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Résumé 

L'explosion d'information sur le Web rend indispensable les systèmes de recherche 

d'information ou des engins de recherche pour aider à retrouver des informations 

pertinentes pour les utilisateurs. Les systèmes de recherche d'information traditionnels 

utilisent l'hypothèse suivante pour simplifier l'implantation: différents termes dans des 

documents et des requêtes sont supposés d'être indépendants. Par conséquent, les 

documents retrouvés doivent contenir exactement les mêmes termes que la requête. Or, 

les documents contenant des termes différents mais reliés peuvent aussi être pertinents. 

Dans cette thèse, nous essayons de relaxer l'hypothèse d'indépendance en exploitant 

des relations entre termes, comme dans le cas où «algorithme» est relié à 

« informatique ». Le but de cette étude est de construire de meilleures représentations 

pour des documents et des requêtes. Dans cadre de modèle de langue statistique, pour 

estimer les modèles du document et de la requête, au lieu de nous fier uniquement à la 

distribution de termes, nous intégrons aussi des relations entre termes. Ainsi, les modèles 

construits ne sont plus basés seulement sur des termes qui apparaissent dans le document 

et dans la requête, mais aussi sur les termes reliés, qui fournissent des représentations 

alternatives aux contenus sémantiques du document et de la requête. 

Nus avons .exploré différentes façons de construire de meilleurs modèles afin de 

résoudre différents problèmes. En particulier, nous proposons les approches pour traiter 

les problèmes suivants: 

• L'expansion du document, qui vise à étendre la représentation du document afin 

de couvrir des termes reliés. Ceci permet de relaxer l'approche de «match exact ». 

Les relations entre termes proviennent soit d'un thésaurus manuel, soit des 
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statistiques du corpus (basés sur des co-occurrences). Ces relations sont intégrées 

dans le processus de lissage du modèle de document de telle manière que les 

termes reliés sont attribués une probabilité plus forte qu'un terme non relié. 

• L'expansion de la requête, qui vise à améliorer la représentation de la requête. 

Nous utilisons un modèle de chaîne de Markov pour ajouter des termes reliés dans 

le modèle. En utilisant ce mécanisme, nous pouvons, en plus, considérer des 

termes qui sont indirectement reliés aux termes initiaux de la requête. Cette 

approche est utilisée pour étendre la requête non seulement pour la recherche 

monolingue, mais aussi pour la recherche translinguistique. 

• A problème crucial dans l'expansion de la requête est le grand nombre de termes 

d'expansion ajoutés, ce qui peut grandement ralentir le processus de recherche. 

Ainsi, nous étudions aussi la question de comment réduire ces termes d'expansion 

à ceux qui sont utiles seulement. Nous proposons une approche d'apprentissage 

supervisé pour sélectionner des termes d'expansion selon leurs impacts potentiels 

sur la performance de recherche. Cette approche est aussi utilisée pour proposer 

des altérations de termes, et ceci constitue une alternative à la troncature de 

termes, qui sont souvent trop radicale. En comparaison avec les approches 

traditionnelles, nous pouvons non seulement réduire grandement le nombre de 

termes d'expansion, mais aussi améliorer la performance de recherche. 

Toues les approches proposes ont été testées sur des collections de test de TREC et 

NTCIR. Les résultats expérimentaux montrent clairement que ces approches peuvent 

produire des améliorations substantielles comparées aux méthodes traditionnelles. 

En conclusion, cette étude a montré que les modèles traditionnels peuvent être 

améliorés en considérant les relations entre termes, et ceci permet d'augmenter la 

performance de recherche. 

Mots clés: Recherche d'information, Modèle de langue, Relation entre termes, 

Expansion de document, Expansion de requête 
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Abstract 

With the exponential growth of information in the Web, information retrieval systems 

have become more and more important as an indispensable tool to locate the information 

that interests the users. The traditional information retrieval systems adopt the 

independence assumption in order to simplify the model construction. The independence 

lies in three aspects, i.e., among query terms, document terms, or between a query term 

and a document term. The independence assumption does not hold in practice, which . 

results in the ambiguities in query and documents representation, as well as the "exact 

match" for relevant document retrieval. 

In this thesis, we try to release the independence assumption by exploiting the 

relationships between words. Since we adopt the language modeling framework for 

document ranking, we have to estimate a probabilistic model with multinomial 

distribution for document and query respectively. Therefore, our basic approach is to 

improve the estimation of the two models by making use of the word relationships. In the 

thesis, we tried the following approaches: 

• Document expansion, which aims to avoid the "exact-match" for relevant 

documents. We consider the word relationships when smooth~ng the document 

model so sorne related terms will be assign higher probabilities even they do not 

occur in the document. 

• Query expansion to resolve the ambiguity in query representation. Particularly, 

we use a Markov chain model to exploit non-immediate word relationships. This 

framework is also extended to deal with cross-lingual information retrieval 

problems. 
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• We also proposed a supervised leaming framework to select good query 

expansion terms and query alterations. The selection is according to the 

relationship between the selected term and other query terms. More particularly, 

the selection considers the impact of individual expansion terms. 

AlI the proposed methods are evaluated with TREC or NTCIR benchmarks, and the 

experimental results show the methods achieve substantial improvements over sorne 

competitive baselines. 

Keywords: Information Retrieval, Language Modeling, Word Relationship, 

Document Expansion, Query Expansion 

6 



Acknowledgement 

First and foremost, 1 would like to express my greatest gratitude to my advisor, 

Professor Jian-Yun Nie. 1 could not complete this thesis without Jian-Yun's insightful 

guidance. Jian-Yun is a great advisor. Whenever 1 have a problem with my research 

projects, he is always ready to give me sorne useful advices. From him, 1 leamed many 

things. 1 leamed how to do serious research, how to combine theoretic ideas with 

practical applications, and how to write quality scientific papers. 

1 also have a lot of reasons to thank Dr. Jianfeng Gao at Microsoft Research, who 

introduced me to the fields of natural language processing and information retrieval. 1 

began to work with Jianfeng when 1 was a Master degree student. He introduced me to 

the most important and fundamental knowledge to those fields and the basic skills to 

perform research work. 

1 would like to acknowledge the role played by Professor Stephen Robertson. 1 was 

deeply impressed by his insight to the research problems. He taught me how to analyze 

experimental results with extensive statistical approaches. Sorne of the work presented in. 

this thesis benefited greatly from discussions with him. 

1 am thankful to Professor Bruce Croft, Philippe Langlais, Pascal Vincent and Alain 

Polguere for accepting to be members of my PhD committee. 1 am honored to have them 

in my committee. 

1 would also like to thank Prof. Guy Lapalme and Elliott Macklovitch of the RAU lab 

for their kindness and supports. In addition, 1 would also extend my gratitude to the 

fellow students, Jing Bai, Lixin Shi, Alex Patry, Fabrizio Gotti, Hugo Larochelle, 

7 



Youssef Kadri, Hughes Bouchard. Thanks for aIl their important support during the last 

four years. In particular, Fabrizio has been a helpful expert on Linux system. Whenever l 

had technique problems, he was always ready to suggest me a good solution. 

l would like to thank my parents. Without their unconditional support, it was 

impossible for me to obtain any achievement. 

FinaIly, l would like to thank my dear wife, Yao, for her continuous support and 

encouragement. Whenever l felt frustrated, she was always there to listen to aIl my bitter 

words, to comfort and to encourage me. She brought so much happiness to me during my 

PhD studies. 

8 



Table of Contents 

Résumé ............................................................................................................................... 3 
Abstract .............................................................................................................................. 5 
Acknowledgement ............................................................................................................. 7 
Table of Contents .............................................................................................................. 9 
List of Tables ................................................................................................................... 14 
List of Figures .................................................................................................................. 16 
List of Symbols ................................................................................................................ 17 
Chapter 1 Introduction ............................................................................................... 18 

1.1 Information Retrieval Challenges ................................................................... 19 

1.1.1 Difficulties to Represent Information Need ............................................ 19 

1.1.2 Difficulties to Represent Documents ...................................................... 20 

1.1.3 Difficulties to Judge Relevance ............................................................... 21 

1.2 Our Approach - Exploiting Word Relationships ........................................... 23 

1.3 Our Contributions ........................................................................................... 26 

1.4 Organization of the Thesis .............................................................................. 28 

Chapter 2 Traditional Information Retrieval Approaches ..................................... 30 

2.1 Definition and Basic Processes of IR ............................................................. 31 

2.2 Sorne Existing IR Models ............................................................................... 33' 

2.2.1 Boolean Models ....................................................................................... 34 

2.2.2 Vector Space Model ................................................................................ 35 

2.2.3 Probabilistic Models ................................................................................ 37 

2.2.4 Statistical Language Models ................................................................... 39 

9 



2.3 Prior Work Go Beyond Tenn Independence Assumption .............................. 43 

2.4 Evaluation of Information Retrieval Systems ................................................ 44 

2.4.1 Evaluation Metrics .................................................................................. 45 

2.4.2 Standard Benchmarks for Relevance ................. , .................................... 46 

Chapter 3 Exploiting Word Relations for Document Expansion ........................... 50 

3.1 INTRODUCTION .......................................................................................... 50 

3.2 Previous Work ................................................................................................ 52 

3.3 Document Expansion by Combining WordNet and Co-occurrence ........... : .. 56 

3.4 Parameter estimation ...................................................................................... 60 

3.4.1 Estimating conditional probabilities ....................................................... 60 

3.4.2 Estimating mixture weights ................... : ................................................. 63 

3.5 Experiments ........................................................................................... : ........ 66 

3.5.1 Experimental setting ................................................................................ 66 

3.5.2 Experimental Results ............................................................................... 67 

3.5.3 The role of link model ............................................................................. 68 

3.5.4 The role of different relations in the WordNeL ...................................... 69 

3.6 Summary and future work .............................................................................. 70 

Chapter 4 Query Expansion with Markov Chain Models ...................................... 72 

4.1 INTRODUCTION ................................................................... : ...................... 72 

4.2 Pseudo-Relevance Feedback .......................................................................... 73 

4.3 Markov Chain Model for Query Expansion ................................................... 77 

4.3.1 Markov Chain Preliminaries ................................................................... 78 

4.3.2 Query Expansion with MC Models ......................................................... 81 

10 



4.3.3 Estimation of MC Parameters ................................................................. 83 

4.3.4 Discriminative Training Method to Estimate the Coefficients of Model 
Combination .............................................................................................................. 86 

4.4 Experiments .................................................................................................... 87 

4.4.1 Results of Query Expansion with MC ..................................................... 89 

4.4.2 Sensitivity of Stopping Probability in Random Walk ............................. 91 

4.4.3 Multi-step VS Single Step ....................................................................... 92 

4.4.4 Comparing Forward Inference with Bidirectional Inference .................. 93 

4.5 Summary of Query Expansion with MC ........................................................ 94 

Chapter 5 Cross-Lingual Information Retrieval with Markov Chain Models ..... 95 

:S.1 Introduction .................................................................................................... 95 

5.2 Background ..................................................................................................... 97 

5.3 Query Translation as a Random Walk .......................................................... 102 

5.3.1 Principle ................................................................................................ 102 

5.3.2 Representing Word Relationships with a MC Model ........................... 104 

5.3.3 Random Walk for Query Translation .................................................... 106 

5.4 Parameter Estimation .................................................................................... 109 

5.4.1 Probabilities of Relationships ............................................................... 109 

5.4.2 Parameter Tuning ... : .............................................................................. 111 

5.5 Experiments .................................................................................................. 112 
/ 

5.5.1 Experimental Setting ............................................................................. 112 

5.5.2 Does the MC Model work for CLIR? ................................................... 114 

5.5.3 The impact of Different Relationships .................................................. 118 

5.6 Related Work ................................................................................................ 119 

11 



5.7 Summary and Future Work .......................................................................... 120 

Chapter 6 Selecting Good Expansion Terms for Pseudo-Relevance Feedback .. 122 

6.1 Introduction .................................................................................................. 122 

6.2 Related Work ................................................................................................ 124 

6.3 A Re-examination of the PRF Assumption .................................................. 127 

6.4 Usefulness of Selecting Good Terms ........................................................... 131 

6.5 Classification of Expansion Terms ............................................................... 132· 

6.5.1 SVM Classifier ...................................................................................... 132 

6.5.2 Features Used for Term Classification .................................................. 136 

6.5.3 Classification Experiments .................................................................... 139 

6.6 Re-weighting Expansion Terms with Term Classification ........................... 140 

6.7 IR Experiments ............................................................................................. 141 

6.7.1 Experimental Settings ........................................................................... 141 

6.7.2 Ad-hoc Retrieval Results ...................................................................... 141 

6.7.3 Supervised vs. Unsupervised Leaming ................................................. 144 

6.7.4 Soft Filtering vs. Hard Filtering ............................................................ 146 

6.7.5 Reducing Query Traffic ......................................................................... 147 

6.8 Summary of This Chapter. ............................................................................ 148 

Chapter 7 Exploiting Word Relations for Context Sensitive Stemming .............. 150 

7.1 Introduction .................................................................................................. 150 

7.2 Related Work ................................................................................................ 153 

7.3 Generating Alteration Candidates ................................................................ 155 

7.4 Bigram Expansion Model for Alteration Selection ...................................... 156 

12 



7.5 Regression Model for Alteration Selection .................................................. 157 

7.5.1 Linear Regression Model ...................................................................... 158 

7.5.2 Constructing Training Data ................................................................... 160 

7.5.3 Features Used for Regression Model .................................................... 160 

7.6 Experiments .................................................................................................. 162 

7.6.1 Experiment Settings .............................................................................. 162 

7.6.2 Experimental Results ............................................................................. 163 

7.7 Summary of This Chapter ............................................................................. 166 

Chapter 8 Conclusion and Future Work ................................................................ 168 
Bibliographies ................................................................................................................. 172 

13 



List of Tables 

Table 1 . Query Length of World Wide Search Engines ................................................. 20 

Table 2. Contingency Table of Term Occurrence ............................................................ 38 

Table 3. One Sample Document of TREC Collections .................................................... 47 

Table 4. One Sample Query of TREC Collections .......................................................... 48 

Table 5. Statistics of Data Sete ......................................................................................... 66 

Table 6. Comparison between Unigram Model and Dependency ModeL ....................... 67 

Table 7. Different combinations of unigram model, link model and co-occurrence model 

........................................................................................................................................... 68 

Table 8. Average weight for different relations over aIl queries ...................................... 69 

Table 9. Statistics of Test Collections ............................................................................... 87 

Table 10. Comparison different models for query expansion ........................................... 89 

Table 11. Forward inference v.s. bidirectional inference ................................................ 92 

Table 12. Top expansion terms with FIR and FIR+BIR. .................................................. 93 

Table 13. Statistical Information of Dataset ................................................................... 112 

Table 14. Compare Different Model for TREC5&6 Collection ..................................... 113 

Table 15. Compare Different Model for TREC9 Collection .......................................... 113 

Table 16. Compare Different Model for NTCIR3 Collection ........................................ 113 

Table 17. Translation obtained by Each Models for One Query .................................... 115 

Table 18. Different Relation Combinations for long queries ......................................... 118 

Table 19. Different Relation Combinations for short queries ......................................... 118 

Table 20. Proportions of each group of expansion terms selected by the mixture model 

......................................................................................................................................... 129 

Table 21. The impact of oracle expansion classifier.. .................... : ................................ 131 

14 



Table 22. Classification results of SVM ......................................................................... 139 

Table 23. Statistics of evaluation data sets ..................................................................... 141 

Table 24. Ad-hoc retrieval results on AP data ................................................................ 142 

Table 25. Ad-hoc retrieval results on WSJ data ............................................................. 142 

Table 26. Ad-hoc retrieval results on Disk4&5 data ...................................................... 142 

Table 27. Expansion terms of two queries. The terms in italic are real good expansion 

terms, and those in bold are classified as good terms ..................................................... 143 

Table 28. Supervised Learning VS Unsupervised Leaming ........................................... 146 

Table 29. Soft Filtering VS Hard Filtering ..................................................................... 147 

Table 30. Soft filtering with 10 terms ............................................................................. 147 

Table 31. Overview of Test Collections ......................................................................... 162 

Table 32. Results of Query 701-750 Over Gov2 Data .................................................... 163 

Table 33. Results of Query 751-800 over Gov2 Data .................................................... 164 

Table 34. Results of Query 801-850 over Gov2 Data .................................................... 164 

Table 35. Results of Query 301-350 over TREC6&7&8 ............................................... 164 

Table 36. Results of Query 351-400 over TREC6&7&8 ............................................... 164 

Table 37. Results of Query 401-450 over TREC6&7&8 ............................................... 165 

15 



List of Figures 

Figure 1. The user interface of Google Search Engine ..................................................... 30 

Figure 2. Information Retrieval Processes ........................................................................ 31 

Figure 3. Bayesian Network for Generating a Query Term .............................................. 58 

Figure 4. Sensitivity of for MC performance .................................................................. 91 

Figure 5. Convergence of Random Walk ......................................................................... 92 

Figure 6. Illustration of Query Translation via Random Walk ......................................... 99 

Figure 7. Distribution of the expansion terms for "airbus subsidies" in the feedback 

documents and in the collection ...................................................................................... 130 

Figure 8. Binary SVM with Non-separable Instances .................................................... 133 

Figure 9. The Effect of Kemel Function ........................................................................ 135 

Figure 10. Considering all Combinations to Calculate the Plausibility of Alterations ... 156 

16 



List of Symbols 

d: A document - a sequence of unordered words 

q: A query - a sequence of unordered words 

. Bd or P(wld): A probabilistic model for a document 

P mlwld): the probabilistic model for a document estimated with Maximum Likelihood 

estimation 

Bq or P(wlq): A probabilistic model for a query 

P mlwlq): the probabilistic model for a query estimated with Maximum Likelihood 

estimation 

BF : The topic model of feedback documents 

17 



Chapter 1 

Introductioll 

Recent years we have seen an explosive growth of the volume of information, 

especially on the web. The volume of information in the web can be measured by either 

the number of web sites or indexed web pages. According to a widely respected statistics 

issued by N~tcraftl, we can observe the number of web sites is increasing exponentially 

with time. 

On the other hand, a recent study which estimated the number of web pages indexed 

by two popular search engines (Google and Yahoo) reveals that there are at least 45 

billion web pages in the public1y indexable web2
. Considering the number of the public 

accessible web pages are much less than the invisible ones, which are called deep web 

[Bergman, 2001], the whole Web should be much larger. 

Other types of textual information, such as books, newspapers, and periodicals are also 

growing rapidly. According to a study by Lyman and Varian (2000), the worldwide 

production of original content, stored digitally.using standard compression methods, is at 

least 1 terabytes/year of books, 2 terabytes/year for newspapers, 1 terabytes/year for 

periodicals, and 19 terabytes/year for office documents. 

1 http://news.netcraft.comlarchives/web_server_survey.html 

2 http://www.worldwidewebsize.coml 
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The large volume of information makes it a significant challenge to effectively and 

efficiently manage the online information. Information retrieval is by far the most useful 

technique to address the problem. The retrieval oL textual information is especially 

important, because the most frequently needed information is contained in texts; even 

though other multi-media information also exists. In this thesis, we focus on text retrieval. 

Therefore, hereafter, we mean text retrieval even if we calI it information retrieval. 

1.1 Information Retrieval Challenges 

The task of information retrieval (IR) can be defined as to locating relevant documents 

from a large set of documents with respect to a user's information need, which is usually 

described by a query. Therefore, a retrieval process involves three issues: query 

formulation, document representation and relevance judgment. However, the IR task is 

poorly defined. In particular, the notion of relevance has many interpretations, and it is 

difficult to capture what relevance is in the user' s mind. The difficulties are spread over 

all the above 3 aspects. We will review them in the following subsections. 

1.1.1 Difficulties to Represent Information Need 

The user' s information need is usually expressed by a short naturallanguage sentence, 

sorne Boolean expressions or even just sorne keywords. A query formulated in this way 

cannot exactly convey the user's information need. There are at least three reasons. 

Firstly, a typical query typed in a search engine is extremely short. Most users would 

not be patient enough to type a long query. In January 10, 2007, the leading web ranking 

provider, RankStat.com3
, reported that most people use 2-word phrases in search engines. 

Of all search engine queries, 28.38 percent use 2 word phrases, 27.15 percent use 3 word 

3 www.rankstat.com 
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phrases. The detailed information is shown in Table 1. From the table, we observe that 

the distribution of the query length is approximately an exponential distribution with a 

long tail, and the average query length is less than 3 words. With such an extremely short 

query, it is hard for the user to express her information need precisely and completely. 

a e T bl 1 Q uery engl 0 or 1 e earc ngmes L th f W Id W·d S hE· 
Query Length Percentage Query Length Percentage 

1 word 13.48 6 words 3.67 
2 words 28.38 7 words 1.63 
3 words 27.15 8 words 0.73 
4 words 16.42 9 words 0.34 
5 words 8.03 10 words 0.16 

Secondly, the keywords in a query may possess more than one sense, which makes a 

query very ambiguous. For example, the query term "java" has at least three senses. It 

may mean a popular prograrnrning language, a name of an island in the east-south Asia, 

as well as the name of one kind of coffee. It is very difficult for a human to determine the 

exact intent of the user without further information, not to say a machine. 

Thirdly, the words used in a query are not the only way to express information need. 

For example, a user interested to buy a music player might search the item in the Internet 

with a query: "ipod". However, relevant documents may use "apple music player" to 

represent this item. Here, both terms represent the same concept, which represent a digital 

music player. The documents using "apple music player" should be considered to be 

relevant to the query because it describes the same concept. However, many concepts can 

be expressed in multiple ways. Therefore, there may be a gap between terms used in the 

documents and those used in the queries. An approach relying on direct word-matching 

between the document and query will fail to retrieve many relevant documents. 

1.1.2 Difficulties to Represent Documents 

Besides the information need, it is also very difficult to represent a document 

efficiently and effectively. "Effective" means that the content of each document in the 

collection should be represented thoroughly. "Efficient" means that the internaI 
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representation should make document retrieval very fast. The efficiency problem is 

usually solved by organizing the document index as a special data structure, i.e., inverted 

file (Salton and Buckley, 1988; Manning et al., 2008). This data structure supports 

efficient looking up the occurrence of a term within a document. For the effectiveness 

problem, there is no satisfactory solution yet. Most state-of-the-art experimental IR 

systems represent documents with the keywords occurring in them. The keywords can be 

weighted according to their occurrences within individual document and the whole 

collection, such as TFIDF (Salton and Buckley, 1988), according to the uni gram 

language modeling (Zhai and Lafferty, 200Ia), as well as according to the BM25 schema 

in Okapi system (Robertson and Walker et al., 1992). AlI of the above models assume 

keywords within a document to be independent, which lead to the so called "bag-of­

word" approach. However, in natural languages, this strong assumption does not hold. 

The assumption is in fact a matter of mathematical convenience than a reality. For 

example, the word "pro gram" is not independent from "algorithm". A document 

containing "pro gram" may talk about algorithms. There is thus a relationship between the 

two terms. A crucial problem is how to take into account such relationships during 

document retrieval. 

1.1.3 Difficulties to Judge Relevance 

The documents that can satisfy a user' s information need are called relevant 

documents, and thus, the retrieval task is to find all su ch relevant documents. The notion 

of "relevance" is very complex. Like a user's information need, relevance is generally 

imprecise and depends on the situation or context of the retrieval task. The criterion for 

judging wh ether a particular set of documents would satisfy a user's information need is 

inherently impossible to formalize. In order to simulate the notion of relevance in a 

system, two assumptions are often made to simplify the retrieval task. First, the relevance 

of one document is assumed to be independent of other documents, including those 

already retrieved (independent relevance assumption). This means that a document is 

relevant whatever the documents the user has already seen before. Second, the relevance 
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of a document is assumed to mean the level of topical relevance of the document with 

respect to the query (topical relevance assumption) (Zhai, 2003), i.e. a document is 

judged relevant if it is on the same topic as the query. 

In fact, the two assumptions do not hold for real relevance. A document may be 

relevant or not depending on what other documents the user has already read. A 

document on the same topic as the query may still be irrelevant (Zhang et al., 2002; Zhai 

et al., 2003). However these assumptions are made in order to make the estimation of 

relevance tractable. Based on the two assumptions, most traditional models judge 

relevance according to the occurrence of query terms in the corresponding document. 

These models are indeed based on term matching, and they are commonly called "bag-of­

words" models. Undoubtedly, a "bag-of-words" model, in many cases, works very weIl. 

In the example mentioned above, sorne users are interested in laptops can retrieve sorne 

relevant documents by typing the query "laptop" supposed these relevant documents 

contain this term. However, in many other cases, the term-matching strategy is 

insufficient. For example, the user is not interested in arbitrary laptops, but the Apple 

ibook. In this case, she formulates a query "ibook". With this query, only documents 

containing "ibook" can be retrieved by the "bag-of-word" models. However, a document 

containing "apple laptop" can also satisfy the user' s need. In another example, a traveler 

to Indonesia is interested in the transportation information in Java Island. Then a possible 

query might be "find transportation in Java Island". We typed this query in two popular 

commercial search engines, Google and Live search. However, in the result lists retumed 

by both search engines, most web pages are about the Java programming language. 

Among the top 10 results, only 2 or 3 results are about transportation systems. This error 

is caused by the multiple senses of the term "java". The overwhelming number of 

answers about "Java language" may be partly due to the fact that there are much more 

document about "Java language" than about "transportation in Java Island" on the Web. 

Nevertheless, for this particular user, most of the search results are irrelevant. 

In the above sections, we mentioned three challenges of Information Retrieval. The 

three challenges are not independent from each other. A common factor behind the 

challenges is the unrealistic independence assumption made between terms. The 
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independence assumption involves three aspects: between query terms, between 

document terms as weIl as between a query term and a document term. The first two 

aspects cause the ambiguity in the representation of query and document respectively, 

while the third one leads to the exact term-matching strategy. The independence 

assumption was proposed from the very beginning of information retrieval. Robertson et 

al. (1982) did an extensive study on the nature of this assumption and proposed a unified 

model retrieval model based on the independence assumption. In fact, we can overcome 

the challenges to sorne degree if we relax the independence assumption. In the two 

examples mentioned earlier, if we take the relation between "ibook" and "Apple laptop" 

into account, we are able to identify that the documents containing "Apple laptop" but 

not "ibook" are also relevant. On the other hand, if we consider the relation between 

"java" and "island" in the second example, we should infer that the term "java" does not 

mean a programming language, but a name of an island in Indonesia. In the following 

section, we will briefly describe the principle of our approach to address these problems 

by exploiting word relationships. 

1.2 Our Approach - Exploiting Word Relationships 

In the thesis, we focus on the first and third problems mentioned in above section, i.e., 

the ambiguity in the query formulation and the mismatching problem between query 

and document terms . 

• Resolving Query Ambiguity with Query Expansion 

We argue that the ambiguity of a query is tightly related to the 

incompleteness of the query, and when a query is enhanced with more related 

terms, its ambiguity is alleviated. We again use the earlier example "find 

transportation in Java Island" for illustration. As mentioned above, this query 

has ambiguity because the term "java" has more than one sense. With this query, 

most of the retrieved documents returned by the existing search engines are 

about Java programming languages. However, if we can identify the related 
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terrn such as "bus" and add them into the original query, both Live Search and 

Google are able to retum more relevant documents. By expanding the query, the 

documents with query terrns and related terrns will be ranked higher, and 

usually these documents are more relevant. Therefore, query expansion is a 

good approach to ieduce the query ambiguity. However, every coin has two 

sides. Beside the benefit of query expansion, it also brings sorne risks: noise and 

topic drift. If an expansion terrn is not tightly related to the query, it brings 

nothing except noise, i.e. umelated documents. On the other hand, even the 

expansion terrns are aIl related to the query, if we add too many expansion terrns, 

the resulted query may drift from the previous query. For example, if we re-add 

other related terms such as "metro", "airport", "tourism", "ferry" etc beside 

"bus" into the original query, we will· find the search engines retum many 

documents about transportation all over the world instead of in the Java Island. 

Certainly, they are not relevant to the original query. This is because we 

consider each query term (inc1uding the original terrns and expansion terrns) 

equaIly. We emphasize too much about transportation by adding many terrns 

related to it. To avoid this problem, we should assign suitable weight to each 

expansion terrn. We will talk about the details of query expansion in chapter 4. 

• Resolving Mismatch with Implicit Document Expansion 

. There are two methods to overcome the mismatching between query terms 

and documents: query expansion and document expansion. In the previous 

section, we introduced query expansion. Analogously, document expansion is a 

technique to enhance the document representation with sorne related terrns. This 

can be done implicitly or explicitly. In the explicit approach, the related terrns 

are identified and added to the document representation, which is the same with 

query expansion. The implicit approach is quite different from the explicit one, 

in which no item is added to the document. As described in section 2.2, the 

term-matching strategy disregards the query terms which do not occur in the 

document. In our approach, we consider the c10seness of the query terrn and its 

related terrns in the document, so that a query term which does not occur in the 
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document can also contribute to document ranking if it has sorne related terms 

in the document. For example, given a query "recent natural disaster", a 

document about Chinese earthquake in May 12, 2008 is definitely relevant. 

Nevertheless, it cannot be retrieved, if it does not have any query term, 

according to the term-matching strategy. However, if we can identify that 

earthquake 1S also a kind of natural disaster, i.e., it is a hyponym of "natural 

dis aster", and take this relationship into account when calculating the document 

score, this document will possibly be retumed. In our work, we mainly used the 

implicit document expansion, which will be detailed in chapter 3. 

The central ide a in this thesis is to exploiting word relationship for query and 

document expansion. This idea is not new. However, we will try to make use of word 

relationship in different ways. In particularly: 

• We will try to combine multiple word relationships 

We will build a flexible framework which is feasible to integrate arbitrary 

word relationships. Usually, the knowledge of related words cornes from 

different sources, e.g. from a large corpus according to sorne statistical metrics, 

which can be co-occurrence, proximity and so on; or from sorne manualIy­

created thesauri. AlI the resources are useful for IR. So, an important problem is 

to know how to combine them. This is the first problem we will address. 

• We extend immediate word relationships to indirect word 

relationships 

Word relationship is transitive, and it can be transited from one word to 

another word. For example, "C++" is related to "programming", and 

"programming" is related to "computer", then we can infer that "C++" is also 

related to "computer" but may have different closeness. The indirect 

relationships will allow us to find more related terms. In our work, we consider 

not only immediate word relationship, but also indirect relationship. We use 
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Markov Chain (Ross, 2003) to model the relationship transition. The occurrence 

of a word is reinforced according to the presence of its directly or indirectly 

related words. 

• We will use statistical language modeling (LM) as our basic 

integration framework. 

This choice is motivated by the sol id theoretical foundation of the framework, 

its ability to deal with incomplete and noisy data, as well as its flexibility to be 

extended to integrate more criteria. We will show that LM framework can be 

extended to take into account arbitrary word relationships, and the importance 

of the relationship can be adjusted automatically in several ways. 

Our approaches will be tested on several TREC collections. The experiments aim to 

validate the following hypotheses: 

~ Exploiting word relationship can construct better query/document representations 

so as to improve the retrieval effectiveness 

~ Different word relationships have different impacts to retrieval performance. We 

propose sorne leaming methods to assign appropriate weights to the 

relationships, so that we can take advantage of each type of word relationship. 

1.3 Our Contributions 

Our work aims to make the contributions as follows: 

• Combining Statistical Word Relationship and Manually Created 

Relationship 

Both of the two sources have sorne advantages and disadvantages. The 

statistically-derived knowledge has high coverage but low precision, and the 
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method is portable to any language; while the manually-created thesauri have 

low coverage but high precision. Therefore, the two sources are complementary. 

A combination of them is expected to benefit from each other. 

• Proposing a Framework to Incorporate Indirect Word 

Relationship 

As mentioned above, the word relation is transitive. An elegant mathematic 

tool to model the relation transition is Markov Chain (Ross, 2003). A Markov 

Chain is usually represented as a directed graph with a set of vertices and 

directed weighted edges. The vertices are the states of the Markov chain. Two 

states are transitable if and only if there is an edge between them. The weight 

associated with edge represents the transition probability. With this model, we 

view each word in the vocabulary as one state, and measure the word 

relatedness as transition probabilities. The transition probability between two 

words is non-zero if and only if they are directly related. Given a set of initial 

words: we can find ~e related terms by a random walk process. Therefore, the 

indirectly related woJds can be found by multi-step random walk . 

• Proposing a Framework to Incorporate Query Translation and 

Query Expansion for Cross-lingual Information Retrieval 

Cross-lingual information retrieval (CLIR) is an important task of IR, III 

which queries and documents are written in different languages. The key issue 

is query translation. Traditional method to de al with CLIR separates query 

translation and document retrieval into two phases: in the first step, the query is 

translated into the document language; then we perform a mono lingual 

document retrieval. We propose a unified framework to incorporate the two 

phases. We view translation between query terms and documents as one kind of 

word relationship. This relationship is used for query translation. Other relations 

between mono lingual terms, such as co-occurrence, are used for query 

expansion. A Markov Chain model is built for relation propagation. 
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• Supervised Learning Method is used to adjust the Relative 

Importance of Individual Relationships 

We measure the relative importance of individual relationships with weights. 

In this thesis, we proposed sorne supervised leaming methods to adjust the 

weights by maximizing the retrieval effectiveness of training data directly. Our 

approach is quite different from other previous studies,· which estimated the 

weights by maximizing sorne indirect metrics, such as the likelihood of training 

queries; while our leaming methods try to maximize directly the· objective 

function which is the retrieval effectiveness. 

1.4 Orgallization of the Thesis 

The remaining of the thesis is organized as follows. 

In Chapter 2, we will introduce sorne basic IR models as well as the procedure of IR, 

su ch as document indexing, query processing, document retrieval and result evaluation. 

In Chapter 3, we will address the problem of document expansion, in which the word 

relations are used to resolve the mismatching between query terms and document terms. 

In Chapter 4, we extend the immediate word relation into indirect relations. We will 

describe how to use the Markov Chain model to handle indirect relations and how the 

relations are used to do query expansion. 

In Chapter 5, we extend the monolingual word relation into bilingual setting, and the 

relations are used to do cross-lingual query expansion. 

Chapter 6 and 7 mainly focuses on how to tackle word relations with supervised 

leaming methods. The two chapters deal with pseudo-relevance feedback and query term 

stemming respectively. 
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Finally, general discussions about the thesis and sorne conclusions will be given in 

Chapter 8. 
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Chapter 2 

Traditional Information Retrieval 

Approaches 
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Figure 1. The user interface of Google Search Engine 

• .;;i 

Before the World Wide Web emerged, information storage and retrieval systems were 

almost exclusively used by professional indexers and searchers (Hiemstra, 2000). 

Typically, professional searchers act as "search intermediaries" for end users. They try to 

figure out in an interactive dialogue with the system and the user what the user needs, and 

how this information need should be used in a successful search. With the occurrence of 

the World Wide Web, especially its explosive growth since the late of 1990s, there is 
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Representation Representation 

Figure 2. Information Retrieval Processes 
very large volume of information on the Internet. People seek information on the Internet 

every day. As a consequence, no human expert can replace the searcher to play the role of 

intermediary. Modem information retrieval (IR) systems are used to answer this 

requirement. One of them is the on-line search engine. Figure 1 shows a typical interface 

of a search engine. 

Despite the large variety of systems, user interface and performance, sorne basic 

techniques are commonly used. The following sections introduce briefly the discipline of 

information retrieval and sorne technical terms used throughout the thesis. 

2.1 Definition and Basic Processes of IR 

The discipline of IR is almost as old as the computer science itself. An early definition 

of information retrieval is the following by Mooers (1950). 

"Information retrieval is the name of process or method whereby a 

prospective user of information is able to convert his need for 

information into an actual list of citations to documents in storage 

containing information useful to him. " 

An IR system is a software program that stores and manages information on 

documents. The system helps the user to locate information needed. Different from 
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question answenng systems [Voorhees, 2000], the system does not explicitly return 

information or answer to questions. Instead, it informs the existence and location of 

documents that might contain the needed information. Sorne of the documents may 

satisfy the user's need, and then they are called relevant documents. 

A typical IR system supports three basic processes: the representation of the content of 

the documents, the representation of the queries, as weIl as the comparison between the 

two representations. The processes were organized as figure 2 by Croft (1993). In the 

figure, squared boxes represent data and rounded boxes represent processes. 

The document representation is called indexing process. The process takes place off­

line, so it is transparent to the users. The indexing process results in a formaI 

representation of the document: the internaI document representation. Often, the 

representation is stored in the storage devices (such as hard disks or tapes) as inverted 

files (Baeza-Yates and Ribeiro-Neto, 1999; Manning et al., 2008), in order to support 

efficient comparison process (or query evaluation). The indexing process usually includes 

the following procedures: finding the indexing units, filtering common and meaningless 

words (stop words) and performing morphological analysis. We take the indexing of an 

English document for instance. The indexing process is the following steps: 

• Tokenization 

This process identifies the indexing units III a character stream. In IR with 

English documents, the indexing unit is usually set to be words. Normally, it 

recognizes punctuations and white space as separators. 

• Stopword Removal 

When selecting words to represent an English document, we prefer to the words 

making the document different from others, i.e., the discriminative words. However, 

as we know, sorne words occur in text very frequently and thus lose the 

discriminative ability. These words include most function words, such as "in", "a" , 

sorne verbs and so on. We usually remove these words by looking them up in a 
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predefined word list (i.e., stop list). This process has at least two advantages: 1) 

reducing the size of indexing files; 2) improving the efficiency of query evaluation. 

• Stemming 

The process is done to get the root form of a word. For example, "computer", 

"computing" and "computed" are transformed into a single root form "comput". The 

stemming is done to increase the chance to match terms. 

The process of representing the information need is often referred to as the query 

formulation process. The resulting formaI representation is the query. This process is 

usually performed by the user independently. However, in sorne cases where interaction 

between the user and the system are allowed, the user can reformulate the query based on 

the feedback of the system. This reformulation is called relevance feedback. If the 

interaction is not allowed, the system cannot judge which document is relevant explicitly. 

However, it can also reformulate the query based on its previous rank list by assuming 

the top retrieved documents to be relevant. This process is called pseudo-relevance 

feedback, which is used widely in query expansion, and has shown to be effective across 

retrieval models (Zhai and Lafferty, 2001b; Lavrenko and Croft, 2001). 

The comparison of the query against the document representations is also called the 

term matching process, query evaluation or document retrieval. The retrieval process 

results in a rank list of relevant documents. Users will walk down the list of documents in 

search of the information they need. Document retrieval will hopefully put the relevant 

documents somewhere in the top of the ranked list, reducing the time the user has to 

spend to find the relevant information. 

2.2 Sorne Existing IR Models 

In order to be able to identify relevant documents, an IR system must assume sorne 

specific measure of relevance between a document and a query. This means that we have 

to have an operational definition of a relevant document with respect to a query. Thus, a 
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fundamental problem in IR is to formalize the concept of relevance. A different 

formalization of relevance generally leads to a different IR model. Over the decades, 

various retrieval models have been proposed, studied and tested. Their mathematical 

basis spans a large spectrum, inc1uding linear algebra, logic, probability and statistics. In 

this section, we will give a brief introduction to sorne existing IR models, particularly the 

newly introduced statistical language model since aIl of our investigations are made 

within this framework. 

2.2.1 Boolean Models 

The Boolean model (Baeza-Yates and Ribeiro-Neto, 1999) is a retrieval model based 

on set theory and Boolean algebra. In the simplest case, i.e., the c1assical Boolean model, 

each document is represented as a logic conjunction of a set of Boolean variables. Each 

Boolean variable corresponds to a term in the vocabulary of whole document collection C. 

The Boolean value, true or false, represents the term existing or non-existing in the 

document. Since the conjunction with false does not change the value of the Boolean 

expression, we only consider the document terms. Therefore, the document can be 

represented as: d = d j V d2 V d3 •.•• Here di denotes a document term. 

On the other hand, a query in the Boolean model is represented as a Boolean 

expression such as q = (qj /\ q2) V q3' A document is considered as relevant if and only if 

we have d->q. 

Though the c1assical Boolean model is intuitive and efficient to be implemented, it has 

several problems: 

• The term weighting is binary, i.e., true or false, which seems too rough. It 

can only model the existence or absence of a term within a document, but cannot 

model the importance of existing terms. Normally, a term occurring in the 

document frequently is considered to be more important than a less frequent term. 
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• The Boolean model predicts each document as relevant or non-relevant. 

There is no notion for partial match to the query conditions. For instance, let d be 

a document for which d=(O, 1,0). The three items in the vector denote the absence 

of term a, c and existence of term b. A query is formulated as [q = a!\ (b v c)], 

then d is non-relevant to q. 

The c1assical Boolean model has been extended on the above expects. For example, 

term weighting has been integrated by using fuzzy logic (Kraft et al., 1983; Radecki, 

1979) or p-norm (Salton et al., 1983), and documents can be ranked as more than two 

scales. 

2.2.2 Vector Space Model 

The vector space model (VSM) (Salton et al., 1975; Salton and McGill, 1983; Salton, 

1989) recognizes binary weighting is too limited, and it proposes a framework in which 

partial matching is possible. VSM is a similarity-based model (Zhai, 2003), which 

assumes that the relevance status of a document with respect to a query is correlated with 

similarity between the query and the document at sorne level of representation; the more 

similar to the query a document is, the more relevant the document is supposed to be. In 

the vector spacè model, each document or query is represented as a vector in a high­

dimensional term space. Each term is assigned a weight that reflects its "importance" to 

the document or the query. Given a query, the relevance status value of a document is 

given by the similarity between the query vector and document vector as measured by 

sorne vector similarity measures, such as the cosine of the angle formed by the two 

vectors. 

Formally, a document d may be represented by a document vector d = (dl' d2 , ••• , dJ, 

where n is the total number of terms and di is the weight assigned to term i. Similarly, a 

query q can be represented by a query vector q = (ql,q2, ... ,qn). The weight of both 

document and query terms is used to measure its importance. There are many term 

weighting schemes (Manning et al. 2008). Among them, the most common used one is 
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the tf-idf weighting. Here, tf denotes the term frequency within the document, and idf is 

the inverse document frequency, which is usually calculated as: 

idf(tJ = log N 
n(ti ) +0.5 

(2.1) 

where ti is a term in the vocabulary, N is the number of documents in the whole collection 

and n(ti} is the number of documents with ti, i.e., the document frequency of ti. idf 

measures how common the term is. A common term has low idf, or verse visa. Then the 

term ti is weighted as: 

(2.2) 

There are also sorne variants of the above tf-idf weighting schema. Sorne of them also 

consider the document length (Singhal, 2001). 

In most cases, the query terms are usually weighted III the same way with the 

document terms. However, since the query is usually very short, the term frequency of 

each term is either 0 or 1, therefore sorne researchers argued to use a different weighting 

schema. Salton and Buckley (1988) suggested the following formula: 

(2.3) _ 

With the cosine measure, we have the following similarity function of the document 

and query: 

. d-q 
slm(d,q) = 1 d Ixl q 1 

(2.4) 

where 1 d 1 is the length of the vector which is defined as: 

36 



and 1 q 1 is defined analogously. 

The vector space model usually decomposes a retrieval model into three components: i) 

a term vector representation of query; ii) a term vector representation of document; iii) a 

similarity/distance measure of the document vector and the query vector. In fact, vector 

space model is a general framework, in which the document and query representation and 

similarity measure can be arbitrary defined (Zhai, 2003). 

2.2.3 Probabilistic Models 

In probabilistic model, we are often interested in the question "what is the prob ab ilit y 

that this document is relevant to this query?" (Sparck Jones et al., 2000). Given a query, a 

document is assumed to be either relevant or non-relevant, but a system cannot be sure 

about the relevance status of a document. So it has to rely on a probabilistic relevance 

model to estimate it. 

Formally, let d and q denote a document and query respectively. Let R be a binary 

random variable that indicates whether d is relevant to q or not. It takes two values which 

we denote as r ("relevant") and r ("irrelevant"). The task is to estimate the probability of 

relevance, i.e., P(R=rld,q). Depending on how this prob ab il it y is estimated, there are 

several special cases of this general probabilistic relevance model. 

First, P(R=rld,q) can be estimated directly using a discriminative (regression) model. 

This model assumes that the relevance probability depends on sorne "features" that 

characterize the matching of d and q. Such a model was first introduced by Fox (1983), 

where features are term frequency, authorship, and co-citation. They were combined 

using linear regression. 
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Table 1. Contingency Table of Term Occurrence 

Relevant Irrelevant Total 

#Doc containing the #r n-#r n 
tennt 

#Doc not containing #R-#r N-n - (#R-#r) N-n 
termt 

# Total Doc #R N-#R N 

The Binary Independence Retrieval (BIR) model (Robertson and Spark Jones, 1976) is 

perhaps the most weIl known probabilistic model. The BIR model assumes that terms are 

independently generated by a relevance and an irrelevance model, so is essentially a use 

of Naïve Bayesian classifier for document ranking. The documents are sorted 

descendingly according to the log-odds between P(r 1 d,q) and P(i'" 1 d,q) l.e., 

S (d) 1 
P(rld,q) "1 p(tlq,r)(l- p(tlq,r» core ,q = og oc L. og -'---'-'--,-----'--=..,:--

P(rld,q) led (l-p(tlq,r»p(tlq,r) 
(2.5) 

where pet 1 q, r) is the generation probability of term t by the relevance model while 
1 

pet 1 q,r) is the generation probability by irrelevance model. Therefore, we can view 

log p(t 1 q, r)(I- pet 1 r r)) as the weight of t. It is estimated based on the occurrence of t 
(1- p(t 1 q,r))p(t q,r) 

in the document d and the whole collection. For a more refined interpretation of the 

model, we start with the term incidence contingency Table 2. 

With the information given in the table, we estimate the probabilities as: 

and 

#r 
p(tlq,r)=­

#R 

#R-#r 
pet 1 q,r) = N-#R 

Substitute the two equations into equation 2.5, we get: 
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Score(d, q) = L log pet 1 q, r)(1- pet 1 q,r2) 
IED (1- pet 1 q,r))p(t 1 q,r) 

"1 #r(N -n-#R+#r) 
=~ og------------~ 

IEd (#R-#r)(n-#r) (2.6) 

2.2.4 Statistical Language Models 

A statisticallanguage model (SLM) pro v ides a mechanisam to calculate the generation 

probability of a string. Based on the tokenization of the string, it could be word-based 

model or character-based model. SLM has been studied extensively and had a great 

success in the community of speech recognition and naturallanguage processing (Jelinek, 

1998; Brown et al., 1993; Gao et al., 2002). In speech recognition, the system calculates 

the probabilities of aIl utterances that can occur based on an estimated language model 

and select the one with the largest probability (Jelinek, 1998). Language models also play 

a central role in statistical machine translation (SMT) (Brown et al., 1993). Usually the 

SMT model is decomposed into two components: the translation model mapping the 

sentences in target language to the one in source language and the language model for 

target language sentences. Therefore, the language model corresponds to selecting a high 

quality, grammatical translation sentences. 

2.2.4.1 Document Ranking 

The language model (LM) approaches for IR was first introduced by Ponte and Croft 

in (Ponte and Croft, 1998) and later explored by (Hiemstra and Kraaij, 1998; Miller et al., 

1999; Berger and Lafferty, 1999; Song and Croft, 1999; Zhai and Lafferty, 2001a; Bai et 

al., 2005). There are two ways to formulate the relevance status in LMs: one considers 

the likelihood of a query as being generated by a probabilistic. model based on a 

document. 

• Query Likelihood 
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We denote a query q = qtq2 ... qn and a document d = d[d2 ... dm, this probability is 

denoted by the condition al probability p( qld). However, in order to rank the document, 

we are interested in the posterior probability p(dlq), which can be ca1culated by Bayes 

rule in the following way: 

p(d 1 q) = p(q 1 d) p(d) oc p(q 1 d) p(d) 
p(q) 

(2.7) 

where p( d) is the prior probability that d is relevant to q, and p( qld) is the likelihood of q 

with respect to d, which thus captures how weIl d "fits" q. In the simplest case, p( d) is 

assumed to be uniform, and so does not affect document ranking. This assumption has 

been taken in most existing work (Ponte and Croft, 1998; Song and Croft, 1999; Zhai and 

Lafferty, 2001a; Cao et al., 2005). In other cases, p(d) can be used to capture non-textual 

information, e.g., the length of a document or links in web page, as weIl as other 

format/stylefeatures of a document (Kraaij et al., 2002). In our study, we assume p(d) as 

uniform if we use equation 2.7 to rank the documents. In this method, we consider that 

probabilistic models are only estimated from the documents, while the queries are viewed 

as observed term sequences. We rank the document according to the logarithm of the 

query likelihood to avoid underflow when the query is long. Then we have: 

n 

10gP(q 1 d) = ~)OgP(qi 1 d) (2.8) 
i=[ 

Estimation of the probability P(qj 1 d) is a key issue in SLM approaches for IR. If we 

simply ca1culate this probability by Maximum Likelihood Estimation (MLE), the terms 

does not occur in the document will be assigned zero probability, so that the document 

would never be retrieved. Therefore, sorne smoothing methods should be applied to 

assign non-zero probabilities to the absent terms. We will describe the smoothing 

methods in next section. Let us denote the probability of an existing term ("seen") and 

absent term ("unseen") as Ps(qi 1 d) and Pu(qi 1 d)respectively. Then we have: 
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n 

L log P (q; 1 d ) 
;=1 

;:c(q, ,d »0 ;:c(q"d)=O 

n 

= L log Ps(q; Id)- L log Pu(q; Id)+ L log Pu(q; Id) 
;:c(q"d»O ;:c(q, ,d »0 ;=1 

L log Ps (q; 1 d) + f log Pu (q; 1 d) 
;:c(q"d»O Pu (q; 1 d) ;=1 

(2.9) 

Without losing generality, let us assume the probability of unseen terms is calculated 

as the product of the probability of the term in whole collection and a document weight, 

i.e., Pu(q; Id)=adP(q; IC) 

Substitute it into equation 2.9, we get: 

P( Id) n 
log P(q 1 d) = L log s q; + n log ad + L log P(q; 1 C) 

;:c(q"d»O adP(q; 1 C) ;=1 
(2.10) 

In equation 2.10, the right part has three components, and the third component is 

independent on d, so that it can be dropped for ranking purpose. This means that we just 

need to consider the documents sharing at lea~t one term with the query. Therefore, only 

a small proportional documents in the whole collection will be counted, which makes the 

query evaluation pro cess efficient. We are also interested in the first component. As we 

know, on the first glance,the use of LM appears much different from vector space model 

with if-id! weighting schema, because LM seems only encoding term frequency- there 

appears to be no use of inverse document frequency weighting in the model. However, 

there is an underlying connection between the LM and the traditional heuristics, which 

can be shown by equation 2.10. In this equation, P'(q; 1 d) is equivalent to if-id! with 
adP(q; 1 C) 

P'(q; 1 d) corresponds to if while P(q; 1 C) corresponds to idf. 

• KL-Divergence 
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We note that in the above approach, only one probabi,listic model for the document is 

built. Altematively, the second method estimates two probabilistic models, from the 

documents and queries respectively. The relevance status is thus approximated by the 

distance between the document model and the particular query model. KL divergence 

(Cover and Thomas, 1991) is a natural way to model the distance between two 

probabilistic models. Intuitively, the smaller the distance, the more similar the two 

models are. Therefore, we rank the documents with the negative KL divergence. Formally, 

we define the model as follows: we denote the probabilistic models corresponding to q 

and d as Bq and Bd. Then documents are ranked by the following score: 

score(d, q) = -KL(Bq Il Bd) (2.11) 

In the above equation, if document model Bd and query model Bq are assumed to be 

unigram models, equation 2.4 is then re-written as follows: 

score(d,q) = -KL(Bq Il Bd) 

p(wl B ) 
= LP(wl Bq) log 1 d oc LP(wl Bq)logP(wl Bd) 

WEV P(w Bq) WEV 

(2.12) 

Therefore, the document are in fact ranked by the cross entropy between it and the 

particular query. If the query model, i.e., P( w 1 Bq) , is estimated with MLE, equation 2.12 

is equivalent to equation 2.8. Therefore, the query likelihood ranking method is a special 

case of KL-divergence. However, KL-divergence constructs an explicit query model, 

which makes it possible to consider the relations between query terms. Therefore, we 

may prefer KL-divergence in our work. 

2.2.4.2 Smoothing Methods 

In previous studies (Zhai and Lafferty, 2001b; Zhai and Lafferty, 2002; Liu and Croft, 

2004), smoothing. of language models has been shown to be an important issue. The 

retrieval effectiveness is tightly related to which method is employed to smooth the 

document model. The primary purpose of smoothing is to avoid zero probab ility. If we 
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estimate the document without smoothing, i.e., simply with MLE estimation, the terms 

which do not occur in the document will be assigned zero probability. As a consequence, 

such a document, even it is relevant, would never be retrieved (no matter to use query 

likelihood or KL-divergence). Obviously, it is contradictory to our intuition. Smoothing 

is a technique to assign a small probability to an absent term to avoid zero probability, so 

that a document containing partial query terms can also be retrieved. 

There are three common smoothing methods used, i.e., Jelinek-Mercer Smoothing, 

Absolute Discounting Smoothing and Dirichlet Smoothing. 

Dirichlet: 

where À is the interpolation parameter and Be is the collection model, if (t;, d) is the term 

frequency of ti in d, Idl u is the number of unique terms in the document, Idl is the length 

of d, J is discount factor, and f.1 is the Dirichlet prior (or pseudo count). The three 

parameters, À, J and f.1 can be tuned empirically using a training collection. The 

parameter À can also be tuned automatically so as to maximize the likelihood of a set of 

feedback documents (Zhai and Lafferty, 2002). We will provide more details on this in 

later chapters. 

2.3 Prior Work Go Beyond Term Independence 

Assumption 

There are also sorne prior work go beyond the term independence assumption. Most of 

the models proposed and studied in the work are more complicated and less efficient. 
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Fagan examines how to identify and use non-syntactic (statistical) phrases [35]. Fagan 

identifies phrases using factors such as the number of times the phrase occurs in the 

collection and the proximity of the phrase terms. His results suggest no single method of 

phrase identification consistently yields improvements in retrieval effectiveness across a 

range of collections. For several collections, significant improvements in effectiveness 

are achieved when phrases are defined as any two terms within a query or document with 

unlimited proximity. That is, any two terms that co-occurred within a query or document 

were considered a phrase. However, for other collections, this definition proved to yield 

marginal or negative improvements. 

In addtion to the unigram model we described above, there are also sorne other 

language model variants have been proposed that attempted to model term dependencies. 

Song and Croft (1999) studied the general n-gram model, such as bigram and even 

trigram models for information retrieval. Gao et al. (2004) proposed a dependency model 

which utilizes the query term links to rank document. This dependency model achieved 

consistent improvement on a set of TREC collections. Recently, Metzler and Croft (2007) 

used the Markov Random fields model to explore dependency between terms. Wei and 

Croft (2006) proposed an approach modeling term dependency based co-occurrence. AlI 

the models produced sorne improvements. However, these models can only integrate the 

statistical relations among terms, such as proximity and co-occurrence. 

2.4 Evaluation of Information Retrieval Systems 

IR system performance evaluation aims to compare which system is superior to other 

systems. Usually two aspects are compared: efficiency and effectiveness. Efficiency 

measures how much computational resource the system requires. The resource inc1udes 

CP U time; memories, st orage of hard disk. On the other hand, effectiveness measures to 

what extent the retrieved documents satisfied the user' s need. Effectiveness is more a 

subjective measurement since two users may have different opinions on one system. 

Therefore, it is hard to evaluate a real word IR system objectively. However, it is possible 

to do sb with controlled conditions in a laboratory. In the laboratory setting, several test 
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collections are built to perfonn evaluation. Each test collection inc1udes a document set 

which consists of large number of documents, a batch of queries and relevance 

judgments. The relevance judgments tell which documents are relevant to a query. With 

a test collection, the system can automate the evaluation process: in each iteration, it first 

accepts a query; then it ca1culates the relevance value of each document with respect the 

query (with one of the models we mentioned in section 2.2); after that, the system retum 

a set of documents with highest relevance values; at last, it evaluates the retrieval 

effectiveness by comparing its retumed list and the relevance judgments. In this report, 

we focus mainly on experiments perfonned in the laboratories. In the following, we will 

describe sorne common used evaluation metrics and the test collections. 

2.4.1 Evaluation Metrics 

The effectiveness of IR systems can be evaluated by several measures. The basic 

measures are precision and recall. They are defined as follows: 

• Recal! is the fraction of the relevant documents which has been 

retrieved, i.e., 

R Il 
# retrieved relevant documents 

eca = ---------------
# relevant documents in the collection 

• Precision IS the fraction of the retrieved documents which are 

relevant, i.e., 

P 
.. # retrieved relevant documents 

r eClSlOn = ------------
# retrieved documents 

There is a trade-off between precision and recall: the system with high preclSlon 

usually has low precision, while a system with high recall usually has low precision. 

Therefore, just one metric can evaluate an IR system thoroughly. In sorne cases, the 
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precisions at Il recall levels are computed and the system is evaluated by the average 

precision. The 11 recall levels is 0%, 10%, ... , 100%. For the recall level of 0%, the 

precision is obtained through an interpolation procedure (Baeza-Yates and Ribeiro-Neto, 

1999). Another widely accepted measurement for evaluating effectiveness of ranked 

retrieval systems is the Mean Average Precision (MAP) (Kraaij et al., 2003), it is defined 

as: 

1 M 1 N J 

MAP =-L-Lpr(di) 

M j=1 N j i=1 

(d ) _ {rn
, ,if d ij retrieved and ni $ MAX 

pr ij - ni 
o otherwise 

(2.13) 

Here, ni denotes the rank of the document dij which has been retrieved and is relevant to 

query j; rn is the number of relevant documents found up to and including rankn i ; N
j 

is 

the total number of relevant documents of query j; M is the total number of queries and 

MAX is the cutoff rank (MAX is 1,000 in our experiments). 

2.4.2 Standard Benchmarks for Relevance 

In past decades, research in information retrieval was often criticized because it 

lacked robust, consistent and large scale benchmarks. The situation has been improved 

since the opening of TREC4 conference in 1992. TREC is the abbreviation of "Text 

Retrieval Conference". The following words are extracted from the TREC official 

website to depict the purpose of the conference.' 

It is an on-going series ofworkshops co-sponsored by the National Institute of 

Standard Technology (NIST) and the Information Technology Office of the 

4 http://trec.nist.gov/ 
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Defense Advanced Research Projects Agency (DARPA) as a part of TIPSTER 

Text Program. The annually conference aims to encourage research in 

information retrieval from large text applications by providing a large test 

collection, uniform scoring procedures and forum for organizations interested in 

comparing their results. Attendance at TREC conferences is restricted to those 

researchers and developers who have peiformed the TREC retrieval tasks and to 

selected government personnel from sponsoring agencies. 

In each year, the participants of TREC are assigned a task according the specific track 

they attend. Usually the task includes a set of d~cuments and a batch of queries. The 

participants are required to run their system, retrieving relevant documents with respect 

to each query. The documents are tagged with SGML to allow easy parsing. Major 

structures such as a field for the document number (identified by <DOCNO» and a field 

for the document text (identified by <TEXT» are common to all documents. Minor 

structures might be different across sub-collections to preserve arts of the structure in the 

original document. A part of a sample document is shown in Table 3. 

Table 2. One Sample Document of TREC Collections 
<DOC> 
<DOC NO> SJMN91-06364024 <lDOCNO> 
<ACCESS> 06364024 <lACCESS> 
<DESCRIPT> PROFESSIONAL; FOOTBALL; PLAYOFF; GAME; RESULT; BRIEF <lDESCRIPT> 
<SECTION> Sports <lSECTION> 
<HEADLINE> RAPID HEARTBEAT FORCES THOMAS TO LEAVE GAME 
K.c. STAR IS EXPECTED TO PLA y NEXT WEEKEND <lHEADLINE> 
<MEMO> Pro Football; AFC Notebook <lMEMO> 
<TEXT> He was taken to a hospital as a precaution, although his heart rate was back to normal by the 
time he left the stadium. He remained ovemight for 
observation .... 

<lTEXT> 
<EDITION> Moming Final </EDITION> 
<lDOC> 

In each task, TREC usually pro vides 50 queries. Each query has three fields: title, 

description and narrative. The participants are free to use any individual field or the 

combination of them. Here we show a sample of TREC query in Table 4. 
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Table 3. One Sam pie Query of TREC Collections 
<top> 
<num> Number: 001 
<title> Topic: Antitrust Cases Pending 
<de sc> Description: 
Document discusses a pending antitrust case. 
<narr> Narrative: 
To be relevant, a document will discuss a pending antitrust case and will identify the alleged violation as 
weil as the government entity investigating the case. Identification of the industry and the companies 
involved is optional. The antitrust investigation must be a result of a complaint, NOT as part of a routine 
review. 
<ftop> 

Given the documents and queries, the participants are encouraged to exploiting 

different techniques to improve their system. Each participant submits the top n (usually, 

n=1000) documents which receive the highest relevance values for each query. The 

TREC organizer collects the top ranked documents and constructs the relevant document 

set for each query. The relevant documents are obtained from a pool of possible relevant 

documents. This pool is created by taking the top K documents (K is usually set to be 100) 

in the rankings generated by the various participating retrieval systems. The documents in 

the pool are then shown to human assessors who ultimately decide on the relevance of 

each document. As a consequence, each TREC conference can create a set of benchmarks 

for IR evaluation. Since its opening in 1992, TREC has created a large quantity of 

benchmarks for various tasks, such Ad-hoc retrieval, Web page retrieval, cross-lingual IR, 

information filtering, and so on. These benchmarks have been widely used in information 

retrieval research. 

Besides the TREC conference, there are other similar conferences aiming to provide 

IR benchmarks, such as NTCIR and CLEF. NTCIR 5 is a series of workshops co­

sponsored by Japan Society of Promotion of Science (JSPS) as a part of JSPS "Research 

for Future" pro gram and National Centre for Science Information System since 1997. 

This conference is organized quite similar to TREC, but it has a preference on East Asian 

Language Processing, such J apanese, Chinese and Korean. CLEF is a forum aims to 

5 http://research.nii.ac.jp/ntcir/outline/prop-en.html 
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promote multi-lingual information retrieval among European languages. Interested 

readers can find more details from http://www.clef-campaign.org/ 

In the experiments reported in this thesis, we mainl y used the TREC data for 

evaluation. Sorne cross-lingual IR experiments will also use NTCIR data. 
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Chapter 3 

Exploiting Word Relations for Document 

Expansion 

3.1 INTRODUCTION 

In chapter 2, we mentioned sorne basics of the language modeling approach for 

information retrieval. In recent years, this approach has increased in popularity, due to its 

simplicity, clear probabilistic interpretation, as weIl as efficiency and state-of-the-art 

performance (Berger and Lafferty, 1999; Lafferty and Zhai, 2001a; Miller et al., 1999; 

Ponte and Croft, 1998). The key issue in the approach is the estimation of document 

model. When estimating the document model, the words in the document are assumed to 

be independent with respect to one another, leading to the so called "bag-of-word" 

model. However, from our own knowledge of natural language, we know that the 

assumption of term independence is a matter of mathematical convenience rather than a 

reality. For example, the words "computer" and "pro gram" are not independent. A query 

requesting for "computer" might be weIl satisfied by a document about "program". 

Sorne studies have been carried out to relax the independence assumption. This is 

generally done in two directions. The first one is data-driven, which tries to capture 

dependency among terms by statistical information derived from the corpus directly. For 

example, co-occurrences of terms may be used (Berger and Lafferty, 1999; Gao et al., 

2004; Jin et al., 2002; Lafferty and Zhai, 2001; Nallapati and Allan, 2002; Zhai and 

Lafferty, 2001a). Term dependency can. thus be integrated into language modeling. 
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However, since the dependencies extracted from co-occurrences are blindly obtained 

from data, much noise can be introduced, which could undermine the retrieval 

effectiveness. Another direction is to exploit hand-crafted thesauri, such as WordNet (Liu 

et al., 2002; Mandala et al., 1998; Srikanth and Srikanth, 2002). WordNet has been used 

to recognize compound terms and dependencies among terms in these studies. The 

thesaurus is incorporated within c1assical information retrieval models, such as vector 

space model and probabilistic model (Robertson et al. 1981). To our knowledge, no one 

has yet tried to incorporate such a thesaurus within the language modeling framework. 

In comparison with relationships extracted from corpora, manually built thesauri only 

contain manually validated relationships. They are thus less noisy (although ambiguous). 

In addition, many manually identified relationships can be hardly extracted automatically 

from corpora. Synonymy relationships are such example: it is difficult to automatically 

extract the relationship between "query" and "request", as a document would usually use 

only one term to designate the same object. 

In this chapter we propose and study a novel relational language model to incorporate 

both relationships of WordNet and co-occurrence within the language modeling 

framework for information retrieval. By considering word relationships, sorne relevant 

documents without any query terms may also be retrieved, and we refer these approaches 

as Document Expansion. The possible advantage of our model is twofold: On one hand, 

we can benefit from WordNet to coyer related terms that cannot be identified 

automatically; on the other hand, we can rely on the manually recognized relationships 

that are supposed to be more precise, to complement the statistical relationships extracted 

from co-occurrences, while these latter insure generally a broad coverage of the possible 

relationships. 

One of the difficulties for usmg WordNet in language modeling is that relations 

between terms in WorldNet are binary, i.e., one term is linked or not to another term. No 

weight is associated. When these relations are integrated into a language model, we wil,l 

have to assign a probability to the link between two terms. A technique relying on term 

co-occurrences will be used for this. Another problem concems the combination of 
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different types of relationships in a language model. We will deal with this problem 

through language model smoothing. 

A series of experiments on standard TREC collections have been conducted to 

evaluate this method and the experimental results show that our apprmich is promising: 

by integrating each type of word relationship, we observe consistent improvements in 

retrieval effectiveness. This shows that manually built resources such as WordNet, as 

weIl as co-occurrence information, can be weIl incorporated into statistical language 

models to enhance IR. 

The rest of the chapter is organized as: Section 3.2 reviews previous work on relaxing 

the independence assumption and the utilization of WordNet in information retrieval. 

Section 3.3 presents our dependency language model to incorporate WordNet and co­

occurrence relationships. Section 3.4 discusses the details for estimating model 

parameters. A seriaI of experiments on TREC collection are presented in Section 3.5, 

together with sorne further discussions. Section 3.6 summarizes the chapter and suggests 

avenues for future work. 

3.2 Previous Work 

As mentioned in section 2.2.4, in the c1assical language modeling approaches (Zhai 

and Lafferty, 2001a) to IR, a document model P(wld) over terms is estimated for each 

document d in the collection C to be indexed and searched. This model is used to assign 

likelihood to a user' s query q=ql q2 ... qn. In most cases, each query term is assumed to be 

independent of the others, so that the query likelihood is estimated by: 

P(q 1 d) = IT=1 P(qj 1 d) (3.1) 

The above quantity is used to rank the documents. As in speech recognition, a 

language model for information retrieval must be smoothed to adjust zero prob ab il it y and 

small probabilities. Several smoothing strategies are discussed in (Zhai and Lafferty, 
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2001a). "One of the mam effects of smoothing is its robust estimation of common, 

content-free words that are typically treated as 'stop-words' in many information retrieval 

systems" (Lafferty and Zhai, 2001). However the classicallanguage model approach for 

IR does not address the problem of dependence between words. 

The term "dependence" may mean two different things: dependence between words 

within a query or within a document; dependence between query words and document 

words. Under the first meaning, one may try to recognize the relationships between 

words in a sentence (either in a document or in a query). In doing so, a sentence is no 

longer a bag of words. Rather, sorne dependence will be recognized between words. The 

approach proposed in (Gao et al., 2004) aims to recognize this type of dependence. Then 

a query is understood as a set of words, together with sorne links among them. These 

links are used as additional criteria to be verified by the documents to be retrieved. 

Metzler (2007) proposed the Markov Random Fields method to exploit term 

dependencies. The general framework can considier various co-occurrence and proximity 

information. 

Under the second meaning, dependence means any relationship that can be exploited 

during query evaluation, such as synonymy, in order to indirectly match a document with 

a query. For example, for a certain period of time, the document containing the word 

"Bush" may well answer the query containing the term "president". The relationship 

between "Bush" and "president" in this example is covered by the second meaning of 

dependence. Both types of dependence are important for IR. In this chapter, we will 

concentrate on the second type. 

To incorporate term relationships into the document language model, Berger and 

Lafferty (1999) propose a translation model t(qilw) for mapping a document term w to a 

query term qi. In fact, the translation probability t(qdw) describes the degree of link 

between the query term qi and the document word w. With the translation model, the 

document-to-query model becomes 
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P(q 1 d) = Il:! L. t(qi 1 W)P(W 1 d) (3.2) 
w 

Even though their model is more general than other language models, it is difficult to 

determine the translation probability t(qilw) in practice. To solve this problem, Berger 

and Lafferty generate an artificial collection of "synthetic" data. They compose a short 

query for each paragraph in a document, and the query consists of sorne words occurring 

frequently in the paragraph. The query is assumed to be parallel to its corresponding 

paragraph. This is indeed a variant use of co-occurrence information, although it is 

formulated in a different, statistical machine translation setting. Then the synthetic data 

have the same limitations as co-occurrence information, i.e. only sorne of the interesting 

relationships can be extracted (provided that the terms co-occur often enough), and the 

extracted relationships contain much noise. 

Lafferty and Zhai (2001) address this problem differently. They develop a more 

general model, Markov chain word translation model. It uses a random walk to derive the 

translation probability t(qdw) from a set of documents in the collection. However, this 

probability is still estimated from term distribution or co-occurrences, without 

considering other term relationships explicitly. Jin and Hauptman (2002) also propose a 

different method. They consider a document title as a possible query, and assume that the 

document is relevant to its title. Then they have a set of document-query pairs to train the 

translation model between document words and "query" terms 

In aIl of above models, since t(qilw) is trained from the document collection, it can 

only describe the link between terms in the document collection. Several problems arise. 

The first is that sorne desired relationships may not be extracted such as true synonymy 

relationships. The second problem is that virtually, any pair of terms that co-occur within 

the same document (or paragraph) could be considered to be related. As a consequence, 

the gain from relaxed independence assumption may not outweigh the loss due to the 

noise introduced. 

The second family of approaches exploits term links stored in a hand-crafted thesaurus, 

such as WordNet. Voorhees (1994) first exploits WordNet for query expansion. However, 
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her experiments did not show any gam m retrieval effectiveness when quenes are 

expanded by related terms. In the same vein, Liu et al. (Liu et al., 2004) use WordNet to 

disambiguate word senses of query terms and to exp and queries. In their work, whenever 

the sense of the query term is determined, its synonyms, hyponyms, words from its 

definition and its compound words are considered for possible additions to the query. 

Instead of using WordNet alone, Mandala et al. (1998) use both WordNet and 

automatically constnicted thesaurito exp and queries. They build two thesauri from the 

corpus, a co-occurrence-based thesaurus and a predicate-argument-based thesaurus, and 

assign a weight to each associated term pair in the thesauri to represent the degree of 

association. Since a relation between two terms in WordNet has no weight, they assign it 

the average of the weights in co-occurrence-based thesaurus and predicate-argument­

based thesaurus. They incorporate the three types of relationships within vector space 

model. Their experiments show that it is useful to combine WordNet with automatically 

construct thesauri for query expansion, and this results in improvements in retrieval 

effectiveness. 

Intuitively, manually and automatically established relationships are complementary: 

the first ones are more precise but they have a limited coverage; the second ones have 

wider coverage but they contain much noise. By combining them in an appropriate way, 

we can benefit from the advantages of both. Our approach follows the same direction: we 

try to use both WordNet and relationships extracted from co-occurrences. However, an 

important difference is that we do not use ad hoc parameters to combine both types of 

relationship as Mandala et al. did. Instead, we will use a language modeling setting to 

combine them in a principled manner. 

For a different problem - PP-attachment, (Toutanova et al., 2004) uses random walk 

models that also combine corpus statistics with other types of relationship such as 

synonymy relationships in WorldNet. In this respect, our approach follows the same 

direction. 
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3.3 Document Expansion by Combining WordNet and 

Co-occurrence 

The model proposed by Berger and Lafferty (1999) provides a good general 

framework. In this paper, we will use a different formulation, which allows us to 

integrate different types of word relationships. 

Given a query q and a document d, the query can be related to the document directly, 

or they can be related indirectly through sorne word relationships. An example of the first 

case is that the document and the query contain the same words. In the second case, a 

document can conta in a different word, but synonymous or related to the one in the query. 

In this case, the query can still be satisfied by the document. In order to consider both 

cases into our modeling, we assume that there are two sources to generate a term from a 

document: one from a dependency model and another from a non-dependency model 

(which will be a unigram model in our case). Therefore, the likelihood of the query given 

a document can be expressed as follows: 

P(q 1 d) = 1T=1 P(qi 1 d) 

= 1I~1 [P(qi' 0D 1 d) + P(qi' 0D 1 d)] 
(3.3) 

= 1T=1 [P(qi 1 d, 0D )P(OD 1 d) + P(qi 1 d, 0D )P(OD 1 d)] 

where e is the parameter of dependency model and e- IS the parameter of non-
/) /) 

dependency model. pee/) 1 d) and P(% 1 d) are the probabilities of choosing the dependency 

model and non-dependency model respectively. As the non-dependency model tries to 

capture the direct generation of the query by the document (without considering any word 

relationships), we can model it by unigram document model, i.e. 
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where Pu (qi 1 d) is the probability of uni gram model, and P( Uld) is the probability to 

choose the uni gram model. 

For the dependency model, we imagine a Markov process to generate a query term. 

First, we select a term in the document randomly. Second, a query term is generated 

based on the observed term. Here, term relationship enters into play. If the selected term 

is "computer" at first step, it is more likely to generate "cpu" than "water" in the second 

step. Therefore we have: 

P(qj 1 d,BD) = LP(qj 1 w)P(w 1 d,BD) (3.4) 
WEd 

This formulation is equivalent to that of the translation model of Berger and Lafferty 

(1999). As for the translation model, we also have the problem of estimating the 

dependency between two terms, i.e. P(qdw). Instead of considering only co-occurrence 

information as in the previous studies, we take a different approach here. We assume that 

sorne word relationships have beenmanually identified and stored in a linguistic resource 

(e.g. WordNet), and sorne other relationships have to be found automatically according to 

co-occurrences. Therefore, we have at least two different sources of word relationships. 

A word can be linked to another word through one of them. The global relationship 

between them can be made by combining both resources together. This combination can 

be achieved by a linear interpolation smoothing. Thus: 

P(qi 1 w) = ;tP(qi 1 L, w) + (1- ;t)P(qi 1 L, w) (3.5) 

where P(qj 1 L, w) is the condition al probability of qi given w according to WordNet, which 

is called Link Model; P(qj IL, w) is the probability that the link between qi and w is 
, 

achieved by other means (in our case, co-occurrences); Â is the interpolation factor, 

which can be viewed as mixture weight if Equation 3.5 is considered as a two-component 

mixture model. In our study, we only consider co-occurrence information beside 

WordNet. So P(qi 1 L, w) is just the co-occurrence model. The estimations of all these 

models will be explained later. 
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(1- Â) 

dependency model unigram model 

r-------, p, u 1 d) 

document 

Figure 3. Bayesian Network for Generating a Query Term 

For the simplicity of expression, we denote probability of link model as PL (q; 1 w) , 

i.e. PL (q; 1 w) = P(q; 1 L, w), and the co-occurrence model as Pco(qj 1 w) = P(qj 1 L, w) hereafter. 

Substitute Equations 3.4 and 3.5 into 3.3, we obtain Equation 3.6. 

P (q 1 d) = TI ;=1 [P (q i 1 d, BD) P (B D 1 d) + Pu (q i 1 d ) P (U 1 d )] 

= TI ;=I[(L P(qi 1 w)P(w 1 d,BD »P(BD 1 d) 
WEd 

+ Pu (qi 1 d)P(U 1 d)] 

= TI ;=1 [//,p (B D 1 d ) L PL (q i 1 w) P (w 1 d , BD) 
WEd 

WEd 

+ Pu (qi 1 d)P(U 1 d)] 

(3.6) 

This equation may seem complicated, but it incorporates a very intuitive idea: the 

relationship between a document word and a query word can be realized in several ways 

- direct connection when they are identical, indirect connection either through WordNet 

or through co-occurrences. Figure 3 gives a Bayesian network illustration of Equation 3.6. 

The idea can become more obvious if wè make sorne simplification in the formula. Let us 

define: 
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PL(q; 1 d) = LPL(q; 1 w)P(wl d,BD) (3.7) 
wed 

and 

Pco(qj 1 d) = LPco(qj 1 w)P(w 1 d,BD) (3.8) 
wed 

Equation 3.7 and 3.8 describe the probability of qi in d from the link model and co­

occurrence model respectively. Then Equation 3.6 can be put into the following simpler 

form: 

P(q 1 d) = il ;=I[ÂP(BD 1 d)PL(q; 1 d) 

+ (1 :- Â) P ( BD 1 d ) P co (q j 1 d ) 

+ Pu (qj 1 d)P(U 1 d)] 

(3.9) 

Equation 3.9 clearly shows that we have indeed a three-component mixture model 

consisting of link model, co-occurrence model as weIl as uni gram model. For each 

component, it has a mixture weight. Let ÂL ' Âco' Àu denote the respect weights of link 

model, co-occurrence model and unigram model, then Equation 3.9 can be rewritten as: 

P(q Id) = I1~=I[ÂLPL(q; Id)+ (3.10) 

Âco P co (q; 1 d) + Âu Pu (q i 1 d)] 

where ÂL = ÂP(BD 1 d) , Âco = (1- Â)P(OD 1 d) and Àu = P(U 1 d). The above equation defines the 

general princip le of our approach, which places the approach of Mandala et al. into a 

language modeling framework. 

ln the above formulation, we consider only one type of relationship in WordNet. 

Indeed, several types of relationship are stored in WordNet, for example, synonymy 

relation, hypemymy relation, and so on. Different types of relation should not play the 

same role. It is more reasonable to separate the link model into several sub-models, each 

corresponding to a specifie type of relation. For information retrieval, the most important 

terms are nouns, so we concentrate on three relations related to nouns: synonym, 
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hypemym and hyponym. Let PSYN(qj 1 d), PHYPE(qj 1 d) and PHYPO(qj 1 d) denote the synonym 

model, hypemym model and hyponym model respectively. Then equation 3.10 can be 

extended to: 

P(q 1 d) = II;l [~PsYN(qj 1 d) + ÂzPHypiqj 1 d) + 

~PHYPO(qj 1 d) + Â4Pco(qjl d) + ~Pu(qj 1 d)] 

(3.11) 

where Âj Ci = 1, ... ,5) are the mixture weights of the five models. In our discussion, we 

will refer to the dependency model with non-separated link model (Eq. 3.10) as NSLM 

and the one with separated link model (Eq. 3.11) as SLM hereafter. Now the remaining 

problem is to estimate the parameters in the models, such as the conditional probabilities, 

the weights of various models etc. We will discuss these problems in the next section. 

3.4 Parameter estimation 

In NSLM, 7 terms have to be estimated: PuCqdd), P(wld, 8), PL(qdw), Pco(qilw), and the 

three mixture weights. In SLM, PL(qdw) is split into three sub-elements, so is the 

associated mixture weight. So the number amounts to 11. In the following, we only 

describe the estimation of the parameters in NSLM. Those in SLM can be estimated in a 

similar way. 

3.4.1 Estimating conditional probabilities 

The uni gram model Pu(wdd) can be estimated using any existing method. In our case, 

we use the MLE estimation, smoothed by interpolated absolute discount (Zhai and 

Lafferty, 2001a), that is: 

p ( .Id)= max(c(wj;d)-b',O) + b'ldlu P. ( ·Ie) 
abs W, 1 d 1 1 d 1 MLE W, 

(3.12) 
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where t5 is the discount factor, 1 dl is the length of the document, Idl u is the count of 

unique term in the document, and PMLdwdC) is the maximum likelihood prob ab il it y of 

the word in the collection C. This smoothing method is chosen among a set of other 

smoothing methods (such as Jelinek-Mercer smoothing and Dirichlet smoothing) because 

we found that this smoothing showed most stable performance in our experiments. 

For P( w 1 d, BD) - the probability of w in document d according to dependency 

model(s), it can be approximated by the maximum likelihood probability PMLE(wld). This 

approximation is motivated by the fact that the word w is primarily generated from d in a 

way quite independent from the model80. 

The key problem now is the estimation of PL(wdw) - the prob ab ilit y of a link between 

two words according to WordNet. We noticed that WordNet does not provide any weight 

to relations. So, a naïve method would be to assign the relationship a binary weight (or 

possibly with a normalization). However, this could not reflect correctly the strength of 

the connection between the words. Instead, we will rely on the text collection to 

determine the probability by counting the co-occurrences of these words in the collection. 

This corresponds to an actualization of the WordNet relations to the given document 

collection. Sorne relations will be weighted higher than sorne others, meaning that the 

former are more suitable for the topic domain in question. This approach uses a similar 

idea to that of Mandala et al (1998). 

Co-occurrences are observed within sorne contexts. Using a whole document as co­

occurrence context may be too risky: two terms co-occurring in the same document may 

not be related. To avoid such cases, we limit co-occurrences to a smaller context: the 

words should co-occur within a window Wof certain size. 

As many pairs of words in the vocabulary have no link in WordNet, PL(Wilw) cannot 

be calculated by the relative frequency of co-occurrences alone. Smoothing has to be 

used. We tried four smoothing methods, Jelinek-Mercer, Dirichlet, Absolute Discount 

and Kneser-Ney as well as two smoothing strategies, backoff and interpolation (Chen and 

Goodman, 1998). It tums out that interpolated Absolute discount and Kneser-Ney have 
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the best perfonnance, which Îs consistent with Chen and Goodman's conclusion (Chen 

and Goodman, 1998). 

Equation (3.13) defines our estimation of PdWilw) by interpolated Absolute discount: 

(3.13) 

where Wj and W are assumed to have a relationship in WordNet, C(Wit wlW, L) is the 

count of co-occurrences of Wj with W witliin the predefined window W, and C(*, wlW, L) 

is the number of unique terms which have a relationship with Wi in WordNet and co­

occur with it in W. 

Notice that the above estimation is similar to a bitenn language model (Srikanth and 

Srikanth, 2002), in which word co-occurrences are considered without word order. The 

difference is that we only consider the pairs of words connected in WordNet. 

The estimation of the components of the co-occurrence model Pco<wild) is similar to 

those of the link mode} PdWild) except that when counting the co-occurrence frequency, 

the requirement of having a Hnk in WordNet is removed. It can be calculated by Equation 

(3.14), also smoothed by interpolated Absolute discount. 

P. (w.1 w)= max(c(wi'wIW) 6,0) + c(*,wIW)6 P. (w.lw) 
co l '\' ( 1 W) '\' ( 1 W) ndd-one 1 "-'C wj ' W "-'c wj ' W 

w, Wj 

IW)+l 
Padd-one( Wj 1 W) = ---,...,.-~------

w j 1 W)+l) 

(3.14) 

The estimation of synonym model, hypemym mode} and hyponym model in SLM 

follows the same way, except that each type of relation 1S considered separately in a sub­

model. 
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3.4.2 Estimating mixture weights 

In this section we introduce an EM algorithm to estimate the mixture weights in 

NSLM. Because NSLM is a three-component mixture model, the optimal weights should 

maximize the likelihood of the queries (Zhai and Lafferty, 2002). For each query q in the 

dataset (in our case, we use TREC topics 51-100), let Bq = [Av Aco, Av] be the mixture 

weights, we then have: 

N m e; = arg max Bq log L;ri il [Âu Pu (q j 1 di) + 
i=1 j=1 

(3.15) 

where N is the number of documents in the whole collection, and m is the length of query 

q. It is also possible to set N to be the number of top ranked documents in a initial 

retrieval. Here, we consider aIl documents in the collection to avoid a initial retrieval. 

{lZ"i }:l acts as the prior probability with which to choose the document to generate the 

query. Thus the query is generated from a mixture of N document models with unknown 

mixing weight{1rJ:1. Note that leaving {1r i }:l unfixed is important, because what we 

really want is not to maximize the likelihood of generating the query from every 

document in the collection. Instead this maximization is modulated by {1r i } : 1 which 

assign sorne weight to different documents according to their relatedness to the query: the 

more a document model can generate the query, the more we want to maximize it. With 

{lZ"; }:l as free parameters to be estimated, we would indeed allocate higher weight to 

documents that generate the query weIl; presumably, these documents are also more 

likely to be relevant. 

The method is similar in princip le to pseudo-relevance feedback, which assumes the 

top n documents to be relevant to the query. Ranking at top level is equivalent to having a 

high weight in our case. Zhai and Lafferty (2002) employs the same method to leam 

mixture weights. However, there arises another problem. Sorne documents having high 
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weights are not truly relevant to the query. They contain noise. To account for the noise, 

we further assume that there are two distinctive sources to generate the query, one is the 

relevant documents, another is a noisy source, which is approximated by the collection C. 

Then Equation (3.15) is rewritten as: 

N m 

(1- a)L1l"i Il [Àu Pu (q j 1 d) 
i=l j=l 

+ÀLPL(qj Idj)+ÀcoPco(qj Idj )] e; = arg max 8
q 

log m 
(3.16) 

+aIl[Àu Pu (qj le) 
j=l 

where a is the weight of the nOIse, Pu(qj le) , PL(qjIC) and Pco(qjIC) are respectively 

unigram model, link model and co-occurrence model buiIt from the collection. Here we 

fix a at a non-zero value, otherwise it would become close to zero because in that way, 

the documents would have higher likelihood and Equation 3.16 would reduce to Equation 

3.15. In fact, the role of a is to add sorne robustness facing to the noise of the training 

data. In our experiments, a is set to 0.3. With this setting, the hidden {7r.}~1 and Bq can be 

estimated using the EM algorithm (Dempster et al., 1977). The update formulas are as 

follows (we do not give their derivation here due to space limit): 

1l"?):fi[~?Pu(qj 1 dJ+;;;)PL(qj 1 dJ+}(;;bPco(qj 1 dJ] 
1l"(r+l) = j=l 

, N m 

L>?Tl[~)pu(qj 1 dJ+;;;)PL(qj 1 dJ+}(;;bPco(qj 1 dJ] (3.17) 
j=l J=l 

and 
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1 (l-a)"N 7r?) J.~) PL (qj·1 d)+a1i) PL (qj. 1 C) J.(r+l) _ L,,;;I 

L - m {(l-a)L,:I7r?)[~)pU(qj Id)+J.~)PL(qj Id)+J.~bpco(qj Id)]+ 

a[~)PU(qj 1C)+J.~)PL(qj 1C)+J.~bpco(qj IC)]} 

J.(r+l) _ 1 (l-a)L::I7rrr)J.~bpco(qj Id)+~bpco(qj IC) 

co - m {(1-a)L::I7ri(r)[~)pu(qj IdJ+J.~)PL(qj Idi)+J.~bpco(qj IdJ]+ 

a[~)pu(qj 1C)+J.~)PL(qj 1C)+J.~bpco(qj IC)]} 

(3.18) 

The five mixture weights in SLM can also be estimated by EM algorithm in a similar 

way. We do not li st the formulas here. 

To terminate the EM iteration, we set a threshold on the change of the 10g-like1ihood 

of the query: If the change is less than the threshold, EM algorithm stops. In our 

experiments, we find that EM for NSLM converges very quickly: It usually converges 

after about 5 iterations. For SLM, it converges after 10 iterations. 

The above algorithm is very similar to the one proposed by Zhai and Lafferty (2002) 

except that we introduce the noisy source into our model. In our experiments, it tums out 

that setting a to a non-zero value is slightly better than setting it to zero, which shows 

that it is beneficial to take into account the noise source in the model in an appropriate 

way. 

65 



3.5 Experiments 

3.5.1 Experimental setting 

Table 4. Statistics of Data Set 
Coll. Description Size # Doc. Vocab. 

(MB) Size 
WSJ Wall Street Journal (1990-92), Disk 2 242 74,520 121,944 

AP Associate Press (1988-90), Disks 2&3 729 242,918 245,748 
SJM San Jose Mercury News (1991), Disk 3 287 90,257 146,512 
Total 1,258 407,695 514,204 

We evaluated our model described in the previous sections using three different TREC 

collections - WSJ, AP and SJM. Sorne statistics are shown in Table 5. AlI documents 

have been processed in a standard manner: tenns were stemmed using the Porter stemmer 

and stopwords were removed. The queries are TREC 51-100. We used the title field and 

description field of the topics. These queries contain about 15-18 words. The document 

set cornes from the TREC disks 2 and 3. 

The version of WordNet we use for experiments is 2.0. For each word in the 

vocabulary of dataset, we extract its synonym, hypemym and hyponym from WordNet 

and build a pool of related tenns for it. The processing is done offline. When counting the 
1 

co-occurrences of tenns in link model, the pool is used to detennine whether the tenns 

have a link. As we do not consider explicitly compound tenns, aIl the compound tenns in 

WordNet are decomposed into their component words. 

The baseline of our experiment is the unigram model smoothed by interpolated 

Absolute discount. In the statistical language modeling approach for IR, there are sorne 

free parameters be estimated, for instance, the discount 8. In our experiments, we 

empirically set the parameters for uni gram model by trial and error, and the parameters of 

the dependency model are blindly set at the same values as in the uni gram model. So our 

dependency model is not tuned to its best. Even though, our dependency model 

outperforms the baseline substantiaIly. 
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a e T bl 5 C ompanson b etween U· mgram Mdl dD o e. an d epen ency Mdl o e 
Coll. Unigram Model Dependencl Model 

NSLM SLM 
AvgP Recall AvgP % change Recall AvgP % Recall 

change 
WSJ 0.2466 1659/2172 0.2597 +5.31 1704/2172 0.2623 +6.37 1719/2172 
AP 0.1925 3289/6101 0.2128 +10.54 3523/6101 0.2141 +11.22 3530/6101 

• 
SJM 0.2045 1417/2322 0.2142 +4.74 1572/2322 0.2155 +5.38 1558/2322 
AvgP is the non-interpolated average precision .• and" indicate that the difference is statistically significant 

according to t-test at the level of p-value < 0.05 and p-value < 0.01. 

The effectiveness of IR is mainly measured by the standard non-interpolated average 

precision (AvgP). For each query, we retrieve 1000 documents. The total recall (Rec.) for 

aIl 50 queries is shown as a complementary metric. We also calculated the t-test for 

statistical significance and conducted query-by-query analysis. 

3.5.2 Experimental Results 

We used Lemur3.0 (Ogilvie and CaIlan, 2001) to carry out experiments. For our 

purpose, Lemur has been extended to support our document expansion model. The 

baseline results are obtained directly by using Lemur. Table 6 shows the results of the 

first group of experiments, in which we compare unigram model with two kinds of 

models, NSLM and SLM. 

We see that document expansIOn model (both NSLM and SLM) outperforms the 

unigram model over the three datasets. SpecificaIly, the improvement on AP is greater 

than 10% and the other two datasets are above 5%. The improvement of WSJ and AP are 

statistically significant (at the level of p-value less than 0.05). The document expansion 

model also performs weIl in recall. For each dataset, it retrieves more relevant documents 

than the uni gram model. This is because uni gram model onl y uses direct matching 

between document and query while our model has the capability to exp and the document 

so as to match different query words. The increase in recall confirms this expansion 

effect. 
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T bl 6 Dl1 t b· f f dlrk dl d a e 1 eren corn ma Ions 0 umgrarn rno e, m rno e an d 1 co-occurrence rno e 

WSJ AP SJM 

Model AV2P Recall AV2P Recall AV2P Recall 

UM 0.2466 1659/2172 0.1925 3289/6101 0.2045 1417/2322 

CM 0.2205 1700/2172 0.2033 3530/6101 0.1863 1515/2322 

LM 0.2202 1502/2172 0.1795 3275/6101 0.1661 1309/2322 

UM+CM 0.2527 1700/2172 0.2085 3533/6101 0.2111 1521/2322 

UM+LM 0.2542 1690/2172 0.1939 3342/6101 0.2103 1558/2332 

UM+CM+LM 0.2597 1704/2172 0.2128 3523/6101 0.2142 1572/2322 

We can also observe the difference between NSLM and SLM. It can be seen that 

differentiating the relations in WordNet (SLM) is better than mixing them (NSLM). We 

will further discuss this in section 3.5.4. 

3.5.3 The role of link model 

Compared with previous work on dependency language model, the difference of our 

work is the introduction of link model based on WordNet. So we conducted experiments 

to investigate the role of the latter. I;able 7 shows the results. Here UM, .LM and CM 

denote uni gram model, link model and co-occurrence model respectively. From the table 

we can see that even though we cannot obtain good results using LM alone (which is 

expected), it is al ways helpful to incorporate it in the model: whenever LM is 

incorporated, we observe sorne improvements. The combination of aIl the three models 

(UM+CM+LM) always outperforms significantly other partial combinations. The results 

confirm our hypothesis that the relations contained in WordNet (link model) can weIl 

complement the statistical relationships extracted from co-occurrences and enhance the 

retrieval performance. The poor performance obtained when using LM al one may be 

explained by the fact that LM is too small to inc1ude enough information. In fact, in our 

experiments, LM is usually less than 10 MB, while CM is usually 40 times larger than it. 
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3.5.4 The role of different relations in the WordNet 

a e . T hl 7 A verage welgl or 1 eren re a Ions over a . bU d11 tIf Il :}uenes 
Model WSJ AP SJM 

UM 0.3564 0.3006 0.4858 
CM 0.1480 0.5282 0.1588 
SM 0.1657 0.0883 0.1392 

HEM 0.1745 0.0491 0.0963 
HOM 0.1649 0.0338 0.11968 
Total 1.0 1.0 1.0 

In section 3.5.2, we draw the conclusion that separating the relations in WordNet and 

treating them differently results in better effectiveness than treating them without any 

differentiation. In this section, we investigate the impact of different relations on 

retrieval effectiveness. Table 8 shows the average weights of different components of 

SLM over all queries. Here SM, HEM and HOM denote the synonym, hypemym and 

hyponym models respectively. These weights indicate, to sorne degree, the contribution 

of each component to the global performance of the model. 

We can see that the relations of WordNet have different contributions in various 

collections. This may indicate that these relations may be useful for IR at different 

degrees in different areas. 

It is also interesting to observe the correlation between the weights assigned to 

WordNet relations and the increases that we can ob tain when these relations are 

incorporated (Table 7). For WSJ, we observe quite strong weights for WordNet relations, 

and we also observe a quite large impr~vement of UM+LM over UM in Table 7. On the 

other hand, on AP, the weights assigned to WordNet relations are very weak. We also 

observe only a marginal of performance change from UM to UM+LM in Table 7 on this 

collection. This correlation tends to show that the suitability of WordNet to a particular 

document collection can be automatically determined by the parameter tuning process. In 

other words, the tuning process is able to determine the appropriate weights for WordNet 

relations according to their suitability to the area of the documents. Pushing our 

observation a step further: with an appropriate tuning process, the incorporation of 

WordNet in our model could not harm retrieval effectiveness. This observation also 
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applies to other resources such as co-occurrence information. Thus, it could be helpful to 

incorporate in a retrieval model as many resources of different kinds as possible. 

3.6 Summary and future work 

In this chapter, we propose and study a nov el document expansion approach for 

information retrieval. In this approach we integrate word relationships into the language 

modeling framework. Relationships come from two sources: one is from co-occurrences 

ofterms in the datas et and the other is from WordNet. 

The advantage of incorporating co-occurrence information in language modeling has 

been confirmed by several previous studies (Gao et al., 2004; Jin et al., 2002; Lafferty 

and Zhai, 2002). However, no previous study has investigated a different type of 

manually defined relationship in language modeling. Our study is motivated by the 

intuition that the addition of a manu al resource can have two advantages: On one hand, 

we can benefit from such a resource to coyer related terms that cannot be discovered 

automatically; on the other hand, we can rely on the manually recognized relationships 

that are supposed to be more precise to complement the statistical relationships extracted 

from co-occurrences. Our experiments confirm this intuition: whenever WordNet is 

incorporated, we observe sorne consistent (although variable) increase in retrieval 

effectiveness. The same observation is also true for the incorporation of co-occurrence 

information. Then our global conclusion of this study is that it is always better to 

incorporate more resources of different kinds into a language model for IR, provided that 

there is an appropriate training process to determine the parameters of the model 

correctly. 

In this chapter, we used EM algorithm to train the parameters. This method worked 

weIl for our experiments. In our work described in sorne later chapters, we will compare 

different parameter tuning methods, namely, unsupervised tuning using EM and 

supervised tuning using relevance judgments. 
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The co-occurrence model used in this study is not sophisticated. It is derived by 

observing term co-occurrences within texts, without making any filtering of noise. It 

would be interesting to integrate other more sophisticated methods such as those 

proposed in (Berger and Lafferty, 1999), (Jin et al., 2002) and (Lafferty and Zhai, 2001) 

in our link model. 

In this chapter, we only studied the relationships between query words and document 

words. One interesting extension is to also consider the relations between query words or 

between document words (Gao et al., 2004). This can help solve the problem of 

ambiguity. A related area is to consider not only single words, but also compound terms 

in language modeling. This can also create a more precise representation of document 

contents. 

ln our work, we assumed that word dependencies are independent of document. This 

lS a simplification assumption. In reality, there is sorne dependence. So another 

interesting research direction is to make the dependencies between words dependent on 

specifie document. However, a serious problem concems the large number of parameters 

to estimate. This is an interesting issue to be investigated in the future. 
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Chapter 4 

Query Expansion with Markov Chain 

Models 

4.1 INTRODUCTION 

In the previous chapter, we expanded the document language model by exploiting 

term relations. This could be done using the generative model, i.e. to estimate the query 

likelihood. Similarly, one can also try to apply term relations to expand the query. This 

expansion process can be integrated into language modeling by using KL-divergence 

(Lafferty and Zhai, 2001). 

As meritioned in section 1.1, the average length of Internet search queries is less than 3 

words. With this extremely short query, it is very hard to express user's information need 

completely and precisely. Query expansion is a technique to improve the query by adding 

more related terms into it. The related terms can be obtained in different ways, for 

example, from an external thesaurus (Voorhees, 1994) or from co-occurrence statistics 

derived from a large corpus (Bai et al., 2005). Whatever related terms are used, the query 

expansion process can. be considered as an inference process based on the term 

relationships (Nie et al., 2006). The principle is to determine what term can be inferred 

from the given query and to what extent. Similarly, the document expansion process can 

be considered as an inference process on the document. 
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In the previous studies, the above inference process has been implemented in LM 

either as document expansion (chapter 3) or query expansion (Bai et al., 2005; Xu and 

Croft, 1996; Zhai and Lafferty, 2001b; Metzler and Croft, 2007). 

Although relationships have been used in several previous studies for inferences, their 

utilization usually has been limited to only one step. For example, they are able to 

consider that if "computer" is related to "programming", then a query on "computer" can 

be related to a document on "programming". However, they are unable to conclu de that 

"computer" is also related to "algorithm" if only that "programming" is related to 

"algorithm" is known. In this chapter, we propose and study an approach based on 

Markov chain (MC) (Ross, 2003; Brin and Page, 1998; Toutanova et al., 2004) to 

perform multi-step inferences. In our approach, words correspond to states and word 

relationships are modeled as state transitions. The stationary distribution of Markov chain 

corresponds to the final query model. Since the stationary distribution is obtained 

iteratively, the probabilities of terms related to the query topic will be increased, whereas 

those of unrelated terms can be reduced. As a consequence, the resulting model is better 

than the original model, and our experiments will show this. 

This chapter is organized as follows. The next section briefly describes the previous 

studies on pseudo-relevance feedback for IR. In section 4.3, we describe the Markov 

chain model for query expansion. In section 4.4, we present a series of experiments 

conducted on three TREC collections, showing the effectiveness of our approach. Finally, 

we summarize our work and suggest sorne future research avenues in section 4.5. 

4.2 Pseudo-Relevance Feedback 

With the KL-divergence ranking approach, we have to estimate two probabilistic 

models, one for the document and another for the query. Each document d is ranked for a 

query q as follows: 
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P(w;IB) 
Score (d, q) = - L P ( w; 1 Bq) log 1 q 

W;E V P ( w ; Bd) 

= L P(w; 1 Bq) log P(w; 1 Bd) + c(q) oc L P(w; 1 Bq) log P(w; 1 Bd) (4.1) 
w.eV k'jEV 

where Wi is a word belonging to the vocabulary V, Bq and Bd are the query and document 

model respectively, and c(Q) is a constant independent of D, so it can be omitted for 

document ranking. While the query model can be estimated by Maximum Likelihood 

Estimation (MLE), the document model has to be smoothed, usually with the collection 

model, in order to avoid zero prob ab il it y for the missing words in a document (Zhai and 

Lafferty, 2001a). Our work in chapter 3 focuses on how to improve the document model 

by exploiting word relationships. 

As we mentioned, queries submitted by users are usually not good descriptions of 

users' information needs. So an MLE for query model is also insufficient. Query 

expansion is an often used technique to add sorne related terms into the original query. 

There are a lot of approaches for query expansion. Among them, pseudo-relevance 

feedback has shown to be effective across retrieval models (Rocchio, 1971; Tao and Zhai, 

2006). This approach assumes the top r"anked documents in the initial retrieval are 

relevant to the query. Sorne key terms are extracted from these documents and used to 

expand the original query. Several methods have been proposed: the feedback documents 

can be used to train a new language model, which is then mixed with the original query 

model (Zhai and Lafferty, 2001b); or they can be used to derive a relevance model 

(Lavrenko and Croft, 2001). In our preliminary tests, the first mixture model seems to 

produce better experimental results. So, we will concentrate on the utilization of mixture 

model for query expansion in this chapter. 

In the mixture model, a new feedback model P(wl BF ) is estimated from feedback 

documents, and then mixed with the original query model as follows to form the query 

model: 

(4.2) 
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where P(wlBJis the MLE prob ab ilit y of win q, i.e., P(wIBJ= C(I:~) (c(w,q) is the 

occurrence frequency of w in q, and Iql is the length of q) . The feedback model is 

estimated by EM in (Zhai and Lafferty, 2001b) in such a way that the likelihood of the 

feedback documents can be maximized. 

In this model, the feedback documents are assumed to be generated from two sources, 

i.e., the topic mode1, i.e., P(wl BF ), which depicts the user's information need, and a 

noisy model, which is approximated by the collection model. For simplicity, we assume 

each term in the feedback documents is generated independentl y. Then the likelihood of 

the feedback documents can be calculated as: 

f(F) = LLc(w;d)log((1-Â)P(wl 0F)+Âp(wl C)) 
d w 

with EM algorithm, it is straight forward to have that: 

(n) (l-Â)p(n)(WIOF) 
t (w)-----~~----~~----

- (l-Â)p(n)(w 1 F) + ÂP(w 1 C) 

Lc(w;d)t(n)(w) 

p(n+l) ( W 1 OF ) = ~d,="" __ ----;-----;-_ 

\ LLC(w;d)t(n)(W) 
w d 

(4.3) 

(4.4) 

U sing EM algorithm to estimate the parameters for the multinomial model P( w 1 B F ) is 

intuitive and ready to be implemented, but it may be time consuming because it finds the 

solution with an iterative process. Zhang et al. (2002) proposed a fast and direct 

algorithm to solve this problem, but we did not use the algorithm because it is not easy to 

be implemented and the EM algorithm is efficient enough for the relatively small scale 

problem we solve here. 

The new query model P( w 1 Bq) now contains the new terms selected from the 

feedback documents. This model is supposed to be a better description of the user's 

information need. Due to the added terms, the documents that do not conta in the original 

query terms, but the new terms extracted from the feedback documents, can still be 
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retrieved. A practical problem in query expansion is the size of the query: when a query 

is expanded by many terms, the query evaluation time is also increased. Therefore, to 

limit the size of the query model, one has to limit the number of terms extracted from the 

feedback documents (for example, 80 strongestrelated terms). 

Although pseudo-relevance feedback has proven to be an effective way to increase 

retrieval effectiveness, a critical problem is that it requires two steps of retrieval: one to 

obtain a set of top-ranked documents to extract expansion terms, and another one to 

retrieve documents with the expanded query. In addition, pseudo-relevance feedback also 

strongly relies on the assumption that related terms co-occur often in the feedback 

documents. Therefore, pseudo-relevance feedback exploits implicitly the term 

relationships encoded by their co-occurrences in the feedback documents. Although 

many useful term relationships manifest as co-occurrences in the feedback documents, 

there may be other useful relationships missing from these documents. Therefore, a 

natural question is how we can extend query expansion beyond the co-occurrence 

relationships embedded in the top ranked documents. This chapter addresses this question. 

We will propose several extensions: 1) We will use external resources such as Wordnet to 

ob tain related terms instead of reling on co-occurrence relations only; 2) We will exploit 

indirect term relations instead of direct relations; 3) We will perform both document 

expansion and query expansion. 

Previous studies have exploited explicitly several types of relationship between terms 

in different ways for either query expansion or document expansion. We review several 

ones as follows. 

Assuming sorne relationships t(qdw) between two terms, (Berger and Lafferty, 1999) 

proposed the following translation model to expand document model according to them: 

P(w 1 Bd) = ÂPu(w 1 d) + (1- À) Lt(w 1 w')P'n/(WI d) (4.5) 
w'Ed 
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where P.(wld) is a classical (smoothed) uni gram document model, and P.n/(wld)is the 

MLE document model. In their approach, the probability t( w 1 w') is estimated as the 

translation probability from a synthesized data by assuming a sentence to be parallel to 

the paragraph in which it appears. (Cao et al., 2005) further extends this method by 

integrating other types of term relationships, namely, co-occurrence relationships and 

lexical relationships from WordNet. 

The above method tries to create a new document model P( w 1 Bd) by integrating term 

relationships. It is a "document expansion" approach. A similar approach can also be 

used for query expansion. For ex ample, (Bai et al., 2005) used co-occurrence 

relationships, as well as inference relationships induced by information flow (Song and 

Bruza, 2003), to expand query model. 

Despite the fact that the above models are able to make inferences according to term 

relationships, inference has been limited to one step, i.e. only directly related terms are 

inferred and added during expansion. This limitation is unnecessary. An inference 

process without the limitation would have higher inference capabilities. A natural 

extension is to allow for multi-step inference. Markov chain (MC) is a suitable 

mechanism to implement multi-step inferences. 

4.3 Markov Chail) Model for Query Expansion 

MC has been widely used in several previous studies (Brin and Page, 1998; Toutanova 

et al., 2004, Minkov et al., 2006). In LM framework, (Lafferty and Zhai, 2001) also uses 

MC for query expansion. In that paper, transitions between terms are made via 

documents: a transition from a term to sorne documents, then from these documents to 

another term. This method can naturally incorporate the effect of pseudo-relevance 

feedback, because when performing the transit,ion from a term to documents, the 

documents 'can be limited to feedback documents, and the transition from document to 
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term is similar to query expansion via feedback documents. However, this particular wa'y 

to estimate term relationships may suffer from the following limitation: it is unable to 

incorporate other types of term relationships (e.g. those in a thesaurus). In practice, many 

methods have been developed for extracting various term relationships from text 

collections, and there are also manually built thesauri that can provide term relationships. 

Therefore, in this chapter, we will propose a more general model that can integrate term 

relationships of different types. 

MC has also been studied III (Collins-Thompson and Callan, 2005) for query 

expansion. However, the model uses several heuristics, and it does not exploit full y the 

capability of MC. The experiments only showed marginal improvement with the 

approach. In this chapter, we propose a more principled MC model, in which all the 

parameters will be estimated automatically. Therefore, our model can be easily adapted to 

different data sets. Our experiments will show that a more rigorous implementation of 

MC can significantly improve the retrieval effectiveness. 

A recent work done by Metzler and Croft (2007) proposed to use Markov Random 

Fields to select expansion concepts from pseudo-relevant documents. In this model, they 

integrated sorne proximity relations between terms, but no semantic relations. 

4.3.1 Markov Chain Preliminaries 

Before going into the details of our model, let us briefly describe the basic properties 

of MCs. For more detailed information, please see (Brémaud, 1999; Ross, 2003). 

A stochastic process {Sr} is a family of random variables, where t ranges over an index 

set T. A Markov process {St} is a stochastic process over a totally ordered index set 

satisfying the Markov properties: for any indices k<t<m, Sm is independent of Sk given St. 

A discrete time MC is a Markov process whose state space S is finite or countable and 

whose index set T is the set of natural numbers. The Markov property for discrete time 

MC can be written as follows: 
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peSt = j 1 So = io,···, St-2 = it-2,St-l = it-l) = peSt = j 1 St-l = it-l) 
"dt, j,i,io, ... ,it-2,it- 1 

The MC is stationary or time-homogeneous, if the transition probabilities do not 

depend on the time t. More formally: 

"dt,j,i: 
P(5[ = j 1 5t - 1 = i) = P(51 = j 1 50 = i) 

A dis crete time stationary MC over a set of states S is specified by an initial 

distribution po(S) over S, and a set of state transition probabilities p(StISt-J). The state 

transition probabilities can be represented by a matrix P, whose entries 

are Pij = peSt = j 1 St-l = i). A MC defines a distribution over sequences of states, via a 

generative process in which the initial states Sa is first sampled according to Po, and then 

states St (for t=1,2, ... ) are sampled according the transition probabilities. Because MC 

used in our work is to model the relationships among terms, from now on, we will use 

MC to mean discrete time-homogenous MC. 

Let P(St=s) denote the probability that the random variables St have value s. This 

probability can also be referred to as the probability that the MC is in state s at time t. We 

can compute the probability distribution p(St) at time t using the initial distribution and 

the state transition probabilities in the following way: 

p(SO) = PO 
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A MC has a limiting distribution, or stationary distribution n if, for every state s, the 

chain starting at s converges to the same distribution n (it is important to note that J[ is a 

column vector which assigns a probability to each state). Formally, 

Vs: lim p(StISo=s)=n 
t~+oo 

A MC has a stationary distributionn, if the chain stays in J[ if it is started according 

to 1l . More formally n is a stationary distribution if and only if: 

n = Pn 

The MCs used in (Brin and Page, 1998; Lafferty and Zhai, 2001; Toutanova et al., 

2004) have the property that on each step, there is a probability r>o of resetting to the 

initial state distribution Po and a probability (l-y) to transit to the next state. Thus, the 

state transition probabilities can be written 

(4.6) 

For sorne appropriate p, this ensures that the MC has a limiting distribution, and 

therefore it also has a unique stationary distribution (Brémaud, 1999). 

Given a MC, M, with the initial distribution Po and the state transition probabilities 

p(StISt-l), we can construct another MC, !Vi . Its initial distribution is Po, and state 

transition probability is peSt 1 St_I). With this setting, it is not difficult to prove the 

following lemma: 

Lemma4.1: 

The stationary distribution of !Vi can be calculated as: 

fies) = limT_H~ peST = s) 
~ 

=rL(1-rYP(S/ =s) (4.7) 
/=0 
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Since 0 < r < 1, we know from equation 4.7 that ft(s) must converge to a positive real 

number. It shows this Markov chain has a unique stationary distribution. 

From equation 4.6, the MC also has another interpretation: consider the random walk 

begins from Sa which is sampled according to the initial state probability Po . At each step, 

it stops walking with a probability r, and continues walking with probability (1- r) . 

Moreover, it transits to another state according to the state transition 

probability peSt 1 St-l) . 

4.3.2 Query Expansion with MC Models 

Let us retum to the problem of query representation. A good query can be viewed as a 

good summary of an information need. So let us consider the process of query generation 

by a user. To create such a summary, the user first has to select a meaning or a concept to 

describe; then a term to describe it. Once the first meaning is summarized, he/she can 

select another related term to describe the same concept further; or choose the next 

concept to describe. This process corresponds exactly to a Markov chain process we just 

described. 

Assume that q is a query expression; E is the set of potential expansion terms. We 

define a MC, M, on E to generate query terms. M has initial distribution P( W 1 e~) and 

state transition probability P(wdwj,q). Therefore, the generation of a query can be 

modeled by a MC as follows: 

Step 0: The user chooses an initial word according to an initial distribution P( W 1 e~) 

Step t: Given the word Wj selected at step t-1, the user chooses to add a word Wi. In 

fact there are two ways to accomplish it: first the user can choose Wi related to 

an existing word Wj at probability 1- r, or to add a new unrelated word (i.e., 

reset to step 0) at probability r. The selection of the related word is determined 
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by the transition probability P(wj 1 w j ' q). So the probability of Wj according to 

both cases is: 

(4.8) 

Therefore, we in fact define another MC with the initial distribution P(w 18~) and state 

transition prob ab ilit y p{wj 1 wj ,q), which is denoted as NI . We allow the above transition 

process to continue until reaching a fixed point. According to lemma 4.1, if lS 

guaranteed to have a stationary distribution ft(w 1 q) , which is expressed as follows: 

~ 

= rL(1-r)1 ~(wlq)) 
1=0 (4.9) 

where ~(wi q) is the state of M after t-th update. The above process can also be 

interpreted as a random walk: the random walk starts from Wo which is sampled 

according to the initial state probability P( w 18~) . At each step, it stops walking with a 

probability r, or continues walking with prob ab il it y (1- r). In the second case, it transits 

to another state according to the transition probability P( Wj 1 wj ,q). According to its 

definition, the stationary distribution ft(w 1 q) does not change with T. We interpret a 

change of probability (by the user) as evidence that the current probability distribution is 

not yet a good one, and the user has to modify it. For ex ample, the user may have 

attributed too high a prob ab il it y to a term, which tums out to be a poor descriptor. The 

MC model has the ability for mutual reinforce, i.e., the terms which are related to many 

original query terms will be emphasized, and those related to few original query terms 

will be deemphasized. So the stationary probability distribution corresponds to a query 

model which corrects the probability distribution. Therefore, we consider the stationary 

distribution as the ideal query expression for the user. So, we define the final query 

model asft(w 1 q), i.e., P(w 18q ) = ft(w 1 q) 
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Notice that the transition probability P(w; 1 wj'q) is query dependent. Therefore, the 

transition from Wj to Wi will depend on other words in the query. This is a way to consider 

the dependence of words within the query, thus relax to sorne extent the independence 

assumption between query terms. 

4.3.3 Estimation of MC Parameters 

As mentioned in section 4.3.1, a MC is uniquely determined provided that its initial 

distribution and transition probabilities are given (Brémaud, 1999; Ross, 2003). Since M 

is induced from M, we only need to define the parameters of M. In this section, we will 

estimate its parameters and incorporate pseudo-relevance feedback within the estimation. 

4.3.3.1 Initial Distribution 

The initial probability for word W (or state) is Po (w 1 q) , which can be viewed as the 

prior probability of w. Because the query is usually very short, it is only a shallow 

description of user's information need. We assume there is an underlying topic model for 

the query, which is denoted as (). The generation of query terms has two sources: the 

original queryand query topic model. In general () is a random variable depending on Q 

given the document collection. The initial state distribution is: 

P(W 1 (}~) = ÂP(w 1 (}~)+ (1- Â) feP(wl (})P«() 1 q)d(} 

where P( w 1 (}J is the MLE probability of w in q, and Â is the coefficient of MLE model, 

which is set to be 0.5 for aIl the following experiments; P(B 1 q) is the probability to 

choose a topic according to q. 

In pseudo-relevance feedback approaches, we usually set () as the topic model for top 

N retrieved document (Zhai and Lafferty, 2001b). So () is fixed given q and the retrieval 

system. We denote this model as (}F and the feedback documents as F. Therefore, it is 
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reasonable to assume P(8F 1 q) = 1 for the given q. Therefore, the above equation can be 

simplified to the following one: 

P(W 1 O~) = ÂP(w 1 (
0

) + (1- Â)P(w 1 0F,q) (4.10) 

We have a number of approaches to estimate P( w 1 OF' q). Here, we use the mixture 

model presented in (Zhai and Lafferty, 2001b) which produced the best results in our 

experiments. Therefore, we have: p(wl 0F'q) = p(wl OF)' where P(w 10F) is ca1culated in 

equation 4.4. Nevertheless, any other query expansion model can be extended by MC, for 

example, Lavrenko's relevance model (Lavrenko .and Croft, 2001), if the initial 

distribution is defined on it. 

4.3.3.2 Transition Probability considering specificity 

Because the possible feedback documents F is more informative for query q compared 

to the whole collection, we also consider it in defining the transition probability and 

combine it with the background model via smoothing method. To avoid ca1culating 

integration, we also set F to be the top N documents in the first retrieval with original 

query. Then the transition probability is: 

(4.11) 

where PR(wj Iwj,F)is the transition probability extracted from F, while PR(wj Iw) is from 

the whole collection . ..t:,~ are the coefficients for the two models. We will estimate it 

together with other coefficients in next section with a discriminative training method. 

PR(wj 1 wj,F) and PR(wj Iw)are calculated in the same way except that they are based on 

different texts. Therefore w~ onl y describe how to ca1culate PR (wj 1 W j) in the following. 

In section 3.3, PR(wj 1 w) is defined as the interpolation between two models: the link 

model and co-occurrence model. However, we observe that, if we also adopt the 

definition here, the resulting relationships often suggest common and unrelated expansion 
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terms. The problem lies in the fact that we only consider the relationships in one direction 

and not in the reverse direction. This problem can be best illustrated from a logic point of 

view: The transition probability, PR(Wi 1 w) represents indeed the certainty of inferring Wi 

from wj. i.e. (w
j 
~ w;). This estimation is noisy: a term Wj can often entail a more general 

term Wi, not because the latter is related, but because it often co-occurs with the first one. 

As a consequence, common word such as time, year, mr etc. are often suggested as 

expansion terms. In fact, the desired expansion terms are those that are entailed by the 

original terms, but also entail the latter. In other words, the latter should be specifie to the 

former. Specificity can be represented as the reverse implication(w; ~ w). Therefore, we 

propose to integrate both implications. Let us caU P'R (wi 1 w) forward inference relation 

(FIR) and P'R (wj 1 wj ) the backward inference relation (BIR). By combining them, we 

have: 

(4.12) 

where P'R (w; 1 w) represents the probability that Wican be inferred from Wj; ~,~ are the 

coefficients of FIR and BIR respectively; Z is a normalization factor that ensures 

L PR(wj 1 w) = 1· P'R (wi 1 w) is estimated in the same manner described in section 3.3, 
w,EE 

1.e., 

The addition of specificity is a new extension to the traditional methods that only use 

FIR. The combination of both models can be compared to the logical equivalence. 

Therefore, the inference process encoded is stricter: a good expansion term should be 

equivalent to a query term. Similarly, PR(Wj 1 wj,F) is estimated as: 

(4.13) 
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Equations (4.12) and (4.13) share the same coefficients. AlI the coefficients meet the 

constraints: ~ E [0,1] and ~ +.4i = 1 for aU i=1,2,3. These coefficients will be estimated 

with a discriminative training method described in section 4.3.4. 

4.3.3.3 Estimation of the Unigram Model 

The unigram model Pu(wdd) can be estimated using any existing method. In our case, 

we use the MLE estimation, smoothed by interpolated absolute discount (Zhai and 

Lafferty, 2001a), that is: 

p (.ld)=max(c(wj ;d)-6,ü) 6l d lup, (·Ie) 
abs w. 1 d 1 + 1 d 1 MLE W. 

where t5 is the discount factor (set to be 0.5), 1 dl is the length of the document, Idl u is 

the count of unique term in the document, and PMLE(wdC) is the maximum likelihood 

probability of the word in the collection C. This smoothing method is chosen among a set 

of other smoothing methods (such as Jelinek-Mercer smoothing and Dirichlet smoothing 

(Zhai and Lafferty, 2001a)) because we found that this smoothing showed most stable 

performance in our experiments. 

4.3.4 Discriminative Training Method to Estimate the 

Coefficients of Model Combination 

We have sever al coefficients to be estimated: the probability r in equation 4.8 to stop 

random walk andÀ,; in section 4.3.3.2. Becausé our experimental results in section 4.5.2 

show that the retrieval effectiveness is relatively insensitive to r, here we just tune the 

parameters À,; . There are two main strategies to optimize parameters: generative methods 

to maximize the like1ihood of queries (or relevant documents) (Zhai and Lafferty, 2001b; 

Zhai and Lafferty, 2002) and discriminative methods to optimize the mean average 

precision (MAP) or the rank of relevant documents directly (Gao et al., 2005). Here we 
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use the latter, i.e., we optimize the parameters to maXlmlze the MAP of training 

collections. We assume MAP is a function depending on AI . To avoid constrained 

optimization, we transform the constraints ~ + "ç = 1 into: Â{ = expCr!) i = 1,2,3 and 
expCrf) + expCri2 ) 

j=1,2. Then optimization over ri becomes unconstrained. Therefore, our ultimate object 

function is: 

fer!) = MAP(r!) (4.14) 

Toutanova et al. (2004) used a similar approach for transformation. In addition, a 

gradient-descent-like method is used in (Toutanova et al., 2004). However, we cannot use 

gradient des cent methods because f (r! ) is not differentiable with respect to r! . Gao et al. 

(2005) used line search which tries to look for an optimal value for each parameter in tum 

while keeping aIl the other parameters unchanged. However, it is easy to stop at local 

maximal. Here we use the Simulated Annealing (SA) algorithm (Kirkpatrick et al., 1983) 

to maximize f(r!). Although SA is more time consuming than line search,lt avoids 

being trapped at a local optimal solution. Our experiments show it works weIl. 

4.4 Experiments 

Table 8. Statistics of Test Collections 
Coll. Description Size(MB) # Doc. Vocab. Avg Doc Query 

Size Len 
Testing Training 

AP Associate Press (1988- 729 242,918 245,748 244 TREC topies 51-100 TREC topies 101-
90), Disks 2&3 (Title + Dese.) 150 +201-250 (Title 

+ Dese.) 
WSJ Wall Street Journal 242 74,520 121,944 264 AsAP AsAP 

(1990-92), Disk 2 
SJM San Jose Mercury 287 90,257 146,512 217 AsAP AsAP 

News (1991), Disk 3 
CHI People's Daily (91-93) 162 164,789 274,901 242 TREC CLlR CHI-28 TREC Cl:I29-54 

& Xinhua Daily (94- (Title) (Title) 
95) 

CH2 As CHI As CHI As CHI As CHI As CHI As CHI (Title +Dese.) As CHI (Title + 
Dese.) 

We used five TREC collections to evaluate our models: three in English and two in 

Chinese. We used collections with different languages in order to test whether our models 
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are language independent. Table 9 shows the statistical information of the vanous 

collections. 

AlI English documents and queries were processed in a standard manner: terms were 

stemmed using the Porter stemmer and stopwords were removed. The document set 

cornes from the TREC disks 2 and 3. 

The version of WordNet we use for experiments is 2.0. For each word in the 

vocabulary of dataset, we extract its synonym, hypernym and hyponym from WordNet 

and build a pool of related terms for it. The processing is done offline. When counting the 

co-occurrences of terms in link model, the pool is used to determine whether the terms 

have a link. As we do not consider explicitly compound terms, aIl the compound terms in 

WordNet are decomposed into their component words. 

For Chinese, the entire dataset (including the documents and queries) was converted 

into the simplified encoding (GB2312). We carried out dictionary-based word 

segmentation. This dictionary is compiled by DC Berkley, and it has been used in several 

TREC experiments on Chinese IR. According to Foo and Li's work [2004], the best 

results are obtained when most Chinese words are two-character. long; we therefore 

limited the length of the word to no longer than 3 characters. The queries and documents 

are processed in the same way and we did not filter out any stop word. Because there is 

no counterpart of WordNet in Chinese, we did not construct the WordNet model, i.e., 

4 is consequently set to 1. 

The effectiveness of IR is generally measured by the standard non-interpolated 

average precision (AvgP.). For each query, we retrieve 1000 documents. The total recall 

(Rec.) for aIl queries is shown as a complementary metric. We also ca1culated the t-test 

for statistical significance and conducted query-by-query analysis. 

We also used Lemur3.0 (Ogilvie and CaIlan, 2001) as our retrieval system. For our 

purposes, this toolkit has been extended to support our experiments. 
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4.4.1 Results of Query Expansion with MC 

Table 9. Comparison different models for query expansion 
Coll. UM QE MixM MC 

AvP. Rec. AvP. %chg Ret. AvP. %chgl Ret AvP. %chg2 Ret. 
1 

AP 0.192 3289/6101 0.195 +1.76 3370 0.2350 +22.07 3700 0.258 +9.79* 3994 
5 9 ** 0 

WSJ 0.246 1659/2172 0.248 +0.68 1636 0.2731 +10.75 1730 0.286 +4.72 1794 
6 3 ** 0 

SJM 0.204 1417/2322 0.214 +4.74 1485 0.2298 +12.37 1526 0.252 +9.75* 1621 
5 2 ** 2 

Ret. is the number of retrieved relevant documents. chgl means the improvement over UM and chg2 means the 
improvement over MixM. * means the improvement is statistical significant Cp-val <0.05) and **means very 
significant Cp-val <0.001) 

To examme the performance of MC-based query expansion, we compared the 

following models: 

UM: unigram model. This is the basic LM without any expansion. 

QE: the basic query expansion model, which uses term relationships extracted from 

co-occurrences and from WordNet (for EngIish). This experiments aims to show 

the contribution of inference in query expansion based on term relationships soleIy. 

In fact, the expanded query model is formulized as follows: 

P(w 1 Bq) = ÂP(w 1 °0 ) + (1- Â) l PR(w 1 w')p(w'l °0 ) 
(4.15) 

w'eq 

where P(wl Ba> is the MLE probability of w in query q, and Â is the coefficient 

which is set by manual trial. PR (w 1 w') is calculated as equation 4.12. We use 80 

expansion terms in this ex periment. 

MixM: query expansion with the mixture model. We used top 20 documents for 

feedback and chose 80 terms to add to the query. 

MC: query expansion with MC. AlI the parameters MC shares with MixM are set to be 

the same. We also set]' in equation 4.6 to be 0.3 for aIl other four collections 
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except CH2, in which it is set to be 0.8. AlI other parameters are tuned by 

discriminative training described in section 4.3.4. 

Table 10 compares the four models. We can see that the basic query expansion model 

(QE) only marginally outperforms the uni gram model. For Chinese, in particular, 

virtually no improvement has been obtained. This result is not really surprising and it is 

consistent with several studies on query expansion (Voorhees, 1994). 

In contrast, we can see in the colurnn MixM that the utilization of a feedback model to 

mix with the original query model is highly effective. This result is consistent with that of 

(Zhai and Lafferty, 2001b). The consideration of feedback documents c1early allow us to 

create a better query model. 

What is interesting to observe is that, once feedback documents are used to enhance 

the query model, term relationships become more useful. This can be observed in the 

colurnn MC, in which feedback documents are used in the following two ways: to create 

a feedback unigram model as initial distribution for MC, and to provide a subset of 

documents from which transition probabilities are extracted. This provides us with more 

related expansion terms. 

The higher improvement obtained with MC is as expectable. When we extract term 

relationships from the feedback documents which are more informative to the query, a 

filtering has been made. It can be assumed that these documents are strongly related to 

the query' s topic and the relationships extracted from them are also more related to the 

query. This observation is similar to that on global and local context analysis (Xu and 

Croft, 1996). 

MC also outperforms MixM. It brings statistically significant improvements on four 

collections except WSJ. Our explanation for this is as follows: in the experiments, we 

only selected 80 terms with the largest initial probabilities and used them for random 

walk. MC is in fact a process to re-estimate term probabilities. Therefore, by defining 

transition probabilities with word relationships, MC increases the probabilities of 

important terms and their related terms, and this then results in a more accurate query 
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mode!. In fact, M ixM is a special case of MC when we set the number of random walk to 

O. So the difference between MC and MixM is directly due to the additions of expansion 

brought by random walk. This demonstrates the usefulness of random walk in query 

expansion. 

4.4.2 Sensitivity of Stopping Probability in Random Walk 

Our model does not optimize the stopping probability ( r in equation 4.8). Now let us 

examine whether it is sensitive to the performance of MC. We carried out a series of 

experiments, tuning rfrom 0 to 1.0, for all the five collections and compared MC with 

MixM for all collections at each value of r. Figure 4 shows the results. We observe that 

MC will outperform MixM if rE [0.2,1) for aIl four collections except CH2, which requires 

rgreater than 0.5. Therefore, the performance of MC is fairly good even thoughris.not 

optimized, i.e., it is not sensitive to r . 
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Figure 4. Sensitivity of for MC performance 
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4.4.3 Multi-step VS Single Step 
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Figure 5. Convergence of Random Walk 
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In this experiment, we examine whether multi-step inference is better than single step 

inference. In this ex periment, we set number of random walk steps from 1 to 25 and got 

the average precision for a11 five collections. The one-step random walk is actually the 

single step inference, in which we only consider the immediate word relationships. Figure 

5 shows the results. From this figure, we observe that multi-step inference is better than 

single-step inference. 

Table 10. Forward inference v.s. bidirectional inference 
Coll. FIM FIM+BIM 

AvP. Ret. AvP. %chg. Ret. 
AP 0.2533 3913 0.2580 +1.85 3994 

WSJ 0.2719 1774 0.2860 +5.19* 1794 
SJM 0.2433 1614 0.2522 +3.66* 1621 
CHI 0.3012 1726 0.3637 +20.55** 1910 
CH2 0.3859 1985 0.3906 +1.21* 1993 

AvP, Ret. * and ** has the same meaning with table 2; chg. means the improvement over FIM. 

Another interesting observation from the figure is the quick convergence of MC. 

Although MC reaches its stationary distribute at infini te steps, equation 4.9 converges 

very fast because re [0,1]. We see that MC converges in less than 20 steps for aIl the 

collections; in particular, CH2 converges after 5 steps. Since MC converges very fast and 

the state set is small (only containing 80 terms), query expansion can be very efficient. In 

our experiments, we ohserved that MC model took very limited additional time (only 

several seconds for each query). 
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4.4.4 Comparing Forward Inference with Bidirectional 

Inference 

a e T bl 11 T op expansIOn erms WI an + t "th FIR d FIR BIR 
FIR FIR+BIR 

play 0.00670988 play 0.0040742 
state 0.00670247 umavel 0.00230366 
year 0.00274086 president 0.00230058 
talk 0.00215404 upcoming 0.00230058 

go vern 0.00205798 congression 0.00207419 
country 0.00205344 contract 0.00189123 
nation 0.00184793 territory 0.00172689 

president 0.00170653 prosecutor 0.00169048 
party 0.00170508 master 0.00163359 

million 0.00169628 serious 0.00161677 

The addition of reverse implication to account for the specificity of expansion terms 

brings a notable improvement. Table Il shows the results obtained with one- and two­

directional implications. We can see that the addition of inference is useful on aIl 

collections, and is especially effective on CHI (20.55% improvement). We observe that 

in general, when BIR is not added, many queries are expanded with general terms, which 

are not useful to identify relevant documents and hurt the performance. Table 12 shows 

the expansion terms6 of the model using FIR or FIR+BIR for query #61. The original 

query lS: 

Title: Israeli Role in Iran-Contra Affair 

Description: Document will discuss the role of Israel in the Iran-Contra Affair. 

We exc1uded the original query terms from Table 12. We can see that in the column 

FIR, many common words, such as year, million, are expanded; while in FIR+BIR, most 

of the words are specifie to the query. 

6 The expansion terms have been stemmed, here we restore the original form for easy understanding 
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4.5 Summary of Query Expansion with MC 

In this chapter, we proposed and evaluated a query expansion model based on Markov 

Chain. Although MC models have been employed for query expansion in previous 

studies (Lafferty and Zhai, 2001; Collins-Thompson and Callan, 2005), our work lS 

different from them in the following aspects: 

• Our model is feasible to integrate arbitrary relationship between terms, while 

(Lafferty and Zhai, 2001) just consider the relationship between a document and a 

term. 

• Our model has a well-grounded theoretic Vlew, and all the parameters are 

automatically estimated without any heuristically setting. 

• Our model is feasible to consider the multi-step relationships between terms, which 

can bring further improvement 

We also consider the specificity when defining the word transition probabilities, which 

makes our model more robust in finding expansion candidates. A discriminative training 

method is used to estimate the parameters automatically. As a consequence, this model is 

ready to be adapted to other data sets. 

A seriaI of experiments on standard TREC data have conducted to evaluate this model. 

Experimental results show that our model outperforms the mixture model (Zhai and 

Lafferty, 2001b) significantly. Moreover, the consideration of specificity in defining the 

word transition probability also improves the performance. 

In this chapter, we apply the MC model for mono lingual IR, so the relationships are 

between mono lingual terms. Actually, we can view translation between bilingual terms as 

another kind of term relationships; therefore the MC model can also be applied to cross­

lingual information retrieval. In next chapter, we will address this issue. 
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Chapter 5 

Cross-Lingual Information 

with Markov Chain Models 

5.1 Introduction 

Retrieval 

Cross-Language Information Retrieval (CLIR) has attracted a large number of studies, 

and a variety of methods for query translation have been proposed (Ballesteros and Croft, 

1998; Davis and Ogden, 1997; Lavrenko et al., 2002; Gao and Nie, 2006; Xue et al., 201; 

Kraaij et al., 2003; Wang and Oard, -2006; Xu and Weischedel, 2000). Many of these 

methods rely on dictionaries for query translation due to the simplicity of the methods 

and the availability of machine readable bilingual dictionaries (Gao and Nie, 2006; Gao 

et al., 2001; Hedlund et al., 2004; Hull and Grefenstette, 1996; Xue and Weischedel, 

2005). Sorne studies have shown that dictionary-based approaches can produce very 

good CLIR results. However, several problems have also been repeatedly observed in 

them, and remain unsolved: On the one hand, translation is strongly limited by the 

coverage of the dictionary, and a manual extension of the dictionary coverage is difficult. 

On the other hand, even when a dictionary contains all the possible translations for a 

word, we are still faced with the problem of translation ambiguities. A selection should 

be made in order to reduce noise (i.e., inappropriate translation candidates). However, 

dictionaries do not provide any translation reliability measure or context information that 

can help select the appropriate translations. In most previous studies, dictionaries have 

been used as the only resource to suggest translation candidates. Although this may result 
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in reasonable suggestions in many cases, it is not sufficient for query translation in CLIR. 

In fact, unlike other translation tasks such as full text machine translation, a CLIR query 

can be translated not only by literaI translation words (e.g., words that are stored in a 

dictionary), but also by semantically similar words. These latter have been found to be 

very useful to pro duce a desired query expansion effect (Kraaij, 2003). For example, a 

literaI Chinese translation of the English term "pro gram" is "tïff", but the Chinese term 

"~1;t;" (algorithm) is semantically related to "pro gram" and is also useful for retrieving 

more relevant documents about "program". 

In order to enhance the expansion effect, several studies have used explicit query 

expansion before and after translation using pseudo-relevance feedback (Ballesteros and 

Croft, 1998; McNamee and Mayfield, 2002). However, in aIl the previous studies, the 

translation step and the expansion step(s) are performed separately, i.e., they are only 

loosely connected to the IR model. Many parameters have to be set heuristically. In such 

a case, it is difficult to determine automatically the best settings of these separate steps so 

as to maximize their global effectiveness. A better method is to define a single model in 

which both translation and expansion work together to determine semantically related 

target words, and to use a principled method to determine the parameters automatically. 

In this chapter we extend the idea presented in chapter 4 to cross-lingual IR. In chapter 

4, we dealt with monolingual query expansion with Markov Chain (MC) models and 

produce encouraging results. In this chapter, we propose an approach based on MCs to 

integrate query expansion with query translation. Both monolingual (e.g. co-occurrences) 

and cross-lingual (e.g. dictionary translation) term relations are integrated into an MC 

model which is represented as a directed graph. The "translation" of a query is 

formulated as a random walk in the MC, where monolingual and cross-lingual term 

similarities are propagated among terms in both languages. This framework has several 

advantages: (1) It allows us to integrate both translation relations and monolingual 

relations such as co':occurrence statistics, by which the suggested terms can be translation 

terms or related target terms. Thus we are able to overcome the limitation by the coverage 

of the dictionary and to produce a query expansion effect; (2) The multi-step random 

walk of MC allows us to extend similarity relations from query terms to other indirectly 
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connected similar terms, which further extends the effect of query expansion; (3) The 

iterative adjusting of MC will result in a stationary probability distribution, which 

represents better relations between terms than a coarse initial distribution (we have 

witnessed this effect in chapter 4 for monolingual query expansion). Truly related target 

terms are expected to receive higher probabilities after adjusting. (4) There are several 

methods for automatic tuning of the parameters of MC (Minkov et al., 2006; Toutanova 

et al., 2004) in principal ways, which avoid us from having to assign parameters 

heuristically. Therefore, the MC models provide a solution to aIl the problems mentioned 

above. 

MC has been used in several recent studies for query expansion (Collins-Thompson 

and Callan, 2005; Lafferty and Zhai, 2001; Cao et al., 2006). The principle is similar to 

our work in this chapter. However, in previous work, the MC was limited to monolingual 

terms, while we also integrate translation relations. To our knowledge, this study is the 

first attempt to apply MC to modeling cross-lingual query expansion. 

We evaluated our approach on three TREC and NTCIR collections for English­

Chinese CLIR. The experiments show that: (1) the use of MC can indeed lead to better 

translations than with the traditional approaches; (2) The integration of monolingual word 

relations can bring further improvements. 

This chapter is organized as follows. Section 5.2 describes the background of our 

method. Section 5.3 presents the MC models for query translation. Section 5.4 presents 

the estimation of model parameters. The experiments are presented in Section 5.5. 

Section 5.6 compares our approach with previously proposed methods. Conclusions and 

future work will be given in Section 5.7. 

5.2 Background 

Traditionally CLIR has been considered as a two-step procedure: query translation by 

an extemal component, and mono lingual retrieval (Gao and Nie, 2006; Hedlund et al., 
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2004). Recent studies show that the separation of the two steps do es not allow us to take 

into account effectively the uncertainties in each step, and an integrated approach is 

preferred (Kraaij et al., 2003; Xue et al., 2001). Language modeling has been shown to be 

an appropriate framework for such integration (Kraaij et al., 2003). In this chapter we 

follow the same princip le, and consider query translation as a step embedded in the 

construction of the final query model in a language modeling setting. We use negative 

KL-divergence as the basic document ranking function (Lafferty and Zhai, 2001), defined 

as follows: 

P(wIB) 
score(q,d) = "P(wIBq)log 1 d 

~Yo€q P(w B) 
q 

(5.1) 

where q and d are query and document respectively, and Bq and Bd are respectively the 

parameters of query and document models. B y integrating query translation, the above 

equation is extended to the following one: 

= LCEV LP(c,e 1 Bq)logP(c IBd ) 

eeq 

(5.2) 

= Lcev LP(c 1 e)P(e 1 Bq)logP(c IBd ) 

eeq 

where c is a term in document language (Chinese) and e a term in query language 

(English). 
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Figure 6. Illustration of Query Translation via Random Walk 

Equation (5.2) defines a general language modeling framework for CLIR. The key 

problem is the estimation of the translation probability P( cie). It is this estimation that 

makes our approach different from the others. 

Using language modeling framework has been studied by Lavrenko et al. (2002), and 

Xu et al. (2001). In their models, they did not build an explicit query model, which is 

different from us. On the other hand, using multiple resources for query translation has 

been studied by Xu and Weischedel (2005). However, they just combined multiple 

dictionaries, and the weight for each dictionary was assigned manuaIly. 

Due to the lack of the measurement of translation reliability in a dictionary, most 

previous studies based on dictionary used two naïve methods: 

(1) P(cle) is assigned uniformly over aIl the candidates stored in the dictionary; 
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(2) P(cle)=l if c is the first translation of e in the dictionary and 0 for aIl other 

translations. 

In sorne more recent studies, P(cle) is determined according to more sophisticated 

criteria such as the coherence between translation candidates (Ballesteros and Croft, 1998; 

Gao et al., 2001; Gao and Nie, 2006). However, as we mentioned earlier, in aIl the 

dictionary-based methods, the estimation of P(cle) is limited to the translation candidates 

stored in the dictionary. In order to produce an effect of query expansion, we argue that 

P( cie) should not be merely the literaI translation prob ab ilit y of c given e, but a cross­

lingual semantic similarity between c and e. 

If P(cle) is estimated by a statistical translation model, such as one of IBM models 

(Brown et al., 1993), trained on a parallei corpus, it reflects cross-lingual term similarities 

implicitly (Kraaij et al., 2003). However, the reliability for the model to represent such 

similarities depends on a large degree upon the quality and size of the parallei corpus. 

Two terms would not be considered as similar terms if they never appear in any parallei 

sentence pair. Nevertheless, the terms that often co-occur with a literaI translation word 

in parallei texts will receive a small translation probability of the source word. Therefore, 

a statistical translation model has a capability of producing query expansion effect during 

translation, by distributing a part of the translation probability to the words that co-occur 

with the true translation(s). 

However, parallei corpora are not widely available for many language pairs (e.g. 

Chinese-English). Although it is possible to mine parallei materials on the Web for sorne 

language (Kraaij et al., 2003; Nie et al., 1999), dictionaries still remain the most available 

resources for most language pairs. Therefore, we will use dictionaries in our study. 

However, if a parallei corpus is available, the statistical translation model estimated from 

it can be easily integrated into our approach. 

Notice that the ability of connecting related words in a translation model is a side­

effect rather than the desired goal of a statistical translation model - the translation model 

aims to capture literaI translation ~elations. Its training process tries to limit the possibility 
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of connecting related non-translation words rather than to favor it. This is contrary to our 

goal of query "translation" in CLIR, in which we would like to favor the connections to 

related non-translation tenns as weIl. Therefore, it is desirable to inc1ude related words 

into query "translation". 

Pre- and post-translation query expansions have been exploited as a me ans to perfonn 

such an extension (Ballesteros and Croft, 1998; Gao et al., 2001). In pre-translation 

expansion, the original query is first expanded using a set of feedback documents 

retrieved in the source language. The expanded query is then translated (e.g. with the help 

of a dictionary). In post-translation expansion, the translation of the query is used to 

retrieve a set of feedback documents, which are then used to exp and the translated query. 

In previous studies, both expansion processes have shown sorne effect on the retrieval 

effectiveness. However, the expansion steps have been considered to be separated from 

the retrieval process. They have been used as a means to produce a more appropriate 

"translation" of the initial query. In these steps, we have to set several parameters 

manually: the number of feedback documents to be used, the number of tenns to be 

added into the query (or translation), and the weights to be attributed to the additional 

tenns (with respect to the original tenns). 

In addition to the above practical problems, pre- and post-translation expansion can 

only consider part of the term relations. As shown in (Xu and Croft, 1996), both global 

and local analyses can suggest useful terms to expand queries. Using pre- and post­

translation expansions, we are indeed using a local analysis, which can suggest.related 

tenns appearing in the feedback documents, either in the source or the target language. 

As shown in (Xu and Croft, 1998), it would be beneficial to add global analysis in the 

expansion step. Following this work, the global analysis could be used as yet another 

external component outside the retrieval model. However, as we stated earlier, such a 

combination is highly dependent on the manually setting of parameters. An alternative is 

to integrate the tenn relations extracted from global analysis directly into the model, so 

that their parameters can be optimized together with those of the translation relations. 

This means that we extend the methodology of statistical model training to further 

extending the function P(cle) from tenn translation to tenn similarity relations. To 
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achieve this goal, in this paper we propose to integrate explicitly different types of terms 

relation into a MC model. 

The utilization of MC for query translation in CLIR is not new. (Monz and DOIT, 2005) 

used MC to determine the best translation terms. However, only translation relations 

stored in a dictionary are modeled by the MC. In our case, we integrate other types of 

term relation in addition to translation relations. In the following section we will de scribe 

the details of the model. 

5.3 Query Translation as a Random Walk 

5.3.1 Principle 

Instead of considering query translation as a tradition al translation process, now we 

view it as a process of finding cross-lingual, semantically similar terms. The latter terms 

can be not only translation terms, but also semantically related terms. Similarly to the 

principle of pre- and post-translation expansion, related terms can be determined in two 

ways: they can be target language terms that are related to sorne translation terms (similar 

to post-translation expansion), or they can be terms that are translations of related terms 

in the source language (similar to pre-translation expansion). For example (see Figure 6), 

given an English (source language) query term "program", besides its literaI translation 

"*~fF" in Chinese, the Chine se word "it~;tJL" (computer) related to "*~fF" is also a 

. useful Chinese query term. Similarly, t~e translation "l!§- §" (language) of a related 

English term "language" can also be added. 

The MC model that we propose tries te integrate the above relations within the source 

and target languages with translation relations. Our model follows the same principle as 

pre- and post-translation expansion; but we implement the idea in a very different way. 

Indeed, we try to determine the related terms in the source and the target languages using 

a global analysis, i.e. we make use of a global analysis of the whole document corpora, 
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instead of relying on feedback documents which can only be determined on the fly during 

the retrieval process. As (Xu and Croft, 1996) showed, it is beneficial to combine global 

and local term relations. Therefore, even when global term relations are integrated with 

translation relations in our MC model, it is still possible to use blind feedback to perform . 

local analysis, similarly to pre- and post-translation expansion. 

Another major difference between the previous approaches using pre- and post­

translation expansions and ours is the integration of the expansion and retrieval processes. 

In our case, both processes are integrated within the same framework, making it possible 

to optimize their parameters together and avoiding the necessity to set the parameters 

manually (as is the case in all the pre- and post-translation expansions). 

An addition al advantage of using MC is that, given a query, the word relations (either 

within one language or between two languages) that are strongly related to the query will 

be reinforced by each other. The final probability distribution after the iterative 

adaptation of MC is expected to be better for the query than the initial distribution. For 

example, suppose that the original English query is "articles about program design". A 

part of the MC is shown in Figure 6. The two key terms in this query "article" and 

"pro gram design" can be respectivelY,translated by the following words in Chinese: 

article: mi~ (determinant), itJt (paper), 4io~ (object), etc. 

pro gram design: fïJ=f19:it 

In Figure 6, we also show sorne term relations within the same language (co­

occurrence - coc and contain, see next section). We can see that through mono lingual 

term relations, the correct translation candidates itJt (paper) for the ambiguous word 

"article" is more tightly connected to the original query terms. Through the iterative 

updating, this term will be assigned a higher probability than the other irrelevant 

translation candidates. On the other hand, the probability of the words which are less 

related to the original query, such as "11 §" ([TV] program), "Eg*~" (TV), "mi~" 

(determinant) and "determinant", is reduced. 
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The above example shows that MC also offers a possible solution to the translation 

ambiguity problem. Indeed, the princip le of mutual reinforcement during random walk is 

used (although to a very limited degree) in sorne previous approaches to query expansion. 

For example, (Qiu and Frei, 1993) proposed to detennine the expansion terms not 

according to the strength of their relation with one of the original query tenns, but 

according to their relations to aIl the query tenns. An expansion tenn having relation with 

several original query tenns will likely be preferred to another one related to only one 

query tenn (assuming that their strengths are similar). This approach has proven to be 

effective. 

Transferring the same princip le to CLIR, we want to favor translation candidates that 

are related to more original query tenns. In Figure 6, we can see that the translation 

candidate "i~X" (paper) is related to both original query tenns (via direct or indirect 

links). Therefore, its prob ab ilit y is higher than another candidate, "la i'il] ", which is 

related to only one of the original query tenns. This preference is, however, not imposed 

by using heuristics. Rather, the updating process of MC (Brémaud, 1999; Ross, 2003) can 

naturally reinforce the more related translation candidates. This is another major 

advantage of using MC as our model. 

5.3.2 Representing Word Relationships with a MC Model 

In this section we describe the princip le of modeling tenn similarity in a MC. Each 

MC model defines a set of states. Astate is linked to other states by transitions with 

different probabilities. Two states are transitional if and only if the transition probability 

between them is non-zero. A MC model is usually represented as a weighted directed 

graph G as illustrated in Figure 6. It consists of a set of nodes and a set of weighted, 

directed edges. We use the following notations: 

1. Anode is denoted as v. We use nodes to represent tenns. 
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2. An edge from Vi to Vj with a label (or relation type) 1 represents a transition of type l, 

denoted as: Vi ~Vj' Each type of edge corresponds to a type of term relation, which 

will be described later in this section. 

3. Each edge vi~vjis also assigned a probability P(vjlvùl}. This probability will be 

determined according to different criteria described in Section 5.4.1. 

If only translation relations are represented in a MC, the MC model can only assign a 

translation probability to the translation candidates stored in the dictionary. To extend 

translation to broader cross-lingual similarity relations, we incorporate two additional 

monolingual relations: co-occurrence and contain. The former connects frequently co­

occurring terms. It has been shown to be useful for CLIR (Ballesteros and Croft, 1998; 

Gao and Nie, 2006). The latter considers the relation between a longer term (e.g. 

"program design") and a shorter constituent term (e.g. "program "). This relationship is 

particular useful for Chinese, which does not have any space between words. Therefore 

variable word segmentation can be produced for the same character sequence. For 

ex ample, the sequence "fîrFiXit" (program design) can be segmented either as a single 

word (in fact a phrase) or as two shorter words "fîrF" (pro gram) and "iXit" (design), 

depending on circumstances and segmentation programs. If "pro gram design" is 

translated to "fîrFiXit", it matches directly neither "fîrF" nor "iXit" (for the latter 

will be considered as different indexes). By considering the contain relation, we can link 

"fîrFiXit", and thus "pro gram design", to "fîrF" and "iXit". This is a way to 

propagate the translation relation to the constituent terms in the target language. 

More types of relation can be integrated in this framework, but we limit our 

investigation in this study to the three relations: translation, co-occurrence and contain. 

We will denote them by trans, coc and contain, respectively. The trans relations are 

defined between terms in different languages, the coc and contain relations between 

terms of the same language. 

Given an MC model, random walk is a process that adjusts the transition probabilities 

iteratively as follows. In each iteration, we assume a 2-step process of moving from a 
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node to another. First, from a node Vi (i.e., term) one can select an edge (i.e., relation) 1 

with probability P(llvi). We assume here that this selection is independent of Vi, SO 

P(lIVi)=P(l). This means that the prob ab il it y of selection of a type of link is the same for 

aIl the states (terms). This may not be realistic, but we choose to use this assumption to 

make the process simpler and more computationally tractable. Second, Vj is chosen by 

P(Vjll, Vi). Considering a set L of aIl possible edge labels (i.e., relations), the probability to 

arrive at Vj from Vi is 

(5.3) 

with" P(l) = 1 . 
L../EL 

For example, there are two relations between the terms "pro gram design" and 

"pro gram" in Figure 6: coc and contain. The similarity between them is then determined 

by: 

P(programlProgram design) = 

P(programlcontain, program design) x P(contain) + P(programlcoc, 

program design) x P(coc) 

The estimation of P(v
j 
Il, v;) and P(l) will be described in Section 5.4. 

5.3.3 Random Walk for Query Translation 

This section describes how query translation is performed as a random walk in an MC 

model. 

The query translation process can be stated as follows. Let e~ denote the distribution 

of an original English query, i.e., e~ gives non-zero probabilities to the nodes 

corresponding to the English query terms (words or phrases). The translation process 
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corresponds to the propagation of these probabilities, through random walks, to other 

terms, especially in the target language. First, a term Va is chosen according to the initial 

distribution e~. Then one can decide whether to stay in this state (with probability JI) or to 

transit to another state (with probability 1- JI). The first choice retains the part r of the 

probability in Va, while the second choice transfers (1- r) of its probability to the related 

nodes, according to the transition probability (similarity) to them. The process continues 

in this manner. After k steps of walk, we get a new probability distribution e; on terms. 

This latter can be interpreted as the measure of similarity of terms to the original query 

terms. In particular, the probabilities assigned to target language words are the cross­

lingual similarities to the original query. 

For the purpose of CLIR, one can normalize the probabilities assigned to the terms in 

the target language. This would mean that the probabilities of target-language terms will 

be increased so that they sum to unity. However, this normalization will only affect the 

query, and it is not document-dependent, i.e. it will not affect document ranking. 

Therefore, we can just use the probabilities assigned to target-language terms as their 

translation probabilities. 

We notice that the above process interprets the procedure to construct a query-oriented 

MC model instead of a global MC considering aIl terms. We call the nodes having non­

zero probability in fi active nodes. Each active no de must either be a directly similar 
q 

node to at least one node corresponding to a term in the original query, or be linked to a 

node in the query via intermediate nodes. The query-oriented MC model has at least two 

advantages comparing with the global MC model constructed independently from the 

query. First, it is much easier to manage and faster to update because the number of 

active nodes is much smaller than the number of all nodes (the sum of the number of 

English and Chinese terms). The time required to perform a random walk is thus much 

shorter and this can be performed online during the query time. In our experiments, it 

only takes several seconds to update the probabilities and to translate one query. Second, 

the query-oriented MC model can reduce noise to sorne degree because it only considers 
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the nodes related to the query so that it avoids distributing probabilities to non-related 

nodes. 

More specifically, let Mij be the prob ab ilit y of being at no de Vj at step t+ 1 given that 

one is at Vi at step t in the walk, we have: 

M .. = {o- r)L [eL PCV j Il, VJP(l) 
'l r 

i *- j 

i = j 

(5.4) 

where L={trans, cac, contain} is the set of relationships. If we take k-step random walk, 

the similarity between terms is denoted by Mk
), then we have: 

(5.5) 

where M is the matrix consisting of Mij. If we set k to be infinite, the MC will reach a 

stationary distribution, which is considered to be optimal (Lafferty and Zhai, 2001; 

Minkov et al., 2006; Toutanova et al., 2004; Cao et al., 2006). Since 0 < y < 1, Mk
) is 

guaranteed to converge. In our experiments, we only consider at most 4 iterations, as the 

convergence is very fast. 

Assume that (Jo is the initial probability distribution of the nodes, then the distribution 
q 

after a k-step walk is proportional to 

(5.6) 

The document ranking formula for CLIR, i.e., Equation (2), can be re-written as: 

score(q,d) = Lcev PCc 1 B;)logP(c 1 Bd) (5.7) 

where (Jk is given by Equation (5.6) and 00 is the original parameter setting of query 
q q 

model, i.e., Bq, in Equation (5.2). 
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Now, let us illustrate the mutual influence between similar terms during the random 

walk. Given the MC model in Figure 6, we assume the initial query terms to be "pro gram 

design" and "article". The literaI translations of these terms are "f~J=fi&:it" (pro gram 

design) and "i~)s:" (thesis). Other words enclosed in circles are related terms (through 

mono-lingual relations). In the figure, we see that "article" has two translations "*-fijfJ" 

(article - in linguistics sense) and "i~)(" (thesis/paper). As "*-fijfJ" (article) does not 

have any other similar terms except "article", its probability will stay low during the 

random walk. On the other hand, the probabilities of "f~J=fi&:it", "i~)(", "f~J=f" and 

"i&:it" will be increased, because they will receive probabilities transmitted from related 

terms. These terms are strongly related to the query, so the effect is desired. This example 

shows that MC models naturally integrate query expansion and translation . 

. 5.4 Parameter Estimation 

In this section we describe in detail how we estimate the parameters of the MC models. 

We have seven parameters to estimate, i.e., three probabilistic models P(Vj 1 Vi, 1), with 

LE {trans, coc, con tain }, each for one of the three types of relationship; the three 

probabilities corresponding to type selection, P(l), as well as the stopping rate 'Y. In 

section 5.4.1, we will describe how to estimate the three probabilistic models, and then in 

Section 5.4.2, we use line search algorithm to estimate the other parameters, in which we 

optimize one variable while keeping other variables at each time (Gao et al., 2005; Och, 

2003). 

5.4.1 Probabilities of Relationships 

In this study, we use a bilingual dictionary as the translation resource. The probability 

P(vjlvï, trans), i.e., the translation probability between two terms can be estimated in 

several ways given the bilingual dictionary: 
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(1) Uniform distribution: we assign equal probabilities to aIl candidates, that is: 

1 
P( v. 1 trans, Vi) = { } 

] 1 Vk 1 Vk is a translation of Vi 1 

(5.8) 

where I{.}I is the number of unique elements in a set. This is one of the simple methods 

used in previous studies, but it may introduce much noise. 

(2) Assignment by translation model (GIZA++): a bilingual dictionary can be treated as a 

parallel corpus: Each English word (or phrase) is aligned to the set of its translations, 

which is considered as a sentence. We thus can train a statistical translation model using 

tools such as GIZA++ (Och and Ney, 2000). We only trained IBM model 1 (Brown et al., 

1993). This method tries to determine translation probabilities so as to maximize the 

likelihood of the given sentence alignments. A translation that appears in more aligned 

"sentences" will be assigned a higher probability than the one that appears in less aligned 

"sentences". Thus the probability indirectly reflects how often a translation is frequently 

used between two languages. It is usually more reasonable than the uniform assignment. 

The estimation of contain relation is similar to the uniform translation model. We 

count the number of terms Vj which can be a part of the term Vi, and assign the probability 

uniformly: 

P(Vj 1 conta in , v) = { . 1 }I 
1 vk 1 vk lS a part of Vi 

(5.9) 

Monolingual co-occurrence relations can be estimated on large mono lingual corpora 

by counting the number of windows of a fixed size containing the two terms. The 

English corpora we used are AP88-90 and the Chinese corpora are the document 

collection that we use for CLIR experiments (see Section 5.5). For two terms Vi and Vj, let 

M(vï, vJJ be a measure of closeness of the two terms. Then the relation between Vi and Vj is 

defined as follows: 
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M(v., v.) 
P(v j Icontain, v) = " '} 

L,.M(vk,v) 
k 

(5.10) 

where M(vi, Vj) can be any statistical metric measuring the association between the two 

terms such as relative frequency (as the one we used in chapter 3 and 4), mutual 

information, information gain and log-likelihood ratio (Dunning, 1993). We use log­

likelihood ratio because it produced the best results in our experiments. To filter noise, 

we only keep the 30 strongest co-occurring terms for each term. 

5.4.2 Parameter Tuning 

We estimate the probability of selecting each of the three relationships, i.e., P(Z) and 

1 E {trans,coc,contain} and the stopping rate y. For estimating these parameters, various 

methods can be used, such as Gradient descent-like approaches (Diligenti et al., 2005; 

Toutanova et al., 2004), Boosting algorithm (Minkov et al., 2006), and so on. However, 

the objective functions used in these methods only are loosely related to the Mean 

Average Precision (MAP) which is used to measure the effectiveness of IR systems. 

Here we choose an alternative approach based on line search to optimize the parameters 

so as to maximize the MAP on training data directly. This approach has been used in 

(Gao et al., 2005; Morgan et al., 2004; Metzler and Croft, 2005) and proven to be very 

effective. Let us denote the three parameters by a vector BE {P(trans), P(coc), P(contain)} , 

and each dimension of the model e is denoted as ~,i = 1,2,3,4 . 

Given a test collection with relevance judgments for a set of queries, the MAP 

resulting from e is denoted by MAP(e). The leaming approach can thus be formulated as: 

0* = arg max o. MAP(O) (5.11) 

The optimization problem can be cast as the multi-dimensional function optimization 

algorithm (Gao et al., 2005; Och, 2003). The procedure works as follows: Bpi = 1,2,3,4 are 

taken as a set of directions. Line search moves along the first direction while keeping the 
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other unchanged, so as to maximize the MAP; then it moves from there along the second 

direction to maximize the MAP, and so on. 

Cyc1ing through the whole set of directions as many times as necessary, until the MAP 

stops to increase, we obtain the values of the parameters. This method is intuitive and 

efficient, but it may converge to different local maxima with different start points. 

Therefore, we perfonn the procedure multiple times with random start points, and select 

the parameters that produce the best MAP. P(l) is nonnalized to become a probability. 

5.5 Experiments 

Table 12. Statistical Information of Dataset 
Coll Description #Doc #Qry 

TREC5&6 People's Daily (1991-1993) & Xinhua 164,789 54 
News Agency (1994-1995) 

TREC9 HongKong Commercial Daily News, 127,938 25 
HongKong Daily News and Takungpao 

News 
NTCIR3 Chinese Times, Central Daily News, China 381,681 50 

Daily and United Daily News 

5.5.1 Experimental Setting 

We evaluated the MC models with three benchmark English to Chinese CLIR 

collections: TREC5&6, TREC9 and NTCIR3. Table 13 shows the statistical information 

of these collections. 

We conducted our experiments using cross-validation: The models evaluated on the 

TREC9 collection were leamed on TREC5&6 datasets; the models evaluated on TREC5-

6 collections were trained on the TREC9 dataset; the models evaluated on NTCIR3 were 

trained on both TREC9 and TREC5&6. 

AlI Chinese documents and the translated queries are segmented using dictionary­

based approach. The Chinese dictionary was compiled by DC Berkeley, which contains 

137,613 words. When indexing document collections, we used all possible words in the 
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dictionary and aIl single Chinese characters as indexing units (Kwok, 2000). AlI English 

queries are stemmed with Porter stemmer and the stop words are removed. Since we do 

not have a phrase recognizer, we only recognize phrases stored in our bilingual dictionary. 

Each query in TREC and NTCIR collection has three fields: title, description and 

narrative. We used two versions of queries: short queries that contain only titles and long 

queries that contain aIl the three fields. 

Model Short Query Long Query 
MAP % of Imp. Over Imp. MAP % of Imp. Over Imp. 

ML UM Over ML UM Over 
GizaM GizaM 

ML 0.3754 ----- ----- 0.4929 ----- ----- -----
UM 0.1281 34.12% ----- ----- 0.2708 54.94% ----- -----
FM 0.1325 35.03% 3.43% ----- 0.2734 55.47% 0.96% -----
GizaM 0.3414 90.94% 166.5%** ----- 0.4341 88.07% 60.30%** -----
UM+MC 0.2918 77.73% 127.8%** -17.45% 0.4463 90.55% 64.80%** 2.81% 
GizaM+MC 0.3720 99.09% 190.3%** 8.96%* 0.4594 93.30% 69.64%** 5.82% 

Table 13. Compare Different Model for TREC5&6 Collection 

Model Short Query Long Query 
MAP % of Imp. Over Imp. MAP % of Imp.Over Imp. 

ML UM Over ML UM Over 
GizaM GizaM 

ML 0.2819 ----- ----- ----- 0.2961 ----- ----- -----
UM 0.0976 34.62% ----- ----- 0.1110 37.49% ----- -----
FM 0.1220 43.28% 24.99% ----- 0.1354 45.73% 21.98% -----

GizaM 0.2542 90.17% 160.5%** ----- 0.2693 90.95% 142.6%** -----
UM+MC 0.2750 97.55% 181.7%** 8.18% 0.2622 88.55% 136.2%** -2.63% 
GizaM+MC 0.2897 102.77% 196.8%** 13.97%* 0.2730 92.20% 145.9%** 13.74%* 

Table 14. Compare Different Model for TREC9 Collection 

Model Short Query Long Query 
MAP % of Imp. Over Imp. MAP % of Imp. Over Imp. 

ML UM Over ML UM Over 
GizaM GizaM 

ML 0.2222 ----- ----- ----- 0.2840 ----- ----- -----
UM 0.0626 28.17% ----- ----- 0.1212 42.68% ----- -----
FM 0.0611 27.50% -2.40% ----- 0.1460 51.41% 20.46% -----
GizaM 0.1422 63.99% 127.1 %** ----- 0.1800 63.38% 48.51%** -----

UM+MC 0.1442 64.90% 130.3%** 1.41% 0.1987 69.96% 63.94%** 10.38% 
GizaM+MC 0.1489 67.01% 137.8%** 4.71% 0.2130 75% 75.74%** 18.33%* 

Table 15. Compare Different Model for NTCIR3 Collection 
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We empirically defined different window sizes to extract term co-occurrences from 

English and Chinese corpora, respectively. The window width is 8 words for English, and 

10 characters for Chinese. 

The bilingual dictionary we used is a combination of two human compiled bilingual 

lexicons, including the LDC English-Chinese dictionary and a bilingual lexicon 

generated form a parallel corpus. The dictionary contains 123,747 English entries, 

including 108,799 words and 1,4948 phrases. 

We have developed an experimental IR system based on I;emur 4.2 (Ogilvie and 

Callan, 2001). The main evaluation metric is the Mean Average Precision (MAP). 

Different from TREC evaluation, NTCIR uses two re1evance judgments: rigid relevance 

which only considers highly relevant documents (similarly to TREC), and relaxed 

relevance which also considers partially relevant documents. We use rigid relevance for 

our evaluation. T-test is also conducted for significance test. We will try to answer 

several questions in our tests. 

5.5.2 Does the MC Model work for CLIR? 

In this section we present comparison results of the MC models with other traditional 

CLIR models. Tables 14, 15 and 16 show the main results on the three collections using 

short and long queries. Two variants of the MC models are tested, in which the 

translation probability is respectively the uniform probability and the translation 

probability generated by applying GIZA++ on the dictionary. To evaluate the 

effectiveness of the MC model, four baselines are compared: 

ML (Monolingual). In this model, the documents are retrieved with the manually 

translated Chinese query set provided in the collections. Its performance is usually 

considered as the upper bound of CLIR. 

UM (Uniform Model). This model assigns a uniform distribution of translation 

probability to all the translation candidates stored in the dictionary. When 
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translating an English query, if we encounter an English phrase in the query that 

exists in the dictionary, then the phrase translations are used; otherwise, 

translation of single words are used. 

FM (First-one Mode)). The total translation probability is distributed to the first 

translation candidate. As UM, phrase translation is used in preference to word 

translation. 

Table 16. Translation obtained by Each Models for One Query 
English query: Forest Railway in Mount Ali 
ML: ~iiJ m. LlJ ~1* j($ 
FM: ~1* (forest) 0.5; 1* (woods) 0.5;lij.~ (road) 0.5; !rAi![ (rail) 

0.5; if:-.t (go up) 0.5 .... 
UM: ~1* (fore st) 0.5; :ii!t1* (plant trees) 0.5; LlJ1* (forest in the mountain) 

0.5; fJlitJ-t (plant trees) 0.5 ; !ff (wild) 0.5 ... 
GizaM: 1* (woods) 0.657819;~ (forest)0.161144; l!J( (iron) 

0.455182;l!J(~ (railway) 0.295346; * (set up) 
0.395038; 17:. (install) 0.222885; ~iiJ m.(Ali) 0.293588 ... 

UM+MC: l!J(lij. (railway) 0.0565199; ~1* (forest) 0.0528217; 
~2.l!J(~ (via railway) 0.0508112; l!J(i![ (railway) 
0.0508112;~iiJ m. (Ali)0.049161; ~R (steam) 0.0241262 ... 

GizaM+MC: 1* (woods) 0.10024;l!J(lÊ"* (railway) 0.0651897; ~iiJm. 
(Ali) 0.0606648; ~ (forest) 0.0403337;~1* 

(forest)0.0367658; ~ 5Z (Jiayi) 0.021745 ... 
(Note: The probability of translations in FM is 0.5 because we used the frrst translations from two 
different dictionaries.) 

The above two methods may be too simplistic to serve as a state-of-the-art baseline 

methods. Nevertheless, we inc1ude them in the tables because many previous studies used 

these methods. A more reasonable baseline method is thefollowing one: 

GizaM (GIZA Mode)). The translation probabilities in this model are obtained with the 

GIZA++ toolkit, which extracts a statistical translation model from the bilingual 

dictionary, considered as a parallel corpus. GizaM model considers the frequency 

of translation of one word. If a translation appears several times, either as a 

translation item for the given word alone, or as a part of a translation of a 

compound term containing the given word, then the translation word will be 

assigned a higher probability. Sorne previous studies (Grefenstette, 1999) have 

exploited the frequency of translation terms in a document collection in order to 
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select the most frequent translation word. The GizaM model exploits a similar 

principle, by assuming that the more a translation word corresponds to a source 

word in the dictionary, the more it is a frequent one and thus should be favored. 

As we can see in Tables 14-16, this model is a reasonable baseline because it results in 

retrieval effectiveness comparable to most of the previous studies on the same test 

collections (Gao and Nie, 2006; Gao et al., 2001; He and Gao, 2001; Xu and W~ischedel, 

2005; Xu et al., 2001). 

Once the translation model is trained on the dictionary, we select the top 10 

translations for each term for the short queries and top 3 for long queries. These same 

numbers are selected for the following two MC models. 

UM+MC. The queries are translated with MC model. The initial translation probabilities 

are obtained from UM. 

GizaM+MC. This model is similar to UM+MC, but the initial translation probabilities 

are obtained from GizaM. 

From Tables 14-16, we find that UM performed the worst among aIl the methods. This 

is because it treated aIl translation candidates of a query term equivalently and introduced 

much noise (irrelevant translation terms). 

FM performed slightly better than UM in almost aIl mns except for short queries of 

NTCIR3. The reason is that FM only selects the first candidate, which is often the more 

frequently used translation. This method can avoid including noise translation candidates' 

to sorne degree. However, this "aggressive" selection can also remove relevant 

translation terms, whereby limiting the desirable query expansion effect. 

GizaM can assign a translation probability between two terms according to how often 

one appears as a translation of another in the dictionary. The translation probabilities 

have been trained using the EM algorithm (Dempster et al., 1977) to maximize the 

likelihood of translating each English term by its Chinese translations (the parallel 
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sentence in the dictionary). The advantage of GizaM is that it can assign a strong 

probability to a translation term if the latter is a specifie and unambiguous translation 

term of the former. However, in GizaM, the whole translation probability is still 

distributed only to the translations stored in the dictionary. In the above tables, we can 

see that GizaM performed fairly well. Its effectiveness is around 90% of that of ML in 

four runs (both short and long queries) of TREC5&6 and TREC9. 

For MC models, we observe that the two MC variants are all promising: UM+MC 

model outperformed UM significantly in all the six runs. GizaM+MC outperformed 

GizaM in all runs, and it even outperforms the ML for short queries of TREC9. This 

result confirms the advantages of our MC approach. To see better where the superior 

effectiveness cornes from, let us analyze the example shown in table 17 for the query 

"forest railway in Mount Ali". 

In this example, mount is translated by FM incorrectly as a verb. For the UM model, 

we only li st the translations of "forest" and we can observe that many translations are 

unrelated to the query. GizaM seems to be able to distribute strong probabilities to related 

translation terms. Compared with UM and GizaM, the probabilities assigned by MC 

models seem generally more appropriate. In addition, they can also suggest sorne non­

translation but related words such as ~FC (steam) and l{; 51... (Jiayi) which is a city 

connecting Mount Ali. The example confirms the two advantages of MC that we 

expected: 

1. The integration of more term relations can extend translation to broader similar terms, 

thus producing larger query expansion effect; 

2. The iterative probability adjustment process can produce a better probability 

distribution. 

The above results are produced with a random walk of 4 steps for UM+MC and 2 

steps for GizaM+MC. We observed that the performance was improved when increasing 

the steps. This indicates that iterative adjusting similarities between terms are useful for 

retrieval. We also observed that UM+MC outperformed GizaM in four runs (i.e., long 
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query of TREC5&6, short query of TREC9 and two runs of NTCIR3) and achieved 

comparable results with UM+MC in the other two runs. This shows that MC models can 

capture the same characteristics as GizaM. Indeed, both models work with similar 

principles: They use an iterative leaming procedure to assign a high probability to strong 

translation candidates. Therefore, UM+MC and GizaM performed similarly. However, 

GizaM+MC can further improve the performance of GizaM in most of the cases. The 

difference between them is directly attributed to the addition of more relations in 

GizaM+MC. 

5.5.3 The inlpact of Different Relationships 

a e 1 eren e a Ion om ma Ions or ong quenes T bl 17 D'fli tRI f C b' f ~ 1 
Relation TREC5&6 TREC9 NTCIR3 

MAP Imp.OverT MAP Imp.OverT MAP Imp.OverT 

UM 0.2708 ----- 0.1110 ----- 0.1212 -----
T 0.4372 ----- 0.2431 ----- 0.1904 -----
T+C 0.4458 1.97% 0.2618 7.69% 0.1927 1.21 % 
T+Con 0.4391 0.43% 0.2578 6.05% 0.1987 4.36% 
T+C+Ctm 0.4463 2.08% 0.2622 7.86% 0.1987 4.36% 

Table 18, Different Relation Combinations for short queries 
Relation TREC5&6 TREC9 NTCIR3 

MAP Imp.OverT MAP Imp.OverT MAP Imp.OverT 

UM 0.1281 ----- 0.0976 ----- 0.0626 -----

T 0.2761 ----- 0.2616 ----- 0.1257 -----
T+C 0.2902 5.10%* 0.2719 0.11% 0.1431 13.84% 
T+Con 0.2829 2.46% 0.2746 1.10% 0.1267 7.95% 
T+C+Con 0.2918 5.68%* 0.2750 1.25% 0.1442 14.71 % 

In this section we investigate the impact of different relationships on the retrieval 

effectiveness. Tables 18 and 19 show the results of MC models with uniform translation 

probability (UM+MC) on the three collections. In the tables, UM is the uniform model 

mentioned in section 5.5.2; T represents the MC model only using translation relation; 

T +C represents model using translation relation plus co-occurrence relation; T +Con 

represents the model using both translation relation and contain relation; T +C+Con 

represents the model using all three relations. The T model is indeed equivalent to the one 

used in (Monz and Dorr, 2005), 
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The tables show that the T model outperforms UM substantially. This can be 

explained by two reasons. First, after propagating the similarity via a random walk, the 

translation distribution in the T model is changed from uniform distribution to the one 

which assigns a higher probability to a term if it is connected to many query terms. 

Second, we only select the top m terms as query translation. This helps filter out sorne 

noise (which typically has a low probability). 

Indeed, as we mentioned earlier, UM is too simplistic to serve as a baseline method. 

However, T is a reasonable baseline method, which corresponds to the state-of-the-art 

(Monz and DOIT, 2005). 

We observed that when more relationships are added into the MC model, the 

effectiveness is further improved. The best model is the one that uses all the three 

relationships. On the other MC model, GizaM+MC, we have observed a similar behavior 

The experimental results confirm our hypotheses: 1) Integrating more term relations than 

translation can improve query translation in CLIR; 2) Using an iterative random walk 

process in MC leads to a more reasonable probability distribution. 

5.6 Related Work 

The MC model we used here integrates both query translation and query expansion in 

a unified framework. Query expansion has been investigated in the context of CLIR in a 

number of previous studies. Ballesteros and Croft (1999) explored query expansion 

methods for CLIR by combining pre- and post-translation expansion, and they found that 

the method can effectively improve retrieval effectiveness. McNamee and Mayfield 

conducted a series of experiments to compare CLIR query expansion techniques 

(McNamee and Mayfield, 2002). They also found similar results to (Ballesteros and Croft, 

1998). The pre- and post-translation expansions are conceptually similar to our addition 

of more term relations. Thus our experiments confirm their observation. 

However, our work is different from the above two in the following aspects: 
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1). Pre- and post-translation expansions have been separated from translation. In fact, 

as illustrated in (McNamee and Mayfield, 2002), their models are divided into three 

phases (pre-translation expansion, query translation, and post-translation expansion), that 

have been handled independently. In contrast, our MC model incorporates the three 

phases together within the same framework. 

2). Comparing to the expansion process, our MC model-based approach is 

theoretically more sound, and easier to extend. We also used a principled way to 

optimize aIl parameters. 

MC models have been used for many other tasks. (Minkov et al., 2006) used the 

random walk model to disambiguate person's names in e-mails, but the relationships in 

their model are binary. In IR, infinite random walks have been used for document or 

webpage re-ranking (Kurland and Lee, 2005; Page et al., 1998). The idea ofrepresenting 

semantic similarities by a graph has also been used in NLP and IR. (Lafferty and Zhai, 

2001 ; Collins-Thompson and CaIlan, 2005) used a random walk model for monolingual 

queryexpansion. But they only use one type of relationship. In chapter 4, we presented 

a MC based model for query expansion, which is feasible to integrate multiple relations. 

(Toutanova et al., 2004) presented a MC model for pp-attachment disambiguation. (Monz 

and DOIT, 2005) used MC for query translation in CLIR. However, the MC is built on a 

dictionary, so translation suggestions are bounded by the dictionary. In our case, we 

extended the translation relations to cross-language semantic similarity relations. In so 

doing, we can create more effect of query expansion. 

5.7 Summary and Future Work 

CLIR is different from traditional mono lingual IR in that it requires query translation. 

Dictionary-based approaches are widely used to translate queries in CLIR because of 

their simplicity and the availability of machine-readable dictionaries. However, we are 

faced with several problems: limited coverage and lack of a measurement for the 

reliability of the translation candidates. On the other hand, query translation in CLIR is 
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different from text translation because the translation terms selected in CLIR are not 

necessarily to be literaI translations. It just needs to be semantically similar terms. In this 

chapter we extended the MC model proposed in chapter 4 to cross lingual context, which 

integrates several types of mono lingual term relation, in addition to the translation 

relation. As a result, query translation is extended to cross-lingual query expansion. 

As used for mono lingual query expansion, the MC models also adjust the probabilities 

of terms automatically through a random walk. We showed in our experiments that the 

final distribution produces higher retrieval effectiveness than the original one. This 

shows that the random walk can effectively adjust terms' cross-lingual similarity to the 

query so that strongly related target terms are assigned higher probabilities. 

In this chapter we only investigate three types of relation: translation, co-occurrence 

and containment. However, the method can be easily extended to inc1ude more types of 

relations. Among other useful relations are synonymy, hyponymy and hypemymy. 

A possible way of improving our approach is to consider dependency between terms. 

In our current model the resulting translation candidates are considered independently 

once they have been generated. In fact, other criteria, such as the coherence between the 

candidates, can also be useful to help select better candidates (Gao and Nie, 2006). We 

leave it to future work to integrate these criteria into MC models. Currently, the 

estimation of transition probabilities is made according to the whole collection. It might 

be more reasonable to estimate them using local contexts related to a given query. This 

leads to a query-dependent MC model- another area of our future work. 
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Chapter 6 

Selecting Good Expallsion Terms for 

Pseudo-Relevance Feedback 

6.1 Introduction 

One fact repeatedl y mentioned in this thesis is. that typical user queries are usuall y too 

short to describe the information need accurately. Many important terms can be absent 

from the query, leading to a poor coverage of the relevant documents. To solve this 

problem, query expansion has been widely used (Metzler and Croft, 2007; Rocchio, 1971; 

Xu and Croft, 1996; Zhai and Lafferty, 2001b). Among aIl the approaches, pseudo­

relevance feedback (PRF) exploiting the retrieval result has been the most effective (Xu 

and Croft, 1996). In general; the expansion terms are extracted from pseudo-feedback 

documents either according to the term distributions in the feedback documents (i.e. one 

tries to extract the most frequent terms); or according to the comparison between the term 

distributions in the feedback documents and in the whole document collection (i.e. to 

extract the most specific terms in the feedback documents). Several addition al criteria have 

been proposed. For ex ample, id! is widely used in vector space model (Rocchio, 1971). 

Query length has been considered in (Kwok et al., 2000) for the weighting of expansion 

terms. Sorne linguistic features have been tested in (Smeaton and Rijsbergen, 1983). 

However, few studies have directly examined whether each individual expansion 

term extracted from pseudo-feedback documents by the existing methods can indeed help 
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retrieval. In general, one has been concemed only with the global impact of a set of 

expansion terms on the retrieval effectiveness. 

A fundamental question often overlooked at is whether the expansion terms extracted 

are truly related to the query and are useful for IR. In fact, as we will show in this chapter, 

the assumption that most expansion terms extracted from the feedback documents are 

useful does not hold, even when the global retrieval effectiveness can be improved. Among 

the extracted terms, a non-negligible part is either unrelated to the query or is harmful, 

instead of helpful, to retrieval effectiveness. So a crucial question is: how can we better 

select useful expansion terms from pseudo-feedback documents? 

In this chapter, we propose to use a supervised leaming method for term selection. 

The term selection problem can be considered as a term classification problem - we try to 

separate good expansion terms from the others directly according to their potential impact 

on the retrieval effectiveness. This method is different from the existing ones, which can 

typically be considered as an unsupervised leaming. SVM (Joachims, 1998; Vapnik, 1998; 

Bishop, 2006) will be used for term classification, which uses not only the term distribution 

criteria as in previous studies, but also several additional criteria such as term proximity. 

This approach proposed has at least the following advantages: 1) Expansion terms are 

no longer selected solely based on term distributions and other criteria indirectly related to 

the retrieval effectiveness. It is done directly according to their possible impact on the 

retrieval effectiveness. We can expect the selected terms to have a higher impact on the 

effectiveness. 2) The term classification process can naturally integrate various criteria, and 

thus provides a framework for incorporating different sources of evidence. 3) The further 

selection of expansion terms can reduce the number of terms added into the query, whereby 

reducing the time required for query evaluation. 

We evaluate our method on three TREC collections and compare it to the tradition al 

approaches. The experimental results show that the retrieval effectiveness can be improved 

significantly when term classification is integrated. To our knowledge, this is the first 
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attempt trying to investigate the direct impact on retrieval effectiveness of individu al 

expansion terms in pseudo-relevance feedback. 

The remaining of the chapter is organized as follows: Section 6.2 reviews sorne 

related work and the state-of-the-art approaches to query expansion. In section 6.3, we 

examine the PRF assumption used in the previous studies and show that it does not hold in 

reality. Section 6.4 presents sorne experiments to investigate the potential usefulness of 

selecting good terms for expansion. Section 6.5 describes our term classification method 

and reports an evaluation of the classification process. The integration of the classification 

results into the PRF methods is described in Section 6.6. In section 6.7, we evaluate the 

resulting retrieval method with three TREC collections. Section 6.8 concludes this chapter 

and suggests sorne avenues for future work. 

6.2 Related Work 

Pseudo-relevance feedback has been widely used in IR. It has been implemented in 

different retrieval models: vector space model (Rocchio, 1971), probabilistic model 

(Robertson and Spark-Jones, 1976), and so on. In the language modeling framework 

(chapter 4 and 5; Zhai and Lafferty, 200lb), the PRF principle has also been implemented 

to improve the query model, i.e., Bq, by exploiting the feedback documents. 

As we mentioned before, the query model describes the user' s information need. In 

most tradition al approaches using language modeling, this model is estimated with MLE 

without smoothing. We denote this model by P(w 1 Ba) . In general, this query model has a 

poor coverage of the relevant and useful terms, especially for short queries. Many terms 

related to the query' s topic are absent from (or has a zero probability in) the model. 

Pseudo-relevance feedback is often used to improve the query model. We have mentioned 

two representative approaches to exploit pseudo-feedback documents: relevance model and 

mixture model. Here, we will discuss about them in more detail because our approach is 

directl y related to them. 
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The relevance model (Lavrenko and Croft, 2001) assumes that a query term is generated 

by a relevance model P(wI8
R

) • However, it is impossible to define the relevance model 

without any relevance information. Lavrenko and Croft (2001) thus exploits the top-ranked 

feedback documents by assuming them to be samples from the relevance model. The 

relevance model is then estimated as follows: 

(6.1) 

where F denotes the feedback documents. On the right side, the relevance model OR is 

approximated by the original query q. Applying Bayesian mIe and making sorne 

simplifications, we obtain: 

P(wIB )==" P(wld)P(qld)P(d)=" P(wld)P( Id) 
R L..JdeF P(q) L..JdeF q 

(6.2) 

That is, the probability of a term w in the relevance model is determined by its 

probability in the feedback documents (i.e. p(wld)) a~ weIl as the correspondence of the 

latter to the query (i.e. P(QID)). The above relevance model is used to enhance the original 

query model by the following interpolation: . 

(6.3) 

where Â is the interpolation weight (set at 0.5 in our experiments). Notice that the above 

interpolation can also be implemented as document re-ranking in practice, in which only 

the top-ranked documents are re-ranked according to the relevance model. 

The mixture model (Zhai and Lafferty, 2001b; section 4.2) also tries to build a language 

model for the query topic from the feedback documents, but in a way different from the 

relevance model. It assumes that the query topic model to be extracted corresponds to the 

part that is the most distinctive from the whole document collection. This distinctive part is 

extracted as follows: Each feedback document is assumed to be generated by the topic 

model to be extracted and the collection model, and the EM algorithm (Dempster et al., 

1977) is used to extract the topie model so as to maximize the likelihood of the feedback 
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documents. Then the topic model is combined with the original query model by an 

interpolation similarly to the relevance model. We denote the topic model as P(w 10F). 

Sorne more details have been described in chapter 4. 

Although the specific techniques used in the above two approaches are different, both 

assume that the strong terms contained in the feedback documents are related to the query 

and are useful to improve the retrieval effectiveness. In both cases, the strong terms are 

determined according to their distributions. In fact, in relevance model, a term from 

pseudo-feedback documents is weighted high if it appears frequently in these documents, 

i.e., P(tld) is high for a feedback document d. This means that the selected expansion terms 

are those that are frequent in the feedback documents, or, the selection of expansion terms 

is based on their distribution among the feedback documents. On the other hand, in the 

mixture model, one tries to extract the part of feedback model that is the most distinctive 

from the general model of the collection. This is achieved through the application of the 

EM algorithm to extract the feedback model. In most other studies about PRF, these criteria 

have been generally used in other PRF approaches (e.g. (Xu and Croft, 1996)). 

In addition to term distributions, several additional criteria have been used to select 

terms related to the query. Robertson (1990) proposed the principle that the selected terms 

should have a higher probability in the relevant documents than in the irrelevant documents. 

This principle is similar to the one used in the mixture model, if we consider that the 

irrelevance model can be approximated by the whole collection. However, Robertson's 

approach relies on a more precise identification of relevant and irrelevant documents. This 

is difficult to implement in practice. Xu and Croft (1996) proposed to use local context 

information for expansion term selection and produced good results. 

For document filtering, term selection is more widely used in order to update the topic 

profile. For example, (Zhang and Callan, 2001) extracted terms from true relevant and 

irrelevant documents' to update the user profile (i.e. query) using the Rocchio method. 

Kwok et al. (Kwok et al., 2000) also made use of the query length a~ weIl as the size of the 

vocabulary. Smeaton and Van Rijsbergen (1983) examined the impact of determining 

expansion terms using minimal spanning tree and sorne simple linguistic analysis. 
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Despite the large number of studies on PRF, a crucial question that has not been directly 

. examined is whether the expansion terms selected in a way or another are truly useful for 

the retrieval. One was usually concemed with the global impact of a set of expansion terms. 

This is true even addition al criteria are used for term selection. 

Indeed, in many experiments, improvements III retrieval effectiveness have been 

observed with PRF (Lavrenko and Croft, 2001; Metzler and Croft, 2007; Tao and Zhai, 

2006; Zhai and Lafferty, 2001b). This might suggest that most expansion terms selected 

from the feedback documents are useful. Is it really so in reality? We will examine this 

question in the next section. 

Notice that sorne studies have tried to understand the effect of query expansion. For 

example, Peat and Willett (1991) analyzed the distribution of the expansion terms, and 

observed that many expansion terms are frequent ones, which have a low capability (or 

discrimination power) to distinguish relevant documents from irrelevant ones. However, 

this study has examined the terms extracted from the whole collection according to co­

occurrences instead of from the feedback documents. In addition, it also focused on the 

term distribution aspects. 

In the next section, we will examine the usefulness of the expansion terms from 

feedback documents directly on their impact on retrieval effectiveness. 

6.3 A Re-examination of the PRF Assilmption 

The general assumption behind PRF can be formulated as follows: 

Most frequent or distinctive terms in pseudo-relevance feedback documents are 

useful and they can improve the retrieval effectiveness when added into the query. 

To examine this assumption, we will consider aIl the terms extracted from the feedback 

documents using the mixture model and examine each of them to see if it contributes in 

increasing retrieval effectiveness. 
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Notice that the contribution of one expansion term may be dependent on the other terms 

in the query. For example, a term may contribute positively to retrieval effectiveness if 

sorne other terms are also in the query. However, it is difficult to design a simple test that 

considers all the term dependencies. In this section, we will perform a simpler test by 

ignoring the dependency between terms. We assume that a term is useful if it can 

contribute positively in increasing retrieval effectiveness if it is added into the original 

query. In this simplified setting, the possible dependency between the expansion term and 

the other expansion terms is ignored. Nevertheless, such a test can still reveal how the 

selected expansion terms are useful. 

Each of the expansion terms (~elected by the mixture model) is added to the original 

query as follows: 

Score(d, q) = " pet 1 Bo)logP(t 1 Bd) + wlogP(e 1 Bd) 
L..IlEV 

(6.4) 

where t is a query term, P(t 1 (Jo) is the original query model as described in section 2, e is 

the expansion term under consideration, and w is its weight. The above expression is a 

simplified form of query expansion with a single term. In order to make the test simpler, 

we further fix the weight of the expansion term at the weight w - the weight w is set at 0.01 

or -0.01. 

We c1assify expansion terms into three groups: good, neutral and bad. Good expansion 

terms are those that improve the effectiveness when w is 0.01 and hurt the effectiveness 

when w is -0.01; bad expansion terms produce the opposite effect. Neutral expansion terms 

are those that produce similar effect when w is 0.01 or -0.01. Therefore we can generate 

three groups of expansion terms: good, bad and neutral. Ideally, we would like to use only 

good expansion terms to expand queries. 

Let us describe the identification of the three groups of terms in more detail. Suppose 

MAP( q) and MAP(q u e) are respectively the MAP of the original query and expanded 

query (expanded with e). We measure the performance change due to e by the ratio 
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chg(e)=[MAP(que)-MAP(q)]jMAP(q). We set a threshold at 0.005 i.e., good and bad 

expansion tenns should produce a perfonnance change such that Ichg(eJI>O.005. 

In addition to the above perfonnance change, we also assume that a tenn appearing less 

than 3 times in the feedback documents is not an important expansion tenn. This allows us 

to filter out sorne noise. 

Tabl 19 P e ropor Ions 0 eac group 0 expanSIOn erms se ec e y e mlX ure f f h f t 1 t d b th . t model 
Collection Good Terms Neutral Terms Bad Terms 

AP 17.52% 47.59% 36.69% 

WSJ 17.41% 49.89% 32.69% 

Disk4&5 17.64% 56.46% 25.88% 

The above identification produces three lists of expansion tenns according to their 

usefulness to retrieval. Now, we will examine the query expansion hypothesis to see 

whether (most of) the candidate expansion tenns proposed by the mixture model are good 

tenns. Our verification is made on three TREC collections: AP, WSJ and Disk4&5. The 

characteristics of these collections are described in Section 6.7.1. We consider 150 queries 

for each collection and 80 expansions with the largest prbbabilities for each query. Table 

20 shows the proportion of good, bad and neutral tenns for all the queries in each collection. 

As we can see, only less than 18% of the expansion tenns used in the mixture model are 

good tenns in all the three collections. The proportion of bad tenns is higher. This shows 

that the expansion process indeed added more bad tenns than good ones. 

We also notice from Table 20 that a large proportion of the expansion tenns are neutral 

tenns, which have little impact on the retrieval effectiveness. Although this part of the 

tenns do es necessarily not hurt retrieval, addingthem into the query would produce a long 

query and thus heavier query traffic (longer evaluation time). It is then desirable to remove 

these tenns, too. 
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Figure 7. Distribution of the expansion terms for "airbus subsidies" in the feedback 
documents and in the collection 

The above analysis clearly shows that the terrn selection process used in the mixture 

model is insufficient. Similar phenomenon is observed on the relevance model and can be 

generalized to all the methods exploiting the same criteria. This suggests that the terrn 

selection criteria used - terrn distributions in the feedback documents and in the whole 

document collection, is insufficient. This also indicates that good and bad expansion terrns 

may have similar distributions because the mixture model, which exploits the difference of 

terrn distribution between the feedback documents and the collection, has failed to 

distinguish them. 

To illustrate the last point, let us look at the distribution of the expansion terrns selected 

with the mixture model for TREC query #51 "airbus subsidies". In Figure 7, we place the 

top 80 expansion terrns with the large st probabilities in a two-dimensional space - one 

dimension represents the logarithm of its probability in the pseudo-relevant documents and 

another dimension represents that in the whole collection. To make the illustration easier, a 

simple norrnalization is made so that the final value will be in the range [0, 1]. Figure 7 

shows the distribution of the three groups of expansion terrns. We can observe that the 
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neutral terms are somehow isolated from the good and the bad terms to sorne extent (on the 

lower-right corner), but the good expansion terms are intertwined with the bad expansion 

terms. 

This figure iIlustrates the difficulty to separate good and bad expansion terms according 

to term distributions solely. It is then desirable to use additional criteria to better select 

useful expansion terms. 

6.4 Usefulness of Selecting Good Terms 

Table 20. The impact of oracle expansion classifier 

Models AP WSJ Disk4&5 
LM 0.2407 0.2644 0.1753 
REL 0.2752L 0.2843 L 0.1860L 

REL+Oracie O.3402R
,L O.351SR

,L O.2434R
,L 

MIX 0.2846L 0.2938L 0.2005L 

MIX+Üracie O.3390M
,L O.3490M

,L O.241SM
,L 

Before proposing an approach to select good terms, let us first examine the possible 

impact with a good term selection process. Let us assume an oracle classifier that separate 

correctly good, bad and neutral expansion terms as determined in Section 6.3. 

In this experiment, we will only keep the good expansion terms for each query. AlI the 

good terms are integrated into the new query model in the same way as either relevance 

model or mixture model. Table 21 shows the MAP (Mean Average Precision) for the top 

1000 results with the original query model (LM), the expanded query models by the 

relevance model (REL) and by the mixture model (MIX) , as weIl as by the oracle 

expansion terms (REL+Oracie and MIX+Oracle). The superscript, "L", "R" and "M' 

indicates that the improvement over LM, REL and MIX is statisticaIly significant at p<0.05. 

We can see that the retrieval effectiveness can be much improved if term classification 

is done perfectly. The oracle expansion terms can generaIly improve the MAP of the 

relevance model and the mixture model by 18-30%. This shows the usefulness of correctly 

classifying the expansion terms and the high potential of improving the retrieval 
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effectiveness by a good tenn classification. The MAP obtained with the oracle expansion 

tenns represents the upper bound retrieval effectiveness we can expect to obtain using 

pseudo-relevance feedback. Our problem now is to develop an effective method to 

correctly classify the expansion tenns. 

6.5 Classification of Expansion Terms 

6.5.1 SVM Classifier 

Any classifier can be used for tenn classification. Here, we use SVM. More specifically, 

we use the SVM (Bishop, 2006) because of its effectiveness and simplicity (Vapnik, 1998; 

Cristianini and Shawe-Taylor, 2001). 

Support Vector Machines (SVM) became popular sorne years ago for solving 

problems in classification, regression, and infonnation filtering and novelty detection. As 

a Max-Margin classifier, SVM has several beautiful properties. 1) SVM has solid 

theoretic basis. It is based on the Structural Risk Minimization principle (Vapnik, 1998; 

Burges, 1998) from statisticalleaming theory. The idea of structural risk minimization is 

to find a hypothesis h (i.e., the classifier) which can guarantee the lowest generalization 

error. The generalization error is the error when the hypothesis is tested with an unseen 

and randomly selected sample. The SVM has a very nice property that the upper bound of 

generalization error is tightly related to the margin. Therefore, maximizing the margin 

can minimize the generalization error (Joachims, 1998; Burges, 1998). 2) The training of 

SVM classifier, or the parameter estimation, is fonnulized as a convex optimization 

problem, which we will see in the later of this section. Therefore, it has a unique optimal 

solution. 3) With kemel functions, SVM can map non-separable instances in low 

dimensional space into separable instances in higher dimensional space (possibly infinite 

dimensional space). 
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Since our goal is to detennine whether an expansion tenn is good, we adopt the binary 

classifier, in which the positive instances are good expansion tenn while the, negative 

instances are either bad or neutral tenns. Fonnally, suppose there are a set of training 

instances < Xi' Yi >E l ,where Yi E {-l, + 1} denotes the classification label and Xi E 9\n 

denotes a vector in the feature space, the SVM is a hyperplane to separate the instances. 

The hyperplane can be described as W T x+b 0, where WT is the transpose of the 

nonnal vector of the hyperplane. This can be illustrated with figure 6.2 . 
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Figure 8. Binary SVM with Non-separable Instances 

In figure 8, the square points denotes the instances belonging to class 1 while the 

round points represent the instances belonging to class 2. There are also three 

hyperplanes in the figure, i.e., W T x+ b = 0 and ± 1 . The first is called the decision 

boundary. The hyperplane, W T 
X + b = -1, governs the negative instances (c1ass 1) and 

the hyperplane, W T 
X + b = + 1, governs the positive instances (c1ass 2). In the linear 

separable case, all instances are outside the two hyperplanes. However, in the non­

separable case, sorne of the instances faU within the two hyperplanes, so we have to 

introduce the slack variable ~ . This variable is defined as the distance of the instance to 

its corresponding hyperplane. For example, in figure 8, ~ is the distance of Xi to the 

hyperplane WT 
X + b = -1 , while çj is the distance of X j to the hyperplane WT x + b + 1. 
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Therefore, the slack variables measure how weIl the SVM separates the training instances. 

The perpendicular distance between other two hyperplanes is defined as the margin of the 

SVM. Maximizing the margin results in minimum generalization error. Following this 

principal, training SVM can be formulized as: 

min W,b,ç ~ WTW + CL Çi 
1 

Subject To : 

W T Xi + b 2:: 1 - Çi 

Çi 2:: 0 

(6.5) 

In fact, the objective function has two parts. The right part can be viewed as the 

training error, and the left part is proportional to the inverse of the classifier margin, so it 

corresponds to the generalization error. Therefore, C is the balance factor between the 

training and generalization factor. 

The optimal solution can be found by many approaches. One of the most effective 

methods is the SMO algorithm (Platt, 1998). After obtaining the optimal solution, the 

incoming instance can be classified with the decision boundary, i.e.: 

y = sign(WT x+b) (6.6) 

One important advantage of SVM is the usage of kemel function. With kemel function, 

it is able to map non linearly separable instances in the lower dimensional space into 

linearly separable instances in a higher dimensional space. The effect of kemel function 

can be illustrated with figure 9. In this figure, the left side instances are not linearly 

separable, with kemel function ( tp(x) ), the instances are mapped into a higher 

dimensional space, in which they are linearly separable. 
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Figure 9. The Effect of Kernel Function 

Several kemel functions can be used in SVM (Burges, 1998; Bishop, 2006). We use the 

radial-based kemel function (RBF) because it has relatively fewer hyper parameters and 

has shown to be effective in previous studies (Bishop, 2006; Hsu et al., 2007). This 

function is defined as follows: 

(6.7) 

where a is a parameter controlling the shape of the RBF function. The function gets flatter 

when a is larger. Another hyper parameter is C in equation 6.5. Both parameters are 

estimated with a 5-fold cross-validation to maximize the classification accuracy of the 

training data. 

In our term classification, we are interested to know not only if a term is good, but also 

the extent to which it is good. This latter value is useful for us to measure the importance of 

an expansion term and to weight it in the new query. Therefore, once we obtain a 

classification score, we use the method described in (Platt, 2000) to transform it into a 

posterior probability: Let s(x) denote the classification score calculated by equation 6.6. 

Then the probability of x belonging to the class of good terms (denoted by +1) is defined by: 

P( + 11 x) = __ :--1 __ -:-
1 + exp(As(x) + B) 

(6.8) 
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where A and B are the parameters, which are estimated by minimizing the cross-entropy of 

a portion of training data, namely the developmeht data. This process has been automated 

in LIBSVM (Hsu et al., 2007). We will have P(+1Ix»0.5 if and only if the term x is 

classified as a good term. More details about this model can be found in (Platt, 2000). Note 

that the above probabilistic SVM may have different classification results from the simple 

SVM, which classifies instances according to equation 6.6. In our experiments, we have 

tested both probabilistic and simple SVMs, and found that the former performs better. We 

use the SVM implementation LIBSVM (Hsu et al., 2007) in our experiments. 

6.5.2 Features Used for Term Classification 

Each expansion term is represented by a feature vector F(e) = [jl(e),fl(e), .. ·,fN(e)Y E9\N, 

where T means a transpose of a vector. Useful features include those already used in 

traditional approaches such as term distribution in the feedback documents and term 

distribution in the whole collection. As we mentioned, these features are insufficient. 

Therefore, we consider the following additional features: 

~ co-occurrences of the expansion term with the original query terms; 

~ proximity of the expansion terms to the query terms. 

We will explain several groups of features below. Our assumption is that the most useful 

feature for term selection is the one that makes the largest difference between the feedback 

documents and the whole collection (similar to the principle used in the mixture model). So, 

we will define two sets of features, one for the feedback documents and another for the 

whole collection. However, technically, both sets of features can be obtained in a similar 

way. Therefore, we will only describe the features for the feedback documents. The others 

can be defined similarly. 

• Term distributions 

The first features are the term distributions in the pseudo-relevant documents and in the 

collection. The feature for the feedback documents is defined as follows: 

136 



f ( ) - 1 L de F if (e, d) 
1 e - og " " L.. ,L.. de F if (t, d) 

where Fis the set of feedback documents.f2(e) is defined similarly on the whole collection. 

These features are the traditional ones used in the relevance model and mixture model. 

• Co-occurrence with single query term 

Many studies have found that the terms that co-occur with the query terms frequently 

are often related to the query (Bai et al., 2007; Cao et al., 2006). Therefore, we define the 

following feature to capture this fact: 

f(e)=lo !"n LDeFC(ti,eld) 
3 g n L." i=1 " " if (t d) L." ,L." DeF ' 

where C(tùeld) is the frequency of co-occurrences of query term ti and the expansion term e 

within text windows in document d. The window size is empirically set to be 12 words. 

• Co-occurrence with pairs query terms 

A stronger co-occurrence relation for an expansion term is with two query terms 

together. Bai et al. (2007) has shown that this type of co-occurrence relation is much better 

than the previous one because it can take into account sorne query contexts. The text 

window size used here is 15 words. Given the set n of possible term pairs, we define the 

following feature, which is slightly extended from the previous one: 

• Weighted term proximity 

The idea of using term proximity has been used in several studies (Tao and Zhai, 2007). 

Here we also assume that two terms that co-occur at a smaller distance is more c10sely 

related. There are several ways to define the distance between two terms in a set of 
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documents (Tao and Zhai, 2007). Here, we define it as the minimum number of words 

between the two terms among aU co-occurrences in the documents. Let us denote this 

distance between ti and tj among the set B of documents by dist(ti,tjIB). For a query of 

multiple words, we have to aggregate the distances between the expansion term and aU 

query terms. The simplest method is to consider the average distance, which is similar to 

the average distance defined in (Tao and Zhai, 2007). However, it does not produce good 

results in our experiments. Instead, the weighted average distance works better. In the latter, 

a distance is weighted by the frequency of their co-occurrences. We then have the 

following feature: 

C(ti,e)dist(tpe 1 F) 

L:;=1 C(tpe) 

where C( 1& e) is the frequency of co-occurrences of ti and e within text windows in the 

collection. The window size is set to 12 words as before. 

• Document frequency for query terms and the expansion term together 

The features in this group model the count of documents in which the expansion term 

co-occurs with all query terms. We then have: 

where l(x) is the indicator function who se value is 1 when the Boolean expression x is true, 

and 0 otherwise. The constant 0.5 here acts as a smoothing f~ctor to avoid zero value. 

To avoid that a feature whose values varies in a larger numeric range dominates those 

varying in smaller numeric ranges, scaling on feature values is necessary (Hsu et al., 2007). 

The scaling is done in a query-by-query manner. Let e EGEN( q) be an expansion term of 

the query q, andfi( e) is one feature value of e. We scale Ji( e) as follows: 

With this transformation, each feature becomes a real number in [0, 1]. 
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In our experiments, only the above features are used. However, the general method is 

not limited to them. Other features can be added. The possibility to integrate arbitrary 

features for the selection of expansion terms indeed represents an advantage of our meth?d. 

6.5.3 Classification Experiments 

Table 21. Classification results of SVM 

Coll. 
Percentage of SVM 
good terms Accuracy Rec. Prec. 

AP 0.3356 0.6945 0.3245 0.6300 
WSJ 0.3126 0.6964 0.3749 0.5700 
Disk4&5 0.3270 0.6901 0.3035 0.5970 

Let us now examine the quality of our classification. We use three test collections (see 

Table 23), with 150 queries for each collection. We div ide these queries into three groups 

of 50 queries. We then do leave-one-out cross validation to evaluate the classification 

accuracy. The gold standard for classification is the classification result we obtained in 

Section 6.3. To generate training and test data, we use the method described in section 6.3 

to label possible expansion terms of each query as good terms or non-good terms 

(including bad and neutral terms), and then represent each expansion with the features 

described in section 6.5.2. The candidate expansion terms are those that occur in the 

feedback documents (top 20 documents in the initial retrieval) no less than three times. 

Table 22 shows the classification results. In this table, we show the percentage of good 

expansion terms for all the queries in each collection - around 1/3. Using the SVM 

classifier, we obtain a classification accuracy of about 69%. This number is not high. In 

fact, if we use a naïve classifier that always classifies instances into non good class, the 

accuracy (i.e. one minuses the percentage of good terms) is only slightly lower. However, 

such a classifier is useless for our purpose because no expansion term is classified as good 

term. Better indicators are recall, and more particularly precision. Although the classifier 

only identifies about 1/3 of the good terms (i.e. recall) , around 60% of the identified ones 

are truly good terms (i.e. precision). Comparing to Table 20 for the expansion terms 

selected by the mixture model, we can see that the expansion terms select by the SVM 
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classifier are of much higher quality. This shows that the additional features we considered 

in the classification are useful, although they could be further improved in the future. 

In the next section, we will describe how the selected expansion terms are integrated 

into our retrieval model. 

6.6 Re-weighting Expansion Terms with Term 

Classification 

The classification process performs a further selection of expansion terms among those 

proposed by the relevance model and the mixture model respectively. The selected terms 

can be integrated in these models in two different ways: hard filtering, i.e. we only keep the 

expansion terms classified as good; or soft filtering, i.e. we use the classification score to 

enhance the weight of good terms in the final query model. Our experiments show that the 

second method performs better. We will make a comparison between these two methods in 

Section 6.7.4. In this section, we focus on the second method, which means a redefinition 

of the models P( w 18 R ) for the relevance model and P( w 1 8 F ) for the mixture model. These 

models are redefined as follows: For a term e such that P(+1Ie»O.5 , 

P(w 1 BRr
ew = (P(e 1 BRt

id (1 + aP( +11 e)))/Z 

(6.9) 

where Z is the normalization factor, and œ is a coefficient, which is estimated with sorne 

development data in our experiments using line search (Gao et al., 2005), which tries to 

find a better value in tum until no improvement can be achieved. Once the expansion terms 

are re-weighted; we will retain the top 80 terms with the highest probabilities for expansion. 

Their weights are normalized before being interpolated with the original query model. The 

number 80 is used for a fair comparison with the relevance model and the mixture model. 
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6.7 IR Experiments 

6.7.1 Experinlental Settings 

Table 22. Statistics of evaluation data sets 

Name Description #Docs Train Topics Dev. Topics Test topics 

AP Assoc. Press 88-90 24,918 101-150 151-200 51-100 

WSJ Wall St. Journal 87-92 173,252 101-150 151-200 51-100 

Disk4&5 TREC disk4&5 556,077 301-350 401-450 351-400 

We evaluate our method with three TREC collections, AP88-90, WSJ87-92 and aIl 

documents on TREC disks 4&5. Table 23 shows the statistics of the three collections. For 

each dataset, we split the available topies into three parts: the training data to train the SVM 

classifier, the development data to estimate the parametera in equati~:m 6.10, and the test 

data. We only use the title for each TREC topic as our query. Both documents and queries 

are stemmed with Porter stemmer and stop words are removed. 

The main evaluation metric is Mean Average Precision (MAP) for top 1000 documents. 

Since sorne previous studies showed that PRF improves recall but may hurt precision, we 

also show the precision at top 30 and 100 documents, i.e., P@30 and P@100. We also 

show recall as a supplementary measure. We do a query-by-query analysis and conduct t­

test to determine wh ether the improvement on MAP is statistically significant. 

The Indri 2.6 search engine (Strohman et al., 2004) is used as our basic retrieval system. 

We use the relevance model implemented in Indri, but implemented the mixture model 

following (Zhai and Lafferty, 2001b) since Indri does not implement this model. 

6.7.2 Ad-hoc Retrieval ResuUs 

In the experiments, the following methods are compared: 
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Table 23. Ad-hoc retrieval results on AP data 

Model P@30 P@100 MAP Imp Recall 

LM 0.3967 0.3156 0.2407 ----- 0.4389 

REL 0.4380 0.3628 0.2752 14.33%** 0.4932 

REL+SVM 0.4513 0.3680 0.2959" 22.93%** 0.5042 

MIX 0.4493 0.3676 0.2846 18.24%** 0.5163 

MIX+SVM 0.4567 0.3784 0.309rr,1( 28.36%** 0.5275 

Table 24. Ad-hoc retrieval results on WSJ data 

Model P@30 P@100 MAP Imp Recall 

LM 0.3900 0.2936 0.2644 -------- 0.6516 

REL· 0.4087 0.3078 0.2843 7.53%** 0.6797 

REL+SVM 0.4167 0.3120 0.2943 11.30%** 0.6933 

MIX 0.4147 0.3144 0.2938 11.11 %** 0.7052 

MIX+SVM 0.4200 0.3160 0.30361( 14.82%** 0.7110 

Table 25. Ad-hoc retrieval results on Disk4&5 data 

Model P@30 P@100 MAP Imp Recall 

LM 0.2900 0.1734 0.1753 ----------- 0.4857 

REL 0.2973 0.1844 0.1860 6.10%* 0.5158 

REL+SVM 0.2833 0.1990 0.20021( 14.20%** 0.5689 

MIX 0.3027 0.1998 0.2005 14.37%** 0.5526 

MIX+SVM 0.3053 0.2068 0.220tf1,x 25.96%** 0.6025 

LM: the KL-divergence retrieval model with the original queries; 

REL: the relevance model; 

REL+SVM: the relevance model with term classification; 

MIX: the mixture model; 

MIX+SVM: the mixture model with term classification. 

These models require sorne parameters, such as the weight of original model when forming 

the final query representation, the Dirichlet prior for document model smoothing and so on. 

Since the purpose of this paper is not to optimize these parameters, we set all of them at the 

same values for all the models. Tables 24, 25 and 26 show the results obtained with 

different models on the three collections. In the tables, imp means the improvement rate 

over LM model, * indicates that the improvement is statistically significant at the level of 
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p<O.05, and ** at p<O.Ol. The superscripts "R" and "M" indicate that the result is 

statistically better than the relevance model and mixture model respectively at p<O.05. 

Table 26. Expansion terms of two queries. The terms in italic are real good expansion terms, and 
h . b Id 1 "fi d d t osem 0 are c aSSI le as goo terms 

"machine translation" 

Expansion terms p(t;1 (J F) Expansion terms P(t;1 (J F) 

compute 0.0162 year 0.0043 

soviet 0.0095 work 0.0038 

company 0.0082 make 0.0040 

50 0.0074 typewriter 0.0038 

english 0.0072 busy 0.0021 

ibm 0.0051 increase 0.0021 

people 0.0050 ..... . ... 
"naturallanguage processing" 

Expansion terms p(t;1 (J F) Expansion terms pet;! (J F) 

english 0.0132 publish 0.0041 

word 0.0092 nation 0.0040 

french 0.0092 develop 0.0039 

food 0.0064 russian 0.0038 

make 0.0050 program 0.0037 

world 0.0047 dictionary 0.0012 

gorilla 0.0045 ........ ..... 

From the tables, we observe that both relevance model and mixture model, which 

exploit a form of PRF, can improve the retrieval effectiveness of LM significantly. This 

observation is consistent with previous studies. The MAP we obtained with these two 

models represent the state-of-the-art effectiveness on these test collections. 

Comparing the relevance model and the mixture model, we see that the latter performs 
, 

better. The reason may be the following: The mixture model relies more on the difference 

between the feedback documents and the whole collection to select the expansion terms, 

than the relevance model. By doing this, one can filter out more bad or neutral expansion 

terms. 

On aIl the three collections, the model integrating term classification performs very weIl. 

When the classification model is used together with a PRF model, the effectiveness is 

always improved. On the AP and Disk4&5 collections, the improvements are more than 
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7.5% and are statistically significant. The improvements on the WSJ collection are smaller 

(about 3.5%) and are not statistically significant. 

About the impact on preCision, we can also see that term classification can also improve 

the precision at top ranked documents, except in the case of Disk4&5 when SVM is added 

to REL. This shows that in most cases, adding the expansion terms does not hurt, but 

improves, precision. 

Let us show the expansion terms for the queries "machine translation" and "natural 

language processing", in Table 27. The stemmed words have been restored in this table for 

better readability. All the terms contained in the table are those suggested by the mixture 

model. However, only part of them (in italic) is useful expansion terms. Many of them are 

general terms that are not useful, for example, "food", "make", "year", "50", and so on. 

The classification process can help identify well the useful expansion terms (in bold): 

although not all the useful expansion terms are identified, those identified (e.g. "program", 

"dictionary") are highly related and useful. As the weight of these terms is increased, the 

relative weight of the other terms is decreased, making their weights in the final query 

model smaller. These examples illustrate why the term classification process can improve 

the retrieval effectiveness. 

6.7.3 Supervised vs. Unsupervised Learning 

Compared to the relevance model and the mixture model, the approach with term 

classification made two changes: it uses supervised leaming instead of unsupervised 

leaming; it uses several additional features. It is then important to see which of these 

changes contributed the most to the increase in retrieval effectiveness. 

In order to see this, we design a me~od using unsupervised leaming, but with the same 

additional features. The unsupervised leaming extends the mixture model in the following 

way: 
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Each feedback document is also considered to be generated from the topic model (to be 

extracted) and the collection model. We try to extract the topic model so as to maximize the 

likelihood of the feedback documents as in the mixture model. However, the difference is 

that, instead of defining the topic model P( w 1 e F) as a multinomial model, we define it as a 

log-linear model that combines aU the features: 

P(w 10F) = exp (X F(w))jz (6.10) 

where F(w) is the feature vector defined in section 6.5.2, Â is the weight vector and Z is the 

normalization factor to make P( w 1 eT) a real probability. Â is estimated by maximizing the 

likelihood of the feedback documents. To avoid overitting, we do regularization on Â by 

assuming that it has a zero-mean Gaussian prior distribution (Bishop, 2006). Then the 

objective function to be maximized becomes: 

L(F) = " " if(w,D)log((1-a)P(wIOc )+aP(wIOF )) ~DEF~WEV 
(6.11) 

-axÂ 

where a is the regularization factor, which is set to be 0.01 in our experiments. a is the 

parameter representing how likely we use the topic model to generate the pseudo-relevant 

document. It is set at a fixed value as in (Zhai and Lafferty, 2001b) (0.5 in'our case). Since 

L(F) is a concave function w.r.t. Â, it has a unique maximum. We solve this unconstrained 

optimization problem with Limited memory BFGS (L-BFGS) algorithm (Nocedal and 

Wright, 2006). 

Table 28 shows the results measured by MAP. Again, the superscript, "M" and "L" 

indicate the improvement over MIX and Log-linear model is statistically significant at 

p<0.05. 

From this table, we can observe that the log-linear model outperforms the mixture 

model only slightly. This shows that an unsupervised leaming method, even with additional 

features, cannot improve the retrieval effectiveness by a large margin. The possible reason 
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is that the objective function, L(F), do es not correlate very weIl with MAP. The parameters 

maximizing L(F) do not necessarily produce good MAP. 

In comparison, the MIX+SVM model outperforms largely the log-linear model on aIl 

the three collections, and the improvements on AP and Disk4&5 are statistically significant. 

This result shows that a supervised learning method can more effectively capture the 

characteristics of the genuine good expansion terms than an unsupervised method. 

Table 27. Supervised Learning VS Unsupervised Learning 

Model AP WSJ Disk4&5 

MIX 0.2846 0.2938 0.2005 

Log-linear 0.2878 0.2964 0.2020 

MIX+SVM 0.309~,L 0.3036 0.2208M ,L 

6.7.4 Soft Filtering vs. Hard Filtering 

We mentioned two possible ways to use the classification results: hard filtering of 

expansion terms by retaining only the good terms, or soft filtering by increasing the weight 

of the good terms. In this section, we compare the two methods. Table 29 shows the results 

obtained with both methods. In the table, "M", "R", and "H" indicate the improvement 

over MIX, REL and HARD are statistically significant with p<0.05 

From this table, we see that both hard and soft filtering improves the effectiveness. 

Although the improvements with hard filtering are smaller, they are steady on aIl the three 

collections. However, only the improvement over MIX model on the AP and Disk4&5 data 

is statisticall y significant. 

In comparison, the soft filtering method performs much better. Our explanation is that, 

since the classification accuracy is far from perfect (actually, it is less than 70% as shown 

in Table 22), sorne top ranked good expansion terms, which could improve the 

performance significantly, can be removed by the hard filtering. On the other hand, in the 

soft filtering case, even if the top ranked good terms are misclassified, we will only reduce 

146 



their relative weight in the final query model rather than removing them. Therefore, these 

expansion terms can still contribute to improving the performance. In other words, the soft 

filtering method is less .affected by classification errors. 

Table 28. Soft Filtering VS Hard Filtering 

Model AP WSJ Disk4&5 
MIX 0.2846 0.2938 0.2005 

MIX+HARD 0.2902M 0.2989 0.2024M 

MIX+SOFT 0.309(f1,H 0.3036 0.2208M ,H 

REL 0.2752 0.2843 0.1860 

REL+HARD 0.2804 0.2864 0.1890 

REL+SOFT 0.295~,H 0.2943 0.2002R 

6.7.5 Reducing Query Traffic 

Table 29. Soft filtering with 10 terms 

Model AP WSJ Disk4&5 

MIX-80 0.2846 0.2938 0.2005 

MIX-I0 0.2824 0,2913 . 0.2015 

MIX+SOFT-I0 0.2932 0.2915 0.2125 

A critical aspect with query expansion is that, as more terms are added into the query, 

the query traffic, i.e. the time needed for its evaluation, becomes larger. In the previous 

sections, for the purpose of comparison with previous methods, we used 80 expansion 

terms. In practice, this number is too large - one cannot afford to increase the size of a 

query so drastically. In this section, we examine the possibility to further reduce the 

number of expansion terms. 

In this experiment, after a re-weighting with soft filtering, instead of keeping 80 

expansion terms, we only select the top 10 expansion terms, which is a more reasonable 

number. These terms are used to construct a small query topic model P(w 1 OF)' This model 

is interpolated with the original query model as before. The following table describes the 

results using the mixture model. 
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As expected, the effectiveness with 10 expansion terms is lower than with 80 terms. 

However, we can still obtain mùch higher effectiveness than the traditionallanguage model 

LM, and all the improvements are significantl y significant. 

The results with 10 expansion terms can also be advantageously compared to the 

mixture model with 80 expansion terms: for both AP and Disk4&5 collections, the 

effectiveness is higher than the mixture model. The effectiveness on WSJ is very close. 

This experiment shows that we can reduce the number of expansion terms, and even 

with a reasonably small number, the retrieval effectiveness can be greatly increased. This 

observation allows us to control query traffic within an acceptable range, and make the 

method more feasible in the search engines. 

6.8 Summary of This Chapter 

Pseudo-relevance feedback, which adds additional terms extracted from the feedback 

documents, is an effective method to improve the query representation and the retrieval 

effectiveness. The basic assumption is that most strong terms in the feedback documents 

are useful for IR. hl this study, we re-examined this hypothesis on three test collections and· 

showed that the expansion terms determined in traditional ways are not all useful. hl reality, 

only a small proportion of the suggested expansion terms are useful, and many others are 

either harmful or useless. hl addition, we also showed that the traditional criteria for the 

selection of expansion terms based on term distributions are insufficient: good and bad 

expansion terms are not distinguishable on these distributions. 

Motivated by these observations, we proposed to further classify expansion terms using 

additional features based on term relationships. hl addition, we aim to select the expansion 

terms directly according to their possible impact on the retrieval effectiveness. This method 

is different from the existing ones, which often rely on sorne other criteria that do not 

always correlate with the retrieval effectiveness. 
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Our experiments on three TREC collections showed that the expansion terms selected 

using our method are significantly better than the tradition al expansion terms. In addition, 

we also showed that it is possible to limit the query traffic by controlling the number of 

expansion terms, and this stilllead to quite large improvements in retrieval effectiveness. 

This study shows the importance to examine the crucial problem of usefulness of 

expansion terms before the terms are used. The method we propose also pro vides a general 

framework to integrate multiple sources of evidence. 

This study suggests several interesting research· avenues for our future investigation: The 

results we obtained with term classification are much lower than with the oracle expansion 

terms. This means that there is still much room for improvement. In particular, 

improvement in classification quality could directly result in improvement in retrieval 

effectiveness. The improvement of classification quality could be obtained by integrating 

more useful features. In this chapter, we have limited our investigation to only a few often 

used features. More discriminative features can be investigated in the future. In particular, 

in chapter 4, we found that semantic re1ationships between terms are also useful for query 

expansion, so we can consider them in the future. 

The basic idea, i.e., selecting an expansion term according the expected improvement, 

can be used in other tasks, such as query suggestions, query alteration and query term 

stemming (Peng et al., 2007). In next section, we will apply the same principle to another 

task - context sensitive query term stemming, which can also be viewed as a special form 

of query expansion. We will see that the approach is also effective in that task. 
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Chapter 7 

Exploiting Word Relations for Context 

Sensitive Stemming 

7.1 Introduction 

Word stemming is a basic NLP technique used in most of Information Retrieval (IR) 

systems. It transforms words into their root forms so as to increase the chance to match 

similar words/terms that are morphological variants. For example, with stemming, 

"controlling" can match "controlled" because both have the same root "control". Most 

stemmers, such as the Porter stemmer (Porter, 1980) and Krovetz stemmer (Krovetz, 

1993), deal with stemming by stripping word suffixes according to a set of morphological 

rules. The rule-based approaches are intuitive and easy to implement. However, while in 

general, most words can be stemmed correctly; there is often erroneous stemming that 

unifies unrelated words. For instance, "jobs" is stemmed to "job" in both "find jobs in 

Apple" and "Steve Jobs at Apple". This is particularly problematic in Web search, where 

users often use special or new words in their queries. A standard stemmer such as 

Porter's will stem them uniformly regardless to the context of utilization. 

To better determine stemming rules, Xu and Croft (1998) propose a selective stemming 

method based on corpus analysis. They refine the Porter stemmer by means of word 

clustering: words are first clustered according to their co-occurrences in the text 

collection. Only word variants belonging to the same cluster will be conflated. 
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Despite this improvement, the basic idea of word stemming is to transform words in 

both documents and queries to a standard form. Once this is done, there is no means for 

users to require a specific word form in a query - the word form will be automaticalIy 

transformed, otherwise, it will not match documents. This approach does not seem to be 

appropriate for Web search, where users often specify particular word forms in their 

queries. An example of this is a quoted query such as "Steve Jobs", or "US Policy". If 

documents are stemmed, many pages about job offerings or US police may be returned 

("policy" conflates with "police" in Porter stemmer). Another drawback of stemming is 

that it usualIy enhances recalI, but may hurt precision (Kraaij and Pohlmann, 1996). 

However, general Web search is basicalIy a precision-oriented task. 

One alternative approach to word stemming is to do query expansion at query time. 

The original query terms are expanded by their related forms having the same root. AlI 

expansions can be combined by the Boolean operator "OR". For example, the query 

"controlling acid rain" can be expanded to "(control OR controlling OR contraller OR 

controlled OR contrais) (acid OR acidic OR acidify) (rain OR raining OR rained OR 

rains)". We will calI each such expansion term an alteration to the original query term. 

Once a set of possible alterations is determined, the simplest approach to perform 

expansion is to add aIl possible alterations. We calI this approach Naive Expansion. One 

can easily show that stemming at indexing time is equivalent to Naive Expansion at 

retrieval time. This approach has been adopted by most commercial search engines (Peng 

et al., 2007). However, the expansion approaches proposed previously can have several 

serious problems: First, they usually do not consider expansion ambiguity - each query 

term is usually expanded independently. However, sorne expansion terms may not be 

appropriate. The case of "Steve Jobs" is one such ex ample, for which the word "job" can 

be proposed as an expansion term. Second, as each query term may have several 

alterations, the naïve approach using aIl the alterations will create a very long query. As a 

consequence, query traffic (the time required for the evaluation of a query) is greatly 

increased. Query traffic is a critical problem, as each search engine serves millions of­

users at the same time. It is important to limit the query traffic as much as possible. 
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In practice, we can observe that sorne word alterations are irrelevant and undesirable 

(as in the "Steve Jobs" case), and sorne other alterations have little impact on the retrieval 

effectiveness (for ex ample, if we expand a word by a rarely used word form). In this 

chapter, we will address these two problems. Our goal is to select only appropriate word 

alterations to be used in query expansion. This is done for two purposes: On the one hand, 

we want to limit query traffic as much as possible when query expansion is performed. 

On the other hand, we also want to remove irrelevant expansion terms so that fewer 

irrelevant documents will be retrieved, thereby improving the retrieval effectiveness. 

To de al with the two problems we mentioned above, we will propose two methods to 

select alterations. In the first method, we make use of the query context to select only the 

alterations that fit the query. In the second method, we try to predict the usefulness of an 

alteration and the selection of alterations is made accordingly. 

In the first method, the query context is modeled by a bigram language model. To 

reduce query traffic, we select only one alteration for each query term, which is the most 

coherent with the bigram model. We caU this model Bigram Expansion. Despite the fact 

that this method adds far fewer expansion terms than the naïve expansIOn, our 

experiments will show that we can achieve comparable or ev en better retrieval 

effectiveness. 

Both the Naive Expansion and the Bigram Expansion determine word alterations 

solely according to general knowledge about the language (bigram model or 

morphological rules), and no consideration about the possible effect of the expansion 

term is made. In practice, sorne alterations will have virtually no impact on retrieval 

effectiveness (as is the case of neutral expansion terms in the previous chapter). They can 

be ignored. Therefore, in our second method, we will try to predict whether an alteration 

will have sorne positive impact on retrieval effectiveness. Only the alterations with 

positive impact will be retained. This ide a has been adopted in chapter 6 for query 

expansion term selection using a binary SVM classifier. In this chapter, instead of the 

binary classifier, we will use a regression model to predict the impact on retrieval 

effectiveness. Compared to the bigram expansion method, the regression method results 
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in even fewer alterations, while experiments show that the retrieval effectiveness is even 

better. 

Experiments will be conducted on two TREC collections, Gov2 data for Web Track 

and TREC6&7 &8 for ad-hoc retrieval. The results show that the two methods we propose 

both outperform the original queries significantly with less than two alterations per query 

on average. Compared to the Naive Expansion method, the two methods can perform at 

least equally weIl, while query traffic is dramatically reduced. 

In the following section, we provide a brief review of related work. Section 7.3 shows 

how to generate alteration candidates using a similar approach to Xu and Croft' s corpus 

analysis (1998). In section 7.4 and 7.5, we describe the Bigram Expansion method and 

Regression method respectively. Section 7.6 presents sorne experiments on TREC 

benchmarks to evaluate our methods. Section 7.7 conc1udes this chapter and suggests 

sorne avenues for future work. 

7.2 Related Work 

Many stemmers have been implemented and used as standard processmg mIR. 

Among them, the Porter stemmer (Porter, 1980) is the most widely used. It strips term 

suffixes step-by-step according to a set of morphological rules, such as the words ended 

with "-es" or "-ing" will be stripped. However, the Porter stemmer sometimes wrongly 

transforms a term into an unrelated root. For example, it will unify "news" and "new", 

"execute" and "executive". On the other hand, it may miss sorne conflations, such as 

"mice" and "mouse", "europe" and "european". Krovetz (1993) developed another 

stemmer, which uses a machine-readable dictionary, to improve the Porter stemmer. It 

avoids sorne of the Porter stemmer' s wrong stripping, but does not produce consistent 

improvement in IR experiments (Kraaij and Pohlmann, 1996). 

Both stemmers use generic rules for English to strip each word in isolation. In practice, 

the required stemming may vary from one text collection to another. Therefore, attempts 
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have been made to use corpus analysis to improve existing rule-based stemmers. Xu and 

Croft (1998) create equivalence clusters of words which are morphologically similar and 

occur in similar contexts. 

As we stated earlier, the stemming-based IR approaches are not weIl suited to Web 

search. Query expansion has been used as an alternative (Peng et al. 2007). To limit the 

number of expansion terms, and thus the query traffic, Peng et al. only use alterations for 

sorne of the query words: They segment each query into phrases and only the head word 

in each phrase is expanded. The assumptions they made are: 1) Queries issued in Web 

search often consist of noun phrases. 2) Only the he ad word in the noun phrase varies in 

form and needs to be expanded. However, both assumptions may be questionable. Their 

experiments did not show that the two assumptions hold. 

Stemming is related to query expansion or query reformulation (Jones et al., 2006; 

Anick, 2003; Xu and Croft, 1996), although the latter is not limited to word variants. If 

the expansion terms used are those that are variant forms of a word, then query expansion 

can produce the same effect as word stemming. However, if we add aIl possible word 

alterations, query expansionfreformulation will run the risk of adding many unrelated 

terms to the original query, which may result in both heavy traffic and topic drift. 

Therefore, we need a way to select the most appropriate expansion terms. In (Peng et al. 

2007), a bigram language model is used to determine the alteration of the head word that 

best fits the query. In this chapter, one of the proposed methods will also use a bigram 

language model of the query to determine the appropriate alteration candidates. However, 

in our approach, alterations are not limited to he ad words. In addition, we will also 

propose a supervised learning method to predict if an alteration will have a positive 

impact on retrieval effectiveness. To our knowledge, no previous method uses the same 

approach. 

The basic ide a we use for selecting word alterations is similar to that used in chapter 6 

for selecting good expansion terms from feedback documents. However, there have 

different expansion term candidates. Although we try to create a similar effect to query 

expansion with term stemming or term alteration, the candidates for expanSIOn are 
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restricted to be variants of the one of the original query terms; while the general query 

expansion considers aIl related terms, no matter whether they share the same root form or 

not. 

In the following sections, we will describe our approach, which consists of two steps: 

the generation of alteration candidates, and the selection of appropriate alterations for a 

query. The first step is query-independent using corpus analysis, while the second step is 

query-dependent. The selected word alterations will be OR-ed with the original query 

words. 

7.3 Generating Alteration Candidates 

Our method to generate alteration candidates can be described as follows. First, we do 

word clustering using a Porter stemmer. AlI words in the vocabulary sharing the same 

root form are grouped together. Then we do corpus analysis to filter out the words which 

are clustered incorrectly, according to word distributional similarity, following (Xu and 

Croft, 1998; Lin 1998). The rationale behind this is that words sharing the same meaning 

tend to occur in the same contexts. 

The context of each word in the vocabulary is represented by a vector containing the 

frequencies of the context words which co-occur with the word within a predefined 

window in a training corpus. The window size is set empirically at 3 words and the 

training corpus is about 1/10 of the GOV2 corpus (see section 7.5 for details about the 

collection). Similarity is measured by the co sine distance between two vectors. For each 

word, we select at most 5 similar words as alteration candidates. 

In the next sections, we will further consider ways to select appropriate alterations 

according to the query. 
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7.4 Bigram Expansion Model for Alteration Selection 

In this section, we try to select the most suitable alterations according to the query 

context. The query context is modeled by a bigram language model as in (Peng et al. 

2007). 

Given a. query described by a sequence of words, we consider each of the query word 

as representing a concept Ci. In addition to the given word form, Ci can also be expressed 

by other alternative forms. However, the appropriate alterations do not only depend on 

the original word of Ci, but also on other query words or their alterations. 

control! 

control 

control! 

control! 

Figure 10. Considering ail Combinations to Calcula te the Plausibility of Alterations 

Accordingly, a confidence weight is determined for each alteration candidate. For 

example, in the query "Steve Jobs at Apple", the alteration "job" for "jobs" should have a 

low confidence; while in the query "finding jobs in Apple", it should have a high 

confidence. 

One way to measure the confidence of an alteration is the plausibility of its appearing 

in the query. Since each concept may be expressed by several alterations, we consider aIl 

the alterations of context concepts when calculating the plausibility of a given word. 

Suppose we have the query "controlling acid rain". The second concept has two 

alterations - "acidify" and "acidic". For each of the alterations, our method will consider 

aIl the combinations with other words, as illustrated in figure 10, where each combination 
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is shown as a path. More precisely, for a query of n words (or their corresponding 

concepts), let ei,j Ecù j=1,2, ... ,lcd be the alterations of concept Ci. Then we have: 

(7.1) 

In equation 7.1, el ' ,e2 ' , •.• , ei J" , ••• , en J' is a path passing through ei,j' For simplicity, we 
.11 .)2 ' l , n 

abbreviate it as eje2 ... ei ... en' In this work, we used bigram language model to calculate 

the probability of each path. Then we have: 

(7.2) 

P(eklek-j) is estimated with a back-off bigram language model (Goodman, 2001). In the 

experiments with TREC6&7 &8, we train the model with all text collections; while in the 

experiments with Gov2 data, we only used about 1/10 of the GOV2 data to train the 

bigram model because the whole Gov2 collection is too large. 

Directly calculating P(ei) by summing the probabilities of all paths passing through eij 

is an NP problem (Rabiner, 1989), and is intractable if the query is long. Therefore, we 

use the forward-backward algorithm (Rabiner, 1989; Bishop, 2006) to calculate P(ei) in a 

more efficient way. After calculating P( eij) for each Ci, we select one alteration which has 

the highest probability. We limit the number of additional alterations to 1 in order to limit 

, query traffic. Our experiments will show that this is often sufficient. 

7.5 Regression Model for Alteration Selection 

None of the prevlOus selection methods considers how well an alteration would 

perform in retrieval. The Bigram Expansion model assumes that the query replaced with 

better alterations should have a higher likelihood_ This approach belongs to the family of 

unsupervised leaming. In this section, we introduce a method belonging to supervised 

leaming family_ This method develops a regression model from a set of training data, and 

it is capable of predicting the expected change in performance when the original query is 
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augmented by this alteration. The performance change is mèasured by the difference in 

the Mean Average Precision (MAP) between the augmented and the original query. The 

training instances are defined by the original query string, an original query term under 

consideration and one alteration to the query term. A set of features will be used, which 

will be defined later in this section. 

7.5.1 Linear Regression Model 

The goal of the regression model is to predict the performance change when a query 

term is augmented with an alteration. There are several regression models, ranging from 

the simplest linear regression model to non-linear alternatives, such as a neural network 

(Duda et al., 2001), a Regression SVM (Bishop, 2006). For simplicity, we use linear 

regression model here. We denote an instance in the feature space as X, and the weights 

of features are denoted as W. Then the linear regression model is defined as: 

(7.3) 

where WT is the transpose of W. However, we will have a technical problem if we set the 

target value to the performance change directly: The range of values of f(X) is (-00,+00), 

while the range of performance change is [-1,1]. The two value ranges do not match. This 

inconsistency may result in severe problems when the scales of feature values vary 

dramatically (Duda et al., 2001). To solve this problem, we do a simple transformation on 

the performance change. Let the change be y E [-1,1], then the transformed performance 

change is: 

l+y+r 
<p(y) = log YE[-l,l] 

1- Y+r 

(7.4) 

where ris a very small positive real number (set to be 1e-37 in the experiments), which 

acts as a smoothing factor. The value of <pey) can be an arbitrary real number. <pey) is a 

monotonie function defined in the range of [-1,1]. Moreover, the fixed point of <p(y) is 0, 
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i.e., q:>(y) = y when y=O. This property is nice; it means that the expansion brings positive 

improvement if and only if !(X»O, which makes it easy to determine which alteration is 

better. 

We train the regression model by minimizing the mean square error. Suppose there are 

training instances X],X2, ••. ,Xm, and the corresponding performance change is yi, 

i=1,2, ... ,m. We calculate the mean square error with the following equation: 

",m T 2 
err(W) = L..Ji=1 (W Xi - q:>(Yi)) (7.5) 

Then the optimal weight is defined as: 

W· = argminw err(W) (7.6) 

= argrninw L:! (W T Xi - rp(Yi ))2 

Because err(W) is a convex function of W, it has a global minimum and obtains its 

minimum when the gradient is zero (Bazaraa et al., 2006). Then we have: 

derr(W*) = "m (WTx. _ ( .»)X T =0 
dW* L..Ji=1 1 q:> Y, 1 

So, 

W'T"m x.x T = "m ml .)XT 
L..Ji=l 1 1 L..Ji=l 'r,Y, 

1 

In fact, 2:;:1 x;x; is a square matrix, we denote it as XXT
• Then we have: 

(7.7) 

The matrix XXT is an Ixl square matrix, where 1 is the number of features. In our 

experiments, we only use three features. Therefore the optimal weights can be calculated 

efficiently even we have a large number of training instances. 
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7.5.2 Constructing Training Data 

As a supervised leaming method, the regression model is trained with a set of training 

data. We illustrate here the procedure to generate training instances with an example. 

Given a query "controlling acid rain", we obtain the MAP of the original query at first. 

Then we augment the query with an alteration to the original term (one term at a time) at 

each time. We retain the MAP of the augmented query and compare it with the original 

query to obtain the performance change. For this query, we exp and "controlling" by 

"control" and get an augmented query "( controlling OR control) acid min". We can 

ob tain the difference between the MAP of the augmented query and that of the original 

query. By doing this, we can generate a series of training instances consisting of the 

original query string, the original query term under consideration, its alteration and the 

performance change, for example: 

<controlling acid min, controlling, control, 0.05> 

Note that we use MAP to measure performance, but we could weIl use other metrics 

such as NDCG (Peng et al., 2007) or P@N(precision at top-N documents). 

7.5.3 Features Used for Regression Model 

Three features are used. The first feature reflects to what degree an alteration is 

coherent with the other terms. For example, for the query "controlling acid ra in", the 

coherence of the alteration "acidic" is measured by the logarithm of its co-occurrence 

with the other query terms within a predefined window (90 words) in the corpus. That is: 

log( count( controlling ... acidic ... min 1 window) +0. 5) 

where " ... " me ans there may be sorne words between two query terms. Word ord~r is 

ignored. 
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The second feature is an extension to point-wise mutual information (Rijsbergen, 

1979), defined as follows: 

10 (p(Controlling ... acidic ... rain 1 WindOW)] 

g P( controlling )P( acidic )P( ra in ) 

where P(controlling ... acidic ... rainlwindow) is the co-occurrence probability of the 

trigram containing acidic within a predefined window (50 words). P(controlling), 

p(acidic), P(rain) are probabilities of the three words in the collection. The three words 

are defined as: the term under consideration, the first term to the left of that term, and the 

first term to the right. If a query contains less than 3 terms or the term under 

consideration is the beginninglending term in the query, we will set the probability of the 

missed termlterms to be 1. Therefore, it becomes point-wise mutual information when the 

query contains only two terms. In fact, this feature is supplemental to the first feature. 

When the query is very long and the first feature al ways ob tains a value of log(O.5), so it 

does not have any discriminative ability. On the other hand, the second feature helps 

because it can capture sorne co-occurrence information no matter how long the query is. 

The last feature is the bias, whose value is always set to be 1.0. 

As shown in table 31, we use two TREC collections to evaluate the proposed methods. 

Each collection has 150 queries. We div ide the queries into 3 groups, each with 50 

queries. The regression model is trained in a leave-one-out cross-validation manner on 

three groups of queries; each of them is used in tum as a test collection while the two 

others are used for training. For each incoming query, the regression model predicts the 

expected performance change when one alteration is used. For each query term, we only 

select the alteration with the largest positive performance change. If none of its 

alterations produce a positive performance change, we do not exp and the query term. 

This selection is therefore more restrictive than the Bigram Expansion Model. 

Nevertheless, our experiments show that it improves retrieval effectiveness further. 
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7.6 Experiments 

7.6.1 Experiment Settings 

Table 30. Overview of Test Collections 

Name Description Size (GB) #Doc Query 

TREC6&7&8 TREC disk4&5, Newpapers 1.7 500,447 301-450 

Gov2 2004 crawl of entire .gov 427 25,205,179 701-850 

domain 

In this section, our atm lS to evaluate the two context-sensitive word alteration 

selection methods. The ideal evaluation corpus should be composed of sorne Web data. 

Unfortunately, such data are not public1y available and the results also could not be 

compared with other published results. Therefore, we use two TREC collections. The 

first one is the ad-hoc retrieval test collections used for TREC6&7 & 8. This collection is 

relative small and homogeneous. The second one is the Gov2 data. It is obtained by 

crawling the entire .gov domain and has been used for three TREC Terabyte tracks 

(TREC2004-2006). Table 31 shows sorne statistics of the two collections. For each 

collection, we use 150 queries. Since the Regression model needs sorne data for training, 

we divided the queries into three parts, each containing 50 queries. We then use leave­

one-out cross-validation. The evaluation metrics shown below are the average value of 

the three-fold cross-validation. Because the queries in Web are usually very short, we use 

only the tide field of each query. 

To correspond to Web search practice, both documents and queries are not stemmed. 

We do not filter the stop words either. 

Two main metrics are used: the Mean Average Precision (MAP) for the top 1000 

documents to measure retrieval effectiveness, and the number of terms in the query to 

reflect query traffic. In addition, we also provide precision for the top 30 documents 

(P@30) to show the impact on top ranked documents. We also conducted t-tests to 

determine whether the improvement is statistically significant. 
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The Indri 2.6 search engine (Strohman et al., 2004) is used as our basic retrieval 

system. It provides for a rich query language allowing disjunctive combinations of words 
. . 
III quenes. 

7.6.2 Experimental Results 

The first baseline method we compare with only uses the original query, which is 

named Original. In addition to this, we also compare with the following methods: 

Naïve Exp: The Naïve expansion model expands each query term with aIl terms in the 

vocabulary sharing the same root with it. This model is equivalent to the traditional 

stemming method. 

UMASS: This is the result reported in (Metzler et al., 2006) using Porter stemming 

for both document and query terms. This reflects a state-of-the-art result using 

Porter stemming. We report it here for comparison. 

Similarity: We select the alterations (at most 5) with the highest similarity to the 

original term. This is the method described in section 3. 

The two methods we propose in this paper are the following ones: 

Bigram Exp: the alteration is chosen by a Bigram Expansion model. 

Regression: the alteration is chosen by a Regression model. 

Table 31. Results of Query 701-750 Over Gov2 Data 

Model P@30 #term MAP Imp. 

Original 0.4701 158 0.2440 ----

UMASS ------- ------- 0.2666 9.26 

Naïve Exp 0.4714 1345 0.2653 8.73 

Similarity 0.4900 303 0.2689 10.20* 

Bigram Exp 0.5007 303 0.2751 12.75** 

Regression 0.5054 237 0.2773 13.65** 

163 



Table 32. Results of Query 751-800 over Gov2 Data 

Model P@30 #term MAP Imp. 

Original 0.4907 158 0.2738 ----

UMASS ------- ------- 0.3251 18.73 

Naive Exp 0.5213 1167 0.3224 17.75** 

Similarity 0.5140 290 0.3043 11.14** 

BigramExp. 0.5153 290 0.3107 13.47** 

Regression 0.5140 256 0.3144 14.82** 

Table 33. ResuUs of Query 801-850 over Gov2 Data 

Model P@30 #term MAP Imp. 

Original 0.4710 154 0.2887 ----

UMASS ------- ------- 0.2996 3.78 

Naïve Exp 0.4633 1225 0.2999 3.87 

Similarity 0.4710 288 0.2976 3.08 

Bigram Exp 0.4730 288 0.3137 8.66** 

Regression 0.4748 237 0.3118 8.00* 

Table 34. ResuUs of Query 301-350 over TREC6&7 &8 

Model P@30 #term MAP Imp. 

Original 0.2673 137 0.1669 ----

Naïve Exp 0.3053 783 0.2146 28.57** 

Similarity 0.3007 255 0.2020 21.03** 

BigramExp 0.3033 255 0.2091 25.28** 

Regression 0.3113 224 0.2161 29.48** 

Table 35. Results of Query 351-400 over TREC6&7&8 

Model P@30 #term MAP Imp. 

Original 0.2820 126 0.1639 -----

Naive Exp 0.2787 736 0.1665 1.59 

Similarity 0.2867 244 0.1650 0.67 

BigramExp. 0.2800 244 0.1641 0.12 

Regression 0.2867 214 0.1664 1.53 
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Table 36. ResuUs of Query 401-450 ov~r TREC6&7&8 

Model P@30 #term MAP Imp. 

Original 0.2833 124 0.1759 -----

Naïve Exp 0.3167 685 0.2138 21.55** 

Similarity 0.3080 240 0.2066 17.45** 

BigramExp 0.3133 240 0.2080 18.25** 

Regression 0.3220 187 0.2144 21.88** 

Tables 32, 33, 34 show the results of Gov2 data while table 35, 36, 37 show the results 

of the TREC6&7 &8 collection. In the tables, the * mark indicates that the improvement 

over the original model is statistically significant with p-value<O.05, and ** means the p­

values<O.Ol. 

From the tables, we see that both word stemming (UMASS) and expansion with word 

alterations can improve MAP for all six tasks. In most cases (except in table 34 and 36), 

it also improve the precision of top ranked documents. This shows the usefulness of word 

stemming or word alteration expansion for IR. 

We can make several addition al observations: 

1). Stemming Vs Expansion. UMASS uses document and query stemming while 

Naive Exp uses expansion by word alteration. We stated that both approaches are 

equivalent. The equivalence is confirmed by our experiment results: for all Gov2 

collections, these approaches perform equivalently.' 

2). The Similarity model performs very well. Compared with the Naïve Expansion 

model, it produces quite similar retrieval effectiveness, while the query traffic is 

dramatically reduced. This approach is similar to the work of Xu and Croft (1998), 

and can be considered as another state-of-the-art result. 

3). In comparison, the Bigram Expansion model performs better than the Similarity 

model. This shows that it is useful to consider query context in selecting word 

alterations. 
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4). The Regression model performs the best of aU the models. Compared with the 

Original query, it adds fewer than 2 alterations for each query on average (since 

each group has 50 queries). Nevertheless we obtained improvements on aIl the six 

collections. Moreover, the improvements on five collections are statistically 

significant. It also performs slightly better than the Similarity and Bigram 

Expansion methods, but with fewer alterations. This shows that the supervised 

learning approach, if. used in the correct way, is superior to an unsupervised 

approach. Another advantage over the two other models is that the Regression 

model can reduce the number of alterations further. Because the Regression model 

selects alterations according to their expected improvement, the improvement of the 

alterations to one query term can be compared with that of the alterations to other 

query terms. Therefore, we can select at most one optimal alteration for the whole 

query. However, with the Similarity or Bigram Expansion models, the selection 

value, either similarity or query likelihood, cannot be compared across the query 

terms. As a consequence, more alterations need to be selected, leading to heavier 

query traffic. 

7.7 Summary of This Chapter 

Traditional IR approaches stem terms in both documents and queries. This approach is 

appropriate for general purpose IR, but is ill-suited for the specific retrieval needs in Web 

search such as quoted queries or queries with a specific word form that should not, be 

stemmed. The current practice in Web search is not to stem words in index, but rather to 

perform a form of expansion using word alteration. 

However, a naïve expansion will result in many alterations and this will increase the 

query traffic. This chapter has proposed two alternative methods to select precise 

alterations by considering the query context. We seek to pro duce similar or better 

improvements in retrieval effectiveness, while limiting the query traffic. 

166 



In the first method proposed - the Bigram Expansion model, query context is modeled 

by a bigram language model. For each query term, the selected alteration is the one which 

maximizes the query likelihood. This method is quite similar to the one used in (Peng et 

al., 2007), Therefore, it can be treated as a state-of-the-art baseline. In the second method 

- Regression model, we fit a regression model to calculate the expected improvement 

when the original query is expanded by an alteration. Only the alteration that is expected 

to yield the largest improvement to retrieval effectiveness is added. The second method 

can also be viewed as an extension of the idea adopted in chapter 6, where we addressed 

the term selection problem in pseudo-relevance feedback. 

The proposed methods were evaluated on two TREC benchmarks: the ad-hoc retrieval 

test collection for TREC6&7 &8 and the Gov2 data. Our experimental results show that 

both proposed methods perform significantly better than the original queries. Compared 

with traditional word stemming or the naïve expansion approach, our methods can not 

only improve retrieval effectiveness, but also .greatly reduce the query traffic. 

This work shows that query expansion with word alterations is a reasonable alternative 

to word stemming. It is possible to limit the query traffic by a query-dependent selection 

of word alterations. Our work shows that both unsupervised and supervised leaming can 

be used to perform alteration selection. 

Our methods can be further improved in several aspects. For example, we could 

integrate other features (i.e., word relationships) in the regression model, and use other 

non-linear regression models, such as Bayesian regression models (e.g. Gaussian Process 

regression) (Rasmussen and Williams, 2006). The additional advantage of these models 

is that we can not only obtain the expected improvement in retrieval effectiveness for an 

alteration, but also the probability of obtaining an improvement (i.e. the robustness of the 

alteration). 

Finally, it would be interesting to test the approaches using real Web data. 
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Chapter 8 

Conclusion and Future Work 

Traditional information retrieval models are confronted with sorne serious problems: 

1). The user query is usually very short and ambiguous, which can hardly express user's 

information need in a precise and complete way. 2). Analogical to the query side, the 

internaI representation of document is also full of ambiguities. 3). The notion of 

relevance is not weIl defined, and relevant documents are usually retrieved by "exact 

term match" strategy. As a consequence, only the relevant document containing at least 

one query term can be retrieved. Obviously, the strategy overlooks the synonym and 

polysemy problem. The consequence of it is that many irrelevant documents can be 

retrieved while a lot of relevant documents can be missed. 

The mam reason of this situation IS that the traditional IR models adopted the 

independence assumption. The independence assumption between different query terms 

and between different document terms results in the ambiguity in query and document 

representations. The independence assumption between a query term and a different 

document term leads to the "exact term match" strategy for relevant document retrieval. 

Therefore, the key to resolve the aforementioned problems in the CUITent IR models is to 

relax the independence assumption. 

In this thesis, we proposed approaches to relax the independence assumption by 

exploiting word relationships. We tried to identify the relationships between query terms 

or between document terms to alleviate the ambiguity probl~m: The dependency between 

terms within a document or within a query is considered to sorne extent. For example, in 

the query "Java program", "Java" refers to a common used programming language, while 
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it means a island in the query "Java tourism". More particularly, our work has focused 

on the relationships between a query term and document term in order to retrieve relevant 

documents which do not contain any query term. 

Previous' studies also exploited word relationships, but they have sorne limitations 

compared with our approaches: 1). Most of the studies focus on how to extract word 

relationships, and few studies examine how to make use of the relationships; 2). Most of 

them consider a specific relationship such as co-occurrence relationship; 3). The 

relationships are often integrated into their retrieval framework in a heuristic way. 

In this thesis, we exploited the word relationships in the following ways. 

• Documen~ Expansion 

Document expanSIOn is to use sorne related additional terms to represent the 

document. There are at least two effects of document expansion. The first one is 

reducing ambiguity in document representation .. Actually, the main topic of a 

document can be emphasized if more terms related to the topic are added into the 

document representation. The second effect is to avoid "exact term match". In chapter 

3, we extended Berger and Lafferty's (1999) translation model for document 

expanSIOn. 

• Query Expansion 

Query expanSIOn IS a similar technique with document expanSIOn. The only 

difference is that query expansion affects the query side. In fact, we can consider 

them as two inference process with reverse direction, one from document side to 

query and another from query to document. Analogically, query expansion aims to 

reduce the query ambiguity and avoid "exact term matching". In chapter 4, we 

proposed a Markov Chain based model to exp and a query by exploiting word 

relationships, and achieved substantial improvement over the competitive baseline. 

This model is ev en extended to address cross-lingual query expansion in chapter 5. In 

fact, CLIR can be viewed as a special case of query expansion: instead of expanding a 
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query by terms in the same language, we replace the original query by terms in the 

target language. However, the same techniques can be used in both cases. This is 

demonstrated by the successful re-utilization of the same technique as query 

expansion for query translation in Chapter 5. 

• Language Modeling Framework 

We used language model approach. as the basic framework. We built a 

probabilistic model for document and query respectively. The negative KL­

divergence between the two mode1s is used to rank: the relevant documents. Therefore, 

we can unify document and query expansion. They are considered as improving the 

estimation of document and query mode1 respectively. When combining multiple 

word relationships, the language model framework gives us extra flexibility to adjust 

the role of individual relationship in a principled way. In this thesis, the weight of 

each relationship is estimated automatically. 

In this thesis, our focus is to extract and exploiting word relationships. We adopted the 

basic idea to deal with various applications, such as ad-hoc retrieval, cross-lingual 

information retrieval, pseudo-relevance feedback and query term stemming. For each 

task, we proposed a model to realize the basic idea. These mode1s are evaluated 

extensively with a set of TREC or NTCIR test beds. Experimental results show that our 

models can improve the retrieval effectiveness consistently and significantly. In 

particular, the thesis made the following contributions. 

• We proposed a method to combine complementary word relationships. 

• We used Markov Chain model to exploit multi-step relationships between 

terms, and we showed that this is feasible and useful. 

• With Markov Chain mode1s, we extended query translation in cross-lingual 

information retrieval to query expansion, which unifies query translation and 

query expansIOn. 

• Finally, we proposed methods to select terms for query expansion or query 

alteration, according to the potential usefulness of the expansion terms. This 
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selection can not only further improve retrieval effectiveness, but also reduce 

query traffic. 

Although the proposed models perform very weIl empiricaIly, much work remains. 

In this thesis, we used two methods to extract word relationships. The first one is 

according term co-occurrence, i.e., terms co-occurring frequently are considered to be 

related. The second one is based on manually created thesauri (WordNet in this thesis). In 

fact, the first one is an unsupervised leaming approach and the second is a supervised 

leaming approach (the relationships are labeled). Both approaches have pros and cons. 

The first one has high coverage but low accuracy and second one has high accuracy but 

low coverage. In the future, we would like to use semi-supervised leaming approaches to 

extract term relationships, such as bootstrapping (Yarowsky, 1995). We can use a small 

set of terms whose relationships are labeled manually as a seed. Then we bootstrap the 

seed to inc1ude more terms whose relationships are extracted. This approach is expected 

to be less expensive than manually labeling data and more accurate than unsupervised 

leaming approaches. 

In this thesis, we exploited multiple word relationships, 1.e., statistical relationships 

such as co-occurrence and proximity, and semantic relationships defined in WordNet, 

such as synonym, hypemym and hyponym. We have not used syntactic relationships. In 

our future work, we would like to integrate them. 

Another limitation of our work is that we only evaluated the models with TREC or 

NTCIR data. Although they are benchmarks used on IR community, they are different 

from the real Web data. It is interesting to evaluate these models with sorne Web data. 
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