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Résumé 

Il n'y a pas de consensus sur la façon dont les stimuli définis par d'autres attributs 

que la luminance, c'est-à-dire ceux de deuxième ordre, sont traités. Certains auteurs 

proposent l'existence de mécanismes dédiés au traitement de deuxième ordre alors que 

d'autres proposent plutôt que les mécanismes traitant la luminance (premier ordre) 

traiteraient également les attributs de deuxième ordre. Dans le but d'élucider cette 

problématique, du bruit défini par la luminance et du bruit défini par le contraste ont été 

conçus pour évaluer le masquage intra- et inter-attribut sur le traitement de luminance 

(premier ordre) et de contraste (deuxième ordre). Pour la détection de stimuli statiques, 

l'absence de masquage inter-attribut observée implique que les traitements de stimuli 

statiques définis par la luminance et le contraste sont, au moins initialement, distincts. 

L'observation du même ratio signal-bruit nécessaire lors du masquage intra-attribut suggère 

que les mécanismes extrayant le signal du bruit soient communs aux deux attributs. 

Cependant, une recension des écrits révélant des doubles dissociations entre le traitement 

d'un stimulus en présence et en absence de bruit suggère que l'ajout de bruit puisse 

modifier qualitativement le traitement d'un stimulus. Les mécanismes d'extraction du 
.J 

signal du bruit communs aux traitements de ces deux attributs ne seraient donc pas 

nécessairement sollicités en absence de bruit. Pour le mouvement à hautes fréquences 

temporelles, le masquage intra- et inter-attribut avaient le même impact suggérant un 

traitement commun. De plus, des simulations ont démontré que l'apparente absence 

d'interaction inter-attribut généralement observée lors du traitement de signaux de 

luminance et de contraste spatialement superposés peut s'expliquer par la présence de non­

linéarités non-uniformes intrinsèques . au système visuel. Pour le mouvement à basses 

fréquences temporelles, le masquage intra- et inter-attribut n'avaient pas le même impact 

suggérant un traitement distinct. Ces résultats peuvent s'expliquer par l'implication d'un 

système de mouvement basé sur le suivi d'une caractéristique suite à l'extraction spatiale 

de la forme. En conclusion, le traitement spatial de premier et deuxième ordres serait 
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distinct, mais il n'est pas nécessaire d'inférer l'existence d'un système de mouvement basé 

sur l'énergie dédié au deuxième ordre. 

Mots-clés: Deuxième ordre, texture, mouvement, attribut visuel, modulation de luminance, 

modulation de contraste, bruit, masquage, modèle filtre-rectification-filtre, non-linéarité 
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Abstract 

There is no consensus on how stimuli defined by other attributes than luminance, 

i.e. second-order stimuli, are processed. Sorne authors suggest the existence of mechanisms 

dedicated to second-order processing while others propose that the mechanisms processing 

stimuli defined by luminance (first-order stimuli) also process second-order stimuli. In 

order to clarify this issue, noise defined by luminance and contrast were used to assess 

intra- and inter-attribute masking on the processing of luminance and contrast. For the 

detection of static stimuli, the observed lack of inter-attribute masking implies that the 

processing of static stimuli defined by luminance and contrast are, at least initially, distinct. 

The observation of similar signal-to-noise ratio necessary to detect the signal in intra­

attribute masking conditions suggests that the mechanisms extracting the signal from noise 

are common to both attributes. However, a literature review revealed double dissociations 

between the processing of a stimulus in the presence and absence of noise suggesting that 

adding noise can qualitatively alter the processing of a stimulus. Therefore, the mechanisms 

extracting the signal from noise common to the processing of these two attributes would 

not necessarily operate in noiseless conditions. For motion processing at high temporal 

frequencies, intra- and inter-attribute masking had the same impact suggesting common 

processing. In addition, simulations showed that the apparent lack of inter-attribute 

interaction generally observed when processing spatially superposed luminance and 

contrast signaIs can be explained by the presence of non-uniform nonlinearities intrinsic to 

the visual system. For motion processing at low temporal frequencies, intra- and inter­

attribute masking did not have the same impact suggesting separate processing. These 

results can be explained by the existence of a feature tracking motion system. In 

conclusion, first- and second-order spatial processing would be distinct, but there is no need 

to infer the existence of a dedicated second-order energy-based motion system. 

Keywords: Second-order, texture, motion, visual attribute, luminance-modulated, contrast­

modulated, noise, masking, filter-rectify-filter model, early nonlinearity 
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Les objets qui nous entourent ne réfléchissent pas tous la même quantité de lumière. 

L'analyse de la variation de luminance en fonction de l'espace et du temps permet au 

système visuel de percevoir ces objets, de les localiser et d'identifier leurs déplacements. 

La variation de luminance est donc un attribut essentiel à la perception visuelle. Bien que la 

variation de luminance permette d'identifier plusieurs objets, celle-ci n'est parfois pas 

suffisante nécessitant d'autres attributs que la luminance pour percevoir certains objets. Par 

exemple, un objet rouge présenté sur un fond vert sera clairement perceptible même si le 

rouge et le vert ont la même luminance. La couleur peut donc nous permettre de distinguer 

un objet de son arrière-fond. De plus, la texture, c'est-à-dire un attribut de deuxième ordre, 

peut également permettre de distinguer des objets ayant la même luminance moyenne et la 

même couleur. La Figure 1-1 en présente un exemple. La feuille verte du haut est 

clairement distinguable de l'arrière-fond composé d'un ciel bleu lumineux. Pour cette 

feuille, la variation de luminance ainsi que la vari,ation de couleur permettent de ségréger 

l'objet de son arrière-fond. La feuille plus bas et son arrière-plan ont des luminances et des 

couleurs moyennes similaires. Seule la texture permet de distinguer cet objet de son arrière­

plan. En effet, l'arrière-plan (feuilles au loin) est défini par de plus hautes fréquences 

spatiales (plus de feuilles pour la même surface) que la feuille en avant-plan. 
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Figure 1-1. Exemple d'attributs de premier et deuxième ordres dans un milieu 

écologique. La luminance et la couleur permettent de distinguer la feuille du haut de 

son arrière-plan (ciel bleu clair). Cependant, la luminance et la couleur de la feuille 

plus bas sont similaires à l'arrière-plan (d'autres feuilles au loin). L'information de 

deuxième ordre (texture) permet donc de ségréger cet objet de son arrière-plan. 
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Traitement de premier ordre 

Au niveau de l'entrée corticale, l'information visuelle est largement représentée 

sous forme d'activation de champs récepteurs ayant une forme similaire à des sinus variant 

en fréquences spatiotemporelles et en orientations. En effet, suite à des études en 

électrophysiologie, HubeI et Wiesel (1959) ont observé que le stimulus maximisant 

l'activation de la plupart des neurones du cortex visuel (stimulus préféré) correspondait à 

des barres variant en luminance et ayant une orientation précise pour un endroit spécifique 

du champ visuel. HubeI et Weisel ont nommé les cellules répondant maximalement à des 

barres statiques « simples» et les cellules préférant des barres en translation « complexes ». 

L'activation de chacun de ces récepteurs est corrélée au contraste de son stimulus préféré 

minimisant la différence entre le stimulus préféré et l'image projetée sur la rétine. Pour 

chaque région du champ visuel, le traitement du système visuel décompose donc 

l'information en différentes fréquences et orientations. 

Le stimulus le plus fréquemment utilisé en psychophysique est le sinus (Figure 1-2) 

puisque qu'il correspond au stimulus préféré de plusieurs neurones du cortex visuel. Par 

exemple, ce stimulus est souvent utilis.é pour mesurer la sensibilité au contraste, c'est-à-dire 

la plus petite variation de luminance détectable. Pour le système visuel, la détection d'un 

stimulus défini par la luminance peut être effectuée d'une façon computationnellement 

simple. En effet, l'activation d'un neurone sera plus élevée lors de la présentation d'un 

sinus correspondant à son stimulus préféré que lorsque le sinus n'est pas présenté. 
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Figure 1-2. Gabor: correspond à un sinus modulant la luminance perçue par une 

ouverture Gaussienne. 

Le traitement de signaux définis par la luminance (stimuli de premier ordre) est 

donc relativement simple pour le système visuel. Mais comment percevons-nous un 

stimulus défini par un autre attribut que la luminance (stimulus de deuxième ordre 

(Cavanagh & Mather, 1989; Chùbb & Sperling, 1988))? La Figure 1-3 présente à gauche un 

signal défini par la luminance (premier ordre) et à droite, un signal défini par leèontraste 

(le stimulus de deuxième ordre le plus fréquemment utilisé en psychophysique). Notez 

qu'un stimulus de deuxième ordre est également défini par la luminance puisqu'il est 

composé d'éléments plus ou moins lumineux. Par contre, la forme du signal (le sinus) n'est 

pas directement définie par la luminance puisque la luminance moyenne de chaque bande 

est la même. La forme d'un signal de deuxième ordre est plutôt définie par un attribut 

dérivé de la luminance, dans notre cas, le contraste. 
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Figure 1-3. Signal défini par la luminance (gauche, premier ordre) et le contraste 

(droite, deuxième ordre). 

Traitement de deuxième ordre 

Stimuli statiques 

Il est évident que dans plusieurs cas, il nous est possible de percevoir la forme d'un 

signal défini par un attribut de deuxième ordre. Par exemple, la forme du sinus défini par le 

contraste présenté dans la Figure 1-3 est clairement perceptible. La question consiste à 

savoir comment un signal défini par un attribut de deuxième ordre est perçu. En bref, deux 

modèles peuvent être proposées. Premièrement, puisqu'un stimulus de deuxième ordre 

correspond à la variation d'un certain attribut (ex: le contraste), un mécanisme spécifique 

au traitement de deuxième ordre pourrait être appliqué en deux temps. Un premier 

mécanisme opérant au nivfeau local pourrait évaluer un certain attribut (ex : le contraste), 

suivi d'un mécanisme global évaluant la variation de cet attribut (ex: filtre-rectification­

filtre (Wilson, Ferrera & Yo, 1992». Notez que pour un stimulus de deuxième ordre défini 

par le contraste, le premier traitement proposé par ce modèle est équivalent à un traitement 

de premier ordre consistant à évaluer le contraste. Cependant, pour des signaux définis par 

la luminance et le contraste ayant la même fréquence spatiale, le traitement de premier 

ordre consisterait à évaluer le contraste à la fréquence du signal alors que la première étape 

du traitement de deuxième ordre consisterait à évaluer le contraste local, c'est-à-dire à plus 

hautes fréquences spatiales. Selon un tel modèle, les traitements de premier et deuxième 
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ordres seraient donc distincts et il existerait des mécanismes traitant explicitement les 

stimuli de deuxième ordre. 

Le deuxième modèle serait basé sur l'existence de non-linéarités intrinsèques au 

système visuel. Ce~ non-linéarités introduiraient une variation de luminance à un stimulus 

n'en contenant pas. Pour un signal défini par le contraste, une non-linéarité pourrait, par 

exemple, diminuer la luminance moyenne d'une région à haut contraste par rapport à une 

région à bas contraste introduisant ainsi une différence de luminance. Une telle distorsion 

permettrait au système de luminance de détecter une variation de contraste. Selon un tel 

modèle, les deux attributs seraient traités par des mécanismes communs. 

Il existe donc des modèles proposant que les attributs de premier et deuxième ordres 

seraient traités par des mécanismes communs alors que d'autres proposent plutôt qu'ils 

seraient traités par des mécanismes distincts. Savoir si ces attributs sont traités par des 

mécanismes communs ou distincts aiderait donc à comprendre comment les attributs de 

deuxième ordre sont traités. Conséquemment, bien que l'objectif ultime de la présente thèse 

fût de comprendre comment les attributs de deuxième ordre sont traités, le sous-objectif 

directement étudié était de déterminer si un signal défini par le contraste (le stimulus de 

deuxième ordre le plus souvent utilisé) est traité par les mêmes mécanismes qu'un signal 

défini par la luminance (premier ordre). En d'autres termes, existe-il des mécanismes 

dédiés au traitement de deuxième ordre ou est-ce que les attributs de deuxième ordre sont 

traités par des mécanismes sensibles aux stimuli de premier ordre? 

Mouvement 

La même problématique, c'est-à-dire de déterminer si les attributs de premier et 

deuxième ordres sont traités par des mécanismes distincts ou communs, se pose également 

pour le mouvement. Cette problématique en lien avec le mouvement est intéressante 

puisque le cerveau traite l'information vis~elle de façon relativement modulaire. En effet, il 

est généralement reconnu que différentes propriétés (ex: couleur, forme, mouvement) sont 
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traitées en parallèle de façon relativement indépendante. Puisque le mouvement et 

l'extraction d'une forme définie par un autre attribut que la luminance seraient traités par 

des aires corticales distinctes, il devient pertinent d'étudier le traitement d'un stimulus 

nécessitant théoriquement le traitement de deux propriétés : le mouvement et la forme 

définie par un attribut de deuxième ordre. Plus précisément, la question est de déterminer 

s'il existe un système de mouvement dédié uniquement au traitement de deuxième ordre 

(contraste ). 

Masquage d'un signal par du bruit 

La méthodologie adoptée dans la présente thèse pour déterminer si deux stimuli sont 

traités par des mécanismes communs ou distincts est basée sur le masquage d'un signal par 

du bruit. L'utilisation de bruit défini par la luminance (ex: Figure 1-4 gauche) est largement 

utilisée en psychophysique. De façon analogue, nous avons conçu un bruit défini par le 

contraste (Chapitre II, Figure 1-4 droite). 

Du bruit non corrélé, c'est-à-dire du bruit blanc, contient de l'énergie à toutes les 

fréquences et peut donc masquer plusieurs stimuli sans être particulièrement sélectif à un 

stimulus. Dans le but d'affecter le traitement d'un signal en particulier, chacun de ces bruits 

a été filtré pour ne garder que les fréquences spatiotemporelles près du signa1. Le bruit 

défini par la luminance était donc conçu pour maximiser le masquage sur le traitement du 

signal défini par la luminance et le bruit défini par le contraste était conçu pour maximiser 

le masquage sur le traitement du signal défini par le contraste. Dans la présente thèse, le 

masquage du bruit sur le traitement d'un signal a été évalué dans des conditions intra­

attribut (masquage d'un signal de luminance par du bruit de luminance et masquage d'un 

signal de contraste par du bruit de contraste) et des conditions inter-attribut (masquage d'un 

signal de luminance par du bruit de contraste et masquage d'un signal de contraste par du 

bruit de luminance). 
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Figure 1-4. Bruit défini par la luminance (gauche) et le contraste (droite). Pour le 

bruit défini par la luminance, certaines régions sont plus sombres que d'autres. Par 

contre, pour le bruit défini par le contraste, la luminance locale moyenne est 

constante, seul le contraste local varie d'une région à l'autre. 

Masquage intra-attribut 

Bien qu'il soit évident que 1'ajout de bruit à la même fréquence spatiotemporelle 

que le signal et défini par le même attribut que le signal masque forcément le signal (à 

hautes amplitudes), le masquage intra-attribut demeure pertinent puisqu'il permet de 

déterminer le ratio signal-bruit nécessaire à la perception du signal. De façon générale, 

lorsque le bruit est défini par le même attribut que le signal, l'amplitude du signal 

nécessaire pour percevoir le signal est proportionnel à l'amplitude du bruit (Pelli, 1981, 

1990; Figure 1-5). En d'autres termes, si le contraste du bruit est doublé, le contraste 

nécessaire pour percevoir le signal devra également être doublé. L'efficacité de calcul du 

système visuel peut être mesurée par rapport au ratio signal-bruit nécessaire à la perception 

d'un signal. 

Avant d'être perçu, un signal doit être acheminé de l'œil au mécanisme traitant ce 

signal. Ce cheminement est évidemment sous-optimal et le signal est altéré par le système 

visuel. Ces altérations représentent le bruit interne déformant le signal pouvant 

potentiellement limiter la sensibilité à un stimulus. En connaissant le ratio signal-bruit 

nécessaire pour extraire le signal (obtenu en présence de bruit externe) et en supposant que 

la tâche consistant à extraire un signal du bruit externe est la même que celle d'extraire un 
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signal dans du bruit interne, il est possible de déduire l'impact relatif du bruit interne. En 

effet, si le bruit interne est plus important que le bruit externe, alors le bruit externe ne 

devrait pas avoir d'impact significatif sur la performance du sujet. Par contre, si le bruit 

externe est plus important que le bruit interne, alors le bruit interne devrait avoir un impact 

sur la performance du sujet. En évaluant un seuil de contraste en fonction du contraste du 

bruit externe (Figure 1-5), la sensibilité à un signal peut donc être décomposée en deux 

paramètres: le ratio signal-bruit nécessaire à la perception d'un signal et l'impact du bruit 

interne. 
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Figure 1-5. Seuil de contraste en fonction du contraste du bruit externe. En présence 

de beaucoup de bruit externe, le bruit interne n'a pas d'impact significatif et la 

performance ne dépend que du bruit externe (pente de 1 sur le graphe). Par contre, 

lorsque le bruit externe est plus faible que le bruit interne, alors la performance ne 

dépend que du bruit interne (pente de 0 sur le graphe). L'impact relatif du bruit 

interne correspond donc à la jonction de ces deux droites. 

Si le même mécanisme extrait le signal du bruit pour différents attributs, le même 

ratio signal-bruit devrait être nécessaire pour extraire le signal dans les deux cas. Notez que 

même si un attribut est moins perceptible qu'un autre, le bruit de cet attribut devrait 

également être moins perceptible. La perceptibilité d'un attribut n'affecte donc pas le ratio 
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signal-bruit nécessaire à la perception du signal. Conséquemment, si, pour différents 

attributs, le même ratio signal-bruit est nécessaire pour percevoir un signal (lorsque le 

signal et le bruit sont définis par le même attribut), cela suggèrerait que l'extraction du 

signal dans le bruit est effectué par les mêmes mécanismes. Par contre, si des mécanismes 

différents extraits le signal du bruit, alors il ne devrait pas être surprenant d'observer des 

ratios signal-bruit différents. 

Masquage inter-attribut 

Si deux stimuli sont traités par des mécanismes distincts, alors il devrait être 

possible de dissocier leurs traitements. Plus précisément, si une certaine manipulation 

affecte le traitement du stimulus A sans affecter le traitement du stimulus B, et que vice 

versa, une autre manipulation affecte le traitement du stimulus B sans affecter le traitement 

du stimulus A (double dissociation), ceci suggèrerait que les stimuli A et B sont traités, à au 

moins un niveau, par des mécanismes distincts. 

En utilisant des bruits de luminance et de contraste conçus pour sélectivement 

masquer le traitement d'un attribut, ces bruits peuvent être utilisés pour tenter de dissocier 

les traitements de signaux définis par la luminance et le contraste. Si le bruit de luminance 

affecte le traitement de luminance sans affecter le traitement de contraste et que vice versa, 

le bruit de contraste affecte le traitement de contraste sans affecter le traitement de 

luminance, alors cela impliquerait que ces deux attributs sont traités, à au moins un niveau, 

par des mécanismes distincts. Par contre, si chaque bruit affecte le traitement des deux 

attributs dans des proportions similaires, alors cette indissociabilité suggèrerait plutôt que 

ces attributs sont traités par des mécanismes communs. 



12 

Structure de la thèse 

Le corps de la présente thèse se compose d'un chapitre d'introduction (Chapitre 1) 

suivi de deux sections présentant les différents articles et se termine par un chapitre de 

conclusion (Chapitre VII). 

La première section est composée de trois chapitres portant sur la détection de 

signaux statiques définis par la luminance et le contraste. Le premier chapitre de cette 

section (Chapitre II) est consacré au masquage intra-attribut, c'est-à-dire au masquage d'un 

bruit de luminance sur la détection d'un signal de luminance et au masquage d'un bruit de 

contraste sur la détection d'un signal de contraste. Le but du second chapitre (Chapitre III) 

était d'évaluer le masquage inter-attribut, c'est-à-dire le masquage d'un bruit de luminance 

sur la détection d'un signal de contraste et le masquage d'un bruit de contraste sur la 

détection d'un signal de luminance. Enfin, basé sur une recension des écrits, le Chapitre IV 

évalue l'hypothèse que l'ajout de bruit modifie qualitativement le traitement d'un stimulus. 

La seconde section est composée de deux chapitres portant sur le traitement du 

mouvement défini par la luminance et le contraste. Le but du Chapitre V était d'évaluer le 

masquage intra- et inter-attribut en fonction de la fréquence temporelle du signal. Le 

deuxième chapitre de cette section (Chapitre VI) propose un modèle dans lequel des non­

linéarités intrinsèques au système visuel permettraient, pour les hautes fréquences 

temporelles, au système traitant le mouvement défini par la luminance de traiter également 

le mouvement défini par le contraste. 

Notez que pour les stimuli statiques (Section 1), nous avons utilisé une carte 

graphique particulière permettant au montage expérimentale d'afficher 1024 niveaux de 

gris. Cette carte graphique particulière était nécessaire puisque que la plupart des 

ordinateurs peuvent afficher seulement 256 niveaux de gris, ce qui, dans bien des cas, n'est 

pas suffisant pour mesurer la plus petite variation de luminance nécessaire pour percevoir 
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un stimulus. Par contre, lors de l'utilisation de stimuli dynamiques (Section 2), 1024 

niveaux de gris n'étaient pas suffisants. Nous avons donc développé une méthode 

permettant à un montage expérimental affichant seulement 256 niveaux de gris d'être 

équivalent à un montage expérimental affichant un nombre infini de niveaux de gris. Cette 

méthode consistant à ajouter une faible quantité de bruit au stimulus a fait l'objet d'un 

article présenté à l'Annexe 1. 

Contributions des auteurs 

Les cinq chapitres représentant le corps de la présente thèse ont été rédigés sous 

forme d'articles. Pour ces cinq articles ainsi que pour l'article présenté à l'Annexe l, je suis 

le premier auteur et mon directeur de recherche, le docteur Jocelyn Faubert, est le seul 

coauteur. Pour chaque article, j'ai développé le protocole expérimental, les programmes 

informatiques générant les stimuli, effectué la collecte de données, analysé les résultats et 

rédigé l'article. Toutes ces étapes ont été effectuées sous la supervision du docteur Jocelyn 

Faubert avec qui j'ai eu des rencontres sur une base régulière. Ces six articles ont été 

reproduits dans la présente thèse avec l'accord du coauteur (Annexe II) et des éditeurs 

(Annexe III). 
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Abstract 

There is no consensus on whether luminance- (LM) and contrast-modulated (CM) 

stimuli are processed by common or separate mechanisms. To investigate this, the 

sensitivity variations to these stimuli are generally compared as a function of different 

parameters (ex: sensitivity as a function of the spatial or temporal window sizes) and 

similar properties have been observed. The present study targets the sensitivity difference 

between LM and CM stimuli processing. Therefore, instead of studying the variation of 

sensitivity in different conditions, we propose to decompose the sensitivities in internaI 

equivalent noise (IEN) and calculation efficiency (CE) to evaluate at which processing 

level the two mechanisms differ. For each stimulus type, the IEN and CE of four observers 

were evaluated using three differènt carriers (plaid, checkerboard and binary noise). No 

significant CE differences were noted in an six conditions (3 carriers x 2 modulation types), 

but important differences were found between the IEN of the two stimulus types. These 

data support the hypothesis that the two pathways are initially separate and that the two 

stimuli may be treated by common mechanisms at a later processing stage. Based on ideal 

observer analysis, pre-rectification internaI noise could explain the difference of IEN 

between LM and CM stimuli detection when using binary noise as a carrier but not when 

using a plaid or a checkerboard. We conclude that a sub-optimal rectification process 

causes higher IEN for CM stimuli detection compared with LM stimuli detection and that 

the intrinsic noise of the binary carrier had a greater impact on the IEN than the sub-optimal 

rectification. 

Keywords: Contrast, luminance, first-order, second-order, texture, filter-rectify-filter, 

sensitivity, calculation efficiency, internaI equivalent noise 
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Introduction 

Human observers are sensitive to both luminance- (LM) and contrast-modulated 

(CM) stimuli. In the present study, we define LM stimuli as the addition of an envelope 

(signal) with a carrier (texture) and CM stimuli as their multiplication. Consequently, for 

LM stimuli, the local luminance average varies throughout the stimulus according to the 

envelope while the local contrast remains constant (Figure II-l left). For CM stimuli, the 

local luminance average remains constant and the local contrast varies throughout the 

stimulus according to the envelope (Figure II-l right). Therefore, since a Fourier transform 

can directly detect the signal frequency of LM stimuli, this type of stimulus is typically 

characterized as Fourier, first-order or linear. However, CM stimuli are not considered as 

Fourier stimuli since the signal frequency is not present in the Fourier domain. Therefore, 

CM stimuli are characterized to be non-Fourier, second-order or non-linear stimuli 

(Cavanagh & Mather, 1989; Chubb & Sperling, 1988). 

CM 

Figure 11-1. Luminance profile of luminance- and contrast-modulated stimuli. 

Luminance profiles presented as a function of space (one-dimension). 

Non-linear processing 

Wilson, Ferrera and Yo (1992) proposed a 2-stage model for the detection of LM 

and CM motion. This model may be summarized as follows: both stimuli are initially 

processed by VI. For LM stimuli, this contrast detection corresponds to the signal or 

envelope itself and the stimuli do not require anymore processing before MT processes the 

perceived motion. For CM stimuli, the contrast detection occurs at higher spatial 

frequencies corresponding to the carrier, therefore the treatment uses another path and the 

information passes trough V2 for a second-order rectification process before attaining MT. 



19 

After a second-order rectification process, a CM stimulus becomes similar to a LM 

stimulus (Chubb & Sperling, 1988; Solomon & Sperling, 1994; Sperling, Chubb, Solomon, 

& Lu, 1994). Therefore, the two stimuli cou Id be merged and then treated by the same 

mechanisms (Baker, 1999). Therefore, the processing of these two stimulus types is 

initially separated but may be common at a later stage. More recently, many similar models 

have been developed and are typically referred to as fiIter-rectiry-filter models (Clifford & 

Vaina, 1999; Nishida & Sato, 1995; Prins & Kingdom, 2003). Figure II-2 shows an 

example of such a model where an extra process is required for CM stimuli processing. 

Although this c1ass of model seems to be more popular, other models have also been 

developed. Sorne motion models propose that both LM and CM stimuli are treated by 

common mechanisms (Benton & Johnston, 2001; Johnston & Clifford, 1995a, 1995b; 

Johnston, McOwan, & Buxton, 1992; Taub, Victor, & Conte, 1997). Consequently, in 

motion perception, the idea that LM and CM stimuli are processed by common 

mechanisms is stiIllargely debated. This debate has carried over in spatial vision (which is 

the object of the present study) where the processing of static LM and CM stimuli has been 

compared. 

Evidence for separate mechanisms 

Evidence from spatial vision studies suggests that LM and CM stimuli are, at least 

initially, processed by separate mechanisms. Nishida, Ledgeway and Edwards (1997) found 

that after adapting to one type of stimulus (LM or CM) the sensitivity to the same type of 

stimulus was afTected, but not the sensitivity to the other. Schofield and Georgeson (1999) 

did not find any inter-type sub-threshold summation while intra-type sub-threshold 

summation was found. The same authors showed strong evidence suggesting that LM and 

CM stimuli are not merged after a second-order rectification process (Georgeson & 

Schofield, 2002). They first showed that the recognition of the stimulus type (LM vs CM) 

was almost as good as the detection of each type (LM vs noise or CM vs noise). They also 

demonstrated that observers do not confuse the two stimulus types when they are combined 



20 

since the recognition of the two stimuli combined in-phase or out-phase (LM+CM vs LM­

CM) is similar to their detection (LM+CM vs noise or LM-CM vs noise). 

First filtering stage Second filtering stage 

LM-O--
CM -~----§-O 

Figure 11-2. Filter-rectify-filter model. For contrast-modulated stimuli (CM) the first 

filtering stage processes the carrier so that, after a rectification process, the second 

stage can detect the envelope. For luminance-modulated stimuli (LM) no rectification 

is required. 

Evidence for common mechanisms 

Although important evidence suggests that LM and CM stimuli are processed by 

separate mechanisms, there is still evidence suggesting the opposite. First, the processing of 

LM and CM stimuli by human observers share similar properties. Schofie1d and Georgeson 

compared the sensitivity to these stimuli as a function of stimulus size (Schofield & 

Georgeson, 1999) and presentation time (Schofield & Georgeson, 2000). They found 

similar spatial and temporal integration for both stimulus types. In their experiments, the 

sensitivity curves of LM and CM stimuli as a function of a spatial or a temporal window 

were paraUe1. These results indicate a similar spatiotemporal integration for both 

modulation types even though the sensitivity was greater for the LM stimulus. Similar 

behaviors generally suggest that both stimuli could be processed, at least partially, by 

common mechanisms. However, the implications of these findings do not necessarily lead 

to such conclusions. Two separate mechanisms could have similar behaviors. 
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In another study, Georgeson and Schofield (2002) showed direct evidence of an 

interaction between the processing of LM and CM stimuli. They found that, after 

adaptation to a given stimulus type (LM or CM), the perceived contra st of the other 

stimulus type was reduced almost by the same proportion as the one of the same type. 

Purpose of the present study 

To investigate if LM and CM stimuli are processed by common or separate 

mechanisms, the sensitivity variations to these stimuli are generally compared as a function 

of different parameters. As mentioned above, similar function shapes have been observed in 

certain conditions, which suggests that the main difference between the two is their 

sensitivity. Therefore, we propose to decompose the sensitivity to evaluate at which 

processing level the two mechanisms differ. 

Based on the assumptions that the internaI nOIse and calculation are contrast­

invariant (see bellow), the sensitivity may be separated into two parameters (Legge, 

Kersten, & Burgess, 1987; PeIli, 1981, 1990): internai equivalent noise (IBN) and 

calculation efficiency (CE). The goal of the present study was to elucidate if LM and CM 

sensitivities differ because of a difference of IBN, CE, or both. 

Evaluating the IEN and CE 

The internai noise is the signal deterioration introduced by different processing 

levels that limit the observer's sensitivity (ex: optical noise caused by eye imperfections, 

photon-noise, neuronal noise ... ). The ca1culation is the observer's ability to detect a given 

signal embedded in noise. Both the internaI noise and calculation li mit the sensitivity of a 

noise-free signal. Once the internaI noise is added to the stimulus, the observer' s task 

consists in detecting the signal embedded in noise. 



22 

Contrast-invariant calculation signifies that the observer's performance only 

depends on the signal-to-noise ratio (SNR) (Pelli, 1981, 1990). Therefore, equally 

modifying both the signal contrast (c) and effective noise contrast (Nef!) will not affect the 

observer's performance. The effective noise represents the combination of the internaI 

(observer) and external (stimulus) noise. 

Assuming tha, the observer's calculation is contrast-invariant, the minimum SNR 

necessary to detect the signal based on a given threshold criterion wou Id be constant: 

k=_C_. (1) 
N eff 

The CE may be defined as the minimum SNR necessary to detect the signal of an 

. ideal observer relative to the observer' s SNR: 

C 1 1 · >fji' kideal a cu atlOn ejjlClency = --, 
k 

(2) 

where kideal is the k parameter for the ideal observer. An ideal observer is a theoretical 

observer using aU the information available to optimally perform the task. Therefore, kideal 

represents the smallest SNR (k) mathematically possible to detect the signal (c) based on a 

given threshold criterion. 

Assuming that the internaI noise is also contrast-invariant, the impact of the internaI 

noise will be constant as a function of the signal and external noise contrast (Pelli, 1981, 

1990). The root-mean-square (rms) contrast of the effective noise (Nef!) will be: 

where N and Neq represent the rms contrasts of the external noise and IEN respectively. The 

IEN models the impact of the internaI noise on the sensitivity. Note that if the external 

noise contrast is equal to the IEN (N=Neq), the effective noise (Nef!) will be --J2 times greater. 

Therefore, assuming that the calculation is contrast-invariant (Equation 1), the IEN will be 
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equal to the external noise contrast that raises the signal contra st threshold (c) by a factor of 

>/2. 

Based on the two assumptions that the internaI noise and calculation are contrast­

invariant, the function between the signal contrast (c) threshold and the external noise 

contrast (N) can be deduce by combining Equations 1 and 3: 

c = k~N2 + N e/ ' (4) 

and the relation between the squared signal contrast (c2
) and the external noise variance 

(N2
) would be linear: 

Such linear relation for the detection grating in gaussian white noise has been found 

In the past (Pelli, 1981), which supports the hypothesis that the internaI noise and 

calculation are contrast-invariant. For a review on the relation between external noise and 

detection threshold, which pennits to decompose the sensitivity in IEN and CE, refer to 

Legge, Kersten, and Burgess (1987) and Pelli (1981, 1990). 

When the external noise contrast is relatively small compared with the IEN 

(N«Neq), varying the external noise does not affect significantly the effective noise 

(Equation 3) and, therefore, the signal contrast threshold is relatively constant as a function 

of the external noise. However, in high external noise conditions, varying the external noise 

has a great impact on the total amount of noise and thereby the signal contrast threshold 

increases as a function of the external noise. 

Given that the processing of two stimuli differs in IEN but not in CE, then in high 

external noise conditions, the internaI noise should not be significant and no important 

threshold difference should be observed. The left graph of Figure II-3 illustrates this 

hypothesis. However, if the IENs are equal and the CEs differ, the detection thresholds 
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should be different in aIl external noise conditions. Indeed, the two curves would be paraIlel 

(Figure 11-3 right). 
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Figure II-3. Detection threshold patterns as a function of external noise contra st. On 

the left, both patterns have the same calculation efficiencies but the red pattern shows 

less internaI equivalent noises. The graph on the right shows the opposite; both 

patterns have the same internaI equivalent noises but the red pattern has a greater 

calculation efficiency. 

Predictions based on separate mechanisms 

If LM and CM stimuli are processed by separate mechanisms, the predictions are 

straightforward: each stimulus pathway should have its own IEN and CE. Consequently, 

the probability of having the same IEN or CE for both stimuli would be low. Indeed, the 

observer's ability to detect a LM signal in LM noise would probably differ from its ability 

to detect a CM signal in CM noise. In other words, in high external noise conditions, which 

result in non-significant internaI noise, the sensitivity to LM and CM stimuli would 

probably differ. 

Predictions based on common mechanisms 

According to the 2-stage (or filter-rectify-filter) model, the difference between LM 

and CM stimuli processing is that CM stimuli detection requires an extra second-order 

rectification process. Consequently, deriving its predictions is more complex since the 

impact that a sub-optimal rectification would have on IEN and CE must be determine. 
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The CM stimulus may be defined as the multiplication of a modulation (M(x,y)) 

with a texture (T(x,y)) , where the modulation is defined by lower spatial frequencies 

relative to the texture, and the texture local rms contrast (T rms) is constant throughout the 

stimulus. There fore , the modulation represents the global texture contrast variation. The 

rms contrast near the position (x,y) is equal to TrmsM(x,y). The rectification consists in 

estimating the local (carrier spatial frequency) rms contrast. This estimation should be 

applied locally over the entire stimulus (i.e. for aIl (x,y) positions), which would reconstruct 

a similar modulation (T rmsM(x,y)) as the one defining the stimulus (M(x,y)). 

Consequently, after a rectification, a CM stimulus is converted into an effective 

stimulus (TrmsM(x,y)) similar to a LM stimulus without a texture, i.e. the modulation M(x,y). 

In the LM stimulus, each position represents the luminance intensity. For the rectified CM 

stimulus, each position of the effective stimulus would represent the local contrast 

modulatiqn of the CM stimulus. Therefore, after a rectification, a CM stimulus would be 

analogue to a LM stimulus and both could be treated by common mechanisms. 

Since a rectification is likely to be sub-optimal, lets represent the estimation of the 

local contrast (TrmsM(x,y)) by a normal distribution centered at flTrmsM(x,y) and with a 

standard deviàtion of Nrect. fl represents the gain parameter affecting the strength of the 

rectification output. Nrect represents internaI noise that could be added during the 

rectification process. 

Suppose a CM stimulus (M(x,y)T(x,y)) with a contrast modulation (M(x,y)) 

composed of a signal (S(x,y)) with contrast Sin embedded in noise (N(x,y)) with contrast Nin. 

Using the previously defined rectification, the signal and noise contrast at the output of the 

rectification would be scaled by a factor of flTrms and noise would also be added (Nrect) .. 

Consequently, the signal (Sin) and noise (Nin) contrast of the input of the rectification 

process would result, after the rectification process, as: 
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and the SNR would pass from Sin/Nin to 

(8) 

By defining 

N~ect = N rect / flTrms ' (9) 

we obtain: 

_Sa_ut = Sin . (10) 
N out 'N2 + N'2 -V in rect 

Therefore, based on this type of rectification and on the 2-stage model, a sub­

optimal rectification would in crea se the IEN and would not affect the CE. In other words, if 

the strength of the input noise is relatively low compared with the noise added by the 

rectification (Nin«N'rect), then the impact of the input noisewould not be significant: 

and the rectification process would decrease the SNR: 

Consequently, in low external noise conditions (small Nin) the rectification process 

wou Id affect the observer' s performance. However, if the input CM noise is relatively high 

(Nin»N'rect), then the noise added by the rectification (N'rect) would not be significant: 
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N OU1 ~ Nin' (13) 

and the rectification would not affect the SNR: 

Therefore, if the SNRs of a LM and a CM stimulus are equal, then, in high noise 

conditions, the rectification should not affect the SNR of the CM stimulus. If both stimuli 

are treated by common post-rectification mechanisms then the same sensitivity should be 

observed in high external noise conditions (negligible internaI noise) for both stimulus 

types, which would result in similar CEs. 

Methods 

Subjects 

Four volunteers aged between 26 and 35 years of age participated in the study. Their 

vision was normal or corrected to normal. 

Stimuli 

To compare the subjects' performance on the detection of LM and CM stimuli, the 

luminance average and contrast average over the entire stimulus were the same for both 

stimulus types. The only difference between the two stimuli was that, for the LM stimulus, 

the modulation (signal + external noise) was applied to the luminance profile while the 

contrast remained constant throughout the stimulus and vice versa for the CM stimulus. 

Mathematically, the luminance of the pixel at position (x,y) for the LM stimuli was defined 

by the addition of a texture to a luminance modulation: 
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where Lo is the stimulus luminance average, which was fixed to 59 cd/m2 for the present 

study. M(x,y) and T(x,y) represent, respectively, the modulation and the texture of the pixel 

at position (x,y). The texture was added to the LM stimulus to give both stimuli the same 

contrast average. Therefore, the two stimulus types were similar with the exception that for 

the CM stimulus, the modulation was applied to the texture instead of the luminance: 

Since the modulation and the texture should not affect the stimulus luminance 

average, the average of M(x,y) and T(x,y) over the entire stimulus (aIl x and y) must be 1 

and 0 respectively. 

The present study had the objective of comparing the IEN and CE for LM and CM 

stimuli sensitivity. To derive the IEN and CE, the signal threshold must be evaluated in 

different external noise conditions. Indeed, the modulation profile (M(x,y)) was composed 

of a signal (S(x,y)), which the subject had to detect, embedded in external noise (N (x,y)): 

M(x,y)= l+S(x,y)+N(x,y). (17) 

Using this stimulus definition implies that the signal and the external noise are both 

of the same modulation type. Therefore, the LM and CM IENs were not of the same 

modulation type. This should remain in mind when comparing the results of the IEN for the 

LM and CM stimuli detection. Indeed, measuring the IEN actualIy measures the impact of 

the internaI noise on the task being accomplished, in our case the detection of the signal. 

However, having the same modulation type for the signal and external noise enables a 

direct comparison between the LM and CM CEs. Indeed,· the CE is the efficiency of 

detecting the signal embedded in noise. Therefore, the capacity of extracting a LM signal 

embedded in LM noise can be directly compared with the capacity of extracting a CM 

signal embedded in CM noise. 
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Signal 

The signal was a Gabor patch (Figure II-4 1eft), vertically oriented, modulating 

either the luminance or contrast profile of the stimulus (Equation 18, Figure II-7). Since the 

CM stimulus requires a texture defined by high spatial frequencies relative to the signal, the 

spatial frequency (f) of the Gabor patch was set to a low spatial frequency of 1 cycle per 

degree (cpd). The phase (P) of the sine wave was randomly set at each stimulus 

presentation. The standard deviation (0) of the Gabor patch was set to 1 degree of visual 

angle. 

[ 
2 + 2) 

S(x,y)= csin(ft+ p)exp - x 20'; , (18) 

c represented the contrast of the signal, which corresponds to the Michelson contrast once 

the signal (S(x,y)) is integrated in the modulation (M(xJi), Equation 17). The contrast (c) 

was the dependant variable. 

Figure 11-4. Gabor patch signal or envelope (left). Gaussian filtered noise (right). 

Carriers 

Since the present study evaluates the IBN, the carrier used should be chosen to 

minimize the masking effect on the LM stimulus. Therefore, we chose a carrier for which 

its spatial frequency did not interfere with the signal spatial frequency (1 cpd). The noise 

that the carrier will introduce at the signal frequency wî11 be intrinsically present in the IBN 
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evaluated. Therefore, the first carrier used was a plaid composed of two perpendicular 

oblique sine waves of7.54 cpd. At each stimuluspresentation, the phase ofboth sine waves 

varied randomly. The amplitude of the sine waves was set so that the brightest and darkness 

peeks of the unmodulated texture (T(x,y)) was -0.5 and 0.5. Therefore, the difference of 

luminance between the two peeks was equal to the stimulus luminance average (Lo). In 

other words, for both stimulus types, the contrast average of the whole stimulus was set 

equal to the luminance average (Lo) of the whole stimulus (Figure II-5). 

A disadvantage of using a plaid as a carrier is that sorne values are near O. Since, for 

the CM stimuli, the carrier is multiplied with the signal and the noise, low values decreases 

both the signal and the noise, which do not affect the performance of an ideal observer. 

However, for a human observer, having internaI noise makes the detection of low signal 

strength in low external noise undetectable. To maximize the contrast of the carrier, a 

checkerboard was also used. Note that a plaid can be seen as a smoothed checkerboard. The 

element size was 6x6 pixels (0.094 degrees ofvisual angle). 

The third carrier used was the most widely used: binary noise. The element size was 

also 6x6 pixels. Therefore, the only difference between this carrier and the previous one is 

that its element positions are randomized. 

Externat Noise 

Gaussian distributed white noise was used (Figure II-4 right and Figure II-6). For 

uncorrelated white noise, the spectral density curve as a function of the spatial frequency is 

flat (Legge, Kersten, & Burgess, 1987; Pelli, 1981, 1990). For LM stimuli, noise 

frequencies far from the signal frequency have little impact on the detection of the signal. 

However, for the CM stimulus, since the noise modulation type is in contrast modulation, 

the noise should affect the signal (l cpd) but not the carrier (7.54 cpd). Therefore, a band­

pass filter (>0.5 cpd and <2 cpd) was applied to the noise. This filter did not change the 

noise energy at the signal frequency. 
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Figure Il-5. Carriers. Three different types of carriers: plaid (top), checkerboard 

(center), and binary noise (bottorn). 
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As shown in the resuh section, subjects had a high lEN for the CM stimuli 

detection. To vary significantly the total amount of noise (IEN plus external noise) in order 

to derive the lEN and CE, a large amount of external noise had to be used. Filtering the 

external noise also had the benefit of reducing the luminance contrast range used by the 

noise, which pennitted to increase the external noise energy at 1 cpd without truncating 

luminance values. 

The contrast root-mean-square (N) of the noise was set to 0, 0.0125, 0.050 and 2.00 

for LM stimuli and 0, 0.050, 2.00 and 4.00 for CM stimuli. More noise was introduced for 

. CM stimuli because of two reasons. First, since the modulation was multiplied with the 

texture ranging between -0.5 and 0.5, two times more noise could be used without 

exceeding the monitor luminance range. Second, as mention above, CM had more IEN so 

greater external noise was required to derive the lEN and CE. 

Ideal observer 

As stated previously, an ideal observer is a theoretical observer mathematically 

computing the optimal solution. Consequently, defining an ideal observer generally 

consists in deriving the smallest SNR (kideal) sufficient to perfonn a task for a given 

threshold criterion. However, the present section will only show that an ideal observer has 

the same sensitivities to both LM and CM stimuli. Since the CE (kidea/k) is defined relative 

to the optimal SNR (kideal) and that the optimal SNR is the same for both LM and CM 

stimuli (kideaILM=kideaICM), deriving the exact optimal SNR is not necessary and is beyond 

the scope of the present study. The relative difference between CEs of LM and CM stimuli 

may be compared directly: 

CELM kidealLM /kLM k CM = =--
CECM kidealCM /kCM 

(19) 
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Figure 11-6. Luminance- and contrast-modulated noise. Luminance- (left) and 

contrast-modulated (right) noise with three types of carriers: plaid (top), 

checkerboard (center), and binary noise (bottom). 
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Figure 11-7. Luminance- and contrast-modulated signais. Luminance- (Ieft) and 

contrast-modulated (right) Gabor patch with three types of carriers: plaid (top), 

checkerboard (center), and binary noise (bottom). 
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In other words, if the CE for dètecting LM stimuli is the same as the CE for 

detecting CM stimuli (CELM=CEcM), then the SNR required for detecting LM stimuli will 

be equal to the SNR required for detecting CM stimuli (kLM=kcM). 

The luminance profile of the LM stimuli may be given by combining Equations 15 

and 17: 

LLM(X,y)= Lo(l + S(x,y)+ N(x, y )+ T{x,y)), (20) 

and for CM stimuli by combining Equations 16 and 17: 

Since the average luminance (La) is constant in aIl the testing conditions, it may be 

abstracted from the stimulus equation and the stimuli may be defined by their contrast 

function C(x,y) (Linfoot, 1964) instead oftheir luminance function (L(x,y)): 

C(x,y)=L(x,y)ILo-l. (22) 

The contrast functions of LM and CM stimuli are: 

CLM(x,y)= S(x,y)+ N(x,y)+ T(x,y), (23) 

CCM(X,y) = (1 + S(x,y)+ N(x, y ))T(x,y ). (24) 

The expected contrast profile when there is no signal (S(xtY}=O) 1S T(x,y) and is 

known to the ideal observer. Therefore, it may be subtracted from the stimulus equation 

without affecting the ideal observer's performance: 

C(x,y)= C(x,y)-T(x,y), (25) 

C~M(X,y) = S(x,y)+ N(x,y), (26) 

C~M(X,y) = (S(x,y)+ N(x, y ))T(x,y). (27) 

Consequently, the performance of an ideal observer to C'LM{X,y) and C'cM{x,y) are 

identical to the one using CuAx,y) and CcM{x,y) respectively. 
\ 
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The tasks for an ideal observer may be summarized as detecting a LM signal 

(S(x,y)) in LM noise (N(x,y)) or detecting a CM signal (S(x,y)T(x,y)) in CM noise 

(N(x,y)T(x,y)). 

Since the ideal observer has perfect knowledge of the texture (T(x,y)) such an 

observer may remove it from computation. Therefore, another equivalent CM stimulus may 

be defined as: 

C~M(X,y) = C~M(X,y )/T(x,y) 

C~M(X,y) = S(x,y)+ N(x, Y ) . 
(28) 

Consequently, the performance to C"cdx,y) will be identical to C'cdx,y), which is 

the same as using Ccdx,y). 

Since CLM'(X,y) = CCM"(x,y) and the ideal observer p~rformance to L 'Ldx,y) and 

L 'cdx,y) are identical to the one using C'Ldx,y) and C"cdx,y) respectively, the 

performance of an ideal observer using LLdx,y) will be equal to the one using Lcdx,y) as 

long as it has perfect knowledge of the texture (T(x,y)). Consequently, for an ideal observer, 

detecting a LM signal (S(x,y)) in LM noise (N(x,y)) is equivalent as detecting a CM signal 

(S(x,y)T(x,y)) in CM noise (S(x,y)N(x,y)). In other words, an ideal observer will require the 

same SNR (kideal) for detecting both stimulus types. 

To be abstracted, a texture must be precisely known (i.e. the texture values T(x,y) at 

aIl the positions (x,y) must be known). For the plaid carrier, the frequency, amplitude and 

orientation of the carrier are known except that its phases change randomly at each 

presentation. However, the phase can easily be deduced precisely since the spatial 

frequency of the carrier is higher than the rest of the stimulus (signal and noise). 

Consequently, the local variation only depends on the carrier. For LM stimuli, the signal 

and noise, which are at lower spatial frequencies, will only change the local mean 

luminance. For CM stimuli, the signal and the noise will only change the local carrier 

contrast. Therefore, the phase of the plaid can be detected and the value of the texture 
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(T(x,y)) can be precisely computed at each pixel position (x,y) and abstracted from the 

equation. 

For a checkerboard and a binary noise carriers, each position (x,y) may have two 

possible values: -0.5 and 0.5. Since it is impossible to have negative luminance pixel 

values, the luminance range of each pixel (L(x,y)) must be, for a symmetrical reason, 

between 0 and 2Lo. Based on these constraints and on Equations 3 and 4, the modulation 

(M(x,y)) can theoretically range between 0.5 and l.5 for LM stimuli, and between 0 and 2 

for CM stimuli. For both LM and CM stimuli, a texture element (T(x,y)) of -0.5 or 0.5 will 

cause the luminance value at that same position to be bellow or above the luminance 

average (Lo) respectively. Consequently, an ideal observer can precisely recompute the 

original texture for all the carriers used in the present study. 

Procedure 

Hardware 

The monitor, which was the only luminance source in the room, was a 19 inches 

ViewSonic E90FB .25 CRT sere en and was calibrated using a Minolta CS l 00 photometer. 

A Pentium 4,' 3.2 GHz with a 10 bits Matrox Parhelia512 graphie card computed the 

stimuli. This graphie card was not limited in the number of simultaneously displayed color 

and therefore could display 1024 different grey levels for a given image. This was 

necessary since the detection threshold of the LM stimuli in certain conditions was 

relatively low. The distance between the monitor and the subject was 1.14 met ers and each 

pixel on the screen was 0.016 x 0.016 degrees ofvisual angle. 

Psychophysical methods 

The constant stimuli paradigm was used to evaluate the subjects' threshold in 

different conditions using a two-interval-force-choice procedure. A block was composed of 
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28 trials: 1 stimulus type (either LM or CM), 4 noise conditions and 7 signal-contrast 

levels. Five pseudo-random blocks were performed before the subject was free to rest. At 

that time, the stimulus modulation type was switched and the subject was advised of this 

change. Therefore, LM and CM stimuli alternated until 20 blocks of each stimulus type 

were performed. 

Data analysis 

Fo~ each subject, each stimulus type, each carrier and each noise condition, the 

detection threshold (75% correct) was evaluated by fitting a Weibull function using the 

bootstrap technique. Afterwards, for each subject, each stimulus type and each carrier, 

Equation 4 was fitted to deduce the two parameters: k and Neq• The fitting was achieved by 

minimizing an error function using Excel Solver (Newton method). The error function was 

the sum over each noise condition of the squared difference in log units between the 

detection threshold and the predicted threshold by Equation 4. 

Results 

Figure II -8 shows individual results when a plaid was used as a camer. AIl 

observers had similar patterns. In no- or low-external noise conditions, detection thresholds 

for CM stimuli were higher than those for LM stimuli. However, the threshold differences 

were generally not significant in high-noise conditions. Figure 11-9 and Figure II-lO show 

the results for the checkerboard and binary noise carriers. Although the detection threshold 

differences in no- or low-external noise conditions are smaIler, the same pattern was 

observed. These results strongly suggest that aIl observers had similar CEs but different 

IENs for processing LM and CM stimuli. These results are confirmed in Table 11-1 where 

the differences of IEN and CE between LM and CM stimuli processing are listed. The 

differences of CEs are relatively small (0.02, -0.09 and 0.07 log units using a plaid, 

checkerboard or binary noise, respectively, as a carrier), compared to the differences of 
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IENs (1.03, 0.61 and 0.33 log units, respectively). We can also note that the differences in 

IENs were not the same in aU three conditions. 

Figure II-Il shows the averaged CE over all observers in all the conditions. As 

shown, neither the stimulus type nor the carrier type affected the CE. These results are not 

surprising for LM stimuli since the carrier only plays a masking ro1e. In high noise 

conditions, the impact of the carrier (or mask) becomes not significant. Therefore, there is 

no reason to expect a thr.eshold difference in high-noise conditions for LM stimuli. What is 

more surprising is that, in high-noise conditions, the same thresholds were observed for CM 

stimuli and this was true forall carriers. 

Differences in IEN where noted when using different carriers (Figure 1I-12). For 

LM stimulus sensitivities, using a checkerboard as a carrier resulted in slightly more IEN 

than using the plaid but much less than when using binary noise. These results are not 

surprising given the carrier's masking role for LM stimuli. For CM stimulus sensitivities, 

the checkerboard generated the least amount of IEN. 

Discussion 

Same calculation efficiencies 

The results of the current study c1early show that there is no, or very little, 

difference in CE between LM and CM stimuli detection. This implies that observers are 

just as efficient for extracting LM signaIs from LM noise as they are for extracting CM 

signaIs from CM noise. Consequently, these results suggest that, after a second-order 

rectification, both stimulus types are processed by common mechanisms. 
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Figure 11-8. Results using a plaid as a carrier. The error bars were calculated using 

bootprob. 
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Figure 11-9. Results using a checkerboard as a carrier. The error bars were calculated 

using bootprob. 
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Plaid Checkerboard Binary noise 

IBN CE IBN CE IBN CE 

Ela 1,10 0,02 0,44 -0,30 0,53 0,19 

Il 0,99 -0,03 0,57 -0,17 0,20 0,04 

mer 0,98 0,12 0,71 0,12 0,25 -0,03 

Ra 1,04 -0,04 0,72 -0,01 0,33 0,09 

Mean 1,03 0,02 0,61 -0,09 0,33 0,07 

+/- 0,03 0,04 0,08 0,11 0,08 0,05 

Table II-l. IEN and CE differences. Internai equivalent noise (IEN) and calculation 

efficiency (CE) differences between luminance- (LM) and contrast- (CM) modulated 

stimuli (CM IEN or CE minus LM IEN or CE in log units). The last row corresponds 

to the standard error. 
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Figure 11-11. Mean calculation efficiency. Relative calculation efficiency (CE) for 

luminance- (LM) and contrast- (CM) modulated stimuli using three different carriers: 

plaid, checkerboard and binary noise. Error bars show the standard error. Note that 

for comparative reasons, the same range was used as in Figure 11-12. 
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Figure 11-12. Mean internai equivalent noise. Internai equivalent noise (IEN) for 

luminance- (LM) and contrast- (CM) modulated stimuli using three different carriers: 

plaid, checkerboard and binary noise. Error bars show the standard error. 
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However, Georgeson and Schofield (2002) found evidence suggesting that LM and 

CM stimuli are not merged or confused after a rectification process because recognition 

(LM vs CM) and detection (LM vs noise and CM vs noise) threshold for LM and CM 

stimuli are similar. We argue that this does not imply that both stimuli are treated by 

separate post-rectification mechanisms. We suggest that although the same mechanisms are 

processing two stimuli that were initially treated by separate mechanisms, the different 

properties of the two stimuli are not necessarily lost. 

For example, if we compare the detection and recognition of two LM gratings with 

opposite phases, there is no reason to expect a difference between the two. Initially, it is not 

the same neuron population treating the two stimuli. Therefore, the two pathways are 

initially different. However, it would be unlikely that different mechanisms would be 

treating the two stimuli at a later stage. Consequently, the properties of the two stimuli are 

still available after initial processing even though both stimuli are, at a later stage, 

processed by common mechanisms. 

Different internai equivalent noises 

The results clearly attribute the difference between LM and CM sensitivities to a 

difference of IBN. If the same mechanisms treat both stimulus types after a second-order 

rectification, then the difference in IBN must either come from internaI noise prior to the 

rectification or be caused by a sub-optimal rectification. To address this question an ideal 

observer with pre-rectification IBN will be considered. 

Based on the definition described above for LM and CM stimuli, an ideal observer 

has the same performance for both stimuli. This is true given that an ideal observer do es not 

have any internaI noise. However, when detecting CM stimuli, before the rectification 

process, sorne internaI noise ( ex:optical noise) is likely to be added to the stimulus. In the 

presence of high external noise (LM or CM), the internaI noise will be n~gligible and the 

performance will not be significantly affected. Therefore, the CE would be unaffected by 
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pre-rectification noise. In the absence of external noise, however, the CM detection task 

consists in detecting a CM signal (S(xJl)T(x,y)) in LM noise (N(xJl)) compared with the LM 

detection task, which consists in detecting a LM signal (S(xJl)) in LM noise (N(x,y)). 

Therefore, the two tasks would only differ by their signal (S(x,y) vs S(xJl)T(xJl)). 

When the task is to detect a LM signal (S(x,y)) in LM noise (N(x,y)), the energy of 

the signal may be defined as (Legge, Kersten, & Burgess, 1987; Pe11i, 1981, 1990): 

YX 

where X and Y are the width and height of the image, respectively. 

When the task is to detect a CM signal (S(xJl)T(x,y)) in LM noise (N(xJl)) , the 

energy of the signal may be defined as: 

ECM = J J(S(x, y)T(x, y)Ydxdy.. (30) 
YX 

If there is no statistical relation between the texture (T(x,y)) and the signal (S(x,y)), 

the signal energy of CM stimuli can be approximated by: 

J JS2(X,y}dxdy J JT
2
(x,y}dxdy 

E '" -'-Y..;.;;.X ____ -'Y-'-X'--___ _ 
CM '" XY 

(31) 

Consequently: 

Since the rms contrast of the texture is: 

YX 

XY 
(33) 
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and the energy of the CM stimulus is: 

In other words, for the same signal (S(x,y», the energy of the LM stimulus (S(x,y» 

will be lIrrms times greater (r rms<l since <T(x,y)<l) than the energy of the CM 

stimulus (S(x,y)T(x,y». Since the energy is proportional to the squared contrast, to have the 

same energy level as the LM stimulus, the CM contrast must be liT rms times greater. 

Therefore, in the same noise condition (N(x,y», the LM sensitivity of the ideal observer's 

with LM internai noise would be liT rms times greater than the CM sensitivity. 

Consequently, simulating early (pre-rectification) noise causes an ideal observer to 

have liT rms times more IBN for CM stimuli detection than for LM stimuli detection. 

Comparing LM and CM IBN s (or sensitivities), if we suppose that the significant internaI 

noise occurs prior to the rectification, a factor of Trms should be considered. Therefore, pre­

rectification IBN (Neq pre-rect) may be defined as: 

r N eq for LM stimuli 
Neqpre-recl = ~ . (35) l NeqTrms for CM stimuli 

The rms contrast (T rms) of the plaid, checkerboard and binary noise carriers were 

0.25, 0.5 and 0.5 respectively. Using binary noise as a carrier, the results (0.33 log) show a 

difference of IEN (Neq) near the factor predicted by the ideal observer with LM internaI 

noise (2 or 0.30 log). Therefore, by compensating for the texture contrast (Neq pre-recl), there 

was rio significant difference between LM and CM IEN (Figure 11-13). These results 

suggest that the significant noise occurred prior to the rectification and was common to 

both tasks. 

One particularity of the binary noise carrier is that it has intrinsic noise. As shown in 

the method section, this noise does not affect the ideal observer performance. However, it 

does affect the performance of a human observer since the LM stimuli detection threshold 

is greater using the binary noise carrier than the checkerboard. Note that the only difference 
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between the checkerboard and binary noise carriers is the randomness of the elements' 

position. From these results, we conclude that intrinsic noise of the binary noise carrier 

increases the IEN for LM and CM stimuli detection. Therefore, the IEN measured when 

using this type of carrier could be caused by the carrier intrinsic noise. 
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Figure II-B. Mean pre-rectification internaI equivalent noise. Pre-rectification 

internaI equivalent noise (IEN) for luminance- (LM) and contrast- (CM) modulated 

stimuli using three different carriers: plaid, checkerboard and binary noise. Assuming 

that the main portion of internaI noise occurs prior to the rectification, the IEN for 

CM stimuli was multiplied by the texture rms. Error bars show the standard error. 

Using a plaid or a checkerboard as a carrier, the ideal observer with pre-rectification 

internaI noise does not explain the difference between the IEN measured for LM stimuli 

and the one measured for CM stimuli (Figure 1I-13). Consequently, the important 

difference between internaI noises does not occur before the rectification. Ifboth stimuli are 

processed by common mechanisms after the rectification process (same CE) and the pre­

rectification noise cannot explain the difference of IEN observed, the difference of IEN 

must come from a sub-optimal rectification process. This suggests that, for binary noise, the 

intrinsic noise of the carrier was greater than the IEN caused by the sub-optimal 

rectification, and therefore, the IEN introduced by the sub-optimal rectification was not 

significant. 
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Conclusion 

One of the main differences between LM and CM stimuli processing is that the 

human observer is less sensitive to CM than LM stimuli. We address this question by 

decomposing the sensitivities in IENs and CEs. The results show no difference of CE and 

indicate that, the IEN is responsible for the sensitivity difference. Based on a rectification 

mode l, these results support the hypothesls that the two stimulus types could be treated by 

common mechanisms after a second-order rectification process. 

To investigate the main source of internaI noise for CM stimuli detection, an ideal 

observer with pre-rectification internaI noise was built. Based on ideal observer analysis, 

pre-rectification internaI noise could explain the difference of IEN between LM and CM 

stimuli detection when using binary noise as a carrier but not when using a plaid or a 

checkerboard. We conc1ude that a sub-optimal rectification process causes higher IEN for 

CM stimuli detection compared with LM stimuli detection and that the intrinsic noise of the 

binary carrier had a greater impact on the IEN than the sub-optimal rectification. 
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Abstract 

To study the difference of sensitivity to luminance- (LM) and contrast-modulated 

(CM) stimuli, we compared LM and CM detection thresholds in LM- and CM-noise 

conditions. The results showed a double dissociation (no or little inter-attribute interaction) 

between the processing of these stimuli, which implies that both stimuli must be processed, 

at least at sorne point, by separate mechanisms and that both stimuli are not merged after a 

rectification process. A second experiment showed that the internaI equivalent noise 

limiting the CM sensitivity was greater than the one limiting the carrier sensitivity, which 

suggests that the internaI noise occurring before the rectification process is not limiting the 

CM sensitivity. These results support the hypothesis that a suboptimal rectification process 

partially explains the difference of LM and CM sensitivity. 

Keywords: InternaI equivalent noise; second-order; rectification process; noise; filter­

rectify-filter model 
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Introduction 

Luminance- and contrast-modulated sensitivity 

We are less sensitive to contrast-modulated (CM) than to luminance-modulated 

(LM) stimuli (Figure III-l). Typically, first-order stimuli (ex: LM) are defined by 

luminance or color, and can be directly detected through Fourier analyses, while second­

order stimuli (ex: CM) are defined by other attributes su ch as texture, orientation or spatial 

frequency, and cannot be directly detected through Fourier analyses (Baker, 1999; 

Cavanagh & Mather, 1989; Chubb & Sperling, 1988; Wilson, Ferrera, & Yo, 1992). There 

is no consensus on the type of nonlinearity enabling the system to process second-order 

stimuli and, more specifically, sorne researchers tried to de termine whether the same 

mechanisms are involved in the detection of first- and second-order stimuli. Although this 

problem is debated in spatial and temporal vision, the present study will focus on the 

processing of static LM and CM stimuli (spatial vision). As presented by Georgeson and 

Schofield (2002), the models illustrating the processing of these stimuli may be c1assified 

into three groups: Common mechanisms at all processing stages, completely separate 

mechanisms and initially separate but common late mechanisms. 
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Figure 111-1. Luminance- and contrast-modulated stimuli. The luminance- (left) and a 

contrast-modulated (right) stimuli (top) presented with their luminance profile 

(bottom, thin line). Thick lines repres~nt the mean lumiIiance variation at the signal 

spatial frequency. 

Common mechanisms 

In temporal vision (ex: direction discrimination of dynamic LM or CM stimuli), the 

common mechanism models suggest that motion detectors are sensitive to both types of 

stimuli. Although this hypothesis is not the most largely defended, sorne authors (Benton, 

2002; Benton & Johnston, 2001; Benton, Johnston, McOwan, & Victor, 2001; Taub, 

Victor, & Conte, 1997) have shown that standard motion detection models processing first­

order stimuli could also process second-order stimuli in certain conditions. For the 

detection of static LM or CM stimuli, the common mechanism hypothesis implies an early 

nonlinearity affecting the luminance profile of the stimulus enabling the LM processing 

system to also detect CM stimuli (illustrated by a compressive nonlinearity in the top row 

of Figure 1II-2 and first suggested in temporal vision by Henning, Hertz and Broadbent 

(1975)). Although such nonlinearities are known to occur in the visual system (He & 

Macleod, 1998; Legge & Foley, 1980; MacLeod, Williams, & Makous, 1992), it is 

generally accepted that it cannot account for CM stimuli sensitivity in aIl conditions 

(Derrington & Badcock, 1985; , 1986; Scott-Samuel & Georgeson, 1999; Smith & 
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Ledgeway, 1997), which suggests the existence of another mechanism specialized in the 

detection of static CM stimuli. 

iL 
Luminance 

Luminance 

Figure III-2. Nonlinearities enabling the processing of contrast-modulated stimuli. 

The graphs on the left illustrate two types of nonlinearity that could enable the 

detection of CM stimuli. The top graph shows a compressive nonlinearity and the 

bottom one a rectification process. The resulting luminance profiles from passing the 

luminance profile of a CM stimulus (Figure III-Ion the right) through such functions 

are shown on the right using the thin lines. As we can observe, both nonlinearities 

introduce energy near the signal spatial frequency (illustrated by the thick lines 

showing the mean variation at the signal frequency). 

Separate mechanisms 

The second hypothesis suggests that separate mechanisms are processmg both 

stimuli. Derrington and Badcock (1985; 1986) evaluated the processing of beat patterns (or 

CM stimuli) that are composed of two gratings defined at two different high spatial 

frequencies. The resulting stimulus appears to be one high spatial frequency grating 

periodically varying in contrast at a low spatial frequency. They found evidence that the 

processing of beat patterns has different qualitative processing behaviors from the 

processing of a low spatial frequency grating. For instance, they showed that increasing the 

temporal frequency reduced the detection threshold to low spatial frequency gratings but 
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not to beat patterns. They also found that adaptation produced a motion aftereffect using 

low spatial frequency gratings but not using beat patterns. These results have led them to 

suggest that beat patterns (or CM stimuli) are processed by separated mechanisms 

evaluating the local contrast increment. 

More recently in spatial vision, Georgeson and Schofield (Georgeson & Schofield, 

2002; Schofield & Georgeson, 1999) found evidence supporting this hypothesis. They 

found that, although the processing of both stimuli induces similar responses (e.g. similar 

spatial (Schofield & Georgeson, 1999) and temporal (Schofield & Georgeson, 2000) 

integration, similar function shape relative to the spatial frequency (Schofield & 

Georgeson, 1999)), there is strong evidence suggesting that both stimuli are processed by 

separate mechanisms. To study this question, they used a facilitation paradigm in which 

observers were asked to identify a test modulation (LM or CM grating), in the presence of a 

background modulation (LM or CM grating). In one interval, only the background grating 

was presented and in the other, the test grating was added to the background grating. The 

task consisted in identifying the interval containing the test grating. When the modulation 

depth of the background grating was near detection threshold, the detection of the test 

grating was facilitated in intra-attribute conditions (test and background gratings of the 

same modulation type), but not in inter-attribute conditions (gratings of different 

modulation types). In another experiment (Georgeson & Schofield, 2002), they found that 

the detection (LM vs noise and CM vs noise) and recognition (LM vs CM) thresholds were 

similar suggesting that both stimuli are not merged or confused. However, they also found 

evidence suggesting an interaction between the processing of the two stimuli. Adapting to 

one type of stimulus affected the perceived modulation depth· (difference of luminance or 

contrast for LM and CM stimuli, respectively) of the other (Georgeson & Schofield, 2002). 

Based on these results, they conc1uded that separate mechanisms are processing both 

stimuli but share a common adaptation mechanism at a late processing stage. Since inter­

attribute adaptation effects in high contrast conditions are not very pattern selective (Ross 

& Speed, 1996; Snowden & Hammett, 1992, 1996), they concluded that both stimuli are 
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processed by separate mechanisms having similar properties with the exception of the 

common adaptation mechanism. 

Initially separate and common late mechanisms 

In temporal vision, the model in which both stimuli are initially treated by separate 

mechanisms but are processed by common motion detection mechanisms at a later stage 

(usually referred as filter-rectify-filter model, (Wilson, Ferrera, & Yo, 1992)) is the most 

largely defended (see Baker (1999) for a review). This model illustrated in Figure III-3 

suggests that a rectification (or squaring as illustrated in the bottom row of Figure III-2) 

process locally evaluates the intensity of the carrier (in our case, the local contrast) over the 

entire stimulus making the second-order information similar to first-order information. This 

would then enable later mechanisms to process the combination of the first- and second­

order information. 

First filtering stage Second filtering stage 

LM-

CM-O----t; a-
Figure III-3. Filter-rectify-filter model. The filter-rectify-filter model suggests that 

luminance- and contrast-modulated stimuli are initially processed by separate 

mechanisms and are combined after a rectification process occurring on the CM 

pathway. Adapted from (Baker, 1999). 

In a recent study on spatial vision (Allard & Faubert, 2006), we found additional 

evidence showing similar responses between the processing of LM and CM stimuli, which 
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reinforce the hypothesis suggesting the existence of common post-rectification mechanisms 

other than an adaptation mechanism. Indeed, we decomposed both sensitivities into internaI 

equivalent noise (IEN) and calculation efficiency (CE) (Pelli, 1981). The IEN may be 

defined as the noise contrast necessary to model the impact of the internaI noise on the 

sensitivity. The CE is inversely proportional to the smallest signal-to-noise ratio (where the 

noise is composed of internaI and external noise) the system needs to detect the signal. To 

derive the IEN and CE, we need to evaluate the detection threshold as a function of external 

noise contrast (the TvC function, Figure IlI-4). In high external noise conditions, the 

internaI noise is not significant and the signal-to-noise ratio (or CE) can be measured since 

the signal and external noise contrast are known. Our results showed that the detection 

thresholds of both stimuli did not differ in high noise conditions, i.e. the CEs to these 

stimuli were similar. In other words, observers were just as efficient at detecting a LM 

signal embedded in LM noise as detecting a CM signal embedded in CM noise. Based on 

these similar efficiencies (and other responses such as the ones mentioned above) between 

the processing of both stimuli, we conclude that both stimuli are probably processed by 

common mechanisms after a rectification process converting the CM information (signal 

and noise) to an activation pattern similar to the LM information. In the general discussion 

below, we will explain more extensively how our conclusion can be compatible with 

Georgeson and Schofield's results mentioned above leading them to a different conclusion 

(separate mechanisms). 

Since the difference of sensitivity between LM and CM stimuli is due to a 

difference of IEN and not to a difference of CE, studying the difference of sensitivity can 

be reduced to studying the difference ofIEN, which is the aim of the present study. 

Single internai noise source 

An internaI noise source may be defined as a signal deterioration occurring at any 

processing level such as photons transduction, signal transmission along the optical nerve, 
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neuronal nOIse, etc. The IEN corresponds to the external nOIse quantity necessary to 

simulate the impact of the internaI noise. Consequently, the IEN simulates the impact of the 

combination of aIl internaI noise sources. Assuming that each noise source may be modeled 

by a. Gaussian distribution centered on 0 with SD of (Ji and that the noise sources are not 

statistically relate d, the resulting standard deviation ((J/o/al) oftheir combination would be: 

atotul = ~~ a; 
Therefore, the resulting SD of the combination of two uncorrelated patterns with 

SDs of (JI and (J2 is ~a 12 + a; . Hence, if the difference between the two SDs is important, 

the resulting SD will not largely differ from the greater SD. The greater difference between 

the greater SD ((JI or (J2) and the resulting SD ((J/o/at) occurs wh en (J1=(J2. In su ch a case, the 

resulting SD will be Ji times greater. 

The typical TvC function (Figure 111-4), which may be used to decompose the 

sensitivity into IEN and CE, is a good example of the impact of the combination of two 

uncorrelated noise patterns. This function may be separated into three segments. If the 

external noise is small relative to the IEN, varying the external noise contrast does not 

significantly alter the effective noise (combination of internaI and external noise) and the 

detection threshold remains relatively constant as a function of the external noise. However, 

in high noise conditions, the impact of the IEN is not significant and the effective noise 

contrast mainly depends on the external noise. In such conditions, varying the external 

noise has a direct impact on the detection threshold, which is then proportional to the noise 

contrast (slope near 1 in log-log coordinates). The only segment in which the impact of 

both noise sources is noticeable is when the external noise contrast is near the IEN contrast. 
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Figure 111-4. Threshold versus contrast (TvC) fonction. The function shows the signal 

detection threshold as a function of the external noise contrast. Note that the two axes 

are scaled logarithmically. 

Another example demonstrating that the impact of two nOIse sources generally 

behave as a winner-take-all rule is the absorbed-photon-noise occurring at the retinal level 

versus neural-noise occurring after luminance normalization that does not depend on the 

mean luminance. As presented by Pelli (1990), the IBN is greater in low than in high 

luminance conditions, he explains these results by two internaI noise sources: one limiting 

the detection in low luminance conditions (absorbed-photon-noise) and another in high 

luminance conditions (neuronal-noise). The absorbed-photon-noise is not proportional to 

the stimulus luminance average but the neuronal-noise is since it occurs after luminance 

normalization. Consequently, if the luminance is sufficiently low, the resulting neuronal­

noise is smaller than the absorbed-photon-noise, which does not vary according to the 

luminance average. As a result, the impact of the absorbed-photon-noise on the relative 

detection threshold (absolute minimum luminance variation detectable relative to the mean 

luminance background or Weber fraction) is then inversely proportional to the luminance 

average. However, in high luminance conditions, the internaI noise measured (attributed to 

neuronal-noise) was proportional to the background luminance so the impact of such noise 

does not influence the relative detection threshold. Therefore, the visual system has at least 
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two nOIse sources, one before the luminance nonnalization (absorbed-photon-noise) 

limiting the sensitivity in low luminance conditions and another after (neuronal-noise) 

limiting the sensitivity in high luminance conditions. These two examples show the 

interaction between two noise sources, where only the greater significantly affects the 

sensitivity and the smallest has no significant impact if their SDs largely differ. 

Different IEN s 

Assuming the existence of different internaI noise sources and that the greater one is 

significantly greater than the combination of the others, then the IEN measured models the 

impact of a single noise source. Consequently, when decomposing the sensitivity into IEN 

and CE, the fonner probably represents the impact of a single internaI noise source. As 

mentioned above, the difference of LM and CM sensitivity can be attributed to a difference 

of IEN. Since the IEN probably models the impact of a single internaI noise source for each 

stimulus type, comparing the sensitivity between LM and CM stimuli can be reduced to 

comparing the impact of their main internaI noise sources (MINSs) limiting their 

sensitivities. 

The fact that different IENs were measured for both types of stimuli does not 

necessarily imply that both MINSs are distinct. Indeed, a low contrast gain (stimulus 

attenuation, which mathematically corresponds to reducing the contrast of the signal) prior 

to the MINS increases the impact of the internaI noise and, thereby, increases the IEN 

measured. A low contrast gain after the MINS does not affect the observer's perfonnance 

since it reduces both the signal and main noise source (external noise), which does not 

affect the signal-to-noise ratio. Consequently, a low contrast gain does not affect the CE. 

Stimulus attenuation prior to the MINS increases the ~mpact of this internaI noise source 

and thereby directly affects the IEN measured without affecting the CE. Therefore, the IEN 

measured represents the combination of the MINS with the contrast gains prior to it. 

However, these two parameters have the same impact on the TvC function (more 
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specifically on the IBN), which led many authors (Bennett, Sekuler, & Ozin, 1999; Lu & 

Dosher, 1998) to state that both are mathematically equivalent and therefore cannot be 

segregated. 

Since the IBN depends on the MINS and the contrast gain prior to it, the difference 

of IBN observed does not necessarily imply that separate mechanisms are processing LM 

and CM. The difference of IBN could be due to different contrast gains prior to a common 

noise source. For instance, an early nonlinearity enabling the detection of CM stimuli by 

the mechanisms processing LM stimuli could explain these results. In such a model, the 

local variation of luminance (local contrast) introduces an alteration in the local mean 

luminance. Consequently, the early nonlinearity would introduce a LM grating into the CM 

grating with a smaller modulation depth than the modulation depth of the CM grating. In 

other words, both stimuli would be processed by the same mechanisms but would have 

different contrast gains prior to their MINS. In high extemal noise conditions, the signal-to­

noise ratio would be the same for both types of stimuli since the contrast gain wou Id affect 

both the signal and the main noise source being the extemal noise. However, in low 

extemal noise conditions, only the signal would be affected by the contrast gain (not the, 

MINS occurring after the nonlinearity) resulting in different signal-to-noise ratios (different 

detection thresholds). Consequently, we would observe different IBNs for both types of 

stimuli ev en though they would be processed by the same mechanisms and share a common 

MINS. 

Different types of external noise 

Two spatial frequencies are relevant to define CM stimuli, the ones relevant to the 

carrier and the ones to the signal. The present study evaluates the impact of three different 

extemal noise types: LM noise near the signal spatial frequency, CM noise near the signal 

spatial frequency and LM noise near the carrier spatial frequency (which we will refer to as 

LM-noise, CM-noise and carrier-noise respectively, Figure III-5). Note that since CM 
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information can only be defined at lower spatial frequencies relative to the carrier, it is not 

possible to have CM noise near the carrier spatial frequency. Before the nonlinearity 

enabling the detection of CM stimuli (early nonlinearity or rectification process), the 

energy of the CM signal is near the carrier spatial frequency and energy near the signal 

spatial frequency only occurs after the nonlinearity making the CM information (signal 

and/or externat noise) visible. Consequently, the CM detection threshold of an ideal 

observer is affected by CM- or carrier-noise, but not by LM-noise. LM-noise only affects 

the mean local luminance without affecting the local contrast defining the CM stimulus. 1 

Oppositely, CM- and carrier-noise affects the local contrast without affecting the mean 

local luminance. 

Figure IIl-5. Noise types. LM- (Ieft), CM- (center) and carrier-noise (right), ail three 

in the presence of a carrier. 

Purpose of the present study 

The objective of the first experiment was to evaluate inter-attribute interactions 

between both types of modulations. If an early nonlinearity converts CM information into 

LM information or if both types of information are merged after a rectification process, we 

1 If the local contrast is defined as the local difference of luminance relative to the local 
mean luminance (as opposed to the local difference of luminance relative to the background 
mean luminance of the entire stimulus), then altering the mean local luminance would 
affect the local contrast. As a result, it may be argued that the LM component is "leaking" 
in the CM component. However, the results obtained in the present study showed that, if 
such interaction exists, it had no significant impact. 
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should expect inter-attribute interactions: CM-noise should affect LM signal detection and 

LM-noise should affect CM signal detection. However, if both attributes are initially 

processed by separate mechanisms (suggesting that a rectification process evaluates the 

local contrast of CM stimuli to enable its processing) and they are not merged after the 

rectification process, then we should observe no or little inter-attribute interaction: noise of 

one attribute should have litde impact on the signal detection of the other. 

After showing that both stimuli are initially processed by separate mechanisms (CM 

detection is due to a rectification process evaluating the carrier contrast and not to an early 

nonlinearity converting CM information into LM information, see Figure III-2), the second 

objective was to determine if the MINS limiting CM sensitivity occurs before the 

rectification or not. Before the rectification process making CM information visible, the 

processing can be reduced to treating the carrier. The second experiment was aimed at 

evaluating if the MINS limiting the detection of the carrier also limits the CM detection. To 

do so, this experiment evaluated the impact of carrier-noise on the carrier and CM 

detection. 

Experiment 1: Inter-attribute interactions 

In a previous study (Allard & Faubert, 2006), we showed that observers were just as 

efficient at detecting LM signal embedded in LM-noise as to detect CM signal embedded in 

CM-noise. The first objective of the present study was to evaluate if LM and CM stimuli 

are processed, at least at sorne point, by separate mechanisms. To do so, the interactions 

between the processing of LM and CM stimuli were evaluated by measuring LM and CM 

stimuli detection threshold embedded in LM- and CM-noise (intra- and inter-attribute 

conditions). The absence of inter-attribute facilitation found by Schofield and Georgeson 

(1999) using a near threshold signal as background suggests that separate mechanisms are 

processing these stimuli. We could therefore expect to find no inter-attribute masking effect 

using noise as a background. Such double dissociation between LM and CM stimuli 
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processing (i.e. LM-noise affecting more LM than CM stimuli detection and CM-noise 

affecting more CM than LM stimuli detection) would support the hypothesis suggesting the 

existence of a separate rectification mechanism processing CM stimuli, i.e. separate 

mechanisms are initially processing both stimuli. It would also imply that both stimuli are 

not merged to form a single activation pattern after the rectification. On the other hand, if 

an early nonlinearity in the visual system enables the detection of CM stimuli or if both 

attributes are merged after a rectification process, then LM- and CM-noise would affect 

both LM and CM signal detection, since CM information (signal and noise) would be 

converted into LM information. 

Method 

Observers 

Three subjects aged 26, 27 and 27 years participated to the study. They had normal 

or corrected to normal vision. One of them (ra) was an author and the others were naive to 

the purpose of the experiment. 

Apparatus 

The stimuli were presented using a 19 in ViewSonic E90FB .25 CRT monitor with a 

mean luminance of 43 cd/m2 and a refresh rate of 100 Hz, which was powered by a 

Pentium 4 -computer. The 10-bit Matrox Parhelia512 graphic card could produce 1024 gray 

levels that could aIl be presented simultaneously. The monitor was the only light source in 

the room. A Minolta CS 1 00 photometer interfaced with a home made program calibrated 

the output intensity of each gun. At the viewing distance of 1.14 m, the width and height of 

each pixel were 1/64 deg ofvisual angle. 
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Stimuli 

AlI the stimuli used in the present experiment are the sum of two terms: a luminance 

modulation (MaA:x,y)) and the multiplication of a contrast modulation (Mc,w{x,y)) with a 

texture (T(XJl)): 

where Lü represents the luminance average of the stimulus and the background luminance. 

Both modulations (ML,w{X,y) and Mc,w{x,y)) may be defined as 

M{x, y} = 1+ S{x,y}+ N{x,y} 

where S(x,y) and N(x,y) are the signal and external noise functions respectively. 

Figure 111-6. Signal (Gabor patch, left), carrier (plaid, center) and filtered noise near 

the signal spatial frequency (right). 

Signal Junetion 

The signal function (S(x,y)) was a Gabor patch (Figure III-6 left) with a center 

spatial frequency of 1 cpd, a SO of 1 deg, a phase randomized at each' stimulus presentation 

and a Michelson contrast (CLM or CCM depending on the type of modulation) that varied 

depending on the task (see below). 
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Externat noise 

The noise function (N(x,y)) generated a matrix of 320x320 pixels (5x5 deg), each 

element being randomly selected from a Gaussian distribution centered on o. Each noise 

template was bandpass filtered by applying an ideal circular filter in the Fourier domain to 

keep aU the orientations and only the frequencies within one octave below and above the 

relevant spatial frequency (l cpd for the first experiment (Figure III-6 right) and 8 cpd for 

the second experiment). The SD of the Gaussian distribution before the filtering 

corresponded to the noise contrast in modulation depth (NExtLM or NExtCM depending on the 

type of modulation), which varied from one task to another. 

Carrier 

The carrier (T(x,y) , Figure III-6 center) was a plaid, i.e. the sum of two sinusoidal 

gratings. The spatial frequency of the gratings was 8 cpd and their orientations were 

oblique and perpendicular from one another (±45 deg). Such a carrier has the advantage of 

being defined within a narrow band spectral frequeilcy. Consequently, the carrier had a 

limited impact on the sensitivity to LM stimuli defined at a lower spectral frequency. Using 

noise as a carrier does not have this advantage since it introduces noise at the signal 

frequency, which may mask the MINS. Another advantage ofusing a narrow band carrier is 

that it is easier to introduce noise that will selectively affect the carrier frequencies without 

affecting the signal frequency as was done in the second experiment. The phases of the two 

oblique sinusoidal gratings forming the carrier were randomized at each stimulus 

presentation and the contrast was set so that, in the absence of signal and noise, the 

luminance peaks were 0.25Lo and 0.75Lo (i.e. -0.5:ST(xJl) :S0.5). 

Procedure 

In aH the conditions, a 2-interval-forced-choice method was used: one interval 

contained a carrier modulated by a signal and noise, and the other contained only a carrier 
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modulated by noise. The task was to identify which interval contained the signal (LM or 

CM Gabor patch). Different noise templates with the same contrast were used in the two 

intervals. For a given task (detection of a LM or CM signal in LM or CM noise), the signal 

and noise modulation types were fixed and known to the observer. The stimuli were 

presented for 500 msec with stimuli intervals of the same duration. The spatial window was 

circular with a full contrast plateau of 4 deg width and soft edges following a Gaussian 

distribution with a SD of 0.25 deg. After each trial, a feedback sound indicated to the 

observer if his response was correct. To evaluate thresholds, a 2-down-l-up procedure was 

used (Levitt, 1971), that is, after two consecutive correct responses the dependant variable, 

which varied depending on the task, was decreased (or increased when the dependant 

variable was a noise contrast) by 10% and increased (or decreased) by the same proportion 

after each incorrect response resulting in a threshold criterion of 70.7%. For each threshold 

measured, 100 trials were performed and the threshold was defined as the geometric mean 

of the last 6 inversions (peaks) of the dependant variable values; 

The experiment was conducted in three consecutive steps. The objective of the 

present experiment (the last step) was to evaluate LM and CM sensitivity in LM- and CM­

noise conditions (see Figure 111-7 for stimuli examples). Prior to evaluating the impact of 

different noise types on LM and CM signal detection, we had to determine the noise 

contrast of the two noise types (second step), which were arbitrarily set to the noise contrast 

increasing the detection thresholds of their respective stimulus by 0.5 log units. Thus, the 

first step consisted in measuring the detection thresholds of their respective stimulus, i.e. 

LM and CM stimulus in noiseless conditions. 

Hence, for the first step, the noise contrasts (NEx'LM and NEx,cM) were set to O. For 

each modulation signal detection, the signal contrast of the relevant modulation (CLM or 

CCM) was the dependant variable while the other was set to O. 

The second task consisted in defining the noise contrast for each noise modulation. 

Therefore, for each modulation signal detection, the dependant variable in the previous task 
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(CLM or CCM) was fixed to 0.5 log units above the threshold found for each subject and the 

noise contrast (NExtLM or NExtCM) became the dependant variables. Note that the noise 

contrast increasing the CM detection threshold was so high that the contrast modulation 

function had to be truncated (0<McM{x,y)<2). Near threshold, this truncation reduced the 

RMS of the contrast modulation function by less than 1 %. We therefore assumed that it had 

no significant impact on the results. 

After fixing the two noise contrasts, the final step consisted in detecting the LM and 

CM stimuli in these noise contrasts resulting in 4 staircases (2 signal x 2 noise types). For 

each noise type, the noise contrast was set to the one measured in the previous step while 

the other was kept to O. One signal contrast (CLM or CCM) was the dependant variable while 

the other was fixed to O. 

Figure 111-7. LM (top row) and CM signaIs (bottom row) embedded in LM- (left 

column) and CM-noise (right coIumn). 
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Results 

Table 1 shows the LM and CM detection thresholds in noise free condition~ (tirst 

step) and the noise contrasts necessary to increase each detection threshold by 0.5 log units 

respectively (second step) for each subject. In the absence of noise, observers were more 

sensitive to LM than CM stimuli by a factor of 15, 14 and 11 for subjects il, jmh and ra 

respectively. In similar proportions (factors of II, 15 and 10 respectively), greater external 

noise contrasts were required to affect the CM signal detection because of a greater IEN for 

CM detection C~llard & Faubert, 2006). 

Detection threshold Noise threshold 
Subjects LM CM LM CM 

il 0.0074X/+1.039 0.11X/+1.042 0.59 x/+ 1.157 6.2 x/+ 1 .071 
jmh 0.0070 x/+ 1.057 0.10 x/+ 1 .035 0.42 x/+1.042 6.4 x/+1.032 
ra 0.0034 x/+1.050 0.039 x/+1.144 0.33 x/+1.062 3.4 x/+1.030 

Table 111-1. Signais and noises contrast thresholds. The tirst two columns show the 

detection thresholds for both types of modulations. The last two columns show the 

noise contrast (prior to the bandpass fIltering) that was necessary to increase the 

respective detection threshold by 0.5 log units. The data are expressed as the 

geometric mean x/+ geometric standard error. 

Double dissociation between LM and CM stimuli detection 

Figure 111-8 shows the LM and CM signal detection thresholds measured in LM­

and CM-noise. As expected, thresholds in intra-attribute noise conditions (LM and CM 

signais embedded in LM- and CM-noises respectively) were near 0.5 log units ab ove the 

ones obtained in noiseless conditl0ns (or close to, learning or measurement errors may 

explain the small differences). Oppositely, in the inter-attribute conditions, thresholds were 

similar or slightly above the ones in noiseless conditions. The important results are that, for 

all three observers, intra-attribute noise had a greater impact than inter-attribute noise for 

both types of modulation. Consequently, the detection threshold of LM stimuli increased 
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more in LM- than in CM-noise conditions and the detection of CM stimuli was more 

affected by CM- than LM-noise. These results show a c1ear double dissociation between 

LM and CM stimuli processing. It is therefore possible to define a condition that se1ectively 

impairs the processing of one attribute while keeping the processing of the other relatively 

intact. 
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Figure III-8. LM and CM signal detection in LM and CM noise. Y-axis shows the 

elevation detection threshold relative to the detection threshold in the absence of 

noise. The x-axis shows the two noise conditions: LM- and CM-noise. The circles show 

the relative detection thresholds for LM signais and the squares for CM signais. 

Discussion 

Initially separate mechanisms 

This double dissociation between LM and CM stimuli processing implies that both 

stimuli are, at least at sorne point, processed by separate mechanisms. Therefore, in 

agreement with the general consensus in the literature, the detection of static CM stimuli is 

not due to early nonlinearities (at least not in all conditions) in the visual system making the 

stimulus' detectable through the same· mechanisms processing LM stimuli. If this was the 

case, CM-noise would interfere with LM processing and vice versa, and a double 

dissociation would not be observed. By rejecting the common mechanisms hypothesis, the 

present data support the existence of a rectification mechanism independent of the 



74 

mechanisms processing LM stimuli enabling the detection of CM stimuli. In such a model, 

CM stimuli processing would require an extra processing stage converting CM information 

into an activation pattern analogous to LM information by evaluating the local contrast over 

the entire stimulus. Afterwards, both stimuli would be similar and could be processed by 

common mechanisms (initially separate but common late mechanisms hypothesis) 

explaining the similarities between the processing of both stimuli or could still be treated 

by separate post-rectification mechanisms (separate mechanisms hypothesis). 

It is worth noting that Schofield and Georgeson (1999) found that a high contrast 

LM background signal masked the detection of CM signal but not vice-versa. These results 

differ from ours in which no inter-attribute interaction was observed. However, our results 

are not necessarily inconsistent with theirs since, as opposed to their methodology, we 

evaluated the impact of a mask at only one contrast level. Consequently, it is possible that 

greater noise contrasts wou Id also cause an asymmetrical inter-attribute interaction. 

No post-rectification merging 

The double dissociation between LM and CM stimuli processing also implies that, 

after a second-order rectification, both stimuli are not merged to form a single activàtion 

pattern. If both stimuli were merged and then processed by common mechanisms, inter­

attribute noise would also impair the detection. Consequently, our results reinforce the 

conclusion emitted by Georgeson and Schofield (2002) that both stimuli are not merged or 

combined after a second-order rectification process. However, as defended in the general 

discussion below, we do not agree with their interpretation that the absence of post­

rectification merging implies separate post-rectification mechanisms. 

Experiment 2: Pre-rectification internaI noise 

The first experiment suggested that CM detection is due to the existence of a 

rectification mechanism evaluating the carrier contrast and not to an early nonlinearity 
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converting CM infonnation into LM infonnation. Since the CM detection initially requires 

the processing of the carrier, the aim of the present experiment was to evaluate whether the 

MINS limiting the CM sensitivity occurs before the rectification process or later. 

As mentioned above, prior to the rectification process, the energy of a CM stimulus 

is near the carrier spatial frequency. Locally, a CM stimulus affects the local contrast of the 

carrier and therefore does not affect its spatial frequency. Globally, however, modifying the 

local contrast of a carrier gives rise to energy slightly off the central spatial frequency of the 

carrier (si de-band components). Since the receptive fields in VI respond to frequencies one 

octave above and below their central spatial frequency (Campbell & Robson, 1968), it is 

generally accepted that the detection of CM stimuli cannot be reduced to the processing of 

side-band components (Derrington & Badcock, 1985; , 1986). Th erfore , we will assume 

that the carrier central spectral frequency and its side-bands componentsstimulate the same 

receptive fields (and thereby the same receptive fields as an unmodulated carrier) and that 

observers detect CM stimuli by evaluating the local contrast increment rather than by 

detecting the presence of side-band components. 

We can also reasonably assume that an unmodulated carrier and a CM stimulus both 

stimulating the same receptive fields, are detected using the same receptive fields. Indeed, 

for efficiency reasons, it would be unlikely to have similar receptive fields using sorne for 

the carrier detection and others for the first filtering stage of the CM detection. Based on 

these assumptions, the processing of an unmodulated carrier and a CM stimulus share the 

same initial pathways (the first filtering stage of the CM pathway shown in Figure III-3). 

Thus, the MINS limiting the carrier sensitivity may aiso be the MINS limiting the CM 

sensitivity. If this was the case, an external noise greater than the impact of this common 

MINS should significantly affect the detection thresholds to both stimuli (carrier and CM 

stimuli). Otherwise, if the external noise is greater than the MINS Iimiting the sensitivity to 

the carrier but smaller than the one limiting the CM sensitivity, then the carrier sensitivity· 

wou Id be affected but not the CM sensitivity. 
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Method 

Since the method was very similar to the one used in the previous experiment, the 

present section only mentions their. differences. Two tasks were performed in different 

noise contrasts: detection of the CM signal and detection of the carrier. Compared to the 

previous experiment, the noise was filtered near the carrier spatial frequency (carrier-noise, 

>4cpd and <16cpd, Figure 1II-9) instead of the signal spatial frequency. No CM-noise was 

used (NcwO) and five noise contrasts (SD of the Gaussian distribution before applying the 

bandpass filter) were used for the LM noise function (which now represents the carrier­

noise): NLWO, 0.0625, 0.125, 0.25 and 0.5 modulation depths. The task consisting in 

detecting the CM stimuli was identical to the one in the previous experiment with the 

exception of the noise: the dependant variable was the signal contrast (CCM) and the task 

consisted in discriminating the interval containing the CM signal from two intervals 

containing a carrier embedded in noise. For the detection of the carrier, the Michelson 

contrast of the texture was the dependant variable and the contrasts of both envelopes (CLM 

and CCM) were fixed to O. Consequently, one interval contained the carrier embedded in 

noise and the other contained only noise. Since we were interested in the detection of the 

carrier near the signal, which was a Gabor patch with a spatial window of 1 deg of standard 

deviation, the same Gaussian window was used for the carrier detection. The order of the 

ten staircases (2 tasks x 5 noise levels) was randomized. 

To separate the sensitivity into IEN and CE, the typical TvC function fitted to the 

data was (Legge, Kersten, & Burgess, 1987; Pelli, 1981, 1990): 

C(N,')J= k~N;q + N;xI 

where C(Next) represents the detection threshold in the noise contrast Next. The two 

parameters fitted were k and Neq. k is inversely proportional to the CE and Neq represents 

the IEN. The fit consisted in minimizing the sum of the differences in log units between the 

evaluated thresholds and the ones estimated by the fit (C(Next)). 
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Figure 111-9. Carrier-noise without a carrier (left), CM signal embedded in carrier­

noise (center) and carrier with a Gaussian envelope with standard deviation of 1 deg 

in carrier-noise (right). In aIl three stimuli, the carrier-noise contrast (NLM) is 0.5. 

Results 

For the carrier detection task, the IENs were 0.085, 0.051 and 0.063 noise contrast 

for the observers il, jmh and ra respectively. For CM detection task, the IENs were 0.32, 

0.56 and 0.15 respectively, although we should consider that the IEN evaluated for 

observers il and jmh is likely to be inaccurate because of the absence of detection threshold 

in high noise conditions (considerably above the IEN). However, as it can be observed in 

. Figure 111-10, the IEN for CM stimuli detection for these two observers was near the 

maximum noise contrast used (0.5) or greater since the detection threshold difference 

between the greater noise contrast condition and the absence of noise is relatively small. 

The IEN for the detection of CM stimuli was consistently greater than the IEN for the 

detection of the carrier by a factor of 3.8, 10.1 and 2.4 respectively. 
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Figure 111-10. CM (squares) and carrier (circles) detection thresholds in carrier-noise. 

Full- and dash-lines show best TvC function fits for CM and carrier detections 

respectively and arrows corresponds to the IENs. 

Discussion 

Pre-rectification noise not a limiting factor 

Since the !EN for the detection of the carrier was smaller than the !EN measured for 

the detection of CM stimuli, it is possible to find a given noise condition (carrier-noise with 

a contra st level between the two !ENs) affecting the detection of the carrier without 

significantly affecting the detection of the CM stimuli. In other words, such a noise level 

would be greater than the MINS limiting the carrier sensitivity, but smaller than the one 

limiting the CM sensitivity. We therefore conclude that the MINS limiting the CM 

sensitivity cannot occur at a processing level common with the carrier detection and must 

occur after the carrier and CM detection pathways have separated. Since the only 

processing prior to the rectification is related to the carrier, the present results suggest that 

the MINS limiting the CM sensitivity does not occur before the rectification but at or after 

the rectification. 

Inter-subject difference 

The IENs measured for the carrier sensitivities of the observers were very similar 

between ail three subjects. However, this was not the case for the !ENs limiting the CM 
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sensitivity, in which the observer ra (one of the authors) had considerably smaller IEN 

compared to the two other observers. A possible explanation is that this observer had 

participated in a greater amount of psychophysical testing using CM stimuli. As shown by 

Dosher and Lu (2006), learning may reduce the IEN without affecting the CE for CM 

sensitivity. As a result, the contrast of the carrier-noise necessary to be greater than the 

MINS would be smaller resulting into a smaller difference between the two IENs for this 

observer. Note that this observation does not change the fact that, for aIl three observers, 

pre-rectification internaI noise cannot explain the IEN measured. 

General discussion 

Common post-rectification mechanisms 

Although we agree with Georgeson and Schofield's (2002) conclusion that LM and 

CM stimuli are not merged after a second-order rectification process applied to a CM 

stimulus (which thereby rejects, at least for static stimuli, the filter-rectify-filter model 

illustrated in Figure 111-3), we do not agree that this implies that both stimuli are processed 

by separate post-rectification mechanisms. Post-rectification mechanisms could be able to 

process both attributes (luminance or contrast) without merging them. Separate processing 

does not imply separate mechanisms. As illustrated by a modified filter-rectify-filter model 

in Figure III -Il, late mechanisms could process one attribute while ignoring the other. In 

other words, attentional selection could allow late mechanisms to focus on a single 

attribute. This modified filter-rectify-filter model can explain the similar responses, such as 

spatial and temporal integration and CEs, observed during the processing of either attribute 

and can aiso explain the lack of interaction between both types of stimuli since ignoring 

one attribute would limit its impact on the processing of the other. 
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First filtering stage Second filtering stage 

LM-

CM-O-h: J--
Figure III-H. A modified filter-reetify-filter model in whieh the late meehanisms ean 

foeus on either attribute (LM or CM) and ignore the other eompared to the original 

filter-reetify-filter model (Figure III-3) suggesting that both attributes are eombined. 

This model could also explain that adapting to one attribute could affect the 

processing of the other since the adaptation could affect the mechanisms that are common 

to both pathways. As mentioned in the introduction, sorne data found by Georgeson and 

Schofield suggest that common late mechanisms could process both stimuli. They found an 

important inter-attribute tilt after-effect and an almost complete adaptation transfer effect 

on the perceived contrast to the cross-attribute stimulus. However, since they found that 

both stimuli are not merged (because of no sub-threshold summation), they concluded that 

they must be processed by separate mechanisms with the exception of a corn mon adaptive 

mechanism. We argue that they share more than adaptive mechanisms and that it is because 

they share common mechanisms that it is possible to observe cross-type adaptation. 

As an anal ogy demonstrating that common late mechanisms processing two stimuli 

do not imply merging them, consider a visual search task in which the target is either a red 

or a green vertical bar within distracters composed of blue vertical bars. We can reasonably 

assume that the observer's performance will be similar for either target. Now suppose that 

red horizontal bars are also added as distracters. Based on Treisman and Gelade's (1980) 
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study on visual search, the search of the green target would now require the processing of a 

single attribute (color) while the search of the red target would require the conjunction of 

two (color and orientation). As a result, the presence of these two distracters (blue vertical 

and red horizontal bars) would affect more the observer's ability of searching the red than 

the green vertical bar. In the presence of green instead of red horizontal bars added as 

distracters, the opposite results would be obtained. This double dissociation (red horizontal 

bars affecting the search of the red vertical bar but not the search of the green vertical bar 

and vice versa) would lead to the correct conclusion that green and red bars are processed, 

at least at sorne point, by separate mechanisms. This is true because at the retinal level red 

and green are not absorbed by the same cones. However, it is highly improbable that we 

have a distinct searching mechanism for each color. Even though the same searching 

mechanism is used for searching both targets, we will certainly be able to show, using other 

tasks, that both colors are not merged or confused. Consequently, the visual search 

mechanism would be common to both colors even though these colors are not merged. 

Thus, the processing of these stimuli would invoke similar responses without, or with few, 

interactions. Red and green targets would not be confused, the presence of one would not 

affect the detection of the other and it wou Id be possible to find two conditions (presence of 

blue vertical bars combined with the presence of either red or green horizontal bars) that 

would result in a double dissociation showing that they are processed, at least at sorne 

point, by separate mechanisms. Consequently, the fact that a higher-Ievel mechanism is 

processing two stimuli regardless of their attributes does not imply that these attributes are 

lost and that the presence of one affects the processing of the other or that we should 

confuse one with the other. 

This anal ogy shows that the fact that LM and CM stimuli are not merged or 

confused (lack of inter-attribute interaction) and the presence of a double dissociation does 

not imply that separate post-rectification mechanisms are processing both stimuli. 

Oppositely, we argue that processing similarities and inter-attribute adaptation effects 

suggest that both stimuli are processed by common post-rectification mechanisms able to 



82 

select either attribute. We find more parsimonious the conclusion that both attribut es are 

processed by common post-rectification mechanisms than the conclusion that they are 

processed by separate similar meèhanisms sharing only an adaptation mechanism. 

No impact of pre-rectification internai nois~ on CM sensitivity 

As mentioned in the introduction, the CM detection threshold of an ideal observer 

would be affected by CM-noise or carrier-noise but not by LM-noise. For human observers, 

the first experiment showed that LM-noise also had no or little impact on the CM detection 

threshold. Consequently, pre-rectification internaI noise at the signal spatial frequency 

cannot be a limiting factor, since such noise does not affect the CM sensitivity. The second 

experiment showed that the MINS limiting the CM sensitivity was greater than the one 

limiting the detection of the carrier, which implies that the MINS limiting the CM 

sensitivity must occur once the two pathways have separated. Consequently, pre­

rectification internaI noise at the carrier spatial frequency cannot be a limiting factor, since 

it is possible to add external noise greater than this internaI noise (which affects the carrier 

detection) without affecting the CM sensitivity. Since the CM stimuli used in the present 

study were defined near two spatial frequencies (carrier and signal) and that pre­

rectification noise (analogous to LM noise) at either spatial frequency cannot be limiting 

the CM sensitivity, we conclude that the internaI noise occurring before the rectification 

process does not, in the present conditions, limit the CM sensitivity. 

Impact of the first filtering stage 

In a previous study, we decomposed the sensitivity to LM and CM stimuli into two 

IEN and CE, and found similar CEs using both stimuli (Allard & Faubert, 2006). 

Consequently, although the CE is a factor affecting the CM sensitivity, it does not explain 

the difference of sensitivity between LM and CM stimuli processing. The present study 

therefore focused on the difference of IEN. In the introduction, we showed that the IEN 
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may also be separated into two factors: the MINS and a contrast gain prior to the MINS, 

which affects the signal strength and therefore affects the impact of the MINS. 

The last experiment showed that the MINS limiting the CM sensitivity is not 

analogous te (or cannot be modeled by) ~dding LM noise to the stimulus either at the signal 

or carrier spatial frequency. We conc1ude that the MINS limiting the CM sensitivity must 

occur either at or after the rectification process. The fact that the MINS occurs after the first 

filtering stage does not imply that the processing at this filtering stage does not have an 

impact on the IBN. It rather implies that the internaI noise occurring at the first filtering 

stage does not have a significant impact on the IBN and thereby on the sensitivity. 

However, contrast gain (signal attenuation or enhancement) prior to the MINS would affect 

the impact of the MINS and thereby affect the IBN measured. Therefore, the contra st gain 

occurring at the first filtering stage is a factor determining the IEN and should be 

considered when comparing LM and CM sensitivity. 

For instance, Schofield and Georgeson (1999) have shown that the CM sensitivity is 

affected by the carrier contrast probably because of a compressive nonlinearity affecting the 

carrier. A compressive nonlinearity would affect the carrier contrast unevenly depending on 

the local contrast (defined by the CM signal) and would thereby affect the signal strength of 

the CM signal. As a result, the CM sensitivity would depend on the carrier contrast and 

stimulus attenuation prior to the compressive nonlinearity (analogous to lowering the 

carrier contrast) would influence the signal strength. As stated in the introduction, reducing 

the signal strength would increase the impact of the MINS without affecting the CE. 

Consequently, the IBN is not entirely due to second-order processing and, although first­

order noise is not a limiting factor, first-order factors such as stimulus attenuation prior to 

the compressive nonlinearity and the compressive nonlinearity itself also affects the IBN. 



84 

Suboptimal second-order processing? 

If pre-rectification noise near the carrier spatial frequency would have been the 

MINS for CM sensitivity, then the difference of IBN (thereby the difference of sensitivity) 

between LM and CM processing would have been entirely due to first-order limitations 

since the IBN (the MINS and the contrast gain prior to it) would have occurred at the first 

filtering stage. We would have been less sensitive to CM than LM stimuli not because they 

are more complex or require more computation, but simply because CM processing initially 

requires the processing of the carrier, which introduces noise. Excluding first-order factors 

is specially important wh en evaluating clinical populations such as aging (Faubert, 2002; 

Habak & Faubert, 2000) and autism (Bertone, Mottron, Jelenic, & Faubert, 2003; 2005) in 

which reduced CM sensitivity has been attributed to second-order processing. 

The results of the present study suggest that the MINS limiting the CM sensitivity 

occurs after the first filtering stage. As we have previously shown (Allard & Faubert, 

2006), a suboptimal rectification process evaluating the local contrast would affect the IBN 

without affecting the CE. In other words, the rectification process could be suboptimal and 

thereby limit the CM sensitivity by significantly introducing noise (that is, by being the 

MINS) and/or by attenuating the signal strength. Consequently, the rectification process 

(half-wave rectification, full-wave rectification or any other type of rectification) evaluating 

the carrier contrast over the entire stimulus is a potential candidate for the MINS. Further 

investigations are required to de termine the proportion of the IBN due to the signal 

attenuation at the first filtering stage and the one due to the suboptimal rectification 

process. 

Conclusion 

In a previous study, we evaluated the detection of LM and CM stimuli embedded in 

LM and CM noises, and found that observers had the same sensitivity to both stimuli in 
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high noise conditions. The present study evaluated the detection of LM and CM stimuli 

embedded in three different noise types: LM-, CM- and carrier-noise. We found a double 

dissociation between LM and CM stimuli detection in the presence of LM- and CM-noise. 

LM-noise had a greater impact on LM processing than on CM processing, while CM-noise 

had a greater impact on CM processing than on LM processing. This double dissociation 

implies that both stimuli are, at least at sorne point, processed by separate mechanisms. 

Combining these results to the ones found in a previous study where similar CEs were 

observed for LM and CM stimuli detection, we conc1ude that the processing of CM stimuli 

requires an extra rectification pro cess but that both stimuli are processed by common post­

rectification mechanisms. 

Our resultsalso demonstrate that the IEN limiting the sensitivity to the carrier was 

sm aller than the one limiting the sensitivity to CM stimuli. We conc1ude that pre­

rectification noise is sm aIl relative to the total amount of internaI noise and therefore does 

not li mit the CM sensitivity. We suggest that the internaI noise limiting the sensitivity to 

CM stimuli is caused by a suboptimal rectification. 
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Abstract 

Since the I980s, many models (e.g. Linear Amplifier Model and the Perceptual 

Template Model) using external noise have been used extensively to evaluate observers' 

internaI noise. Indeed, such models have characterized various functions (e.g. learning, 

attention, letter recognition and face recognition) or deficits (e.g. dyslexia, amblyopia and 

aging). Furthermore, various techniques (e.g. reverse correlation) require adding noise. An 

important assumption underlying the application of these models and techniques is that 

adding external noise does not qualitatively alter the processing of the stimulus. In the 

present review, we argue that taken together, much data in the,literature demonstrates a 

double dissociation (although never presented as such) between the processing in noiseless 

and noisy conditions. Based on such double dissociations and further evidence, we also argue 

that the application of popular models measuring the impact of internaI noise leads to 

improbable interpretations. Alternatively, we conc1ude that adding noise to a stimulus 

qualitatively alters its processing. We further suggest that the application of these models 

should be revised. This compromises many interpretations of results wh en visual noise is 

used. 

Keywords: Signal detection theory; Noise; InternaI noise; Linear amplifier model; 

Perceptual template model 
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Contrast: A fundamental attribute 

Our visual system is effective within environments varying over a large brightness 

range. Several functions of our visual system enable us to adapt to different intensities. At 

the input, the pupil partially normalizes the retinal illumination by varying its size. At the 

retinal level, photoreceptors, which are absorbing photons and producing electrical 

impulses, are more sensitive once adapted to the mean luminance intensity of the 

environment explaining why our sensitivity gradually improves over several minutes after 

walking in a dark room. At a higher retinal processing level, ganglion cells, which 

indirectly receive their input from several retinal receptors, are sensitive to a luminance 

difference (i.e. contrast) between their center and surround. As a result, these cells detect 

luminance variations between their center and surround, and are little affected by absolute 

luminance variation affecting both the center and surround (HubeI & Wiesel, 1961). 

The axons of the ganglion cells form the optic nerve sending the retinal information 

to the visual cortex via the lateral geniculate nucleus. Consequently, at the optic nerve 

level, the visual information is mainly represented as center-surround contrast. The 

processes from the pupil to the ganglion cells enable the visual system to adapt to different 

environment intensities by converting luminance intensity information (photons entering 

the eye) into luminance variation (i.e. contrast) information. As a result, contrast is a 

fundamental attribute for the visual system and its processing has been widely studied and 

used to characterize various visual functions. 

Measuring contrast sensitivity 

At the level of the visual cortex, most neurons respond to bars of a particular 

orientation and frequency (HubeI & Wiesel, 1959). More specifically, the preferred 

stimulus (i.e. the receptive fields) ofthese neurons has the shape similar to a Gabor, which 

is a sine wave grating viewed from a Gaussian window. As a result, sine wave gratings are 
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the most widely used stimuli to measure contrast sensitivity in psychophysics. Contrast 

sensitivity is defined as the inverse of the detection threshold, i.e. the smallest contrast 

detectable. Psychophysically, the task used to measure contrast sensitivity typically consists 

in presenting two stimuli either subsequently (temporal-forced-choice) or simultaneously 

(spatial-forced-choice) and only one of them contains a signal. The contrast of the other is 

set to 0 and the task consists in identifying the stimulus containing the signal. The contrast 

of the signal is manipulated to find the detection threshold corresponding to the smallest 

contrast detectable based on a given criterion, i.e. a proportion of correct answers. 

Since contrast is a fundamental attribute, contrast sensitivity has been widely 

studied. For instance, contrast sensitivity was measured as a function ofvarious parameters 

such as spatial frequency, orientation and stimulus size or duration (Campbell & Robson, 

1968). Measuring contrast sensitivity as a function of the spatial frequency, which is 

typically referred to as the "contrast sensitivity function", are probably the most known 

results. We are typically more sensitive to spatial frequencies near 2 to 4 cyc1es/degree 

(cpd), which are therefore defined as medium frequencies. Our sensitivity gradually drops 

as the spatial frequency gets further from the medium frequencies. Figure IV -1 shows the 

contrast sensitivity function as a function of aging. Healthy aging affects contrast 

sensitivity at medium and high spatial frequencies (>2 cpd) but not at low spatial 

frequencies. 

Contrast thresholds for higher cognitive tasks 

Since the visual information entering the eye is converted into contrast information 

at the retinallevel, the visibility of an image can be altered by manipulating its contrast. As 

a result, measuring the stimulus visibility required to perform a given task can be used to 

characterize visual functions. Thus, contrast thresholds are measured for discrimination, 

recognition or identification tasks rather than for detection tasks. In other words, instead of 

asking the observer to detect the stimulus containing a signal (detection task), only one 
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stimulus is presented and the task consists in discriminating, recognizing or identifying a 

certain property of the stimulus. In either case, the dependant variable is the contrast 

required to correctly perform the task based on a given criterion level, i.e. proportion of 

correct answers. Such contrast threshold has been found useful to characterize various 

visual functions. 
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Figure IV-l. Contrast sensitivity as a function of spatial frequency for different age 

groups. Adapted from Owsley, Sekuler and Siemsen (1983). 

For instance, motion processing has been characterized by measunng contrast 

thresholds. To characterize motion processing, contrast thresholds are often measured using 

a direction discrimination task. A sine wave grating drifting either to the left or to the right 

is presented and the task consists in discriminating its direction. The dependant variable is 

the contrast of the grating. The threshold is typically defined as the smallest contrast 

required to correctly discriminate the drifting direction. As a result, contrast threshold has 

often been measured as a function of the temporal frequency, i.e. the drifting speed, to 

characterize motion processing. Analogously to spatial frequencies, the contrast sensitivity 

as a function of the temporal frequency has a reverse u-shape typically peaking near 8-10 

Hz. 
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Contrast thresholds are not just useful to characterize low level processing such as 

direction discrimination; it has also been used to characterize higher cognitive functions 

su ch as face identification or letter recognition. For instance, learning was found to have a 

great impact on contrast thresholds for face identification (Gold, Bennett & Sekuler, 1999). 

Since leaming hardly affects detection thresholds, contrast threshold improvement for face 

identification as a function of learning is attributed to higher cognitive processing. 

Consequently, contrast thresholds measuring the visibility required to perform a given task 

are useful to characterize high cognitive functions, such as face identification or letter 

recognition, as a function of various parameters su ch as learning and attention. 

InternaI noise 

As described above, contrast is a fundamental attribute and its processing has 

therefore been extensively studied. One of the goals pursued has been to identify and 

me as ure the factors limiting contrast sensitivity. A common view is that internaI noise 

within the visual system is an important limiting factor. From the light entering the eye to 

the stimulus percept, the visual information is transformed as it passes from one processing 

level to another. During each of these transformations the signal is altered. These 

alterations or signal deteriorations can be seen as internaI noise added to the signallimiting 

contrast sensitivity. 

Signal detection theory 

The signal detection theory (Green & Swets, 1966) suggests that detection 

thresholds are limited by internaI variation of the inner representation of a given stimulus. 

Based on this the ory, the contrast estimation of a given stimulus (internaI representation) 

can be modeled by a scalar. Due to internaI variations (i.e. noise), successive presentations 

of the same stimulus does not necessarily result in the same inner representation. Typically, 

it is assumed that the inner representation of a given stimulus at the decision level follows a 
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nonnal distribution. The mean of this distribution depends on the stimulus intensity (in our 

case, the contrast) and the standard deviation models the internaI noise. 

Giventwo stimuli, there will be an inner distribution for each one (Figure IV-2). For 

a typical detection task, one stimulus corresponds to a blank field and the other contains a 

signal with a given contrast. For the blank field, the inner contrast representation depends 

only on inner variations (or noise). For the stimulus containing the signal, the inner contrast 

representation depends on the contrast and inner variations. It is generally assumed that 

both distributions have the same standard deviation. To perfonn the task, the observer uses 

a certain decisjon criterion to discriminate the two stimuli. Given the optimal decision 

criterion, the observer's perfonnance will depend on two factors: the distance between the 

two means and the standard deviation of the distributions. The greater the efficiency of the 

observer to discriminate the two stimuli, the greater the distance between the two means 

will be. Since the inner contrast representation is not directly observable, the units of the 

inner representation are unknown and the means and standard deviation of the two 

distributions are not measurable. However, without 'knowing the means and standard 

deviation of the two distributions, it is possible to evaluate their ratio since the observer's 

perfonnance will directly depend on it. As a result, the distance between the two means in 

standard deviation units (typically referred as the d') is measurable and corresponds to the 

signal-to-noise ratio of the inner representation at the decision level. 
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Figure IV-2. Internai representation of the contrast of two stimuli (noise only and 

signal plus noise) based on the signal detection theory (Green & Swets, 1966). II 

represents the internaI variation of the internaI representation (i.e. internai noise). p 
represents the optimal decision criterion: if the internai representation of the stimulus 

is below the decision criterion, the subject responds that the signal was not present, 

otherwise he respond that it was present. )11 and )12 represents the mean of the 

representation. The performance of the observer (d') depends on the distance between 

the two means in standard deviation units. 

Measuring internaI noise 

As suggested by the signal detection theoty, it is generally assumed that the 

performance depends on the signal-to-noise ratio of the internaI representation. The 

visibility of a signal can therefore not only be altered by varying its contrast as described 

above but also by adding visual noise. Pelli (1981) proposed to measure the internaI neural 

noise by varying the external noise added to the stimulus. If the external noise is lower than 

the internaI noise, then the external noise will have no significant impact and the contrast 

threshold will not be significantly affected. If the external noise is greater than the internaI 

noise, then internaI noise will have no significant impact and contrast threshold will be 

limited by the external noise and should increase proportionally with the external noise 

contrast. As a result, contrast threshold as a function of the external noise contrast (TvC 

function) in log-log units will be initially flat for the portion where the internaI noise is 

greater than the external noise and will rise with a slope of 1 when the external noise is 
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greater than the internaI noise as shown in Figure IV-3. The breaking point will correspond 

to the internaI equivalent noise (IEN), that is, the external noise contrast having the same 

impact as the internaI noise. 
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Figure IV-3. Contrast threshold as a function of external noise contrast. The flat 

asymptote corresponds to the contrast threshold in absence of noise and the other 

asymptote with a slope of 1 represents the signal-to-noise ratio required in high noise. 

The image on the right illustrates the visibility of the signal (vertical bars) as a 

function of the extemal noise contrast. 

Assuming that the visual system adds noise to the stimulus, the contrast sensitivity 

can be seen as limited by two factors: the noise added to the signal and the signal-to-noise 

ratio required to detect the signal. In high external noise conditions, the internaI noise has 

no significant impact so the detection threshold only depends on the signal-to-noise ratio 

required to detect the signal. Pelli (1981) defined the calculation efficiency (CE) as the 

signal-to-noise ratio of the ideal observer relative to the signal-to-noise ratio of the human 

observer. As a result, the greatest CE theoretically attainable is 1. By evaluating the 

detection threshold of a given signal embedded in external noise (e.g. Figure IV -4) as a 

function of the external noise contrast enables the decomposition of the sensitivity into two 

factors: the internaI noise added to the signal by the visual system and the smallest signal-

-_ ....... ~- .~---------------------------------
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to-noise ratio the system requires to detect the signal. The former is evaluated by the IEN 

and the later by the CE. This model is generally referred to as the Linear Amplifier Model 

(LAM) and is illustrated in Figure IV-5. 

Figure IV-4. A Gabor (i.e. a sine wave grating viewed from a Gaussian window) in 

noiseless (left) and high noise (right). 

Stimulus Observer 

Noisy 
ISignal y ~ Contrast-invarian .4 

Calculation 
Decision 

IExt~rnall 
NOise 

1 Contrast-invarian 
. Noise 

Figure IV-5. Linear amplifier model (adapted from Pelli (1990)). The stimulus is 

composed of a signal embedded in external noise. The performance of the observer 

depends on two factors: noise added to the stimulus by the visual system ("contrast­

invariant noise") and the signal-to-noise ratio required to detect the signal ("noisy 

contrast-invariant calculation"). 

Mathematically, the detection threshold as a function of the extemal noise contrast 

is typically defined as (Legge, Kersten & Burgess, 1987, Pelli, 1981, Pelli, 1990): 
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dt(NexJ= k~N;xl + N i: t 

where Nint represents the IEN contrast and k is inversely proportional to the CE. As 

reviewed by Pelli (1990), this simple model was found to fit adequately many results. 

Figure IV-3 illustrates this function where in low external noise conditions, the detection 

thresholds remain relatively unaffected, but in high external noise conditions, the detection 

thresholds are proportional to the noise contrast (slope of 1 in log-log units). Note that both 

internaI and external noises significantly affect detection thresholds only if the external 

noise contrast is near the IEN. 

As a result, the LAM enables the decomposition of the sensitivity into two 

independent parameters (IEN and CE) by evaluating the contrast threshold as a function of 

the external noise contrast. Given a parameter affecting contrast sensitivity, decomposing 

the sensitivity into two independent parameters is useful to better characterize the 

sensitivity difference (Pelli & Farell, 1999). lndeed, models evaluating internaI noise have 

been extensively used to characterize various visual functions affecting contrast sensitivity 

such as learning (Dosher & Lu, 2006, Gold et al., 1999, Gold, Sekuler & Bennett, 2004, Lu 

& Dosher, 2004b), attention (Dosher & Lu, 2000a, Dosher & Lu, 2000b, Lu & Dosher, 

1998), aging (Bennett, Sekuler & Ozin, 1999, Pardhan, 2004, Pardhan, Gilchrist, Elliott & 

Beh, 1996, Speranza, Moraglia & Schneider, 2001) and dyslexia (Sperling, Lu, Manis & 

Seidenberg, 2005). It has also been used to characterize the sensitivity to signaIs defined by 

other attributes than luminance such as chromaticity (Gegenfurtner & Kiper, 1992) or 

texture contrast (Allard & Faubert, 2006) or higher cognitive functions such as letter 

recognition (Oruc, Landy & Pelli, 2006, Parish & Sperling, 1991, Pelli, Farell & Moore, 

2003, Pelli, Levi & Chung, 2004) or face identification (Gold et al., 1999, Gold et al., 

2004). Most ofthese results will be extensively described later in the present review. 
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Patterns of results 

Given two differing conditions, three pure patterns of results may emerge wh en 

evaluating contrast thresholds as a function of external noise contrast (Lu & Dosher, 1998): 

contrast thresholds may differ only in low noise (Figure IV-6a), in both low and high noise 

(Figure IV-6b), or only in high noise (Figure IV-6c). We will refer to these patterns as low-, 

all- and high-noise patterns respectively. 

Low-noise 
pattern 

Ali-noise 
pattern 

External noise contrast 

High-noise 
pattern 

Figure IV -6. Three pure patterns of results for two conditions. Contrast thresholds 

can differ only in low-noise (left), in both low- and high-noise (middle) or only in high­

noise (right). 

Low-noise patterns 

A low-noise pattern corresponds to a contrast threshold difference in low noise (i.e. 

difference of sensitivity) but no significant difference in high noise (Figure IV-6a). Based 

on the LAM, this difference is due to a difference of IEN since the internai noise only has 

an impact wh en the external noise is lower than the internai noise. In high external noise 

conditions, the impact of the internai noise is not significant and no contrast threshold 

difference is observed. 

Such low-noise pattern has often been observed when manipulating the visibility of 

the stimulus, i.e. the quality of the displayed stimulus. For instance, reducing the me an 
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luminance of the display (Figure IV -7) was found to increase the IEN without affecting the 

CE (Pelli, 1981) resulting in a low-noise pattern, i.e. contrast thresholds were affected in 

low- but not in high-noise when manipulating the display luminance. Analogously, the 

impact of a cataract which affects the retinal illumination was also found to affect contrast 

thresholds in low- but not in high-noise (Pardhan, Gilchrist & Beh, 1993). 

As concluded by Pelli and Farell (1999), "Equivalent noise, being independent of 

task, invites explanation in terms ofknown properties ofvisual neurons: their density, gain, 

variance, and physiological thresholds" (p. 651-652). In other words, by evaluating 

detection threshold in high noise (i.e. evaluating the CE) it is possible to abstract many low­

level parameters only affecting sensitivity at the level of the IEN. 

"0 
(5 
.c 
CI) 

~ 
;; 

~ 

0.1 

C 0.01 
o 

Ü 

o 

• 3.3 cd/m
2 

• 330 cd/m
2 

···············1·····:······· 
• 

• 

10-8 10-7 10-6 

Noise spectral density 

Figure IV-7. Contrast thresholds as a function of external noise contrast for two 

different background luminances. Adapted from Pelli (1981). Contrast thresholds 

significantly vary as a function of background luminance in low noise but not in high 

noise (low-noise pattern). 

Ali-noise patterns 

A difference of sensitivity due to different CEs would result in the all-noise pattern 

(Figure IV -6b). In other words, if, between two conditions, the sensitivity differs because of 
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different signal-to-noise ratio required to detect the signal, then the detection thresholds 

would differ independently of the external noise contrast, i.e. whether the source of the 

noise is internaI (low noise) or external (high noise). For contrast sensitivity, such pattern 

was found when modifying the window size (Pelli, 1981). Raghavan (1995) found similar 

IBN for various tasks such as identifying gratings, letters, or words. Indeed, the contrast 

thresholds differences between these tasks were found to be relatively constant as a 

function of the external noise contrast (aB-noise patterns). AB-noise patterns were also 

observed for higher perceptual tasks such as learning to identify faces (Gold et al., 1999, 

Gold et al., 2004). PeBi and Farell (1999) conc1uded that "Efficiency, being largely 

independent of viewing conditions, invites explanation in terms of the computation that 

combines the distributed stimulus and prior information to yield a decision." (page 652). 

High-noise patterns 

The third possible pattern (high-noise pattern, Figure IV -6c) is rather awkward since 

there is no difference of sensitivity (same contrast threshold in the absence of noise), yet the 

IBN s and CEs differ. In one condition, the CE is greater and thereby increases contrast 

sensitivity but the IBN is also greater and decreases contrast sensitivity by the same 

proportion. Consequently, these two differences cancel one another in low external noise. 

In high external noise, the internaI noise has no significant impact and the contrast 

threshold only depends on the CE. Thus, the difference of CEs results in different contrast 

thresholds. For contrast sensitivity, such pattern has been observed for learning (Dosher & 

Lu, 2006, Lu & Dosher, 2004b) , attention (Dosher & Lu, 2000a, Dosher & Lu, 2000b, Lu 

& Dosher, 1998), aging (Bennett et al., 1999, Pardhan, 2004, Pardhan et al., 1996, Speranza 

et al., 2001) and dyslexia (Sperling et al., 2005). We argue below that these results 

compromise the. application of the LAM and the experimental results of most of these 

studies wiB therefore be extensively discussed below. 
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Separate mechanism hypothesis 

It is generally assumed that adding external nOIse to a stimulus does not 

qualitatively alter its processing. Indeed, it is assumed that internaI noise is always added to 

the stimulus. Consequently, ev en in the absence of externa1 noise, the task can be seen as 

equivalent to signal processing in noise. The difference between contrast detection in low 

and high noise would be the origin of the effective noise source (internaI and external 

respectively) affecting the stimulus visibility without qualitatively affecting the nature of 

the task. That is, the detection in low and high noise wou Id be processed by the same 

mechanisms. Indeed, to apply the LAM, Pelli (1990) formulated an assumption proposing a 

"contrast-invariant calculation" of the "effective stimulus". The effective stimulus is the 

signal combined with the effective noise (internaI + external). Therefore, to apply the 

LAM, Pelli defines the assumption that the mechanism detecting the signal is the same 

irrelevant of the noise source (internaI or external). In other words, it is assumed that the 

same signal-to-noise ratio is required to detect wh ether the noise is internaI or external. 

Consequently, based on this model, adding noise would quantitatively, and not 

qualitatively, alter the processing of the stimulus. 

The present review questions the assumption that the same mechanisms are 

detecting a signal embedded in either internaI or external noise thereby implying that the 

same signal-to-noise ratio is required to detect the signal embedded either in internaI or 

external noise. Conversely, the present review suggests that adding external noise 

qualitatively alters the processing of the stimulus. In other words, it is not necessarily the 

same signal-to-noise ratio required to detect the signal whether the origin of the effective 

noise source is internaI or external. Specifically, we propose that the processing of a signal 

embedded in high external noise is processed by higher perceptual mechanisms than the 

processing of the same signal in a noiseless (or low external noise) condition. If different 

mechanisms are processing signaIs in internaI and external noise, this would force a 
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reinterpretation of many results previously obtained from vanous experiments usmg 

external noise and would also compromise the application of the LAM and its variants. 

One of the stronger arguments supporting the hypothesis that two stimuli are 

processed separately (at least at sorne point) is the observation of a double dissociation. To 

support our hypothesis, the present review highlights results reported in the literature that, 

although never explicitly presented as a double dissociation, actually satisfy its criteria. We 

will also present results suggesting that at least sorne stimuli processed in high external 

noise imply higher perceptual mechanisms than in a noiseless condition. 

Double dissociation 

To observe a double dissociation, the performance to two tasks (a and b) needs to be 

evaluated under two manipulations (A and B). A classical double dissociation occurs if 

manipulation A affects the performance to task a without affecting the performance to task 

b, and manipulation B affects the performance to task b without affecting the performance 

to task a. 

To decompose the sensitivity into IEN and CE, the detection threshold of a given 

signal (i.e. stimulus) must be evaluated in different external noise contrasts. As mentioned 

above, it is generally assumed that the nature of the task is unaffected by the external noise 

contrast. However, the present review rather suggests that varying the external noise 

contrast qualitatively alters the nature of the task, i.e. qualitatively alters the processing of 

the stimulus. From a double dissociation perspective, the two tasks correspond to the 

detection of a given stimulus in low «<IEN, zero slope on the TvC function presented in 

Figure IV-3) and high (»IEN, slope of 1 on the TvC function presented in Figure IV-3) 

external noise contrast. Our approach consists in showing that it is possible to find two 

manipulations inducing a double dissociation for the same stimulus: a manipulation 

affecting contrast thresholds in low but not in high external noise (low-noise pattern, Figure 
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IV-6a) and another manipulation affecting, for the exact same stimulus, contrast thresholds 

in high but not in low external noise (high-noise pattern, Figure IV -6c). 

Low-noise patterns 

Tt is possible to define a manipulation a priori that would unequivocally result in a 

low-noise pattern for any task: adding another external noise source to both tasks having a 

fixed contrast greater than the IEN. The external noise added would affect the contrast 

threshold in low noise since the added external noise source would be greater than the IEN 

but would not significantly affect contra st thresholds in high noise since the added external 

noise source would not be significant when the other external noise source would be 

greater. Consequently, a low-noise pattern would certainly be observed. 

Defining a manipulation a priori resulting into a single dissociation (low-noise 

pattern) valid for the contrast threshold of any tasks offers a great advantage: it allows 

inferring a double dissociation from any data resulting in the opposite single dissociation 

(high-noise pattern). Note however, as mentioned above, that low-noise patterns have been 

empirically observed in several conditions. For instance, manipulating the background 

luminance was found to affect thresholds in low but not in high noise contrast (Figure 

IV-7). 

High-noise patterns 

Since it is possible to induce a single dissociation (low-noise pattern) for any task 

consisting in processing a signal embedded in noise, showing a single dissociation in the 

opposite direction (high-noise pattern) results in a double dissociation between the 

detection of the stimulus in low and high noise. The objective of the present section is to 

show that high-noise patterns have empirically been observed as a function of various 

parameters, for various tasks and in various labs. 
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Attention 

To our knowledge, Dosher and Lu (2000b) were the first to observe a high-noise 

pattern. They found su ch pattern when manipulating the observer's spatial attention. They 

used an orientation discrimination task in which four Gabor patches (spatial frequency of 

1.12 cpd) embedded in noise were briefly presented (83 ms) around a centered fixation 

point. Each Gabor could have one of four orientations: 22.5, 67.5, 112.5 or 157.5 degrees. 

Observers had to report the orientation of one of the Gabors but they did not know before 

the stimulus presentation which Gabor was selected to perform the task, i.e. to report 

orientation. The report cue indicating on which Gabor the orientation should be reported 

was presented with the stimulus onset. The dependant variable was the contrast of the 

Gabor necessary to discriminate its orientation. At the stimulus onset, a cue near the 

fixation point indicated to the observer which Gabor had been selected. To modulate 

attention, 150 ms before the signal onset an arrow replaced the fixation point indicating to 

the observer which Gabor was the most likely (5 times out of 8) to be selected. As shown in 

Figure IV -8, a high-noise pattern was observed between valid and invalid pre-cueing. 

Contrast thresholds in unattended locations (i.e. when the selected Gabor was not the one 

previously cued by the arrow) were significantly higher (by a factor of about 1.32) wh en 

the task was performed in high noise but not in low noise. Dosher and Lu conc1uded that 

attention reduced the impact of the external noise. Their interpretation will be extensively 

discussed further below. 

This high-noise pattern of results was replicated using vanous, but analogous, 

methodologies and stimuli. For instance, Lu and Dosher (2000) found similar results using 

a different target: a "+" sign with one of the four segments missing (" "," "," "or 

" "). The task was to discriminate which symbol was presented. Again, by manipulating 

spatial attention with a pre-cued arrow, no significant contrast thresholds were observed in 

the no or low noise, but significant differences were observed in high noise. 
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Figure IV -8. Effect of attention on contrast threshold of an orientation discrimination 

task. Adapted from Lu and Dosher (2004a) who were re-plotting their results from 

Dosher and Lu (2000b). Contrast thresholds significantly vary as a function of 

attention in high noise but not in low noise (high-noise pattern). 

Learning 

Lu and Dosher (2004b) also found a high-noise pattern as a function of learning. 

Contrast thresholds of a Gabor patch (1.34 cpd) were evaluated in an orientation 

discrimination task in which the observer had to discriminate between a Gabor tilted to 37 

or 53 degrees. In each of the ten learning sessions, contrast thresholds were measured in 

different noise conditions. Each session was composed of 1440 trials. 

Learning gradually improved contrast thresholds in high noise conditions without 

significantly improving thresho1ds in low (or no) noise conditions (Figure IV-9). Indeed, in 

the highest noise condition, the contrast threshold at the last two sessions was reduced by a 

factor of 1.5 compared to the two first sessions and in no external noise conditions, learning 

reduced contrast threshold by a factor of 1.04. 
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Figure IV-9. Effect of learning on contrast threshold of an orientation discrimination 

task. Adapted from Lu and Dosher (2004b). Contrast thresholds significantly vary as 

a function of learnging in high noise but not in low noise (high-noise pattern). 

Since learning only significantly improved contrast thresholds in high nOise 

conditions, by applying the LAM Lu and Dosher found that learning increased both the CE 

and IEN by similar proportions. They therefore conclude that the LAM leads to improbable 

interpretations, since it would be unlikely that learning increases IEN. They concluded, like 

when manipulating attention, that learning improves the ability to exclude external noise. 

Again, their interpretation will be extensively discussed below. 

Betts, Sekuler and Bennett (2007) evaluated young and older observers contrast 

thresholds for an orientation discrimination task. Although there objective was not to 

evaluate the impact of learning on contrast threshold, they collected their data for each 

group over two days. A statistical analysis (ANOVA) revealed a simple main effect of the 

testing day. On average, the IEN and CE increased by similar proportions (a factor of about 

1.25) between the two testing days. In other words, practice did not significantly affected 

contrast thresholds in low noise but improved it in high noise. Following Lu and Dosher, 

they proposed that practice improved the ability to exc1uded external noise. 
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Aging 

Bennett, Sekuler and Ozin (1999) evaluated the impact of aging on a contrast 

detection task in low and high noise for different spatial-frequency uncertainties. The 

contrast detection to three spatial frequencies (1, 3 and 9 cpd) in a two-spatial-forced­

choice procedure, i.e. two stimuli (one containing only noise and the other containing both 

a signal and noise) were presented simultaneously and the observer had to identify which 

one contained the signal. In the no frequency-uncertainty conditions, observers knew the 

frequency of the signal which was constant within a block of trials. In the frequency­

uncertainty conditions, observers ,did not know the spatial frequency of the signal which 

varied between trials. 

No important difference of uncertainty effect was found between the two groups. 

Because they are beyond the scope of the present review, the small differences within 

groups due to the frequency-uncertainty will not be discussed. Instead, we will focus on the 

data they obtained in low and high noise for the two age groups (median of22 and 68 years 

old). In low noise, a contrast sensitivity difference (detection threshold in absence of 

external noise) was observed only at 9 cpd between the two groups. For the 1 and 3 cpd 

spatial frequencies, the sensitivities were similar between the two groups. These results are 

not surprising based on the known impact of aging on the contrast sensitivity function: 

aging affects the contrast sensitivity to high spatial frequencies without affecting contrast 

sensitivity for low spatial frequencies as presented above (Figure IV -1). In high noise, 

aging affected the contrast detection thresholds in similar proportions for all three spatial 

frequencies by factors of 1.45 and 1.66 in the no-uncertainty and the frequency-uncertainty 

conditions respectively. The results observed for 1 and 3 cpd gratings are evidence of a 

classical single dissociation (high-noise pattern): aging did not affect contrast thresholds in 

low-noise and impaired contrast thresholds in high-noise. 



110 

Pardhan (2004) compared lEN and CE between a young (17 to 22 years) and an old 

(60 to 72 years) group. For 1 cpd stimuli, she found that aging had no significant impact on 

contrast sensitivity (i.e. detection thresholds in noiseless conditions) as it is usually 

observed for low spatial frequencies (Figure IV -1). By decomposing the sensitivity into 

!EN and CE, she found a significant decrease of CE with aging but no significant difference 

of lEN between the two groups. How could that be? If the CE is lower and there is no 

difference of lEN, then the sensitivity should be reduced. A closer look at her analysis 

reveals that she compared contrast sensitivities in log units as it is usually (and should be) 

done, but her fit and statistical analysis on lEN and CE were performed in linear units, 

which increases the weights of higher thresholds. Indeed, her graph shows a poor fit at the 

contrast sensitivity for the older group: the fit in noiseless condition estimates a threshold 

greater than aU the thresholds of the older observers. Note that Speranza, Moraglia and 

Schneider (2001) also found analogous results using similar methodologies and analyses 

when comparing contrast thresholds of young and old observers for spatial frequencies of 

1.1 and 2.2 cpd. For both studies, visually examining their graphs suggests that there is no 

threshold difference in low noise (as they found by comparing the data in log units) but the 

older group showed significantly higher thresholds (as they found when comparing CEs). 

We therefore conc1ude that their data are consistent with what has been previously 

observed (see above) with aging for similar spatial frequencies: higher thresholds in high 

noise without any significant effect in low noise (high-noise pattern). 

Dyslexia 

Sperling, Lu, Manis and Seidenberg (2005) also found a high-noise pattern when 

comparing the performance to a contra st detection task between dyslexie (i.e. children with 

reading disabilities) and non-dyslexie children. The stimuli were vertical sinusoidal 

gratings viewed through a Gaussian window (i.e. Gabor patterns). Both groups had similar 

contrast thresholds in noiseless conditions, but the dyslexie group had higher contrast 

thresholds in high external noise conditions. The authors conc1ude that dyslexie children 
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are less effective at excluding external noise and that the reduced effectiveness to exclu de 

external noise could contribute to reading disabilities. As mentioned above, su ch 

interpretation will be discussed below. 

Amblyopia 

Amblyopia is a developmental visual disorder characterized by lower visual acuity 

even though no known ocular anomalies are diagnosed. It is generally suggested that 

amblyopia is caused by important differences between the two eyes generally due to 

anisometropia or strabismus. It is now generally admitted that amblyopia causes relatively 

high processing deficits (i.e. extra-striate) that cannot be explained by low-level deficits 

su ch as contrast sensitivity loss (Lerner, Pianka, Azmon, Leiba, Stolovitch, Loewenstein, 

Harel, Hendler & Malach, 2003, Shanna, Levi & Klein, 2000, Simmers, Ledgeway & Hess, 

2005, Simmers, Ledgeway, Hess & McGraw, 2003). Since this deficit is cortical and is 

known to affect high-order functions, it has been widely studied as a function of various 

tasks su ch as first- vs second-order motion processing (Simmers et al., 2003) or multiple­

object tracking (Ho, Paul, Asirvatham, Cavanagh, Cline & Giaschi, 2006). 

Pelli, Levi and Chung (2004) measured contrast thresholds for letter identification 

perfonned either in a noiseless or noisy backgrounds as a function of the letter size. When 

nonnalizing for individual acuity (letter size relative to each observer's acuity), they found 

similar contrast thresholds as a function of acuity-nonnalized letter size between nonnal 

and amblyope observers. This suggests that after compensating for each observer's acuity, 

letter processing for amblyopes is nonnaI. When perfonning the exact same task in visual 

noise, amblyopes had greater (i.e. worst) contrast thresholds. These results cannot be 

directly interpreted as a high-noise pattern since the task perfonned by the nonnal and 

amblyope observers is not exactly the same since the letter size were scaled relative to the 

visual acuity which is lower for amblyopes. Consequently, it is theoretically possible that 

amblyopes have lower CEs for letter identification but also have lower IEN s at the tested 
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spatial frequency which depends on the letter size. Nonetheless, the authors also evaluated 

the IENs and CEs without nonnalizing for acuity. They found that the CEs were lower for 

amblyopes and that the difference between the two groups decreased with the letter size. 

For large letters, amblyopes had similar IEN but for smallietters they had less IEN. In other 

words, for the identification of small letters, amblyopia increased contrast thresholds in 

high noise more than in low noise. The authors were surprised and had trouble explaining 

the lower IEN obtained for amplyopes. The authors could think of two possible factors that 

could explain the lower IEN for amblyopia observers when viewing smallietters: the pupil 

size and modulation transfer function of the optics of the eye. They therefore measured, in 

the same testing conditions, the pupil size of a few amblyopes which is known to be 

greater. However, the difference between the pupil size of the amblyopes and nonnal 

observers was not significant. It would have had to be large to explain the IEN reduction. 

They therefore deduced that the modulation transfer function was underestimated. 

However, they did not directly test this hypothesis. 

Even though these results do not correspond to a pure high-noise pattern for small 

letters (contrast thresholds in low noise was still affected by amblyopia but to a lower 

extent than in high noise), we conclude that they suggest distinct processing in low and 

high external noise. Indeed, the fact that amblyopia affects contrast thresholds more, for 

small letters, in high noise than in low noise suggests that adding noise does not only 

remove the impact of a factor (internaI noise), it also alters the processing. 

Discussion 

These examples show that, for contrast thresholds, it is possible to empirically find 

high-noise patterns (single dissociations). In other words, many results from different labs 

showed that in sorne conditions, thresholds in high noise are affected but not thresholds in 

low noise. Combining these results with the single dissociation deduced a priori above 

(low-noise pattern), these examples result in classical double dissociation cases. We 
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therefore conc1ude that, for such tasks, it is possible to find manipulations affecting contrast 

thresholds in low but not in high noise and other manipulations affecting contrast 

thresholds in high but not in low noise, resulting in a c1assical double dissociation. 

Distinct signal-to-noise ratio required in low and high 

noise 

Typically, evidence of a double dissociation is interpreted as a strong argument 

supporting the hypothesis that the two tasks are processed, at least partially, by separate 

mechanisms. However, a double dissociation does not necessarily imply this hypothesis. As 

argued by Dunn and Kirsner (2003), a double dissociation implies that at least two 

processes are involved but does not necessarily imply that both tasks are processed by 

separate mechanisms. Indeed, if the accomplishment of either task necessitates two 

. common processes but the effectiveness of each process affects the two tasks by different 

proportions, it is theoretically possible to observe a double dissociation without inferring 

that the two tasks are processed by separate mechanisms. The impact of increasing the 

effectiveness of one process and reducing the effectiveness of the other could completely 

cancel one another for one task but not for the other resulting into a single dissociation. 

Modifying the effectiveness of the processes with a different combination could also result 

in a single dissociation in the opposite direction resulting into a double dissociation. 

One of the assumptions of the LAM is that signal-to-noise ratio required to detect 

the signal is the same whether the noise is internaI or external. In other words, a contrast­

invariant mechanism would be processing a signal embedded in internaI or external noise. 

Based on this assumption, knowing the signal-to-noise ratio required to detect the signal 

(CE, i.e. contrast thresholds in high noise) and knowing the signal contrast required to be 

detected in internaI noise (contrast sensitivity, i.e. contrast thresholds in low noise), it is 

possible to deduce the IEN. The present review questions this assumption and proposes that 
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different mechanisms are extracting the signal from either internaI or external noise. This 

separate mechanism hypothesis can easily explain the double dissociations observed 

between the processing in low and high noise. 

However, since a double dissociation does not necessarily imply the separate 

mechanism hypothesis, we investigate, in the present section, the plausibility that the same 

mechanism is extracting the signal from internaI and external noise. Using a proof by 

contradiction, we conclude that it is not the same mechanism extracting the signal from 

noise in low and high noise. We therefore start by assuming that the same mechanism is 

extracting the signal from internaI and external noise and then show that this assumption 

leads to improbable interpretations. We therefore conclude that the double dissociations 

observed suggest that separate mechanisms are extracting the signal from internaI and 

external noise. 

A process only effective in high-noise 

The double dissociations show that it is possible to affect contrast threshold in low 

noise without affecting thresholds in high noise (low-noise pattern) and it is also possible to 

affect contrast threshold in high noise without affecting thresholds in low noise (high-noise 

pattern). The low-noise pattern can easily be explained by internaI noise which would only 

have an impact in Iow noise. In other words, as suggested by the LAM, adding noise 

eliminates a factor influencing contra st thresholds, i.e. internaI noise, and thereby enables to 

decompose contrast sensitivity Înto two factors: !EN and CE. The LAM therefore assumes 

that aIl the factors having an impact in high noise also have the same impact in low noise. 

Below, we question this assumption. 

Indeed, high-noise patterns challenge the application of the LAM. If we suppose 

that aIl the factors having an impact on contrast thresholds in high noise also have an 

impact in low noise, then we must conclude that high-noise patterns are caused by the 

alteration of at least two factors: one effective in low and high noise (e.g. CE, i.e. the 
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signal-to-noise ratio required to detect the signal) and another canceling the impact of the 

other in low noise (e.g. IBN). As a result, to explain a high-noise pattern there would be 

two factors altered in low noise: one decreasing the contrast thresholds and the other 

increasing it by the same proportion. In other words, a high-noise pattern would be caused 

by the conjunction of a low- and an alI-noise pattern. Consequently, it is theoretical1y 

possible to explain the high-noise patterns observed for learning, attention, aging and 

dyslexia without supposing the existence of a factor having and impact only in high noise. 

Thereby, it is theoretically possible to explain these double dissociations without inferring 

the separate mechanism hypothesis. However, it is improbable that learning and attention 

decrease the effectiveness of a factor (based on the LAM, the IBN), and that aging, dyslexia 

and amblyopia increase the effectiveness of a factor. 

Note that Lu and Dosher (2004b) used similar arguments to criticize the application 

of the LAM arguing that its application leads to improbable interpretations. Based on the 

LAM, Lu and Dosher would have had to conc1ude that, in their conditions, learning and 

attention increased the CE but also increased, in the same proportions, the IBN. 

Analogously, we could also naively apply the LAM to the aging and dyslexia results 

mentioned above. From the LAM's perspective, we would conc1ude that aging and dyslexia 

reduced the CE but also reduced, in the same proportion, the IBN. Based on the LAM, we 

would also conc1ude that amblyopia reduces the IBN. In agreement with Lu and Dosher, we 

conc1ude that, although the LAM could theoretically explain these patterns of results, the 

interpretations induced are improbable: learning and attention would increase IBN, and 

aging, dyslexia and amblyopia would decrease IBN. 

Instead, we conc1ude that at least one factor limiting contrast thresholds in high 

noise has no significant impact in low noise. In other words, high-noise patterns are caùsed 

by the alteration of a factor limiting contrast thresholds exc1usively in high noise and not by 

a factor limiting contrast thresholds in low and high noise (alI-noise pattern) combined with 

another factor canceling the effect in low noise (low-noise pattern). This conclusion 
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compromIses the application of the LAM which assumes that al1 the factors limiting 

contrast thresholds in high noise also limits contrast thresholds in low noise. 

External noise exclusion 

Concluding that a certain factor only has an impact in high nOIse does not 

necessarily imply that different mechanisms are extracting the signal from noise (i.e. 

different signal-to-noise ratios are required) in low and high external noise. In high noise, 

the internaI noise is not significant and the performance only depends on the signal and 

external noise contrasts. Since affecting the signal strength would affect contrast thresholds 

in low noise, a mechanism only affecting thresholds in high noise would have to affect the 

external noise without affecting the signal strength. Consequently, if we assume that it is 

the same mechanism extracting the signal from internaI and external noise (Le. the same 

signal-to-noise ratio is required in low and high noise) and that such mechanism is 

unaffected (because no contrast threshold difference is observed in low noise) then the 

difference exclusively observed in high noise (high-noise patterns) must be due to a 

mechanism affecting external noise without affecting the signal. 

Noise is typically defined as random fluctuation. As a result, once combined, two 

noise sources become indistinguishable form one another. If a given process only affects 

one of the two noise sources, then it must be effective before the two noise sources are 

combined. Consequently, a mechanism only affecting external noise must be effective 

before the main internai noise source is added. 

Note that any processing affecting the signal would also affect the noise at the 

signal spatiotemporallocation and frequency by the same proportion since both are merged 

(even an ideal observer is affected by noise). Indeed, a contrast gain affecting the signal and 

noise would have no impact on the signal-to-noise ratio and would thereby have no 

significant impact on contrast thresholds. As a result, the noise exclusion mechanism 

cannot be effective at the signal (i.e. at its spatiotemporal frequency and spatiotemporal 
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location). However, noise does not only have energy at the signal spatiotemporal frequency 

or location. A noise exclusion mechanism could reduce the impact of external noise that is 

not at the spatiotemporal frequency or location without affecting the signal. If the noise that 

is not at the signal frequency and location affects performance of a human observer (even 

though it would not affect the performance of an ideal observer), then reducing the impact 

of this noise would reduce contra st thresholds in high noise. Improving the efficiency of 

such mechanisms would result in a high-noise pattern. Consequently, the impact of external 

noise would be reduced in high noise conditions but not in low external noise conditions 

resulting into a high-noise pattern. In other words, the external noise exclusion mechanism 

would reduce the impact of irrelevant and potentially disturbing information such as 

external noise near (but not at) the signal spatiotemporal frequency or location. Based on a 

priori knowledge of the signal, an external noise exclusion mechanism could have different 

contrast gains between the signal and the noise near (but not at) the signal. 

A model with an external exclusion mechanism has been proposed by Lu and 

Dosher (1998): the perceptual template model (PTM). As shown in Figure IV-ID, the PTM 

has several parameters and most are irrelevant to the purpose of the present review. We will 

therefore only consider the two relevant to the purpose of the present review: an external 

noise exclusion parameter and an additive internaI noise. Altering the former results in a 

high-noise pattern and altering the later results in a low-noise pattern. 

According to Lu and Dosher, learning and attention would enable the nOIse 

exclusion mechanisms to ignore irrelevant information such as noise at a different 

spatiotemporal frequency than the signal and only keep the information near the signal. 

Since this mechanism is effective before the additive internaI noise, it only reduces the 

impact of external noise without altering the impact of additive internaI noise. 

Consequently, this parameter only significantly affects contrast thresholds in high external 

noise and varying it results into a high-noise pattern (Figure IV-6c). Based on the same 

reasoning, aging, dyslexia and amblyopia would affect the ability to exclude external noise. 
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Stimulus Observer 

Template Nonlinearity MUI~~I~:tive A~~:~~e Decision 

Figure IV -10. The Perceptual Template Model (PTM). Adapted from Lu and Dosher 

(2000). N m and Na represents multiplicative and additive internaI noise. The present 

review focused on two parameters of the observer's performance: the template 

excluding external noise only has a significant impact in high external noise 

conditions, and the additive noise, which only has a significant impact in low external 

noise conditions. 

As described above, a priori knowledge about the signal would help the observer to 

focus only on relevant information by ignoring (decrease the contrast gain of noise near, 

but not at, the signal) irrelevant information at spatiotemporal frequencies or locations 

different than the signal. Such filtering performed by the external noise exclusion 

mechanism could also be artificially applied to the stimulus. Consequently, filtering the 

external noise to remove irrelevant information would reduce the impact of the external 

noise exclusion mechanism by reducing the noise to exclude. 

In a series of experiments, Lu, Dosher and colleagues systematically investigated 

this hypothesis (Dosher, Liu, Blair & Lu, 2004, Lu & Dosher, 2004c, Lu, Jeon & Dosher, 

2004, Lu, Lesmes & Dosher, 2002). They modulated endogenous attention of observers 

performing an orientation discrimination task. They evaluated the impact of attention in 

high noise as a function of various filter applied to the noise. Noise filtering was either 

spatially (i.e. occurring more or less near the signal in the Euclidian domain), temporally 
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(i.e. occurnng more or less at the same time as the signal) or in the spatiotemporal 

frequency domain (i.e. more or less near the signal in the Fourier domain). In aH cases, 

filtering the noise had no important impact on the contrast thresholds difference between 

the attended and unattended conditions. In other words, ev en wh en filtering the noise as a 

function of any dimension, attention always improved the performance. If there was an 

external noise exclusion mechanism, this mechanism should exclude noise along sorne 

dimension without affecting the signal strength to explain the high-noise patterns observed. 

However, along any dimension it was impossible to observe an important external noise 

exclusion reduction wh en filtering the external noise. 

Lu, Jeon and Dosher (2004) concluded that external noise exclusion mechanisms 

"uniformly reduce the gain to external noise ... without affecting the gain to the signal 

stimulus" (p. 1347). For instance, when manipulating the spatial frequency of the external 

noise, Lu and Dosher (2004c) conclude that the external noise exclusion mechanism 

"excludes external noise uniformly across aH the spatial frequencies without changing the 

spatial frequency selectivity of the perceptual template" (p. 955). However, the external 

noise and the signal are merged. We do not see how a mechanism could uniformly affect 

the noise at aH the spatiotemporal locations and frequencies (including the spatiotemporal 

frequency and location of the signal) without affecting the signal. In other words, they 

attribute sorne contrast threshold variations to an external noise exclusion mechanism 

affecting only the external noise instead of attributing this variation to the mechanism 

extracting the signal from noise. However, empirical results force them to conclude that the 

external noise exclusion mechanism is effective at the signal spatial frequency without 

affecting the signal. We find this conclusion improbable and find more parsimonious the 

hypothesis that effects observed in high noise is due to the effectiveness of the mechanism 

extracting the signal from noise. In other words, the different contrast thresholds observed 

in high noise as a function of various parameters (e.g. attention, learni~g, aging and 

dyslexia) wou Id be due to different signal-to-noise ratio required to detect the signal and 

not to the exclusion of the external noise al the signal. If the signal-to-noise ratio is altered 
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in high noise but not in low noise, then we are forced to conc1ude that it is not the same 

mechanism extracting the signal from internaI and external noise. In other words, high­

noise patterns would not be due to amechanism exc1usively affecting external noise 

without affecting the signal or internaI noise, but would rather be due to a different signal­

to-noise ratio required to extract the signal from noise which would be exc1usively effective 

in high noise. 

Discussion 

The goal of the present section was to investigate if the same mechanism is 

extracting the signal from either internaI or external noise. The approach we used was to 

first assume the corn mon signal-extraction mechanism hypothesis and then show that such 

hypothesis leads to improbable interpretations. 

If it is the same mechanism extracting the signal from internaI or external noise, 

then wh en a manipulation affects contrast thresholds in high noise and not in low noise, this 

high-noise pattern can either be due to the combination of a low-noise and aU-noise pattern 

(as suggested by applying the LAM) or due to a factor having an impact on the extern·al 

noise without affecting the signal or internaI noise (as suggested by applying the PTM). By 

being resistant to a double dissociation (i.e. explaining low- and high-noise patterns without 

inferring distinct mechanisms), the LAM and the PTM suggest theoretically possible 

interpretations of high-noise patterns. However, either model leads to improbable 

interpretations. In certain conditions, the LAM would suggest that learning and attention 

would increase the IEN, and that aging, dyslexia and amblyopia would decrease the IEN (in 

many cases, by the same proportion as the CE). The PTM would suggest that it is possible 

to exc1ude the external noise at the signal spatiotemporal frequency and location without 

affecting the signal. 

Based on these cumulative evidences, we find it more parsimonious to conc1ude that 

both tasks (detection in low and high external noise) are processed by distinct mechanisms, 
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rather than usmg a model resistant to a double dissociation leading to improbable 

interpretations. Based on the double dissociation principal, we suggest a simp1er 

hypothesis: separate mechanisms are extracting the signaIs embedded in internaI (i.e. no or 

low external noise) and high external noise. This new interpretation severely compromises 

the application of these models used to characterize visual functions and thereby suggests a 

reinterpretation of various important results. 

Contrast thresholds in high noise 

The double dissociation between processing in low and high noise suggests that 

adding noise does not only change the noise source affecting contrast thresholds (external 

in high noise versus internaI in low noise) without affecting the nature of the task but rather 

suggests that adding noise to the stimulus qualitatively alters the nature of the task. In order 

to characterize the processing differences relative to the external noise contrast, we 

examined whether the processing in high noise is more complex and solicits higher 

perceptual mechanisms than the processing of the same stimulus in low noise. 

Independent to low-Ievel aIterations 

As summarized in the "Low-noise patterns" subsection of the "Patterns of results" 

section above, by evaluating contrast threshold in high noise it is possible to abstract many 

low-Ievel parameters affecting contrast threshold in noiseless conditions. In other words, 

adding external noise provides a task in which distortions added by the visual system (i.e. 

internaI noise) have no significant impact. 

Furthermore, any contrast gain affecting the signal and the external noise has no 

impact on the signal-to-noise ratio and thereby do not affect contrast thresholds. lndeed, the 

fact that both the signal and externa1 noise utilizes the same pathways implies that any 

alterations applied to the signal will also be applied to the noise at the signal. As a result, 
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increasing the contrast of the stimulus (i.e. of both the signal and noise) has no impact on 

the signal-to-noise ratio and thereby does not affect contrast thresholds. This is confirmed 

by the slope of 1 in log-log units of the TVC function in high-noise (Figure IV-3): 

increasing the external noise contrast by a given proportion affects the contrast threshold by 

the same proportion. Alternatively, in noiseless conditions, a contrast gain occurring before 

the main internaI noise source would directly affect the signal-to-noise ratio and thereby 

affect contrast thresholds. 

As a result, contrast thresholds in high noise are unaffected by internaI noise and by 

any contrast gain parameters. Contrast thresholds in high external noise are therefore, as 

conc1uded by Pelli and Farell (1999) and discussed above, independent of many low-level 

alterations affecting the visibility of the stimulus (and thereby contrast thresholds in low 

noise) such as internaI noise or contrast gains. Thus, adding external noise enables to 

abstract many low-level factors (e.g. ocular factors such as cataracts, display luminance, 

contrast gains) that influence contrast thresholds in low noise. 

High-noise patterns: high-Ievel manipulations 

Above, four pure high-noise patterns were observed III certain conditions as a 

function of learning, attention, aging and dyslexia. In the present section, we investigate, 

for each of these variables, the processing level at which they have an impact. In other 

words, we examine whether these conditions typically affect low or high perceptual tasks. 

Attention 

Above, we cited results obtained by Lu and Dosher about the impact of attention on 

contrast thresholds. Attention was spatially altered by giving a pointing cue indicating the 

most likely target location to be the one selected to report orientation. Lu and Dosher 

(2000, 2004a) described this manipulation to activate the endogenous attention system, i.e. 

top-down attention. Indeed, the cue indicates the observer where to focus his attention. This 
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cue was not near the stimulus needed to be processed to perform the task. Consequently, to 

affect the attention level to the pointed target, the pointing sign must first be interpreted. 

Therefore, as described by Lu and Dosher, such attention corresponds to top-down 

attention. As a result, endogenous (or top-down) attention reduced contrast thresholds in 

high but not in low external noise. 

Lu and Dosher (2000) also manipulated attention by presenting the cue near the 

stimulus location which involuntarily increased the" spatial attention near the cue. They 

described such attention as activating more the exogenous attention system (bottom-up). 

They found that exogenous attention system had an impact in both low and high noise 

conditions (alI-noise pattern). In other words, top-down attention improved thresholds in 

high noise and bottom-up attention improved thresholds in both low and high noise. 

Consequently, they attributed threshold reduction in low noise to the exogenous attention 

system (bottom-up) and threshold reduction in high noise mainly to the endogenous 

attention system (top-down). This suggests that processing in high noise corresponds to a 

higher perceptual task than in low noise. 

Learning 

Although plasticity occurs at aIl processing levels, it is more prominent for complex 

tasks than for simple tasks. Consequently, finding an improvement in high but not in low 

noise (i.e. the high-noise pattern presented above) suggests that the task performed in high 

noise utilizes higher perceptual mechanisms. 

Furthermore, in their study on learning described itbove, Lu and Dosher (2004b) 

also evaluated if the learning transferred to a different visual scale. After the 10 days of 

practice, observers were trained for 6 days to the same task with the exception that the 

viewing distance was varied by a factor of 2. Recall that learning had no impact on contrast 

thresholds in low noise but reduced thresholds in high noise. Changing the viewing 

distance resulted in changing the stimulus' spatial frequency by 1 octave. Over 6 days of 
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training, no substantial improvement was observed in both low and high noise conditions. 

For thelow noise conditions, these results are not surprising since learning did not have a 

significant impact over the first 10 days. However, the fact that no learning occurred in 

high noise suggests that the learning completely transferred between the two spatial 

frequencies. This learning transfer also suggests the implication of relatively high 

processing mechanisms. The learning transfer observed between the processing of two 

spatial frequencies suggests the existence of a common mechanism extracting the signal 

from noise at both scales. 

Aging 

Aging is known to affect complex tasks (Faubert, 2002) and peripheral or low-Ievel 

mechanisms. However, the fact that, as described above, aging has no impact on contrast 

threshold for low spatial frequencies suggests that peripheral or low-Ievel mechanisms are 

not limiting factors for low spatial frequencies. The observation of high-noise patterns as a 

function of aging therefore suggests that processing in noise is more complex. 

Dyslexia 

Sperling, Lu, Manis and Seidenberg (2006) compared poor and good readers wh en 

performing a coherent-motion task. In this task, there are a certain percentage of dots 

moving in a coherent direction (the signal) while the other dots are moving in random 

directions (the noise). The dependant variable was the percentage of dots moving in a 

coherent direction necessary to perceive the motion direction. In one conditions, both the 

signal and noise dots were defined by the same color (hard task), and in the other condition, 

they were defined by different colors helping the observer to segregate the signal and noise 

(easy task). They found that the poor readers had the same coherence threshold for the easy 

task but had high threshold for the hard task. They conclude that the poor readers did not 

have a motion perception deficit but their ability to exclu de external noise (i.e. dots moving 

in random directions) was reduced. In other words, the lower coherence threshold for the 
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poor readers would not be caused by low level factors 1imiting the perception of motion, 

but to the ability of the observer to segregate, at a high processing level, the signal and 

noise elements. Consequently, the fact that dyslexie children have higher contrast 

thresholds in high noise and have similar contrast thresholds in low noise as non-dyslexie 

children is consistent with the hypothesis that contrast thresholds in high noise is more 

complex. 

Discussion 

Since these manipulations (learning, attention, aging and dyslexia) are known to 

affect more high perceptual tasks than low perceptual tasks and that contrast thresholds in 

noiseless conditions are known to be a relatively low-Ievel task, we conclude that 

processing in high-noise is more complex and is performed by higher perceptual 

mechanisms than processing in low (or no) noise. The fact that high-noise patterns were 

observed for learning, top-down attention, aging and dyslexia, suggests that adding noise 

increases the complexity of the task. 

Attribute-invariant 

The present review proposes another strong argument suggesting that contrast 

detection in noise is processed by relatively high level mechanisms: contrast thresholds are 

attribute-invariant. Indeed, changing the attribute defining' the signal and noise did not 

affect contrast thresholds as demonstrated by the studies presented below. 

Luminance vs chromaticity 

Gegenfurtner and Kiper (1992) evaluated luminance and chromatic detection 

thresholds in luminance and chromatic noise. Based on their data, it is possible to find a 

noise contrast level for each attribute affecting the detection when the signal and noise are 

composed of the same attribute without affecting the detection when they are composed of 
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different attributes. Indeed, at a given contrast level, luminance noise affected luminance 

detection without affecting chromatic detection and chromatic noise affected chromatic 

detection without affecting luminance detection. This double dissociation confirms, as it is 

generally admitted, that both attributes are not processed by the same mechanisms. 

Wh en both signal and noise were defined by the same attribute, they found the same 

detection threshold in high noise (low-noise pattern; Figure IV-11). In other words, 

luminance and chromatic signaIs necessitated the same signal-to-noise ratio to be detected: 

observers were just as efficient at detecting a luminance signal in luminance noise as 

detecting a chromatic signal in chromatic noise. This suggests that the same mechanism is 

extracting luminance signaIs embedded in luminance noise and chromatic signaIs 

embedded in chromatic noise. 

Luminance vs contrast 

Analogous results were obtained for first- and second-order processing. Allard and 

Faubert (2007) evaluated the detection threshold of luminance- (LM) and contrast­

modulated (CM) signaIs in LM and CM noises. They found no (or little) cross-attribute 

interaction suggesting that both attributes are processed by separate mechanisms: LM noise 

had no or little impact on CM detection and CM noise had no or little impact on LM 

detection. 

Although the contrast thresholds differed in the absence of noise, they did not 

significantly differ in high noise when the signal and noise were defined by the same 

attribute (Allard & Faubert, 2006). In other words, observers had the same detection 

threshold in high-noise for both attributes (low-noise pattern; Figure IV -12) suggesting that 

common mechanisms are extracting LM signaIs in LM noise and CM signaIs in CM noise. 
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Figure IV-H. Threshold as a function of external noise contrast for luminance and 

color attributes. Signal and noise are defined by the sa me attribute. In high external 

noise conditions, observers are just as efficient at detecting a luminance signal 

embedded in luminance noise as detecting a chromatic signal embedded in chromatic 

noise. Adapted from Gegenfurtner and Kiper (1992). 
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Figure IV -12. Threshold as a function of external noise contrast for luminance and 

contrast attributes. Signal and noise are defined by the same attribute. In high 

external noise conditions, observers are just as efficient at detecting a luminance 

signal embedded in luminance noise as detecting a contrast signal embedded in 

contrast noise. Adapted from Allard and Faubert (2007). 
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An attribute-invariant mechanism 

The attribute-invariance of contrast detection in high noise (at least for luminance, 

color and contrast) suggests the implication of common high-level mechanisms extracting 

the signal from noise. Although important threshold differences in low noise were observed 

for different attributes, the visibility of the attribute is not a factor in high noise. Indeed, 

changing the attribute ofboth the signal and noise to another, changes the visibility to both 

signal and noise without changing the signal-to-noise ratio. As demonstrated by the slope 

near 1 in log-log units for contrast detection in high noise (TvC function), increasing (or 

decreasing) both the signal and noise without altering the signal-to-noise ratio does not alter 

the visibility of the signal. Consequently, changing the visibility of both the signal and 

noise by switching attribute does not affect the signal-to-noise ratio in high noise conditions 

even though the two attributes do not have the same contra st gain. If the same mechanism 

is extracting the signal from noise for aIl attributes, then the same detection thresholds will 

be observed in high noise conditions. Note that similar CEs do not necessarily imply 

common mechanisms extracting the signal from noise .. There could be three separate 

mechanisms having similar efficiencies extracting the signal from noise for luminance, 

color and contrast. However, it would be surprising to have three similar mechanisms 

performing similar tasks with similar efficiencies and yet be distinct. 

Discussion 

Based on the conclusion that contrast detections in low and high noise are not 

processed by the same mechanisms~ the arguments in the present sections argues that the 

detection in high noise involves higher perceptual mechanisms than the detection in low 

noise. Indeed, contrast thresholds in high noise are independent of many low-level 

parameters, several parameters known to affect higher perceptual task (top-down attention, 

learning, aging and dyslexia) were found to affect, in certain conditions, contrast thresholds 

exclusively in high noise and contrast thresholds in high noise were found to be attribute-
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invariant. These arguments suggest that thresholds in high noise are limited by high level 

factors. 

Furthermore, these arguments can be added to the ones argumg against the 

hypothesis (as suggested by the PTM) that a mechanism affecting exclusively external 

noise would affect contrast thresholds in high noise. In the PTM, the mechanism excluding 

externaI noise occurs before the internaI noise is added. As discussed above, this processing 

order is necessary to explain a high-noise pattern. Indeed, once the internaI and external 

noises are combined, they become indistinguishable. Consequently, a processing level 

limiting the impact of the noise after the main internaI noise source would affect thresholds 

in both low and high external noise. Therefore, given that the PTM has a processing level 

affecting only thresholds in high external noise conditions, this processing level must occur 

before the internaI noise is added. Indeed, the parameters known to affect low-Ievel tasks 

affect thresholds in low noise and the ones known to affect high-Ievel tasks affect 

thresholds in high noise. Reversing the order of these mechanisms as suggested by the PTM 

therefore seems improbable. 

For instance, consider the fact that contra st threshold in high noise is attribute­

invariant (i.e. same contrast threshold in high noise for different attribute). Again, this 

suggests the existence of an attribute-invariant mechanism extracting the signal from 

external noise. According to the PTM, this mechanism would be the external noise 

exclusion mechanism only influencing thresholds in high noise conditions. Note that no or 

little cross-type interaction has been observed suggesting that these attributes are processed 

by separate mechanisms. The difference of sensitivity (threshold in low noise) wouId be 

interpreted, according to the PTM, as a difference in additive internaI noise occurring after 

the external noise exclusion mechanism. Consequently, the processing of different 

attributes would share the same initial attribute-invariant mechanism (external noise 

exclusion) but would be processed by separate mechanisms at a· higher level of processing. 
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This wou1d be improbable since attribute-invariant mechanisms usually correspond to high 

1eve1 mechanisms. 

General discussion 

Visua1 noise is often. used in psychophysics for various purposes. It is generally 

assumed that adding noise to a stimulus does not qualitatively alter its processing. 

Conversely, the present review conc1udes that, at least in sorne conditions, adding external 

noise qualitatively alter the nature of the task. Consequently, interpretations using external 

noise could be compromised. Indeed, assuming that a given stimulus is not processed 

qualitatively differently whether it is presented in noiseless or noisy conditions may have 

mi sIed sorne interpretations. 

Measuring internai noise 

As suggested by the signal detection theory, it is generally assumed that internaI 

noise limits our ability to perform certain tasks. When contrast is the de pendant variable of 

a certain task, the LAM proposes to measure the impact of the internaI noise by adding 

external noise. In high external noise, the internaI noise has no significant impact and the 

signal and noise contrast are both known. By assuming that the same signal-to-noise ratio is 

required in noiseless conditions (i.e. assuming no qualitative difference between low and 

high external noise conditions), it is possible to deduce the impact of the internaI noise. 

This assumption was formulated by Pelli (1990) as follows: "the calculation performed is 

independent of the contrast of the effective stimulus" (p. 6-7). The effective stimulus may 

be defined as the sum of the signal, external noise and internaI noise. In other words, by 

assuming that the same processing is performed whether the signal is embedded in internaI 

or external noise, the relative impact of the internaI noise can be deduced. 
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Based on double dissociations for processing in low (i.e. internaI) and high (i.e. 

external) noise, we conclude that, at least in sorne conditions, such an assumption is not 

valid. Since it is not necessarily the same signal-to-noise ratio required to extract the signal 

from internaI and external noise, it is not possible to deduce the impact of the internaI noise 

based on the signal-to-noise ratio in external noise. This conclusion thereby compromises, 

at least in sorne conditions, the application of the models evaluating internaI noise such as 

the LAM or PTM. AlI things considered, to measure the impact of internaI noise using 

external noise we must assume that the task remains the same when adding external noise. 

However, the present review argues that, at least for wide variety of conditions, this is not 

case. 

Reverse correlation 

The reverse correlation method (Abbey & Eckstein, 2002, Ahumada, 2002, Murray, 

Bennett & Sekuler, 2002) uses noise to reveal internaI representation. This method consists 

in performing a binary task in high external noise. Suppose that the possible answers are 'a' 

and 'b'. An observer performs the task for a large number of trials. The difficulty of the 

task is adjusted (typically by manipulating the stimulus contrast) so that the performance is 

not perfect but still above chance. As a result, the external noise added to the stimulus 

affects the observer's performance. In other words, if a certain noise template makes the 

stimulus 'b' more similar to the stimulus 'a', then such noise templates could lead the 

observer to an incorrect answer. The reverse correlation consists in analyzing the noise 

template used as a function of the answer given by the observer. Such analysis is performed 

by computing the difference between the average of the noise templates used in the trials in 

which the observer ans~ered 'a' and the average of the noise templates used in the trials in 

which he answered 'b'. If the observer was biased to answer 'a' when a given region is 

white, then, on average, this region of the noise templates will be lighter when the observer 

answered 'a' then 'b'. As a result, the region of the noise templates that bias the observer 

should appear by applying the reverse correlation. This method therefore reveals the spatial 
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regions on which the observer based his decisions. The reverse correlation reveals sorne 

information used by the observer when performing the task in noise. However, there is no 

guaranty that the observer uses the same regions to perform the task in noiseless conditions. 

Experimenters using this technique generally assume that the observer uses the same spatial 

region to perform the task in absence of external noise and thereby generalize their results 

to the task performed in noiseless conditions. In other words, they assume that adding noise 

does not qualitatively alter the processing of the stimulus. 

For instance, this method has been used to characterize the differences between 

perceiving upright and inverted faces. We are better at recognizing a face when it is 

presented upright rather than wh en it is presented upside-down. This effect has generally 

been interpreted as evidence that face recognition is holistic and that inverting a face 

qualitatively alters its processing by making it less holistic (Farah, Tanaka & Drain, 1995a, 

Farah, Wilson, Drain & Tanaka, 1995b, Murray, Yong & Rhodes, 2000, Tanaka & Farah, 

1993, Valentine, 1988). To study the spatial regions used to recognize a face upright or 

inverted, Sekuler, Gaspar, Gold and Bennett (2004) applied the reverse correlation method 

for a face recognition task. They found that the same spatial regions were used whether the 

face was presented upright or inverted. They conclude, as opposed to the general 

consensus, that inverting faces alters the task quantitatively but not qualitatively. This may 

be true for their testing conditions, i.e. in high external noise, but may not generalize to 

noiseless conditions. To generalize this interpretation to noiseless conditions, we must 

assume that adding noise does not qualitatively alter the nature of the task and, as suggested 

by the present review, there is no guaranty that this is the case. 

Using an EEG protocol, Schneider, DeLong and Busey (2007) recently found 

evidence that upright and inverted faces are qualitatively processed differently. In noiseless 

conditions, inverting a face increased the Nl70 amplitude response attributed to face 

processing as it has been previously observed. However, when external noise was added to 

the stimulus, they found that inverting a face decreased the N 170 amplitude response. 
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These two qualitatively different patterns of results support the main conclusion of the 

present review suggesting that adding noise to a stimulus (it this case, a face) qualitatively 

affects its processing. Consequently, upright and inverted faces could be qualitatively 

processed similarly in high external noise (as suggested by Sekuler et al. (2004)), but could 

be processed qualitatively differently in noiseless conditions as it is generally conc1ud~d 

(Farah et al., 1995a, Farah et al., 1995b, Murray et al., 2000, Tanaka & Farah, 1993, 

Valentine, 1988). 

Contrast deteetion in noise: A specifie pereeptual task 

As mentioned by Pelli and Farell (1999), adding noise enables to abstract many 

low-Ievel parameters which they defined as influencing the IEN. We agree that in high 

noise conditions a given task becomes independent to many low-Ievel factors as discussed 

above. However, the present review suggests that it does not only eliminate the impact of 

certain low-level factors it also qualitatively alters the processing, i.e. it also adds other 

factors limiting contrast thresholds only in high noise. In other words, although the nature 

of the task is altered by external noise, this new task is also independent of many low-Ievel 

factors. As a result, contrast thresholds in noise are independent of the background 

luminance intensity and ocular distortions su ch as cataracts. More generally, any parameter 

equivalent to adding noise or to apply a contrast gain to the stimulus has no impact on 

contrast thresholds in high noise. 

For a simple task, su ch as contrast detection, we have argued above that adding 

noise qualitatively alters the nature of the task by making it more complex. However, such 

perceptual task remains cognitively simple. The task simply consists in indicating which 

interval contained the signal. Consequently, contrast detection in noise is a specific 

perceptual task independent of most low-Ievel peripheral parameters su ch as ocular factors, 

and is also independent of high cognitive factors since the task is cognitively simple. This 

suggests that contrast detection in noise is a specific perceptual task, i.e. it dependents 
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almost excIusiveIy on perceptual factors. Moreover, this task is perceptually complex 

enough so that it is significantly affected by various manipulations such as aging, learning, 

attention, dyslexia and amblyopia. Consequently, contrast detection in noise is a useful task 

to exclusively assess perceptual functions by evaluating the ability of the visual system to 

process complex information. 

Conclusion 

Adding noise to a stimulus has often been used to study visual functions. For visual 

tasks, adding noise to an image deteiiorates its content and generally affects the observer' s 

performance. There are several reasons to add noise. For instance, adding noise enables to 

null the impact of internaI noise (or low-level factors). It has also been used to enable ideal 

observer analysis which consists in comparing an observer performance with the one of an 

ideal observer. Furthermore, noise has been used to reveal internaI representation by 

correlating the noise templates with the observer's answers (reverse correlation). AlI things 

considered, noise has been widely used to characterize low and high level visual functions. 

The present review highlights data present in the literature providing direct evidence 

of double dissociations between the presence and absence of external noise. This suggests 

that adding noise to a visual stimulus affects, at Ieast in some conditions, the nature of the 

task, i.e. different mechanisms are solicited. Therefore, experimenters should be careful 

when adding noise to there stimuli and they should not presume a priori that adding noise 

does not qualitatively affect its processing . 
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Abstract 

There is no consensus on the type of nonlinearity enabling motion processing of 

second-order stimuli. Sorne authors suggest that a nonlinearity specifically applied to 

second-order stimuli prior to motion processing (e.g. rectification process) recovers the 

spatial structure of the signal permitting subsequent first-order motion analyses (e.g. filter­

rectify-filter model). Others suggest that nonlinearities within motion processing enable 

first-order sensitive mechanisms to process second-order stimuli (e.g. gradient-based 

model). In the present study, we evaluated intra- and inter-attribute interactions by 

measuring the impact of dynamic noise modulators (either luminance (LM) or contrast­

modulated (CM)) on the processing of moving LM and CM gratings. When the signal and 

noise were both of the same type, similar ca1culation efficiencies but different internaI 

equivalent noises were observed at all temporal frequencies. At high temporal frequencies, 

each noise type affected both attributes by similar proportions suggesting that both 

attributes are processed by common mechanisms. Conversely, at low temporal frequencies, 

each noise type primarily impaired the processing of the attribute of the same type 

suggesting distinct mechanisms. We therefore conc1ude that two fundamentally different 

mechanisms are processing CM stimuli: one lowpass and distinct from the mechanisms 

processing LM stimuli and the other common to the mechanisms processing LM stimuli. 

Keywords: Second-order, contrast-modulated, motion, noise, filter-rectify-filter model, 

gradient-based model, feature tracking 
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Introduction 

There is no consensus on how second-order stimuli are processed. Typically, first­

order stimuli are defined by luminance or color, and second-order stimuli are defined by 

sorne other attribute such as contras t, orientation or texture (Baker, 1999; Cavanagh & 

Mather, 1989; Chubb & Sperling, 1988; Wilson, Ferrera, & Yo, 1992). Second-order 

stimuli are composed of a carrier and an envelope. The envelope locally defines a certain 

property of the carrier (e.g. contrast). 

Sorne authors suggest the existence of specialized mechanisms dedicated to second­

order stimuli (e.g. filter-rectify-filter model; (Wilson, Ferrera, & Yo, 1992», while others 

rather suggest that, at least for sorne second-order stimuli, nonlinearities within first-order 

sensitive mechanisms could enable second-order perception (e.g. gradient-based model; 

(Benton, 2002; Benton & Johnston, 2001; Benton, Johnston, McOwan, & Victor, 2001; 

Taub, Victor, & Conte, 1997».· Luminance- (LM) and contrast-modulated (CM) patterns 

(Movie V -1) are the more frequently used profiles to represent first- and second-order 

stimuli respectively. The present paper investigated whether such motion stimuli are 

processed by common or separate mechanisms. 

Movie V-l. Luminance- (Ieft) and contrast-modulated (right) signais. The temporal 

frequency is 2 Hz. (Movie available on the CD attached to the thesis.) 
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Filter-rectify-filter model 

The filter-rectify-filter model suggests that LM and CM stimuli are initially 

processed by separated pathways (see Baker (1999) for a review). Extra processing for CM 

stimuli (rectification process) would reveal the spatial structure of the envelope, which 

could then be processed by subsequent mechanisms. Indeed, this model suggests that before 

perceiving the signal (i.e. envelope), the local property of the carrier should first be 

evaluated (in this case the contrast) followed by its variation over space (i.e. the signal or 

envelope). In other words, to perceive a difference of contrast, we first need to evaluate the 

local contra st of different spatial regions. 

Gradient-based model 

The fact that we can perceive second-order stimuli containing no spectral energy 

near the envelope frequency led several authors to suggest the existence of a dedicated 

mechanism for second-order processing such as the filter-rectify-filter model presented 

above. However, sorne authors have proposed models in which both LM and CM would be 

processed by common mechanisms (Benton, 2002, 2004; Benton & Johnston, 2001; 

Benton" Johnston, McOwan, & Victor, 2001; Johnston, Benton, & McOwan, 1999; 

Johnston & Clifford, 1995a; Johnston, McOwan, & Buxton, 1992; Taub, Victor, & Conte, 

1997). For instance, a gradient-based algorithm (Benton & Johnston, 2001) computing the 

temporal derivative relative to the spatial derivative could reveal the motion direction of 

both LM and CM stimuli. Consequently, although CM stimuli do not have spectral energy 

near the envelope frequency, nonlinearities (e.g. ratio of temporal vs spatial derivatives) 

within motion processing could enable LM sensitive mechanisms to also detect CM stimuli. 

Such an algorithm would not initially recover the spatial property of the stimulus; it would 

directly process the direction of motion based on the spatial and temporal local variation of 

luminance. One ofthe limits of the gradient-based model is that it would not be sensitive to 

aIl second-order stimuli (Lu & Sperling, 2001). Nonetheless, the gradient-based approach 
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suggests that, in sorne conditions, the visual system may not require dedicated motion 

mechanisms to process second-order stimuli. 

Spatial LM and CM processing 

In a recent study on spatial vision (Allard & Faubert, 2007), we evaluated inter­

attribute interactions between static LM and CM stimuli. We found that LM noise affected 

LM signal detection but had little or no impact on CM signal detection, and, vice versa, CM 

noise affected CM signal detection but had little or no impact on LM signal detection. This 

double dissociation implies that both cues must be processed, at least at sorne point, by 

separate mechanisms. These results are in agreement with Schofield and Georgeson's 

results showing no subthreshold summation between LM and CM stimuli (Schofield & 

Georgeson, 1999) and similar detection (LM vs noise and CM vs noise) and recognition 

(LM vs CM) thresholds (Georgeson & Schofield, 2002) suggesting that LM and CM 

stimuli are processed by two separated pathways. 

In another study (Allard & Faubert, 2006), we decomposed the sensitivity to static 

LM and CM stimuli into internaI equivalent noise and calculation efficiency (Legge, 

Kersten, & Burgess, 1987; Pe1li, 1981, 1990). The internaI equivalent noise corresponds to 

the amount of noise added to the stimulus having the same impact as the internaI noise. The 

calculation efficiency is inversely proportional to the smallest signal-to-noise ratio at which 

the signal may be detected. We found that the difference of sensitivity to LM and CM 

stimuli was due to a difference of internaI equivalent noise and not to a difference of 

ca1culation efficiency. In other words, in high noise conditions, observers had similar 

detection thresholds to both LM and CM stimuli. Indeed, observers were just as efficient at 

detectÎl.'lg LM signais embedded in LM noise as CM signais embedded in CM noise. This 

suggests that common mechanisms could be extracting the signal from noise for both LM 

and CM stimuli. Schofield and Georgeson also found similar responses to static LM and 

CM stimuli. They observed similar spatial (Schofield & Georgeson, 1999) and temporal 



147 

(Schofield & Georgeson, 2000) integration and similar sensitivity function shapes 

(Schofield & Georgeson, 1999). They also found inter-attribute interactions: adapting to 

one cue affected the perceived modulation depth of the other (Georgeson & Schofield, 

2002). However, since inter-attribute adaptation effects in high contrast conditions are not 

very pattern selective (Ross & Speed, 1996; Snowden & Hammett, 1992, 1996), they 

conc1uded that common adaptation is not strong evidence for common processing. 

Schofield and Georgeson (1999) therefore conc1uded that static LM and CM stimuli 

are processed by distinct mechanisms with similar properties that share common adaptive 

mechanisms. Alternatively, we proposed that the detection of static LM and CM stimuli are 

initially processed by separate pathways, but are processed by common mechanisms at 

higher levels (Allard & Faubert, 2007). Based on the fact that no inter-attribute interaction 

was observed near threshold we suggested that common late mechanisms could focus on 

either attribute without merging them. If late mechanisms were processing both attributes 

simply by merging them, the noise presented to one pathway would affect the detection of 

the signal presented to the other. We therefore suggested a gating model in which la te 

mechanisms could select either attribute while ignoring the other. 

Purpose of the present study 

The main objective of the present study was to apply a similar noise-masking 

paradigm as the one we have used to study statie LM and CM processing in order to 

investigate whether LM and CM motion stimuli are processed by common or separate 

mechanisms. We therefore evaluated contrast threshoids of moving LM and CM signaIs 

embedded in LM and CM dynamic noise. When the signal and noise were both defined by 

the same attribute, it was possible to decompose the sensitivity into internaI equivalent 

noise and ca1culation efficiency. Similar ca1culation efficiencies, i.e. similar signal-to-noise 

ratio required to detect the signal, would suggest that, at least at sorne point, both types of 

stimuli are processed by common mechanisms. Inter-attribute interactions were evaluated 
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by superimposing a signal and noise defined by different attributes. No or titde inter­

attribute interaction would imply that both stimuli must be processed, at least at sorne point, 

by separate mechanisms. Altematively, complete inter-attribute interactions (LM and CM 

noise each affecting LM and CM processing by the same proportions) would suggest that 

the two cues are processed by common mechanisms. 

Experiment 1: Compressive nonlinearity 

We are more sensitive to first-order than second-order cues. As a result, small 

artifacts (introduced either by the display or by the visual system) can enable first-order 

sensitive mechanisms to process second-order stimuli. Experimenters must therefore assert 

that first-order artifacts are too small to enable, by themselves, first-order sensitive 

mechanisms to process second-order stimuli. 

Component motion (Scott-Samuel & Georgeson, 1999) can occur when the carrier's 

spectral energy is not broadband (e.g. periodic or highpass carriers). For such carriers, the 

spectral energy is concentrated at sorne frequencies. Adding a contrast modulation to the 

carrier gives rise to two spectral energy peaks near each energy peak of the un-modulated 

carrier which are referred to as sidebands. The sideband with the lowest spatial frequency 

has motion energy in the opposite direction to the CM signal and the other has motion 

energy in the same direction as the CM signal. If the observer is more sensitive to the 

sideband with the lowest spatial frequency then he will perceive motion in the opposite 

direction of the signal. In the present study, the carrier used was defined only by high 

spatial frequencies so component motion could have been an issue. However, the fact that a 

direction discrimination task was used ensures that this artifact was not a concem. Indeed, 

if observers were processing motion due to this artifact, then their response would have 

been incorrect when motion was perceived and the staircases would not have converged. 

Since this was not the case in aIl the conditions, we concluded that the results were 

unaffected by component motion artifacts. 
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When using broadband static nOIse as a carrier, local first-order artifacts could 

enable CM processing (Smith & Ledgeway, 1997). If the mean luminance of a spatial 

region of the carrier is not equal to the mean luminance of the entire stimulus, then adding a 

CM signal causes a local first-order artifact by introducing a LM signal within this region. 

Local first-order artifacts will be of opposite polarity for spatial regions of the carrier with 

lower and higher local luminance relative to the mean luminance. As a result, there will be 

no spectral energy in the Fourier domain since the opposite polarities wil1 on average 

cancel one anothér. Nonetheless, there will be local direction biases at various spatial 

regions that could be used to discriminate the motion direction. Since the carriers used in 

the present study contained spectral energy only at high spatial frequencies, a11 local mean 

luminance were equal to the mean luminance of the display and this type of artifact was 

therefore not an issue. 

The global distortion product artifact is caused by compressive nonlinearities of the 

visual system (Scott-Samuel & Georgeson, 1999; Smith & Ledgeway, 1997). Indeed, it has 

been shown that there are early nonlinearities within the visual system prior to LM sensitive 

mechanisms (He & Macleod, 1998; Legge & Foley, 1980; MacLeod, Williams, & Makous, 

1992). These nonlinearities were found to be compressive and generally too weak to 

explain CM sensitivity (Scott-Samuel & Georgeson, 1999; Smith & Ledgeway, 1997). A 

compressive nonlinearity would reduce the mean luminance of high-contrast regions. 

Consequently, although the mean luminance of two regions varying in contrast are the 

same, early nonlinearities could introduce luminance variations making CM stimuli visible 

to LM sensitive mechanisms. Therefore, the experimenter could erroneously conclude that 

a CM stimulus is processed by CM sensitive mechanisms although it is actually processed 

by LM sensitive mechanisms fo11owing an early nonlinearity. The present experiment had 

two goals. First, measure the early nonlinearity for each tested condition, i.e. for each 

subject and each temporal frequency. Second, ensure that the processing of CM stimuli is 

not due to an early compressive nonlinearity and that CM stimuli were processed by CM 

sensitive mechanisms in a11 tested conditions. 
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An early compressive nonlinearity may be canceIled by introducing an expansive 

nonlinearity of the same magnitude into the stimulus (Scott-Samuel & Georgeson, 1999). 

The resulting nonlinearity may be defined as the sum of the early nonlinearity introduced 

by the visual system and the nonlinearity introduce within the stimulus. Our objective was 

to find the non1inearity that needs to be introduced within the stimulus to cancel the early 

nonlinearity caused by the visual system. We supposed that both nonlinearities cancel one 

another if the same performance is observed whether a LM and a CM signal are combined 

either in phase (high contrast regions of the CM signal matching with high luminance 

regions of the LM signal) or in counter-phase (high contrast regions of the CM signal 

matching with low luminance regions of the LM signal). Indeed, a resulting compressive 

nonlinearity would lower the contrast of the LM signal in the in-phase condition and would 

increase the contrast of the LM signal in the counter-phase condition. This would be 

equivalent to introducing a LM signal in counter-phase with the CM signal. Consequently, 

the resulting compressive nonlinearity would enhance the LM signal in the counter-phase 

condition and would reduce it in the in-phase condition. As a result, the performance wou Id 

be greater in the counter-phase condition. Alternatively, an expansive nonlinearity would 

cause the opposite pattern resulting in a better performance in the 'in-phase condition. 

However, if both nonlinearities (nonlinearity of the, stimulus and of the visual system) 

cancel one another, the same performance level should be observed whether the LM and 

CM signaIs are combined in-phase or in counter-phase. 

Method 

Apparatus 

The stimuli were presented on a 19 in ViewSonic E90FB .25 CR T monitor with a 

mean luminance of 47 cd/m2 and a refresh rate of 120 Hz powered by a Pentium 4 

computer. The lO-bit Matrox Parhelia512 graphie card could produce 1024 gray levels that 

could aIl be presented simultaneously. The monitor was the only light source in the room. 
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A Minolta CS 1 00 photometer interfaced with a homemade pro gram calibrated the output 

intensity of each gun. At the viewing distance of 1.14 m, the width and height of each pixel 

were 1/64 deg of visual angle. 

DAC precision 

Although the setup used could display 1024 levels of grey, in certain conditions the 

contrast thresholds approached the smallest grey difference (1/1024). Since the desired 

luminance value for each pixel generally correspond to a continuous value, this value had 

to be rounded with a precision of 1/1024, i.e. to the nearest DAC value. This procedure éan 

sometimes create sufficiently high artifacts to alter contrast threshold measurement. 

Instead of simply rounding to the nearest DAC value, we used a different algorithm 

consisting in randomly choosing between the two nearest DAC values. The probability 

distribution between the two values was set so that the expected value was the desired 

continuous DAC value. That is, the probability of choosing the higher DAC value was 

equal to the remainder of the continuous desired DAC value. For example, if the desired 

continuous DAC value was 123.25, then the probability distribution was 0.25 for 124 and 

0.75 for 123. This random selection was independently applied to each pixel of each frame. 

The advantage of using such a method is that the expected luminance of each pixel 

o~ each frame is equal to the desired continuous luminance. Consequently, for a luminance 

grating, the expected luminance value would vary continuously and it could therefore be 

possible to present a grating with a difference of luminance smaller than one DAC value (or 

1/1024 of the maximal luminance ). The spatiotemporal summation of a given region should 

result into a me an luminance value near the expected luminance. The disadvantage of this . 

method is that it adds noise (random variations) to the presented stimulus. Thus, the noise 

added to the display may become a limiting factor. 
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This method of randomly selecting between the two nearest DAC values is 

mathematically equivalent to rounding to the nearest DAC value after adding dynamic 

noise in which each element is randomly selected from a uniform distribution varying 

between -0.5 and 0.5 DAC values. Since the noise sampling varied at 120 Hz and the noise 

contrast was small (less than 1/1 024), the spectral energy of the noise was also small. To 

ensure that this noise had no significant impact, we measured the noise contrast required to 

significantIy decrease the sensitivity to a LM stimulus. We fOUnd that the noise contrast 

required to affect sensitivity had to be at least 10 DAC values, which is much larger than 

the noise introduced when randomly se1ecting between the two nearest DAC values. We 

therefore concluded that the random variation introduced wh en randomly selecting the 

DAC value had no significant impact and enabled the apparatus to display a 1024 grey 

scale resolution equivalent to a continuous grey scale resolution. 

Observers 

Two psychophysically experienced observers participated in the study: one of the 

authors and the other naïve to the purpose of the experiment. They had normal or corrected­

to-normal vision. 

Stimuli 

For CM stimuli, binary noise is typically used as a carrier. However, one of the 

targets of the present study was to evaluate internaI equivalent noise. Intrinsic noise within 

the stimulus could be a limiting factor affecting the measurement ofIEN (Allard & Faubert, 

2006). Consequently, we did not want the stimulus to have intrinsic noise so instead of 

using binary noise we used a static checkerboard as a carrier. Its contrast was set to 50% 

and each check was composed of 6x6 pixels (5.6x5.6 minutes). To avoid LM cues within a 

check, the luminance within each check was kept spatially constant (Smith & Ledgeway, 

1997). Keeping the luminance within each check spatially constant is equivalent to 

reducing the stimulus spatial resolution. Since the checks were small relative to the signal 
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(21 checks per period), such lowering of the spatial resolution was judged to have no 

significant impact. 

AlI the stimuli used in the present study can be defined as the sum of two terms: a 

luminance modulation (MLl.Âx,y,t» and the multiplication of a contrast modulation 

(McAix,y,t» 'W;ith a static carrier (T(x,y»: 

where Lo represents the luminance average of the stimulus and the background luminance. 

In the present experiment, T(x,y) corresponded to a static checkerboard. Its values were -0.5 

if x+y was odd and 0.5 otherwise resulting in a Michelson contra st of 0.5. The luminance 

and contrast modulations were sine wave gratings: 

MLM(X,y,t)= 1 + (CLM + nCCM )sin(sx+ ft + p), (2) 

MCM(x,y,t) l+CcMsin(sx+ft+p), (3) 

where s, f and p represent, respectiveIy, the spatial frequency (0.5 cpd), the temporal 

frequency (varying between and ±16 Hz depending on the testing condition) and the 

initial phase (randomized at each trial). C LM and CCM represent the contrast of the LM and 

CM signaIs which varied according to the condition. n corresponds to the nonlinearity 

added to the stimulus in order to compensate for early nonlinearities within the visual 

system. A positive nonlinearity (n>O) corresponds to an expansive nonlinearity (higher 

luminance for higher contrast regions), while a negative nonlinearity results into a 

compressive nonlinearity. 

A circular spatial window with a diameter of 4 deg and soft edges following a half 

cosine of 0.5 deg was used. Outside the carrier, the screen remained blanked to the mean 

luminance (Lo=47 cd/m2
). The presentation time was 500 ms .. Between trials, when no 

stimulus was presented, a non-modulated carrier was shown with a centered fixation point. 
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Procedure 

The task consisted of discriminating the drifting direction (either left or right) of the 

LM or CM signal by pressing one of two keys. To measure the compressive nonlinearity, 

the contrast thresholds to LM (manipulating CLM and keeping CCAFO) and CM 

(manipulating CCM and keeping CLAFO) stimuli were evaluated using a 2-down-l-up 

procedure (Levitt, 1971). The staircase was interrupted after sixteen inversions and the 

threshold was estimated by the geometric mean of the contrast (CLM or CCM) at the last 8 

inversions. The initial signal contrast (the dependant variable) was set significantly above 

threshold. The step size before the second inversion was 0.2 log units. Afterwards and until 

the forth inversions it was set to 0.1 log units. Subsequent to the forth inversion the step 

size was 0.05 log units. 

It was important to properly evaluate the LM and CM contrast thresholds since the 

settings of the next procedural step depended on them. Large measurement errors could 

compromise the next procedural step consisting in measuring the compressive nonlinearity 

of the visual system. To enhance threshold precision, LM and CM thresholds were 

evaluated three times (three staircases) for each temporal frequency. Each threshold was 

estimated as the geometric mean of the three staircases. 

For each temporal frequency, once the contrast thresholds to LM (CLM) and CM 

(CCM) stimuli were measured (which we will denote TLM and TCM, respectively), the 

expansive nonlinearity that needed to be introduced within the stimulus (n) to compensate 

for the compressive nonlinearity of the visual system was evaluated. To do so, the 

performance level (proportion of correct answers) was evaluated when superimposing LM 

and CM signaIs at threshold either in-phase (CLAFTLM and CCAFTCM) or in counter-phase 

(CLAFhM and CcAF-TCM). For each of these two phase conditions, five nonlinearities (n) 

were added. As mentioned above, the nonlinearity was an additional LM signal in-phase 

with the CM signal with contrast nCCM. For comparative reasons, we also evaluated the 
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performance level to LM (CaFTtM and CcAFÛ) and CM (CLAFÛ and CCfltFTCM) signaIs 

separately. Overall, performance was evaluated. for twelve stimuli: the combination of LM 

and CM signaIs in-phase using 5 different nonlinearities, the combination of LM and CM 

signais in counter-phase using the same 5 different nonlinearities, a LM signal alone and a 

CM signal alone using one nonlinearity. The five nonlinearities for the combined signais 

and the non1inearity for the CM signal alone were arbitrarily set based on a pilot study. 

There values can be seen in the Figure V -lof thè next section. For each performance level 

evaluated, 50 trials were performed resulting in 600 trials presented in a pseudo-random 

order. 

Fitting the data 

Two normalized cumulative Gaussian functions were fitted to the data for each 

temporal frequency of each subject. For the in-phase condition, the function increased with 

the nonlinearity, and for the counter-phase condition, the function decreased with the 

nonlinearity. Both functions were constrained to have the same slope, the same lower 

bound and an upper bound set to 100% correct response. The lower bound was not fixed 

because it consisted in the performance for CM stimuli atone. 

Results and discussion 

Early nonlinearity measured 

The estimated stimulus nonlinearities needed to compensate for early nonlinearities 

of the visual system are presented in Figure V -1. As described above, the same 

performance observed whether LM and CM signaIs are combined in phase or in counter­

phase (the point at which the two lines cross in Figure V-l) suggests that the early 

nonlinearity of the visual system was compensated by the nonlinearity added to the 

stimulus. As previously observed (Scott-Samuel & Georgeson, 1999; Smith & Ledgeway, 

1997), at low temporal frequencies, early nonlinearities of the visual system were small 
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(n::::::O). However, at greater temporal frequencies, early nonlinearities were greater and 

compressive. Indeed, expansive nonlinearities (n>O) had to be added to compensate for the 

early nonlinearities of the visual system. 

Modeling the nonlinearity of the visual system 

Scott-Samuel and Georgeson (1999) have used the Naka-Rushton equation with the 

exponent variable set to 1 to model the compressive nonlinearity of the visual system. 

Using this function, the intensity of the photoreceptor response relative to the maximal 

response can be modeled by the following function: 

E( ) - L(x,y,t)/Lo (4) 
x,y,t - () , 

L x,y,t ILo + S 

The compressive nonlinearity of the retinal receptors depends on the parameter S. 

To fit the parameter S, we have used a similar approach as Scott-Samuel and Georgeson 

(1999). For each conditions (i.e. each temporal frequency and each subject), we created two 

stimuli composed of a LM and CM signal either combined in phase (CU,FTLM) or III 

counter-phase (CU,F-TLM) using the stimulus nonlinearity (n) at which the same 

performance was observed whether the signaIs were combined in phase or in counter­

phase. The contrast of the CM signal was also equal to the threshold (CClvFTCM). The 

compressive nonlinearity of the visual system was modeled by applying Equation 4 to each 

stimulus. The S variable was manipulated until the Fourier transform of the two stimuli 

gave the same spectral energy at the signal frequency. If the observer has the same 

performance whether the LM and CM signal are combined in phase or in counter-phase, we 

concluded that the compressive nonlinearity was compensated by the expansive 

nonlinearity induced in the stimulus. 
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Figure V-l. Nonlinearity results. The blue squares and red dots correspond to the 

percentage of correct answers when LM and CM stimuli were combined in-phase and 

in counter-phase, respectively. The black horizontal lines represent the range of 

nonlinearity added to the stimulus within which CM stimuli must be processed by CM 

sensitive mechanisms. The + and x signs correspond to the performance level when 

only LM and CM signais were presented alone, respectively. For LM signais alone, 

the nonlinearity added is undefined so we arbitrarily set the position of the + signs to 

the measured nonlinearity compensating for the early compressive nonlinearity. For 

CM signais, the nonlinearity added was arbitrarily set and is shown by the horizontal 

position of the x signs. 
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We did not model the nonlinearity at 1 and 2 Hz since the nonlinearities measured 

were too low (n>::::O) to have a significant impact on the results of the next experiments. At 4 

Hz, the fitted S values were 19 and 20 for observer JR and RA respectively. At 8 Hz they 

were 7.2 and 11.5 respectively. And at 16 Hz they were 5.2 and 7.1 respectively. Lower 

values for the S parameter represent higher compressive nonlinearities. The increasing 

nonlinearity observed wh en increasing the temporal frequency is consistent with Scott­

Samuel and Georgeson's results. However, the nonlinearities observed at 16 Hz were lower 

than what has been previously observed. Near this temporal frequency, nonlinearities were 

found to vary between 0.5 and 3.5 (Scott-Samuel & Georgeson, 1999). However, a pilot 

study showed that leaving the carrier visible between trials reduced the nonlinearity 

suggesting that the stimulus onset enhances compressive nonlinearities of the visual 

system. This is consistent with the fact that the nonlinearity decreases with increasing 

presentation time as suggested by Scott-Samuel and Georgeson (1999). 

Once the S parameter was estimated for each testing condition, we compared the 

difference between using the Naka-Rushton equation (Equation 4) and simply adding a 

luminance modulation proportional to the contrast modulation using the parame ter n 

(Equation 2). To compare these models, we created stimuli composed of either a unique 

CM signal at different contrasts (CLAFO and CcAFO to 0.9) or a unique LM signal equal to 

the discrimination threshold (CLAFTLM and CcAFO). The nonlinearity (n) applied to the 

stimuli was the one estimated by fitting the data as shown in Figure V-1. The modeled 

nonlinearity was then applied to each one of them using EquationA with the estimated S 

parameter. Afterwards, we evaluated the energy at the envelope spatiotemporal frequency 

by applying the Fourier transform to each stimulus. In aIl the conditions, we found that the 

energy induced by the CM signal was always orders of magnitude lower than the energy 

induced by the LM signal. In other words, the difference between modeling early 

nonlinearities using the Naka-Rushton equation and simply adding a luminance modulation 

proportional to the contrast modulation was too weak to generate a detectable LM signal, 

and this, at any contrast level. We therefore concluded that, ev en when CM stimuli were 
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presented weIl above threshold, they were processed by CM sensitive mechanisms and not 

LM sensitive mechanisms due to a global distortion artifact. 

CM sensitive mechanisms 

As mentioned above, the resulting nonlinearity may be defined as the sum of the 

nonlinearity added to the stimulus and the early nonlinearity added by the visual system. 

When one is the inverse of the other (one expansive and the other compressive with the 

same magnitude), the resulting nonlinearity is O. However, when they differ, a LM signal is 

added to the effective stimulus (the resulting stimulus after applying the early nonlinearity 

ofthe visual system). If the difference is strong enough (contrast of a LM signal induced by 

the resulting nonlinearity greater than the contra st threshold to LM stimuli), then LM 

sensitive mechanisms could process such artifact. The black horizontal line in Figure V-l 

represents the range within which CM stimuli must be processed by CM sensitive 

mechanisms. This range was calculated as the stimulus nonlinearity canceling the early 

nonlinearity of the vi suai system (where the two lines cross) +/- the LM/CM contrast 

threshold ratio (TLM/TcM). Consequently, within this range, the performance level observed 

when presenting a CM signal alone is not due to an early nonlinearity permitting the LM 

sensitive mechanisms to process CM signais. 

The x signs shown in Figure V -1 correspond to the proportion of correct answers to 

CM stimuli presented alone (CLAFO) with a nonlinearity added to the stimulus. As 

described above, the nonlinearity added was arbitrarily set based on a pilot study. This 

value is shown by the x positions on the horizontal axis. As it can be observed, aIl x signs 

are within the range in which CM stimuli must be processed by CM sensitive mechanisms 

(horizontal black Hne). Furthermore, the proportion of correct answers to CM stimuli 

presented alone (that is, with a nonlinearity but without a LM signal) are all above chance 

level (50%). We therefore conc1ude that at aIl temporal frequencies tested there are 

mechanisms sensitive to CM stimuli even if we compensate for early nonlinearities. This 
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does not imply that the mechanisms processmg LM and CM stimuli are distinct. A 

mechanism sensitive to CM stimuli could also be sensitive to LM stimuli. These results 

rather imply that, in these conditions, CM stimuli were not processed by mechanisms only 

sensitive to LM stimuli after being distorted by an early nonlinearity introducing a LM 

signal within a CM stimulus. 

Phase independent test 

The + signs shown in Figure V -1 correspond to the proportion of correct answers 

when presenting a LM stimulus alone. For such stimuli, the nonlinearity added to the 

stimulus (n) has no impact since there was no CM signal (CCAFO). Consequently, there is 

no defined position on the horizontal axis for LM signaIs presented alone. We arbitrarily 

chose to set the position on this axis for LM signaIs presented alone to the measured 

compensating nonlinearity (where the two lines cross). 

When compensating for the early nonlinearity of the visual system, the proportion 

of correct answers to the combination of LM and CM signaIs either in-phase or in counter­

phase (performance level where the two fitted lines cross) was generally greater than, or 

close to, the proportion of correct answers to LM or CM signaIs alone (+ and x signs). 

Consequently, in all the temporal frequencies tested, we conclude that there are CM 

sensitive mechanisms able to discriminate the motion direction. Indeed, if CM stimuli 

could only be detected due to an early nonlinearity within the visual system, th en LM and 

CM signaIs should cancel one another either when combined in phase or in counter-phase 

(Lu & Sperling, 1995,2001). However, the opposite pattern was observed: combining both 

either in-phase or in counter-phase generally results in a better performance. 

Similar results showing that there· are CM sensitive mechanisms even up to 15 Hz 

have been previously found (Scott-Samuel & Georgeson, 1999). However, it was important 

to replicate similar experiments to measure the early nonlinearity of the visual system at 

each temporal frequency of each subject, and to show that with the parameters used and at 
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all temporal frequencies tested, CM stimuli were processed by CM sensitive mechanisms, 

not by LM sensitive mechanisms following an early nonlinearity. Again, this does not mean 

that LM and CM stimuli are processed by separate mechanisms. 1t rather implies that even 

if we compensate for early nonlinearities, there are mechanisms sensitive to CM stimuli. 

Experiment 2: Inter-attribute interaction 

We previously found no or Httle inter-attribute interaction between LM and CM 

static stimuli processing (Allard & Faubert, 2007). LM noise affected LM signal detection 

but had little or no impact on CM signal detection and, vice versa, CM noise affected CM 

signal but had little or no impact on LM signal detection. This double dissociation strongly 

suggests that LM and CM signais are detected, at least at sorne point, by separate 

mechanisms. 

In another study (Allard & Faubert, 2006), we also found similar detection 

thresholds for LM and CM stimuli embedded in high LM and CM noise respectively; that 

is, similar CEs but different IENs were obtained for detecting static LM and CM stimuli. In 

other words, observers were just as efficient at detecting LM signaIs embedded in LM noise 

as detecting CM signaIs embedded in CM noise. 

The main purpose of the second experiment was to apply a similar noise masking 

paradigm to LM and CM motion processing. We therefore evaluated the contrast thresholds 

of LM and CM stimuli embedded in LM and CM noise. 

Method 

Many aspects of the methodology used in the second experiment were the same as 

the ones used in the previous experiment. In the current section, only their differences are 

presented. 
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Stimuli 

The modulation functions defining the stimuli in the previous experiment (Equation 

2 and 3) were altered in order to add LM and CM noise to the stimulus. Consequently, an 

extra tenn corresponding to the noise function (N(x,y,t)) was added. Similarly to the signal 

(the two sine wave gratings) the noise could either be LM or CM: 

MLM(X,y,t) = 1 + (CLM + nCCM )sin(sx+ ft + p)+ (NLM + nN CM )N(x,y,t), (5) 

M CM(X,y,t)= 1 + CCM sin(sx+ ft+ p)+ N CMN(X,y,t), (6) 

where NLM and N CM correspond to the contrast of the LM and CM noise, respectively. nNCM 

corresponds to a LM noise added to compensate for the early nonlinearity within the visual 

system. We supposed that the proportion of CM infonnation being converted into LM 

infonnation by an early nonlinearity of the visual system is the same for the signal and 

noise. We therefore simply applied a linear model to compensate the nonlinearity of the 

visual system in which we supposed that the LM function was proportional (by a factor of 

n) to the CM function. N(x,y,t) represents the noise function defined as filtered noise 

following a Gaussian distribution centered on 0 and with a root-mean-square of 1 after 

being filtered. The noise was filtered in the Fourier domain by an ideal mask keeping only 

the temporal and spatial frequencies within one octave below and above the frequency of 

the signal. Movie V -2 illustrates examples of LM and CM noise. 
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Movie V-2. LM (left) and CM (right) noise. The noise was filtered 1 octave ab ove and 

below the spatiotemporal frequency of the signal. The spatial frequency of the signal 

was always 0.5 cp d, i.e. the frequencies within 0.25 and 1 cpd were kept. The temporal 

frequency varied from one condition to another. In the present example, only the 

temporal frequencies within 1 and 4 Hz were kept. (Movie available on the CD 

attached to the thesis.) 

Procedure 

For each temporal frequency, thresholds for LM and CM signaIs (CLM and CCM, 

respectively) were evaluated in five different levels of either LM noise (NLAFO.0088, 0.018, 

0.035,0.071 and 0.14) or CM noise (NO FO.071 , 0.10, 0.14, 0.20 and 0.28). Each threshold 

wa~ measured using one staircase controlling either CLM or CCM (the other parameter was 

fixed to 0) as described in the previous experiment. The order of the testing was blocked 

relative to the temporal frequencies, but the order of the 20 thresholds for one block (4 

signal-noise conditions (Movie V-3) and 5 noise 1evels) was randomized. For each 

temporal frequency, the nonlinearity (n) induced within the stimulus was the one measured 

in the previous experiment. 
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Movie V-3. LM and CM signal embedded in LM and CM noise. In the top row, the 

signais are LM. In the bottom row, the signais are CM. In the left column, the noise is 

LM. In the right column, the noise is CM. (Mo vie available on the CD attached to the 

thesis.) 
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Results and discussion 

Calculation efficiency 

Figure V-2 shows the results for LM and CM thresholds embedded in LM and CM 

nOIse, respectively. These results were fitted using the TvC function (see Allard and 

Faubert (2006) for details) known to give a good fit for contrast thresholds as a function of 

noise contrast when the signal and noise are of the same type (Legge, Kersten, & Burgess, 

1987; Pelli, 1981, 1990; Pelli & FareIl, 1999). In certain conditions, even at the highest CM 

noise level, CM thresholds were hardly affected by the noise (especially for observer JR at 

16 Hz). These data result in a good fit for flat portion of the TvC function, but give a poor 

fit for the rising part of the function. To improve the fit, we introduced an extra constraint: 

the calculation efficiency to CM stimuli could not be greater than the calculation efficiency 

to LM stimuli. In other words, the rising parts of the TvC functions of the blue dashed lines 

fitting CM thresholds in Figure V -2 were constrained to be equal or above the rising parts 

of the red solid lines fitting LM thresholds. This constraint had no or little impact in almost 

aIl the conditions. However, without it at 16 Hz for observer JR the fit resulted in a straight 

line corresponding to extremely high calculation efficiency and internaI equivalent noise. 

For this condition, the data were only driven by the flat portion of the TvC function, which 

only gives a lower bound to the internaI equivalent noise and calculation efficiency. 

However, we know of no models suggesting that we could be more sensitive to a given 

signal embedded in noise wh en both are CM rather than LM. We therefore think that this 

extra constraint is justified and enables the fit to set a lower bound to the calculation 

efficiency to CM stimuli when the highest noise contrast did not significantly affect the 

threshold. 

As expected, LM and CM thresholds largely differed in the absence. of noise. 

However, wh en the noise was sufficiently high, there was no or little threshold difference 

between LM and CM signaIs. In other words, observers were just as efficient at 
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discriminating the direction of a LM signal in LM noise as for a CM signal in CM noise. 

Consequently, observers had similar calculation efficiencies to both attributes, and this, for 

a wide temporal frequency range. These results therefore suggest that, for LM and CM 

stimuli, common mechanisms could be extracting. the signal from noise. 

Internai equivalent noise 

Since the difference of sensitivity to LM and CM stimuli processing was not due to 

a difference of CE, it was obviously due to a difference of !EN corresponding to the 

breaking point on the TvC function. As mentioned in the introduction, similar results were 

obtained for static stimuli (Allard & Faubert, 2006) which led us to suggest that the 

difference of !EN could be due· to a suboptimal rectification process for CM stimuli. 

However, based on the difference of !EN, one cannot conclude that both attributes are 

processed by separate mechanisms. If both stimuli are processed by common mechanisms, 

then the difference of sensitivity would likely be due to different contrast gains. Different 

contrast gains prior to the main noise source would increase the relative impact of the main 

noise source and thereby affect the observer' s threshold. However, if the main noise source' 

is external (when the external noise is greater than the !EN) the contrast gain would affect 

both the signal and noise contrasts without affecting the signal-to-noise ratio. 

Consequently, in high noise conditions, the threshold would be independent of the contrast 

gain. As a result, one cannot conclude that two stimuli are processed by separate 

mechanisms simply based on different IENs since the common mechanism hypothesis 

would also predict this pattern of consequences. 
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Figure V -2. Motion discrimination in intra-attribute noise. Red dots and solid lines 

correspond to LM contrast thresholds in LM noise (raw data and fitted TvC function, 

respectively). Blue squares and dashed Hnes correspond to CM contrast thresholds in 

CM noise. Error bars corresponds to the standard deviation from the mean. 
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CM processing in LM noise 

At 16 Hz, LM noise affected both LM and CM thresholds by similar proportions 

(Figure V-3). In other words, LM noise had the same relative impact on LM and CM 

thresholds. Although the noise was bandpass at one octave below and above the signal 

spatiotemporal frequencies, the noise did not selectively impair LM processing without 

having the same impact on CM processing. In other words, the smallest LM noise contrast 

significantly affecting CM thresholds matches the one affecting LM thresholds and is 

highly different from the smallest CM noise contrast significantly affecting CM thresholds 

shown in Figure V -2. This suggests that, at 16 Hz, LM and CM stimuli are processed by 

common mechanisms. 

At 8 Hz, a similar pattern of results was observed for external noise contrasts 

affecting LM or CM thresholds by a factor less than 3 or 4 (Figure V-3). This suggests that, 

at 8 Hz, LM and CM signaIs are processed by common mechanisms since both attributes 

were affected by similar proportions. Above this critical value, CM thresholds were less 

affected by LM noise than LM thresholds. This suggests the existence of separate 

mechanisms processing LM and CM signaIs. Taken together, these results suggest that two 

mechanisms could be processing CM stimuli. The more sensitive one (the one processing 

CM stimuli at 8 Hz in noiseless conditions) would be cornmon to LM processing. However, 

the less sensitive one (here by a factor of about 3 or 4) would not be common to LM 

processing explaining why high LM noise contrasts affected more LM than CM processing 

at 8 Hz. 

At lower temporal frequencies (1, 2 and 4 Hz), CM processing was generally less 

affected by LM noise than LM processing (Figure V-3). Indeed, the two curves had the 

tendency to split at the point where thresholds increased by a factor of about 3, 1.5 and 2 

for the temporal frequencies 1, 2 and 4 Hz respectively. This suggests that, at least in high 

LM noise conditions, LM and CM signaIs are processed by separate mechanisms. 
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Figure V -3. LM and CM relative contrast thresholds as a function of LM noise 

contrast. Contrast thresholds are represented relative to their contrast thresholds in 

absence of noise fitted by the TvC function (where the fitted curves cross the Y-axis in 

Figure V -2). For LM stimuli, the thresholds and best fitted TvC functions are 

represented (red dots and solid lines, respectively). For CM stimuli, since the external 

noise was not of the same type, we could not fit the TvC function and only the 

evaluated thresholds are represented (blue squares). Error bars corresponds to the 

standard deviation from the mean. 
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LM processing in CM noise 

Unfortunately, ev en in high CM noise, the impact of the noise on CM processing 

was relatively limited (Figure V-4). Consequently, it was not possible to have sufficient 

noise contrast to severely impair CM processing. However, since at the highest noise 

contrast CM processing was generally significantly affected, the impact on LM processing 

could also be evaluated. At temporal frequencies at or above 4 Hz, LM processing seemed 

to be affected in similar proportions as CM processing (except at 16 Hz for subject JR, 

who's LM and CM thresholds remained unaffected by the highest CM noise contrast). 

These results also support the hypothesis that both LM and CM stimuli are processed by 

common mechanisms at high temporal frequencies. 

At lower temporal frequencies (1 and 2 Hz), LM processing was generally less 

affected than CM processing (Figure V-4). lndeed, at these temporal frequencies, CM noise 

impaired CM processing more than LM processing suggesting that both attribut es are 

processed by separate mechanisms. 

Experiment 3: Carrier and nonlinearity control 

Even though component motion could not explain the results obtained III the 

previous experiment, the choice of a periodic carrier remains an issue. For instance, a 

checkerboard carrier has constant luminance along the diagonals. Sorne could therefore 

argue that CM stimuli have luminance modulations along these diagonals that could be 

detected by LM sensitive mechanisms. However, the use of relatively small check size (21 

checks per signal cycles) should minimize such artifacts. Nonetheless, many experimenters 

pre fer using noise as a carrier rather than a regular structure. 
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standard deviation from the mean. 
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Smith and Ledgeway (1997) have shown that using static binary noise carriers with 

large element size can give rise to local first-order artifacts as described in experiment 1. 

They suggested the used of either dynamic broadband noise or static highpass noise. An 

important disadvantage of using dynamic noise for our purpose is that the noise introduced 

by the carrier would affect contrast thresholds to both LM and CM stimuli which thereby 

reduces the impact of adding· LM or CM noise. We therefore conducted a control 

experiment using static highpass noise as a carrier. 

Another artifact that could have influenced our results at high temporal frequencies 

is if the nonlinearity of the visual system was not well compensated for by the proportional 

nonlinearity applied to the stimulus resulting into a global distortion product. Indeed, we 

measured the nonlinearity at threshold and then supposed that the nonlinearity induced by 

the visual system was proportional to the CM signal contrast. Scott-Samuel and Georgeson 

(1999) suggested using the Naka-Rushton equation to compensate for the visual system 

nonlinearities. Even though we have demonstrated using simulations in experiment 1 that 

the difference between the two mode1s are too small to affect our results, the presence of 

LM or CM noise could affect the compressive nonlinearity. As a result, it could be argued 

that our results suggesting common mechanisms at high temporal frequency could be due 

to a global distortion product that wou Id be different in noise conditions. The present 

experiment focused on a low (2 Hz) and a high (8 Hz) temporal frequency. We evaluated 

LM and CM discrimination thresholds in noiseless, LM and CM noise conditions. In order 

to assert that the results at 8 Hz were not due to sorne global distortion product, we directly 

measured the compressive nonlinearity in all three conditions, i.e. no noise, LM noise and 

CM noise. 
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Method 

Many aspects of the methodology used in the present experiment were the same to 

the ones used in the previous experiments. In the current section, only their differences are 

presented. 

Stimuli 

The stimuli used were similar to the ones in the previous experiment with the 

exception of the carrier (T(x,y)). The carrier was generated by creating a binary noise 

texture (T(x,y)=-0.5 or 0.5) with element size equal to 2x2 pixels, which was then highpass 

filtered with a cutoff frequency at 4 cpd (Movie V -4). Such filtering had little impact on the 

RMS contrast of the carrier reducing it by 3%. 

Movie V-4. LM (Jeft) and CM (right) stimuli. The gratings are drifting at 2 Hz. The 

carrier corresponds to binary noise which was filtered to keep only the frequencies 

above 4 cpd. (Movie available on the CD attached to the thesis.) 

Procedure 

For each temporal frequency (2 and 8 Hz), LM and CM direction discrimination 

thresholds were evaluated in noiseless conditions, LM noise (Na FO.020) and in CM noise 

(NcAFO.28). Note that the LM noise was not set to its maximal contrast. We chose the noise 

contrast based on the results obtained at 8 Hz of the previous experiment su ch that both LM . 

and CM detection thresholds were affected by similar proportions. As discussed in the 
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previous experiment, when the LM noise contrast was too high, CM thresho1ds were 1ess 

affected than LM thresho1ds suggesting that another mechanism was able to process CM 

stimuli. The same noise contrast was used at both temporal frequencies. Each threshold was 

evaluated three times using the 2-down-1-up staircase as described in the first experiment. 

In experiment 1, we found that the compressive nonlinearity of the visual system 

was too weak at 2 Hz to introduce global first-order artifacts within"CM stimuli that would 

be detectable by LM sensitive mechanisms. In the current experiment, we therefore did not 

measure the compressive nonlinearity and assumed that it was nuIl (n=O). The double 

dissociation observed (see Results and discussion section below) ensures that the 

nonlinearities of the visual system did not affect the results. 

Since we expected complete inter-attribute interactions at 8 Hz, it was important to 

ensure that the results were not due to compressive non1inearities introducing LM signaIs 

within CM stimuli. Instead of applying the inverse of a given retinal model (e.g. Naka­

Rushton equation) to compensate for early nonlinearities, we used the proportional model 

as in the first two experiments and directly measured the nonlinearity in aIl three noise 

conditions (no noise, LM noise and CM noise). We therefore measured the compressive 

nonlinearity of the visual system for each observer and applied the inverse nonlinearity 

(parameter n) to the stimulus as done in the previous experiments. Afterwards, the 

nonlinearity was reevaluated for each noise conditions to show that in aIl conditions the 

global distortion product was too low to explain our results. 

ResuUs and discussion 

Separate mechanisms at low temporal frequencies 

At 2 Hz, LM noise had a significantly greater impact on LM processing than on CM 

processing for both observers and CM noise had a significantly greater impact on CM 

processing than on LM processing (Figure V-5 left). This double dissociation confirms the 
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results obtained in the previous experiment strongly suggesting that both attributes are 

processed by separate mechanisms. Indeed, the fact that it was possible to selectively 

impair either processing implies that both must be processed, at least at sorne point, by 

separate mechanisms. 

Common mechanisms at high temporal frequencies 

At 8 Hz, a completely different pattern of results was observed (Figure V -5right), 

LM and CM noises each affected LM and CM processing by similar proportions. These 

complete inter-attribute interactions suggest that both attributes are processed by common 

mechanisms at high temporal frequencies. 

Figure V -6 shows the nonlinearity measured for each of the noise conditions. The 

stimulus nonlinearities in noiseless conditions found to compensate for early nonlinearities 

of the visual system (n=0.022 and 0.014 for observers JR .and RA respectively) were the 

ones implemented when measuring contrast thresholds. The nonlinearities in LM and CM 

noise were measured afterwards to show that the global distortion product could not explain 

by itself CM thresholds. In order for a global distortion product to cause a sufficiently high 

artifact detectable by LM sensitive mechanisms, the difference between the nonlinearity 

applied to the stimulus and the nonlinearity generated by the visual system needs to be 

greater than the LM/CM threshold ratio. As shown in Figure V -6, this was not the case in 

aIl conditions. Indeed, the nonlinearities applied to the stimuli when measuring contrast 

thresholds in noise (represented by the horizontal position of x signs, Le. n=0.022 and 

0.014 for observers JR and RA respectively) felled within the range CM stimuli must be 

processed by CM sensitive mechanisms illustrated by the black horizontal lines. We 

therefore conclude that, in aIl tested conditions, CM stimuli were processed by CM 

sensitive mechanisms which, we suggest, are the same as LM sensitive mechanisms. 
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Figure V-5. Impact of LM and CM noise on LM and CM thresholds. The y-axis shows 

the contrast thresholds relative to contrast threshold in absence of noise. The x-axis 

represents the type of noise added to the stimulus (LM or CM). Error bars show 

standard error of the three thresholds measured for each condition. 
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Figure V-6. Nonlinearity results at 8 Hz. The legend is the same as the one described 

in the caption of Figure V-l. 
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General discussion 

Common mechanisms at high temporal frequencies 

The noise-masking paradigm that we developed successfully showed a double 

dissociation between LM and CM processing for static and low temporal frequencies. 

Indeed, in these conditions, LM and CM noise were each able to selectively impair same 

attribute processing with limited impact on cross-attribute processing. However, at high 

temporal frequencies, LM and CM noise each had similar impact on LM and CM 

processing. In other words, the noise-masking paradigm failed to impair the processing of 

either attribute without affecting the other. Consequently, our results did not show a double 

dissociation between LM and CM processing at high temporal frequencies. The complete 

interaction between the processing of these attributes suggests that, under these conditions, 

both attributes are processed by common mechanisms. Note that early nonlinearities prior 

to motion processing, which could introduce LM signal within CM stimulus, cannot by 

themselves explain the sensitivity to CM stimuli. Indeed, observers were able to process 

CM stimuli even wh en we compensated for such early nonlinearities. Consequently, if LM 

and CM stimuli are processed· by common mechanisms, the nonlinearity enabling CM 

processing must occur within (and not prior to) motion processing as suggested by the 

gradient-based model. 

There is no reason to think that movmg LM gratings are processed by 

fundamentally different mechanisms (i.e. different processing strategies) depending on the 

temporal frequency. Indeed, it is generally assumed that there are similar LM sensitive 

mechanisms tuned to different spatiotemporal frequencies. Consequently, if nonlinearities 

within the motion processing of LM stimuli at high frequencies enable LM sensitive 

mechanisms to detect CM stimuli, then similar mechanisms at low temporal frequencies 

processing LM stimuli but tuned to lower temporal frequencies should also be able to detect 

CM stimuli. Hence, we do not c1aim that mechanisms sensitive to LM stimuli at low 
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temporal frequencies cannot process CM stimuli. Instead, we argue that more than one type 

of mechanisms could be sensitive to CM stimuli and that one of them is common with the 

one processing LM stimuli. At threshold, CM stimuli would be processed by the most 

sensitive mechanism depending on the stimulus parameters (temporal frequency, carrier 

type, carrier contrast, etc). 

If CM stimuli are processed by LM sensitive mechanisms and that LM sensitive 

mechanisms are known to be tuned to a particular spatiotemporal frequency, then one can 

wonder whether CM stimuli are detected by LM sensitive mechanisms tuned to the 

envelope or carrier spatial frequency. To our knowledge, the gradient-based model does not 

c1eady specify whether the CM stimuli wou Id be processed by LM sensitive mechanisms 

tuned to the carrier or envelope spatial frequency. The complete interaction observed at 

high temporal frequencies suggests that the mechanisms processing LM and CM stimuli 

would be tuned to the envelope spatial frequency and not the carrier spatial frequency. 

Indeed, complete interaction was observed at the envelope spatial frequency. Consequently, 

our results suggest the existence of mechanisms sensitive to both LM and CM stimuli 

defined by the same signal modulation (i.e. envelope) spatial frequency. 

Separate mechanisms at low temporal frequencies 

There were no instances in which noise affected the signal processing to a greater 

extent when the signal and noise were of different attributes compared to when they were 

of the same attribute. LM noise never significantly affected CM more than LM processing 

and CM noise hever significantly affected LM more than CM processing. However, in 

certain noise conditions, inter-attribute processing was affected at equivalent levels to intra­

attribute processing while in other noise conditions inter-attribute processing was less 

affected than intra-attribute processing. 

. In the noise conditions where an asymmetrical impact was observed, we conc1ude 

that both attributes must be processed, at least at sorne point, by separate mechanisms. 
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Separate mechanisms could either mean similar mechanisms tuned to different spatial 

frequencies or fundamentally different mechanisms. However, as suggested above for high 

temporal frequencies, a mechanism sensitive to a LM signal at a given spatial frequency 

would also be sensitive to CM stimuli based on the envelope spatial frequency. We 

therefore conclude that both attributes are processed by fundamentally distinct mechanisms 

wh en a double dissociation is observed. Indeed, a model suggesting that both attributes are 

processed by common mechanisms at aIl processing levels, such as the gradient-based 

model, could not explain both the double dissociation at low temporal frequencies and the 

complete interaction at high temporal frequencies. 

As seen above, the dissociations between LM and CM processmg were more 

important at low temporal frequencies. This suggests that the dedicated mechanisms 

processing LM and CM stimuli are more sensitive at low temporal frequencies. Combining 

these results with the fact that cross-attribute noise has little or no impact on spatial 

processing (Allard & Faubert, 2006) suggests that the separate mechanisms processing LM 

and CM stimuli first need to extract spatial information before processing motion. The 

filter-rectify-filter model suggesting that both attributes are initially processed by separate 

mechanisms also proposes that the spatial structure of CM stimuli are first extracted 

(rectification process) before evaluating the motion direction. This initial spatial processing 

stage could explain why such mechanisms would be more sensitive at low temporal 

frequencies. Indeed, the sensitivity to most second-order stimuli defined by attributes other 

than contrast, such as by depth (Lu & Sperling, 1995) or polarity reversaIs (Bellefeuille & 

Faubert, 1998; Hutchinson & Ledgeway, 2006), is generally found to be temporally 

lowpass. After the rectification process (or any process extracting the spatial structure of 

the envelope), moving CM stimuli could either be processed by an energy-based 

mechanism dedicated to second-order processing or by a feature tracking mechanism 

comparing the spatial position of the envelope in time. Our results do not enable us to 

dissociate the se models. Based on other studies, we addressed this question in the following 

section. 
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Motion processing of CM stimuli 

We are not the firsts to suggest that CM stimuli can be processed by fundamentally 

different mechanisms depending on the testing parameters (here the temporal frequency). 

Seiffer and Cavanagh (1999) evaluated whether CM stimuli are processed by an energy­

based or a position-based mechanism by measuring motion amplitude thresholds of 

oscillating gratings. They concluded that CM stimuli could be processed by either 

mechanism. An energy-based mechanism would be more sensitive to CM stimuli at high 

temporal frequencies and high carrier contrasts, and a position-based mechanism would be 

more sensitive at low temporal frequencies and low carrier contrasts. A position-based 

mechanism would first require spatial processing in order to extract the spatial properties of 

the signal and then compare its positions at different time intervals. Their results are in 

agreement with ours given that LM stimuli are always processed by energy-based 

mechanisms (Zaidi & DeBonet, 2000). At low temporal frequencies, CM stimuli would be 

processed by a position-based mechanism once the spatial structure has been extracted. At 

high temporal frequencies, LM and CM stimuli would be processed by common energy­

based mechanisms. Note that equivalence between gradient- and energy-based models have 

been shown (Christopher P. Benton, 2004). Indeed, Benton demonstrated that energy-based 

models combined with a subsequent contrast normalization process could discriminate the 

motion direction of CM stimuli. 

Ukkonert and Derrington (2000) suggested similar conclusions using the pedestal 

test (Lu & Sperling, 1995) to evaluate whether the carrier contrast is processed by feature 

tracking mechanisms or by spatiotemporal filters. Using a low contrast carrier, they found 

that CM stimuli processing did not pass the pedestal test and was only possible at low . 
temporal frequencies «4 Hz). They concluded that wh en using a low contrast carrier, CM 

stimuli are processed by a feature tracking mechanism. On the other hand, wh en using a 

high contrast carrier, CM stimuli processing was unaffected by the pedestal and could be 

processed at higher temporal frequencies (up to the highest frequency tested of 12 Hz). 
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They conc1ude that >CM stimuli are processed by spatiotemporal filters when using a high 

contrast carrier. Again, these results are in agreement with ours. There could be two types 

of mechanisms processing CM stimuli, one lowpass initially extracting the spatial structure 

of the envelope and another which, we suggest, could be common to LM processing. 

These studies show that CM stimuli could be processed by feature tracking (or 

position-based) mechanisms and by energy-based mechanisms depending on the stimulus 

conditions. At high temporal frequencies and high carrier contrasts, the energy-based 

mechanism would be more sensitive to CM stimuli than the feature tracking mechanism. At 

low temporal frequencies and low carrier contrasts, the feature tracking mechanism would 

be more sensitive. Since our results suggest that LM and CM stimuli are processed by 

common mechanisms at high temporal frequencies ant that LM sensitive mechanisms are 

known to be energy-based, our results also suggest that CM stimuli are processed by 

energy-based mechanisms. Since LM stimuli are always processed by energy-based 

mechanisms, the results obtained by Ukkonnen and Derington, and Seiffer and Cavanagh 

showing that CM stimuli are processed by a feature tracking (or position-based) mechanism 

at low temporal frequencies also suggests that LM and CM stimuli are processed by 

separate mechanism and are consistent with our results. Consequently, this suggests that 

when a double dissociation was observed, CM stimuli were processed by a feature tracking 

mechanism. To explain our results, there is no need to define an energy-based mechanism 

dedicated to second-order stimuli. CM stimuli could either be processed by the same 

mechanisms processing LM stimuli (which would thereby be energy-based) or by a 

separate feature trac king mechanism. Nonetheless, before a feature can be tracked, it must 

be extracted. The filter-rectify-filter model could explain the extraction of the spatial 

structure of CM stimuli. The second filtering stage of the filter-rectify-filter model could 

only extract the spatial structure of the envelope and not its spatiotemporal structure (which 

would result in .an energy-based mechanism dedicated to second-order processing) as it is 

generally suggested. In other words, after the second filtering stage, a feature tracking 

mechanism could detect spatial changes of position in time. As a result, there would be no 
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dedicated second-order motion mechanisms. In conclusion, therefore, the most heuristic 

proposition would be that CM stimuli could either be processed by mechanisms able to 

extract and track the envelope feature of CM stimuli or by energy-based mechanisms 

common to both LM and CM stimuli. 

Conclusion 

Cumulative evidence suggests that first- and second-order stimuli are processed by 

distinct mechanisms. We are partially in agreement with this hypothesis. The dissociations 

observed at low temporal frequencies (LM noise affecting more LM than CM processing, 

and CM noise affecting more CM than LM processing) suggest that, at least in sorne 

conditions, both pathways are indeed initially distinct. Consequently, we also conc1ude that 

a single motion sensitive mechanism cannot explain motion perception in aIl conditions. 

However, we do not conclude that first- and sècond-order stimuli are always processed by 

distinct mechanisms. We suggest that, at high temporal frequencies, CM stimuli could be 

processed by the same mechanisms as the ones processing LM stimuli. Sorne second-order 

stimuli may not be invisible to first-order sensitive mechanisms and the existence of 

energy-based mechanisms dedicated to second-order processing is thereby questionable. 
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Abstract 

Previous studies found that the most widely studied second-order stimulus (contrast 

modulation) could be processed by either an energy-based or a feature tracking motion 

system. The apparent lack of interaction when superposing luminance- (LM) and contrast­

modulated (CM) stimuli either in phase or in counter-phase suggests that global distortion 

products cannot explain by themselves the energy-based processing of CM stimuli. Several 

authors therefore inferred the existence of a dedicated second-order energy-based motion 

system (e.g., filter-rectify-filter model) even though LM and CM processing strongly 

interact in other conditions. By defining early nonlinearities as global distortion products, 

these authors implicitly assumed that early nonlinearities were uniform across space and 

time. The present study questions this assumption. Using a noise masking paradigm, we 

failed at dissociating LM and CM processing at high temporal frequencies suggesting that 

both stimuli were processed by a common motion system. ln a second experiment, 

simulating early non-uniform nonlinearities showed that the apparent lack of interaction 

when superposing LM and CM stimuli do es not imply separate processing. We conc1ude 

that it is not necessary to suppose the existence of a dedicated second-order energy-based 

motion system. Early non-uniform nonlinearities could enable the luminance energy-based 

motion system to process CM stimuli. 

Keywords: Motion; Second-order; Energy-based; Feature tracking; Contrast-modulated; 

Early nonlinearities; Filter-rectify-filter model; Gradient-based model 
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Introduction 

Energy-based and feature tracking motion systems 

Our perceptual system has at least two motion systems based on fundamentally 

different computational strategies (for a review, see Lu and Sperling (2001)). One can be 

described as energy-based directly processing spatiotemporal luminance variation without 

extracting the feature of the drifting signal. Such a system is often referred to as energy­

based, intensity-based, Fourier, linear or first-order motion system, and is typically found to 

be low-level, monocular and fast (i.e., cutoff frequency near 12 Hz). The other motion 

system first extracts a feature and then tracks its position change over time. This motion is 

usually referred to as a feature tracking, high-level or correspondence-based motion system, 

and is known to be high-leve1, binocular and slow (i.e., cutoff frequency near 3 Hz). In the 

present study, we will refer to these two motion systems as energy-based and feature 

tracking motion systems, respectively. 

Most second-order stimuli, which are defined by other attributes than luminance 

(i.e. first-order attribute) such as contrast (Cavanagh & Mather, 1989; Chubb & Sperling, 

1988)), were generally found to be processed by a feature tracking motion system (Lu & 

Sperling, 1995, 2001; Seiffert & Cavanagh, 1998). However, the most widely studied 

second-order stimulus consisting in a contrast modulation of given texture (e.g., binary 

noise) was found to be processed by either an energy-based or a feature tracking motion 

system depending on the stimulus parameters. 

For instance, Smith (1994) dissociated these two motion systems by creating a 

contrast-modulated (CM) stimulus having energy and a feature moving in opposite 

directions. For the given testing conditions, he found that CM stimuli were normally 

processed by an energy-based motion system. However, when disabling the energy-based 

motion system by introducing a 60 ms delay between images, he found that CM stimuli 
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were processed by a correspondence-based (i.e., feature tracking) motion system. He 

conc1uded that, although CM stimuli were normally processed by an energy-based motion 

system, they could also be processed by a correspondence-based motion system. 

Lu and Sperling (1995) developed a pedestal test consisting in adding a stationary 

grating identical to the drifting grating which theoretically disables the feature tracking 

motion system without affecting the energy-based motion system. By applying the pedestal 

test, they found that CM stimuli, like 1uminance-modulated (LM) stimuli, were processed 

by an energy-based motion system. By using the pedestal test and modifying the contrast of 

the carrier, Ukkonen and Derrington (2000) found that the impact of the pedestal test 

depended on the contrast of the carrier. With a low contrast carrier, CM stimuli were found 

to be processed by a feature tracking motion system, but with a high contrast carrier, CM 

stimuli were found to be processed by an energy-based motion system. 

Seiffert and Cavanagh (1999) also observed that the motion system processing CM 

stimuli varied as a function of the stimulus parameter. They measured the smaller 

displacement of an oscillatory CM grating as a function of the oscillation frequency and the 

modulation contrast. They found that position displacement was the cue for processing CM 

gratings at low speeds and low contrasts, but velocity was the cue for processing CM 

gratings at high speeds and high contrasts. In other words, CM stimuli at high temporal 

frequencies and high contrasts would be processed by an energy-based motion system and 

would be processed by a feature tracking motion system otherwise. 

When second-order stimuli are processed by a feature tracking motion system, this 

system is obviously distinct from the one processing first-order stimuli which is normally 

found to be energy-based (Zaidi & DeBonet, 2000). On the other hand, when second-order 

stimuli are processed by an energy-based motion system (which has been observed using 

CM stimuli), one can question whether this energy-based motion system is the same as the 

one processing first-order (i.e., LM) stimuli. In other words, is there an energy-based 

motion system dedicated to second-order processing (i.e., distinct from the energy-based 
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motion system processing first-order stimuli)? This question was the target of the present 

study. 

Distinct first- and second-order energy-based motion systems? 

Several studies address the question of whether LM and CM stimuli are processed 

by common or distinct motion systems but few considered that CM stimuli could be 

processed by two distinct motion systems. Even though sorne studies found convincing 

evidence that first- and second-order stimuli were processed separately, this can be 

explained by the fact that second-order stimuli were processed by a feature trac king motion 

system. As a result, many studies do not address the question of whether first- and second­

order stimuli are processed by common or distinct energy-based motion systems. The 

present section selectively focused on the studies that considered that CM stimuli can be 

processed by two fundamentally distinct motion systems. 

Filter-rectify-filter model 

Lu and Sperling (1995) directly addressed the question of whether first- and second­

order stimuli are processed by common or distinct energy-based motion systems. They 

found evidence that LM and CM stimuli are processed by common energy-based 

mechanisms and evidence that they are processed by distinct mechanisms. They observed 

motion cancellation, rather than motion transparency, when superposing an LM and a CM 

drifting grating in opposite directions suggesting common energy-based motion processing. 

Furthermore, they observed similar temporal sensitivity function for both stimuli, which 

was fast (cutoff frequency near 12 Hz). On the other hand, when spatially superposing an 

LM and a CM grating with the same spatial and temporal frequencies, they found that the 

performance did not depend on the relative phase separating the two gratings and that this 

performance was near the one predicted by a simple probability summation model 

assuming that both attributes are processed separately. They conc1uded (Lu & Sperling, 
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1995, 2001) that both stimuli are initially processed by distinct energy-based 

spatiotemporal filters but are later integrated by' summing the motion energy of both 

pathways (filter-rectify-filter model (Wilson, Ferrera, & Yo, 1992)). Indeed, if the CM 

grating was rectified and spatially summed with the LM grating prior to common energy­

based motion processing, both should either sum or cancel one another depending on the 

relative phase separating the two gratings. As a resu1t, a performance improvement greater 

than probability summation or a performance dec1ine shou1d be observed depending on the 

relative phase. In other words, they conc1uded that a preprocessing nonlinearity (i.e., 

rectification) is required to recover the motion energy of the enve10pe before being 

processed by an energy-based motion system distinct from the one processing first-order 

stimuli. The merging of the two pathways after the motion energy analysis could explain 

the inter-attribute interactions (motion cancellation) and the simi1ar properties (temporal 

sensitivity function) of the two motion systems. 

Gradient-based model 

Benton, Johnston and colleagues (Benton, 2002; Benton & Johnston, 2001; Benton, 

Johnston, & McOwan, 2000; Benton" Johnston, McOwan, & Victor, 2001; Johnston & 

Clifford, 1995a; Johnston, McOwan, & Buxton, 1992) developed a gradient-based model 

which computationally demonstrates that CM drifting gratings could be processed by 

luminance sensitive mechanisms without any preprocessing nonlinearity extracting the 

spatial information of the envelope. Given that CM stimuli could be processed by a feature 

tracking motion system or by an energy-based motion system sensitive to LM stimuli, they 

conc1uded that it is not necessary to suppose the existence of a distinct energy-based motion 

system dedicated to second-order stimuli. 

The keystone of their model is the calculation of the temporal derivative relative to 

the spatial derivative. Based on computational simulations, they showed that applying a 

nonlinearity after su ch a calculation could extract the drifting direction of a CM stimuli 
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even though the stimulus is drift-balance (same expected motion energy for both direction 

at all spatiotemporal frequencies, (Chubb & Sperling, 1988)). In other words, given that a 

CM drifting grating may contain the same expected mo~ion energy in the drifting and the 

opposite directions at aIl spatial frequencies, they suggest that first-order processing 

extracting such motion energy and based on sorne subsequent nonlinearity could resolve the 

CM drifting direction. 

Since this model proposes the computation of the spatial and temporal derivative of 

the stimulus, the mechanism processing such stimulus should be tuned to spatial 

frequencies corresponding to the spectral component of the stimulus which, for CM stimuli, 

directly depends on the spatial frequency of the carrier and not on the spatial frequency of 

the envelope which requires a preprocessing nonlinearity to be recovered. Consequently, 

they suggest that CM stimuli could be initially processed by first-order mechanisms tuned 

to the energy near the spatial frequency of the carrier which is directly visible through a 

Fourier (i.e. first-order) analysis. Given a spatially broadband stimulus (e.g., when using 

broadband noise as a carrier), the mechanisms tuned to such mechanisms could be sensitive 

to any spatial frequencies. On the other hand, given a band-pass stimulus (e.g., when using 

band-pass noise as a carrier), the initial motion energy-based mechanisms processing such 

stimulus should be tuned to the spatial frequency of the stimulus, that is, near the carrier 

spatial frequency. By proposing mechanisms tuned to the spatial frequency of the carrier, 

the gradient-based model contrasts with models suggesting that preprocessing 

nonlinearities prior to the motion energy analysis (e.g., filter-rectify-filter) introduces 

spectral energy at th~ envelope spatial frequency before being processed by motion energy­

based mechanisms tuned to the envelope spatial frequency. 

Early nonlinearities 

The filter-rectify-filter model suggests that nonlinearities prior to the energy-based 

motion processing (i.e. rectification) introduces energy at the spatial frequency of the 
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envelope" which can then be processed by energy-based mechanisms similar, though 

distinct, to the ones processing first-order stimuli. lndeed, almost any preprocessing 

nonlinearity applied to the stimulus introduces energy at the spatial frequency of the 

envelope. Nonlinearities prior to standard first-order energy-based processing, typically 

referred to as early nonlinearities, could enable the processing of second-order stimuli by 

first-order sensitive mechanisms. In other words, early nonlinearities could introduce 

artifacts enabling first-order mechanisms to process second-order stimuli. Such artifacts 

could mislead the experimenter thinking that the stimulus cannot be processed by a first­

order motion system because the stimulus does not contain energy at the spatial frequency 

of the envelope. 

Early nonlinearities can either be compressive or expansive. Given a CM stimulus 

having the same mean local luminance for high and low contrast areas, applying a 

compressive nonlinearity would result in a relatively greater mean local luminance for low 

contrast areas whereas an expansive nonlinearity would result in a relatively greater mean 

local luminance for high contrast areas. 

Smith and Ledgeway (1997) considered two potential artifacts enabling LM 

sensitive mechanisms to process CM stimuli: global distortion products and local first-order 

motion patches. The former corresponds to nonlinearities (either compressive or expansive) 

uniformly applied across space and time (i.e. global, Figure Vl-I). The later are not 

uniformly distributed across the stimulus, that is, certain areas are compressive and others 

are expansive (Figure VI-2). 



.196 

:1~ ________ N_on_li_ne_a_rit_Y_di_st_nb_u_tio_n_(_~ ______ ___ 

~ 
Spatial dimension 

Figure VI-l. Uniform nonlinearities. The top graph shows the lower and upper limits 

(thin Unes) of the luminance profile of a CM stimulus. The dark Une shows the local 

mean luminance. The middle graph shows the distribution of the nonlinearity (L'=LN
) 

which is constant. The bottom graph shows the lower and upper Iimits (thin Hnes) of 

the luminance profile once the nonlinearity applied to the initial stimulus introducing 

mean luminance variations within the stimulus (dark Une). 
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Figure VI-2. Non-uniform nonlinearities. Same as Figure VI-l with the exception that 

the nonlinearity applied is not uniform, i.e. varies as a function of space. 
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The criterion Smith and Ledgeway used to de termine whether LM and CM stimuli 

are processed separately or processed by common mechanisms due to early nonlinearities 

prior to LM sensitive mechanisms was whether they shared common or distinct properties. 

More specifically, they measured whether the orientation and direction discrimination 

thresholds were similar. For LM stimuli, both thresholds were found to be similar but for 

CM stimuli they were either similar or direction thresholds were about 50% higher 

depending on the viewing conditions. When orientation and discrimination thresholds were 

similar for CM stimuli, they conc1uded that such a stimulus was processed by LM sensitive 

mechanisms and when they differed they conc1uded that LM and CM stimuli were 

processed separately. Since their criterion for distinguishing whether LM and CM stimuli 

are processed by common or distinct mechanisms was wh ether they share similar properties 

or not, they did not directly address the question of whether there is an energy-based 

motion system dedicated to second-order processing sharinK similar properties with the 

first-order motion system. Altematively, if LM and CM processing shared similar 

properties, they conc1uded that CM stimuli were processed by LM sensitive mechanisms 

due to early nonlinearities. 

The fact that LM and CM were processed by distinct motion systems in certain 

conditions does not imply the existence of a dedicated energy-based second-order pathway. 

CM stimuli could be processed by a feature tracking motion system. Furthermore, the fact 

that orientation discrimination thresholds were found to be lower than direction 

discrimination thresholds can be viewed as compatible with a feature tracking motion 

system. Indeed, in such a system, before being tracked, a feature must be extracted. As a 

result, the process of extracting the feature would be common to both tasks, but the 

discrimination of the direction would require an extra processing step consisting in tracking 

the position change over time. Consequently, we could expect the direction sensitivity to be 

greater than the sensitivity to the feature (e.g., orientation discrimination). 
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Thus, their study do not directly address the purpose of the present paper which is to 

detennine if LM and CM stimuli are processed by a common or distinct energy-based 

motion system. Conversely, Smith and Ledgeway (1997) rather suggested that when no 

distinct properties are observed between the processing of LM and CM stimuli, then they 

share common pathways. This argument is not compatible with Lu and Sperling's (1995, 

2001) conclusion suggesting distinct energy-based pathways sharing similar properties. 

Nonetheless, the preprocessing nonlinearities potentially enabling LM sensitive 

mechanisms to process CM stimuli could explain why LM and CM processing share 

similar properties and should therefore be considered. 

Global distortion product 

Smith and Ledgeway (1997) described two potential sources for the global 

distortion product artifacts: the display and the visual system prior to energy-based first­

order processing. Obviously, artifacts originating from display nonlinearities must be 

avoided. Although they can never be completely eliminated, it is relatively easy to 

detennine whether they are great enough to be visible to the first-order motion system 

(Scott-Samuel & Georgeson, 1999). On the other hand, it is harder to assert that 

nonlinearities originating from the visual system do not enable the LM sensitive motion 

system to process CM stimuli. Again, by finding different processing properties for LM and 

CM stimuli (Le., greater direction discrimination thresholds than orientation discrimination 

thresholds for CM stimuli, but similar thresholds for LM stimuli), Smith and Ledgeway 

(1997) concluded that such artifacts were not an issue. 

Scott-Samuel and Georgeson (1999) measured the global distortion product by 

adding a luminance signal in phase with the CM signal which compensated for the global 

distortion product of the visual system. They concluded that early global nonlinearities of 

the visual system can cause CM infonnation to leak within the first-order processing 

pathway and that such nonlinearities increase with the temporal frequency and with the 
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carrier contrast. More specifically, they found that su ch nonlinearities were compressive, 

that is, they reduced the mean luminance of high contrast areas relative to the mean 

luminance of low contrast areas. When compensating for such nonlinearities by adding an 

expansive nonlinearity to the stimulus, they found that observers still perceived second­

order motion and conc1uded that first- and second-order motion processing can be 

processed separately even at the highest temporal frequency tested which was 15 Hz. Note 

that such a temporal frequency is somewhat faster than the temporal acuity generally 

observed for the feature tracking motion system which is near 8-10 Hz. Consequently, it is 

unlikely that CM stimuli were processed by a feature trac king motion system. Furthermore, 

the processing of CM stimuli could not be null by compensating for the global distortion 

product. They therefore conc1uded that CM stimuli were processed by a distinct energy­

based motion system. 

Local first-order motion patches 

Smith and Ledgeway (1997) attributed the source of local artifacts (which they . 

named local first-order motion patches) to local imbalances within the carrier. The most 

widely used carrier is static binary noise. On average, half of the noise elements are dark 

and the other half are light. Howevei; for a given local area, the distribution can be greater 

or lower than 50%. If the distribution is greater th an 50%, then increasing the local contrast 

. raises the mean luminance and decreasing it reduces the mean luminance. If the distribution 

is lower than 50%, then increasing the local contrast reduces the mean luminance and 

decreasing it raises the mean luminance. Thus, local imbalances introduce artifacts that 

could enable the first-order motion system to process CM stimuli. 

It is not possible to completely eliminate such artifact but Smith and Ledgeway 

(1997) proposed several ways of decreasing its impact. Reducing the size of the noise 

elements reduces the impact of this artifact since the mean distribution of light and dark 

noise elements for a given area will be, on average, c10ser to 50%. The noise sampling can 
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a1so be increased by usmg dynamic instead of static binary nOIse. Furthermore, by 

introducing spectral energy at all spatiotempora1 frequencies, dynamic noise masks 

luminance processing (generally increases contrast thresho1ds to LM stimuli) which a1so 

masks artifacts. As a result, artifacts have to be somewhat greater when using dynamic 

binary noise as a carrier tobe an issue. Smith and Ledgeway (1997) conc1uded that this 

carrier (dynamic binary noise with small e1ement size) was the safest one to avoid the 

impact of artifacts but they also proposed another carrier: high-pass static noise. If the low 

spatial frequencies of the noise are removed, then the mean local luminance will be 

re1ative1y constant. As opposed to broadband carriers which remain drift-balance (i.e., 

equa1 expected motion energy in both directions at all spatiotempora1 frequencies) once 

modu1ated by a drifting enve10pe, a disadvantage of using band-pass carrier is that they 

give rise to sidebands. Indeed, modu1ating a band-pass carrier with a CM drifting enve10pe 

resu1ts in a stimulus that does not have the same expected amount of energy in both 

directions at all spatiotempora1 frequencies. Nonethe1ess, this artifact is usually too weak to 

be detected but can sometimes be an issue (Scott-Samuel & Georgeson, 1999). 

Global and residual early nonlinearities 

Smith and Ledgeway did not suggest that the visua1 system induces local 

non1inearities. They defined the non1inearities caused by the visua1 system as a global 

distortion product which can be cance1ed by app1ying the inverse non1inearity to the 

stimulus. Thereby, they implicit1y assumed that the nonlinearities caused by the visua1 

system are uniform across space and time. In the present study, we question this 

assumption and defined early non1inearities within the visua1 system as non-uniform. Such 

non-uniform nonlinearities can be segregated into two components (Figure VI-3): global 

non1inearities, which can be compensated for by app1ying the inverse nonlinearity, and 

residua1 non1inearities representing the nonlinearities 1eft once compensating for global 

nonlinearities. As an examp1e, suppose that the visua1 system introduces an early 

compressive nonlinearity which varies in strength across space. An expansive nonlinearity 
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uniformly applied across the stimulus (i.e. of constant strength) cou Id be applied to 

compensate for the mean compressive nonlinearity. Once combining the constant expansive 

nonlinearity introduced within the stimulus with a varying compressive nonlinearity of the 

visual system, the residual nonlinearities would be compressive for sorne are~s and 

expansive for others. In other words, applying a uniform nonlinearity to the stimulus 

compensates for the global nonlinearities but not for residual nonlinearities. 

/ 

:1~ ___ G_IOb_a_ln_o_n_lin_ea_r_itY __ _ 

Figure VI-3. Global and residual nonlinearities. Decomposition of non-uniform 

nonlinearity into a global nonlinearity and residual nonlinearities. The absence of 

nonlinearity is represented by a value of 1. 

At this point, we do not affirm that early nonlinearities are not uniform. We 

theoretically defined early nonlinearities as composed of global and residual nonlinearities. 

Empirically, either or both nonlinearities could be null or very weak. Nonethe1ess, we argue 

be10w that the results obtained in the present study suggest that in sorne conditions, early 

residual nonlinearities could be strong enough to enable the first-order energy-based motion 

system to process CM stimuli. Consequently, we argue that it is not necessary to infer the 

existence of a dedicated second-order energy-based motion system distinct from the 

luminance sensitive motion system. 
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Experiment 1: The frequency tuning of CM processing 

The objective of the first experiment was to evaluate the frequency tuning of 

spatiotemporal filters processing CM stimuli by trying to dissociate CM motion processing 

from luminance processing at the envelope and carrier spatial frequency. If two stimuli are 

processed by common mechanisms then a manipulation affecting the processing of one 

stimulus should also affect the processing of the other. On the other hand, a manipulation 

affecting the processing of one stimulus more than the other suggests that they are 

processed separately. If CM motion stimuli are processed by luminance sensitive 

mechanisms, then such luminance sensitive mechanisms can be tuned either to the carrier 

or envelope spatial frequency. In the present experiment, we tried to dissociate CM motion 

processing from luminance processing at the carrier and envelope spatial frequency by 

evaluating the impact of band-pass noise either near the carrier or near the envelope spatial 

frequencies. 

If a preprocessing nonlinearity introducing energy at the spatial frequency of the 

envelope enables the processing of second-order stimuli (e.g., rectification or early 

nonlinearities) and that both pathways are ultimately (or entirely) common, then we would 

expect luminance noise to have the same impact on second-order processing and first-order 

processing at the spatial frequency of the envelope of the second-order stimulus. On the 

other hand, if the" nonlinearities enabling second-order processing occur within rather than 

prior to motion processing (e.g., gradient-based model), then we would expect second-brder 

processing to be common to first-order processing at the carrier spatial frequency. 



204 

Method 

Observers 

One of the authors and a naïve observer participated to the study. Both had nonnal 

vision and were experienced psychophysical observers. 

Apparatus 

The stimuli were presented on a 19 in ViewSonic E90FB .25 CRT monitor with a 

mean luminance of 47 cdlm2 and a refresh rate of 120 Hz, which was powered by a 

Pentium 4 computer having a Matrox Parhelia512 graphie cardo The Noisy-Bit method 

(Allard & Faubert, 2008c) implemented with the error of the green color gun inversely 

correlated with the error of the two other color guns made the 8-bit display perceptually 

equivalent to an analog display having a continuous luminance resolution. The monitor was 

the only source of light in the room. A Minolta CS 1 00 photometer interfaced with a 

homemade program calibrated the output intensity of each gun. At the viewing distance of 

114 cm, the width and height of each pixel were 1/64 deg of visual angle. 

Stimuli 

As described above, the choice of the carrier is important since local motion patches 

can enable luminance sensitive mechanisms to process CM stimuli. To avoid such an 

artifact, Smith and Ledgeway (1997) proposed to use dynamic binary noise or high-pass 

static noise as a carrier. As mentioned above, when using dynamic binary noise, they found 

different properties between the processing of LM and CM stimuli and found that CM 

stimuli processing was low-pass suggesting that CM stimuli were processed by a feature 

tracking motion system. Since the present study focuses on CM processing by an energy­

based motion system, we rather used a static carrier only defined by high spatial 

frequencies. As they noted, the disadvantage of using a carrier that is not broadband is that 
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the resulting CM stimulus is not drift-balance since sorne spatiotemporal frequencies only 

contain energy in one direction. To avoid such an artifact, instead of multiplying an 

envelope with band-pass filtered noise, we applied the filtering operation after the envelope 

was multiplied with broadband noise. Since multiplying an envelope with broadband noise 

results in a drift-balance stimulus (i.e., same expected motion energy at aIl spatiotemporal 

frequencies, (Chubb & Sperling, 1988», then band-pass filtering such a stimulus also 

results in a drift-balance stimulus. Such CM stimulus has the advantages of being drift­

balance, minimizes the local motion patch es artifact and does not introduce noise at the 

spatiotemporal frequency of the envelope. 

Since the creation of the stimuli required a band-pass filtering operation that cannot 

be applied independently to each pixel, the stimulus function was defined by a three 

dimensional matrix (L, wherein each element of the matrix (Lxyt) represents the luminance 

at position (x,y) at time t) instead of defining the luminance of each pixel independently as 

usually formulated (L(x,y,t»). The stimulus was defined as a function of three matrices: a 

signal (S), a carrier (T) and a noise template (N). The carrier (T) was statie broadband 

noise: aIl frames were identical (Txyr=Txyo for a11 1>0) and the value at each pixel (Txyo) was 

randomly selected from a Gaussian distribution centered on O.' Once filtered, an 

unmodulated carrier had a RMS contrast of 0.096%. To avoid stimulus onsets the 

unmodulated carrier was presented between trials. Thus, the same carrier template was used 

throughout a given staircase, but was randomly regenerated at the beginning of each 

staircase. N represents band-pass dynamic noise with a frequency bandwidth that depended 

on the testing condition: the temporal frequencies kept were the ones within 1 octave above 

and below the temporal frequency of the signal (2 or 8 Hz) and the spatial frequencies kept 

were either 0.5 octave above and below the envelope spatial frequencies (i.e., 0'.35 to 0.71 

cpd) or at the carrier spatial frequency (i.e., 4 to 8 cpd, see filtering operation (F(X» 

below). In aIl cases, the noise templates (N) were scaled to have a RMS contrast of 1. S 

represents the drifting sine wave grating where each element Sxyt positioned at (x,y) at time t 

was defined as: 
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S(yt = sin(fxx + ftl + p) (l) 

where lx represents the spatial frequency (0.5 or 5.7 cpd), ft represents the temporal 

frequency (±2 or ±8 Hz, the sign representing the drifting direction: left or right) and p 

represents the initial phase ofthe sine wave grating which was randomized at each trial. 

AIl stimuli of the first experiment could be defined by the following function: 

L = Lo[l + (c1m + dccmf, + F((l + ccmS). T)+ nN] (2) 

where Clm and Cem represents the LM and CM Michelson contrasts, respectively. The early 

global nonlinearities of the visual system were compensated for by adding a luminance 

signal in phase with a contrast proportional to the contrast of the CM signal (d). n 

corresponds to noise contrast which varied from one condition to another. F(X) is the 

filtering function keeping aIl temporal frequencies of the three dimensional matrix X and 

only the spatial frequencies between 4 and 8 cpd within the Fourier domain. 

Three stimuli (CM motion, luminance motion near the envelope spatial frequency 

and luminance motion near the carrier spatial frequency, which we referred to as CMO.5; 

LMO.5 and LM5.7, respectively) were tested under three noise conditions (no noise, noise 

near the envelope spatial frequency and noise near the carrier spatial frequency) at two 

temporal frequencies (2 and 8 Hz) resulting in 18 thresholds evaluated. When presenting a 

luminance signal (either near the carrier or envelope spatial frequency, Le. LM5.7 or LMO.5 

respectively), there was no CM signal (cem=O) and the dependant variable was the 

luminance contrast (Clm) and vice versa, when presenting a CM signal (CMO.5), there was 

no luminance signal (Clm=O) and the dependent variable was CM contrast (Cem). Since we 

(Allard & Faubert, 2008b) previously found that at 2 Hz early global nonlinearities were 

too weak to be an issue, we assumed that early global nonlinearities were null without 

measuring them (d=O). The results described below suggesting separate processing confirrn 

that early nonlinearities were not a factor at 2 Hz. At 8 Hz however, compressive 

nonlinearities are known to cause the second-order signal to leak within the first-order 
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pathway (Allard & Faubert, 2008b; Scott-Samuel & Georgeson, 1999) but early global 

nonlinearities can be compensated for by adding a luminance signal. Consequently, at this 

temporal frequency, a luminance signal at the same phase and same spatial frequency as the 

envelope (dccrnS) was introduced with a contrast proportional to the contrast of the CM 

signal (d). The following section briefly describes how this proportion (d) was individually 

estimated and the second experiment asserts that the measurement of this proportion was 

accurate enough to insure that CM stimuli were not processed by a luminance sensitive 

motion system following early global nonlinearities. 

The computation of the band-pass filtering operation within the Fourier domain 

(F((1 +cernS)T)) is time consuming. Since the contrast of the signal (cern) varies from one 

trial to another, a disadvantage of applying this filtering operation at each stimulus 

presentation is that it may introduce delays between trials. However, the time consuming 

filtering operation can be perform once the carrier (T) and signal (S) matrices are known 

independently of the signal contrast (cern). Indeed, due to the linearity of the filtering 

operation, Equation (2) can be reformulated as: 

Since the carrier template (T) does not vary between trials, F(T) is constant 

throughout each staircase. As described above, the signal matrix (S) depends on three 

variables (fx, Ir and p). For a given staircase, the spatial frequencies of the signal (fx) is 

constant, the sign of the temporal frequency (fr) varies and the initial phase (P) is randomly 

selected. Since the filtering operation only affects the spatial frequencies without affecting 

the temporal frequencies, it can be applied independently at each frame. Since only the 

phase of a given signal varies between frames and between trials (due to the initial phase 

(P) and the temporal frequency (fr)), various phases (uniformly distributed between 0 and 

2n) of the sine wave signal multiplied with the carrier can be computed (i.e., spatial 

filtered) before the beginning of the staircase. Thus, by computing the spatial frequency 

filtering operation (F(T) and F(S-T)) before performing each staircase avoided unnecessary 
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delays due to the time consuming filtering operation that would otherwise be required at 

each trial. 

Procedure 

Contrast threshold measurement. Each contrast threshold (Clrn or cern) was estimated 

using the geometric mean of three staircases which were performed using a 2down 1 up 

procedure (Levitt, 1971) interrupted after 26 inversions. The measure of each staircase was 

estimated based on the geometric mean of the last 20 inversions during which the contrast 

step size was fixed to 0.05 log units. The task consisted in discriminating the drifting 

direction (left or right) of a vertically oriented grating. 

Compensating for early global nonlinearities. As mentioned above, when 

presenting a CM grating drifting at high temporal frequencies, early compressive 

nonlinearities of the visual system distort the stimulus. By assuming that such nonlinearities 

are uniform, they can be cancelled by ad ding an LM grating in phase with the CM grating 

(i.e., high luminance matched with high contrast) (Scott-Samuel & Georgeson, 1999). 

However, without this assumption, only the global early nonlinearities can be cancel1ed 

leaving early residual nonlinearities intact. Nonetheless, cancelling global nonlinearities 

asserts that CM stimuli are not processed by luminance sensitive mechanisms following 

global nonlinearities. A pilot study was performed to estimate the contrast of the luminance 

grating relative to the contrast of the CM grating (d) required to cancel the global early 

nonlinearities of the visual system. When the observer was just as efficient at processing 

superposed LM and CM gratings either in phase or in counter-phase, we assumed that early 

global nonlinearities were compensated for. For observer JM and RA, the contrast of the 

luminance grating added to compensate for early global nonlinearities (d) was 1.5% and 

0.71 %, respectively. The methodological details of the estimation of the expansive 

nonHnearity added to the stimulus (d) are described elsewhere (Allard & Faubert, 2008b) 
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and the data are not shown. However, the second experiment asserts that the sensitivity to 

CM motion was not due to a global nonlinearity prior to luminance sensitive mechanisms. 

The impact of the noise. Before evaluating contrast thresholds in noise, the contrast 

of the noise at the carrier and at the envelope (n) was fixed based on another pilot study. 

For each temporal frequency (2 or 8 Hz) and each observer, the contrasts of the noise near 

the envelope (i.e. 0.35 to 0.71 cpd) and near the carrier (i.e. 4 to 8 cpd) were adjusted to 

affect contra st thresholds to LMO.5 and CMO.5 stimuli, respectively, by a factor of 

approximately 2. We chose a factor of 2 because CM stimuli can be processed by two 

motion systems (ertergy-based and feature trac king) and noise can impair one motion 

system more than another (Allard & Faubert, 2008b). Thus, even though LM and CM 

stimuli could be processed by common mechanisms at threshold in noiseless conditions, 

they may be processed· separately when noise elevates thresholds. To minimize the 

probability that distinct motion systems are processing CM stimuli in noiseless and in noisy 

conditions, we added an amount of noise having a small, though measurable, impact which 

was defined as a threshold increase of a factor of approximately 2. Noise contrasts used for 

both observers relative to the testing conditions are presented in Table VI-l. 

Noise near envelope Noise near carrier 

2 Hz 8 Hz 2 Hz 8 Hz 

lM 0.021 0.0096 0.18 0.12 

RA 0.010 0.0062 0.16 0.13 

Table VI-l. Noise contrast. Noise RMS contrast (n) for each noise condition and each 

observer. 

Once the compressive nonlinearity measured at 8 Hz and the noise contrasts were 

fixed, contrast thresholds to LMO.5, CMO.5 and LM5.7 drifting gratings in noiseless, noise 

near the envelope and noise near the carrier conditions were measured in a pseudo-random 

order at' both 2 and 8 Hz resulting into 18 contrast thresholds (3 stimuli X 3 noise 

conditions X 2 temporal frequencies) each estimated 3 times. 
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Movie VI-I. Stimuli. Examples of the threestimuli drifting at 2 Hz in the three noise 

conditions. The signais are a luminance signal at 0.5 cpd (LMO.5, top row), a CM 

signal at 0.5 cpd (CMO.5, middle row) and a luminance signal at 5.7 cpd (LM5.7, 

bottom row). The signaIs are presented either in noiseless conditions (left column), 

embedded in dynamic noise either spatially filtered near the envelope (0.35 to 0.71 

cpd, middle cOlumn) or carrier (4 to 8 cpd, right column). In the current examples, the 

noise was temporally filtered to keep only the temporal frequencies between 1 and 4 

Hz since the signal was presented at 2 Hz. At 8 Hz, the temporal frequencies kept 

were between 4 and 16 Hz. (Movie available on the CD attached to the thesis.) 
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ResuUs and discussion 

Since the target of the present experiment was to measure the impact of the different 

type of noises on the processing of LMO.5, CMO.5 and LM5.7 stimuli, contrast thresholds 

to these stimuli embedded in noise were presented relative to the contra st thresholds 

obtained in noiseless conditions (Figure VI-4). 

Distinct luminance and CM processing at 2 Hz 

At 2 Hz, none of the three possible pair of stimuli (CMO.5-LMO.5, CMO.5-LM5.7 

and LMO.5-LM5.7) showed a similar pattern of results suggesting that they are aH 

processed by distinct mechanisms. It is not surprising that LM5.7 and LMO.5 are processed 

by distinct mechanisms since they are both luminance motion at markedly different spatial 

frequencies (0.5 and 5.7 cpd, respectively). 

CM motion processing (CMO.5) was more affected by noise at the carrier spatial 

frequency (4 to 8 cpd) than at the envelope spatial frequency'(0.35 to 0.71 cpd) and LMO.5 

motion processing was more affected by noise near the envelope spatial frequency than 

near the carrier spatial frequency. Again, the fact that the processing of these stimuli in 

noise was unevenly affected suggests that they are processed, at least at sorne point, 

separately. Thereby, these results assert that CMO.5 stimuli were not processed by a 

luminance sensitive motion system due to early nonlinearities which would have predicted 

similar pattern of results for LMO.5 and CMO.5 stimuli. Furthermore, these results do not 

imply that CMO.5 stimuli are processed by an energy-based motion system distinct from 

the one processing LMO.5 stimuli since CMO.5 stimuli could be processed by a feature 

tracking motion system. Such interpretation is in agreement with previous findings 

suggesting that CM motion at low temporal frequencies may be processed by a feature 

tracking motion system (Seiffert & Cavanagh, 1999). 
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Figure VI-4. Results of experiment 1. Contrast thresholds in different noise conditions 

relative to contrast threshold in noiseless conditions for both observers (JM and RA) 

at 2 Hz (left) and 8 Hz (right). Error bars show the standard error. 
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Common LM and CM processing at 8 Hz 

A different pattern of results was observed at 8 Hz. The processing to LMO.5 and 

CMO.5 were evenly affected by both noises. Conversely, the processing to LM5.7 and 

CMO.5 were not affected in similar proportions for both noises. The dissociation between 

CM and luminance processing at the carrier spatial frequency (LM5.7 and CMO.5) and the 

failure to dissociate CM processing and luminance processing at the envelope spatial 

frequency (LMO.5 and CMO.5) suggests that the processing pathways of LMO.5 and CMO.5 

stimuli are, at least ultimately, common. Indeed, if both stimuli are processed by common 

mechanisms then we would expect both not to be dissociable: any manipulation affecting 

the processing of one stimulus wouldalso affect, in a similar proportion, the processing of 

the other stimulus. 

These results support models suggesting that CM stimuli and luminance stimuli at 

the envelope spatial frequency share, at least at sorne point, common motion pathways. The 

two pathways could be entirely common due to early nonlinearities prior to LM sensitive 

processing or distinct with their energy summed as suggested by the filter-rectify-filter 

model. In either case, a preprocessing nonlinearity would introduce energy at the envelope 

spatial frequency causing CM stimuli to be processed by energy-based mechanisms tuned 

to the spatial frequency of the envelope. On the other hand, by suggesting that CM 

spatiotemponil filters are tuned to the same spatial frequency as luminance processing at 

the envelope spatial frequency, these results do not support the gradient-based model 

suggesting that the energy-based mechanisms processing CM stimuli would be tuned to the 

spatial frequency of the carrier. 

Since early global nonlinearities were compensated for by adding a luminance 

signal, CM stimuli were not detected by a luminance sensitive mechanism following a 

global nonlinearity. Although this hypothesis cannot be exc1uded at the current point 

(measurement error in the evaluation of the global nonlinearity (ci) could be responsible for 
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global leaking from the second-order pathway to the first-order pathway), the next 

experiment asserted that the current results cannot be due to early global nonlinearities. 

Thus, if nonlinearities prior to luminance sensitive mechanisms enabled the processing of 

CM stimuli, then such nonlinearities were not uniform, Le., they cannot be cancelled by 

adding an LM grating. 

As mentioned above, Smith and Ledgeway (1997) proposed that non-uniform 

nonlinearities (which they referred to as local first-order motion patches) would be caused 

by using statie noise defined by large noise elements. However, this is unlikely the cas~ in 

the present experiment since low spatial frequencies within the stimulus were removed. 

Furthermore, Benton and Johnston (1997) found that the impact of this artifact was 

insignificant, i.e. local imbalance within the carrier distribution increased the expected local 

motion energy equally in both directions which implies that the stimulus remained 

microbalanced. We therefore conclude that if the CM stimuli were processed by luminance 

sensitive motion energy-based mechanisms due to an early nonlinearity, then early 

nonlinearities of the visual system were not uniform. 

AB-in-aB, two possible models could explain why CM processing (CMO.5) and 

luminance processing at the envelope spatial frequency (LMO.5) were not dissociable at 8 

Hz: residual early nonlinearities of the visual system causing luminance sensitive 

mechanisms to process CM stimuli or a dedicated energy-based mechanism after a 

rectification process with converging frrst- and second-order pathways. 

Experiment 2: Simulating residual nonlinearities 

The results of the previous experiment suggest that CM motion at 8 Hz was 

processed by energy-based mechanisms tuned to the envelope spatial frequency foUowing a 

preprocessing nonlinearity. These mechanisms can either be distinct from first-order 

energy-based mechanisms with a nonlinearity explicitly applied to second-order stimuli 
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(e.g., filter-rectify-filter) or CM stimuli could be processed by first-order sensitive 

mechanisms following an early non-uniform nonlinearity as suggested in the present paper. 

Based on Lu and Sperling's (2001) review, the main argument suggesting the 

existence of dedicated energy-based second-order mechanisms is that the performance to 

superposed LM and CM signaIs is near the one predicted by a probability summation 

model assuming distinct processing, and this, independently of the phase separating the two 

signaIs. Such apparent lack of interaction was interpreted as strong evidence of distinct 

processing. Indeed, if an early uniform (i.e. global) nonlinearity enables the processing of 

CM stimuli by first-order sensitive mechanisms, then the superposition of both stimuli 

should either cancel or completely sum when presented either in phase or in counter-phase. 

However, if the nonlinearities are not uniform, then they cannot be completely cancelled by 

adding a uniform luminance grating. Optimally, the luminance grating would cancel the 

global nonlinearity leaving residual nonlinearities. Indeed, if the early global nonlinearity 

of a CM grating is compensated for by adding a luminance grating, then only residual 

nonlinearities would leak within the luminance pathway. Locally, these residual 

nonlinearities wou Id be of the same spatiotemporal frequency as the CM grating. Spatially 

summing these residual nonlinearities (originating from the presented CM stimulus) with a 

luminance grating of the same spatiotemporal frequency would sum under certain areas and 

subtract under others resulting in no strong global summation or cancellation. The objective 

of the present experiment was to empirically demonstrate that the apparent lack of 

interaction (performance predicted by probability summation) do not necessarily imply 

distinct processing. If two stimuli subtract one another under half the areas and sum under 

the other half, then one could expect no important performance summation which may not 

be greater than the probability summation (i.e., apparently no interaction) even though both 

stimuli strongly interact. 

To simulate residual nonlinearities, we multiplied spatiotemporally low-pass noise 

(mean of 0) with a luminance grating (Movie VI-2). Negative spatiotemporal blobs inverted 



216 

the phase of the grating. Thus, half the spatiotemporal areas contained a grating with the 

same phase as the original grating and the phase is inverted for the other half. Globally, the 

expected energy of such a stimulus at the spatiotemporal frequency of the grating is null 

since, on average, the areas cancel one another. Locally, however, each area is defined by a 

luminance grating. Consequently, there is no reason to suggest that simulated residual 

nonlinearities and a luminance grating at the same spatiotemporal frequency would be 

processed by distinct mechanisms. Again, spatially summing these simulated residual 

nonlinearities with the original grating would not cancel one another. The spatial areas in 

counter-phase would subtract one another decreasing the visibility of the resulting stimulus, 

but the spatial areas in phase would sum one another increasing the visibility of the 

resulting stimulus. The purpose of the present experiment was to demonstrate that two 

stimuli processed by common mechanisms can result in no apparent interaction. Thus, the 

apparent lack of interaction between luminance and CM processing may not imply distinct 

processing. CM stimuli could be processed by luminance sensitive mechanisms following 

early non-uniform nonlinearities. 

Movie VI-2. Simulation of early residual nonlinearities. The resulting signal (right) is 

the multiplication of a grating (left) with low-pass noise (center). (Movie available on 

the CD attached to the thesis.) 

Method 

The same two observers participated to the study and the same apparatus was used. 
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Stimuli 

The stimulus function was similar to the one in the previous experiment with the 

exception of the last term: 

That is, no noise was added to the stimulus, but a simulation of residual 

nonlinearities was added. enl represents the contrast of the simulated residual nonlinearities 

( and N corresponds to spatiotemporally low-pass noise «0.5 cpd and <8 Hz) centered on 

zero with a RMS of 1. AIl other variables were defined as in the previous experiment. Note 

that we only simulated the impact of early residual nonlinearities at low spatiotemporal 

frequencies using an ideal filter. Obviously, early residual nonlinearities would certainly 

also introduce energy at higher spatiotemporal frequencies. Nonetheless, the objective was 

not to accurately simulate the early nonlinearities of the visual system using a biologically 

plausible model but rather to show that early residual nonlinearities introducing energy at 

low spatiotemporal frequencies are sufficient to explain the apparent lack of interactipn 
, 

between LM and CM processing. 

Procedure 

Threshold measurement. Spatially summing two stimuli with equal visibility (same 

proportion of correct answers) results in a complete summation if the same performance is 

obtain to either stimulus presented alone with its contrast doubled (assuming that the slopes 

of the two psychometrie functions are identical). For instance, consider the case when the 

two stimuli are identical (e.g., two luminance gratings). Obviously, there is complete 

summation between these stimuli since both are processed by the same mechanisms. 

Spatially superposing both stimuli is equivalent to doubling the contrast. As a result, an 

observer will certainly have the same performance to either stimulus presented alone with 
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the contrast doubled or with the sum of the two stimuli, since the resulting stimuli are 

identical. 

The first step consisted in measuring the contrast threshold of each grating 

presented alone (C/m , Cern and cn/). The threshold was defined as half the contrast required to 

have 87% correct answers (based on a Weibull psychometric function with a typical slope 

of 3.5, the performance is estimated at 56%). The threshold was evaluated as in the 

previous experiment with the exception that a 4downlup was used rather than a 2downlup 

(threshold criterion of 87% instead of 71 %) and the contrast measured was then divided by 
1 

2. Consequently, complete summation would result into a performance near 87%. We 

defined the threshold criterion as such to avoid ceiling e{fects. Based on this definition, aIl 

thresholds were significantly lower than perfect performance and above chance level. 

Spatial summation. Once the contrast to each grating was fixed, the proportion of 

correct answers for each grating presented alone at threshold was evaluated (stimuli 

referred to as LM, CM and NL). Again, based on a typical slope of 3.5, the expected 

performance at threshold is 56%. The expected performance for complete summation was 

evaluated by measuring the proportion of correct answers to each grating presented alone at 

twice the contrast threshold
f 
(stimuli referred to as 2LM, 2CM, 2NL). Obviously, the 

1 

expected performance at twice the threshold was 87%. The interaction between the 

processing of LM and CM stimuli was evaluated by measuring the proportion of correct 

answers to the combination of these stimuli eith.~r in phase (LM+CM) 'or in counter-phase 

(LM-CM). To test the residua1 nonlinearities model, the performance to the summation of a 

luminance grating with simulated residual nonlinearities (LM+NL) was also evaluated. For 

the three interaction cases, if both stimuli completely sum, a perfo~ance of 87% would be 

expected. If both stimuli cancel one another, this should result into a performance near 

chance level (50%). The proportion of correct, answers to each of these 9 stimuli was 

evaluated over 200 trials presented in a pseudo-random order resulting into 1800 trials 

which were presented in 4 blocks of 450 trials. 
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Probability summation. Based on a simple probability summation model supposing 

that both signaIs are processed independently (Lu & Sperling, 1995), the probability of not 

"truly" perceiving a stimulus composed ofboth signals(1-PI2) is equal to the probability of 

not "truly"perceiving both signaIs presented separately «(l-P I ) and (l-p I
2)): 

Movie VI-3. Stimuli. Examples of the three stimuli used in the second experiment 

presented separately: a luminance signal (left) , a CM signal (center) and simulated 

residual nonlinearities (right). (Movie available on the CD attached to the thesis.) 

The probability of not having a correct answer (l-Yx ) is equal to the probability of 

not "truly" perceiving the stimulus (1-Px) and not having a correct answer by chance (1-

Pchance, i.e. 50%): 

1- ~c = (1- P; XI- ~hance) (6) 

As a result, based on this probability summation model, the probability of having a 

correct answer when presenting both signaIs (Y d may be defined as a function of the 

probability of having a correct answer to either signal (YI and Y 2) by the following 

function: 

(7) 
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Supposing a proportion of correct answers ()f 56% to either stimulus presented 

alone~ the probabili~y summation model would predict a performance of 61 % when both 

signaIs are presented. 

Results 

Figure VI-5 summanzes the results. As expected, thresholds for each grating 

presented alone at twice the contrast thresholds (2LM, 2CM and 2NL) were near 87% and 

clearly above the performance predicted by the probability summation model as expected 

due to the sharp slope of the psychometrie function. Thresholds for each grating presented 

alone at threshold (LM,. CM and NL) were near 56% as predicted by assJ,lming a slope of 

3.5 on the Weibull psychometrie function. The most important results were the ones obtain 

when two different stimuli presented at threshold were superposed (LM+CM, LM-CM and 

LM+NL). For each of these three stimuli, the proportion of correct answers was near or 

above the one predicted by the probability summation mode!. 
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Figure VI-S. Results of experiment 2. Circles represent the proportion of correct 

answers to the 9 different stimuli. Squares represent the proportion of correct 

answers predicted by a simple probability summation model (Equation (7». Error 

bars shows 68% confidence interval. 
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Discussion 

Global preprocessing nonlinearity 

In both experiments, early global nonlinearities were compensated forby adding a 

luminance grating in phase with the CM grating. Although it is impossible to perfectly 

compensate for early global nonlinearities, the fact that similar performances were ob tain 

when superposing an LM and a CM stimulus either in phase or in counter-phase asserts that 

CM stimuli were not processed by luminance sensitive mechanisms following a global 

preprocessing nonlinearity (rectification or global early nonlinearities). Indeed, if LM and 

CM stimuli were processed by common energy-based mechanisms due to a global 

preprocessmg nonlinearity either explicitly applied to second-order processing 

(rectification) or due to early uniform nonlinearities (i.e., global distortion product), then 

the expected performance should either be complete summation or cancellation depending 

on whether both stimuli were superposed in phase or in counter-phase. Consequently, these 

results confirm that the estimated mean global nonlinearity (d) was precise enough to assert 

that the CM stimuli· at. 8 Hz were not processed by luminance sensitive mechanisms 

following a global preprocessing nonlinearity. 

Common processing without apparent interaction 

After concluding that CM stimuli were not processed by luminance sensitive 

mechanisms due to a global distortion product (i.e., early global nonlinearity), several 

authors (Lu & Sperling, 1995, 2001; Scott-Samuel & Georgeson, 1999) inferred that LM 

and CM stimuli were processed by distinct motion systems (e.g., filter-rectify-filter model). 

Indeed, the performanc~ gain when spatially superposing both stimuli can be explained by a 

simple probability summation model suggesting that LM and CM stimuli are processed 

separately. However, by making such deduction, they implicitly assumed that CM stimuli 

could not be processed by luminance sensitive mechanisms due to early residual 
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nonlinearities. Though CM processing could not be processed by LM sensitive mechanisms 

following an early global nonlinearity, the present experiinent shows that these results 

could be explained by residual nonlinearities. Indeed, by simulating early residual 

nonlinearities, we obtained similar results as the ones for CM stimuli. That is, when 

superposing a NL or CM stimuli with an LM stimuli, the performanceobtained was near 

the one predicted by a probability summation model. Furthermore, the results showed that 

given two stimuli processed by common motion energy-based mechanisms (LM and NL), 

no cancellation and no complete summation are necessarily obtained. Consequently, if 

residual nonlinearities prior to LM sensitive mechanisms enable the processing of CM 

stimuli, then, based on our simulations, no apparent interactions could be observed ev en 

though there is strong interaction (half of the spatiotemporal areas sums and the other half 

cancels). 

General discussion 

Failure to dissociate first- and second-order energy-based processing 

In a previous study (Allard & Faubert, 2007), we successfully dissociated the 

detection of static LM and CM stimuli suggesting distinct processing, which is in 

agreement with the general consensus for static stimuli (Georgeson & Schofield, 2002; 

Schofield & Georgeson, 1999). By applying a similar noise mas king paradigm, we (Allard 

& Faubert, 2008b) tried to dissociate LM and CM motion processing by evaluating the 

impact of adding dynamic LM and CM noises on either processing. At low temporal 

frequencies, a double dissociation was observed: LM noise impaired more LM than CM 

processing and CM noise impaired more CM than LM processing suggesting that both 

stimuli are processed by distinct mechanisms. Such dissociation was not observed at high 

temporal frequencies. That is, either noise had the same impact on both LM and CM 

processing suggesting that both are processed by common mechanisms. In the CUITent 

study, another attempt was made at dissociating LM and CM processing by adding 

\ 
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luminance noise either at the envelope or carrier spatial frequency. Again, at low temporal 

frequencies, both processing were dissociable but not at high temporal frequencies. 

The ability to dissociate LM and CM processing for static and low temporal 

frequency stimuli is compatible with the hypothesis that CM stimuli were processed by a 

feature tracking motion system at low temporal frequencies. lndeed, if LM and CM features 

are spatially distinguishable (as suggested by the absence of inter-attribute interaction for 

static stimuli (Allard & Faubert, 2007; Georgeson & Schofield, 2002; Schofield & 

Georgeson, 1999)), then we could expect a feature tracking motion system that is 

processing the CM feature to be unaffected by the presence of the LM feature. 

At high temporal frequencies, the failure to dissociate LM and CM processing 

suggests, at least at sorne point, common processing pathways. Furthermore, Lu and 

Sperling (1995) found motion cancellation rather than motion transparency when 

simultaneously presenting an LM and CM grating moving in opposite directions also 

suggesting that both pathways are, at least ultimately, co~mon. Both pathways could either 

be entirely common (i.e. early nonlinearities) or initially distinct energy-based mechanism 

with common late mechanisms summing the output energy of both pathways (e.g., filter­

rectify-filter model). 

Preprocessing nonlinearity 

The development of the gradient-based model suggests that a preprocessmg 

nonlinearity introducing spectral energy at the envelope spatial frequency is not required to 

process CM motion stimuli. Alternatively, the gradient-based model shows that luminance­

based mechanisms tuned to the spectral energy of the stimulus (i.e. the carrier) cou Id enable 

the processing of CM motion stimuli ev en though the stimulus is drift-balance. However, 

the present study found that luminance and CM processing at high temporal frequencies 

was not dissociable when the spatial frequency of the luminance grating was equal to the 

CM envelope rather than carrier spatial frequency. This suggests that the mechanisms 
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processing CM stimuli in such conditions are tuned to the spatial frequency of the envelope 

rather than the carrier. Consequently, CM processing would occur due to a preprocessing 

nonlinearity introducing spectral energy at the envelope spatial frequency rather than 

nonlinearities within the motion processing mechanism as suggested by the gradient-based 

model. 

Implicit assumption of the distinct processing hypothesis 

Based on the fact that CM motion processing cannot be null by the superposition of 

'luminance grating led several authors (Lu & Sperling, 1995, 2001; Scott-Samuel & 

Georgeson, 1999) to conc1ude that early nonlinearities ,cannot explain by themselves the 

perception of CM motion and they thereby deduced that LM and CM stimuli are processed 

by distinct energy-based motion systems. The formulation of ihis argument only considers 

early global nonlinearities and implicitly ass~mes that the preprocessing residual 

nonlinearities are too weak to cause LM sensitive mechanisms to process CM stimuli. If the 

preprocessing nonlinearities are not-unifortn then sorne are as could cancel one another and 

others sumo As shown\ in the second experiment, such complete interaction could result in 

no apparent interaction (i.e. a performance similar to the one predicted by a probability 

summation model). 

Early global nonlinearities were measured in various conditions (Allard ,& Faubert, 

2008b; Scott-Samuel & Georgeson, 1999) and were found to vary as a function of the 

temporal frequency of the stimulus, stimulus duration and carrier contrast. Indeed, at low 

temporal frequencies, the mean nonlinearities were not found to have a significant impact, 

but important global nonlinearities were observed at high temporal frequencies. 

Furthermore, the nonlinearities were also found to vary from one subject to another. In the 

present study, the nonlinearity measured varied by a factor of about 2 between our two 

observers. Given that early global nonlinearities vary as a function of many parameters, it is 

reasonable to assume that nonlinearities could also vary as a function of space or time and' 
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that such variation could cause sufficiently great distortions to enable LM sensitive 

mechanisms to process CM stimuli. On the other hand, conc1uding that LM and CM stimuli 

are processed by distinct energy-based motion systems, imply assuming that the variation 
\ ) 

of the early nonlinearities as a function of space and time are too weak to enable LM 

sensitive mechanisms to process CM stimuli. Again, since the early nonlinearities were 

typically defined as global distortion products it was also implicitly assumed that they were 

unifonll, i.e. the residual nonlinearities were too weak to be processed by LM sensitive 

mechanisms. Such an assumption is necessary to conc1ude that both stimuli are processed 

by initially distinct pathways. 

Note that almost any variation within early nonlinearities could enable a luminance 

sensitive motion system to detect a CM stimulus. Here we express such variation either as a 

function of space or time, but this doesnot necessarily have to be tqe case. Variations 

within a given spatiotemporal area are also possible. For instance, if the two eyes have 

distinct early global nonlinearities, then it would not be possible to compensate for such 

nonlinearities simply by adding a nonlinearity to a stimulus viewed binocularly. In any 

case, there would always be at least one eye which the global nonlinearity would not be 

properly compensated for. More generally, if two neurbns process the same receptive field 

but do not have the same early nonlinearities (e.g., if nonlinearities occur where the wo 

pathways to these neurons are distinct), then these nonlinearities cannot be compensated 

for. 

Visualizing thenon-uniform nonlinearities of the visu al system 

The present study suggests that the apparent lack of interaction when superposing 

both LM and CM stimuli is not sufficient to infer the existence of a dedicated energy-based 

second-order motion system. Altematively, we suggest that non-uniform early 

nonlinearities could enable luminance sensitive mechanisms to process CM stimuli. 

However, we do l}ot directly demonstrate such non-uniform nonlinearities exist. 
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After viewing a primarily presentation of the CUITent results (Allard & Faubert, 

2008a), Harry Orbach (personal communication at the Vision Science Society meeting' in 

2008) mentioned that when viewing a flickering Ganzfeld at a high contrast and a high 

temporal frequency, he observed that the field appeared spatially non-:-uniform ev en though 
\, 

it was. After this conversation, we created a large flickering stimulus and we observed the 

same phenomenon. More specifically, the greater the contrast and the higher the temporal 

frequency, the less uniform the flickering field appeared. This subjective experience 

directly demonstrates the existence, of non-uniform nonlinearities during dynamic 

presentations and thereby supports the hypothesis that non-uniform nonlineariti~s could 
l ' , 

enable 'the luminance sensitive motion system to process CM stimuli in certain conditions. 

J 

Conclusion 

Two mcidels can explain the similar properties observed between LM and CM 

energy-based processing, the failure to dissociate both processing and the partial 

summation (performance near probability summation) observed when spatially summing 
. ( 

,both stimuli either in phase or in counter-phase. The filter-rectify-filter model suggests the 
r 

existence of a rectification process recovering the spectral energy of the envelope with 

dedicated energy-based second-order mechanisms. The first- and second-order, pathways 
1 

wou Id later sum explaining the similar pr6cessing properties and why the processing of 

both types of stimuli would not be dissociable. As described above, this model implicitly 

assumes that early residual nonlinearities are too weak to be processed by first-order 

sensitive mechanisms. On the' other hand, the model proposed in the present study suggests 

that early residual nonlinearities may be large enough in certain conditions to cause CM, 

processing pathway to leak within; the LM processing pathway. 

To our knowledge, CM stimuli are the only second-order stimuli found to be 

processed by energy-based mechanisms and this generally occurs at high temporal 

frequencies with a high contrast carrier. Most other second-ord,er stimuli (e.g. stereo-based) 

( 

1 
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were found to be processed by a feature tracking motion system. Note that as residual 

nonlinearities (as described above when viewing a flickering field), earlyglobal 

nonlinearities were also found to increase with carrier contrast (Scott-Samuel & Georgeson, 

1999) and temporal frequency (Allard & Faubert, 2008b; Scott-Samuel & Georgeson, 

1999). Consequently, early nonlinearities are correlated with the probability of CM stimuli 

to be processed by energy-based mechanisms. Given that we are highly sensitive to LM 

stimuli at high temporal frequencies, relatively small preprocessing nonlinearities are 

required to enable the luminance energy-based motion system to process CM stimuli. Thus, 

the existence of a dedicated second-order energy-based motion system is questionable. We 

conclude that the model suggesting that residual nonlinearities may introduce sufficient 

artifact to be processed by luminance sensitive mechanisms is more parsimonious than 

supposing the existence of a dedicated second-order energy-based motion system and 

supposing residual nonlineàrities are too weak to cause considerable luminance artifacts. 
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Stimuli statiques définis par la luminance et le contraste 

Pour un signal statique, le Chapitre III à démontrer que le traitement "d'un signal 

défini par la himinance est plus affecté par le bruit défini par la luminance que par le bruit 

défini par le contraste et vice versa, que le traitement d'un signal défini par le contraste est 

plus affecté par le bruit défini par le contraste que par le bruit défini par la luminance. Le 

fait qu'il soit possible de sélectivement affecter le traitement d'un attribut tout en 

maintenant le traitement de l'autre relativement intact (c.-à-d., pas ou peu d'interaction 

inter-attribut) implique que ces attributs sont traités, au moins initialement, par des 

mécanismes distincts. Ces résultats sont compatibles avec le peu d'interaction inter-attribut 

généralement observée pour ces attributs dans des conditions statiques (Georges on & 

Schofield, 2002; Schofield & Georgeson, 1999). 

Cependant,1 nous avons également observé dans le Chapitre II que l'être humain est 

aussi efficace à détecter un signal de luminance dans du bruit de luminance qu'à détecter un 

signal de contraste dans du bruit de contraste. Cette même efficacité de calcul peut 

s'expliquer par l'existence d'un mécanisme commun extrayant le signal du bruit pour ces 

deux attributs. De plus, la même efficacité à extraire un signal du bruit a également été 

observée pour un signal défini par la luminance dans du bruit défini par .la luminance 

comparativement à un signal défini par la couleur dans du bruit défini par la couleur 

(Gegenfurtner & Kiper, 1992). Ces résultats peuvent s'expliquer par l'existence d'un 

mécanisme général, c'est-à-dire commun à plusieurs attributs, extrayant le signal du bruit. 

Il n'est donc pas nécessaire de supposer l'existence de mécanismes distincts extrayant le 

signal du bruit pour chaque attribut. Étant donné l'absence ou le peu d'interaction inter­

attribut, un mécanisme général pourrait sélectionner et traiter un seul attribut en ignorant les 

autres (figure VII-l). 
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First filtering stage Second filtering stage 

LM-

CM-O-Q-
. Figure VII-l. Modèle proposant un mécanisme traitant plusieurs attributs de façon 

sélective. 

Il est généralement présupposé que la détectabilité d'un signal dépend du ratio 

signal-bruit. Le bruit peut provenir du système visuel (bruit interne) ou du stimulus (bruit 

externe). Lorsque la différence entre ces deux bruits est importante, le bruit le plus faible 

n'a pas significativement d'impact et la perception du signal dépend seulement du bruit le 

plus important. En d'autres termes, il est généralement présupposé que l'ajout de bruit 

externe modifie le traitement seulement quantitativement en altérant le ratio signal-bruit, 

mais ne modifie pas le traitement qualitativement, c'est-à-dire que le signal est traité de la 
\ 

même façon et par les mêmes mécanismes peu importe la quantité de bruit externe. Selon 

cette présupposition, le mécanisme général sélectionnant un attribut et extrayant le signal 

dù bruit serait également sollicité lors de la détection d'un signal en absence de bruit tel que 

suggéré dans le Chapitre III. En d'autres termes, la détection de luminance et de contraste 

serait initialement traitée de façon distincte, mais impliquerait un traitement général 

commun (Figure VII-I). Cependant, si l'ajout de bruit modifie qualitativement le traitement 

d'un stimulus (tel que suggéré dans le Chapitre IV), le modèle suggérant un mécanisme 

général sélectionnant un attribut et extrayant le signal dù bruit de cet attribut pourrait n'être 

valide qu'en présence de bruit externe. Une recension des écrits a permis de supporter cette 
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dernière alternative en démontrant qu'il est possible de dissocier le traitement d'un stimulus 

en présence et en absence de bruit externe, c'est-à-dire qu'il existe des conditions affectant 

seulement le traitement en absence de bruit externe et d'autres conditions affectant 

seulement le traitement en présence de bruit externe. Cette double dissociation suggère 

donc que l'ajout de bruit peut modifier qualitativement le traitement d'un stimulus 

(Chapitre IV). La détection de différents attributs en absence de bruit n'impliquerait donc 

pas nécessairement des mécanismes communs. 

Mouvement défini par la luminance et le contraste 

Étant donné que le mouvement défini par le contraste peut être traité par aux moins 

deux systèmes de mouvement basés sur des stratégies computationnelles différentes (1'un 
) 

basé sur le suivi d'une caractéristique (feature tracking) et l'autre basé sur l'énergie (Lu & 
1 

Sperling, 1995, 2001; Sèiffert & Cavanagh, 1999; Smith, 1994)), la problématique de 

déterminer si le mouvement défini par la luminance et le contraste sont traités par des 

mécanismes communs ou distincts peut. être posée pour chacune de ces stratégies 

computationnelles. 

Étant donné qu'un stimulus défini par la luminance est normalement traité par un 

système de mouvement basé sur l'énergie (Zaidi & DeBonet, 2000), lorsqu'un stimulus 

défini par le contraste est traité par un système de mouvement basé sur le suivi d'une 

caractéristique, ces deux stimuli ne sont pas traités par des mécanismes communs. De plus, 

même si un stimulus défini par la luminance était traité par un système de mouvement basé 

sur le suivi d'une caractéristique, l'absence d'interaction inter-attribut obtenue pour les 

stimuli statiques (Chapitre III) suggère que les mouvements de stimuli définis par la 

luminance et le contraste seraient également dissociables. En effet, l'absence d'interaction 

Inter-attribut pour la détection d'un attribut statique suggère qu'une caractéristique spatiale 

d'un attribut (ex: sa forme) ne soit pas masquée par la présence de bruit d'un autre attribut. 

Par conséquent, le changement de position en fonction du .temps de cette caractéristique 
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devrait être peu affecté par le bruit d'un autre attribut pennettant ainsi la perception du 

mouvement utilisant une stratégie basée sur le suivi d'une caractéristique. Le fait qu'à 

basses fréquences temporelles le traitement du mouvement défini par la luminance et celui 

du mouvement défini par le contraste ne soient pas affectés dans la même proportion par 

différents types de bruit (Chapitre V et Chapitre VI) est donc compatible avec le fait que le 

mouvement défini par le contraste était traité par un système de mouvement basé sur le 

suivi d'une caractéristique. 

Lorsque les mouvements définis par la luminance et le contraste sont traités par un 

système de mouvement basé sur l'énergie, détenniner si ces mouvements sont traités par 

des mécanismes communs ou distincts est plus controversé. Puisqu'un stimulus défini par 

le contraste ne possède pas d'énergie à la fréquence du signal, le traitement énergétique de 

celui-ci requière préalablement des nonlinéarités introduisant de l'énergie à cette fréquence. 

D'une part, il est possible que des nonlinéarités intrinsèques au système visuel précédant le 

traitement énergétique de luminance pennettent également le traitement de stimuli définis 

par le contraste. Selon cette hypothèse, les mouvements définis par la luminance et le 

contraste seraient donc traités par des mécanismes communs. D'une autre part, il pourrait 

exister un mécanisme énergétique dédié au traitement de stimuli définis par le contraste 

suivant un processus évaluant explicitement le contraste local (rectification) introduisant de 

l'énergie à la fréquence du signal (Wilson, Ferrera & Yo, 1992). En d'autres tennes, des 

mécanismes de mouvement basés sur l'énergie pourraient traiter du mouvement défini par 

le contraste suivant l'extraction de la fonne du signal. De tels mécanismes seraient distincts 

d'un mécanisme énergétique traitant la luminance. Dans les Chapitre V et Chapitre VI, le . 

fait que le mouvement défini par la luminance et celui défini par le contraste n'étaient pas 

dissociables à hautes fréquences temporelles (les deux étaient affectés par la même 

proportion), suggère l'implication de mécanismes communs. En effet, chacun des bruits 

définis par la luminance et le contraste avait relativement le même impact sur les 

traitements de mouvement de luminance et de contraste. Étant donné que l'interaction inter­

attribut ne pouvait s'expliquer par un produit de distorsion global (non-linéarité unifonne 
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précédent le traitement de luminance), la conclusion généralement admise est qu'il existe 

un mécanisme de mouvement basé sur l'énergie dédié au mouvement de deuxième ordre 

(Lu & Sperling, 1995,2001; Scott-Samuel & Georgeson, 1999). En effet, en superposant 

spatialement un signal défini par la luminance avec un signal défini par le contraste, la 

performance était similaire à celle prédite par un modèle probabiliste supposant que ces 

deux signaux étaient traités de façon indépendante (Lu & Sperling, 1995). Cependant, en 

définissant les non-linéarités du système visuel par un produit de distorsion global, ces 

auteurs ont implicitement présupposé que les non-linéarités du système visuel étaient 

uniformes en fonction du temps et de l'espace. Le Chapitre VI propose plutôt que des non­

linéarités non-uniformes puissent expliquer le fait que ces deux attributs ne soient pas 

dissociables à hautes fréquences temporelles. Des résultats similaires ont été observés en 

simulant des non-linéarités non-uniformes, c'est-à-dire que la performance était similaire à 

celle prédite par le modèle probabiliste lorsqu'un mouvement défini par la luminance était 

superposé à un mouvement simulant l'impact de non-linéarités non-uniformes appliquées à 

un mouvement défini par le contraste (également défini par la luminance). Il n'est donc pas 

nécessaire de supposer l'existence d'un mécanisme de mouvement basé sur l'énergie dédié 

uniquement au mouvement défini par le contraste. L'existence de non-linéarités non­

uniformes intrinsèques au système visuel permettrait d'expliquer l'apparente absence 

d'interaction inter-attribut lorsque deux signaux sont superposés spatialement et 

l'interaction inter-attribut lorsque du bruit d'un attribut masque le traitement de l'autre 

attribut. 

Conclusion générale 

Due à l'absence d'interaction inter-attribut pour la détection de signaux statiques, 

nous concluons que les stimuli statiques définis par la luminance et le contraste (premier et 

deuxième ordres, respectivement) sont, au moins initialement, traités séparément. Il 

existerait donc des mécanismes distincts pour le traitement spatial de deuxième ordre. Par 
\ 
\ 
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contre, les mouvements à hautes fréquences temporelles (basés sur l'énergie) définis par la 

luminance et le contraste n'étaient pas dissociables suggérant que ces deux attributs étaient 

traités par des mécanismes communs. Des non-linéarités non-uniformes intrinsèques au 

système visuel pourraient expliquer qu'un mouvement défini par le contraste soit traité par 

les mécanismes sensibles à la luminance. Il n'est donc pas nécessaire d'inférer l'existence 

d'un système de mouvement basé sur l'éI,1ergie dédié au traitement de deuxième ordre. Le 
. "-

fait qüe les mouvements définis par la luminance et le contraste soient dissociables à basses 

fréquences temporelles est compatible avec l 'hypothèse que le mouvement défini par le 

contraste soit traité par un système basé sur le suivi d'une caractéristique 'ifeature tracking). 

En effet, si une caractéristique spatiale n'est pas. masquée par le bruit d'un autre attribut 

(absence d'interaction pour les stimuli statiques), alors il n'est pas surprenant que le suivi 

de cette caractéristique dans le temps ne soit également pas (ou peu) masqué par le bruit 

d'un autre attribut. Nous concluons donc qu'il existe des mécanismes dédiés uniquement au 

traitement spatial de deuxième ordre, mais qu'il n'y a qu'un système de mouvement basé 

sur l'énergie traitant les stimuli de premier et deuxième ordres. 
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Abstract 

Visual psychophysics often manipulates the contrast of the image on a digital 

display screen. Therefore, the limitation of the number of different luminance intensities 

displayable for most computers (typically 256) is frequently an issue. To avoid this 

problem, experimenters generally need to purchase special hardware (graphie cards) and/or 

develop specific computer programs. Here we de scribe an easy to implement method 

consisting in adding noise to the displayed stimulus that we cal1 the "noisy-bit" method. 

This random dithering method generalized to 256 luminance intensities is equivalent to 

displaying continuous luminance intensities plus a certain amount of noise. Psychophysical 

testing using a standard spatiotemporal resolution (60 Hz and 1024x768 pixels) 

demonstrated that the noise introduced by the noisy-bit method has no significant impact on 

contrast threshold and is not visible. We conclude that the noisy-bit method combined with 

the standard 256 luminance levels is perceptually equivalent to an analog display with a 

continuous luminance intensity resolution when the spatiotemporal resolution is high 

enough so that the noise becomes negligible (which is easily attainable with typical 

spatiotemporal resolutions of present-day computers). 

Keywords: Grayscale; display; 8-bit; noise; noisy-bit; luminance resolution; dithering 
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Introduction 

Visual psychophysics often manipulates the contrast of the image on a digital 

display screen. A computer screen can display digital images with a relatively high 

spatiotemporal resolution. Indeed, most computer displays can produce relatively weIl 

definedimages (typically at least 1024x768 pixels) at a relatively high temporal resolution 

(60 to 200 images per seconds). This high spatiotemporal resolution enables computers to 

display digital images resembling analog images. Indeed, if the spatial and/or temporal 

resolution is great enough, there will be no significant differences between a digital and 

analog image. For instance, a luminance grating, which wou Id ideally vary continuously 

over space and/or time, varies in a discrete manner when presented on a digital display 

(Figure AnnexeI-l) but appears to vary continuously if the spatial and/or temporal 

resolution is great enough. Rence, high frequency luminance variations are 

spatiotemporally summed by the visual system and therefore undetected (Watson, 

Ahumada & Farrell, 1983). 
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Figure Annexel-I. Discrete and continuous resolutions. Luminance variation of two 

discrete resolutions compared to a continuous resolution as a function of either space 

or time. If the resolution is high enough, the differences between a discrete and 

continuous resolution are not detectable. 

The grayscale resolution problem 
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Analogously to the spatiotemporal resolution, the luminance intensity of each 

pixel is also discrete. The luminance of each pixel of a digital image sent to the display is 

defined by a digital value typically ranging between 0 and 255, which are called digital-to­

analog converter (DAC) values. For sake of simplicity, we will omit that there are three 

different color guns and we will define each pixel color only by its luminance intensity. In 

other words, for any given pixel, we will assume that aIl the three guns are set to the same 

DAC value. The digital-to-analog converter translates each value into a voltage resulting 

into a given luminance intensity. Before psychophysical testing, the relation between the 

DAC value sent to the display (i, for an integer) and the luminance intensity produced (d for 

a discrete value) is typically made linear (i.e. gamma corrected to be proportional to the 

DAC value): 

d Lm i (36) 
255 

where L255 represents the luminance intensity emitted when the DAC value is 255. The 

DAC values are integers ranging between 0 and 255, which limits the number of different 

displayable luminance intensities. However, the mathematical function defining the 

luminance intensity of each pixel of the stimulus (L(x,y,t) for the luminance intensity of the 

pixel spatially positioned at (x,y) at time t) is generally continuous. Knowing the relation 

between the DAC value and the displayed luminance intensity (equation 36) enables the 

unit conversion of the luminance intensity of a given pixel (l, for simplicity we will refer to 

a given pixel which enables us to drop thespatiotemporal position of the pixel (x,y,t) so that 

I=L(x,y,t)) to a continuous DAC value (r for a real value), which is simply the inverse of 

equation 36: 

r = 255 1 (37) 
L255 

However, DAC values are not continuous and must be integers. As a result, the 

DAC values must be rounded to the nearest integer before being sent to the display: 

i = lr + 0.5 J (38) 
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where LxJ represents the floor function (i.e. rounding x to lower integer) and Lx+0.5J 

thereby represents rounding x to the nearest integer. By combining these three equations, 

the relation between the luminance function defining each pixel (l) and the discrete 

displayed luminance (d) ofthis pixel is: 

d :::: Lml255 1 + 0.51 (39) 
255 Lm J 

In other words, there is a limited quantity of displayable luminance intensities (for 

most computers 256) and the luminance value of each pixel. (l) is typically rounded to the 

nearest DAC value or, which is equivalent, to 1/255 the maximal luminance intensity 

(L2SS). This grayscale resolution can often be too low to measure contrast thresholds (Pelli 

& Zhang, 1991). Indeed, for many spatiotemporal frequencies, the smallest perceptible 

contrast is less than the smallest luminance intensity difference displayable (L2SS/255). 

Since contrast thresholds are often measured in psychophysics, the grayscale resolution of 

most computer displays is frequently an issue. 

Current solutions 

Hardware 

Various methods are used to solve the grayscale resolution problem. The first 

obvious solution is to purchase a graphie card able to display more than 256 different 

luminance intensities. This solution does not only require buying special graphie cards, it 

also necessitates particular programs (generally homemade) interfacing directly with the 

graphie cardo Indeed, under Windows™, very few graphie cards are able to display 1024 

grayscales (10 bits) as the majority is limited to 8 bits. To use JO-bit graphie cards, 

experimenters typically need to develop their own software directly interfacing with the 

graphie cardo On Macintosh computers, today's graphie cards now generally display 

grayscales with a JO bit precision and sorne special graphie cards can display up to 12 or 14 

bits. However, they also require specifie programming directly interfacing with the lookup 

table of the graphie cardo Moreover, although they can display more than 256 different 
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luminance intensities, only 256 can be displayed simultaneously. Furthennore, lü-bit 

resolution may still not be sufficient. As a result, the hardware solution could solve the 

grayscale reso1ution problem in sorne conditions but may not be easily applicable for aIl 

experimenters. 

Bit-stealing 

The bit-stealing method (Faubert, 1991; Tyler, 1997) suggests the use of a 

chromatic jitter to enhance luminance intensity precision. Instead of having the same DAC 

value for aIl three co1or guns, each gun may have slightly different DAC values. Having 

different DAC values (e.g. 128,129,128) for the three color guns, enables the display of 

luminance intensities with a greater precision than when all three guns have the same DAC 

values (e.g. (128,128,128) or (129,129,129)). This alters the chromaticity of the pixel but 

a1so displays luminance intensities with a greater reso1ution. Since we are 1ess sensitive to 

chromatic variations than luminance intensity variation, such chromatic jitter is generally 

not detectable. The drawback of this method is that it is relatively complex to imp1ement 

and stilliimits the number of grey levels that can be displayed. 

Dithering 

Sorne printers, faxes or display devices can only produce 2 colors (typically black 

and white), and are used to display images typically defined by 256 grayscale intensities. 

Many techniques, called "ha1ftoning" or "dithering" (Ulichney, 1987), have been developed 

to artificially disp1ay grayscale images using binary output devices. Basically, these 

techniques consist of using the spatial resolution to give the illusion of presenting grays cale 

images. For instance, if, within a small spatial region, half of the pixels are black and the 

others are white, then the spatial integration of the visual system will result in a gray 

percept. 

The simp1er dithering a1gorithm is "random dithering" (U1ichney, 1988). This 

algorithm proposes to compare the luminance intensity of each pixel of the original image 
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with a cutoff criterion which is randomly selected for each pixel from a uniform 

distribution varying between the two displayable luminance intensities. If the pixel 

luminance of the original image is greater than the cutoff criterion, the output pixel is 

white, otherwise it is black. This method has the advantage of being easy to implement. 

However, as stated by Ulichney (1988), "the quality of output of this method does not 

de serve consideration for practical use". Consequently, this method is generaUy described 

only for theoretical purposes. 

The difference between the original image and the displayed image corresponds to 

the noise introduced by the dithering. Many algorithms have been developed to minimize 

the visual impact of this noise. Ulichney (1988) suggested using highpass noise (typicaUy 

referred as blue noise), which is more "pleasant" than the white noise (random dithering). 

The "ordered dithering" algorithm (Bayer, 1973) consists in using a given ordered pattern 

of the cutoff criteria instead of randomly selecting each cutoff criterion. The "error 

diffusion" algorithm (Floyd & Steinberg, 1976) consists in subtracting the noise introduced 

at each pixel to adjacent pixels. MuUigan and Ahumada (1992) proposed using knowledge 

about the contrast sensitivity function of the visual system to minimize the noise at the 

frequencies we are the more sensitive. AU-in-aU, many algorithms have been developed 

with the goal of proposing a dithering technique that would minimize the visual impact of 

the noise. They aU have the advantage of giving a better image quality than random 

dithering. However, they also aU have the disadvantage of being more complicated to 

implement and generaUy require more computer resources. 

To enhance luminance resolution of typical displays, Mulligan (1990) proposed a 

simple way of generalizing ordered dithering used for bi-Ievel displays to higher luminance 

resolution displays. BasicaUy, the algorithm consists in applying ordered dithering 

independently to each pixel by selecting between the two nearest luminance intensities 

displayable instead of between the only two luminance intensities available. Note that, even 

though MuUigan described this generalization for ordered dithering, it could also be applied 

to any dithering algorithm. 
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Daly and Feng (2005) implemented su ch generalization to ordered dithering to 

enhance apparent luminance intensity resolution, which they named "bit-depth extension". 

They developed a sophisticated algorithm with the aim of creating an ordered pattern that 

would minimize the visibility of the noise. They used the contrast sensitivity function of the 

visual system to de termine at which spatiotemporal frequencies we are less sensitive. They 

construct their pattern so that the noise introduced by dithering is concentrated to these 

frequencies. They found that, in sorne cases, the noise was invisible so that the bit-depth of 

the original image could be reduced without noticeable impact. 

As a result, there is no simple solution to the grayscale resolution problem. Most 

techniques require special hardware and/or relatively complex programming. The purpose 

of the present paper is to propose a technique requiring no special hardware and no 

complex programming that can display stimuli with an infinÎte number of gray levels. 

Combining the high spatiotemporal resolution of computer displays with a simple 

modification of the stimulus function could solve this problem. 

The noisy-bit method 

As mentioned above, the luminance intensity for each pixel is typically defined by a 

continuous value (l) that generally has to be rounded with a precision of 1/255 the maximal 

luminànce intensity displayable (L255), i.e. to the nearest DAC value. This procedure can 

sometimes create sufficiently high artifacts to impair contrast threshold measurement. 

Aigorithm 

Instead of simply rounding to the nearest DAC value (equation 38), we propose a 

different algorithm consisting in randomly choosing between the two nearest DAC values. 

The probability distribution between the two values can be set so that the expected value is 

equal to the continuous DAC value defined by the stimulus function (r). That is, the 

probability of choosing the higher DAC value is equal to the remainder of the continuous 

DAC value. For example, if the continuous DAC value is 123.25, then the probability 
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distribution would be 0.25 for 124 and 0.75 for 123 resulting into an expected value of 

123.25. Consequently, the noisy-bit method proposes to replace equation 38 by: 

if R{r) 
otherwise 

(40) 

where R(x) retums true with a probability equal to the remainder of x (i.e. x-LxJ) and false 

otherwise.\ x land LxJ represent the ceiling and floor functions respectively (i.e. rounding to 

the upper and lower integer, respectively). Note that this method is equivalent to combining 

random dithering (Ulichney, 1988) with the generalized application of dithering for 256 

instead of 2 luminance intensities (Mulligan, 1990). lndeed, randomly selecting between 

the two nearest DAC values (lr J and \ r 1) with a probability of choosing the highest DAC 

value (\ r 1) equal to the remainder of the DAC value (r-Lr J) is mathematically equivalent to 

rounding to one of the two nearest DAC values with a random cutoff criterion selected 

from a uniform distribution varying between the two nearest DAC values. 

The main" drawback of the noisy-bit method is that it increases the error between the 

desired continuous luminance intensity (l) and the displayed luminance intensity (d) (Figure 

Annexel-2). lndeed, this method will choose between the two nearest DAC values so that it 

will occasionally select a DAC value further than the nearest integer. The error will be 

equal to l-x or x depending on whether the continuous DAC value is rounded to the highest 

or lowest integer respectively, where x represents the remainder of the continuous DAC 

value (r-Lr J). Assuming that the remainders of the continuous DAC values are uniformly 

distributed, the root-mean-square (RMS) error can be calculated using the following 

equation: 

1 

RMS error = fP(xXI- xY + (1- p(x))x 2dx (41) 
o 

where P(x) corresponds to the probability of selecting the highest integer. When simply 

rounding to the nearest integer, this probability is equal to 1 if x>0.5 and 0 otherwise, 

resulting in a RMS error of 0.29 DAC values. Using the noisy-bit method, the probability 
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of rounding to the highest integer is equal to x, resulting in RMS error of 0.41 DAC 

values. As a result, the RMS error between the continuous DAC value (r) and the DAC 

value sent to the display (i) will be ...)2 times greater using the noisy-bit method than simply 

rounding to the nearest integer. However, this random selection will result in an expected 

value that will be equal to the desired continuous value (E(i)= r). Conversely, rounding to 

the nearest integer will cause the expected displayed value to be equal to the nearest integer 

which is generally not' equal to the desired continuous value (E(i)=tr+0.5J;tr). 
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Figure AnnexeI-2. Rounding error. The left graph shows the error (i.e. difference 

between the continuous DAC value (r) and the displayed DAC value (i» as a function 

of the remainder of the continuous DAC value. The two lines show the error for 

rounding to the lower (dash line) or upper (solid line) DAC values. The right graph 

shows the root-mean-square (RMS) of this error using two methods of selecting 

between the lower or upper DAC values. Rounding to the nearest DAC value always 

results in the lowest error in the left graph. The noisy-bit method rather proposes to 

randomly select between the two nearest DAC values with a given probability. 

Thus, this method is equivalent to displaying the desired luminance intensity (l or r 

in DAC units) plus a certain amount of noise due to the difference between the desired 

luminance intensity and the luminance displayed (l-d or r-i). In other words, the noisy-bit 

method converts an 8-bit (256) grayscale resolution into a continuous grayscale resolution 

with the drawback of adding noise. The noise energy directly depends on the size and 

duration of presentation of each element (in our case, pixel) and the impact of the noise 

decreases when the spatiotemporal resolution increases. If the size of the noise elements is 
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sma11 or its duration is brief, the local luminance variation between each pixel will be 

summed by the visual system and only the mean value wiIl be perceived. On the other 

hand, large noise clement size and low temporal resolution may result into perceivable 

noise clements. Using a high spatiotemporal resolution, the impact of the noise should be 

negligible and the displayed stimulus will be perceptually equivalent to the stimulus 

defined by continuous luminance values. However, if the spatiotemporal resolution is too 

poor, the noise introduced cou Id be detected and affect contrast thresholds. 

Note that the error between the desired and the displayed DAC values is not 

constant as a function of the remainder of the desired DAC value. Consider the two extreme 

cases when the remainder ofdesired DAC value is either 0 or 0.5 (e.g. desired DAC values 

of 128 or 128.5). In the first case, a11 the output DAC values will be 128 and no noise 

would therefore be added to the display. In the second case, each pixel would be randomly 

selected between 128 or 129 and the displayed luminance would be noisy. Consequently, 

these two desired DAC values would generate extremely different displays: no noise or 

maximum noise (i.e. the luminance error for each pixel would be +/- 0.5 DAC values 

resulting in a RMS error of 0.5 DAC values). However, in both cases the mean luminance 

would be near (or equal to) their desired DAC value. Consequently, if the spatiotemporal 

resolution is high enough so that the noise is not visible, both cases would result in similar 

percepts: two uniform grays with slightly different intensities. 

Implementation 

This method of randomly selecting between the two nearest DAC vahies (equation 

40) is mathematically equivalent to rounding to the nearest DAC value after adding a noise 

value randomly selected from a uniform distribution varying between -0.5 and 0.5 DAC 

values (N). For instance, if the continuous DAC value (r) is 123.25, then randomly 

selecting a value between 122.75 and 123.75 and then rounding to the nearest integer 

results in a probability of selecting the DAC value 123 equal to 0.75 and a probability of 

selecting 124 equal to 0.25. Consequently, the noisy-bit method can be implemented by 

replacing equation 40 with: 



i = Lr + N + O.sJ (42) 

Matching equation 36, 37 and 42, we obtain 

d = L255l
255 

1 + N + 0.51 (43) 
255 L255 J 

By defining 

1'= 1 + L255 N (44) , 
255 

we obtain the same function as equation 39: 

d = L255l
255 

1'+0.51 (45) 
255 L255 J 

XlI 

Consequently, the noisy-bit method can simply be implemented by adding a small 

amount of noise to the luminance function (equation 44) rather th an by explicitly 

implementing the random selection between the two nearest DAC values. 

As mentioned above, for sake of simplicity we referred to a given pixel which 

enables us to drop the spatiotemporal position of the pixel (x,y,t). Consequently, equation 

44 can be reformulated more generally as: 

L'(x,y,t)= L(x,y,t)+ L255 N(x,y,t)(46) 
255 

In other words, the noisy-bit method can be implemented by adding uncorrelated 

noise (N(x,y,t)) with a given contrast (L255/255, i.e. 1 DAC value) to the stimulus function 

(L(x,y,t)). 

Evaluating the impact of the noise 

Contrast thresholds in noise have been widely studied. The threshold-versus­

contrast (TvC, Figure AnnexeI-3) function was found to give a reasonably good fit of the 
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contrast threshold as a function of the externai noise contrast (next) (Legge, Kersten, & 

Burgess, 1987; Pelli, 1981, 1990; Pelli & FarelI, 1999): 

where nint corresponds to the internaI equivalent noise, that is, the contrast of the externai 

noise having the same impact as the internaI noise, and k is proportionai to the smallest 

signai-to-noise ratio required to detect the signal. 
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Figure AnnexeI-3. Contrast threshold as a function of external noise contrast (TvC 

function). The internaI equivalent noise corresponds to the breaking point of the 

curve. When the external noise contrast is significantly lower than the internaI 

equivalent noise, it has no significant impact (slope=O). Wh en the external noise 

contrast is significantly greater than the internaI equivalent noise, the internaI noise 

has no significant impact and the threshold is proportional to the external noise 

contrast (slope=l). Note that the two axes are scaled logarithmically. 

For the purpose of the present study, the important parameter of this function is the 

internaI equivalent noise (nint), which corresponds to the breaking point of the curve. When 

the externai noise is significantly greater than the internaI noise (nex(»nint), the internaI 

noise has no significant impact and the contrast· threshold is proportionai to the externai 

noise contrast (slope of 1 in log-log units). ln other words, for this portion of the curve, if 

you increase the contrast of the externai noise by a given factor, the contrast threshold will 
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increase by the same proportion. However, when the external noise is significantly 

lower than the internaI noise (next«nint), the external noise has no significant impact and 

the contrast threshold is independent of the external noise contrast (slope of 0). 

As mentioned above, the noisy-bit method is equivalent to presenting a stimulus 

with a continuous grayscale precision (L(x,y,t)) plus a certain amount of noise. Using the 

TvC function, it should be possible to detennine if this noise has a significant impact. If the 

noise introduced by the noisy-bit method is much smaller than the internaI noise, then it 

would be insignificant and would have no impact on the contrast threshold. Again, the 

noisy-bit method is equivalent to presenting the stimulus with the desired continuous value 

(L(x,y,t)) plus a certain amount of noise. If this noise is not significant, then the noisy-bit 

method is equiv~lent to presenting a stimulus with continuous gray levels, i.e. with an 

infinite number of luminance intensities. 

Experiment 1: The impact of the noise 

The objective of the present experiment was to evaluate whether a spatiotemporal 

resolution of a typical digital display (60 Hz and 1024x768 pixels) is great enough to 

measure contrast thresholds using the noisy-bit method. As mentioned above, the noisy-bit 

method may be implemented by adding noise to the luminance function defining the 

stimulus with a unifonn distribution ranging between ±0.5 DAC values or, which is 

equivalent, ranging between ±Li55/(255x 2) luminance intensity. We define the noise 

contrast, which can be represented in luminance intensity or DAC values, as the range 

covered by the unifonn distribution. Note that equation 37 can be used to pass from 

luminance intensity units to DAC units. Using the noisy-bit method, the noise contrast 

added to the stimulus function is l DAC value or L255/255 luminance intensity. 

To assess if the noise introduced within the displayed stimulus by the noisy-bit 

method affects the contrast threshold, the contrast threshold of a given stimulus was 

evaluated as a function of the noise contrast. If the noise is a limiting factor, than increasing 

the noise contrast should affect the contrast threshold by the same proportion (slope of l on 



xv 
the TvC function). Alternatively, if the observer's internaI nOIse IS greater than the 

external noise (i.e. the noise introduced by the noisy-bit method), then increasing the 

external noise will not affect contrast threshold (slope of 0 on the TvC function). 

Method 

Observers 

Two observers participated in the study. One ofthem was one of the authors and the 

other was naïve to the purpose of the experiment. Both had normal or corrected-to-normal 

VISIOn. 

Apparatus 

The stimuli were presented on a 19 in ViewSonic E90FB .25 CRT monitor powered 

by a Pentium 4 computer combined with a Matrox Parhelia512 graphie cardo AlI three color 

guns were constrained to have the same DAC value. As a result, this setup cou Id display 

256 different luminance intensities (8-bit luminance depth). The greatest luminance 

intensity attainable (L255) was 94 cdlm2
• The display was gamma corrected using a Minolta 

CS 1 00 photometer interfaced with a home made pro gram to produce a linear relationship 

between the DAC value and the luminance intensity. The refresh rate was set to 60 Hz, 

which is typicalIy the lowest refresh rate for most computers. The screen resolution was set 

to the most standard screen resolution of 1024x768 pixels covering an area of 32x24 cm. At 

the viewing distance of 114 cm, the width and height of each pixel were 1/64 deg of visual 

angle. In other words, the spatial resolution of the displayed stimulus was 64 pixels/deg. 

The monitor was the only light source in the room. 

Stimuli 

To measure contrast thresholds, sme wave gratings are the most widely used 

stimuli: 
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L(x,y,t)=L128 (l+csin(ft+p)) (48) 

where L128 corresponds to the mean luminance value (47 cd/m2
, which was the luminance 

intensity emitted when the DAC values were set to 128). c corresponds to the stimulus 

Michelson contrast and was the dependent variable. f corresponds to the spatial frequency, 

which was fixed to 4 cpd (approximately the spatial frequency to which we are the most 

sensitive). And p represents the phase, which was randomized at each presentation. Notice 

that the luminance of the grating only depended on the horizontal position (x) and not on 

the vertical position (y) or the time (t). Consequently, the grating was vertically orientated 

and static. 

To implement the noisy-bit method noise must be added to the stimulus function: 

V(x,y,t)= L(x,y,t)+ nexIN(x,y,t) (49) 

where nexl represents the noise contrast. As mentioned above, for the noisy-bit method the 

contrast of the noise must be fixed to L255/255 luminance intensity (equation 46) or, which 

is equivalent, 1 DAC value. However, in the present experiment we varied the noise 

contrast so that nex1 varied between 1 and 230 DAC values using 7 different noise contrasts. 

Examples of stimuli are presented in Figure AnnexeI-4. 

Figure AnnexeI-4. Sine wave gratings in noise. The contrast of the signal (c) is set to 

0.1. From left to right, the noise contrast is 1, 10 and 100 DAC values. 

For static stimuli, adding dynamic noise implies passing from a static presentation 

(an image) to a dynamic presentation composed of several images. A dynamic presentation 

consumes more computer resources (memory, processing time, etc) than a static 

presentation which only requires the rendering of a single image. Consequently, passing 
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from a static to a dynamic presentation may not always be convenient and may thereby 

limit the application of the noisy-bit method. However, the noisy-bit method may also be 

applied using static noise. That is, the noise template added to the stimulus would not vary 

over time (N(x,y) instead of N(x,y,t)) so that the exact same image would be presented in all 

frames. For su ch application, only the spatial summation would permit the integration of 

the different pixels. If the spatial resolution is high enough, the noise introduced by the 

noisy-bit method should not affect contrast thresholds. To evaluate if only the spatial 

resolution could permit the application of the noisy-bit method, we applied the method both 

spatially (static noise) and spatiotemporally (dynamic noise). 

To minimize contrast thresholds, a relatively large spatiotemporal window was 

used. The presentation time of the stimulus was 500 ms and the spatial window was a disk 

with a diameter of 2 degrees of visual angle with a soft edge defined by a half cosine of 0.5 

degrees. 

Procedure 

A two altemative-interval-forced-choice task was used, which consisted in 

identifying the interval in which the sine wave was present by pressing one of two keys. 

Both intervals contained the same noise contrast (next) but were generated by two distinct 

noise samplings. The de1ay between the two intervals was 500 ms. Between stimuli 

presentations, the screen remained blank at the mean luminance level (L 128) and a fixation 

point was presented. 

The contrast (c) of the grating in the interval in which the sine wave was presented 

was manipulated by a 2-down-I-up staircase procedure (Levitt, 1971). In the other interval, 

the contrast (c) was set to O. The staircase was interrupted after 10 inversions and the 

threshold was evaluated as the geometric mean of the la st 4 inversions. The step size was 

fixed to 0.05 log units and the initial contrast (c) was always set well above threshold. 

Overall, there were 14 different noise conditions: 7 noise contrasts and the noise 

was either static or dynamic. These 14 conditions were evaluated 3 times each resulting 
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into 42 staircases perfonned in a pseudorandom order. For each ofthese 14 conditions, 

the resulting threshold was estimated as the geometric mean ofthe 3 staircases. 

Results and discussion 

The internaI equivalent noise measured was 22 and 16 DAC values in the static 

noise condition and 71 and 44 DAC valuès in the dynamic noise condition for observers il 

and ra, respectively (Figure AnnexeI-5). As a result, the detection thresholds using the 

noisy-bit method (conditions when the noise contrast was 1 DAC value) were ail on the 0-

slope portion of the TvC function, i.e. the noise introduced by the noisy-bit method was 

considerably smaller than the observer's internaI noise. Hence, it was possible to 

significantly increase the external noise contrast without affecting contrast threshold. We 

therefore conclude that the noise introduced by the noisy-bit method (noise contrast of 1 

DAC value) did not affect contra st thresholds either in the static or in the dynamic 

condition. 

As mentioned above, applying the noisy-bit method is equivalent to having a noisy 

continuous grayscale display. Using this method, the noise corresponds to the luminance 

variation introduced by randomly selecting between the two nearest DAC values, which 

corresponded to the conditions when the external noise contrast was 1 DAC value. The 

present ex periment showed that this noise had no significant impact. We therefore conclude 

that the noisy-bit method enabled a 256 grayscale resolution apparatus to be perceptually 

equivalent to a continuous (Le. infinite) grayscale resolution. 
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Figure AnnexeI-5. Results. Contrast thresholds as a function of the externai noise 

contrast for the two observers. Squares and circles correspond to threshoids wh en the 

noise was static and dynamic respectively. The solid and dashed Unes show the best fit 

of the TvC functions. The filled arrows ilIustrate the internaI equivalent noise 

corresponding to the breaking point of the TvC functions. Empty arrows illustrate the 

noise contrast threshold in static (solid) and dynamic (dashed) conditions (results of 

experiment 2). 

Experiment 2: Noise detection 

The previous experiment showed that the noise introduced by the noisy-bit method 

did not significantly affect the contrast threshold of a given task. However, this does not 

imply that the noise was not detectable. A given noise contrast could be perceived without 

affecting contrast threshold. This would result into a qualitative difference between a 

continuous grayscale display and discrete grayscale display combined with the noisy-bit 

method. The objective of the present experiment was to show that the noise introduced by 

the noisy-bit method was not perceived even for relatively low spatiotemporal screen 

resolutions. If the noise is not perceptible, not only would the noisy-bit method enable 

contrast threshold measurements equivalent to continuous displays, it would also be 

qualitatively (or perceptively) equivalent. Indeed, the difference between a continuous , 

display and 256 grayscale display would not be measurable nor perceptible. 
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Method 

The same apparatus was used as in the previous experiment and the same two 

observers participated to the study. The stimuli were composed ofnoise: 

L(x,y,t)= LI28 + nex,N(x,y,t) (50) 

The noise detection task consisted in a two-interval-forced-choice procedure. One 

interval was blanked (nexl=O, that is an even gray) and the other contained noise. A 2-down­

l-up staircase procedure as described in the previous experiment was used to measure the 

noise contrast threshold (next). Each threshold was evaluated 3 times in static and dynamic 

noise conditions resulting in 6 staircases. 

Results and discussion 

The noise contrast thresholds were 12 and 5.9 DAC values in the static noise 

condition and 16 and 7.6 DAC values in the dynamic noise condition for observers il and 

ra, respectively (Figure AnnexeI-5). Below th.ese noise contrasts the observers were unable 

to differentiate between even gray and noise. Consequently, the noise introduced by the 

noisy-bit method (1 DAC value) was not perceptible. We therefore conclude that there was 

no qualitative or perceptible difference between a digital 8-bit grayscale display using the 

noisy-bit method and an analog display able to display an infinite number of grays. Note 

that this was true even when using a relatively low spatiotemporal resolution (0 Hz (i.e. 

static) and 64 pixels/deg) for present-day computers. 

General discussion 

The noisy-bit method introduces low contrast nOIse to enhance the luminance 

intensity precision of digital displays. This method is equivalent to displaying gray level 

with a continuous precision and adding noise to the displayed image. The two experiments 

showed that the low contrast noise introduced by the noisy-bit metQ.od does not affect 

contrast threshold and is not perceptibie. We therefore conclude that, when the 
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spatiotemporal resolution is high enough (which is easily attainable with typical 

computers), a discrete 8-bit display combined with the noisy-bit method is perceptually 

equivalent to an analog display having a continuous grayscale precision. 

Evaluating the impact of the noise 

Instead of rounding to the nearest DAC value, the noisy-bit method randomly 

chooses between the two nearest DAC values so that the expected value is equal to the 

continuous DAC value. As shown above, this method can be implemented in two steps: 

first add a given amount of noise and then round to the nearest DAC value. The second step 

is necessarily already implemented (DAC values must be integers) and is the same as the 

single step wh en not applying the noisy-bit method. Often, rounding to the nearest integer 

is already implicitly implemented by the program sending the image to the graphic cardo 

Consequently, the noisy-bit method can be implemented simply by adding a given amount 

of noise to the stimulus function (equation 46). 

Both steps actually affect the luminance profile of the displayed stimulus. Indeed, 

rounding to the nearest integer could also add noise to the displayed stimulus. However, for 

high noise contrasts, rounding to the nearest integer has no significant impact. 

Consequently, if adding noise with a contrast significantly greater than l DAC value did 

not significantly affect contrast threshold, then the luminance variation introduced by the 

noisy-bit method (that is, adding noise with a contrast of 1 DAC value and rounding to the 

nearest DAC value) certainly has no significant impact. We therefore conc1ude that simply 

adding considerable amount of noise to the luminance functÏon and neglecting the 

luminance variation introduced by rounding to the nearest integer is an efficient validation 

to deterrnine whether the noise introduced by the noisy-bit method affects contrast 

thresholds or not. 
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U sing Jess than 8-bits 

To simulate a display having 7-bit depth, we must add noise to the stimulus function 

with a contrast of2 DAC values and then round to the nearest even integer. More generally, 

to simulate an N-bit display, we must add noise with a contrast of 2N DAC values and then 

round to the nearest integer being a multiple of 28
-
N

• We have measured contrast threshold 

as a function of the number of bits used to display the stimulus (data not shown) and found 

that with the current spatiotemporal resolution (64 pixels/deg and 60 Hz) contrast threshold 

could be measured using only aS-bit display (noise contrast of 8 DAC values), that is, 

using only 32 different luminance intensities. Using a higher spatiotemporal resolution (128 

pixels/deg and 120 Hz), we found that contrast threshold could efficiently be measured with 

a 3-bit display (noise contrast of 32 DAC values) that is, using only 8 different luminance 

intensities. 

Reducing the noise of the noisy-bit method 

In the present study, we showed that the noisy-bit method can bé efficiently 

implemented using a spatiotemporal resolution that is relatively low for present-day 

computers (1024x768 pixels at 60 Hz) at a typical viewing distance for psychophysical 

testing (114 cm). Using these parameters, the noise introduced by the noisy-bit method was 

found to be too low to affect the contrast threshold of a stimulus at which we are highly 

sensitive (4 cpd sine wave grating with a relatively large spatiotemporal window). 

Although the noisy-bit method works well using a relatively 10w spatiotemporal resolution 

(1024x768 pixels at a viewing distance of 114 cm at 0 Hz) here we describe different ways 

to reduce the noise introduced by the noisy-bit method. These methods could be used in the 

eventuality that the noise introduced by the noisy-bit method becomes a limiting factor for 

a given condition. 

The tirst obvious way to reduce the nOlse is to enhance the spatiotemporal 

resolution. This can be achieved by (1) increasing the temporal resolution of the display 
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(many displays can reach 200 Hz), (2) increasing the spatial resolution of the display 

(many displays can reach 2048x1536 pixels) and/or (3) increasing the viewing distance. 

Although the noisy-bit method was developed for 8-bit displays, it can easily be 

adapted for displays with more than 8 bits of depth. For instance, the thresholds observed in 

the current papers were as low as 0.0015 Michelson contrast. A graphic card able to display 

1024 gray levels (10 bits) would not be sufficient to properly evaluate such threshold. 

However, the noisy-bit method could be combined to a 10-bit display to enhance luminance 

precision. Similarly, the bit-stealing method could also be combined with the noisy-bit 

method to enhance luminance intensity precision. The noisy-bit method could randomly 

choose between two DAC value combinations ( e.g. (128,128,129) and (128,129,128)) so 

that the expected luminance intensity would be between the luminance intensities produced 

by these two combinations. 

Altematively, a simple way of reducing the noise introduced by the noisy-bit 

method is to apply this method independently to each color gun. Combining the luminance 

noise of the three guns would reduce the luminance noise without requiring any special 

hardware or sophisticated programming. Hence, each color gun could have its own noise 

sampling. When the three color guns are constrained to have the same DAC values, the 

noise sampling applied to the three guns is perfectly correlated. Without this constraint, the 

noise sampling is uncorrelated. Consequently, simply applying the noisy-bit method to each 

gun separately wou Id reduce the luminance noise introduced by the noisy-bit method. Note 

that since we are less sensitive to chromatic jitter than luminance noise (especially at high 

~patiotemporal frequencies ) if the luminance noise is not detectable, then the chromatic 

jitter would also not be detectable. Indeed, we found that independently applying the noisy­

bit method to the three guns increased the noise contrast threshold (data not shown). 

Moreover, instead of simply having an uncorrelated error between the three guns, 

they could be negatively correlated as suggested by Mulligan (1990) using order dithering. 

For the noisy-bit method, negatively correlating the error can be implemented by inverting 

(i.e. subtracting instead of adding) the noise added to the stimulus (equation 11) of one of 
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the three color guns. In other words, the same noise matrix would be used for two guns 

and the inverted matrix would be used for the other gun. Since the green gun generally 

produces the highest luminance intensity, we suggest inverting the noise matrix of this gun. 

As a result, the perfectly correlated luminance errors of the red and blue guns would be 

partially canceled by the luminance error of the green guns. 

If the noise introduced by the noisy-bit method affects the contrast threshold, 

another modification could be applied to li mit its impact. The noise could be filtered to 

keep only the high spatial and/or temporal frequencies. Indeed, for small details or for high 

frequency flicker, low contrast stimuli (in our case noise) become undetectable and are 

therefore spatially and/or temporally summed by the visual system. Note that to add this 

modification to the noisy-bit method, the contrast of the noise added to the stimulus 

function would have to be of at least 1 DAC value once filtered. 

Conclusion 

Although the spatiotemporal resolution of today's computers is relatively high, the 

luminance intensity resolution is often too low (256 luminance intensities) for many tasks 

involving contrast manipulation. The noisy-bit method uses the high spatiotemporal 

resolution of computers to improve the luminance intensity resolution. By randomly 

selecting between the two nearest DAC values instead of rounding to the nearest DAC 

value, the noisy-bit method is a powerful tool to bypass the luminance intensity resolution 

problem. This method can be simply implemented by adding low contrast noise to the 

luminance function defining the stimulus. By testing the effect of adding higher contrast 

noise, one can assert that the noise added to the displayed stimulus has no significant 

impact on a given task. By evaluating the noise contrast detection threshold, one can also 

assert that the noise is not visible. As a result, the noisy-bit method successfully makes a 

typical digital display perceptually equivalent to a continuous luminance intensity 

resolution system. 
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