects Detection by Example. 14th IEEE International

Conference on Fundamental Approaches to Software Engineering FASE 2011.

[82] Marouane Kessentini, Stephane Vaucher, and Houari Sahraoui. 2010.

Deviance from perfection is a better criterion than closeness to evil when identifying

risky code. In Proceedings of the IEEE/ACM international conference on Automated

software engineering (ASE '10). ACM, New York, NY, USA, 113-122.

[83] Martin Fowler. 1999. Refactoring: Improving the Design of Existing

Programs. Addison-Wesley Book

[84] Martin Fowler. 1999. Refactoring: Improving the Design of Existing

Programs. Addison-Wesley Book

 - 205 -

[85] Marwa Shousha, Lionel Briand, and Yvan Labiche. 2008. A UML/SPT Model

Analysis Methodology for Concurrent Systems Based on Genetic Algorithms. In

Proceedings of the 11th international conference on Model Driven Engineering

Languages and Systems (MoDELS '08), Krzysztof Czarnecki, Ileana Ober, Jean-

Michel Bruel, Axel Uhl, and Markus V\&\#246;lter (Eds.). Springer-Verlag, Berlin,

Heidelberg, 475-489.

[86] Massimo Baleani and Alberto Ferrari and Leonardo Mangeruca and Alberto L.

Sangiovanni-Vincentelli and Ulrich Freund and Erhard Schlenker and Hans-Jörg

Wolff. 2005. Correct-by-construction transformations across design environments for

model-based embedded software development. Design. Automation and Test in

Europe Conference and Exhibition 2, pp 1040-1049.

[87] Muller Pierre-Alain, Franck Fleurey, and Jean-Marc Jézéquel. 2005. Weaving

Executability into Object-Oriented Meta-Languages, in S. Kent L. Briand, ed.,

'Proceedings of MODELS/UML'2005' , Springer, Montego Bay, Jamaica , pp. 264-

278 .

[88] Naouel Moha, Yann-Gael Guéneuc, Laurence Duchien, and Anne-F. Le

Meur.2010 DECOR: A method for the specification and detection of code and design

smells,” Transactions on Software Engineering Journal (TSE), 2009, 20-36.

[89] Norman E. Fenton and Shari Lawrence Pfleeger. 1998. Software Metrics: A

Rigorous and Practical Approach (2nd ed.). PWS Pub. Co., Boston, MA, USA.

[90] Ó Cinnéide, Mel and Paddy Nixon. 2001. Automated software evolution

towards design patterns. In Proceedings of the 4th International Workshop on

Principles of Software Evolution (IWPSE '01). ACM, New York, NY, USA, 162-165.

[91] OMG. MOF 2.0 Query/Views/Transformation RFP, 2002. OMG document

ad/2002-04-10.

[92] OMG. MOF QVT Final Adopted Specification, 2005. OMG Adopted

Specification ptc/05

[93] Óscar R. Ribeiro , João M. Fern. 2006. Some Rules to Transform Sequence

Diagrams into Coloured Petri Nets, 7th Workshop and Tutorial on Practical Use of

 - 206 -

Coloured Petri Nets and the CPN Tools CPN 2006, Jensen K (ed.), Aarhus, Denmark,

pp. 237-56.

[94] P Paolo Bottoni and Francesco Parisi-Presicce and Gabriele Taentzer. 2002.

“Coordinated distributed diagram transformation for software evolution,” Electronic

Notes in Theoretical Computer Science, vol. 72, no. 4.

[95] Paul Baker, Mark Harman, Kathleen Steinhofel, and Alexandros Skaliotis.

2006. Search Based Approaches to Component Selection and Prioritization for the

Next Release Problem. In Proceedings of the 22nd IEEE International Conference on

Software Maintenance (ICSM '06). IEEE Computer Society, Washington, DC, USA,

176-185.

[96] Petra Brosch, Philip Langer, Martina Seidl, Konrad Wieland, Manuel

Wimmer, Gerti Kappel, Werner Retschitzegger, Wieland Schwinger. 2009. An

Example Is Worth a Thousand Words: Composite Operation Modeling By-Example.

In Proceedings of the 12th International Conference on Model Driven Engineering

Languages and Systems (MoDELS'09)", Springer, LNCS 5795 MoDELS 2009, pp

271-285.

[97] Philip Langer, Manuel Wimmer, and Gerti Kappel. 2010. Model-to-model

transformations by demonstration. In Proceedings of the Third international

conference on Theory and practice of model transformations (ICMT'10), Laurence

Tratt and Martin Gogolla (Eds.). Springer-Verlag, Berlin, Heidelberg, 153-167.

[98] Prahladavaradan Sampath, A. C. Rajeev, S. Ramesh, and K. C. Shashidhar.

2007. Testing Model-Processing Tools for Embedded Systems. In Proceedings of the

13th IEEE Real Time and Embedded Technology and Applications Symposium (RTAS

'07). IEEE Computer Society, Washington, DC, USA, 203-214.

[99] Radu Marinescu. 2004. Detection strategies: Metrics-based rules for detecting

design flaws, in Proceedings of the International Conference on Software

Maintenance, pp. 350–359.

[100] Raphaël Marvie.2004. A Transformation Composition Framework for Model

Driven Engineering. Technical Report LIFL-2004-10, LIFL.

 - 207 -

[101] Ravi Krishnamurthy, Stephen P. Morgan, and Mosh\&\#233; M. Zloof. 1983.

Query-By-Example: Operations on Piecewise Continuous Data (Extended Abstract).

In Proceedings of the 9th International Conference on Very Large Data Bases (VLDB

'83), Mario Schkolnick and Costantino Thanos (Eds.). Morgan Kaufmann Publishers

Inc., San Francisco, CA, USA, 305-308.

[102] Reiko Heckel. 1995. “Algebraic graph transformations with application

conditions,” M.S. thesis, TU Berlin.

[103] S. Kirkpatrick, C. D. Gelatt, Jr., and M. P. Vecchi. 1987. Optimization by

simulated annealing. In Readings in computer vision: issues, problems, principles, and

paradigms, Martin A. Fischler and Oscar Firschein (Eds.). Morgan Kaufmann

Publishers Inc., San Francisco, CA, USA 606-615.

[104] Salah Bouktif, Houari Sahraoui, and Giuliano Antoniol. 2006. Simulated

annealing for improving software quality prediction. In Proceedings of the 8th annual

conference on Genetic and evolutionary computation (GECCO '06). ACM, New York,

NY, USA, 1893-1900.

[105] Samar Abdi and Daniel Gajski. 2006. Verification of system level model

transformations. Int. J. Parallel Program. 34, 1, 29-59.

[106] Samir Khuller and Balaji Raghavachari. 1996. Graph and network

algorithms. ACM Comput. Surv. 28, 1 (March 1996), 43-45.

[107] Sanjay Rawat and Ashutosh Saxena. 2009. Danger theory based SYN flood

attack detection in autonomic network. In Proceedings of the 2nd international

conference on Security of information and networks (SIN '09). ACM, New York, NY,

USA, 213-218.

[108] Sendall, S., Kozaczynski, W. 2003. Model transformation – The heart and soul

of model-driven software development. IEEE Software, Special Issue on Model

Driven Software Development, vol. 20, no. 5, pp. 42-45.

[109] Stephan Lechner and Michael Schrefl. 2003. Defining web schema

transformers by example. In Proceedings of DEXA'03 conference. Springer, pp 46-56.

[110] Stephanie Forrest, Alan S. Perelson, Lawrence Allen, and Rajesh Cherukuri.

1994. Self-Nonself Discrimination in a Computer. In Proceedings of the 1994 IEEE

 - 208 -

Symposium on Security and Privacy (SP '94). IEEE Computer Society, Washington,

DC, USA, 202-.

[111] Thierry Millan, Laurent Sabatier, Thanh-Thanh Le Thi, Pierre Bazex, and

Christian Percebois. 2009. An OCL extension for checking and transforming UML

models. In Proceedings of the 8th WSEAS International Conference on Software

engineering, parallel and distributed systems (SEPADS'09), World Scientific and

Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 144-

149.

[112] Thierry Millan, Laurent Sabatier, Thanh-Thanh Le Thi, Pierre Bazex, and

Christian Percebois. 2009. An OCL extension for checking and transforming UML

models. In Proceedings of the 8th WSEAS International Conference on Software

engineering, parallel and distributed systems (SEPADS'09), World Scientific and

Engineering Academy and Society (WSEAS), Stevens Point, Wisconsin, USA, 144-

149.

[113] Tom Mens and Pieter Van Gorp. 2006. A Taxonomy of Model

Transformation. Electron. Notes Theor. Comput. Sci. 152 (March 2006), 125-142.

[114] Tom Mens and Tom Tourwe. 2004. A Survey of Software Refactoring. IEEE

Trans. Softw. Eng. 30, 2, 126-139.

[115] Tom Mens, Serge Demeyer, and Dirk Janssens. 2002. Formalising Behaviour

Preserving Program Transformations. In Proceedings of the First International

Conference on Graph Transformation (ICGT '02), Andrea Corradini, Hartmut Ehrig,

Hans-Jerg Kreowski, and Grzegorz Rozenberg (Eds.). Springer-Verlag, London, UK,

286-301.

[116] Van Eetvelde, Niels and Janssens, Dirk. 2003. A hierarchical program

representation for refactoring. In Proc. of UniGra’03 Workshop.

[117] Varro Daniel. 2004. Automated Formal Verification of Visual Modeling

Languages by Model Checking. Journal of Software and Systems Modeling, col. 3(2),

pp. 85-113.

 - 209 -

[118] Varró, Dániel; Varró, Gergely & Pataricza, András. 2002. Designing the

automatic transformation of visual languages. Science of Computer Programming,

44(2):205–227.

[119] William F. Opdyke. 1992. Refactoring: A Program Restructuring Aid in

Designing Object-Oriented Application Frameworks, Ph.D. thesis, University of

Illinois at Urbana-Champaign.

[120] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and

Thomas J. Mowbray. 1998. Antipatterns: Refactoring Software, Architectures, and

Projects in Crisis. John Wiley & Sons, Inc., New York, NY, USA.

[121] William J. Brown, Raphael C. Malveau, Hays W. McCormick, III, and

Thomas J. Mowbray. 1998. Antipatterns: Refactoring Software, Architectures, and

Projects in Crisis. John Wiley & Sons, Inc., New York, NY, USA.

[122] Xactium. Xmf-mosaic. http://xactium.com.

[123] Xavier Dolques, Marianne Huchard, Clémentine Nebut, and Philippe Reitz.

2010. Learning transformation rules from transformation examples : An approach

based on relational concept analysis. Proceedings of the IEEE EDOC 2010 workshops

and short papers.

[124] Yu Sun, Jules White, and Jeff Gray. 2009. Model Transformation by

Demonstration. In Proceedings of the 12th International Conference on Model Driven

Engineering Languages and Systems (MODELS '09). Springer-Verlag, Berlin,

Heidelberg, 712-726.

[125] Yuehua Lin , Jing Zhang , Jeff Gray. 2005. A Testing Framework for Model

Transformations. In Proceedings of Model-Driven Software Development - Research

and Practice in Software Engineering.. Springer, pp 219--236.

