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Résumé 

La modélisation géométrique est devenue un domaine de recherche et de développement 

central à un vaste champ d'applications. Avec la forte croissance de la puissance de calcul des 

ordinateurs, la simulation par ordinateur a commencé à jouer un rôle important dans plusieurs 

domaines de recherche reliés à la modélisation géométrique, de l'ingénierie traditionnelle à la 

simulation de chirurgie virtuelle. 

À cause de l'usage de représentations de précision finie, l'absence de robustesse numérique 

en calcul scientifique est un phénomène bien connu et répandu. De nombreuses approches 

différentes ont été proposées pour résoudre ce problème. Les nombres en virgule flottante (IEEE 

754/854) [PH98, OveOl] sont les substituts standards pour les nombres réels en calculs infor­

matisés, et la plupart des logiciels de modélisation de solides, incluant les systèmes de concep­

tion assistée par ordinateur (CAO), sont basés sur des méthodes de modélisation géométrique 

qui fonctionnent en utilisant l'arithmétique en virgule flottante. Mais cette dernière, appliquée 

naïvement, peut causer l'échec d'axiomes géométriques. L'analyse inverse d'erreur (backward 

error analysis), maintenant standard, est un outil très utile qui peut nous aider à surmonter ce 

problème: elle nous permet de distinguer les algorithmes qui, en presence d'incertitudes dans 

les données, ont produit des résultats aussi bien que nous pouvions espérer. 

L'impact de l'absence de robustesse daris le domaine de la modélisation géométrique a été 

ouvertement reconnu et il y a eu beaucoup d'attention pour améliorer la fiabilité. D'un autre 

côté, il existe plusieurs 'représentations en modélisation géométrique et, même si chacune par­

vient à bien modéliser certaines propriétés, aucune d'elles n'est suffisamment générale pour sa­

tisfaire tous les prérequis qui pourraient être souhaitables d'une représentation. Ainsi, pour des 

problèmes géométriques différents, l'absence de robustesse tend à se manifester de différentes 

façons et nous devons chercher la méthode appropriée pour chaque problème : une solution 

universelle n'existe pas. 
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Le but de cette thèse est d'étudier le calcul informatisé fiable en modélisation géométrique. 

En particulier, nous abordons trois problèmes reliés à la robustesse en modélisation géométrique: 

1. L'arithmétique en virgule flottante pour des problèmes de géométrie informatique avec 

des données incertaines (Floating-point arithmetic for computational-geometry problems 

with uncertain data). 

Dans ce travail, trois exemples (résolution de systèmes d'équations linéaires, le problème 

de l'enveloppe convexe planaire et un problème d'objet extrudé en trois dimensions) sont 

présentés pour expliquer notre méthode pour accomplir l'analyse inverse d'erreur. Aussi, 

notre exposition illustre le fait que l'analyse inverse d'erreur ne prétend pas surmonter le 

problème de précision finie, et que des situations en géométrie informatique sont exacte­

ment parallèles à d'autres domaines informatiques. 

2. Jonction fiable de surfaces pour des modèles combinant maillages et surfaces paramétriques 

(Reliable joining of surfaces for combined mesh-surface models). 

L'opérateur de jonction est un important opérateur primitif pour les opérations booléennes. 

Notre motivation pour ce travail est de chercher un algorithme de jonction fiable pour 

les patches combinant maillages et surfaces paramétriques, prenant en considération un 

critère d'erreur sur la normale. Deux mesures d'erreur sont définies pour guider la procédure 

de jonction. En utilisant le théorème de l'extension de Whitney, la qualité de la jonction 

calculée peut être garantie. 

3. Robustesse d'opérations booléennes sur les modèles de surface de subdivision (Robustness 

of boolean operations on subdivision-surface models.) 

Les surfaces de subdivision sont de plus en plus fréquemment utilisées comme représentation 

de rechange, à la place des surfaces B-splines rationnelles non uniformes coupées (trim­

med NURBS), pour la modélisation géométrique dû à leurs avantages intrinsèques. En 

particulier, elles permettent d'éviter le problème difficile de faire correspondre les bor­

dures des patches coupées. Ce travail décrit un algorithme pour effectuer des opérations 

booléennes, basé sur l'usage des maillages limites, dans le cas où les objets en entrée 

sont définis en termes de maillages triangulaires et de subdivision de Loop. Ce travail se 

concentre sur la robustesse, incluant des bornes d'erreurs et des méthodes numériques 

pour la validation a posteriori de la forme topolo~ique. 

Mots-clés: 

calcul informatisé fiable, arithmétique en virgule flottante, robustesse, stabilité, analyse inverse 
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d'erreur, maillage de surfaces. jonction, opération booléenne, modèles d'interrogation de forme, 

erreur de vecteurs normaux, surfaces de subdivision. 



Abstract 

Geometric modeling has become a central area of research and development that involves di­

verse applications. In fact, because of greatly increased computer power, computer simulation 

has started playing an important role in many geometric-modeling related research domains, 

from tradition al engineering design to virtual surgery simulation. 

Due to the use of finite-precision representation, numerical nonrobustness in scientific com­

puting is a well-known and widespread phenomenon. Several different approaches have been 

proposed for this problem. Floating-point numbers (IEEE 754/854) [PH98, OveOl] are the 

standard substitute for real numbers in computations, and most solid modelers, inc1uding CAD 

(Computer Aided Design) systems, are based on geometric-modeling methods that operate us­

ing floating-point arithmetic. But naively applied floating-point arithmetic can cause axioms of 

geometry to fail. The now-standard backward error analysis is a very useful tool that can help to 

overcome this problem: it permits us to distinguish those algorithms which, given the presence 

of uncertainties in the data, have done as weIl as we can hope for. 

The impact of nonrobustness in the domain of geometric modeling has been widely ac­

knowledged, and much attention has been paid to improving reliability. On the other hand, 

many different geometric modeling representations exist, and although each succeeds in mod­

eling certain properties weIl, none of them is general enough to satisfy aIl the requirements that 

could be demanded of a representation. Therefore, for different geometric problems, nonro­

bustness tends to manifest itself in different ways, and we must seek an appropriate method for 

each problem: a universal solution does not exist. 

The goal of this thesis is to study reliable computation for geometric models. More specifi­

caIly, we will address three related robustness problems in geometric modeling: 

1. Floating-point arithmetic for computational-geometry problems with uncertain data. 

In this work three examples (solving linear equations, the planar convex-hull problem 

VI 
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and a three-dimensional extruded-objects problem) are presented to explain our method 

of performing backward error analysis. Also, our exposition illustrates the fact that back­

ward error analysis does not pretend to overcome the problem of finite precision, and that 

situations in computational geometry are exactly parallel to other computational areas. 

2. Reliable join ing of suifaces for combined mesh-suiface models. 

The joining operator is a very important primitive operator for Boolean operations. Our 

motivation for this work is to seek a reliable joining algorithm for combined mesh-surface 

patches, taking into account a normal error criterion. Two error measures are defined to 

guide the joining procedure. By using the Whitney extension theorem, the quality of the 

computed joining result can be guaranteed. 

3. Robustness of Boolean operations on subdivision-suiface models. 

Subdivision surfaces are more and more frequently used as an alternative representation, 

in place of trimmed-NURBS, for geometric modeling due to their intrinsic advantages. 

In particular, they permit us to avoid the difficulties in matching boundaries of trimmed 

patches. This work de scribes an algorithm to perform Boolean operations, based on the 

use of limit meshes, in the case when input objects are defined in terms of triangular 

meshes and Loop subdivision. The focus of the work is on robustness, inc1uding error 

bounds and numerical methods for the a posteriori validation of topological form of the 

produced result. 

Keywords: 

reliable computing, fioating-point arithmetic, robustness, stability, backward error analysis, sur­

face mesh, joining, Boolean operation, shape-interrogation models, normal-vector error, subdi­

vision surfaces. 
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Chapter 1 

Introduction 

With the greatly improved computational techniques and the powerful machines available, 

computer-aided methods have come to be involved in almost every aspect of life: 

"Physicists use computers to solve complicated equations modeling everything from the ex­

pansion of the universe to the microstructure of the atom, and to test their theories against 

experimental data. Chemists and biologists use computers to determine the molecular structure 

of proteins. Medical researchers use computers for imaging techniques and for the statisti­

cal analysis of experimental and clinical observations. Atmospheric scientists use numerical 

computing to process huge quantities of data and to solve equations to predict the weather. 

Electronics engineers design ever faster, smaller, and more reliable computers using numerical 

simulation of electronic circuits. Modern airplane and spacecraft design de pends heavily on 

computer modeling ... " [OveO 1] 

In fact, aU fields of science and engineering now rely heavily on numerical computation. But 

one question has inevitably to be asked: can we trust these numerical computational results? 

We do not want our surgery simulation software to turn out to be a source for medical accidents 

[FGG03]. The following example gives an idea of how bad things can get if not enough attention 

is given to verification of correctness. Figure 1.1 shows the result of an implemented algorithm 

for a simple planar convex hull problem1. The point on' the lower left corner which clearly 

belongs to the convex hull has been 'ignored, and left outside of the resulting hull. The cause 

of this failure is the naive use of tloating point arithmetic on a two-dimensional orientation 

predicate. 

lThe convex hull of a finite point set S in the plane is the sma]lest polygon containing the set and such that the 
vertices of the polygon are points of S [KS86]. 

1 

) 



CHAPTER 1. INTRODUCTION 2 

_'1 __________________ _ 

Figure 1.1: An example of failed convex-hull algorithm due to the na ive use of floating-point 
arithmetic [KMP+04]. 

Fortunately, numerical non-robustness in scientific computing is a widely recognized phe­

nomenon. In particular, the goal of reliable computation has attracted many researchers in the 

area of geometric modeling. 

Two main factors, amongst others, explain the origins of the errors that contribute to nonro­

bustness: the use of floating-point arithmetic and uncertainty in the input data. Often, designers 

of geometric algorithms avoid the problem of computational error by assuming the real random 

access machine (RAM) as the model of computation [PS85]. The real RAM allows real num­

bers to be represented exactly and provides exact arithmetic operations. Unfortunately, often 

floating-point arithmetic is substituted for exact real arithmetic and special cases are ignored 

[For93]. Naively applied floating-point arithmetic can cause disastrous results, as illustrated in 

the previous example (Figure 1.1). 

Backward error analysis has become a standard error-analysis method. In the presence of 

uncertainties in the input data, which is the usual case, it can help to distinguish algorithms 

that overcome the error problem ta whatever extent it is possible ta do sa. In such situations 

expensive methods, su ch as exact arithmetic, are not necessary, provided a stable algorithm has 

been applied. The application of the backward error analysis will pe presented in Ch. 3, with 

detailed examples provided. 

For different geometric problems, non-robustness manifests itself in different manners. The 

phenomena include random system crashes, inconsistent states (e.g. the geometric data incon-

sistent with the topological data), models that contain cracks, holes and overlaps, etc. [YapOl]. 

This, in tum, means that we have to seek appropriate methods for each problem: a universal 

solution does not exist. The following example (Fig. 1.2) is a typical "dirty" geometric model: 
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an exterior-mirror model with small cracks (left) , with the zoom-in on the problematic area 

(middle) and the repaired result (right) [SWCOO]. 

original model zoom-in of the problem area repaired result 

Figure 1.2: An example of a "dirty" geometric model [SWCOO]. 

Depending on the underlying geometric representation used for describing the model, dif­

ferent techniques can be used to eliminate the error in the result' each with its own advantages 

and weaknesses. 

NURBS (details in Ch. 2) have bec orne a de facto industry standard for the representation, 

design, and data exchange of geometric information processed by computer. Trimmed-NURBS 

(details in Ch. 2) offer greater ftexibility than tradition al NURBS for the design of very sophis­

ticated objects, and they have bec orne a very powerful tool used in most commercial model­

ing systems. The errors illustrated in Fig. 1.2 may come from inconsistent information, e.g. 

trimmed-curve mismatch problems. On the other hand, in most cases, for the purpose of ren­

dering, the trimmed patches need to be transformed into a polygonal representation. The error, 

at this stage, may come from the approximation procedure, and a joining (sewing/merging) op­

eration can be used to fix the problem. But even in the case that maximum auxiliary information 

is available, Le. even if we have both trimmed-NURBS and the (triangular) mesh information, 

a simple joining operation may not produce a satisfying result. Discussion of this problem will 

be presented in Ch. 4, where an algorithm, which produces a result satisfying two error criteria 

by using the Whitney extension theorem, will be presented. 

NURBS information is not always available in practical applications, e.g. finite-element 

analysis. Further, a simple polygonal representation (polygon soup) itself is often insufficient 

for the manipulation of complex geometric models. Therefore, subdivision-surface models (de­

tails in Ch. 2) bec orne a convenient representation. In fact, with the increasing popularity of 

subdivision-surface models, more and more modelers have begun to use them as an altema-
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tive to trimmed-NURBS, due to their simplicity, generality and efficiency for smooth surface 

construction [BK04]. Subdivision-surface models do not have the trimming difficulties and 

the error-prone conversion procedure (from trimmed-NURBS to polygonal meshes) associated 

with NURBS. Complex models based on subdivision surfaces can be formed using Boolean 

operations. The related robustness issues of such Boolean operations on subdivision-surface 

models is the next problem we considered (Ch. 5). 

The remainder of the thesis is organized as follows. A short overview of the research area 

of geometric modeling is given in Ch. 2. It contains two parts: reliable computation (sources 

of error and error analysis methods), and geometric modelîng, which presents the geometric 

representations, geometric operations and the related robustness issues. The main part of the 

thesis (Ch. 3, 4, 5) is composed of three accepted (to appear), published or submitted arti­

cles, each of which forms an individual chapter, with a preceding short summary. Chapter 3 

describes our work on floating-point arithmetic for computational-geometry problems with un­

certain data. Our work on reliable joining of surfaces for combined mesh-surface models is 

given in Chapter 4. Chapter 5 discusses the problem of robustness of Boolean operations on 

subdivision-surface models. We conclude in Chapter 6, where we also mention promising pos­

sibilities for future work. 



Chapter 2 

Reliable computation and geometric 

modeling 

Problems of robustness are a major cause for concem in the implementation of algorithms relat­

ing to geometry. Most geometric algorithms are a mix of numerical and combinatorial compu­

tations, and the approximate nature of the former often leads to inconsistencies that hinder the 

ability to construct a satisfactory result [Hof89]. In this chapter an overview of the problems of 

reliable computation for geometric models will be given, and the related geometric modeling 

topics, including geometric representations and Boolean operations, will also be presented. 

2.1 Finite precision representation and reliable computation 

Numerical nonrobustness in scientific computing is a well-known and widespread phenomenon. 

The root cause is the use of finite-precision numbers, e.g. floating-point representation, to rep­

resent real numbers, with precision usually fixed by the machine word size Ce.g. 24 bits). A 

number of approaches to the finite-precision problem have been advocated in academia. Hoff­

mann [HofOl] categorizes these into three strategies: exact arithmetic, symbolic reasoning and 

interval computation. Exact arithmetic is very expensive, and performance can be badly af­

fected if it is used exclusively, so filtered exact arithmetic is usually preferred [SD07]. Another 

proposed method related to exact arithmetic is the exact geometric computation [Yap06]. Inter­

val arithmetic [AH83, Mo066, MB79, Sch99, ELOO, DS88] treats a rounded real number as an 

interval and the calculations are performed on this interval - but the shortcoming of interval 

5 



CHAPTER 2. RELIABLE COMPUTATION AND GEOMETRIC MODELING 6 

arithmetic is that it gives overly pessimistic results. Symbolic manipulation is a possible way to 

avoid rounding and truncation errors. Thus using software such as Mathematica or Maple may 

be appropriate, but in many application cases, this might not be the best choice for efficiency 

reasons. Another approach proposed by Yap [YapOl] is exact geometric computation, which 

again uses approximate arithmetic, but with the level of precision guided by geometric exact­

ness. A fifth possibility [HS05, ASZ07] is to use ordinary floating-point arithmetic, and to try 

to associate the error with the input data. This is appropriate if there is uncertainty in the input. 

It is the last mentioned approach that is studied in this work. 

2.1.1 Floating-point number system 

Floating-point numbers (IEEE 754/854) are the standard substitute for real numbers in scientific 

computation [OveOl]. Current state-of-the-art CAD (Computer Aided Design) systems used 

to create and interrogate curved objects are based on geometric solid modeling methods that 

typically operate using floating-point arithmetic [PM02, PH98, g-L]. 

A floating-point number system F c lR is a subset of the real numbers whose elements have 

. the form [Hig96, pAO]: 

y = ±m x (Je-t. 

The system F is characterized by four integer parameters 

• the base (J (sometimes called the radix), 

• the precision t, and 

• the exponent range emin :::; e :::; e max . 

The man tissa m is an integer satisfying 0 :::; m :::; (Jt - 1. To ensure a unique representation for 

each y E F it is assumed that m 2:: (Jt-1 if Y =f 0, so that the system is normalized. The range 

of the nonzero floating-point numbers in F is given by (Je min -1 :::; Iyl :::; (Jemax (1 - (J-t). 

The IEEE standard 754/854 for floating-point arithmetic requires that the results of +, -, 
" j, and" are exactly rounded, i.e. the result is the exact result according to the chosen 

rounding mode. It also specifies floating-point computation in single, single-extended, double, 

and double-extended precisions. Single precision is specified for a 32 bit word, double precision 

for two consecutive 32 bit words. In single precision the mantissa length is 24 (including a 

hidden leading 1 bit) and the exponent range is [-126,127]. Double precision has mantissa 

length 53 and exponent range [-1022,1023] [Sch99, FGG03]. 
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Floating-point arithmetic has numerous engineering advantages: it is well-supported by 

programming languages, it is portable, it has useful features such as automatic scaling, and it 

has been extensively optimized in current computer hardware [For95]. 

Since an infinite set of numbers is represented by only finitely many floating-point numbers, 

truncationlrounding techniques have to be used for real numerical values to fit the representation 

format. Consequently, floating-point computation is, by nature, inexact, and concepts such as 

representation range, precision and round-off error then arise. Naively applied ftoating-point 

arithmetic can invalidate axioms of geometry [Sch99]. The paper [00191] and the book by 

Overton [OveOl] are excellent references for this subject. 

2.1.2 Sources of errors 

There are three main sources of errors in numerical computation: rounding and truncation due 

to the finite-precision representation in computer, and data uncertainty [Hig96]. In practice, the 

input data is often not exact to start with for many applications [Hof89]. Uncertainty may arise 

in several ways: from error in measuring physical quantities, from errors in storing the data on 

the computer (truncation errors), or, if the data is itself the solution to another problem, it may 

be the result of errors in an earlier computation [Hig96]. Another source, additional to the three 

mentioned, is approximation error, which occurs often in the domain of geometric modeling 

for practical reasons. One example for this kind of error is the use of low-degree curves to 

approximate high-degree curves. 

2.1.3 Error analysis 

The unpredictability of ftoating-point code across architectural platforms in the 1970's and 

1980's was resolved through a general adoption of the IEEE standard 754-1985, later enlarged 

as IEEE standard 854-1987 [OveOl]. But the se standards only make program behavior pre­

dictable and consistent across platforms; the errors are still present. Ad hoc methods for fixing 

these errors (such as treating numbers smaller than sorne positive E as zero) cannot guarantee 

their elimination [Yap04]. And since geometric operations usually require extensive numerical 

calculations, the propagation of the errors is of great concem and profoundly influences the 

accuracy and validity of the geometric operations [Hof89, MP07]. Therefore, error analysis 

became very necessary for reliable computation. 

Backward error analysis was first proposed by Wilkinson [Wi160] to bound the errors re-
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sulting from the fundamental floating-point arithmetic operations [PM02], especially addition 

of quantities of opposite sign and approximately equal magnitude: the computed result can be 

completely wrong due to a simple cancellation (see examples in the paper that follows in Ch. 3). 

It is often possible to associate the error in a calculation with either the problem or the solution, 

and there may be sorne choice about how much error is associâted with each of these. Thus, in 

Fig. 2.1, aIl of the error could be viewed as forward error, with .6.x = 0, or (as illustrated in 

the figure), part of the error can be associated with the problem. The process of bounding this 

backward error of a computed solution is called backward error analysis, and its motivation is 

twofold. First, it interprets rounding errors as being equivalent to perturbations in the data. The 

input data frequently contains uncertainties due to previous computations or errors committed 

in storing numbers on the computer, as previously mentioned. If the backward error is no larger 

than these uncertainties then the computed solution can hardly be criticized - it is as good as 

we can hope for. The second attraction is this. Rather than viewing aH of the error as forward 

error, as mentioned just above, the backward error analysis permits to bound or estimate the 

influence of the total error by means of perturbation theory [DB08]. 

Figure 2.1: Backwardlforward error analysis, solid line = exact, dashed line = computed. 

2.2 Geometrie modeling 

Geometric modeling has rapidly bec orne a central area of research and development that in­

volves diverse applications. It is of critical importance in the traditional fields of engineering, 

general product design, and computer-aided manufacturing. It has also proved to be indispens­

able in a variety of modern industries, inc1uding computer vision, robotics, medical imaging, 

visualization, etc. [Sar03]. 
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2.2.1 Historieal summary 

Geometric modeling traditionally identifies a body of techniques that can model certain classes 

of piecewise parametric surfaces, subject to particular conditions of shape and smoothness 

[G097]. Its beginnings can be traced to the 1950s, and from the se initial activities emerged 

four main streams of work that evolved largely independently for sorne two or three decades. 

The computer graphies stream focused on rendering and interaction. The wireframe stream le ad 

to the commercial CAD systems ofthe 1970s and 80s. Thefree-form curve and surface stream 

found important applications in computer-aided design and the manufacture of car bodies, air­

craft fuselages and in other tasks in the automotive. and aerospace industries. SoUd modeling 

is distinguished by the use of hopefully unambiguous representations for complete solids. A 

related fifth stream focuses on the theoretical aspects of design and analysis of geometric al­

gorithms, and has bec orne known as computational geometry [Req99]. Since the late 1990s, 

however, a tendency of convergence of aIl these different aspects of geometric computation has 

bec orne evident, and new systems use ideas from aIl of these fields [Req99]. 

2.2.2 Geometrie representations 

The development of complex surface representation schemes has been one of the core fields of 

computer graphics and geometric modeling. The different representations currently available 

have succeeded in modeling certain properties of surfaces weIl, but none of them is general 

enough to satisfy aIl the requirements that could be demanded of a representation [HGOO]. Two 

major representation schema are often used: constructive soUd geometry (CSG) and boundary 

representation (B-rep). In CSG a sol id is represented as a set-theoretic Boolean representation 

of primitive solid objects, so that both the surface and the interior of an object are defined 

implicitly. In B-rep the solid surface is represented explicitly as a quilt of vertices, edges, and 

faces [Hof89, G097]. 

Most geometric modeling systems use B-rep. The different B-rep schemes appearing in 

the literature can be divided into two major families. One family restricts the solid surfaces 

to oriented manifolds. The second allows oriented nonmanifolds. Conversion from CSG to 

B-rep is usually available [G097]. Throughout this work, we focus on the B-rep: three such 

representations will be presented in detail. 
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Parame tric representations 

Non-Unifonn Rational B-Splines (NURBS) have bec orne a de facto industry standard for the 

representation, design, and data exchange of geometric infonnation processed by computer. 

AIso, many international standards, e.g. STEP Part 42 [Ind97], recognize NURBS as powerful 

tools for geometric design [PT97]. Their excellent mathematical and algorithmic properties, 

combined with successful industrial applications, have contributed to the enonnous popularity 

of NURBS. NURBS also play an important role in the CAD/CAM (Computer-Aided Manufac­

turing)/CAE (Computer-Aided Engineering) world . 

A NURBS surface of degree p in the u direction and degree q in the v direction is a bivariate 

vector-valued piecewise rational function of the fonn [PT97] 

n m 

S(u,v) = LLRi,j(U,V)Pi,j O:S u,v:S 1, (2.1) 
i=ü j=ü 

where the Ri,j (u, v) are the piecewise rational basis functions and n = p + 1, m = q + 1, 

R .. ( ) _ Ni,p(u)Nj,q(V)Wi,j 
t J U, V - ",n ",m () () . 
, L..k=ü L..l=ü Nk,p u Nl,q v Wk,l 

(2.2) 

The {P i,j} fonn a bidirectional control net, the {Wi,j} are the weights, and the {Ni,p (u)} and 

{Nj,q( v)} are the usual nonrational B-spline basis functions. 

NURBS provide a convenient way to describe surfaces of almost any shape. However, the 

most useful NURBS paradigm is constrained by the requirement that the surfaces are defined 

over rectangular regions and this leads to topologically rectangular patches. A generalization 

for an arbitrary topology can be obtained by collapsing sorne of the control mesh edges, but this 

creates surfaces with ambiguous surface nonnals and degenerate parametrization [CMOO]. 

Trimming operations are essential for modeling non-regular B-rep objects. A trimmed­

surface data type in the description of free-fonn objects was therefore introduced to provide 

greater power and ftexibility to the NURBS representation. A trimmed surface is an ordinary 

tensor product surface that has a restricted parameter domain, thus overcoming the limitation 

of tensor product surfaces defined over rectangular regions, and allowing for arbitrary domains 

[CMOO]. They can give a complete representation of the boundary of a geometric model by 

means of union of surfaces restricted to suitable domains. 

A trimmed NURBS surface is defined by a tensor product NURBS surface and a set of 

trimming curves in the parametric space of the surface [CMOO]. The additional trimming pro-
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cess, using trimming curves, permits the removal of unneeded areas of the traditional NURBS 

surface. Combining thousands or even tens of thousands of trimmed surfaces makes it possible 

to design very sophisticated objects [KBK02]. 

Figure 2.2 gives an example of two trimmed patches joining together to form a single sur­

face. The parametric domain D is delimited by a collection of trimming curves p, and the 

restriction of the mapping F to D defines the trimmed patch in ]R3. In addition, explicit 

boundary information, provided by a function b(t) taking values in ]R3, may also be present 

[SWCOO, Spa98, Ind97, KBK02]. 

Figure 2.2: Two adjoining trimmed patches in a surface model [ASZ07]. 

Trimmed NURBS surfaces have been adopted widely by the CAD/CAM industry, and in­

cluded in graphics standards. They are provided as primitives in several geometric modeling 

software systems, and the rendering of trimmed NURBS surfaces is supported by international 

standards, such as STEP Part 42 [Ind97] and PHIGS+ (Programmer's Hierarchi~al Interactive 

Graphics System), as weIl as graphics programming interfaces, such as OpenGL and Direct3D 

[CMOO]. 

Mesh models 

NURBS have the advantage of being able to describe almost any shape conveniently. But even 

today's advanced graphics hardware is unable to directly render trimmed NURBS models: they 

need to be transformed into a renderable (e.g. polygonal) representation [BGK04, KBK02]. 

Similarly, for many applications, piecewise linear approximations of smooth surfaces within a 

given tolerance are generated. Examples of such applications include finite-element analysis, 

stereolithography, and visualization of geometric models [SBOO]. Many methods have been 
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proposed in the literature for this triangulation (approximation) procedure [SBOO, Sug02]. 

A mesh is a discretization of a geometric domain into sm ail simple shapes, such as triangles 

or quadrilaterals in two dimensions and tetrahedra or hexahedra in three dimensions [BPOO]. 

Depending on the point of view, meshes can be classified in different ways. Based on topo­

logical properties, meshes can be divided into structured meshes 1, unstructured meshes2 and 

hybrid meshes3 [GKSS02, BPOO]. Based on the mesh element type, meshes can be categorized 

into tri/tetrahedral meshes, quadlhexahedra meshes, and others4 [Owe98]. 

For this Ph.D. work, we focused on triangular-surface meshes, based on the fact that we 

mainly work on B-rep models, and that triangles are the primitive representation elements for 

rendering. One of the most popular triangle and tetrahedral meshing techniques is based on the 

use of the Delaunay criterion, namely the Delaunay triangulation method. 

Definition 

Let S be a set of points in the plane. A triangulation T is a Delaunay triangulation of S if for 

each edge e of T there exists a circle C with the following properties [Che89a]: 

• the endpoints of edge e are on the boundary of C, and 

• no other vertex of S is in the interior of C. 

A circle circumscribing a Delaunay triangle is called a Delaunay circle. If S contains four 

points that are cocircular then the Delaunay triangulation is not unique [Che89b, ELOO]. In such 

a circumstance, any of the possible triangulations will do [Che89a]. The Delaunay triangulation 

is the straight line dual of the Voronoi diagram of S [Che89a]. 

The Delaunay triangulation has the following properties. Among (aIl triangulations of a 

vertex set, the Delaunay triangulation maximizes the minimum angle in the triangulation, min­

imizes the largest circumcircle, and minimizes the largest min-containment circle, where the 

min-containment of a triangle is the smallest circle that contains it (and is not necessarily its 

circumcircle) [She99, DS89, BPOO]. 

1 Ali interior vertices of the mesh are topologically alike. 
2Mesh vertices may have arbitrarily varying local topological neighborhoods. 
3The mesh is formed by a number of small structured meshes combined in an overall unstructured pattern. 
4This includes mixed tri-quad meshes, mixed tet-hex meshes and other less frequently used element-shape 

meshes. 
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Subdivision-surface models 

Currently, the most corn mon way to model complex smooth surfaces in the domain of geometric 

modeling is by using a patchwork of trimmed NURBS. Trimmed NURBS are used' primarily 

because they are readily available in existing commercial systems such as Autodesk. They do, 

however, suffer from at least two difficulties [DKT98], which are discussed further in Ch. 4: 

• Trimming is expensive and prone to numerical error. 

• It is difficult to maintain smoothness, or even approximate smoothness, at the seams of 

the patchwork when the model is animated. 

Subdivision surfaces have the potential to overcome both of these problems: they do not re­

quire trimming, and smoothness of the model is automatically guaranteed. Also, subdivision 

surfaces free the designer from worrying about the topological restrictions that haunt NURBS 

modelers [DKT98]. Further, compared to the regular mesh models presented in the previous 

section, subdivision-surface models offer more control over the objects, since they contain more 

topological and geometrical information about the mesh. But, on the other hand, subdivision­

surface models also prevent the use of special tools that have been developed over the years 

to add features to NURBS models, which is one of the hindrances for the extensive use of 

subdivision-surface models, especially in the domain of CAD. 

Subdivision is a method for generating smooth surfaces, which first appeared as an exten­

sion of splines to arbitrary-topology control nets, and was introduced as a generalization of knot 

insertion algorithms for splines. But it is much more general and offers considerable freedom 

in the choice of subdivision mIes [Zor97]. Subdivision surfaces were first introduced to the 

domain of geometric modeling 1978, with the papers by Catmull and Clark [CC78], and by 

Doo and Sabin [DS78]. Subdivision-surface models are now widely used in many application 

areas, including computer graphies, solid modeling, computer-game software, film animation 

and others, as an alternative to B-splines and NURBS [AS09]. 

The basic idea of subdivision is to define a smooth curve or surface as the limit of a sequence 

of successive refinements [ZSD+OO]. Most oftenly the subdivision procedure contains two main 

steps: refinement and smoothing. Refinement (splitting mIe) means splitting the edges and faces 

by inserting new vertices to obtain a finer version of the mesh, and smoothing (averaging mIe) 

means shifting the vertices in order to increase the overall smoothness of the surface [AS09, 

ZSD+OO]. 



CHAPTER 2. RELIABLE COMPUTATION AND GEOMETRIC MODELING 14 

Classification - Many different subdivision schemes have been proposed in the last two decades. 

Based on different criteria, these schemes can be classified differently. For example, as pro­

posed in [AS09], they can be classified according to the type of spline that is generated by the 

method: B-spline methods, Box-spline methods, general-subdivision-polynomial methods and 

affine-invariant subdivision methods (Fig. 2.3). Similarly, based on the presence or absence of 

an interpolating property of the produced surface, subdivision schemes can be categorized as: 

interpolating methods (e.g. Modified Butterfly [ZSS96], Kobbelt [Kob96]) and approximating 

methods (Doo-Sabin [DS78], Catmull-Clark [CC78], Loop [Lo08?], 4-8 [VZ01], .J3 [KobOO]). 

- Repeated Averaging - Loop - Modified Butterfly 

- Catmull-Clark - {Midedgep - Kobbelt 

- Doo-Sabin - 4-8 subdivision _ {y3}2 

- - .. - - .. - - ~ ... ... . .. 

t t t Affine-
1 1 1 

invariant 

B-spline methods Box-spline methods General- subdivision 

subdivision- methods 

- Lane-Riesenfeld: - Three-direction polynomial 

LR(d x d), quartic-spline methods 

d = 2,3 ... scheme 
- .. - Four-direction - ~ - Butterfly - ~ 

scheme (xl) - 4pt x 4pt 

- Four -direction - {y3p 

scheme (x2) - ... 
- ... 

Figure 2.3: Subdivision-scheme classifications [AS09]. 

Surface evaluation - Another important issue conceming subdivision-surface models is surface 

evaluation. The first evaluation method (other than subdivision refinement itself) was proposed 

by Stam [Sta98a, Sta98b]: this method parameterizes the control mesh and the limit surface 

over a unit-mesh element (triangle or quadrilateral) to evaluate the surface at an arbitrary pa­

rameter value. Another method was presented in [WP04, WP05, BS02] . It uses the linearity 

of the subdivision process, the parameterization of the control mesh and the limit surface is set 

to be centered at each vertex (Fig. 2.4), such that the limit surface is evaluated as the linear 

combination of the basis functions, weighted by the original control points. One advantage of 



CHAPTER 2. RELIABLE COMPUTATION AND GEOMETRIC MODELING 15 

this technique is that the parameterization near the extraordinary vertex has n-gon symmetry. It 

is the second method that we have used in the paper that follows in Ch. 5. 

3~----~~--~-*------~7 3 7 

4 5 

Figure 2.4: Wu-Peters [WP04] evaluation method: left: a base mesh used to generate the basis 
functions for the triangle 0-1-2 (regular case: vertex with valence 6); right: the resulting basis 
function at node 1 evaluated at subdivision level four. 

Multiresolution - Multiresolution is a natural extension of subdivision surfaces. It extends sub-

division by including detail offsets at every level of subdivision, unifying patch-based editing 

with the flexibility of high-resolution polyhedral meshes [ZSD+OO, ZSS97]. 

Lounsbery et al. were the first to propose algorithms to extend classical multiresolution 

analysis to arbitrary topology surfaces [Lou94, LDW97]. There are now many different tech­

niques available for converting subdivision surfaces into a multiresolution hierarchy [LSS+98]. 

Two main schools exist. One approach extends classical multiresolution analysis and subdi­

vision techniques to arbitrary topology surfaces [Lou94, LDW97, EDD+95, CPD+96]. The 

alternative is more general and is based on sequential mesh simplification, e.g. progressive 

meshes [Hop96, HG97]. In either case, the objective is to represent triangulated 2-manifolds in 

an efficient and flexible way [LSS+98]. 

For this work we are mostly interested in the triangular B-rep, so we will give more details 

on the now-classical Loop subdivision scheme. The Loop scheme is a simple approximating 

face-split scheme for triangular meshes first proposed by Loop [Lo087]. It is based on the three­

directional quartic box spline [Bar07], which produces C 2-continuous surfaces over regular 

meshes. The Loop scheme produces surfaces that are C 2-continuous everywhere except at 

extraordinary vertices, where they are C1-continuous. Later Hoppe et al. [HDD+94] proposed 

an extension to the Loop scheme with special rules defined for edges to include features such 

as creases and corners. In [BLZOO], the boundary rules are further improved, and new rules for 

concave corners and normal modification are proposed. The Loop scheme can be applied to 
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arbitrary polygonal meshes, and the resulting mesh is a triangular mesh [ZSD+OO]. The proof 

of continuity of this scheme for aIl valences can be found in [Sch96, Zor97]. Below are the 

three important masks for the Loop subdivision scheme. 

1. Subdivision mask 

A subdivision mask defines where new vertices will be inserted and how already existing 

vertices should be shifted at each subdivision step. Fig. 2.5 shows the subdivision mask 

for Loop subdivision scheme [HDD+94]. 

/fj~ 
"~I /" 

'. I-nfj / 

. /~ 
fj -- fj 

smooth or dart vertex 

smooth edge 

1/8 

/~~3~4>ï 
\~II~o . . 

1/8 

crease vertex corner vertex 

regular crease edge non-regular crease edge 
( 

Figure 2.5: The subdivision mask for Loop subdivision scheme, where (3 = (3(n) = a~), and 

a(n) = i - (3+2CO~~27r/n))2. This equivalent form can be obtained from the substitution of 

1- (3-~ n - n+a(n)' 

2. Limit mask 

A limit mask calculates the limit position of each vertex in the control mesh. The limit 

position can be expressed as an affine combination of the initial vertex position and its 

immediate neighboring vertices. For Loop subdivision scheme, this combination is ex-

pressed by the following mask (Fig. 2.6) [HDD+94, MMTP04]. 
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Q -- Q 

1/6 
Il 

2/3 
• 

1/6 
l' 

smooth or dart vertex crease or boundary vertex corner vertex 

17 

Figure 2.6: The limit-position mask for Loop subdivision scheme, where a is defined as a = 
a(n) = (s'Y(n) + n)-l, with ,(3) = 136' and ,(n) = ~(~ - a + i cos 2;)2) for n ~ 4. 

3. Tangent mask 

Tangent vectors of the limit surface can be computed using the two left eigenvectors of 

the local subdivision matrix corresponding to the second largest eigenvalues. Then their 

cross product gives an exact normal vector to the limit surface. For a Loop surface, it can 

be expressed by the tangent mask (Fig. 2.7) [HDD+94, Kob98]. 

Cn -- c, C, -- C2 

Figure 2.7: The tangent mask for Loop subdivision scheme, where Ci = cos(21fi/n). 

2.2.3 Geometrie operations for geometrie models 

In most geometric modeling systems, geometric operations can be used to generate free-form 

models based on sorne primitive models, e.g. the geometric sweep operation [SG05]. Here we 

give two main groups of these operations . 

• Boolean operations 

One of the most important facilities of sol id modelers is the Boolean operations between 

solids [TTSC91, BKZ01]. Regularized Boolean operations inc1ude: regularized union 

U*, regularized intersection n*, and regularized difJerence - * (Fig. 2.8). They differ 

from the corresponding set-theoretic operations in that the result is the c10sure of the op-
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eration on the interior of the two solids, and they are used to eliminate "dangling" lower­

dimensional structures [Hof89]. These operations can be applied to both CSG models and 

the B-reps5 and include sorne low-level operators as classification, orientation, merging 

and intersection. 

union CU*) intersection cn*) difference C -*) 

Figure 2.8: Regularized Boolean operations [g-b]. 

• Signal processing 

Signal processing contains another important group of operations that has been widely 

used in the domain of geometry processing. It includes downsampling, upsampling, 

smoothing [JDD03], filtering [Ale02], etc., which have been used for geometry editing, 

simplification, denoising, compression and simulation [GSS99]. The paper [BPK+07] 

gives a nice overview on this subject. 

Thn:iughout this Ph.D. work, we put our focus on the Boolean operations on B-reps, al­

though other related geometric operations are also studied. 

2.2.4 Robustness issues 

Boolean operations have been used in most modeling systems, but most often, care still has to 

be taken to handle special and degenerate cases for these operations [BMS94, TTSC91, BKZOl, 

Far99]. The inconsistencies arising from numerical error can le ad to connectivity faults, such 

as breaks in the supposed boundary. And the inaccuracies in the calculations can also create 

geometric errors, often in the forrn of boundary self-intersections [SD07, Hof89]. In addi­

tion, implementation of Boolean operations is especially difficult for higher-order B-reps as it 

requires intersecting parametric surfaces, separating them into pieces and constructing new sur­

faces out of the se pieces. Existing systems typically treat a B-rep as a collection of trimmed 

5 Algorithms for Boolean operations on B-reps are called also boundary-evaluation and merging algorithms. 
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spline patches, sharing boundaries. The boundaries of each individual patch are often matched 

only approximately, since it is difficult to ensure that two trimming curves in different para­

metric domains are identical in space. Thus each intersection operation leads to increasingly 

complex and difficult-to-handle trimming curves. Applying smooth deformation to the resulting 

models is also a very difficult task: special care must be taken to avoid cracks, etc. [Man88]. As 

a result, Boolean operations usually are neither fast nor robust, although excellent results have 

been achieved by sorne commercial solid modeling engines [LC07, BKZOl, BK97]. 

The framework necessary to prove that algorithms work rigorously is available [ASZ07], 

but, so far at least, the required analyses appear to be intractable. Much research has been 

devoted to seeking robust geometrie-operation algorithms. Two groups of methods have been 

proposed to repair dirty CAD models: surface-based techniques and volumetrie techniques. 

Surface-based techniques work directly on the input surface, using different methods to detect 

and resolve artifacts. These techniques include snapping boundaries to each other, projecting 

and inserting one boundary into the other, computing intersections of extended surface patches, 

and propagating the normal field from patch to patch [BK97, BW92, BS95, BDK98, GTLHOI]. 

The volumetrie technique converts the input into a volumetric representation, effects the repair 

in the volumetric model and extracts a surface as the final result. It contains different techniques 

for the B-reps to volumetric representation conversion [NT03, Ju04, FPRJOO], and for the sur­

face extractions [KBSS01, Gib98, JLSW02]. AIso, different hole-filling methods have been 

proposed [BK05, ABA02, DMGL02, NT03] for this volumetric technique. It is the surface­

based technique that we will use in the paper in Ch. 5. 

Robust operations on subdivision-surface models have recently attracted a lot of attention. 

Lai and Cheng [LC07, LC06] presented an algorithm that performs error-controllable Boolean 

operations on Catmull-Clark subdivision-surface models, using a volumetric approach. Lan­

quetin et al. [LFKN03] proposed an intersection calculation method for subdivision-surface 

models based on triangle-grouping technique. Biermann et al. [BKZ01] used a perturbation 

technique to avoid degenerate cases for Boolean operations on Loop subdivision-surface mod­

els. Further Smith and Dodgson [SD07] used symbolic-perturbation methods to guarantee topo­

logical correctness of the computed result of Boolean operations. In one of the following papers 

(Ch. 5), we proposed an algorithm performing Boolean operations on Loop subdivision-surface 

models using limit-mesh representation, with a verification method designed to guarantee the 

well-formedness of the computed result. 



Chapter 3 

Floating-poillt arithmetic for 

computational-geometry problems 

with uncertain data 

This chapter presents our work on the application of backward error analysis in the area of 

computational geometry. The analysis is relevant in the context of uncertain data, which may 

weil be the practical context for computational-geometry algorithms. 

It has been suggested in the literature that ordinary finite-precision floating-point arithmetic 

is inadequate for geometric computation, and that researchers in numerical analysis may believe 

that the difficulties of error in geometric computation can be overcome by simple appioaches. It 

is our purpose of this work to show that these suggestions, based on an example showing failure 

of a certain algorithm for computing planar convex hulls, are misleading, and why this is so. 

Our exposition illustrates the fact that the backward error analysis does not pretend to over­

come the problem of finite precision: it merely provides a tool to distinguish, in a fairly routine 

way, those algorithms that overcome the problem ta whatever extent it is possible ta do sa. We 

also show that the situation in computational geometry, as mentioned in our principal reference 

[2], is exactly parallel to other areas. For example, algorithms for the planar convex-hull prob­

lem were discussed in [2], along with examples of failure of certain of the algorithms. But, 

although those failures are spectacular, the situation is exactly analogous to many areas of nu­

merical analysis: there are certain algorithms that are stable, and certain algorithms that are 

unstable. If an unstable algorithm is used to solve a problem, then it may produce completely 

20 
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wrong results, and this without warning. On the other hand, if a stable algorithm is applied, 

then, in the case of problems defined in terms of uncertain data, the algorithm produces an an­

swer that is essentially as good as we can hope for. This means, in particular, that one cannot 

do better by using exact arithmetic. 

Three examples (solving linear equations, the planar convex-hull problem and a three­

dimensional extruded-objects problem) are then presented to illustrate our method of perform­

ing backward error analysis: how to measure the adequacy, how to perform the perturbation 

analysis and how to seek stable solution methods. 

Part of the work was first presented at the Sixth Annual International Workshop on Compu­

tatiOnal Geometry and Applications, Glasgow, UK, May 8-11, 2006, and it appeared in Lecture 

Notes in Computer Science LNCS3980, pages 50-59, 2006. We also invited the authors of our 

main reference [2] to reply to our paper; the reply is published together with our initial paper 

in the LNCS volume [KMP+06]. It is an interesting discussion that shows different points of 

view concerning the same problem in different research domains. The extended version of the 

paper presented here, which shows how the results apply in a simple three-dimensional case, 

will appear in the International Journal of Computational Geometry and Applications. 

The main contributions of this work are: 

• we show that the numerical difficulties described in the principal reference [2] are unex­

ceptional. 

• we show how to perform perturbation analysis in geometry modeling with three exam­

pIes. 
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Abstract 

It has been suggested in the literature that ordinary finite-precision f1oating-point arithmetic is 

inadequate for geometric computation, and that researchers in numerical analysis may believe 

that the difficulties of error in geometric computation can be overcome by simple approaches. It 

is the purpose of this paper to show that the se suggestions, based on an example showing failure 

of a certain algorithm for computing planar convex hulls, are misleading, and why this is so. 

It is first shown how the now-classical backward error analysis can be applied in the area 

of computational geometry. This analysis is relevant in the context of uncertain data, which 

may weIl be the practical context for computational-geometry algorithms such as, say, those for 

computing convex hulls. The exposition will illustrate the fact that the backward error analysis 

does not pretend to overcome the problem of finite precision: it merely provides a way to 

distinguish those algorithms that overcome the problem ta whatever extent it is possible ta do 

sa. 

It is th en shown that often the situation in computational geometry is exactly parallel to other 

areas, such as the numerical solution of linear equations, or the algebraic eigenvalue problem. 

Indeed, the ex ample mentioned can be viewed simply as an example of the use of an unstable 

algorithm, for a problem for which computational geometry has already discovered provably 

stable algorithms. 

FinaIly, the paper discusses the implications of the se analyses for applications in three­

dimensional solid modeling. This is done by considering a problem defined in terms of a simple 

extension of the planar convex-hull algorithm, namely, the verification of the well-formedness 

of extruded objects. A brief discussion conceming more difficult problems in solid modeling is 

also included. 

Keywords: 

f1oating-point arithmetic, robustness in geometric computation, stability, pl anar convex hull, 

backward error analysis. 
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3.1 Introduction 

This paper is an extended version of a previous paper [1]. It discusses the use of fioating-point 

arithmetic for the solution of problems in computational geometry that are defined in terms of 

uncertain data. 

It has been suggested in the literature [2] that ordinary finite~precision fioating-point arith­

metic [3] is inadequate for geometric computation, and that researchers in numerical analysis 

may believe that the difficulties of error in geometric computation can be overcome by simple 

approaches. As pointed out in the previous paper [1], these suggestions are misleading2, and it 

is the purpose of this paper to show why this is so. 

3.1.1 Paper outline 

We begin with a slightly modified version of the exposition in the previous paper [1], which 

illustrates how the backward/forward error analysis, from numerical analysis, relates to the 

study of robustness in computational geometry. This exposition is focused on the problem of 

planar convex hulls. 

Algorithms for the planar convex-hull problem were discussed in a recent paper [2], along 

with examples of failure of certain of the algorithms. But, although those failures are spectac­

ular, the situation is exactly analogous to many areas of numerical analysis: there are certain 

algorithms that are stable, and certain algorithms that are unstable. If an unstable algorithm is 

used to solve a problem, then it may produce completely wrong results, and this without wam­

ing. On the other hand, if a stable algorithm is applied, then, in the case of problems defined in 

terms of uncertain data, the algorithm produces an answer that is essentially as good as we can 

hope for. This means, in particular, that one cannot do better by using exact arithmetic. 

Having established these basic facts, we go on to illustrate the implications of this discussion 

for applications in three-dimensional solid modeling. We make this link by the simple device 

of considering extruded objects, defined in terms of a two-dimensional contour and a direction 

d that defines the path along which the contour should be swept3. Objects of this kind have 

formed part of solid modeling systems from the very beginning, since such objects are widely 

used in design, and correspond to widely used manufacturing processes [4, 5]. The illustration 

given here will show how the question of well-formedness of such an object, in the (usual) 

2The previous paper [1] incIudes an invited reply from the authors of the original paper [2]. 
3Throughout the paper, boldface characters are used to denote vectors in Iftn, and, in particular, in Ift2. 
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context of uncertain data, can be reliably guaranteed using already established results [6], along 

with Fortune's stable implementation of the Graham scan [1,2, 7, 8] implemented in ordinary 

flo~ting-point arithmetic. We then conclude with sorne remarks about the use of such arithmetic 

for more general problems in solid modeling. 

3.1.2 Comments concerning the failure of an algorithm 

As stated in the principal reference [2], " ... the algorithms of computational geometry are de­

signed for a machine model with exact arithmetic. Substituting floating-point arithmetic for the 

assumed real arithmetic may cause implementations to fail." The paper [2] goes on to say that 

"due to ... [ a ] ... lack of examples, instructors of computational geometry have little mate­

rial for demonstrating the inadequacy of floating-point arithmetic for geometric computations, 

students of computational geometry and implementers of geometric algorithms still underesti­

mate the seriousness of the problem, and researchers in our and neighboring disciplines, e.g., 

numerical analysis, still believe, that simple approaches are able to overcome the problem." An 

incremental scan algorithm (which is related to Graham's scan [8] and which we will refer to 

as Graham_incremental), for planar convex hulls, is then studied in sorne detail. In particular, 

examples are given which show the algorithm can fail, and an explanation is given for why it 

fails, when executed with floating-point arithmetic. 

The examples given in the principal reference [2] should indeed be useful to students and 

teachers of computational geometry, in order to illustrate what can go wrong, and why, when 

finite-precision arithmetic is used to solve geometric problems. Furthermore, the paper [2] 

presents the results of experiments that are repeatable in every detail. In fact, we have imple­

mented the Graham_incremental algorithm for ex ample Al of the principal reference [2], and 

we confirm that the algorithm behaves exactly as described there when applied to the data given. 

Briefly, for example Al, Graham_incremental produces a completely spurious result. 

There are, however, three misleading suggestions in the final sentence quoted above, and it 

would be unfortunate if they were communicated to students of computational geometry. One 

of the se is the suggestion that the approaches of computational geometry and numerical analysis 

are somehow adversarial, since in fact they are complementary. Another is the suggestion that 

numerical analysts believe that they can "overcome" the problem of finite precision. This is not 

true. What is true, however, is that in the case where input data is uncertain and a stability result 

is available, a backward/forward error analysis, and often a pure backward error analysis, can 
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deal with the problem in a fairly routine way, by showing that a stable algorithm overcomes the 

problem of finite precision ta whatever extent it is possible ta do sa. Indeed, a stable algorithm 

provides us with a solution that is as good as the data warrants [9]. (Stability will be defined 

below in the context of a combined backward/forward analysis, but we will usually just refer to 

a backward error analysis, since this is usually sufficient.) 

A third misleading remark in the passage, quoted above, is the reference to the "inade­

quacy" of floating-point arithmetic for geometric computations, which is incorrect as a general 

statement. In fact, sorne algorithms using floating-point will provide adequate solutions, while 

others will not, and a backward error analysis will permit us to recognize which algorithms 

are satisfactory. On the other hand, it is true that we must begin by defining precisely what 

constitutes an adequate, or inadequate, solution to a geometric problem. 

We will show below that numerical robustness for the convex-hull problem is analogous to 

the case of linear equations, or the algebraic eigenvalue problem, and that when input data is 

uncertain, the difficulties documented in our principal reference [2] fit exactly into the paradigm 

of the backward error analysis. We emphasize that this does not imply that research into other 

paradigms, induding exact arithmetic and others, should not be vigorously pursued. Our only 

daim is that in the proper context (uncertain input data), the backward-error analysis is a useful 

approach, and it should not be neglected. 

We also present a brief summary of how the backward error analysis is used in numerical 

linear algebra, and a simple example is given to show that breakdowns of methods, of the sort 

described for the convex-hull problem, are quite typical in other fields. Then, a description of 

the combined backward/forward error analysis is given, and applied to the planar convex-hull 

problem. These ideas were developed several decades ago, but that work [9, 10] is very much 

relevant today. As already mentioned, the first task is to define exactly what is meant by the 

"inadequacy" of a solution to the convex-hull problem. We are then in a position to do a pèrtur­

batian analysis [10] to examine the effects of perturbations of the input data (whether they are 

caused by original uncertainty or by subsequent application of a stable numerical algorithm). 

Finally, we discuss Fortune's implementation of the Graham scan, which we will cali Gra­

hamY'artune. This implementation is numerically stable for the planar convex-hull problem, as 

proved by Fortune [7]. Indeed, a slight modification of the algorithm will produce a sequence 

of points that lie on the topological boundary [11] of their convex hull, and this convex set is 

the correct convex hull for points that have been relatively perturbed by a small amount. Thus, 
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we can use a pure backward error analysis to affirrn that GrahamY'ortune provides a solution 

that is as good as we can hope for, given that the data is uncertain. 

The situation for the geometric problem of finding planar convex hulls is, therefore, closely 

analogous to the case of solving linear equations. In both cases there exist unstable algorithms 

(Graham_incremental, and Gaussian elimination without pivoting, respectively), and in both 

cases there exist stable algorithms (GrahamY'ortune, and Gaussian elimination with total piv­

oting, respectively). AIso, in both cases there exist examples for which unstable algorithms 

produce complete nonsense, and this with no waming that anything is amiss. In fact, the only 

breakdown in the analogy is that in the case of the geometric problem, with the error criterion 

us~d below as an illustration, the situation is much better than for solving linear equations. 

This is because the perturbation analysis, mentioned above, shows that the problem is well­

conditioned, which is not always true for linear equations. Thus, whereas even a stable algo­

rithm may pro duce an unsatisfactory answer for the problem Ax = b (if A is the Hilbert matrix, 

for example), a stable algorithm such as GrahamY'ortune always produces a satisfactory answer 

for the convex-hull problem. 

3.2 Backward error analysis for linear-equation solvers 

For linear equations, the problem is defined by the pair [A, b], and the solution is defined by x 

such that Ax = b. We proceed as follows: 

a. Measuring errar in the solution space. A measure of the inadequacy of an approximate 

solution y, for the problem [A, b], is the relative error 11~;:;f", where Il . Il denotes any 

convenient vector norm [10]. 

b. Perturbation Analysis. A simple argument shows that if <5A is a matrix representing 

perturbation of the elements of A, and if <5b is a vector representing perturbations of the 

elements of b, then the solution y of the perturbed problem [A + <5A, b +<5b] satisfies 

(neglecting second-order terrns): 

(3.1) 

where Il . Il is now used also to denote a matrix norrn subordinate [10] to the vector 

norrn introduced above. The quantity liA Il . liA-III is usually referred to as the condition 
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number of the problem: for a trivial matrix like the identity it will be equal to 1, while for 

a Hilbert matrix of even moderate dimension it will be very large. The condition number 

represents the amount by which a given perturbation of the input data for Ax = b will 

be magnified in the solution. A problem with a low condition number is said to be well­

conditioned, and a problem with a large condition number is said to be ill-conditioned. 

The two cases are illustrated by the lines linking problems to solutions in Figures 3.1 

and 3.2, where P denotes the class of problems, and S denotes the class of solutions 

[12]. In Figure 3.1, a small perturbation in the problem produces a small perturbation 

in the solution, while in Figure 3.2, a small perturbation in the problem produces a large 

perturbation in the solution. (The meaning of the unfilled circles in the figures will be 

explained immediately below.) 

P S 

Figure 3.1: Well-conditioned problem. 

c. Stability praof The third step is to seek stable algorithms, that is, algorithms that pro­

duce a slightly incorrect solution to a slightly perturbed problem [9], as illustrated by 

the unfilled circles in Figures 3.1 and 3.2. (This describes a combined backward/forward 

error analysis; if the words "a slightly incorrect solution" can be replaced by "the exact 

solution", so that there is no need for the unfilled circle in S, then we have a pure back­

ward error analysis.) Gaussian elimination with total pivoting is stable for the problem 

Ax = b. Such algorithms produce answers that are, for practical purposes, as good as the 

best answers we can hope for (even using infinite precision), if the "slight perturbation" is 
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s 
p 

Figure 3.2: Ill-conditioned problem. 

sm aller than the uncertainty already in the data. Furthermore, by the perturbation analysis 

of step b, above, the size of the error in the solution can be estimated. 

It should be observed that the concept of problem condition, and the corresponding pertur­

bation analysis, are considered prior to any discussion of numerical methods [10]. This reflects 

the central idea of the backward error analysis: if the elements of A contain uncertainty that may 

be as large as "lf~ll, and the elements of b contain uncertainty that may be as large as "I(~III, 
then the relative error 11~;;n'" may be as large as is indicated in (3.1). This means that even an 

exact, infinite-precision algorithm cannot help us avoid a large error in the solution, in the case 

of an ill-conditioned problem, because of the effects of the inherent uncertainty in the data (see 

Figure 3.2). It also means, however, that if we can find an algorithm that produces a solution 

that is the exact solution, of a problem that differs from the given problem by an amount smaller 

than the inherent uncertainty in the data, then the algorithm has produced an answer that is as 

good as the data warrants [9]. 

We emphasize again that a stable algorithm does not necessarily produce an answer with 

sm ail error: it only produces an answer with error on the order of that which we must accept in 

any event, due to data uncertainty (see Figure 3.2, where the unfilled circ1e in S indicates that 

the method has done a good job of solving the perturbed problem, but has nonetheless produced 

an answer with large error). The backward error analysis does not "overcome" the problem of 

numerical error: it merely allows us to identify algorithms that produce errors of the same order 
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as those that we must accept anyway. 

We conclude this section with the remark that computational geometry is by no means 

unusual in the fact that there are theoretically exact algorithms that produce nonsense when 

implemented in floating-point arithmetic. For example, in the case ofAx = b, suppose we 

attempt to solve the sequence of problems 

where cjJ(p) = p2 - 0.01. For p = 0.1, the correct answer is Xl = 1.0, X2 = 1.0, but Gaussian 

elimination without pivoting, as implemented in the following program, returns the answer 

Xl = 0.0, x2 = 1.0. There is no division by zero, and no overflow or underflow occurs during 

the execution of the implemented algorithm. In the evaluation of b[l], however, the first term on 

the righthand side of the assignment statement is shifted off the end of a register and ignored. 

double rho = 0.1, phi = rho * rho - 0.01 ; 

double A[2] [2] = {{phi, La} , {La, o.o}} , b[2] 

double x[2] ; 

/********* Triangulate A ***********/ 

double mult = 1. a / A [0] [0] ; 

A [1] [1] = A [1] [1] - mult * A [0] [1] 

b [1] = b [1] - mult * b [0] ; 

/********* Back-substitute *********/ 

x [1] b [1] / A [1] [1] ; 

x[O] (b[O] - A[O] [1] * x[l]) / A[O] [0] ; 

cout«" The result is: "«x[O]«" "«x[l]«endl 

/*************~*******************/ 
The result is: a 1 

{l.O, La} 

3.3 Backward error analysis for planar convex bulls 

We will now provide a parallel development for the problem of computing convex hulls of points 

in the plane. In this case the problem is defined [2] by a finite set of vectors S = {al, ... , an}, 

where each ai lies in the plané. An algorithm to compute the extreme points of S will normally 

select a subset {il, i2, ... ,im } of the indices {l, ... ,n} and declare {aill ... , aim } to be the 

4We denote the points by a in order to increase the parallelism with Section 3.2. 
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solution, but since we are envisaging the possibility of uncertainty in the problem data, we will 

pennit any non-empty finite set of vectors Y = {YI, ... ,Ym} as a solution, where each Yi lies 

in the plane. 

3.3.1 Step a: measuring inadequacy 

If {VI, ... ,VI.:} is a finite set of vectors in the plane, define conv( {VI, ... ,vic}) ç JR2 to be the 

convex hull of the set of vectors. We will define the distance d between two distinct solutions 

yI and y2 of the convex-hull problem to be infinite if for i = 1 or 2 the vectors in yi do not. 

actually lie on the topological boundary of conv(yi); otherwise, dis defined to be the Hausdorff 

distance between conv(yl) and conv(y2). Defining d(yl, yI) = 0, the distance d is a metric. 

Let {ail' ... ,aim } be a set of points lying on the topological boundary of conv( {al, ... ) an}), 

and such that conv( {ail"" ,aim }) = conv( {ab"" an}). The error E in a solution Y is 

defined to be 

(3.2) 

where M is a fixed upper bound for the absolute value ofany coordinate of any point [7]. (Thus, 

for a solution to be considered accurate, its points are required to actually lie on a convex 

polygon [13]). In Figure 3.3, the solution to the problem defined by {ab a2, a3, a4, a5} is 

{al, a2, a4, a5}. The solution Y = {al, a2, a3, a4, a5} has infinite error, since a3 is not in the 

. • points in solution 

1 

1 

e Y 

Figure 3.3: Example convex-hull problem. 
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boundary of conv( {al, a2, a3, a4, a5}), while Y = {al, a2, a4, a5, y} has error as indicated 

by the dashed line. 

It is possible to define other measures of distance between solutions of this problem, e.g., 

we might penalize solutions with redundant points on the boundary of the convex hull. 

We will use the simple criterion (3.2) to illustrate our point, which is that if we wish to 

prove rigorous theorems about the inadequacy of computed solutions, we must give a careful 

definition of inadequacy. 

3.3.2 Step b: perturbation analysis 

If the input data {al, ... , an} is uncertain, then the true problem that we wish to solve is defined 

by {al +6al, ... ,an +6an}, where each 6ai is a vector in the plane. Suppose that Ilf~ill~2 ::; ~, 
i = 1, ... ,n, where Il . 112 denotes the Euclidean norm. This means that the relative error in the 

computed solution could be as large as ~ yI2, due to the uncertainty in the input data al one, since 

the Hausdorff distance between conv( {al, . .. ,an}) and conv( {al + 6al, . .. ,an + 6an}) has 

the achievable upper bound of ~yI2M. Thus, if criterion (3.2) is used, yI2 can be taken as a 

condition number for the problem of pl anar convex hulls. 

In comparison with the linear-equations case, this is a very satisfying result: the problem 

of computing planar convex hulls is always weIl conditioned. (In this respect, the convex-hull 

problem, with the metric we have used, is closer to the prbblem of computing the eigenvalues 

of a real symmetric matrix than to the problem of solving Ax = b: the symmetric eigenvalue 

problem is also always well-conditioned [10]. It should be observed, however, that if a different 

metric is used to measure distance, then a different perturbation analysis will result. For exam­

pIe, if only the distance between points in the convex hull is included in the metric, then the 

convex-hull problem would be ill-conditioned.) 

3.3.3 Step c: stability of algorithms 

Just as in the case of linear equations, there exist both unstable and stable algorithms for the 

planar convex-hull problem, when criterion (3.2) is used. In particular, it has been shown [2] 

that Graham_incremental is unstable. This algorithm should therefore not be used Uust as we 

should not use Gaussian elimination without pivoting to solve Ax = b). On the other hand, 

a slight modification of the GrahamYortune algorithm [7] is numerically stable, that is, the 

computed answer is such that it is the exact solution for a perturbed problem for which the 
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relative perturbation bound in problem space is at most O(m), where E is the relative error of 

floating-point arithmetic. The algorithm uses a function ca lied TriangleTest [7], first to establish 

lists of candidates for upper and lower chains, and secondly to decide whether or not to retain 

the middle point of possible triplets in the se chains. The pro of of stability depends on both uses 

of TriangleTest to show, for example, that slightly perturbed versions of the candidates for an 

upper convex chain satisfy the following condition: either they were retained and form part of 

an actual upper convex chain, or they were not retained but nonetheless lie above the line deter­

mined by the two points with minimum and maximum x-coordinate. The slight modification, 

referred to above, is to use the a priori bounds for finite-precision floating-point arithmetic to 

implement the test of a "left tum" in TriangleTest in a fail-safe way, so that an ambiguous point 

is considered to be part of a "left tum", and dropped from the computed convex bull. (This 

modified test is described in detail elsewhere [13], and a similar test has also been used for 

another purpose [14].) 

3.3.4 Consequence 

The consequence of these well-conditioning and stability is this: not only is it true that a stable 

algorithm such as Graham...Fortune will always produce an answer that is scarcely more in error 

than we should expect because of data uncertainty (this conclusion follows from stability), it 

is true in addition that the actual error in the computed solution is small (this follows from 

well-conditioning). We are in the situation illustrated in Figure 3.1. The overall situation is 

illustrated in Figure 3.4, where Pl is the true problem to be solved, P2 is the problem presented 

Pl 

P2 

P3 

p s 

Figure 3.4: Overall situation. 
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to the method, and P3 is the problem for which the method actually finds an exact solution. 

This is a pure backward error analysis, with a well-conditioned problem. Even if (3.2) were 

replaced by a criterion that rendered the problem ill-conditioned, however, it would remain true 

that the algorithm always produces an answer that is scarcely more in error than we should 

expect because of data uncertainty. 

3.4 Practical implications for three-dimensional applications 

The convex-hull problem discussed in the principal reference [2], and analyzed in our previous 

paper [1] and in Section 3.3, above, is only two-dimensional, but it has direct application to a 

practical three-dimensional problem. Extruded objects, discussed in Section 3.4.1, are widely 

used in solid-modeling systems. (Much more general extrusions than those discussed in Sec­

tion 3.4.1 have been used [16]). We use the example of guaranteeing the well-formedness of 

extruded objects to illustrate the rigorous use of ftoating-point arithmetic in a geometric appli­

cation. Then, in Section 3.4.2, we give a brief commentary on the use of such arithmetic for 

more difficult geometric problems in ]R3. 

3.4.1 A simple application in }R3: extruded objects 

For m = 0, ... , M - 1, let Rffi(t) be a planar Bézier curve of degree v defined by the control 

points Qffi = {Rü, Rf, ... , Rr;)}: 

Rffi(t) = t (:) (1 - tt-ië Ri, 0::; t ::; 1. 
t=O 

The control points lie in ]R2, and they are assumed to satisfy the conditions Rr;) = Rü+\ 

m = 0, ... , M - 1, where indices are calculated modulo M. Since a Bézier curve interpolates 

its first and last control points [15], the sequence of curves Rffi(t), m = 0, ... , M - 1, defines 

a simple closed curve r in the plane, provided that no curve self-intersects, no adjacent pair of 

curves mutually intersect other than at prescribed endpoints, and no two distinct curves intersect 

(see Figure 3.5). 

Ifwe are given also a direction vector d with IIdl12 = 1, and two scalars)..z and )..u,)..z ::; )..u, 

then these data define the extruded object 

[= {x E]R3 : )..Z ::; d· x::; )..u, Orx - (d· x)d] E Int(r)}, 
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~--/---- Int(r) 

Figure 3.5: Simple c10sed curve formed of Bézier segments (M = 5). 

where 0 is the rotation matrix that carries d into [0,0, lV, and Int denotes the interior of the 

simple c10sed curve. An extruded object is illustrated in Figure 3.6. 

d 

Figure 3.6: Extruded object. 

To decide the question of well-formedness of E, an algorithm must check the three condi-

tions mentioned above: 

1. no curve Rm(t) may self-intersect; 

2. there may be no intersections, other than at prescribed endpoints, between adjacent pairs 

of curves Rm(w), ° ::; w ::; 1, and Rm+l(v), ° ::; v ::; 1, where R":} = R~+l, 

m=0, ... ,M-1; 
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3. no two distinct curves Rml (w) and R m
2 (v), ml =1- m2, may intersect. 

Necessary and sufficient conditions for these three conditions to be satisfied have been given 

previously [6], along with less sharp but more tractable sufficient conditions. These are, respec­

tively for each case: 

1. Let q = {R~l - Ri : i = 0, ... , v - 1}. Then a sufficient condition for non­

selfintersection of Rm(t) is that 0 tf. conv(q) [6]. 

2. We first make the change of variables u = 1 - w and rewrite R m ( w) as R m ( u) 

I:r=o (~)ui(l-u)V-iR~_i' so that Rm(u)lu=o = Rm+l(v)lv=o. Let Q~ = {R~~~j­

Rr : 0 ::; i ::; v - 1,0 ::; j ::; v} and Qb = {-R~j + R~_~l : 0 ::; i ::; v - 1,0 ::; j ::; 

v}. Then a sufficient condition precluding intersection of the two adjacent curves is that 

o tf. conv(Q~) and 0 tf. conv(Qb)· 

3. The classical sufficient condition ensuring that distinct curves Rml (w) and 

R m2 (v) do not intersect is that the convex hulls conv( {R~l, ... , R~l}) and 

conv( {R~2 , ... , R~2} ) of their control points should not intersect [15]. 

Thus, in each case, guaranteeing the sufficient condition involves solving a planar convex-hull 

problem. Application of Criterion 2.1 * and Criterion 2.2* is simplified by using the correspond­

ing theorems [6] Theorem 2.1 * and Theorem 2.2*, which transform the two criteria into state­

ments about the maximal perturbation of the data that will not cause unwanted intersections. 

These maximal perturbations are, respectively, dist(O, conv( q)) and max { dist(O, conv( Q~)), 

dist(O, conv( Qb))}, where dist denotes the separation between 0 and the convex set. 

The elements defining the sets q, Q~, Qb' conv( {R~l , ... , R~l }) and 

conv( {R~2, ... , R~2}) might be entered by a user indicating a pixel on a screen. Thus, 

the user is uncertain about the exact value of the points presented to the planar convex-hull 

algorithm. If Rr is the value stored by the system, den ote by Rr + 8Rr a value envisaged 

by the user, where the double symbol 8Rr denotes a vector in ]R2. The user may be ignorant 

of (and perhaps indifferent to) the exact value of Rr + 8Rr, and capable only of specifying 

a bound on 118Rr112. In the present context, it is reasonable to suppose that the best bound 

available for 118Rrl12 is, say, 1O-31IRrI12. 

Additional uncertainty in the input data (i.e., the input data for the convex-hull algorithm) 

is added by the numerical calculations necessary to compute the elements of q, Q~, Qb' 
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conv( {R~l, ... ,R~l }) and conv( {R~\ ... , R~2}), and to perform the rotation contained 

in the definition of E. Bounding this additional uncertainty can be do ne using standard a pri­

ori bounds on floating-point arithmetic [10], and in our case, might add relative uncertainty 

on the order of 10-14 , assuming that double-precision floating-point arithmetic (relative error 

E ~ 10-16) has been used. Note that the uncertainty associated with the input data is different 

for each of the convex-hull problems to be solved. Similarly, the uncertainty implicitly associ­

ated with the input data, by Fortune's stability proof, will also be different for each convex-hull 

problem. But if each sufficient condition is satisfied independently, then E will be well-formed. 

Independently of the exact additional uncertainty, the total will overwhelm the O(nt) un­

certainty introduced by Graham..Fortune (see Section 3.3.3). In the largest of our convex-hull 

problems, we have n = 1/(1/ + 1). Thus, for example, if cubic splines are used, 1/ = 3 and 

n = 12. Use of exact arithmetic would permit us to eliminate the O(nt) uncertainty, but not the 

input uncertainty, which is larger by a factor of many billions. And the user must live with the 

effects of the input uncertainty in any event. 

3.4.2 Other problems 

The topie of providing an analysis of the sort described in Section 3.3 for floating-point­

arithmetic implementations for more complicated problems such as Boolean operations on 

trimmed-NURBS representations, has been much studied over the last two decades; whether 

this will prove tractable, however, remains an open question [17, 18]. It is quite likely that 

certain parts of the necessary algorithms will require implementation using more expensive 

arithmeties. There is no claim in this paper that ordinary floating-point arithmetic will always 

be sufficient-as stated in Section 3.1.2, we only claim that it may be sufficient, in spite of the 

exi~tence of unstable algorithms such as those discussed above. 

A framework for a backward error analysis, suitable for the case of Boolean operations 

on objects represented by intemally inconsistent trimmed-NURBS representations, was given 

elsewheçe [18]. The fundamental difficulty in providing theorems in this case cornes from the 

problem of topology resolution [19]. There are many good algorithms for computing intersec­

tions between NURBS surfaces [19,20], but to rigorously account for short intersection edges 

between surfaces, and inconsistent decisions based on the use of small numerical tolerances, is 

difficult, especially in the case where several surfaces are involved. On the other hand, it has 

been shown that certain computed intersections of surfaces can be viewed as the exact inter-
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section of slightly perturbed surfaces [21]. This is an essential ingredient for a backward error 

analysis for Boolean operations on trimmed-NURBS representations. Furthermore, rigorous 

backward-error analyses are more easily obtained in the simpler case of objects represented by 

locally-planar subdivision surfaces [22]. 

3.5 Conclusion 

In order to prove theorems about the adequacy of numerical algorithms in computational geom­

etry, we must define how to measure adequacy. Furthermore, in the case where data is uncertain, 

it is worthwhile to do a perturbation analysis, and seek stable solution methods, in order to per­

form a backward error analysis. Carrying out these steps in the context of the pl anar convex-hull 

problem shows that the numerical difficulties described in the principal reference [2] are unex­

ceptional. Furthermore, these results carry over to simple applications in three-dimensional 

sol id modeling. On the other hand, whether it is possible to carry out a backward error analy­

sis for ftoating-point arithmetic, for problems such as Boolean operations for trimmed-NURBS 

solids, remains an open question. 
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Chapter 4 

Reliable joining of surfaces for 

combined mesh-surface models 

The joining (or merging) operator is a very important primitive operator for Boolean operations. 

It can be applied to different geometric representations, including subdivision-surface models 

and trimmed-surface models. In this work, we study the latter representation, which is a com­

posite model containing both a NURBS surface patch and a triangular mesh patch. A naively 

designed joining operator can produce very poor results, e.g. triangles along the target joining 

curve in the final result (triangular mesh) can be turned upside down by the joining process, 

even in the case when maximum auxiliary information is available. Our motivation for this 

work is to seek a reliable joining algorithm taking into account a normal error criterion. 

To evaluate the result produced by our joining algorithm, and also to guide the joining 

process, we first define two error measures, the absolu te error and the normal-vector error. 

The Whitney extension theorem is then used as a theoretic base to perform the joining. Its use 

guarantees that in the joined mesh patch, the absolute error will be no greater than that already 

present along the boundary of the input mesh patches, and its slope will be sm aller than or equal 

to the maximum slope along the boundary of the two input mesh patches. Two different cases 

can be treated with our algorithm, based on the availability of an explicit common edge curve 

which represents the boundary between the two patches to be joined. Implemented results are 

also presented. 

The preliminary work that deals with a single joining segment was presented in the IMCS 

International Symposium on Scientific Computing, Computer Arithmetic and Validated Numer-

41 
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ics (SCAN), Duisburg, Gennany, September, 2006. The complete work included here was pre-
, 

sented at the 21st European Conference on Modelling and Simulation (ECMS), Prague, Czech 

Republic, June 2007, and appeared in the conference proceedings. 

The main contributions of this work are: 

1. we propose to use the Whitney extension theorem as the theoretical base for our joining 

algorithm. 

2. a joining algorithm is proposed to merge combined mesh-surface patches, which can deal 

with two different cases based on the availability of certain auxiliary infonnation. 

3. two error measures (i.e. absolute error and nonnal-vector error) are proposed to guide the 

joining process, and evaluate the quality of the joint result surface. 

Small corrections: 

1. In page 53 line -3: should read "approximately 30 floating-point operations for each 

piecewise linear segment". 

2. Two footnotes have been added (pages 49,52). 
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Abstract 

Aigorithms to join two mesh patches along an edge are of immediate practical interest in the 

context of higher-Ievel operations on models of objects formed by such mesh patches. Such 

models are widely used in graphical visualization and simulation, shape interrogation, and other 

areas. Thus, there are now available methods to join two subdivision surfaces along a common 

edge curve, as weIl as methods to join mesh patches that approximate given trimmed-surface 

patches. The latter problem is studied in this paper. 

The auxiliary information available to the algorithm, in the context of surface joining, varies, 

depending upon circumstances. In particular, it may or may not be true that an explicit common 

edge curve, representing the boundary between the two patches to be joined, is available as 

part of the data. Even in the case, however, when maximal auxiliary information is available 

algorithms are not necessarily reliable. For example, methods that do not use normal-vector 

error criteria, to measure the discrepancy between the surface patch and the associated mesh 

patch, can produce poor results, due to large changes in the normal direction of a triangle near 

the mesh boundary. It is even possible to give examples where the triangles near the joined 

boundary are tumed upside down by the joining process, so that computed meshes self-intersect. 

In this paper an algorithm is presented that uses a proxy for a normal-vector error criterion, and 

the Whitney extension theorem, to produce reliable algorithms. Examples are given, and an 

implementation is described. 

Keywords: 

surface mesh, joining, graphical simulation, shape-interrogation models, normal-vector error 
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4.1 Introduction 

This paper is concemed with the problem of the reliable joining of surface meshes used in 

combined mesh-surface models. Such models are of interest for graphical visualization of solid 

objects, shape interrogation, computer-aided design, and vision [1,2, 3,4, 5, 6, 7]. The joining 

process is sometimes referred to as sewing [1]. The main novel aspect ofthe work is the use of 

normal-vector criteria, described below, to prevent folding of edges during the joining process. 

A mesh patch is a surface made up of non-degenerate triangles lying in ]R3. Algorithms to 

join two mesh patches along a common edge are of immediate practical interest in the context 

of higher-level operations on objects formed by such mesh patches. For example, methods 

have been given to join two subdivision patches along a common edge curve, specified in ]R3. 

In particular, combined subdivision suifaces [8] were designed for this purpose, and dynamic 

. subdivision suifaces [9] may be used to produce subdivision surfaces with hard edges along a 

given curve in space. Similarly, methods are available [1], [10, Sec.3.4] to join together mesh 

patches that approximate given trimmed-surface patches lying in ]R3. It is the latter problem 

(surface-mesh joining) that is studied in this paper. 

The auxiliary information available to the algorithm, in the context of surface-mesh joining, 

may vary. Mesh solids formed by a trimmed-surface model coupled with a triangular mesh are 

used in sol id modeling [1,3,5] and in graphical simulation [1,2,4]. In the latter case, the mesh 

model may be carried along with the surface model, or computed adaptively during rendering, 

given the current camera position. The trimmed-surface model is illustrated in Figure 4.1. 

Figure 4.1: Two adjoining trimmed patches in surface model, with boundary curve b(t), t E 

[0,1]. 
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The parametric domain D is delimited by a collection of p-curves (a typical p-curve is 

denoted here by p), and the restriction of the mapping F to D defines the trimmed patch in R 3 . 

In addition, explicit boundary information may also be present. Sometimes [3, 11, 12] this may 

take the form of explicit curves b( t) taking values in R3 , due to the convenience of having such 

explicit representations available. This curve is analogous to the common edge curve specified 

for combined subdivision surfaces. Alternatively, explicit boundary information in R3 may be 

represented in other ways; for example, it may be represented approximately by scan conversion 

[1 ]. 

Even with an explicit boundary curve provided, joining algorithms are not necessarily reli­

able, and it is this fact that led to the development of the algorithms described below. 

We present joining algorithms for both cases: when an explicit curve b(t) is provided, and 

when it is not. The algorithms described are based on the use (as a supplement to absolute error 

criteria) of normal-vector error criteria [13, 14, 15] for the discrepancy between the surface 

patch and the mesh-patch. A difficulty, with algorithms that do not use such criteria, is that they 

may cause large changes in the normal direction of a triangle near the joined boundary, which 

may in turn introduce undesired visual effects. In fact, it could even happen that triangles near 

the boundary are turned upside down, so that computed meshes self-intersect. The nature of 

the difficulty is illustrated in Figure 4.2, in the case where joining moves mesh vertices on the 

basis of interpolation along a polygonal path that is not a straight line. In both illustrations, 

vertex h is paired with vertex rI, and vertex l4 is paired with vertex r2. The intervening joining 

vertices are obtained by joining the midpoints of pairs of points obtained by linear interpolation 

along the polylines h -l2-l3-l4 and rl-r2. In the first illustration, this leads to a well-behaved 

triangulation, but in the second illustration, the position of the vertex l4 is different: it is further 

towards the interior of the segment rl-r2, but still within the joining tolerance, relative to rl-r2. 

Figure 4.2: Sewing based on midpoints of pairs of points interpolated along mesh edges. 
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This phenomenon is called "folding" [1], and can result in a mesh triangle that has flipped, as in 

the second illustration of Figure 4.2. Such phenomena can be avoided by using normal-vector 

criteria, and in fact, if the normals of the triangles in the mesh-patch can be bounded, they can 

be used to rigorously exclude the possibility of extraneous intersections between neighboring 

mesh-patches [16, 17, 18]. In the context of graphical simulation, it is clearly of interest to do 

so. 

The algorithms presented here use the Whitney extension theorem [19] to ensure that a 

proxy for the normal-vector error (defined below), and the absolute error, should not be any 

larger than the corresponding errors already present along the edges of the patch. Thus, in 

, addition to avoiding the difficulty described in the previous paragraph, the procedure smooths 

the input mesh patches, in the sense just described of error minimization. The algorithms apply 

to the case of general trimmed patches, and we de scribe an implementation. 

Whitney extension can be viewed as a way to perform transfinite interpolation between 

boundary curves. Amongst many other applications, it has been suggested for use as a meshing 

method in [5]. The algorithms below will adjust the vertices of the input mesh patch in a way 

that constrains them to lie in a transfinite interpolant defined by Whitney extension. 

Numerical properties of one of our algorithms were discussed, in the special case of pl anar 

patches with straight-line boundaries, in [20]. 

Related areas of work include mesh simplification (finding a " ... concise, yet geometrically 

faithful ... representation of a surface ... " [14, Sec. 1]), remeshing [14, Sec. 1.1] [15], [5,21] 

and mesh fairing [22]. A good overview is given in [14]. Yet other work deals with computation 

of meshes over imperfect geometry [3,23], and methods for mesh repair [2,4,24,25]. 

Other work on meshing can be related to ours in another way, namely, by examining the 

metrics used to compare surfaces. The general concept of the absolute error in a mesh, relative 

to a given surface, is ubiquitous (see for example [26]). Again, the reference [14] gives a good 

overview. As already mentioned, other auth~rs [13, 15] have introduced normal-vector criteria 

similar to ours. For example, in [15], although priority is given to other mesh-smoothness 

criteria, it is verified from time to time that a criterion, similar to the mean-square criterion 

discussed in Section 4.2, is not above a certain threshold. Somewhat different criteria are used 

in other applications. For example, in the context of snakes on triangular meshes, [27] refers to 

bending-energy and curvature-distribution criteria that are different from but nonetheless similar 

to the height-field-slope criterion introduced below. 
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4.2 Error criteria to measure mesh-patch quality 

One measure of the quality of a mesh patch M is the absolute error. Let VI, . .. ,Vn E R 3 be 

We assume that the Jacobian of the mapping F is of full rank, i.e., the rank is equal to 2. Let 

n(u,v) = (Fu(u,v) x Fv(u,v))/llFu(u,v) x Fv(u,v)11 

be the unit normal of the surface Fat (u, v), and let the height 'fi ( u, v) E R be the scalar such 

that 

M(u, v) = F(u, v) + 'fI(u, v)n(u, v) E IMI, 

where IMI denotes the mesh viewed as a subset of R3 , if a unique such 'fi exists. We suppose in 

fact that for ail mesh patches considered, the mapping 

is well-defined and injective. Thus, it is assumed that for any m E IMI, 

l'fil = dist(m, F) ~ min Iim - yll 
yEF 

is uniquely defined, and furthermore, that the corresponding point (u, v) is weil defined and 

lies in [0, 1 F. (It foBows that the mapping F itself must be injective, at least on the part of the 

do main of interest. Note also that the symbol F has been used to denote both the mapping and 

the image of the mapping, which is a pointset.) 

A possible definition of the absolute error in M is the supremum of l'fil over l ç [0, IF, 
where l is the inverse image of IMI. Meshes are in practice close enough to F[D] that the 

assumption above, that l'fil is weB defined, does not present a problem, provided l ç [0, IF. 
(The mesh must be close relative to the local minimum normaJ curvature of F.) On the other 

hand, there is a theoretical difficulty in simply defining the absolute error to be 

sup l'fil 
(u,V)EI 

(4.1) 

because there is nothing in this criterion to force full coverage of the surface patch by the mesh. 

For example, a degenerate mesh M consisting of a single vertex lying in F[D] would pro duce 
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an error of zero. As observed in [14, Sec. 2.1], use of (4.1) amounts to using a one-sided version 

of the Hausdorff metric. In spite of the difficulty we have just described, this approach is often 

used in practice [14], and we will do so here. The coverage of practical meshes is usually quite 

good. 

We also assume that D lies strictly inside [0, IF, i.e., that the patch is trimmed on all sides. 

There is no theoretical problem in the opposite case, since normally [26] the mapping F is 

defined outside [0,1 F. If, however, the inverse image of a point in IMllies outside [0, 1F, there 

may be numerical difficulties in the calculation of "7. 

A second measure of the quality of Mis the normal-vector error, defined here as the largest, 

over all triangles T j , ofthe maximum slope (in absolute value) of the height field. Let Ij be the 

inverse image of Tj under M, and let Lj be the smallest value of L for which "7 satisfies the 

Lipschitz condition 

for all points Pl = (UI, VI) and P2 = (U2, V2) in Ij. Our second criterion is then maxj Lj . 

To relate this criterion to similar normal-vector measures introduced elsewhere [13, 14, 15], 

we note that 

sup Iln(u,v) - njll 
(u,v) 

(where nj is the unit normal of the triangle Tj , and the supremum is taken over Ij) is analogous 

to the mean-square norm [14, Sec. 2.3.1] [15] of n(u, v) - nj, normalized to allow for the area 

of the region Ij: 

It is, however, a more strict criterion, since 

lin - njl12 :S sup Iln(u, v) - njll· 
(u,v) 

On the other hand, sup(u,v) Iln(u, v) - njll and the criterion Lj, defined above, are equiv­

aIent metrics l , a fact which follows from our assumptions about the Jacobian of F, and the 

Implicit Function theorem. This justifies the terminology "normal-vector error" for the maxi-

ITwo metrics are equivalent if the unit sphere of each can be contained in the other by multiplying a positive 
constant. 
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mum slope of the height field. 

It was stated in Section 4.1 that our algorithms control only a proxy for the normal-vector 

error. This proxy is obtained as follows. First of aIl, the slope of Tf on Ij is replaced by the slope 

measured only between the three corner points of Ij. This process can increase the error in the 

case of long thin triangles, but the difficulty can be avoided by mesh-edge splitting. (The error 

estimates given below, in Section 4.3.4, take account of the potential error introduced in this 

way, i.e., it is not assumed that mesh-edge splitting has been used to reduce the error.) Secondly, 

in order to reduce computational cost, we estimate maxj Lj by using the Whitney theorem with 

the ordinary Euclidean norm of Pl - P2' over aIl of l = Uj=l Ij, which could in princip le (see 

Section 4.3.1) lead to the minimization not of maxj Lj but, rather, the minimization of a certain 

upper bound for maxj Lj. 

4.3 J oining' algorithms 

As mentioned in the introduction, joining algorithms that do not use normal-vector criteria may 

cause large changes in the normal direction of a triangle near the boundary. The nature of the 

difficulty was shown in the second illustration in Figure 4.2. Thus, even though the input mesh 

patches satisfy the assumptions of Section 4.2, and have small height Tf along the edges of the 

two patches, folding may occur within (or approximately within) the curvilinear surface F. In 

this section we present algorithms that avoid this problem, and which, at the same time, smooth 

the mesh. Both of these are of obvious importance in graphical simulation. An ex ample will be 

given below, in Section 4.4, which shows the possible ill effects of folding. 

We begin by giving a brief summary of Whitney extension, which is used in both of the 

algorithms presented. We then give an algorithm in the case when the boundary curve b(t) is 

provided as part of the input, and in a subsequent subsection, we deal with the opposite case, by 

constructing ourselves a boundary curve b( t) based on the input mesh patches. The algorithms 

adjust the mesh vertices to ensure that the proxy, mentioned above, for the normal-vector error, 

and the absolute error, should not be any larger than the errors already present along the edges 

of the input patch. In fact, they will not be any larger than those associated with the boundary 

curves b( t) bordering the mesh patch. This of course represents only part of the error present 

in the input data: the error in the edge of the input mesh patch itself could in principle be even 

larger (and this fact makes our bound even more attractive). 
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4.3.1 Whitney extension 

As mentioned at the end of Section 4.1, our algorithms adjust the vertices of mesh patches in a 

way that constrains them to lie in a transfinite interpolant defined by Whitney extension. This 

process is referred to as reprojection in the algorithm outlines given below. The reprojected 

mesh interpolates the curves b(t), and the assumption of injectivity of M-I , at the beginning 

of Section 4.2, includes in particular the assumption that we can compute the height 'T/( Uo, vo) 

corresponding to a given b(to) E R3, where (uo, vo) = M-I(b(to)). This is done, as for 

vertices in a given mesh patch, by computing dist(b(to), F). (As in Section 4.2, the assumption 

requires that b(to) be close to F[D], relative to the local minimum normal curvature of F.) 

Now, suppose given a mesh patch M with m edges, and corresponding boundary curves 

bk(t), k = 0, ... , m l, t E [0,1]. Let E(p) be the height 'T/(M-1(bk(t)) defined for a point 

p E oR, the inverse image of {bk(t) : k 0, ... , m l, t E [0, Il}. We suppose that oR is 

the boundary of a well-defined region R ç [a, 1]2. 

The optimality of the reprojection obtained by Whitney extension can be described as fol­

lows. We view the height associated with the curves bk (t) as a discrepancy between the surface 

data F and the boundary data. Let E(p) be the discrepancy 'T/(p) defined by M-I(bk(t)) = p, 

i.e., the discrepancy defined by the boundary curves bk(t) for k = 0, ... , m 1 and tE [0,1]. 

Then, if the reprojected mesh (denoted M) is to interpolate the boundary curves, the maximum 

absolute discrepancy jt(p) 1 of M, measured over ail of R, cannot be less than ma:KpE8R IE(p) l, 

and the maximum slope of the reprojected mesh over aH of R cannot be less than the slope on 

oR, defined by 

L= sup 
PI.1J2 E8R,Pl #1J2 

jE(pd E(P2) 1 
l!pI - P211 

(4.2) 

This follows from the fact that oR ç R. 

Now, a continuous extension of E(p) from oR to R will be called Whitney if it satisfies the 

Lipschitz condition 

everywhere on R (and not just on the boundary oR). There exist [29] a bracketing pair of 

extensions l(p) and u(p) that are Whitney, and such that for any extension E(p) that is Whitney, 

we have 

l(p) ~ E(p) ~ u(p), P E R. 

(The explicit definitions of l(p) and u(p) are given below, in (4.3) and (4.4).) Furthermore, if 
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we take the average 
1 

a(p) = 2[l(p) + u(p)], 

then a(p) is Whitney, and 

la(p)1 ::; sup IE(q)l, p ER. 
qEBR 

Thus, using a(p) to reproject the mesh, as we do below, provides an extension that has absolute 

error no greater than that already present along the boundary oR, and which has slope2 no 

greater than that already imposed by the slope of 'f}(p) on oR. It is therefore optimal (and the 

errors minimal) in the sense that we cannot do better. 

In [28, Sec. 3.5] an alternate but computationally more expensive version of the Whitney 

theorem is given, appropriate for severely non-convex domains. There is a possibility in such 

cases, if the ordinary Whitney theorem is used, of over-estimation of maxj Lj. The practical 

risk is smal!. AIso, there exist [19] extensions that are smoother than the CO-continuous ex­

tension described above, when the data along the boundary is smooth. These might be used 

to permit specification of joining with a given level of continuity. We have not explored this 

possibility. 

4.3.2 Case 1: The bk(t) are provided as input 

The outline of the joining algorithm, in the case when the boundary curves bk(t) are provided 

as part of the input, is as follows: 

1. Project the vertices Vi of the input mesh M into [0,1]2 in the u-v domain, to produce 

a projected mesh. (There is of course an approximation involved here, since the inverse 

images of triangles Tj are typically curvilinear sets in the u-v domain.) 

2. Project a piecewise-linear approximation of each bk(t) into [0,1]2 in the u-v domain. 

3. Remove a sufficient number of peripheral triangles from the projected mesh (in the u-v 

domain) to guarantee that the projected mesh does not extend beyond the projection of the 

boundary curves bk(t), but with at least one layer of triangles removed from the periphery 

of the projected mesh. The remaining part of the projected mesh will be referred to as the 

central mesh. See Figure 4.3. 

2Here the slope is not the slope along the boundary: there could be variation across the interior of R. 
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4. Triangulate the region between the projection of the boundary curves and the central 

mesh. (This will be referred to as the triangulation of the external region. See Figure 4.3.) 

5. Reproject the vertices of the combined mesh (the central mesh and the triangulation of 

the extemal region) to R 3 using Whitney extension, as described in Sec. 4.3.1. 

6. Merge the reprojected combined mesh, along the joint boundary (in R 3) between the two 

parts of the combined mesh, to ob tain M. 

v 
central mesh projection of 

boundary curves 

--+---------------------------u 

Figure 4.3: Meshing domain. 

The projection of the input mesh (step 1), and of the curves bk (t) (step 2), can be dealt with 

in several ways [6, 30, 31, 32]; here we simply used the Fletcher-Reeves gradient algorithm 

provided in the GNU Scientific Library [33]. 

The reprbjection (step 5) requires ca1culation of the functions l(p) and u(p), mentioned in 

Sec. 4.3.1. The functions l (p) and u(p) are defined by 

and 

l(p) = sup {E(q) - L ·llp - qll}, p E R, 
qEôR 

u(p) = inf {E(q) + L ·llp - qll}, p E R, 
qEôR 

(4.3) 

(4.4) 

[29]. Due to the use of the piecewise-linear approximation (step 2), the ca1culation of the 

supremum in the definition of l(p), and the infimum in the definition of u(p), together require 

only 8 floating-point operations for each piecewise-linear segment. 

The triangulation of the extemal region (step 4) is done using a slightly modified version 

of Ruppert's Delaunay refinement algorithm [34], namely the variant [35]. Suppose that the 
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triangulation producing the projection mesh is done using the same algorithm. Then, be­

cause we rem ove at least one layer of triangles in step 3, it follows that the minimum angle 

in the boundary of the external region is at least B = 26.45 degrees, provided that this con­

dition is also satisfied by the projections of the bk(t). Consequently, it follows [35] under 

these hypotheses that the minimum angle in the triangulated external region is no sm aller than 

arctan[(sin B)j(2 - cos(B)], which is approximately 21.96 degrees. 

The merging required in step 6 refers to triangle splitting when there are extra vertices along 

the boundary, between the two parts of the combined mesh, arising from the triangulation of the 

external region. 

4.3.3 Case 2: Certain of the bk (t) are not provided as input 

The procedure in the case when certain of the bk (t) are not provided is exactly the same as in 

Sec. 4.3.2, except that before projecting a piecewise-linear approximation of the curves bk (t), 

it may be necessary to calculate surrogates for the missing boundary curves. Note that we need 

bk (t) (or a surrogate) for aIl k, even if no mesh patch is to be joined along certain edges. 

If a curve bk (t) is present, for a given k, it is used as in Sec. 4.3.2. 

If bk (t) is not present, for a given k, then there are two possibilities. If there is not an 

adjoining mesh along edge k, then we simply use the boundary of the input mesh to compute 

oR along that edge. If there is an adjoining mesh along edge k, then we compute a piecewise­

linear median polyline, deleting loops if necessary. Folding causes no problem here: there is no 

requirement that the external region be convex in order to triangulate it. 

4.3.4 Error estimates 

Use of the Whitney theorem (step 5) in Sec. 4.3.2 guarantees that the si ope of the reprojected 

mesh points, between corners of the combined-mesh triangles, will be less than or equal to the 

value of L along the boundary of the mesh. It does not, however, guarantee that the minimum 

slope of the actual triangles in the combined mesh will be less than or equal to L, as can be 

seen by consideration of a long thin triangle. On the other hand, if the triangulation in the 

u-v domain has minimum angle equal to 21.96 degrees, then it can be shown that the cosine 

of the angle of inclination, of a triangle in the reprojected mesh, is greater than or equal to 

{(1 + L2) [1 + Cin ~t96) 2]} -1/2. This follows from a straightforward trigonometric argument 

using spherical coordinates. The value of sin 21.96 is approximately 0.384. 



CHAPTER 4. RELIABLE JOINING OF SURFACES ... 55 

The problem just mentioned, related to long thin triangles, can be avoided if-a long edge 

of such a triangle is split, and the Whitney reprojection calculated at the inserted vertex. Note 

however that the worst-case risk of neglecting to do the mesh-edge split is that the slope of the 

triangle could be unnecessarily large. There is no danger of a flipped triangle (Figure 4.2). 

4.4 Computational examples 

4.4.1 Examples illustrating the two algorithms 

In the accompanying figures, examples of the use of the joining algorithms are given. The 

examples involve joining of trimmed patches: the trimmed patch illustrated in Figure 4.4 is 

exactly the input patch shown in the upper right corner of each of Figure 4.5 and Figure 4.6. 

The second input patch, in the upper left corner of Figure 4.5 and Figure 4.6, is, similarly, a 

trimmed patch obtained from a larger untrimmed surface (not shown). The joined patches are 

shown in the lower part of Figure 4.5 and Figure 4.6, respectively. 

Figure 4.7 shows two input patches with folding present. The result of joining by means 

of linear interpolation along polylines, as described in Section 4.1, is shown in Figure 4.8. The 

result of using the algorithm of this paper is shown in Figure 4.9. 

The triangulations of the input trimmed patches were obtained using Maya [4]. The trian­

gulations of the exterior regions were obtained, as explained in Section 4.3.2, using a variant of 

the Ruppert algorithm. 

Figure 4.4: Trimmed patch together with its original surface. 
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Figure 4.5: Example with b(t) not provided. Top: the input trimmed patches; bottom: the result 
of joining. 

Figure 4.6: Example with b(t) provided. Top: the input trimmed patches; bottom: the result of 
joining. 
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Figure 4.7: Input patches with folding present. 

Figure 4.8: Result with fiipped triangles. 

Figure 4.9: Sewing result with Whitney extension. 



CHAPTER 4. RELIABLE JOINING OF SURFACES ... 58 

4.4.2 Computational cost 

Let CT be the number of segments in the piecewise linear approximation of the boundary curves 

bk(t) (step 2 in Section 4.3.2). The time required to do the joining, including the projection 

and reprojection, varies directly with CT • n, where n is defined (Section 4.2) to be the number 

of vertices in M. The constant of proportionality in our experiments (run on a 2.2 GHz AMD 

Athlon 64 3500+ processor), was approximately 0.5.10-4 . Thus, for a pair of meshes compris­

ing 2.1K nodes, with CT = 80, the total time required was 8.16 seconds. (The examples shown 

in Figures 4.5 - 4.9 had fewer nodes, and required less time.) Whitney reprojection accounts for 

65-85% of the total time cost. 

4.5 Conclusion 

Our first conclusion, as suggested in Section 4.1, is that normal-vector criteria will be necessary 

if we wish to devise reliable algorithms. Note that the purpose of presenting examples like those 

of Figure 4.2 and Figure 4.8 is not to suggest that such examples will occur frequently when 

using any particular algorithm but, rather, to illustrate possibilities that must be excluded if we 

want provably reliable methods. One of the two main contributions of the paper is to set out the 

minimal requirements for an eventual proof of reliability. 

Our second conclusion is that it is possible to devise algorithms, operating at reasonable 

,cost, that will join given mesh patches together while maintaining a proxy for the normal­

vector error, as weil as the absolute error, at a level below that already present in the given 

mesh. Furthermore, the mesh in the u-v domain is not disturbed by the reprojection process, 

and the triangulations of the central mesh and the external region in the u-v domain can be done 

using the best available method. In this paper the central mesh was triangulated using Maya, 

while the external region was triangulated using a variant of Ruppert's algorithm, but if better 

methods become available, they can be used directly. Similarly, the u-v coordinates of any 

previously-applied mesh-fairing or smoothing algorithm will not be disturbed-only the height 

field is modified in order to ensure that its slope over the whole patch will not be larger than the 

slope along the edge of the patch. 

The advantage of using normal-vector criteria for graphical simulation is clearly evident 

from the ex ample of Figure 4.8. Further research should focus on the estimation of normal­

vector error by using the mesh itself. 
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Chapter 5 

Robustness of Boolean operations on 

subdivision-surface models 

Boolean operations on standard trimmed-NURBS geometric models are still notoriously diffi­

cult problems, and the associated difficulties manifest themselves in the appearance of artifacts 

su ch as cracks and gaps. On the other hand, subdivision-surface models as a representation are 

rapidly gaining popularity in the field of geometric modeling. More and more frequently they 

are used in place of trimmed-NURBS representations due to their simplicity, and efficiency for 

smooth surface construction. AIso, based on our previous experience with the merging oper­

ation on combined mesh-surface models (Ch. 4), the availability of both NURBS information 

and the mesh data is not easily satisfied. In addition, pure mesh representation (polygon soup) 

usually does not contain enough topological and geometrical information about the model for 

the explicit shape control. As an alternative, we can extract subdivision topology from arbitrary 

meshes using sorne existing methods [LDW97, EDD+95], to convert arbitrary meshes into 

subdivision-surface models. But even though the fun dament al theory underlying subdivision­

surfaces has been widely discussed in the domain of mathematics, there does not exist any 

theoretical guarantee about the robustness of the implemented applications, i.e., at which pre­

cision level we can safely use these models. Based on these observations, we move our focus 

from trimmed-NURBS representations to subdivision-surface representations, and the target 

operation is enlarged from a simple merging operation to complete Boolean operations. 

An algorithm performing Boolean operations on subdivision-surface models is proposed 

first. It is based on the use of limit meshes, rather than a refined version of the control meshes. 

62 
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Limit meshes have intrinsic advantages: they contain fewer triangles than refined control meshes 

of comparable accuracy, and they are doser to the limit surfaces than the control meshes of the 

same subdivision level. In this work we restrict our discussion to the Loop subdivision scheme, 

but the ideas are more generally applicable. We still put our focus on robustness: this indudes 

error bounds and numerical methods for the a posteriori validation of topological form of the 

computed result. In this work, we also use sorne of our previously published results, for ex­

ample, the reliable three-dimensional orientation test in Ch. 3 is used in the triangle-triangle 

intersection procedure. 

The preliminary part of this work was presented at the Dagstuhl Seminar in January, 2008, 

and later appeared in the Dagstuhl seminar proceedings (Dagstuhl Research Online Publication 

Server). It contained sorne early-stage bounding results related to the use of the limit mesh, 

which tumed out to be insufficient for our purposes. In the final submitted version of the paper 

presented here, a different bounding technique is used. 

The main contributions of this work are: 

• the use of limit mesh for Boolean operations on subdivision-surface models is proposed. 

• an error bound is presented for the use of limit mesh. 

• a checking method for the well-formedness of the computed result is presented to guar­

antee the quality of the models produced by our algorithm. 
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Abstract 

This paper describes an algorithm to perform Boolean operations, based on the use of limit 

meshes, in the case when input objects are defined in terms of triangular meshes and Loop 

subdivision. The focus of the paper is on robustness, includingerror bounds and numerical 

methods for the a posteriori validation of topological form. 



CHAPTER 5. ROBUSTNESS OF BOOLEAN OPERATIONS ... 66 

5.1 Introduction 

Boolean operations on standard trimmed-NURBS geometric models [1] are still notoriously 

difficult problems, and the associated difficulties manifest themselves in the appearance of ar­

tifacts such as cracks and gaps [2]. The framework necessary to prove that algorithms work 

rigorously is available [3], but, so far at least, the required analyses appear to be intractable. 

On the other hand, subdivision-surface models are more and more frequently being used 

in place of trimmed-NURBS representations due to their simplicity, generality, and efficiency 

for smooth surface construction [4]. In this paper we de scribe an algorithm for computing 

Boolean operations on objects defined by their boundaries, represented as subdivision surfaces. 

The algorithm is similar to the one described in [5], but uses what is called the limit mesh to 

perform the initial boundary intersection ca1culation rather than a refined version of the control 

mesh. The focus of the paper is on robustness: for example, we do not discuss fitting operations 

[5] in detail. We do, however, consider several robustness issues: integration of Fortune's 

a-predicate into the code for triangle-triangle intersection [6], new error bounds for the limit 

surface, and, at least in the regular case, simple and rigorous methods to verify a posteriori that 

the polyhedral computed solution has the same topological form as its corresponding boundary 

surface. Finding such bounds, and performing such a posteriori validations, are essential steps 

in providing an a posteriori backward error analysis [7] for a Boolean-operation algorithm. 

Previous work on robustness for Boolean operations on subdivision surfaces includes [8] 

and [9]. In [8], voxelization representations were used to ca1culate the Boolean intersection of 

sets defined by Catmull-Clark subdivision surfaces. In [9], symbolic perturbation methods were 

used to guarantee topological correctness of the computed result of a Boolean operation. 

The algorithm presented here has been implemented, and to sorne extent we have been 

concerned with questions of efficiency and triangle count, as described below. In this paper, 

however, we restrict our attention for the most part to the robustness issues mentioned above. 

We suppose that the read~r has a general familiarity with subdivision-surface methods for 

the representation of solids [10]. 

Boolean operations on solids defined using a subdivision-surface representation are usually 

carried out on a piecewise polygonal mesh (the control mesh), rather than the limit surface that 

defines the true geometry of an input operand [11]. Such an approximation might not be ac­

curate (nor, in the context of collision detection, safe) [12]. The accuracy can be improved, 

however, by using the limit mesh, a polyhedral approximation formed by driving each of the 
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control points in the control mesh to its limit position [13, 14]. This representation better ap­

proximates the limit surface while maintaining the same topological form as the control mesh. 

The algorithm discussed in this paper is based on the use of the limit mesh. The discus­

sion refers to the Loop subdivision scheme, but the ideas are more generally applicable. As 

already mentioned, we do not discuss fitting procedures, but we note here that the a posteriori 

validation is applicable both before and after su ch fitting procedures have been applied. Also, 

we often phrase the discussion in terms of regularized Boolean intersection [15] (there is no 

loss in generality in doing so: different Boolean operations merely change which segments of 

the original meshes should be retained). The input solids may be denoted S and S', and the 

operation studied is S n* S', where n* denotes regularized intersection. The input solids are 

represented by subdivision surfaces defining their boundaries. 

The remainder of the paper is organized as follows. In Section 5.2 we discuss the represen­

tation of solids using subdivision surfaces. In S~ction 5.3 we describe the Boolean intersection 

algorithm. This is followed by the discussion of error bounds and validation of topological form 

in Section 5.4, and by a short conc1uding section. 

5.2 Representations of solids 

A typical solid will be denoted S. It is defined by its boundary surface as, a two-manifold 

without boundary embedded in ]R3, and a directed normal vector specifying which side of as 
corresponds to the inside of the object. The surface as is defined by a polyhedral mesh (M, P), 

where M is a (logical) locally-planar triangular mesh, pT is a 3 x L matrix containing the 

control points Pi E ]R3, i = 1, ... , L, and the limit surface is defined implicitly by Loop 

subdivision. We call the polyhedral mesh a control mesh, and denote it M. 

Loop subdivision was proposed in [16] and extended in [18,17,19]. Triangles are subdi­

vided by splitting each edge, and joining the new vertices created by this split with an edge. The 

weight for a newly introduced edge point is given by the mask in Figure 5.1 (lower left), and ex­

isting vertices are modified using the mask in Figure 5.1 (upper left), with f3 = f3( n) = a( n) ln, 

and a(n) = 5/8 - (3 + 2cos(21r/n))2/64 [17]. Since f3(6) = 1/16, for regular triangular 

meshes (i. e., meshes for which the valence n of each vertex is equal to 6) we have 1-nf3 = 5/8. 

Figure 5.1 (right) is discussed below. 

The limit surface defined by Loop subdivision is a box spline surface [20], and as can be 
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0: -- 0: 

Figure 5.1: Subdivision masks (left) and limit mask (right). 

expressed as 

(5.1) 

where on regular parts of the mesh the basis functions I bi are piecewise polynomials. 

The range of the index i in (5.1) was left undefined. In the case of a box spline defined on aIl 

of JR 2, the range of i could be taken to be the entire grid Z2. Both in this case and in the case of 

a finite locally-planar mesh without boundary, however, it is sufficient to consider only vertices 

in a one-ring neighbour of a triangular patch, as illustrated in Figure 5.2 (right), provided that 

at least one step of subdivision has been carried out, so that there are no adjacent non-regular 

vertices. 

This can be seen as follows. If we consider the domain of the bi ( U, v) to be aIl of JR 2 , 

the functions bi (u, v) can be found by substituting a scalar control point with Pi = 1 for i 

corresponding to a particular grid-point labelled i in hZ2 C JR2, and Pj = 0 for j i- i, and then 

applying the subdivision process until convergence. If we do this by using the masks given in 

Figure 5.1 (left) , it can be shown that the support of bi (u, v) lies in the convex hull of the set 

of vertices at distance 2 from i, where distance is measured as an integer quantity in the graph 

formed by the triangulated grid embedded in JR2 (see Figure 5.2, left). Figure 5.2 (right) is the 

consequence of looking at this fact from the opposite point of view: the value of the surface on 

the patch corresponding to a single triangle is determined by the control points that are 1-ring 

neighbours of the patch. Similarly, if the local parametric domain is supposed to be embedded 

lIn fact, in contrast to the tensor-product B-spline case, these functions do not form a basis for the spline space. 
A better name would be "nodal functions" [21]. 
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v V 
/ l,4 / 
/ V V 

support of bi(u.v) 

Figure 5.2: Loop subdivision 

in JR2 as shown in Figure 5.3 (left) [12], then the corresponding nodal function can be found in 

3~------~~----~~------77 

4 5 

Figure 5.3: Left: a base mesh used to generate the basis functions for the triangle 0-1-2 (regular 
case: vertex with valence n = 6) [12]; right: the resulting basis function at node 1 evaluated at 
subdivision level four. 

the same way. It is illustrated for the regular case in Figure 5.3 (right). 

Finally, to deal with creases introduced due to design considerations, or due to Boolean 

operations, it is necessary to introduce additional subdivision rules for crease edges and corner 

vertices [18, 17, 19]. The implementation described below permits crease edges in the input 

objects, and produces crease edges along intersection curves. 

By using the limit mask in Figure 5.1 (right) we can drive any control point to its position on 

the limit surface. If we take the set of such limit points, and link them together into a polyhedral 

mesh with the same connectivity as M, we obtain the limit mesh, denoted M. Both M and M 

depend on the level of subdivision ~, but since ~ is the same for both meshes, and fixed, we do 

not show it explicitly. 



CHAPTER 5. ROBUSTNESS OF BOOLEAN OPERATIONS ... 70 

5.3 The Boolean algorithm 

The goal of the Boolean-operation algorithm is to apply the operation to two subdivision-surface 

models, and to form the result, made up of the desired boundary segments. The algorithm takes 

the boundaries 88 and 88' oftwo solids, as described in Section 5.2, and produces a single well­

formed object boundary as output. The algorithm introduces modifications of ideas previously 

suggested by other authors, e.g., the triangle-triangle-intersection procedure of [6] is modified 

by the a-predicate [22] to ensure robustness. The overall idea of the algorithm is similar to 

[5], but we use the limit meshes M and M', rather than refined control meshes (which have 

more triangles), for the intersection-curve calculation. The limit mesh M is generally closer to 

the limit surface than the control mesh M, with fewer triangles than a refined control mesh of 

comparable accuracy, which makes the calculation less expensive. An example (in this case, a 

union operation) produced by the implemented algorithm is given in Figure 5.4. 

(a) (b) 

Figure 5.4: (a) control mesh (b) union. 

Here is the overall description of the algorithm. 

1. Surface intersection. This step computes the intersection curves of two limit meshes 

M and M'and maps them to the control meshes M and M'. The computation uses a 

triangle-triangle-intersection test, and takes floating-point roundoff error into account. 

2. Cutting. This step takes the mapped intersection curves as a reference to construct cutting 

curves, and separates the original control meshes into cut meshes. 

3. Merging. This step combines the desired parts to form a well-formed object; the inter­

section curve is tagged as a crease. 
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4. Fitting. This is an optional procedure that aims to reduce the difference between the 

computed result and true solution [5]. 

The Boolean intersection algorithm involves two main procedures, triangle-triangle inter­

section, and refinement, which is used in the cutting and merging steps. A snapping procedure 

is also used in [5] (if a vertex in the mapped intersection curve is within a certain threshold 

of a vertex in the control mesh, the latter vertex is moved, and aIl segments of the intersection 

curve within a one-ring neighbourhood of the displaced control point are updated). Based on 

our observation in the context of an algorithm based on the limit mesh, such a procedure has 

little influence on the number of triangles in the computed result, but a large (negative) effect 

on the geometric form of the result. Consequently, we did not include it. This reduces both the 

amount of work and potential robustness problems. 

Our first comments on robustness concem the triangle-triangle-intersection procedure. This 

procedure is largely based on the work of Guigue and Devillers [6]. For our implementation, we 

downloaded their source code (available online); modifications were made in order to introduce 

the equivalent of Fortune's a-predicate, for robustness reasons. The hypothesis [6] that there are 

no degenerate triangles in the input will always be satisfied in practice if the input objects have 

been provided by means of a coarse control mesh. Otherwise this condition must. be checked. 

Similarly to [33, 22], we define E to be an upper bound E > 1<51, for aIl x, y, where x*y = 

(x * y) (1 + <5) and *' is a set of operations +-, ~, x, Î defined on the representable reals with 

relative error E. 

The intersection computation relies exclusively on the sign of certain 4 x 4 determinants, 

where sign is a three-valued function taking values in {-1, 0,1}. Consider first the above­

predicate, which determines whether the point t is above (positive), below (negative), or on 

(zero) the plane through p, q and T: 

Definition 1. Given four three-dimensional points p = (Px, Py, Pz), q 

(rx , ry, rz ), and t = (tx, t y, t z ), we define theabove-predicate 

Px qx rx tx 

ap[p, q, T, tl := -
Py qy ry ty 

Pz qz rz t z 
= (t - p) . ((q - p) X (T - p)). (5.2) 

1 1 1 1 

The evaluation of this predicate is error-prone due to the use of finite precision arithmetic 

[5]. Consequently, a perturbation <5' is introduced similar to the a-predicate in [22], and the 
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classification of point positions is modified as follows: 

{ 

aboveD. 
t t-+ onD. 

belowD. 

ap[D.,t] E (8',00) 
ap[D., t] E [-8',8'] 
ap[D., t] E (-00, -8') 

(sign(ap[D., t]) = 1) 
(sign( ap[D., t]) -{:= 0) 
(sign(ap[D., t]) = 1) 

72 

(5.3) 

where -{:= means considered to be zero. With these modifications, the plane through D.pqT is 

thickened to contain an ambiguity zone with E/ = 160M3E, neglecting higher-order terms of E, 

and M is a fixed upper bound for the absolute value of any coordinate of any point. 

We assume that not aIl points are copi anar. If ail the vertices of one triangle have sign equal 

to zero with respect to the other triangle, we are in the coplanar case, and we can ignore the 

potential intersection, since the edges of neighbouring triangles will produce the desired result. 

To eliminate ambiguities in the opposite case, the first step is to perturb the point having sign 

equal to 0 by an amount p, where p > 2T, in a direction awayfrom the edge opposite the point 

[6]. The vertices of the two triangles Tl and T2 are then permuted to form the layout shown 

in Figure 5.5, where a simple comparison of intervals determines whether there is a non-empty 

intersection. 

Figure 5.5: Triangle-triangle intersection. 

Given two triangles Tl : (Pl' ql, Tl) and T2 : (P21 q21 T2), suppose that at least one of the 

vertices of Tl has a non-zero sign for the above-predicate, say, sign( ap[T2, Tl]) =f. 0, and that 

at least one of the vertices of Tl has different sign from vertex Tl, e.g., sign(ap[T2,PID =f. 

sign(ap[T21 Tl])' Thus, we are in the case where there is a potential intersection. 

Without Joss of generality, let sign(ap[T21 Tl]) 1. Then there are two possibilities for the 

position of point Pl in the case of intersection: 

1. sign( ap[T2, Pl]) = -1; in this case there is definitely an intersection, and we apply the 

original Guigue-Deveillers algorithm [6]. 
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0; this means that the point Pl falls in the ambiguity zone, and an 

a-arithmetic modification must be applied in order to remove this ambiguity. The p 

perturbation is applied: let the perturbed point be p~ = Pl + pn, where n is the direction 

of perturbation, determined by the direction through P and orthogonal to the opposite 

edge of Tl. Here, Ilnll = 1. 

Our version of the algorithm as described here fails safe, in the sense that if there is actually 

an intersection, it will be detected, but errors of the opposite type may occur. The maximum 

error in the case of errors of opposite type can be determined by applying the standard a priori 

bounds [33, p. 107] to the Guigue-Devillers algorithm [6]. 

The arguments presented here clearly do not constitute a proof of the correctness of the 

overall process: in particular, such a proof would have to involve consideration of multiple 

perturbations of a single vertex; the merging step, described below; and take into account the 

classical steps described in [24] to obtain a regularized result. Note also that, given the fail-safe 

nature of our algorithm, it might be decided to implement a postprocessing step to eliminate 

small thin sets (slivers) [9]. This, however, lies outside the domain of numerical analysis. 

The goal of refinement is first to guarantee that the mesh remains valid (merging step), and 

secondly, that the cutting curves conform to the shape of the mapped intersection curves (cutting 

step). A triangle containing a part of the intersection curve is refined if it is detected as "bad", 

i.e. the curve intersects the triangle boundary more than twice, does not intersect at aIl (the 

curve is completely inside the triangle), or intersects the boundary twice but on the same side. 

The refinement is done using quadrisection (midpoint insertion on the triangle edges). 

The steps just summarized make up a large part of the implemented Boolean operation 

algorithm, but since they are not directly concerned with the robustness questions we discuss, 

we omit the details (the main requirement, from the robustness point of view, is that the process 

should not modify the topological form of the meshes). 

In order to improve the approximation to the true intersection result, an optional fitting step 

can be applied [5]. This step is applied after execution of the complete Boolean operation. We 

have used a modified fitting procedure which minimizes the functional formed by the sum, for 

the two objects, of the terms 

2: IIJ(pj) - LPj112, (5.4) 
j 

where j indexes the vertices in the mesh at subdivision level i, pj is one vertex in the mesh 

at level i, pj Îs its corresponding position in the original coarse control mesh .M, JO is the 
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limit-surface evaluation function, and.c is the limit matrix that determines the limit position of 

the vertex Pj. Other constraints can be added to obtain better fitting. 

5.4 Error estimation and verification of well-formedness 

5.4.1 Error estimation 

Using the limit mesh as an approximation to the limit surface for the intersection calculation 

implies potential errors in the final result. In this section, we will give a bound on the possible 

error, based on the work of [14], followed by sorne possible improvements. 

Bounds of this type were discussed in a preliminary way in [25]. Other work on this topie 

includes [13, 12], as weil as earlier work [26] on B-splines that used derivatives to bound the 

surface. 

Each face F in the limit mesh M is defined by the corners qo, qI' and q2' whieh can be 

obtained by limit-surface evaluation 

n+5 
qj = aS(Uj, Vj) = LPi· bi(uj, Vj), j = 0,1,2, (5.5) 

i=O 

where the Pi are the control points in the control meshM that affect the position of qj' the bi 

are the nodal functions, and (Uj, Vj) is the coordinate for qj in the parametric domain illustrated 

in Figure 5.3 (left). 

Let n denote the face normal of F. An upper and lower bound at each of the se three vertices 

can be obtained: 

(5.6) 

where 

n+5 n+5 
Cj = L(nT(Pi - qj))+ bi + L(nT(Pi - qj))- bt 

i=O i=O 
n+5 n+5 

f.Lj = L(nT(Pi - qj))+ bt + 2.)nT (Pi - qj))- bi (5.7) 
i=O i=O 

as illustrated in Figure 5.6 for a two-dimensional case, and 
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Figure 5.6: A 2D illustration for the upper and lower bound construction. 

(nT (Pi qj))+ max{nT(Pi qj)'O} 

(nT(Pi %))- min{nT(Pi %),O} 

(see [14]). It is necessary here to estimate the range [b;, btl of the basis function bi, where 

and the minimum and maximum are taken over the triangle 0-1-2 in Figure 5.3 (left). As 

suggested in [14], this can be done by estimating the basis function by applying the subdivision 

process to Jhe Dirac polygon described above (Pi o if j =f. i). Since this only 

gives an estimate, however, it is necessary to iterate the process [14], beginning with the coarse 

estimate of the range [-1, 1]. In this way we get a bounding volume V defined by the offsets of 

limÏt-mesh vertices (see Figure 5.7): 

(5.8) 

where nj is the normal vector at each vertex %. 

Possible improvements on the bounding volume can be obtained by using the fact that the 

limit mesh is a down-sampling of the limit surface, which means that aU of ils vertices lie on 

the limit surface (except for ftoating-point error). We will modify the bound above for a tighter 

enclosure of the limit mesh by exploring this idea. 

Using the tangent mask, a tangent plane Pj,j 0,1,2, at the three vertices of each limit 
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upper bound 

lower bound 

Figure 5.7: Upper and lower bounds for a single face in the limit mesh. 

face can be obtained as: 

(5.9) 

where qj is vertex of the limit face that lies in the plane, and nj is its vertex normal, given as 

(5.10) 

where Pl' P2'··· 'Pn are the neighbours of vertex qj' and Ci = cos(21fi/n) are the limit-mask 

coefficients. Let 

(5.11) 

and 

() = min { () j , j = 0, 1, 2}. (5.12) 

We can adjust each vertex normal nj outward from the center of the limit face, by rotating the 

vector c - qj around the axis formed by nj x (c - qj) where c is the center of the limit face, 

until the new vertex normal nj satisfies 

nT nl 

Iln1111r:jll = (), j = 0, 1,2. (5.13) 

Then for each vertex qj we get a new plane 

(5.14) 
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By reftecting each of the se three planes with respect to the limit face F, we get three other 

planes P'. Intersecting each of these planes with the bounding volume V previously calculated, 

Pj with the upper bound, and P' with the lower bounds (see Figure 5.8), we can get a tighter 

closure for each face in the limit mesh. 

vertex limit mesh patch 

tangent 1J1cLl.1<:;-__.. 
upper and lower bounds 

angent plane 

Figure 5.8: Illustration for the tighter bound construction.' 

For now, these modifications provide only approximate bounds, and more work is required 

to transform them into provable bounds that are guaranteed to enclose the limit surface. 

5.4.2 A posteriori verification of well-formedness 

It is of interest to be able to confirm that the limit mesh M (respectively M') has the same 

topological form as the corresponding input set, represented by its boundary as (respectively 

as'). Similarly, suppose that MC is the mesh corresponding to the computed approximation 

of the result of the Boolean operation, i.e., MC is intended to approximate the boundary of 

SI = S n* S'. (The mesh MC is obtained from refined control meshes corresponding to each 

input operand.) Again, it may be of interest to confirm that MC has the same topological form 

as as1, the actual surface associated with the computed mesh. We will phrase the discussion of 

the se questions in terms of the first of the examples just given. 

Given the limit mesh M, the fact that two of its faces are disjoint does not imply that the cor­

responding faces of as are disjoint. Similarly, it may happen that lA and F2 are adjacent faces 

sharing an edge or vertex, but that the corresponding faces Fi and F2 of as have extraneous 

intersections, i.e., intersections other than those along the designated edge or at the designated 

vertex. A completely robust algorithm should be able to perform a posteriori validations of 

computed results that exclude the possibility of inconsistencies of this kind. (Note that there 
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is no practical inconvenience in assuming that faces in a well-formed mesh do not share more 

than a single edge or vertex.) 

Detection of intersection between patches FI and F2 that are supposed to be disjoint can 

be detected on a fail-safe basis by comparison of convex hulls (i.e., non-intersection of convex 

hulls is a sufficient condition for non-intersection of patches). Excluding the possibility of 

self-intersection of a patch FI, and of extraneous intersections of adjacent patches FI and F2, 

was discussed in [28], where the method of [27] was used. We extend that work as follows. 

First of aIl, we conclude that in the regular case, it is not necessary to compute the projection 

direction required in [27]. This means, in particular, that in the regular case there is no need to 

omit verification of the second condition in [27], which was suggested as a possible approach 

in [28]. Secondly, [28] detects extraneous intersections by applying the criterion of [27] to 

the union of adjacent patches. It was shown in [29], however, that there is a supplementary 

condition to be satisfied if this method is used, and we show how to verify this supplementary 

condition in the regular case. 

The details for the following extensions can be found in [30]. The first extension follows 

from the fact that if the corners of FI and F2 aIl have valence 6 (the regular case), then the cor­

responding patches H and F2 can be expressed as Bézier surfaces, and the Bézier coefficients 

are explicitly available [31,32]. This me ans that extraneous intersections can be detected by the 

convex-hull criterion [30, Crit. 3.2.1 *] (common edge) and [30, Crit. 3.2.2*] (common vertex). 

Furthermore, it is easy to extend this approach to work in a fail-safe manner, once the separation 

plane specified in the se criteria has been found, by applying the standard a priori bounds for 

floating-point arithmetic to the calculation of the inner products defining the separation planes. 

Similar remarks apply to the case of self-intersection of a patch, say FI, using [30, Crit. 3.1 *]. 

The second extension, mentioned above, concerns the fact that application of the criterion of 

[27] to the union FI U F2 of adjacent patches requires verification of a supplementary condition 

along the common boundary, namely that the mapping defining the combined patch must be 

locally one-to-one along the common boundary [29, Prop. 2.2]. This is true in both the regular 

and non-regular case. In the regular case the condition can be verified, using the fact that the 

common boundary is a Bézier curve, and using [30, Crit. 2.1 *]. Again, this result can be made 

fail-safe when ordinary floating-point arithmetic is used. 
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5.5 Conclusion 

We have given a summary description of an implemented algorithm that computes Boolean 

operations on objects represented by their subdivision-surface boundaries. The algorithm is 

based on the use of the limit mesh, rather than a refined control mesh, for the computation of the 

intersection between the surfaces defining the two operands. Most of the discussion in the paper 

was concerned with three robustness issues of interest in the context of this algorithm, namely 

the robustness of triangle-triangle intersection, approximation of the limit surface by the limit 

mesh, and a posteriori verification of well-formedness. While the nature of the mathematical 

arguments necessary to resolve the se issues was described, the paper did not give proofs. Thus, 

future work should include integration of the analysis outlined above into a combined whole, 

to produce a unified robustness result for Boolean intersection, including validation results in 

the non-regular case. Such a result would include, in particular, procedures permitting. the a 

posteriori validation of topological form. 
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Chapter 6 

Conclusion 

"During the 1991 Gulf War, the United States used a missile defense system called Patriot to 

defend its troops. The system was largely effective but on one occasion, it failed badly. An 

analysis after the event explained what happened. The internal dock of the computer that con­

trolled the defense system stored the time as an integer value in units of tenths of a second, and 

the computer program converted this to a floating point value in units of seconds, rounding the 

expansion accordingly. Because the program was an old one that had been updated to account 

for new technology, the conversion to floating point was done more accurately in some places 

in the program than in others. To calculate a time interval, the program took two snapshots of 

the dock and subtracted them. Because of the round inconsistencies, the system failed to work 
1 

when it had been running for more than 100 hours." [OveOl] 

The above example may help explain the importance of reliability, as it is sa id "There is 

one thing that is even more important than lightning speed, and that is reliability" [OveOl]. 

This is especially true because many critical matters today are dependent on complex computer 

programs, and much of this code depends, in one way or another, on floating-point computing. 

They can be greatly affected by its reliability. 

In this thesis, we presented our work on the problem of reliable computation for geo­

me tric models. It covered three individual but related problems: floating-point arithmetic for 

computational-geometry problems, especially with the application ofbackward error analysis in 

different geometric problems; the combined mesh-surface-model repair problem, with focus on 

the joining procedure; and the robustness of Boolean operations on subdivision-surface models. 

82 
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6.1 Summary 

Floating-point arithmetic is very convenient for most practical work because of its numerous 

engineering advantages, but naively applied ftoating-point arithmetic can cause disasterous re­

sults. The now-standard backward error analysis provides us a tool to distinguish those algo­

rithms that overcome the problem to whatever extent it is possible to do so. Three examples 

were presented to illustrate how to carry out error analysis in different geometric application 

contexts. We showed that ftoating-point arithmetic may be sufficient, provided that a stable 

algorithm is applied, in the case where uncertainties are present in the data. 

Trimmed-NURBS surfaces have been widely adopted in most geometric modelers, and ge­

ometric operations on this representation are very important. We proposed an algorithm for 

the joining operation for combined mesh-surface patches, with guidance based on the use of 

two error measures. The joined result is guaranteed to satisfy both the absolute error c~iterion 

and the normal error criterion. The necessity of the se two error criteria has also been proved, 

if we wish to devise a reliable algorithm. Two different cases are considered for the proposed 

algorithm, based on the availability or not of an explicit joining curve. 

Trimmed-NURBS get their advantage from being able to model complex geometrical ob­

jects, but the trimming difficulties and the error-prone conversion procedure hinder their appli­

cation. Subdivision-surface models, as an alternative to trimmed-NURBS, have rapidly gained 

popularity as a geometric representation due to their simplicity and efficiency for smooth sur­

face construction. But even though the fundamental theory of the se models has been weil 

discussed and understood, few theoretical guarantees about the robustness of the implemented 

applications are available. 

Amongst these applications are the Boolean operations. Boolean operations are one of the 

most important facilities of geometric modelers. Their application on trimmed-NURBS models 

are known to be difficult, and care has to be taken to handle special and degenerate cases. 

We have studied the problem of applying Boolean operations to subdivision-surface models. 

An implemented algorithm that computes Boolean operations on objects represented by their 

subdivision-surface boundaries was presented. The. proposed algorithm is based on the use 

of the limit mesh, rather than a refined control mesh, for the computation of the intersection 

between the surfaces defining the two operands. Our focus has remained on the robustness 

issues of interest in the context of this algorithm. 
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6.2 Future work 

A first possible extension to the current work is a theoretic justification for the use of the 

limit mesh of subdivision-surface models, as an operand for Boolean operations, in place of 

a finer control mesh. Sorne empirical results have been presented in [HW07] for Catmull-Clark 

subdivision-surface models, but no theoretical result is available on this subject. 

A framework for a backward error analysis, suitable for the case of Boolean operations on 

objects represented by intemally inconsistent trimmed-NURBS representations, was given in 

[ASZ07], but no such framework has been given for subdivision-surface models. Therefore, 

an immediate extension of our work would be to generalize the current validation results to 

the non-regular case, and to integrate aIl of this analysis into a combined whole, to produce a 

unified robustness result for Boolean intersection for subdivision-surface models. This result 

would include, in particular, procedures permitting the a posteriori validation of topological 

form. 

The impact of nonrobustness in the domain of geometric modeling is weIl known, especially 

its effects on economics and productivity, e.g. it is the principal barrier to the full automation 

of the modeling system [YapOl]. Over the past twenty years much progress has been made on 

the precision and robustness problem. Methods to enhance the precision of intersection com­

putation, to monitor numerical error contamination and to find altemate means of performing 

arithmetic, have been explored ·in sorne detail [Muk05]. Further, more attention has been pa id to 

improving robustness, e.g. the birth of Computational Geometry Aigorithms Library (CGAL) 

project [g-c], which is a joint effort by a number of research groups in Europe and Israel to 

produce a robust software library of geometric algorithms and data structures [HaI02]. The goal 

of CGAL is to make available a carefully designed and implemented library with an emphasis 

on robustness and generality. 

From a long-term view, unfortunately, no satisfactory general-purpose solution has been 

found for the robustness problem, especially in geometric modeling [Sch99]. Robustness issues 

are still critical in the passage from theory to practice in geometric algorithms. Ignoring the se 

issues can result in unreliable or incorrect programs. Transforming a geometric algorithm into 

an effective computer program is particularly difficult because of the basic assumptions made 

on most theoretical geometric algorithms, conceming complexity measures and the handling of 

robustness, namely issues related to arithmetic precision and degenerate input [HaI02]. For the 

CAD community, one of the biggest challenges today is still robustness related issues [KBF05]. 
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Translation of geometries from one CAD system into another is far from stable: holes, trans­

lation eITors, and other problems often arise. The major sources are: floating-point arithmetic 

and tolerances. Floating-point arithmetic can be dealt with theoretically but not yet practicaIly. 

Digital arithmetic and CUITent mathematical theory are insufficient to perform reliably for com­

plex geometric operations and to interoperate weIl with CAD downstream analysis software 

[Far99, KBF05, BAA +99]. Other problems include mesh-based techniques: major problems 

are reliability and difficulty in preserving small features whose size is of the same order of eITor 

due to sorne user-specified global distance threshold [PM08]. 

As "the availability of greatly improved computational techniques and immensely faster 

computers allows the routine solution of complicated problems that would have seemed im­

possible just a generation ago" [OveOl], we hope, one day, nonrobustness will be resolved as 

weIl. 
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Notes on the implementation 

The implementation of ail ofthis Ph.D. work was carried out in C++. OpenGL and qt were used 

for visualization and interface design. 

For the work on reliable joining of surfaces for combined mesh-surface models (Ch. 4): 

• Software Maya [g-ma] was used to generate 3D trimmed-NURBS models and the corre­

sponding triangular meshes. 

• GNU Scientific Library (GSL) was used for the construction of correspondences between 

trimmed-NURBS and triangular meshes. 

For the work on robustness of Boolean operations on subdivision-surface models (Ch. 5): 

• The halfedge data structure was used for subdivision-surface models (OpenMesh [g-o]), 

both for the data storage and the mesh manipulation. 

• The Axis-Aligned Bounding Box (AABB) hierarchy was used in the subdivision surfaces 

intersection calculation procedure for optimization purposes. 

• The GNU Scientific Library (GSL) was used for the minimization problem in the fitting 

procedure. 

Software such as matlab [g-mb] and mathematica [g-mc] were used for prototype and veri­

fication purposes. Xfig [g-x] was used to draw the illustration figures in the thesis. 
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