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RÉSUMÉ 

L'apprentissage moteur permet l'acquisition d'actes moteurs qui n'étaient pas 

présents à la naissance. Les données d'études évaluant les substrats neuronaux de 

l'apprentissage moteur suggèrent que des régions cérébrales responsables du contrôle 

moteur, telles que l'aire motrice supplémentaire (AMS) et le cervelet, seraient également 

impliqués dans l'apprentissage moteur. Afin de mettre en évidence les rôles potentiels de . 

ces aires dans l'apprentissage moteur, le type de tâche ainsi que la phase d'apprentissage 

moteur seraient des variables à considérer. L'objectif principal de .cette thèse était donc de 

découvrir le rôle essentiel de l' AMS et du cervelet dans différentes phases d'un 

apprentissage moteur séquentiel et d'adaptation. 

Les deux études présentées ont été construites avec un design expérimental 

similaire. Elles évaluaient respectivement l'apprentissage d'une séquence motrice par 

l'entremise de la tâche de temps de réaction sérielle ainsi que l'apprentissage d'une tâche 

d'adaptation motrice cinématique. La stimulation transcrânienne magnétique répétée 

(STMr) a été utilisée afin de créer des 'lésions virtuelles' chez des participants sains lors de 

l'apprentissage d'une des deux tâches. Les participants ont été entraînés intensivement 

pendant une session de pratique et ont été testés le jour suivant. Les stimulations de STMr 

ont été appliquées soit au niveau de l'AMS soit au niveau du cervelet et ce au début et à la 

fin de la première j oumée d'apprentissage intensif. La performance des groupes ayant eu 

une stimulation magnétique a été comparée au groupe contrôle (sans stimulation). 

Les résultats de l'étude portant sur l'apprentissage moteur séquentiel ont montré que 

l'AMS et le cervelet sont nécessaires lors de la phase initiale d'apprentissage, mais non 

après entraînement intensif ou le jour suivant au retest. Les résultats de l'étude portant sur 

l'adaptation motrice ont quant à eux montré que le cervelet jouait un rôle essentiel dans 

l'acquisition et le maintien de ce type d'apprentissage alors que l' AMS ne semble pas 

contribuer à ce type d'apprentissage. 

Généralement, les résultats de ces deux études appuient des modèles 

d'apprentissage moteur provenant de la littérature d'imagerie fonctionnelle et soutiennent 
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une dissociation fonctionnelle de ces deux types d'apprentissage moteur. En outre, des 

résultats novateurs ont été révélé dans les deux études. L'ensemble de ces découvertes 

mettent en évidences la portée de l'utilisation de la STMr chez les sujets sains afin 

d'étudier les fonctions cognitives de l' AMS et du cervelet. 

Mots-clés: aire motrice supplémentaire, cervelet, apprentissage d'une séquence motrice, 

apprentissage d'une adaptation motrice, stimulation transcrânienne magnétique. 
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ABSTRACT 

Motor learning enables improvement in performance of motor acts that are not hard 

wired in the brain from birth. Increasing evidence on the neural substrates involved in 

motor leaming suggests that motor execution areas such as the supplementary motor area 

(SMA) and cerebellum contribute to motor leaming as weIl. However, it remains 

controversial to which learning phase and to what type of task these two brain regions bring 

a more substantial contribution to. The main objective of this thesis was to shed light on 

the critical role of the SMA and cerebellum to different acquisition phases of a motor 

sequence and an adaptation task. 

The two studies presented herein had similar designs. One involved acquisition of a 

motor sequence through the seriaI reaction time task (SRTT) and the other investigated 

motor adaptation learning of a kinematic task. Repetitive transcranial magnetic stimulation 

(rTMS) was employed to create 'virtuallesions' in healthy participants while they acquired 

either tasks. Participants trained intensively during a first session and were re-tested the 

following day. Different groups of participants underwent rTMS on either the SMA or the 

cerebellum at the beginning and at the end of task acquisition. The performance of the 

stimulated groups was compared to that of a control group without magnetic stimulation. 

The results of the motor sequence learning study showed that both the SMA and 

cerebellum are necessary in the beginning of sequence acquisition, but not after intensive 

training or at re-test the following day. The results of the motor adaptation experiment, 

revealed a critical contribution of the cerebellum in acquisition and storage of adapted 

movements. The SMA was not shown to contribute to this type of leaming. 

In general, the results of the two present studies support motor leaming models 

from the imaging literature and bring further evidence for a functional dissociation of these 

two motor tasks. New findings were uncovered by employing the TMS technique in both 

motor sequence and adaptation experiments. These highlight the value of using 

interference techniques in healthy participants to study cognitive functions in the SMA and 

the cerebellum. 



Keywords: supplementary motor area, cerebellum, motor sequence leaming, motor 

adaptation leaming, transcranial magnetic stimulation. 
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PREAMBLE 

What would be life without motor memory? Dressing in the moming, using the 

utensils for eating breakfast, walking down stairs out of one's house and driving the car to 

work would be a forever challenge. Indeed, the main goal. of motor leaming is to improve 

perfonnance of those purposeful motor acts that are not hard wired in the brain from birth. 

The neural substrates underlying motor leaming are unde~ CUITent investigation. A 

hypothesis in the literature is that brain areas regulating motor control such as the 

supplementary motor area and the cerebellum are also responsible for motor leaming. 

Motor leaming theories from the literature suggest that important variables detennining the 

contribution of these areas to motor learning are the type of motor task and the level of 

expertise the participants perfonn the task at. The aim of this thesis is to study the critical 

role of the supplementary motor area and cerebellum in different stages of a motor 

sequence and a motor adaptation paradigm. 

In the first chapter, mot or leaming will be introduced in the context of multiple 

memory systems, followed by a presentation of its behavioural characteristics, including its 

stages and the main paradigms employed to investigate it. The two main neural circuits 

responsible for motor control and the putative neural structures responsible for motor 

leaming will presented. The roles of the SMA and cer.ebellum in motor leaming will be 

discussed in the context of two recent leaming models. Additional imaging and clinical 

literature conceming the implication of the SMA and cerebellum in motor execution and 

motor leaming will be briefly reviewed. Repetitive TMS will be introduced as a new 

complementary technique to imaging and clinical research and the few studies that 

employed rTMS on the SMA or cerebellum to explore motor leaming will be presented. 
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In the second chapter, two rTMS experimental studies will be presented, one 

involving motor sequence and the other, motor adaptation acquisition. These studies had 

similar designs. Repetitive TMS was employed to create 'virtual lesions' in healthy 

participants while they acquired either task. Training was intensive during a first session, 

followed by a re-test the second day. Different groups of participants underwent rTMS on 

either the SMA or the cerebellum at the beginning and at the end of intensive task training. 

The performance of the stimulated groups was compared to that of a control group without 

magnetic stimulation. 

In the third chapter, a review of the findings from the two studies will be presented, 

followed by an integration of the results with CUITent motor leaming models and a 

discussion conceming the effects of rTMS in the neural substrates it affects. Then, the two 

experiments will be examined in the context of their strengths and limitations. Finally, 

several lines of research will be suggested. 



CHAPTERI: 

INTRODUCTION 
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1. Multiple memory types 

The idea of multiple memory systems in the brain has received a lot of scientific 

attention since a report of a patient with important resection of the medial temporal lobes 

presented normal acquisition of a motor skill in the absence of any conscious memory of 

having practiced the task before (Scoville & Milner, 1957; Milner, 2005). A memory 

system is 'a particulàr neural network that mediates a specifie form of mnemonic 

processes' (Brewer, Gabrieli, Preston, Vaidya, & Rosen, 2007). A well-accepted 

classification separates declarative and non-declarative memory systems (Squire, 1992; 

Squire & Knowlton, 1995; Squire, 2004) (see Figure 1 for a classification of the different 

memory types and the brain structures thought to subserve them). 

DECLARATIVE 

A 
FACI'S IVE1'ffS 

NONDECLARATIVE 

SIMPLE 
CLASSlCAL LIARNING 

PfRCltPTUAL CONDITIONING 

.LIARNING ~ 

lMOTIONAL SKEUTAL 
RESryNSES RESjNnS 

MEDIAL TEMPOR4L LOBE STRIATVM !I1EOCORTlX AMYCDALA CEREBELLUM REFLEX 
DIENCEPHALON CBREBELLUM PATHWAYS 

Figure 1. Taxonomy of long-term memory systems. Adapted from Squire (2004). 
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1.1 Declarative memory 

Declarative memory consists of remembering fact or events. It involves consCÎous 

retrieval of a list of items (words, pictures, etc.) previously encoded in a single-trial fashion 

(Squire et al., 1996). It has been further distinguished as: semantic (Le. memory for events 

or facts, which can be either true or false, such as remembering the capital of France) or 

episodic (Le. memory tied to the context in which it was acquired, the time, the place and 

the sense that 'it happened to me', such as recalling one's lunch from yesterday). The vast 

majority of memory research has been devoted to the study of dec1arative memory. Based 

on evidence from human and animai research, it was uncovered that the neural substrates 

subserving declarative memory are dependent on structures of, and connected to the medial 

temporal lobe: the hippocampus, the parahippocampal gyrus, the rhinal cortex, the 

amygdaIa, the diencephalon (the dorso-median and ventro-anterior nucleus of the 

thalamus) and ventromedian regions of the pre frontal cortex (Squire, 1992; Squire, 2004; 

Petri & Mishkin, 1994; Schacter, 1987; Mishkin & Appenzeller, 1987). 

1.2 Non-declarative memory 

Cohen & Squire (1980) introduced the terrn 'nondec1arative memory' to refer to 

those memories that are encoded and retrieved implicitly and non-intentionally, 

corresponding to a facilitation effect on performance due to prior experience (Schacter, 

Chiu, & Ochsner, 1993; Doyon, 1997). The major component of non-declarative memory 

is skills or procedural memory (Robertson & Cohen, 2006). Skill learning is the graduai 

acquisition of an ability through repeated practice in the perceptual, motor and cognitive 



4 

domain. An accepted notion in the literature is that the striatum andcerebellum are 

critically involved in learning of skills (Salmon & Butters, 1995; Doyon, 1997; Doyon & 

Ungerleider, 2002). However, compared to declarative memory, the neural substrates of 

skills or procedural memory are less well-established. For instance, procedural memory is 

believed to be independent of medial temporal lobe structures. Yet, this idea has been 

recently challenged since the medial temporal lobe has been found to support procedural 

learning (Keele, Ivry, Mayr, Hazeltine, & Heuer, 2003). This finding points to a different 

conception of memory systems. 

2. Another view on memory taxonomy 

Another popular taxonomy distinguishes two grand memory categories based on the 

characteristic of awareness. In this view, one memory class is termed explicit because it 

involves conscious and intentional recalling of an item; while the other, implicit, because it 

involves facilitation of performance as a result of previous experience with a material and 

may not be associated with conscious recoUection of having studied that material (Graf & 

Schacter, 1985; Schacter et al., 1993; Schacter, 19·87). Equivalence between declarative 

memory and explicit memory and between nondeclarative and implicit memory is generaUy 

accepted in the literature (Gabrieli et al., 2003). However, if we consider a memory as 'aU 

the information encoded during a task' (Robertson & Cohen, 2006), a procedural task may 

have implicit and explicit components. Several imaging studies suggest that learning a skill 

involves both implicit and explicit aspects and that these aspects may be reflected in 

different neural substrates underlying them (Willingham, Salidis, & Gabrieli, 2002). 
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3. Motor skilllearning 

3.1. Definition of Motor skilllearning 

Motor skill leaming is defined as an improvement in time and space in the precision 

of movements as a result of repeated practice and interactions with the environment 

(Willingham, 1998). Motor skills often include a visual component, hence they are also 

called visuo-motor skills. In the laboratory, they are typically measured by a decrease in 

reaction time, number of errors, a decrease in the number of trials needed to reach a 

. l 

criterion or by a change in the synergy (coordination of muscles) and kinematics of 

movements. 

3.2 Motor learning stages 

Motor leaming develops gradually and constantly, taking place over several training 

sessions (Kami, 1996). Kami et al. (1998) have proposed a model with two leaming 

stages, one requiring practice (fast and slow 1eaming phases) and another that does not 

require further training (consolidation phase). At the very beginning of the acquisition 

process, there is a 'fast leaming' phase with considerable within-session improvement in 

both speed and accuracy. The participants' performance is significantly and rapid1y 

. enhanced. Within six hours post-training follows the consolidation phase. This is defined 

as an improvement in performance as a consequence of a latent period without practice 

following the fast leaming phase (Kami & Sagi, 1993; Kami et al., 1998) or as resistance to 

interference from a competing task (Shadmehr & Brashers-Krug, 1997; Krakauer, Ghez, & 
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Ghilardi, 2005). Then, following repeated practice, there is the 'slow' learning stage' 

corresponding to further improved performance. When the participants receive further 

training beyond the slow phase, they reach the automatic phase, during which motor skills 

require minimal conscious effort, they are resistant to interference by other tasks and to the 

passage of time (Doyon et al., 2002). 

3.3 Types of motor tasks 

Many daily activities involve acquiring motor skills: driving a car, knitting, typing, 

riding a bicycle, etc. In order to study them in the laboratory, a variety of experimental 

tasks have been developed. Depending on their different cognitive demands, these tasks 

have been divided in two broad categories: motor sequence and motor adaptation tasks 

(Sanes, Dimitrov, & Hallett, 1990; Hallett, 1996; Doyon, Penhune & Ungerleider, 2003). 

Motor sequence tasks are those that combine sequences of movements into a more precise 

and effective motor plan such as learning to type or play the piano (Sanes & Dogues, 2000). 

This grand class of motor skills has been by far the most studied in the literature. In the 

laboratory, the most usèd paradigm is the seriaI reaction time task (SRTT)introduced by 

Nissen and Bullemer (1987). On each trial of the task, a cue is presented on the center of 

the screen at one of four spatially distinct locations. The participant has an equal nùmber of 

corresponding response keys and is instructed to press the correct keys as quickly as 

possible on each trial while making as few errors as possible. eues appear in a repeating 

sequence. Sequence learning is measured by a decrease in reaction time to the repeating 

stimulus sequence or by the difference in response time between sequenced items compared 
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to those administered in random. Several other sequence tasks have been employed in the 

literature: those that incorporate timing information (Penhune & Doyon, 2002; Penh une & 

Doyon, 2005; Sakai, Ramnani, & Passingham, 2002), visuo-spatial information (Hikosaka 

et al., 1996; Sakai et al., 1998; Sakai et al., 1999) or solely motor information such as 

thumb-to-finger opposition (Kami et al., 1995; Kami et al., 1998). Several other paradigms, 

including maze tracing (van Mier, Perlmutter, & Petersen, 2004) and rotor pursuit tasks 

(Grafton, Woods, & Tyszka, 1994; Hatakenaka, Miyai, Mihara, Sakoda, & Kubota, 2007) 

have been employed to explore both the behavioral and the neural aspects of sequence 

acquisition (for reviews, see Rhodes et al., 2004; Ashe et al., 2006). 

Motor adaptation tasks are those that compensate for environmental changes such as 

leaming how to move the wheel in the opposite direction when driving a car backwards. 

Motor adaptations have been further divided into dynamic and kinematic paradigms. 

Kinematic adaptations are those that convert between coordinate systems (as between the 

position of the driving wheel and the position of the car on the street) and dynamic 

adaptations are those that relate 'motor commands to the motion of the system' (Wolpert, 

Ghahramani, & Flanagan, 2001) (adjusting the forces applied to the driving wheel and the 

resulting car movement, taking account the inertia of the wheel and the friction between the 

wheels and the pavement). A typic~l laboratory task to study dynamic adaptation is 

adapting to a unusual force-fiels in reaching movements (Thoroughman & Shadmehr, 2000; 

Shadmehr & Moussavi, 2000; Smith, Ghazizadeh, & Shadmehr, 2006). A kinematic 

adaptation laboratory task is one that converts movements based on a visual transformation, 

such as when the relationship between a mouse movement and the cursor on the screen is 
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altered (Contreras-Vidal & Kerick, 2004; Della-Maggiore & McIntosh, 2005; Graydon, 

Friston, Thomas, Brooks, & Menon, 2005; Krakauer, Ghez, & Ghilardi, 2005) or when the 

relationship between the direction of gaze and arm movement is changed through the use of 

wedge prisms on the eyes (Norris, Greger, Martin, & Thach, 2001; Goedert & Willingham, 

2002; Richter et al., 2002). 

3.4 Putative neural correlates of motor skilllearning 

Imaging studies have revealed many brain regions associated to motor and visuo­

motor leaming: the prefrontal cortex (Hazeltine, Grafton, & Ivry, 1997; Honda et al., 1998; 

Eliassen, Souza, & Sanes, 2001; Sakai et al., 2002; Willingham et àl., 2002), the primary 

motor area (Kami et al., 1995; Kami et al., 1998; Grafton, Salidis, & Willingham, 2001; 

Penhune et al., 2005), the premotor area (Wu, Kansaku, & Hallett, 2004; Matsumura et al., 

2004; OIson et al., 2006), the supplementary motor cortex (Gordon, Lee, Flament, Ugurbil, 

& Ebner, 1998; Honda et al., 1998; Doyon et al., 2002; van Mier et al., 2004; Heun et al., 

2004), the parietal cortex (Sakai et al., 1998; Willingham et al., 2002; OIson et al., 2006; 

Landau & D'esposito, 2006) and subcortical regions such as the cerebellum (Flament, 

Ellerman, Kim, Ugurbil, & Ebner, 1996; Doyon et al., 2002; Imamizu et al., 2000; 

Imamizu, Kuroda, Miyauchi, Yoshioka, & Kawato, 2003; Koeneke, Lutz, Wustenberg, & 

Jancke, 2004; Penhune & Doyon, 2005) and the basal ganglia (Poldrack, Prabhakaran, 

Seger, & Gabrieli, 1999; Bischoff-Grethe, Goedert, Willingham, & Grafton, 2004; Seidler 

et al., 2005; Seidler, Noll, & Chintalapati, 2006). Several imaging studies have scanned 

participants at different stages of motor skill acquisition and have noted changes in 
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activation of brain areas correlated to the level of expertise (Grafton et al., 1994; Petersen, 

van Mier, Fiez, & Raichle, 1998; Sakai et al., 1998; Jueptner et al., 1997; Krebs et al., 

1998; Nezafat, Shadmehr, & Holcomb, 2001; Hikosaka, Miyashita, Miyachi, Sakai, & Lu, 

1998; Doyon et al., 2002; Floyer-Lea & Matthews, 2004; Floyer-Lea & Matthews, 2005; 

Poldrack et al., 2005; Landau et al., 2006). These authors argue for distinct brain structures 

contributing to different motor leaming phases. 

From a neuropsychological perspective, Willingham (1998) proposed that motor 

leaming develops directly of motor control processes, as these bec orne increasingly tuned 

to a particular task, thus functioning more efficiently. Although Willingham does not 

attribute a specific role to the primary motor area (Ml) in his control-based leaming theory, 

the primary motor area is being increasingly involved in motor leaming. Converging 

evidence from neurophysiological animal and human studies have uncovered Ml activity­

dependent plasticity associated with motor skill leaming (for reviews, see Sanes & 

Donoghue, 2000; Ungerleider, Doyon, & Kami, 2002). Thus, these data point to Ml 's 

implication in early acquisition, storage and consolidation of simple motor skills. 

Ml together with the premotor and the supplementary motor area of the frontal cortex have 

cortical connections between themselves as well as subcortical inputs. Anatomical studies 

have revealed that these interconnected brain regions form two distinct cortico-subcortical 

circuits responsible for motor control: the cortico-striato-thalamo-cortical and the cortico­

cerebello-thalamo-corticalloops (Middleton & Strick, 1997) (Figure 2). 
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Figure 2. Cortical and subcortical input to the motor areas. Adapted from Ghez (1991). 
Cortical areas: SMA, supplementary motor area; PM, premotor cortex; Ml, primary motor 
cortex. Thalamic nuclei: Vlo, ventrolateral nucleus, oral division; X, area X; VLc, 
ventrolateral nucleus, caudal division; VPLo, ventroposterior nucleus, oral division. 

As such, the SMA and cerebellum, each part of the cortico-striatal and cortico-

cerebellar circuits, respectively, might also play a role in motor leaming. In the following, 

two leaming models will bepresented. The first one sheds light on the cerebellum's 

contribution to motor sequence and adaptation leaming (Doyon & Benali, 2005) and the 

second one highlights the implication of the SMA to motor sequence acquisition (Hikosaka, 

Nakamura, Sakai, & Nakahara, 2002). 

4. Models of Neural Correlates of Motor Skill Learning 

4.1 Doyon & Ungerleider's proposaI of motor skill acquisition 

In a model of motor skill leaming based on the imaging literature, Doyon and 

colleagues (Doyon, Penhune, & Ungerleider, 2003; Doyon & Ungerleider, 2002; Doyon & 
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Benali, 2005) proposed that the two cortico-subcortical circuits involvedin motor control, 

participate in motor learning depending not only on the leaming phase, but also on the type 

of task (motor sequence learning versus motor adaptation). The authors' hypothesis is that 

the early phase of motor sequence and motor adaptation acquisition is supported by both 

the cortico-cerebellar and the cortico-striatal networks, inc1uding other areas such as the 

prefrontal, parietal and limbic cortices. However, starting from the consolidation, to the 

slow and more to the automatic stage, the two neural circuits are thought to specialize: the 

striatum and cortical associated regions are believed to subserve motor sequence learning 

but not motor adaptation and the cerebellum and cortical associated regions are thought to 

support motor adaptation, but not motor sequence (Figure 3). 
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Figure 3. Model ofmotor learning. Reproduced with permission from Doyon & Benali 
(2005). 
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Doyon and Ungerleider's model makes testable predictions conceming the 

contribution of the cerebellum depending on the type oftask. The cerebellum is believed to 

contribute only to the early, but not to the late phase of motor sequence acquisition, while, 

it is thought to bring an important contribution to the whole time-course of motor 

adaptation leaming (early phase, consolidation and automatic perfonnance of an acquired 

ski Il). This model does not make particular predictions with regards to the contribution of 

SMA in motor leaming. Instead, the motor regions are said to participate to both tasks and 

to aIl phases of leaming. Yet, the SMA has important connections to the striatum, structure 

that is believed to play a role in the early phase of motor adaptation, but to be involved 

throughout the time-course of motor sequence acquisition. In the following, we will 

present a framework of motor sequence acquisition in which the SMA is thought to play a 

central role. 

4.2 Hikosaka's mode) ofmotor sequence acquisition 

i-likosaka and colleagues (Hikosaka et al., 1999; Nakahara, Doya, & Hikosaka, 

2001; Hikosaka, Nakamura, Sakai, & Nakahara, 2002); have proposed a model of the 

underlying neural substrates subserving acquisition of motor sequences based on known 

anatomical connections of different cortico-subcortical loops and integrating data from 

neurophysiological experiments in animaIs (recording and les ions in monkeys) and 

humans. They proposed that motor sequences are acquired separately by two cortico­

subcortical networks working in parallel, each with its own coordinates: the spatial 

mechanism fonned by fronto-parietal areas connected to associative regions of the 
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cerebellum and the basal ganglia; the motor mechanism formed by motor cortices 

(including Ml and SMA) connected to motor regions of the cerebellum and basal ganglia 

(see Figure 4). A conyersion is thought to take place between spatial and motor 

coordinates. Spatial sequences are believed to be effector unspecific, processed explicitly, 

acquired rapidly and requiring high attentional demands; while motor sequences are 

effector-specific, processed implicitly, acquired slowly and requiring low attentional 

demands. Motor skill learning may be initiated by either spatial or motor mechanisms. It 

is thought that optimization of performance is achieved by the cerebellum that processes 

sensori-motor or timing errors and by the basal ganglia processing reward or likelihood 

values. In a case where a sequence like trial-and-error begins by being explicit and then 

becomes implicit, the spatial mechanism would initiate leaming and guide the motor 

mechanisms. An implicit sequence like the SRT task, would be initiated by the motor 

mechanism which would guide the spatial mechanism. Because retention of a motor skill 

in the long-term is supported by two parallel systems, when the motor sequence 

mechanism is damaged, learning can be supported by the spatial system working 

simultaneously. 
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Figure 4. Modei of motor Iearning, reproduced with permission from Hikosaka et al. 
(1999). 

In this framework, the SMA as part of the motor network wouid be important for 

improvement of speed in early implicit sequence Ieaming and aiso for the Iong-term 

retention of such skill when the performance is implicit, rapid and with Iow attentionai 

demands. As for the cerebellum, its posterior part wouid be criticai in early sequence 

acquisition to optimize performance of such parameters às timing. The authors believe that 

the anterior cerebellum (including the dentate nucleus) subserves Iater sequence Iearning. 

This modei does not make predictions for the other important class of motor skills, 

adaptations. In the following, the Iiterature will be reviewed in the perspective of the role 

of the cerebellum and the SMA in motor execution and in motor Iearning of different tasks 

(with emphasis on motor sequence and adaptation studies). 



5. Tbe cerebellum 

5.1 Brief functional anatomy and connectivity 
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The cerebellum is functionally divided in three main parts: the vestibulocerebellum, 

the spinocerebellum and the neocerebellum. It is now well established that each of these 

functional regions have a specific role in fine motor control and in coordinated movements 

(Timmann. & Daum, 2007; Timmann & Diener, 2007). The vestibulocerebellum is 

implicated in eye movement and body equilibrium, the spinocerebellum controls muscle 

tone and adjusts ongoing movements and the neocerebellum is involved in initiation, 

planning and timing of movement (Ghez, 1991). We will further focus on the 

neocerebellum since lesions in this area, not only produce slight motor control deficits, but 

also leaming deficits (Thack, 1996). 

The neocerebellum is the largest cerebellar structure comprising the cerebellar 

hemispheres and the dentate nucleus. It receives information through the ponto-cerebellar 

fibers from ail sensory modalities (pre-processed information from second-order neurons), 

the motor, cognitive and associative cortices (Thach, 1996). The neocerebellum is thus 

implicated in motor behaviour of the limbs through the cortico-ponto-cerebellar-thalamo­

cortical loop. The motor cortex sends information to the neocerebellum via the cortico­

ponto-cerebellar pathway and the dentate nucleus projects back to the motor cortex via the 

ventrallateral nucleus of the thalamus (Middleton & Strick, 1994). 
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5.2 Motor control in the neocerebellum 

The fact that the cerebellum regulates movement control (Houk, Buckingham, & 

Barto, 1996) is illustrated by lesions of the hemispheres. These produce motor 

coordination deficits without a motor deficit as such, ipsilateral to the lesion and manifest 

themselves as disturbance in limb movements, intentional tremor (when the dentate nucleus 

is involved), decomposition of movement or dysynergy, dysmetria and dysdiadochokinesis 

(Timmann et al., 2007). Dysynergy is characterized by a trouble in the amplitude, direction 

and force of a multijoint movement. Dysmetria is an inability to control the range of 

movements while dysdiadochokinesis is an incapacity to perform rapid, alternating 

movements. 

5.3 Motor learning in the cerebellum 

The role of the cerebellum in motor learning was first modeled by Albus and Marr 

based on its unique cellular architecture (Albus, 1971; Marr, 1969). The gist of their 

proposaI is that the cerebellum is important for response-context linkage through a 

mechanism of detection and correction of errors (Thach, 1997; Mauk, 1997; Boyden, 

Katoh, & Raymond, 2004). This is based on the fact that the sole output of the cerebellum 

are Purkinje cells which project to the deep nuclei and that the Purkinje cells are influenced 

by two different types of input. The first source of afferent input is constituted by a system 

of mossy fibers-granule cellcontacting only one Purkinje cell. This system represents the 

'context', carrying sensory and other ongoing activity of the nervous system. The second 

source of afferent input is the climbing fiber that has a strong synapse to one Purkinje cell. 
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The climbing fibers have the role of the 'error' signal, firing when a Ilew movement is to be 

learned. When climbing fibers fire, they instruct the Purkinje cells to strengthen their 

contact with granule cells. In this manner, the correct movement is tied to the context, such 

that with repetitions, the context automatically evokes the correct movement. 

5.4 Animal models to study motor learning in the cerebellum 

Mechanisms of motor leaming in the cerebellum have been extensively studied in 

animaIs with two main paradigms: the vestibulo-ocular reflex (VOR) and classical 

conditioning of the eyeblink (EC) (Christian & Thompson, 2003; du Lac, Raymond, 

Sejnowski, & Lisberger, 1995). In the VOR, when moving the head, the eyes move 

reflexihly in the opposite direction to stabilize the image on the retina and prevent blurred 

vision. The VOR can adapt when altering conditions in vision (e.g. wearing prisms) 

pro duce errors. In the EC, upon repeated association of atone before an air puff delivered 

onto the eyes, the presentation of the tone al one evokes an eye blink. Lesion and recording 

studies in this research domain have found evidence for the Marr-Albus theory. The mossy 

fibers convey the context (the tone or head movements), climbing fibers convey the error 

signal (the air puff Q.r image motion) and the cerebellar and vestibular nuclei . carry 

expression of the conditioned eyeblink and VOR adaptation, respectively (for reviews see, 

Mauk, 1997; Lee & Thompson, 2006). Conclusions from this domain of research have 

revealed that the relative contribution of the cerebella's cortex versus its nuclei to motor 

learning might depend on the type and amount of training (Mauk, 1997). Although still a 

matter of present investigation (Shutoh et al., 2006), it seems that short-term acquisition of 
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the VOR and EC depends on the cerebellar cortex and that long-tenn storage involve the 

cerebellar and vestibular nuc1ei and that these are mediated by different plasticity 

mechanisms (for reviews, see Lee & Thompson, 2006; Boyden, Katoh & Raymond, 2004). 

5.5 Motor sequence studies 

Human functional imaging studies have shown activations in the cerebellum during 

early learning of several sequence tasks such as the SRT (Eliassen et al., 2001; Doyon et 

al., 2002), sequential finger-to-thumb opposition (Friston, Frith, Passingham, Liddle, & 

Frackowiak, 1992), sequence by trial-and-error (Toni, Krams, Turner, & Passingham, 1998; 

Jenkins, Brooks, Nixon, Frackowiak, & Passingham, 1994), pursuit rotor task (Grafton, 

Woods & Tyszka, 1994) or rhythmic sequence (Sakai, Ramnani & Passingham, 2002; 

Penhune & Doyon, 2005). However, following practice, commensurate with better 

perfonnance, either in early or later phases of sequence acquisition, several researchers 

have noted a decrease in the cerebellar cortex activity (Doyon, Owen, Petri des, Sziklas, & 

Evans, 1996; Doyon et al., 2002; Friston, Frith, Passingham, Liddle, & Frackowiak, 1992; 

Grafton, Woods & Tyszka, 1994; Jueptner et al., 1997; Grafton, Salidis & Willingham, 

2001; vanMier, Perlmutter & Petersen, 2004; Floyer-Lea & Matthews, 2005). The 

observation that the cerebellar cortex is active during early sequence acquisition but that it 

decreases with leaming is attributed, in many imaging studies, to the role of the cerebellar 

cortex in errors. Indeed, in a recent imaging studies on rhythmic sequence learning 

Penhune & Doyon (2005) have found correlations between activation in the cerebellar 

cortex and errors. However sorne authors have failed to observe activity in the cerebellum 
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during sequence leaming (Grafton et al., 1992; Grafton et al., 1995; Rauch et al.; 1995) or 

related activity in the cerebellum to expression of performance, but not leaming (Seidler et 

al.,2002). 

Clinical studies with patients having cerebellar lesions have uncovered important 

deficits in early acquisition of the SRTT. Pascual-Leone et al. (1993) have reported severe 

impairment in both implicit and explicit leaming of the SRTT, while Molinari et al. (1997) 

have shown an important impairment when the task was implicit, but not when it was 

explicitly taught prior to the experimentation. Gomez-Beldarrain, Garcia-Monco, Rubio, & 

Pascual-Leone (1998) revealed that cerebellar patientshad deficits in acquiring the SRTT 

with the hand ipsilateral to the les ion, but not with the contralateral hand. In another study, 

patients with cerebellar lesions were unable to leam either a spatial or a temporal sequence 

in the SRTT (Shin & Ivry, 2003). Interestingly, in a single experiment, cerebellar patients 

were impaired in late, but not in the early phase of SRTT acquisition (Doyon et al., 1997). 

Inconsistencies between clinical studies are possibly due to the heterogeneity of cerebellar 

lesions: atrophies, vascular lesions, tumors or degenerative diseases. Yet, another view is 

that the severe impairment in motor sequence leaming of cerebellar patients is simply due 

to performance deficits (Hallett, 1996; Timmann & Diener, 1996). In agreement with this 

idea, Frings, Boenisch, Gerwig, Diener, & Timmann (2004) have revealed that cerebellar 

patients were not impaired in acquiring and detecting various auditory and sensory 

sequences with low motor demands. 

Imaging and lesion studies have not yet reached a consensus regarding the role of 

the cerebellum in motor sequence leaming. The majority of evidence points to an 
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implication of the cerebeIlum, more particularly its hemispheres, in the early fast phase of a 

motor sequence acquisition, but not consistently in later phases, when the task is weIl­

leamed. 

5.6 Motor adaptation studies 

A few imaging studies employing fMRI and PET have addressed the specific role of 

the cerebellum in leaming of a motor adaptation task. High activation in the cerebellar 

hemispheres has been found during early adaptation leaming of kinematic (Imamizu et al., 

2000; Flament et al., 1996) and dynamic tasks (Nezafat et al., 2001). In these studies, the 

early activation of the lateral cerebellum was related to visuo-spatial errors on the task. The 

finding regarding the role of the cerebellum in the detection and correction errors is weIl 

documented in the literature (Doyon & Ungerleider, 2002; Mier, 2000; Diedrichsen, 

Hashambhoy, Rane, & Shadmehr, 2005). However, areas of the cerebellum were found to 

be active in late phases of adaptation learning (after consolidation), when errors were 

minimal: an are a close to theposterior superior fissure (Imamizu et al., 2000), the dentate 

nucleus (Flament et al., 1996; Floyer-Lea et al., 2004) and the right cerebellar cortex (Krebs 

et al., 1998). These findings hint at the possibility that the cerebellum might not only be 

involved in the processing of errors and thus have a subsidiary role in early adaptation 

learning, but that this structure also constitutes a memory storage site of adaptation skills. 

Indeed, Imamizu and colleagues (Imamizu et al., 2000; Imamizu et al., 2003) have 

observed activity in the cerebellar hemispheres throughout adaptation leaming and have 

attributed this activity to acquisition of 'internaI models' by this structure. 
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Functional imaging studies show correlations of brain activity and behaviour. Thus, 

even if the cerebellum might be important for learning, it might not be essential for it to 

occur. Natural lesions to the human cerebellum were found to impair learning of several 

motor adaptation tasks: visuomotor adaptation to prisms (Martin, Keating, Goodkin, & 

Bastian, 1996; Martin, 2003; Weiner, Hallett, & Funkenstein, 1983), mirror drawing 

(Laforce & Doyon, 2001), adaptation of anticipatory muscle activity during catching (Lang 

& Bastian, 1999) and adaptation to a new force field (Maschke, Gomez, Ebner, & Konczak, 

2004; Smith & Shadmehr, 2005). In the later two studies, cerebellar patients were impaired 

on several dependent variables when acquiring a dynamic task, results that were interpreted 

as a difficulty in establishing and updating internaI models of limb dynamics. In the study 

by Smith & Shadmehr (2005), cerebellar patients (with cerebellar degeneration of several 

etiologies) showed deficits in the use error from a previous trial to change motor commands 

to the next despite intact ability to correct errors during the trial itself. Maske et al. (2004) 

have noted a negative correlation between the severity of progressive cerebellar ataxia and 

extent of learning. Their patients showed little learning-related aftereffects, no 

generalization of learned movements to targets outside the learned space and di mini shed 

retention 3hrs later. 

In sum, the cerebellar cortex seems to be involved in the fast leaming phase and in 

later phases of motor adaptation learning. 



6. Supplcmcntary motor arca (SMA) 

6.1 Bricf functional anatomy and connectivity 
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The SMA may be anatomically divided in the pre-SMA, anterior to the coronal 

plane through the anterior commissure, and the SMA-proper, posterior to the plane 

(Rizzolatti, Luppino, & Matelli, 1998). Work on monkeys has revealed that only the SMA­

proper has anatomical connections to Ml and to the spinal cord, while the pre-SMA has 

abundant connections to the prefrontal cortex (Luppino, Matelli, Camarda, & Rizzolatti, 

1993; Wang, Shima, Sawamura, & Tanji, 2001). In humans, it was shown that the pre­

SMA and SMA send projections to different parts of the striatum, SMA-proper having a 

similar connectivity to that of Ml (Lehericy et al., 2004). Using imaging in the monkey, 

and Picard & Strick (2003) observed that motor-re1ated activity in SMA-proper was 

coupled to that of Ml. Based on their different connectivity and function, Picard & Strick 

(2001) argued that the pre-SMA is resembles a prefrontal region and the SMA, a motor 

region. From now on, we will focus on the SMA-proper simply referred to as SMA. 

Conncctivity betwccn SMA and ccrebellum 

The SMA and several other cortical regions project to the contralateral cerebellar 

hemisphere through the pontine nuc1ei (Ghez, 1991). The SMA although a major target of 

basal ganglia output through the thalamus, also receives minor dentate input from the 

cerebellum (Akkal, Dum & Strick, 2007; Sakai, Inase & Tanji, 2002; Sakai, Inse & Tanji, 

1999). 
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6.2 Motor control in the SMA 

The motor representation of the SMA is contralateral (Fried et al., 1991) when the 

task requires movements on one side, but SMA neurons have shown activity during 

movement selection of the two limbs (Hoshi & Tanji, 2004). Electrophysiological 

recording and imaging in humans suggest that the SMA is somatotopically organized (Fried 

et al., 1991; Fontaine, Capelle, & Duffau, 2002). Lesions in the human SMA speak of its 

role in initiating and planning of motor activity. Ressectioning the SMA unilaterally in 

humans produces the SMA syndrome characterized by severe and reversible motor and 

speech deficits post-operation first described by (Laplane, Talairach, Meininger, Bancaud, 

& Orgogozo, 1977). Motor deficits immediately after SMA removal consist of global 

reduction of spontaneous movements contralaterally (Krainik et al., 2001; Zentner, 

Hufnagel, Pechstein, Wolf, & Schramm, 1996) of variable intensity and related to the 

extent of SMA removal (Russell & Kelly, 2003). In addition, there have been reports of 

~, heminegle~t and apraxia in the contralaterallimb (Bannur & Rajshekhar, 2000). Lastly, an 

almost complete recovery follows within days to weeks with residual reduction in 

controlateral motor activity (Bannur & Rajshekhar, 2000; Duffau et al., 2003). In the long­

term, the motor function is essentially completely recovered, the only permanent sequela 

reported are disturbance of altemating movements (Zentner et al., 1996). Laplane et al. 

(1977) have also suggested an implication of the SMA in sequential movements. 

Recording studie's in monkeys have indeed shown an implication of the SMA in control of 

sequential movements (Tanji & Shi ma, 1994; Shima & Tanji, 2000; Lee & Quessy, 2003). 
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6.3 Motor sequence studies 

SMA activation in well-Ieamed movement sequences was noted in several PET and 

fMRI studies. Jueptner et al. (1997) have observed significant activity in the SMA when 

comparing overleamed to newly acquired trial-and-error sequences. Doyon et al. (2002) 

have shown an increase of SMA activity in late compared to early acquisition of the SRT 

task. Gordon et al. (1998) have specifically revealed strong SMA activity in well-Ieamed 

movement sequences, but not in simple repetitive key presses. Poldrack et al. (2005) have 

implicated the SMA in well-Ieamed sequences by showing a decrease in SMA activity 

when comparing well-Ieamed SRTT trials to random ones. Recently, a functional ne ar­

infrared spectroscopy study has $hown an increase in SMA activity after within-session 

leaming of a rotor pursuit task, but not in beginning of task acquisition (Hatakenaka et al., 

2007). However, activation of the SMA in late sequence leaming has not been consistently 

observed in imaging studies. In a fMRI study, Toni et al. (1998) have revealed a 

modulation of SMA activity in the early phase of within-day intensive sequence 

acquisition. Compared to the baseline, SMA was minimally active in the first third of the 

experiment, significantly increased in the second third and decreased at the end of the 

experiment. Several fMRI studies have also shown SMA activation in early leaming of 

different versions of the SRT task (Daselaar, Rombouts, Veltman, Raaijmakers, & Jonker, 

2003; Heun et al, 2004; Landau & D'Esposito, 2007), while other imaging studies have· 

correlated activity in the SMA during early sequence acquisition to improvement in 

performance. Van Mier, Perlmutter & Petersen, (2004) have uncovered early leaming­

related increases in the SMA correlated with the number of stops in tracing of a cut-out 
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maze. Floyer-Lea & Matthews (2004) noted decreases in SMA activation associated to 

early improvement in performance on a tracking task. The inconsistent activation in the 

SMA regarding several sequence leaming stages might stem from the fact that imaging 

studies report relative levels of activations between tasks. It is posible that a significant 

performance improvement during motor leaming corresponds to an increasing involvement 

of the SMA. Indeed, in imaging studies, the SMA might be found more active wh en 

comparison between relative levels of activations involve time points in leaming 

corresponding to performance improvement. 

Clinical studies regarding the role of SMA in motor leaming are scarce because this 

area is involved in motor execution. Lesion research suggest that the SMA is critical in 

early and late sequence leaming. In a controlled a case study of a patient with a left SMA 

lesion, Ackerman et al. (1996) have reported impaired acquisition of a motor sequence 

through the SRTT at the beginning of leaming. Botez (1992) has reported anecdotal cases 

of loss of automatic complex voluntary movements in patients with SMA lesions: a 

secretary who while being able to type the right letters had considerably lost her typing 

rapidity; a person could not play the piano anymore, but was able to play each note 

separately. In the monkey, chemical inactivation of the SMA bilaterally produced errors on 

a sequence of movements performed from memory, even when animaIs were able to 

associate a visual cue with the different movement to make or when animaIs with the same 

lesion performed adequately other types of reaching movements (Shima & Tanji, 1998). 

In sum, several studies involve the SMA in the late stage of sequence acquisition, 

while others suggests an implication of this structure in early sequence leaming as weIl. 
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6.4 Motor adaptation studies 

The SMA has been mostly implicated in sequence learning and much less in motor 

adaptation. Several functional imaging studies have not registered activation in the SMA 

during early or late learning of adapted movements (Krebs et al., 1998; Shadmehr & 

Holcomb, 1997). Using fMRI, Seidler, Noll & Chintaiapati (2006) have noted activations 

in several cortical and subcortical regions associated with early learning of a kinematic 

adaptation task. In this study, SMA activity was associated to sensori-motor processes and 

thus considered subsidiary. In another recent imaging study (Imamizu, Higuchi, Toda, & 

Kawato, 2007), learning of a kinematic task was associated with development of an internai 

model in the cerebellum, while activation of the SMA was explained as a result of 

cerebellar output to this region. 

Animal studies have not been conclusive either. Padoa-Schioppa, Li, & Bizzi 

2004) havè recorded the neuronal activity in the SMA as monkeys adapted to an external 

perturbing force field. Their results indicate that the SMA participates in movement 

dynamics (the forces exerted by the muscles that cause the movement) during motor 

preparation (before massive activity is registered in Ml) and execution. However, results 

concerning Iearning of adapted movements were less conclusive since SMA cells 

underwent plastic changes in control sessions as weIl. Paz, Natan, Boraud, Bergman, & 

Vaadia (2005) have used recording techniques in monkeys while they adapted to new 

kinematic movements. They noticed piastic-related changes in the SMA during early 

adaptation to kinematic movements, while Iater learning of the same task involved plastic 

changes in Ml. 
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In sum, if any, the SMA seems to have a marginal role in learning of adapted 

movements. 

7. Critiques of human imaging and les ion studies 

Human imaging techniques such as PET and fMRI have the advantage of 

registering who le brain activity during task execution. However, the activated brain 

regions are merely associated or 'correlated' with behaviour. Not only sorne of the 

activated regions may be superfluous (faise positives) to the studied behaviour, but other 

areas that do not show activation couid in principle constitute a crucial node in the 

computing of the studied cognitive task (false negatives). lndeed, no matter how well­

controlled, imaging studies do not provide information about brain-behaviour causal 

relationships. Neuropsychologicai studies complement imaging research by providing 

causal links between brain and behaviour. However, clinical research has several 

disadvantages related to lesion's focality, localization and compensation by other brain 

areas. Indeed many natural Iesions are not necessarily small enough or placed in the same 

area for ail patients, thus restricting spatial resolution and reliability of group studies. 

Moniover, the lesion is determined by the area of irrigation of the cerebrovascular system 

and not by modules of brain that neuroscientists are interested in. In addition, depending 

on the passage of time from the appearance of the lesion to the testing time, the patient's 

behaviour might reflect the ability of the rest of the brain to compensate (Kolb & Whishaw, 

1998). More particularly, patients with cerebellar and SMA lesions have associated motor 
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execution troubles that are difficult to disentangle from motor learning deficits (Gentilucci 

et al., 2000; Gentilucci et al., 2000; Timmann et al., 2007). 

8. Advantages of TMS over imaging techniques and c1inical studies 

Transcranial magnetic stimulation (TMS) allows non-invasive and temporary 

disruption of a brain region in healthy and diseased individuals. It is a unique method to 

establish true functional significance of imaging studies by providing causal information 

about the activated brain area and the· related behaviour. Compared to c1assical 

neuropsychological studies, it has the added advantage of well-controlled temporary 

'virtuallesions' in healthy participants. 

8.1 Presentation of the TMS technique 

The TMS technique enables the induction of currents of physiological amplitude in 

the cortical surface of the brain. Intense pulses of current are passed through a coil that is 

placed above the subject's scalp. This current generates a time-varying magnetic field (1.5 

to 3 Tesla) that penetrates undeflected into the subject's brai n, inducing a secondary current 

of inverse orientation and parallel to the current from the coil (Hallett, 2000). The brain­

induced current corresponds to simultaneous neuronal firing in the stiinulated region and 

propagation of neuronal activity (Ilmoniemi, Ruohonen, & Karhu, 1999). In one mode of 

TMS stimulation, a single pulse or a short train of pulses induce a brief 'virtual lesion' by 

temporarily disrupting neural processing. In the repetitive mode, longer trains of rTMS 

modify cortical excitability of the stimulated area for several minutes after the end of the 
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stimulation period. Low frequency rTMS (SI Hz) was shown to depress transiently cortical 

excitability and cause an effect lasting for a period of half the time of the stimulation period 

(Chen et al., 1997) white high frequency TMS (> 1 Hz to 50 Hz) was shown to increase 

cortical excitability (Pascual-Leone, Valls-Sole, Wassermann, & Hallett, 1994). 

9. Motor learning studies involving rTMS of the SMA and Cerebellum 

Many recent rTMS studies have employed rTMS on Ml to explore learning of 

different motor tasks (Muellbacher et al., 2002; Kobayashi, Hutchinson, Theoret, Schlaug, 

& Pascual-Leone, 2004; Robertson, Press, & Pascual-Leone, 2005; Carey, Fregni, & 

Pascual-Leone, 2006; Cothros, Kohler, Dickie, Mirsattari, & Gribble, 2006; Shemmell, 

Riek, Tresilian, & Carson, 2007). Fewer such studies have induced behavioral effects via 

rTMS over the SMA or cerebellum to investigate motor control or motor learning. Gerloff, 

Corwell, Chen, Hallett, & Cohen et al. (1997) have applied high frequency rTMS over the 

SMA during performance of overleamed finger sequences and produced accuracy errors in 

the complex sequence only', The authors concluded to a critical role of the SMA in 

planning of complex overleamed movement sequences. Muri, Rivaud, Vermersch, Leger, 

& Pierrot-Deseilligny (1995) employed single pulse TMS and impaired acquisition of 

memory-guided saccades, Early sequence acquisition of the SRT task was not impaired by 

5Hz rTMS over the SMA (Pascual-Leone, Wassermann, Grafman, & Hallett, 1996), while 

moderate practice levels of short sequences were hindered by 1 Hz rTMS over the SMA 

(Verwey, Lammens, & van Honk, 2002). Two studies have shown motor behavioral 

effects by applying 1 Hz rTMS on the cerebellum: stimulation of the medial cerebellum 
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increased variability in self-paced finger tapping (Theoret, Haque, & Pascual-Leone, 2001) 

and stimulation of the lateral cerebellum increased movement times on a pegboard task 

(Miall & Christensen, 2004). In a single experiment, 1Hz rTMS over the lateral cerebellum 

hindered early acquisition of the SRT task (Torriero, Oliveri, Koch, Caltagirone, & 

Petrosini,2004). None ofthese motor sequence learning studies employing rTMS over the 

SMA or cerebellum have allowed intensive training to attest the time-course of the TMS 

effect. To our knowledge, no study has employed rTMS over the SMA or cerebellum to 

investigate motor adaptation. 
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SYNTHE SIS, GOALS AND HYPOTHESES 

Imaging and clinical studies suggest that the SMA and cerebellum play a role in 

motor learning, besides their established role in motor control. Still a matter of debate in 

the literature concems the contribution of the SMA and cerebéllum to different motor 

learning stages and the type of tasks to which they bring a more substantial contribution to. 

The majority of imaging and lesion evidence reviewed thus far suggest that the cerebellum 

plays a particular role throughout the acquisition of adapted movements (early phase, 

consolidation and storage) (Doyon & Benali, 2005), while it seems to be critical only in the 

early phase of sequence acquisition (Molinari et al., 1997; Shin and Ivry, 2003). An 

important body of research points to a specifie role of the SMA in learning of sequential 

procedures. Yet, the stage of learning to which the SMA is more important remains 

controversial. The Hikosaka's model of sequential procedures (1999) specifically 

hypothesizes an implication of the SMA in the early fast phase of sequence learning with 

an emphasis on performance improvement. In the same time, several imaging studies point 

to a role of the SMA in late stages of motor sequence acquisition (Doyon et al., 2002; Wu, 

. Kansku & Hallett, 2004; Poldrack et al., 2005; Megumi et al., 2007). Although few studies 

addressed the issue of the role of the SMA in motor adaptation learning, these suggest a 

subsidiary role of the SMA in this type of learning. 

The main goal of the present thesis was to complement imaging and lesion research 

via the use of rTMS to shed light on the critical role of the SMA and cerebellum in several 

stages of acquisition of a motor sequence and an adaptation task. Temporary 'virtual 

lesions' were created via 1Hz rTMS on either the SMA or cerebellum at the beginning and 
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at the end of within-day intensive training of either task. A re-test was conducted 24 ho urs 

later. 

General hypotheses: 

• The SMA and the cerebellum were expected to bring a different contribution to 

learning depending on the type ofmotor task (sequence versus adaptation). 

• The implication of the SMA and the cerebellum to motor sequence or motor 

adaptation was expected to depend on the expertise level. 

Hypotheses pertaining to motor adaptation learning: 

• The cerebellum was expected to be· necessary from the beginning to the end of 

intensive within-day training and possibly in continuing learning the second day. 

• The SMA was expected to play a subsidiary role in this type of learning. 

Hypotheses pertaining to motorsequence learning: 

• The cerebellum was expected to be necessary at the beginning, but not at the end of 

within-day intensive training or in continuing learning the second day. 

• The SMA was expected to be critical in well-Iearned motor sequence, after 

intensive within-day training or the second day at re-test, but not at the beginning of 

acquisition. 
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ABSTRACT 

Increasing evidence suggests that the cerebellum does not only contribut~ to motor 

execution but that it also plays a role in procedural learning. A type of procedural task is 

motor adaptation, in which one compensates for environmental changes. One view is that 

the cerebellum is implicated in error-correction and suggests that it contributes only to the 

beginning of motor adaptation, while another proposes that the cerebellum is a storage site 

of this type of learning and is involved throughout motor adaptation acquisition. The 

present study used repetitive transcranial stimulation (rTMS) in healthy participants to 

study the role of the cerebellum in the beginning and at the end of intensive within-day 

training on a kinematic adaptation task. A re-test was conducted the second day. Two 

different groups received rTMS on either the ipsilateral cerebellum or the contralateral 

SMA at two times during training: before and after intensive within-day training. Another 

group received no stimulation. The results showed a critical contribution of the cerebellum 

at the beginning of the acquisition of the internaI model of the adaptation task that endured 

during the whole intensive within-day training and at re-test (24 hrs later). The group with 

rTMS on the SMA behaved as the group with no rTMS. These results support a critical 

role of the cerebellum in storage of adaptation skills. In conclusion, our study is the first to 

show a lasting behavioural effect of virtually lesioning the cerebellum in healthy 

participants and complements imaging and lesion studies on the involvement of the 

cerebellum in this type of procedural skill. 
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INTRODUCTION 

The role of the cerebellum in the acquisition of motor skills is still disputed. While 

many modem theories of cerebellar function implicate the cerebellum in motor leaming 

(MaIT, 1969; Thach, 1996), others disagree with such a view (Llinas, Lang, & Welsh, 

1997).· For example, using functional magnetic resonance imaging (tMRI), Seidler and 

colleagues (2002) reported that the cerebellum is critical for the expression of an improved 

motor performance of sequential movements, but not for the leamingper se. 

According to recent reviews of literature, the cerebellum's role in motor leaming is 

dependent upon the paradigm used (Bloedel, 2004; Doyon, Penhune, & Ungerleider, 2003; 

Doyon & Benali, 2005). At least two types of motor skills have been investigated to date: 

sequence skill leaming; i.e. the ability to combine new sequences of behaviour into a well 

coordinated action plan such as leaming to play the piano, and motor adaptation, which 

refers to continuo us readjustment of motor commands to environmental changes, like 

leaming to drive backwards (Hallett, 1996; Sanes, Dimitrov, & Hallett, 1990; Doyon et al., 

2003; Doyon and Benali, 2005). Although there is ample evidence showing that the 

cerebellum participates in motor sequence leaming in the early phase of the acquisition 

process (Doyon et al., 2002; Pascual-Leone et al., 1993; Shin & Ivry, 2003), evidence 

suggests that it also plays a particular role in the acquisition of adapted movements (Hallett, 

1996). Indeed, lesions to the human cerebellum have been shown to impair motor 

adaptation in different experimental conditions: visuomotor adaptation to prisms (Martin, 

Keating, Goodkin, & Bastian, 1996; Martin, 2003; Weiner, Hallett, & Funkenstein, 1983), 

adaptation to miITor drawing (Laforce & Doyon, 2001), adaptation of anticipatory muscle 
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activity during baIl catching (Lang & Bastian, 1999) and adaptation to a new force-field 

(Maschke, Gomez, Ebner, & Konczak, 2004; Smith & Shadmehr, 2005). For example, 

Smith and Shadmehr (2005) have used a target reaching task where subjects had to adapt to 

a force-field and compared the performance of healthy controls to those of patients with 

cerebellar damage or Huntington's disease. While normal controls and patients with 

Huntington disease were able to leam the internaI model of the task as indexed by a 

decrease in reaching errors, movement time and path length, cerebellar patients were 

markedly impaired. 

Several authors (Thach, 1996; Doyon and Benali, 2005) have also proposed a role 

of the cerebellum in motor adaptation depending on the level of skill acquisition. Indeed, 

neuroimaging evidence suggests that the cerebellum contributes to the different stages of 

motor adaptation. A few authors have reported activation in the cerebellum in the early 

phase of a motor adaptation task (Flament, Ellerman, Kim, Ugurbil, & Ebner, 1996; 

Nezafat, Shadmehr, & Holcomb, 2001; Imamizu, Kuroda, Miyauchi, Yoshioka, & Kawato, 

2003), and have related this pattern of activity to the detection and correction of spatial 

errors. However, other imaging studies have revealed areas of activation in the cerebellum 

that were interpreted as being related to the development of an internaI model necessary to 

perform adapted movements in later phases of the adaptation process. For example, the 

right cerebellar cortex was found to be active during within-session skilled performance 

(Krebs et al., 1998), the ipsilateral anterior cerebellar cortex in consolidation (Shadmehr & 

Holcomb, 1997) and an area close to the posterior superior fissure in the storage of internaI 

models (lmamizu et al., 2000). 
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In a recent model of motor skillleaming based on the imaging literature, Doyon and 

colleagues (2003; Doyon and Benali, 2005) have argued for a role of the cortico-cerebellar 

system throughout the course of motor adaptation (early leaming, consolidation and 

automatic performance of an acquired skill). Moreover, consistent with other studies from 

the animal literature (Floyer-Lea & Matthews, 2004), Doyon and colleagues claim that 

leaming-related changes take place within the cerebellum itself, where activity in the 

cerebellar hemispheres at the beginning of the acquisition process is then transferred to the 

dentate nucleus as leaming progresses. Yet, imaging studies show only correlation of 

behaviour with brain function, and thus do not allow to determine whether an activated 

brain region is necessary for the studied behaviour. Lesion research complements 

neuroimaging data by providing causal information. However, cerebellar patients often 

have associated motor coordination deficits that are difficult to disentangle from 

impairments in motor leaming (Timmann & Diener, 1996). In the present experiment, we 

thus aimed to investigate the causal role of the cerebellum in motor adaptation leaming (the 

eariy fast leaming phase and the beginning of the slow phase) in healthy participants using 

a 'virtual-Iesion' technique, thereby avoiding the impact of motor execution deficits on 

motor leaming of cerebellar patients. 

We transiently inhibited the cerebellar cortex of healthy participants with repetitive 

transcranial magnetic stimulation (rTMS) at two times during the fast leaming phase of 

motor adaptation acquisition. We then compared their results to a group of participants who 

had rTMS on the supplementary motor area (SMA), a motor execution area thought to play 

a minor role in motor adaptation, and to a group who did not receive rTMS. One Hz rTMS 
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trains were applied at two different times on Day 1 during leaming of the motor adaptation 

task: before proper training began (following the tirst familiarisation block) and after 

extensive practice (when subjects started to reach asymptotic performance). Participants 

were then re-tested 24 hrs later (the beginning of the slow phase). We hypothesised that if 

the cerebellar cortex is important for the detection and the correction of errors, transient 

inhibition of the cerebellar cortex would impair motor adaptation only in the beginning of 

the acquisition process but not after extensive within-day training or at re-test (24 hrs later). 

However, if the cerebellar cortex is an important storage site of the internaI model built 

during the adaptation task, we should observe a leaming impairment after extensive within­

day practice and at retest 24 hours later. 

METHODS 

Participants 

Twenty healthy volunteers took part in this study. They were asked to complete a 

health questionnaire to rule out any health conditions contraindicated to TMS 

administration (such as a history of neurological or psychiatrie disorders) or' to the 

anatomical MR procedure. Participants who had extensive videogame experience were 

excluded from the study (such experience allowed them to almost automatically complete 

the task). Participants were randomly assigned to three stimulation groups: 1) the 

cerebellum group (6 females, 3 males), 2) the SMA group (4 females, 2 males) and 3) a 

group who had no stimulation (8 females, 3 males). The mean age for the entire sample 

was 23.4 years ±2.7 (SD) and did not signiticantly differ in the three groups [One-way 
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ANOVA F(2. 17) = .85; P = .45]. Participants perfonned the task with their 

preferredldominant hand (19 were right handed; 1 left-handed was assigned in the 

cerebelIar group). They were recruited at the University of Montreal campus through ads: 

A monetary compensation was attributed for participation in the study and for 

transportation costs. The research protocol was accepted by the University of Montreal and 

the Notre-Dame hospital ethical committees. AlI volunteers signed an infonned consent 

fonn before taking part in the study. 

TMS stimulation protocol 

Repeated TMS was delivered with a Magstim Rapid Transcranial Magnetic 

Stimulator (Magstim Company, Whitland, UK) having a maximum output of 2.0 T 

connected to a 7cm figure-of-eight shaped coil. Participants received a low frequency 

stimulation of 1 Hz rTMS for ten minutes (600 pulses) as these TMS parameters have been 

shown to suppress cortical excitability (Chen et al., 1997; Boroojerdi, Battaglia, 

MuelIbacher, & Cohen, 2001; MuelIbacher, Ziemann, Boroojerdi, & HalIett, 2000). 

The coil was held tangentially to the scalp with the handle pointing a) superiorly 

along the midsaggital axis for the cerebelIar stimulation; b) posteriorly and to the right from 

the midline for the right SMA stimulation. The stimulation sites' were dependent on the 

hand used to perfonn the motor task because of their predominant anatomical connections 

to the effector: rTMS stimulation of the cerebelIum was ipsilateral while SMA stimulation 

was contralateral to the dominant hand. The stimulation spot on the cerebelIar cortex 

(lobules V & VI) or on the contralateral SMA (see Fig. 1) was marked on each individual's 
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MRI using anatomical landmarks from two atlases (Schmahmann, Doyon, Petrides, Evans, 

& Toga, 2000; Talairch & Toumoux, 1988). We used frameless sterotaxy (for more 

details, see Frameless stereotaxy registration section) to ensure precise and consistent 

localisation of the region to be stimulated in each participant and to monitor the head 

position and the position of the coil in rea1-time during the TMS experiment. 

Insert Fig 1 about here 

The SMA group was stimulated at motor threshold (MT) intensity (values ranging 

from 49 to 60% of total stimulator output) as determined by the leve1 of intensity used for 

the primary motor area (Ml). Motor threshold in the contralateral Ml was determined as 

the minimal intensity of stimulation capable of inducing a visible muscle twitch in the 

contralateral thumb in 50% of a sequence of 10 consecutive trials. This level of intensity 

was judged to be the highest possible to stimu1ate SMA without producing any muscle 

twitch in the effector used to perform the task. The cerebellar group was stimulated at a 

fixed 55% of stimulator output because the excitability of Ml is not a good predictor of the 

excitability of other brain areas (Robertson, Theoret, & Pascual-Leone, 2003). The latter 

level of intensity was adjusted to be the highest possible without being uncomfortable to 

neck muscles. 

Frameless stereotaxy registration 

We coregistered the actual position of the subject's head with MR images (see 

Structural MRI section) of the subject' s brain (see Paus, 1999) for a detailed discussion of 
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the procedure used here). This co-registration was achieved using anatomical landmarks 

such as the ears, the bridge of the nose and the tragus of the two ears that are equally visible 

on both the subject's head and on the MR images and by employing the Brainsight image 

analysis and Frameless Stereotaxy software developed by Rogue Research. The 3-D 

location of the landmark was measured with a digitizing pen using an optical tracking 

system (Polaris optical tracking system by Northern Digital Inc.). The camera of the 

optical tracking system measured the 3-D locations of infra-red LEDs attached to the TMS 

coil and the subject's head. 

Structural MRI 

A 1.5 Tesla system was used (Magnetom Vision, Siemens Electric, 

Erlangen, Germany). High-resolution data were acquired via a TI-weighted three­

dimensional volume acquisition procedure using a gradient echo pulse sequence (TE 44 

ms, Flip = 12° FOV 250 mm, Matrix 256 x 256, Vox el size = 0.94 mm3). 

Motor adaptation task: the eight-target tracking (ETT) task 

The ETT is a motor adaptation task similar to that used by Flament et al. (1996) and 

Hadj (Hadj, Blanchet, & Doyon, 2004). During the ETT task, participants were required to 

manipulate a joystick in order to reach a target presented on the computer screen following 

an elliptical trajectory (see Fig. 2). The ETT task was used in two modes: the direct mode, 

where the cursor moves in the same direction as the joystick (first block only), and the 

adaptation mode, where the cursor' s movement is opposite to that of the joystick (e.g. if the 
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joystick is manipulated in the upward and right direction, the cursor moves down and to the 

left, all other blocks). 

Include Fig 2 about here 

Trials began in the center of the screen with the cursor (cross-shaped) superimposed 

on the starting point (a full white circle of 0.75 cm in diameter). One hundred milliseconds 

later, a target (red dot of 1.5 cm in radius) linked to an elliptical trajectory (grey-coloured, 

2.5 cm radius and 0.5 cm thick) was displayed. The targets were presented one at a time in 

a random fashion. There were eight possible target locations, separated by a 45-degree 

angle and evenly distributed on a circle measuring 10 cm in radius from the starting point. 

A trial was considered a success when 90% of the cursor was located within the 

target and when 100 ms have elapsed on the target. During this time, the target changed 

color from red to green, informing the participant of their success. There was a maximum 

of 3s to reach the target. If the time limit was exceeded, the trial was considered a failure. 

Blocks were composed of 64 trials (each target location was presented an equal amount of 

8 times). 

The eight-target tracking task generated a multitude of measures on each trial: (a) 

the reaction time (RT, in milliseconds): the time between the appearance of the target and 

the first movement of the cursor; (b) movement time (MT, in milliseconds): the time 

between the first movement of the cursor and the moment when the target was reached; (c) 

total distance (TD, in centimetres): the distance of the cursor's path between the starting 

point and the successful reaching of the target; (d) success rate (SR): the percentage of 

correctly reached targets. 
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Procedure 

Participants were introduced to the task with two blocks in the direct and adaptation 

modes, respectively. This ensured familiarisation with the task and provided a baseline 

measure of the subject's initial adaptation abilities. They then underwent brain stimulation 

(TMS-l) over the assigned brain area (cerebellum or SMA group) or had an equivalent 10 

min pause (no stimulation group). Next, participants underwent intensive training (n = 12 

blocks) on day l, allowing subjects to complete the fast leaming phase ofmotor adaptation. 

Subsequent to this training period, a second rTMS (TMS-2) session was performed over the 

same brain area. Following TMS-2, participants performed three additional blocks of the 

task to verify whether rTMS interfered with performance at the end of the fast leaming 

phase. The next day (24 ho urs later), participants retumed to the laboratory for a re-test 

during which they performed three blocks of the task (cf. design in Fig. 3) to attest of any 

rTMS-2 effects on the slow leaming phase (after a period with no practice during which 

consolidation takes place). 

Inc1ude Fig 3 about here 

RESULTS 

Data analysis 

Analysis of variance (ANOVAs) were performed to compare the performance of the 

three groups at various stages of leaming: 1) at baseline (i.e. during performance of the first 

block of practice), 2) following rTMS-I application (at the beginning of the fast leaming 

phase), 3) during the intensive leaming period, 4) following rTMS-2 application (at the end· 
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of the fast leaming phase), and 5) at re-test, 24 hrs later (at the beginning of the slow 

phase). 

Local rTMS effects were tested on 2 blocks of trials (lasting 10 minutes) following 

each magnetic stimulation, as previous studies have shown that rTMS effects with 

parameters similar to ours outlast the stimulation period for a time equivalent to the 

duration of the rTMS trains themselves (Théorêt, Haque and Pascual-Leone, 2001; 

Robertson et al., 2001; Lewald et al, 2002). 

AlI dependent variables (SR, RT, MT, TD) underwent the same statistical analyses. 

The same statistical approach was used for aIl dependent variables separately. Main gro':lP 

effects were further specified by post-hoc Tuckey tests. We reported Greenhouse-Geiser 

corrected p-values with original (uncorrected) degrees offreedom. 

1) Baseline performance 

After familiarisation with a block of trials in the "direct" condition, subjects 

underwent adaptation training. The groups' performance at baseline was assessed with 

one-way ANOV As on the first adaptation block. Analyses revealed that the three subject 

groups did not differ (p ~ .10) with respect to aIl measures of motor behaviour [SR: F(2, 19) 

= .85; RT: F(2, 19) = .02; MT: F(2, 19) = .26 and TD F(2, 19) = 2.69]. 

2) Effects of rTMS-1 (at the begining of the fast learning phase) 

The effects of rTMS on motor performance at the onset of leaming were analysed 

by means of two-factor ANOVAs with one repeated factor at two levels, and one between 
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factor at three levels. The results showed a significant improvement in performance as 

participants reached an increasing number of targets with practice [F(I. 17) =14.65, p<.OI] 

(see Fig. 4), the improvement in performance not reaching statistical significance on the 

other behavioural measures (p 2: .10). The groups' motor performance was not affected by 

rTMS as indexed by SR, RT and MT measures, but rTMS had an impact on the TD 

measure [F(2, 17) = 5.18; P = .02] (see Fig. 5). Tuckey post-hoc tests revealed that 

performance of the no stimulation group did not differ from that of the SMA (p = .12), nor 

the cerebellar (p = .42) group, whereas, the cerebellar and the SMA groups showed a 

significant difference in performance (p = .01). In fact, the group that received stimulation 

of the cerebellum travelled a significant larger distance on the curved path than the group 

that was stimulated on the SMA region (see Fig. 6). 

Include Fig 4, 5 and 6 about here 

3) Intensive training 

Two-factor ANOVAs with one repeated factor at ten levels and one between factor 

at three levels were then employed to measure the groups' improvement in performance 

over the training session. Participants from aU groups significantly improved their 

performance (p < .01) as they reached increasingly more targets [SR: F(9, 153)= 14.84] and 

moved faster to the target [MT: F(9, 153) = 24.14]. The initiation time, however, did not 

improve over this training period [RT: F(9, 153) = 1.82, p= .17]. 

As expected from previous work in our laboratory (Do yon, personal 

communication), the participants did not show any improvement in their precision to follow 

the path [DT: F(9, 153) = .45, P < .90] because they followed the ideal curve from the 
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beginning of the leaming process. Nevertheless, we observed a marked group effect 

depending on the stimulated brain region [F(2, 17) = 10.00, P = <.01]. Post-hoc tests 

(Tuckey) revealed that performance of the cerebellar group was significantly worse (i.e. 

they travelled a larger distance) compared to the no-stimulation (p = .03) and SMA (p < 

.01) groups, respectively, while the performance of the SMA and the no-stimulation groups 

did not differ from each other (p = .19). 

4) Effects of rTMS-2 (at tbe end of tbe fast learning pbase) 

The effects of rTMS on motor performance at the end of the fast leanring phase 

were analysed by means of one-factor repeated ANOVAs. The motor performance of the 

three groups was not affected by a second rTMS on the following indices: SR, RT and MT. 

Participants from all groups continued to improve on the SR measure [Block effect: F(I,17) 

= 4.48, P = .05] and reached an asymptote on the RT [Block effect: F(I, 17) = .31, P = .58] 

and the MT measures [Block effect: F(I, 17) = 1.99, P = .18]. We once more observed a 

pervasive group effect on the TD measure [F(2, 17) =5.55; p=.OI]. Tuckey post-hoc tests 

revealed that performance of the cerebellar group was significantly different from that of 

the no-stimulation (p=.02) and SMA (p=.03) groups, but that the performance of the latter 

two did not differ significantly from each other (p=.98). 

To further explore the effect of the second rTMS, we then used three-factor 

ANOVAs to compare tpe groups' performance on two blocks prior to TMS administration 

to two blocks affected by TMS. We observed no interaction between TMS administration 
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and the group factor on any variabJes. This analysis confinns that rTMS did not further 

impact learning at the end of the fast phase of adaptation learning. 

5) Re-test, 24hrs later (at the beginning ofthe slow phase) 

One-:way ANOV A on the first block in the adaptation mode revealed that aIl three 

groups have equally (p ~ .10) retained the motor adaptation task [SR: F(2, l7) = .06; RT: F(2, 

17) = .04 and MT: F(2, 17) = 1.19]. At the level of the TD, the significant group difference 

after the first intensive day of training was retained the second day [F(2, 17)= 10.19, p<.Ol]. 

Tuckey post-hoc tests revealed that this difference was due to the cerebellar group who still 

travelled a larger distance than the no-stimulation group (p<.OI) or the SMA group (p<.OI) 

who followed the ideal path (refer to Fig. 5 & 6). 

No significant consolidation effect (i.e. delayed improvement), was observed on any 

variables (SR, RT, MT and TD) when comparing the last two blocks of trials from the first 

day to the first two blocks from the second day. Thus, the participants' perfonnance from 

aIl groups remained stable. The lack of offline improvement of a motor adaptation task was 

equally reported by research in our lab (Morin et al. submitted, 2007) and is in line with the 

literature on procedural consolidation of kinematic adaptation tasks (Robertson, Pascual­

Leone, & MiaIl, 2004). 

DISCUSSION 

In the present experiment, we explored the role of the cerebellum during the early 

fast phase ofvisuomotor adaptation learning (in commencing of the task and after intensive 
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within-day training) and at the beginning of the slow phase (re-test, 24 hours later). We 

have used rTMS to transiently disrupt the lateral part of the cerebellar cortex in a group of 

subjects and we have compared their performance to a group of subjects with rTMS on the 

SMA and to another group of subjects who did not receive magnetic stimulation. 

Repetitive TMS was applied in the beginning of adaptation learning and after intensive 

within-day training. Our results have shown a selective impairment in the case of the 

cerebellar group by comparison to the other two. The first rTMS on the cerebellum 

disturbed solely the subject's precision to follow the path, that is the distance travelled 

between the starting point and the target (i.e. spatial precision) but not performance indexed 

by the other dependent variables (reaction time, movement time or success rate). 

Moreover, rTMS on the cerebellum disturbed spatial precision from the beginning of the 

early phase of adaptation leaming. The disturbed travelled path was maintained throughout 

intensive within-day training and at re-test (24 hrs later). At the end of the first leaming 

day, a second rTMS did not further disrupt leaming on any variable. At re-test, the 

participants from aIl groups retained the adaptation task (without spontaneous performance 

gains). These findings suggest that the cerebellum provides a necessary role to acquisition 

and storage of the internaI model for spatial precision in adapted movements. As such, our 

results provide support for Doyon's model of motor skill acquisition drawn from human 

imaging literature (Doyon and Benali, 2005). In this account, plastic-related changes are 

thought to occur in the cerebellum itself, where activity in the cerebellar hemispheres at the 

beginning of adaptation leaming is transferred to the dentate nucleus as learning progresses. 
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The cerebellar transfer hypothesis is endorsed by animal research in the field (Lea-Floyer & 

Mathews, 2004). 

Our results do not exclude a role of the cerebellum in the detection and correction of 

spatial errors at the beginning of task acquisition as proposed by imaging research in the 

field (Flament et al, 1996). Nor do they preclude an involvement of the cerebellum in 

motor execution, even though other dependent variables (RT, MT or success rate) were not 

affected by rTMS application. Our results shed light on the involvement of the cerebellar 

hemispheres in adaptation learning (acquisition ofthe internaI model for spatial precision). 

In our experiment we have used 1 Hz rTMS to produce virtual lesions in healthy 

participants without having the drawbacks of cerebellar classical lesion studies. Yet our 

finding of impoverished precision following cerebellar stimulation alludes at a classical 

symptom observed in patients with cerebellar lesions called dysmetria. Dysmetria refers to 

execution errors in the range and direction of movements causing metric errors. When 

cerebellar patients are asked to move their finger from a point in space to their nose, they 

show unsmooth movement and tremor when they approach their nose (Ghez, 1991). In our 

study, we did not observe any execution errors by inhibiting the cerebellar cortex, but a 

motor leanring deficit manifesting itself as unsmooth following of a curved path resembling 

dysmetria in patients with cerebellar lesions. 

Furthermore, recent research on cerebellar lesions using force-field adaptation tasks 

has demonstrated that these patients do not learn on dependent variables such as movement 

time and path length. It has also been observed that participants were not able to use error 

from a previous trial to adjust their movements on the next one (Smith et al., 2005). 
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Similarly, Maske et al. (2004) have shawn that patients with hereditary cerebellar ataxia 

cannat adapt ta a forcefield task or retain it 3 hrs later. In the present experiment, we 

mimicked a transient and mild version of cerebellar cortex lesions and we have revealed a 

impairment in visuomotor adaptation. This was indexed by a difficulty in acquiring the 

ideal path length early in the acquisition process, maintained despite intensive within-day 

training and retained 24hrs later. 

Adaptation studies with naturallesions on the cerebellum have uncovered leaming­

related deficits on several dependent variables (RT, MT, path length, success rate). In our 

study, only subtle effects on the path length were observed, the other dependent variables 

(RT, MT, success rate) were unaffected by by rTMS on the cerebellum. It is possible that 

the effects restrained ta spatial precision seen here are due ta the fact that the total distance 

dependent variable is more sensitive ta rTMS Interference than the others. The few other 

studies that used rTMS over the cerebellum in the field of motor behaviour or motor 

leaming have also observed slight behavioural effects. For example, the first study 

showing the feasibility of rTMS on the cerebellum uncovered an effect of rTMS on the 

variability of self-paced movements without affecting RT as such (Théorêt et aL, 2001). 

Even the effects of rTMS on the motor cortex are not detectable behaviourally for simple 

motor tasks (Lee et al., 2006). 

Research using rTMS in a virtual technique fashion over the cerebellum is rather 

scarce. Ta our knowledge, three studies employing rTMS over the cerebellum have been 

shawn ta disturb motor execution or procedural learning. Theoret, Raque, & Pascual­

Leone (2001) have been the first ta demonstrate the feasibility of this technique ta examine 
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cerebellar functions. In their study, they revealed an increased variability in paced finger 

tapping using 1 Hz rTMS for 5 min over the medial cerebellum, while stimulation on the 

Iateral cerebellum or sham stimulation did not disturb the task. In a second article, Miall & 

Christensen (2004) used the same parameters of stimulation and have observed a 

significantly increased movement time on a pegboard task wh en comparing the 

performances of laterai cerebellar stimulation to a control group with no rTMS. Most 

importantly, in the third article, Torriero, Oliveri, Koch, Caltagirone, & Petrosini (2004) 

have used stimulation parameters similar to ours (1Hz rTMS, 10 min, 90% of MT intensity, 

laterai cerebellum) and have shown disturbed proceduralleaming on a motor sequence task 

(RT was maintained high on seriaI reaction time task) at the beginning of the acquisition 

process. In our study, we have also interfered with procedural leaming but of a different 

motor task (visuo~motor adaptation) and based our evidence on a different dependent 

variable, the travelled distance. White they studied only the beginning of the fast leaming 

phase and showed short lived rTMS effects on sequence leaming, we studied the entire fast 

Ieaming phase and the beginning of the slow leaming phase (24 hrs later, at re~test). In our 

experiment, we observed a lasting effect following rTMS on the cerebellum during the 

entire studied Ieaming period. These apparent contradictory findings point to a role of the 

cerebellum in mot or leaming that is dependent on the type and the amount of training. 
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The spatial precision deficit obtained in the present experiment seen after transiently 

disrupting the cerebellum with rTMS could be ascribed to disruptions of connections within 

the larger cortico-thalamo-cerebellar network. Indeed, imaging the brain after rTMS 

showed local effects reflecting cortical excitability at the site of stimulation, as well as 

distal effects reflecting connectivity of the stimulated region (Paus et a1., 1999). In the 

present study, the TMS coi! was placed over an area of the cerebellum with major 

anatomical connections to the motor cortex and minor connections to the SMA (Middleton 

& Strick, 1997). Thus, the cerebellar stimulation could have affected the motor cortex, 

which in tum could have contributed to the observed behavioural effect. However, SMA 

which has abundant connections to Ml, was also stimulated with rTMS and the results of 

this group of participants did not differ from those who did not undergo rTMS. Therefore, 

it is unlikely that effect of rTMS on the cerebellum could be attributed to its connections to 

Ml. Moreover, we expect the rTMS effect to be maximal at the stimulated site and we 

precisely targeted the ipsilateral cerebellum and the contralateral SMA in each subject 

using frameless stereotaxy. 

CONCLUSION 

This study is yet another example of the feasibility of 'virtual' lesions induced by 1 

Hz rTMS to study diverse cognitive functions of the cerebellum in healthy participants. 

For the first time, the results of this experiment show that rTMS over the cerebellum in the 

beginning of adaptation leaming interfered with procedural leaming of the entire fast 

leaming phase and at re-test, 24 hrs later. As such, our finding support the view that the 
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learning phase and at re-test, 24 hrs later. As such, our finding support the view that the 

cerebellum might be a storage site of motor adaptation learning and further elucidates the 

modulatory role of the cerebellar cortex in procedural memory. 



Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 

Figure 5. 

Figure 6. 

Figure captions 

SMA and the cerebellum stimulation sites. 

The eight-target tracking task. 

Timeline of the motor adaptation task acquisition. 

71 

Percentage of correct responses (i.e. number of trials during which 

participants reached the target within the· time limit). Illustration of the 

means and standard errors of the mean for each block of trials. 

Total distance to reach the target during learning. Illustration of means and 

standard errors of the mean of individual blocks. 

Illustration of typical travelled distance after intensive within-day training in 

a control participant (a) and in a participant stimulated on the cerebellum 

(b). 
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(a) Typical travelled distance in a control participant 

(b) Typical travelled distance in a participant stimulated on the cerebellum' 



78 

Reference List 

Bloedel, J. R. (2004). Task-dependent role of the cerebellum in motor leaming. 

Progress in brain research, 143, 319-329. 

Boroojerdi, B., Battaglia, F., Muellbacher, W., & Cohen, L. G. (2001). Mechanisms 

influencing stimulus-response properties of the human corticospinal system. Clinical 

Neurophysiology, 112, 931-937. 

Chen, R., Classen, J., Gerloff, C., Celnik, P., Wassermann, E. M., Hallett, M. et al. 

(1997). Depression of motor cortex excitability by low-frequency transcranial magnetic 

stimulation. Neurology, 48, 1398-1403. 

Doyon, J. & Benali, H. (2005). Reorganization and pl asti city in the adult brain 

during leaming of motor skills. Current Opinion in Neurobiology, 15, 161-167. 

Doyon, J., Penhune, V., & Ungerleider, L. G. (2003). Distinct contribution of the 

cortico-striatal and cortico-cerebellar systems to motor skill leaming. Neuropsychologia, 

41 (3), 252-262. 

Doyon, J., Song, A. W., Kami, A., Lalonde, F., Adams, M. M., & Ungerleider, L. 

G. (2002). Experience-dependent changes in cerebellar contributions to motor sequence 

leaming. Proceedings of the National Academy of Sciences of the United States of America, 

99, 1017-1022. 



79 

Flament, D., Ellennan, J. M., Kim, S. G., Ugurbil, K., & Ebner, T. J. (1996). 

Functional magnetic resonance imaging of cerebellar activation during the learning of a 

visuomotor dissociation task. Human Brain Mapping, 4, 210-226. 

Floyer-Lea, A. & Matthews, P. M. (2004). Changing b~ain networks for visuomotor 

control with increased movement automaticity. Journàl of Neurophysiology, 92(4), 2405-

12. 

Ghez, C. (1991). The cerebellum. In E.M.kandel, J. H. Schwartz, & T. M. Jessell 

(Eds.), Principles ofneural science (3rd ed., pp. 626-646). Norwalk: Appleton & Lange. 

Hadj, T. A., Blanchet, P. J., & Doyon, J. (2004). Motor-Ieaming impainnent by 

amantadine in healthy volunteers. Neuropsychopharmacology, 29(1), 187-94. 

Hallett, M. (1996). The role of the cerebellum In motor leaming IS limited. 

Behavioral and Brain Sciences, 19, 503-527. 

Imamizu, H., Kuroda, T., Miyauchi, S., Yoshioka, T., & Kawato, M. (2003). 

Modular organization of internaI models of tools in the human cerebellum. Proceedings of 

the National Academy of Sciences of the United States of America, 100(9), 5461-5466. 

Imamizu, H., Miyauchi, S., Tamada, T., Sasaki, Y., Takino, R., Putz, B. et al. 

(2000). Human cerebellar activity reflecting an acquired internaI model of a new tool. 

Nature, 403, 192-195. 



80 

Krebs, H. I., Brashers-Krug, T., Rauch, S. L., Savage, C. R., Hogan, N., Rubin, R. 

H. et al. (1998). Robot-aided functional imaging: application to a motor leaming study. 

Human Brain Mapping, 6, 59-72. 

Laforce, R. J. & Doyon, J. (2001). Distinct contribution of the striatum and 

cerebellum to motor learning. Brain and Cognition, 45, 189-211. 

Lang, C. E. & Bastian, A. J. (1999). Cerebellar subjects show impaired adaptation 

of anticipatory EMG during catching. Journal of Neurophysiology, 82, 2108-2119. 

Llinas, R., Lang, E. J., & Welsh, J. P. (1997). The cerebellum, LTD, and memory: 

Alternative views. Learning & Memory, 3, 445-455. 

Marr, D. (1969). A theory of cerebellar cortex. Journal of Physiology, 202, 437-

470. 

Martin, T. A., Keating, J. G., Goodkin, H. P., & Bastian, A. J. (1996). Throwing 

while looking through prisms: I. Focal olivocerebellar les ions impair adaptation. Brain: A 

Journal of Neurology, 119, 1183-1198. 

Martin, T. A. (2003). Prism adaptation and motor leaming: Kinematics, motor 

equivalency, storage specificity, and the olivocerebellar system. Dissertation Abstracts 

International: Section B: The Sciences and Engineering, 64(6-B), 2539. 



Maschke, M., Gomez, C. M., Ebner, T. J., & Konczak, J. (2004). Hereditary 

cerebellar ataxia progressively impairs force adaptation during goal-directed arm 

movements. Journal ofNeurophysiology, 91, 230-238. 

81 

Miall, R. C. & Christensen, L. o. (2004). The effect ofrTMS over the cerebellum in 

normal human volunteers on peg-board movement performance. Neuroscience Letters, 

371(2-3),185-189. 

Middleton, F. A. & Strick, P. L. (1997). Cerebellar output channels. International 

review ofneurobiology, 41,61-82. 

Muellbacher, W., Ziemann, U., Boroojerdi, B., & Hallett, M. (2000). Effects of low­

frequency transcranial magnetic stimulation on motor excitability and basic motor 

behavior. Clinical Neurophysiology, 111, 1002-1007. 

Nezafat, R., Shadmehr, R., & Holcomb, H. H. (2001). Long-term adaptation to 

dynamics of reaching movements: a PET study. Experimental Brain Research, 140, 66-76. 

Pascual-Leone, A., Grafman, J., Clark, K., Stewart, M., Massaquoi, S., Lou, 1. S. et 

al. (1993). Procedural learning in Parkinson's disease and cerebellar degeneration. Annals 

ofneurology, 34, 594-602. 

Paus, T. (1999). Imaging the brain before, during, and after transcranial magnetic 

stimulation. Neuropsychologia, 37, 219-224. 



82 

Petersen, S. E., van Mier, H., Fiez, J. A., & Raichle, M. E. (1998). The effects of 

practice on the functional anatomy of task perfonnance. Proceedings of the National 

Academy of Sciences of the United States of America, 95, 853-860. 

Robertson, E. M., Pascual-Leone, A., & Miall, R. C. (2004). CUITent concepts in 

procedural consolidation. Nature Reviews Neuroscience, 5(7), 576-582. 

Robertson, E. M., Theoret, H., & Pascual-Leone, A. (2003). Studies in cognition: 

the problems solved and created by transcranial magnetic stimulation. Journal of Cogniiive 

Neuroscience, 15, 948-960. 

Sanes, J. N., Dimitrov, B., & Hallett, M. (1990). Motor learning in patients with 

cerebellar dysfunction. Brain, 113 ( Pt 1), 103-120. 

Schmahmann, J. D., Doyon, 1., Petrides, M., Evans, A. C., & Toga, A. (2000). MRI 

Atlas of the Human Cerebellum. Boston, MA: Academic Press. 

Seidler, R. D., Purushotham, A., Kim, S. G., Ugurbil, K., Willingham, D., & Ashe, 

J. (2002). Cerebellum activation associated with perfonnance change but not motor 

learning. Science, 296(5575), 2043-2046. 

Shadmehr, R. & Holcomb, H. H. (1997). Neural correlates of motor memory 

consolidation. Science, 277, 821-825. 



83 

Shin, J. C. & Ivry, R. B. (2003). Spatial and temporal sequence leaming in patients 

. with Parkinson's disease or cerebellar lesions. Journal of Cognitive Neuroscienee, 15, 

1232-1243. 

Smith, M. A. & Shadmehr, R. (2005). Intact abi1ity to learn internaI mode1s of arm 

dynamics in Huntington's disease but not cerebellar degeneration. Journal of 

Neurophysiology, 93(5), 2809-21. 

Talairch, J. & Tournoux, P. (1988). Co-Planar Stereotaxie Atlas of the Human 

Brain. New York: Thieme. 

Thach, W. T. (1996). On the specifie role of the cerebellum in motor leaming and 

cognition: Clues from PET activation and les ion studies in man. Behavioral and Brain 

Sciences, 19, 503-527. 

Theoret, H., Haque, J., & Pascual-Leone, A. (2001). Increased variability of paced 

finger tapping accuracy following repetitive magnetic stimulation of the cerebellum ln 

humans. Neuroscienee Letters, 306, 29-32. 

Timmann, D. & Diener, H. C. (1996). Limitations of PET and lesion studies in 

defining the role of the human cerebellum in motor learning. Behavioral and Brain 

Sciences, 19, 503-527. 



84 

Torriero, S., Oliveri, M., Koch, G., Caltagirone, C., & Petrosini, L. (2004). 

Interference of left and right cerebellar rTMS with procedural leaming. Journal of 

Cognitive Neuroscience, 16, 1605-1611. 

van Mier, H., Tempel, L. W., Perlmutter, J. S., Raich1e, M. E., & Petersen, S. E. 

(1998). Changes in brain activity during motor leaming measured with PET: effècts ofhand 

of performance and practice. Journal ofNeurophysiology, 80(4), 2177-2199. 

Weiner, M. J., Hallett, M., & Funkenstein, H. H. (1983). Adaptation to lateral 

displacement of vision in patients with les ions of the central nervous system. Neurology, 

33, 766-772. 



Article 2 

The Implication of the Cerebellum and the Supplementary Motor Area in Procedural 

Learning of a Motor Sequence Task: a TMS Investigation 

Maria-Cristina Vasilescu, Julien Doyon and Maryse Lassonde 

Submitted to the Journal of Cognitive Neuroscience 



The Implication of the Cerebellum and the Supplementary Motor 

Area in Procedural Learning of a Motor Sequence Task: a TMS 

Investigation 

Maria-Cristina Vasilescu', Julien Doyonl,2 and Maryse Lassonde' 

'Departement ofPsychology, University of Montreal, Montréal,QC, Canada 

2Functional Neuroimaging Unit, University of Montreal Geriatrie Institute, 

Corresponding author: 

Montréal, QC, Canada 

Maryse Lassonde, PhD 
Centre de recherche en neuropsychologie et cognition 
Département de Psychologie 
Université de Montréal 
C.P. 6128, succursale Centre-Ville 
Montréal, Québec 
Canada, H3C 317 
Phone: (514) 343-6959 
Fax: (514) 343-8757 
E-mail:  



87 

ABSTRACT 

Human imaging and classicallesion studies suggest that motor execution areas such 

as the cerebellum and the supplementary motor area (SMA) might play a role in motor 

sequence learning, and that this contribution is dependent on the acquisition phase. To 

complement imaging and lesion studies, we have used 1 Hz rTMS, a 'virtual lesion' 

technique, in healthy participants. We have applied rTMS at the beginning and at the end of 

intensive within-day training of the seriaI reaction time task. A re-test was conducted 24 hrs 

later. Eighteen participants were assigned to three different groups: 6 participants· 

underwent rTMS on the contralateral SMA (to the hand used), 6 participants underwent 

rTMS on the ipsilateral cerebellum and 6 participants served as control (no rTMS). Our 

results indicate that interference with either the SMA or the cerebellum impaired the 

beginning of early sequence acquisition, whereas interference with either brain structure 

after within-day intensive practice had no impact on learning or on re-test (24 hrs later). 

These findings bring evidence of a necessary role of the SMA and the cerebellum in the 

beginning of the early fast phase of sequence leaming and support the view that their 

critical role is dependent on the learning phase the participants have achieved. 

Key words: cerebellum, SMA, motor sequence leaming, transcranial magnetic stimulation 
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INTRODUCTION 

Typing and playing the piano, are only few of the many daily activities involving 

motor sequence leaming, that is combining elements of movements into a more precise and 

effective motor plan. One of the most employed tasks to study motor sequence leaming is 

the seriaI reaction time task (SRTT) developed by Nissen & Bullemer (1987). Briefly, the 

participant presses a series of keys in response to a eue, which is presented either in a 

sequence or in a random order. Following repetitions, participants respond increasingly 

faster to the sequence items, providing a measure of procedural sequence leaming. 

Extensive research over the la st fifteen years has characterized both the behavioural 

aspect and the neural correlates of motor sequence acquisition. Such skill evolves from an 

early, fast phase, during which considerable within-session improvement is observed to a 

slow, late phase with incremental performance gains over several practice sessions. The 

late phase is strengthened by consolidation, a process of practice-independent leaming, 

emerging after the first practice session (Kami et al., 1998; Robertson, Pascual-Leone, & 

Miall, 2004). Recently, the neural underpinnings of motor sequence leaming have .been 

extensivly explored in human imaging studies. During different phases of motor sequence 

acquisition, plastic changes have been observed in the cortico-striatal and the cortico­

cerebellar systems involving motor areas of the frontal cortex, the prefrontal, the parietal 

and subcortical areas such as the cerebellum and the striatum (van Mier, Perlmutter, & 

Petersen, 2004; Seidler et al., 2005; Poldrack et al., 2005; Floyer-Lea & Matthews, 2005). 

Yet, there is no unifing theory of the brain regions subserving motor sequence leaming. 
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In a model drawn from the imaging literature, Doyon and colleagues (Doyon & 

Ungerleider, 2002; Doyon, Penhune, & Ungerleider, 2003; Doyon & Benali, 2005) have 

proposed that early motor sequence acquisition is subserved by both the cortico-striatal and 

the cortico-cerebellar systems, while the late phase of learning is supported only by the 

cortico-striatal system. From a neuropsychological point of view, Willingham (1998) 

posits that motor memory resides in motor effector areas, as the se became more tuned to a 

particular task. For instance, although the primary motor area (Ml) is well-known for 

controlling volitional motor behaviour, converging evidence from neurophysiological 

animal and human studies have uncovered activity-dependent plasticity associated with 

motor skill leaming, inc1udirig motor sequence acquisition (for reviews, see Sanes & 

Donoghue, 2000; Ungerleider, Doyon, & Karni, 2002). These data point to M1's 

implication in the early leaming phase, consolidation and storage of motor skills. The 

literature is less abundant concerning the supplementary motor area (SMA) and the 

cerebellum, two neural substrates critical for motor sequence execution, each part of the 

cortico-striatal and cortico-cerebellar loops, which are thought to be involved in motor 

sequence learning. As such, interesting matters of investigation are the plastic changes in 

the SMA and the cerebellum during different learning phases of same motor sequence task. 
, 

Human imaging and neurophysiological recording studies in animaIs have 

demonstrated the implication of the SMA in control of sequential movements (Gordon, 

Lee, Flament, Ugurbil, & Ebner, 1998; Tanji, 2001), in new sequence learning (Grafton, 

Hazeltine, & Ivry, 1998; Toni, Krams, Turner, & Passingham, 1998; Lee & Quessy, 2003) 

and in well-Iearned sequence performance (Poldrack et al., 2005; Honda et al., 1998; 
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Gordon et al., 1998; Doyon et al., 2002), but the most frequently supported hypothesis in 

the literature is that the SMA is essentially involved in well-Ieamed sequence acquisition. 

The cerebellar cortex has a well-known implication in regulation of motor control 

(Houk, Buckingham, & Barto, 1996). Imaging studies have shown a role of the cerebellum 

in motor sequence execution (Honda, 1998; Seidler et al., 2002), while a majority of such 

studies have noted a decrease in cerebellar cortex blood flow associated with better 

performance in motor sequences (Grafton, Woods, & Tyszka, 1994; Jenkins, Brooks, 

Nixon, Frackowiak, & Passingham, 1994; Toni et al., 1998; Penhune & Doyon, 2005). 

Imaging research allows associations between certain behaviours and neural 

substrates, while natural les ion studies are performed to determine causality between a 

brain area and a particular behaviour. Studies with patients having cerebellar (Pascual­

Leone et al., 1993; Molinari et al., 1997; Gomez-Beldarrain, Garcia-Monco, Rubio, & 

Pascual-Leone, 1998; Shin & Ivry, 2003) or SMA lesions (Ackermann, Daum, Schugens, 

& Grodd, 1996) have uncovered deficits in early acquisition of the SRTT. However, these 

studies are limited by the heterogeneity of lesion distribution and the confounding plastic 

reorganisation following brain injury. In addition, investigation of motor leaming is 

encumbered by the motor deficits such as akinesia and tremor, which are usually associated 

with these lesions. A more recent technique, complementary to imaging and natural 

lesions, consists of creating 'virtual' lesions in healthy participants by 1 Hz repetitive 

transcranial magnetic stimulation (rTMS), known to transiently suppress cortical 

excitability (Chen et al., 1997). Two studies have applied 1Hz rTMS over the cerebellum 

and have demonstrated motor execution deficits (Theoret, HaqUe, & Pascual-Leone, 2001; 
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Miall & Christensen, 2004). Another study using the same method has shown impaired 

sequence leaming through the SRT task in the very beginning of the early acquisition phase 

(Torriero, Oliveri, Koch, Caltagirone, & Petrosini, 2004). However, subjects were not 

allowed intensive within-day training or leaming into the slow phase. 

Repetitive TMS was also applied on the SMA to study motor execution and 

leaming of sequences. Gerloff, Corwell, Chen, Hallett, & Cohen (1997) used 15-20Hz over 

the SMA and hampered accurate performance of complex motor sequences rehearsed from 

memory. Verwey, Lammens, & van Honk, (2002) have applied 1Hz rTMS on the SMA 

and impaired moderate practice levels of the fast leaming phase of six-item sequences, but 

have concluded that the SMA plays a role in sequence execution, but not leaming. Pascual­

Leone, Wassermann, Grafman, & Hallett (1996) have stimulated the SMA with 5Hz TMS 

during the beginning of the SR TT and did not find any effects on sequence leaming at this 

performance level. Until now, no "virtual" les ion study has investigated the contribution of 

the SMA and the cerebellum to several phases of the same motor sequence acquisition task. 

In the present study, we have created transient 'virtual' lesions in healthy 

participants with 1 Hz rTMS on either the SMA or the éerebellum to reveal their crucial 

role in different leaming phases of the SRTT. Different groups of participants were 

submitted to 1 Hz rTMS on either the SMA or the cerebellar cortex. These results were 

compared to those of a control group who did not receive magnetic stimulation. The rTMS 

trains were applied at two different times during leaming of the SRTT: before the fast 

leaming phase (following the first familiarisation block) and at the end of intensive within­

day practice. Participants were re-tested 24 hrs later. At the end of the ex periment, we 
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administered a last rTMS before a random block during which there was no leaming in 

order to account for any effect ofrTMS on motor execution. We expected rTMS on either 

the SMA or cerebellar cortex to alter motor leaming, but not motor execution (i.e. 

performance on the random block). In addition, if the contribution of these areas to motor 

sequence acquisition depended on the expertise level, then the cerebellar cortex would be 

necessary for the begining of the early phase, but not after intensive within-day training or 

in continuing leaming the second day. The SMA, could preferentially contribute to 

intensive within-day practice and possibly to subsequent leaming the second day, but not 

necessarily at the beginning of motor sequence acquisition. 

METHOD 

Participants 

Eighteen healthy participants with no neurological or general medical condition 

took part in this study. None of the subjects were either a musician or a professional typist 

in order to eliminate subjects with pre-existing skills requiring highly coordinated finger 

dexterities. Participants were randomly assigned to three groups: a SMA group (6 

participants, 1 man), a cerebellar group (6 participants, 3 men) and a control group (6 

participants, 3 men). The mean age of the subjects in the three groups was 22.9 years ±2.1 

(SD) and did not significantly differ in the three groups. 

Participants performed the task with their dominant hand and aIl were right-handed. 

They were recruited at the University of Montreal campus through biIlboard ads. A 

monetary compensation was attributed for participation in the study and for transportation 
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costs. The research protocol was accepted by the University of Montreal and the Notre-

Dame Hospital Ethics committees. AIl volunteers signed an informed consent form before 

taking part in the study. 

TMS stimulation protocol 

The rTMS was delivered with a Magstim Rapid Transcranial Magnetic Stimulator 

(Magstim Company, Whitland, UK) having a maximum output of2.0 T connected to a 7cm 

figure-of-eight shaped coil. Participants received a low frequency stimulation of 1 Hz 

rTMS for ten minutes (600 pulses). The coil was held tangentially to the scalp with the 

handle pointing a) posteriorly and pointing to the right from the midline for right SMA 

stimulation; b) superiorly along the midsaggital axis for cerebellar stimulation. The 

stimulation sites were dependent on handedness: rTMS stimulation of SMA was 

contralateral to the dominant hand, while cerebellar stimulation was ipsilateral. We 

stimulated the SMA contralaterally and the cerebellum ipsilaterally because of their 

predominant anatomical connections to the effector. The stimulation spot on the cerebellar 

cortex (lobules V & VI) or on the contralateral SMA (e.g. Fig. 1) was marked on each 

individual's MRI (see Structural MRI section) using anatomical landmarks from two 

atlases (Schmahmann, Doyon, Petrides, Evans, & Toga, 2000; Talairch & Toumoux, 

1988). We then used a frameless stereotaxy system to ensure precise and consistent 

localisation of the region to be stimulated in each participant and to monitor the head 

position and the position of the coil in real-time during the TMS experiment (see 

Frameless stereotaxy registration section). 
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Insert Fig. 1 about here 

The SMA group was stimulated at motor threshold (MT) intensity. This intensity 

did not produce any muscle twitch during the stimulation period. MT in the contralateral 

Ml was detennined as the minimal intensity of stimulation capable of inducing a visible 

muscle twitch in the contralateral thumb in 50% of a sequence of 10 consecutive trials. 

Previous research has demonstrated that neurophysiological and visualisation movement 

thresholds produce similar results (Pridmore, Fernandes Filho, Nahas, Liberatos, & George, 

1998). The cerebellar group was stimulated at 55% of the stimulator output. We selected a 

fixed intensity to stimulate the cerebellum since the excitability of Ml is not a good 

predictor of the excitability of other brain areas (Robertson, Theoret, & Pascual-Leone, 

2003). This intensity was adjusted to be the highest intensity possible without being 

uncomfortable to neck muscles. 

Frameless stereotaxy registration 

We coregistered the actual position of the subject's head with the MR images of the 

subject's brain. This co-registration was achieved by me ans of anatomicallandmarks such 

as the ears, the bridge of the nose and the tragus of the two ears that are equally visible on 

the subject's head and on the MR images (Brainsight image analysis and Frameless 

Stereotaxy software by Rogue Research). The 3-D location of the landmark was measured 

with a digitizing pen using an optical tracking system (Polaris optical tracking system by 

Northern Digital Inc.). The camera of the optical tracking system measured the 3-D 
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locations ofinfra-red LEDs attached to the TMS coil and the subject's head. The procedure 

has previously been described in detail by (Paus, 1999). 

Structural MRI 

A 1.5 Tesla system was used (Magnetom Vision, Siemens Electric, 

Erlangen, Germany). High-resolution data were acquired via· a Tl-weighted three­

dimensional volume acquisition procedure using a gradient echo pulse sequence (TE = 44 

ms, Flip angle = 12° FOV = 250 mm, Matrix = 256 x 256, Voxel size = 0.94 mm3
). 

Motor Sequence Task 

The SRT task used in this ex periment is a version of the well-known paradigm 

introduced in 1987 by Nissen and Bullemer to study procedural sequence learning. On each 

trial of the task, an asterisk was presented on the center of the screen at one of four spatially 

distinct locations. The participant had an equal number of corresponding response keys and 

was instructed to press the correct keys as quickly as possible on each trial. The participant 

made the key presses with the fingers of hislher dominant hand (index, middle, ring and 

little finger). The visual cue disappeared with the subject's response and another asterisk 

was presented in a different position. If an incorrect button was pressed, the asterisk 

disappeared and no feedback was given. Unknown to the participant, the asterisks 

appeared in a l2-item sequence (1-2-1-3-4-2-3-1-4-3-2-4), the positions of each trial being 

designated as 1 to 4 from left to right (Fig. 2). The beginning and the end of each sequence 

was not designated in any way, such that the end of a sequence continued with the 
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beginning of the next one. A block of trials consisted of 10 cycles of the repeating 

sequence. At the beginning of the task, the subjects were unaware of the repeating nature 

of the sequence. However, repetitions of the blocks induced procedural leaming through 

implicit strategies, as a graduaI decrease in reaction time was apparent after a few blocks of 

trials. Because we aIlowed extensive practice with the task, aIl participants gained 

awareness of the sequence. Explicit knowledge of the task was tested at the end of the 

ex periment by asking the participants whether they noticed a special feature to the 

presented stimuli and then they were asked to reproduce the sequence from memory. 

Insert Fig 2 about here 

Procedure 

Participants were introduced to the task with a random and a sequence block. This 

ensured familiarisation with the task and provided a baseline measure of motor behaviour. 

They then underwent brain stimulation (TMS 1) over the assigned brain area (SMA or the 

cerebellum) or had an equivalent 10 min pause (no stimulation group). Next, participants 

underwent intensive within-day training (thirty blocks), allowing for the fast leaming phase 

until they reached an asymptotic performance. Subsequent to this additional practice, a 

second rTMS (TMS 2) was performed on the same brain area. Following TMS 2, 

participants performed five additional blocks of the task. On the next day (24 hours later), 

participants retumed to the laboratory for a re-test. They performed five blocks of the task. 

They then underwent a last rTMS on the same brain region and completed a final random 

block to test for non-specific motor behaviour effect ofrTMS (cf. design in Fig. 3). Then, 
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in order to test for explicit knowledge, participants were asked to reproduce the sequence 

from memory using the response box. 

Insert Fig. 3 about here 

Data Analysis 

Dependent variables. Data analyses were carried out on mean reaction time (RT). 

We first computed the median R T for each sequence and then computed the mean of these 

medians for a given block. The percentage of correct trials in the SRTT was not included 

as it is not an accurate measure of procedural skill due to extremely low error rates (less 

than 1-2%), even with limited experience on the task. 

Independent variables. There was a between "Group" (intergroup) variable and two 

(intragroup) within variables: "Block" and "Day". 

Statistical analyses. Separate ANOVAs were perfonned on each of these sections of the 

leaming curve: 1) at baseline 2) on rTMS-affected blocks during early leaming, 3) on 

blocks during the intensive leaming period, 4) on rTMS-affected blocks during late 

leaming, 5) at re-test and 6) at the end of the experiment to test for explicit knowledge and 

for the effects of rTMS on perfonnance (i.e. using the last random block). 

Because previous studies have shown that, with parameters similar to ours, rTMS 

effects outlasted the stimulation period for a time equivalent to the duration of the rTMS 

trains themselves (Théorêt, Haque and Pascual-Leone, 2001; Robertson et al., 2001; 

Lewald et al, 2002), local rTMS effects were tested on five blocks of trials (lasting 

approximately severi minutes) following each magnetic stimulation. 
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We only reported main effects if interactions were not significant. Main group 

effects were further specified by post-hoc Tuckey tests. We reported Huynh-Felt corrected 

p-values with original degrees of freedom. A p-value of less or equal to .05 was considered 

significant. 

RESULTS 

1) Baseline performance 

The groups' motor baseline performance was assessed with a one-way ANOVA on 

the first random block. Analyses revealed that the three groups did not differ in terms of 

their motor performance at the very beginning of the acquisition process. 

2), Effects of TMS during early learning 

The effect of rTMS on early motor learning was evaluated using a two-factor 

ANOV A with one repeated measure (Block) with five levels and one between factor 

(Group) with three levels. We observed that the effect of rTMS on performance was 

distinct for our three groups [Group x Block: F(8, 60) = 2.11, p = .05 HF-corrected]. 

Decomposition of the effect showed that the control group improved its performance [F(4, 

20) = 4.09, P = .00], but no improvement was observed for the stimulation groups [SMA: 

F(4,20) = 1.65, P = .23; cerebellum: F(4,20) = .44, P = .68] (see Fig. 4). 

Include Fig. 4 about here 
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3) Intensive training 

We used a two-factor ANOV A with one repeated measure (Block) with 25 levels 

and one between factor (Group) with three levels to evaluate the groups' performance 

improvement over the training session (the first five blocks following TMS were excluded). 

An effect of leaming was observed [Block effect: F(24, 360) = 34.57, P < .01] as weIl as a 

significant difference amongst groups [Group effect: F(2, 15) = 4.40, P = .03]. The post-hoc 

Tukey tests showed that the overaIl group difference observed in the fast leaming phase 

was in fact due only to a significant performance difference between the cerebeIlum and the 

control groups (p = .03). The other group comparisons were not significant: the SMA and 

the cerebeIlum (p = .40), the SMA and the control (p = .27) (see Fig. 4). We interpret the 

difference between the control and the cerebellar groups during the intensive training 

period as a spurious finding since there were no statistical differences between groups 

before (when the rTMS effect was present) and after this training period. 

4) Effects of TMS at the end of the fast learning phase 

The effect of TMS on late motor leaming (the last training blocks of day 1) was 

assessed with a two-factor ANOV A with one repeated measure (Block) at five levels and 

one between factor (Group) at three levels. No significant effect of TMS (no difference 

among groups) was observed. AlI groups continued leaming [Block effect: F(4,60) = 2.94, P 

= .03]. In addition, no TMS effect was shown when comparing the five blocks before TMS 

administration with five blocks under TMS effect. Furthermore, analyses on the last four 
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blocks at the end of the tirst training day, showed no main or interaction effects, indicating 

that participants of all groups reached an asymptote at the end of the tirst training day. 

5) Re-test (24hrs later) 

First, we tested for a consolidation effect by me ans of a three-factor ANOVA with 

two repeated measures (Day at two levels and Block at five levels) and one between factor 

(Group) at three levels. No consolidation as such or TMS effect on consolidation was 

observed. However, the learning rate of all groups was different depending on the day of 

testing [Day X Block: F(4,60) = 8.32, P = .00]. Decomposition of the interaction showed that 

learning (the effect of Block) at the end of the first day was significant [F(4,60) = 2.94, P = 

.05], but smaller than the effect of leaming at the beginning of day 2 [F(4,60) = 31.22, P = 

.00]. 

Second, we tested for learning the second day with a two-factor ANOVA with one 

repeated factor at five levels (Block) and one between factor (Group) at three levels. At 

this learning phase, ail subject groups continued learning [F(4,60) = 31.22, P = .00] with no 

group difference or interaction between groups and learning. Finally, a one-way ANOVA 

was performed on a last random block to assess the effect of rTMS session on motor 

behavior. No such effect was observed [F(2,17) = 1.57, P = .24]. At the end of the 

experiment, the different groups had similar explicit knowledge [F(2,17) = .34, P = .72]. 

Participants recalled on average 65% of the correct sequence items (7.8 elements of the 12 

item-sequence). In addition, subjects spent on average 149ms ±39 (SD) to respond to the 

sequence items, which is 69% better than their performance at the onset of leaming. The 
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subjects also responded 15% faster to the random items at the end of the experiment 

compared to the beginning. Therefore, the improvement specific to the sequence was 54%. 

DISCUSSION 

In the present study, aIl subject groups (control, SMA and cerebeIlum) started and 

ended the acquistion of the SRTT at the same performance level. At the end of the 

experiment, the participants developed equivalent explicit knowledge of the sequence. 

Application of rTMS on either the SMA or the cerebeIlum impaired performance at the 

beginning of the sequence acquisition process. More specificaIly, the control group 

improved its performance on the first five blocks of the SRTT, but none of the stimulation 

groups did. FoIlowing intensive within-day training, when aIl groups had reached an 

asymptote, the second rTMS session on either the cerebeIlum or the SMA did not have any 

effect on performance. On the second day, aIl groups continued leaming in the slow phase 

in a similar fashion (the rTMS administered at the end of the previous training day had no 

effect on continuing leaming the second day). Briefly, our results reveal that both the SMA 

and the cerebeIlum are necessary for the early leaming phase, but not after intensive 

training has occurred and when performance is asymptotic or in subsequent leaming on day 

2. 

Our data support the general hypothesis that brain areas responsible for motor 

control also play a critical role in motor leaming, and that their contribution is dependent on 

the expertise level. As such, our results are in agreement with the model proposed by 

(Doyon & Benali, 2005) drawn from the imaging literature. Firstly, the authors propose 
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that both the cortico-striatal and the cortico-cerebellar loops participate in the fast phase of 

motor sequence acquisition. The present study brought evidence that the cerebellum and 

the SMA (which are part of these two neuronal circuits) are crucial at this leaming level. 

Secondly, Doyon and Benali (2005) proposed that with passage to the slow phase, the skill 

is subserved by the cortico-striatal only. Our data suggest that indeed the cortico-cerebellar 

system does not seem to be involved in a later leaming stage, since the cerebellar cortex 

does not bring a necessary contribution at the end of the fast leaming phase when the skill 

was well-Ieamed. However, the present data do not shed light on the brain areas supporting 

motor sequence in the slow phase, since rTMS on the SMA did not either hinder leaming at 

the end of the within-day training or subsequent leaming on day 2. 

The fact that applying 1 Hz rTMS over the SMA or the cerebellum impaired eady 

sequence acquisition only, but not intensive training or continuing leaming the second day, 

could possibly be attributed to peripheral motor deficits. In fact, rTMS on the cerebellum 

may induce stimulation on the brainstem that influences spinal cord excitability 

(Gerschlager, Christensen, Bestmann, & Rothwell, 2002). In addition, recent work has 

shown that 1 Hz rTMS over the cerebellum has a modulatory effect on the excitability of 

Ml contralaterally (Torriero et al., 2004; Oliveri, Koch, Torriero, & Caltagirone, 2005; 

Oliveri et al., 2007; Fierro et al., 2007). In a similar manner, the SMA has direct 

anatomical connections to the spinal cord and to the Ml (Picard & Strick, 1996). 

Furthermore, it was shown that stimulating the SMA with rTMS influences the cortical 

excitability in Ml (Matsunaga et al., 2005). However, given that rTMS on the SMA or the 

cerebellum did not impact performance on random blocks or at a later time, but impeded 
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improvement on the sequence blocks only at the beginning of training, We feel confident to 

attribute the observed effect to motor learning, not execution. 

Similarily, we cannot exc1ude the possibility of transynaptic effects to our data. 

Imaging the brain after rTMS has shown local effects reflecting cortical excitability at the 

site of stimulation and distal effects reflecting connectivity of the stimulated region (Paus et 

al., 1999). The results obtained in the present experiment by transiently disrupting the 

cerebellum and the SMA with rTMS could also be ascribed to connections within the larger 

cortico-thalamo-cerebellar and the SMA-thalamo-basal ganglia loops. However, we expect 

the rTMS effect to be maximal at the stimulated site and we precisely targeted the 

ipsilateral cerebellum and the contralateral SMA in each subject using frameless stereotaxy. 

We thus consider that the cerebellum and the SMA are critical 'nodes' in the cortico­

cerebellar and cortico-striatal networks subserving early sequence leaming . 

. The main finding conceming the cerebellum is that its hemispheres are critical for 

the beginning of the early sequence acquisition, but not later when the sequence is well­

leamed. This is supported by many imaging studies in which activations in the cerebellar 

cortex observed during the early fast phase of leaming have decreased with practice of the 

SRT task (Eliasen, Sousa and Sanes, 2001; Doyon et al., 2002), of a sequential finger-to­

thumb opposition task (Friston et al., 1992), of a sequence by trial-and-error task (Toni et 

al., 1998; Jenkins et al, 1994), or of a rythmic sequence task (Penhune & Doyon, 2005). A 

few of these imaging studies have found correlations between activation in the cerebellar 

cortex and errors. Our finding is not readily compatible with a role of the cerebellar 

hemispheres in error-correction because our participants made few errors from the 
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beginning of SRTT learning. However, rTMS over the cerebellum impeded performance 

improvement, implying a critical role of the cerebellar hemispheres in optimization of 

performance at the beginning of sequence learning. 

Human studies with focal lesions or degenerative diseases of the cerebellum have 

shown severe deficits mainly early in the acquisition of a motor sequence using the SRTT 

(Pascual-Leone et al, 1993; Molinari et al., 1997; Gomez-Belderrain et al., 1998; Shin & 

Ivry, 2003), but also in the late phase (Doyon et al., 1997). However, the se studies have 

included heterogeneous subjects with variable lesions to the cerebellar hemispheres and/or 

their nuclei due to diverse pathologies (infarcts, syndromes, atrophies). The present work 

reproduces classical findings from neuropsychological research, with the added advantage 

of control over the extent, the location and without the confounding effects of plasticity. 

We have restricted the 'virtual' lesion to the cerebellar hemispheres and have revealed a 

necessary implication in the beginning of sequence acquisition, but not later when the 

performance is asymptotic. 

We. obtained the same pattern of results in regards t<.> the contribution of the SMA in 

early motor sequence learning. A few imaging studies are in agreement with our finding, 

and have reported SMA activation in early sequence acquisition (Grafton et al., 1998; 

Jenkins et al., 1998; Heun, 2004), but also in the late sequence learning phase (Honda et al., 

1998; Oordon et al., 1998; Doyon et al., 2002). Findings from animal research may shed 

light on the inconsistency found in the imaging data. While recording single cells of the 

monkey SMA during within-day learning of a SRT task, Lee and Quessy (2003) have 

revealed that many neurons involved in control of individual movements also displayed 
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sequence leaming-related changes. This leaming-related neuronal activity was observed 

during early sequence leaming (within-day training), as in the present experiment. Another 

interesting observation in the study by Lee & Quessy was that the number of SMA neurons 

increasing their activity with practice was similar to those showing a decrease. Thus, 

metabolic measures might not record a change in overall regional cellular activity. The 

latter finding could explain why the contribution of the SMA in early sequence leaming 

could be underestimated in several functional imaging studies. 

The study of procedural sequence leaming in patients with SMA les ions has been 

scarce, many studies being devoted to the motor functions subserved by this area (Duffau et 

al, 2003; Russell et al., 2003; Krainik et al., 2001). In a case study with a patient having a 

SMA lesion, Ackermann (1996) has shown a proceduralleaming deficit when acquiring the 

SRTT. Nakamura, Sakai & Hikosaka (1999) performed mucimol injection in the monkey 

to reversibly inactivate the pre-SMA and the SMA while the animaIs performed new and 

leamed motor sequences. They found that, while injection in pre-SMA produced more 

errors in the new sequences, injection in the SMA retarded acquisition of quicker response 

times in the new sequences. Hence, the importance of the SMA for the improvement of 

reaction time in sequence leaming is in line with our finding in healthy humans where 

temporary inhibition of the SMA with rTMS impeded early acquisition of the motor 

sequence as measured by a decrease in reaction time, but not after intensive within-day 

training when the performance was asymptotic. 

On the following day, at re-test, all groups continued to leam. We did not observe a 

form of consolidation described in the literature as 'offline' improvements between practice 
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sessIOns (Robertson et al., 2003). Our data is consistent with a recent tinding on 

consolidation of the SRTT in which the implicit aspect of the SRTT, indexed by the 

reaction time measure,did not undergo consolidation (Fischer et al., 2006). 

The fact that rTMS over either the SMA or the cerebellum did not impact 

asymptotic performance at the end of extensive within-session performance does not 

necessarily mean that these structures do not contribute at aIl in leaming at this level of 

performance. One possibility is that rTMS cannot interfere with reaction times this short. 

Another possibility is that brain regions from the motor sequence leaming network such as 

the basal ganglia or other structures compensate to maintain this high level of performance 

(Doyon & Benali, 2005). 

To our knowledge, this is the tirst study using rTMS over the cerebellum and the 

SMA in separate subject groups to explore different leaming stages of the same motor 

sequence task. Other research has employed rTMS over the cerebeIlum· or SMA to study 

only the early stage of sequence leaming. Torriero et al. (2004) have used stimulation 

parameters similar to ours over the lateral cerebellum (1 Hz, 10 min, an intensity of 90% of 

MT) and have disturbed the beginning of early SRTT acquisition, as was observed in our 

study. However, further leaming was not allowed to attest the time-course of such effect as 

in the present study. In contrast to our results, rTMS over the SMA during the beginning of 

the SRTT acquisition did not impair leaming (Pascual-Leone et al., 1996). This 

discrepancy may be attributed to differences in TMS parameters. The latter study 

employed TMS parameters known to increase cortical excitability (5Hz at 115% of 

subject's motor threshold), while we depressed cortical excitability (1Hz at 90% subject's 
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motor threshold). Verwey et al. (2002) have studied moderate practice levels of short 

sequences and have successfully disturbed improvement in execution of explicitly leamed 

six-element sequences with rTMS over the SMA (1Hz, 90% intensity, during 20 min). In 

our study, only early sequence leaming was impaired by rTMS on the SMA, while later 

leaming (after intensive within-day training) was not. However, at the end of our training, 

the perfonnance was asymptotic. Indeed, the SMA might be important for improvement in 

perfonnance, independent of the leaming phase the participants are at. This is consistent 

with the notion from the literaturé that the SMA's involvement in sequence ,leaming is 

related to improvement in perfonnance (Hikosaka, 1999). 

In conclusion, the present study demonstrates that transient inhibition of the 

ipsilateral cerebellum and the contralateral SMA disrupts early motor sequence acquisition, 

and that these effects cannot be accounted by rTMS effects on motor control. The present 

results further extend our knowledge on the brain substrates implicated in procedural 

sequence leaming, and stress the value of interference techniques, in healthy subjects to 

complement classicallesion and imaging studies on this topic. 



Figure 1. 

Figure 2. 

Figure 3. 

Figure 4. 
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Figure captions 

Coronal and transversal views of the SMA and the cerebelIum stimulation 

sites. 

SeriaI Reaction Time Task: The participànt had to push the appropriate key 

as fast as possible when an asterisk waspresented on the screen. If an error 

was committed, the next stimulus appeared with no performance feedback. 

Unknown to the participant, the asterisks appeared in a 12-item sequence. 

Despite lack of awareness, the participant responded faster to the sequence 

items, providing a measure of implicit proceduralleaming. 

Timeline of the motor sequence task acquisition. 

Mean RT and standard errors of the mean for aIl 45 blocks during sequence 

leaming over the two days. FolIowing familiarization, the first five blocks 

corresponding to the fast early leaming phase were under TMS 1 effect, the 

last five blocks of intensive first day training were under TMS2 effect and 

the last random block during which there was no leaming was under the 

effect ofTMS3. AlI TMS sessions were alike. 
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1. Review of goals, methods and main results 

In the present work we aimed to contribute to the uncovering of the neural 

substrates involved in learning of motor skills. Motor skill leaming was first introduced in 

the context of multiple memory systems. The idea that motor control areas such as the 

SMA and cerebellum might be responsible for motor leaming was presented. The 

implication of these two brain regions in motor learning depending on the type of motor 

task and learning phase in light of two recent motor learning models from the literature was 

discussed. Our hypotheses were tested by conducting two experiments with a similar 

design investigating the acquisition of a motor sequence and of a motor adaptation task. In 

order to complement previous imaging and les ion studies on this topic, we employed rTMS 

in a 'virtual lesion' fashion to transiently disrupt the SMA or the cerebellum in different 

groups of healthy participants and compared their performances to a control group (without 

any magnetic stimulation). Repetitive TMS was appliedat two periods during t~e 

acquisition of a sequence or an adaptation task: at the beginning of the fast learning phase 

and after intensive within-day training. Participarits were also tested for subsequent 

learning in the slow phase on the following day. In the motor sequence experiment, both 

disruption of the SMA and the cerebellum hindered skill acquisition at the very beginning 

of the fast learning p~ase, but not after intensive within-day training or in subsequent 

leaming the second day. In the motor adaptation experiment, disruption of the cerebellum 

compared to either rTMS on the SMA or to the control group, impaired acquisition of 

spatial precision without affecting other variables, at the beginning of the learning process. 

This effect was maintained after intensive within-day practice or on the following day. The 
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group that was stimulated on the SMA did not differ from the control group on any of the 

dependent variables. 

2. Integration of findings with hypotheses from literature 

First, the present findings support the view that the SMA and cerebellum contribute 

to motor learning, beyond their well-known role in motor control. Second, we found 

support for the hypothesis that the SMA and cerebellum each contribute separately to motor 

learning depending on the task at hand: the SMA was found to be more important for 

sequence, but not for adaptation acquisition, while the cerebellum was found to be involved 

in both tasks. Third, we contributed support for the hypothesis that the SMA and 

cerebellum change their role depending on the participants' expertise. Indeed, only the 

beginning of leaming of either task was convincingly hindered by rTMS. 

Our results are generally in agreement with the model of Doyon and colleagues 

(Doyon & Benali, 2005) drawn from the imaging literature. The model posits that early 

leaming of either type of task is subserved by both the cortico-striatal and cortico­

cerebellars circuits. We brought support for this contention in the case of sequence 

acquisition since one area of each circuit, was found to be critical in early leaming. In the 

case of motor adaptation our data partially support the model since early adaptation was 

found to be dependent on the cerebellum only, but not on the SMA. However, other 

regions from the cortico-striatal network might be involved in early motor adaptation. The 

model postulates that following consolidation, in later phases of motor skill acquisition, the 

two cortico-subcortical systems specialize to subserve mainly one type of motor learning, 
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but not the other. Specifically, the cortico-striatal system supporting motor sequence and 

the cortico-cerebellar system subserves motor adaptation. In the present work, we did not 

find evidence of the participation of either the SMA or cerebellum to late sequence 

leaming. However, apart from the SMA other components of the cortico-striatal loop 

might contribute to late motor sequence acquisition. In the case of mot or adaptation, the 

cerebellum, but not the SMA, was found to be critically involved in late adaptation 

leaming. Thus, the cortico-cerebellar circuit might be particularly important in late 

adaptation leaming. 

Our findings conceming the motor sequence experiment are in agreement with 

Hikosaka's model of sequential procedures (Hikosaka et al., 1999; Nakahara, Doya, & 

Hikosaka, 2001; Hikosaka, Nakamura, Sakai, & Nakahara, 2002). In this model, the SMA 

as part of the motor loop contributes to early, implicit sequence acquisition, to improve 

motor performance. Indeed, we found the SMA to bring a critical contribution to early 

implicit sequence acquisition. In addition, Hikosaka and colleagues proposed that the SMA 

makes an important contribution to well-Ieamed sequences. Yet, in our experiment, the 

SMA was not found to be critical for well-Ieamed sequences. The authors also proposed 

that when a component of the motor system is injured, the sequence can be maintained by 

the spatial system that works in parallel. This idea is directly applicable to our sequence· 

experiment since we 'virtually lesioned' the SMA and we found that well-Ieamed 

performance was maintained. This effect was probably due to compensation from 

connected brain regions. In addition, the fact that the cerebellar cortex is important in early 

sequence acquisition, but not later when the sequence is well-Ieamed is consistent with 



125 

Hikosaka and colleagues' proposition that this structure contributes to optimization of 

performance by evaluating sensori-motor and timing errors. Such performance 

optimization would indeed be more important in early sequence leaming rather than later 

on, when the sequence is well-Ieamed. 

3. Mechanisms of action of the rTMS technique 

An important issue related to the technique employed in our studies is the effect of 

rTMS on the neural substrates it affects. Low frequency rTMS (:S 1 Hz) on Ml has been 

shown to decrease cortical excitability while high frequency rTMS (> 1 Hz) has been 

shown to increase it (Chen et al., 1997; Berardelli et al., 1998). Plausible mechanisms of 

the rTMS aftereffect are changes in excitability of cortical neurons or changes in efficacy of 

local cortical synapses (Touge, Gerschlager, Brown, & Rothwell, 2001). Findings from the 

TMS literature allow us to suppose that rTMS on SMA changes cortical excitability in a 

manner similar to its effects on Ml (Matsunaga et al., 2005). More importantly, 

behavioural effects have been observed: 1Hz rTMS applied to the SMA was shown to 

reduce medication-induced dyskinesia in patients with Parkinson disease (Koch et a1., 

2005; Brusa et aL, 2006), while 5Hz rTMS increased dyskinesias (Koch et aL, 2005). 

The effect of rTMS on the cerebellar cortex is more questionable because of its 

different anatomical structure in comparison to Ml. Since the demonstration of a 

measurable behavioural effect following rTMS on the cerebellum (Theoret, Haque, & 

Pascual-Leone, 2001), few studies have addressed this topic. Fierro et al. (2007) have 
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recently investigated the possible changes in Ml cortical excitability following 1 Hz rTMS 

over the cerebellum and have shown an increased intracortical facilitation on the 

contralateral Ml. In order to explain this effect, the authors have hypothesized that rTMS 

depressed Purkinje cells of the cerebellar cortex. These cells have ordinarily an inhibitory 

effect on Ml. Thus rTMS has depressed an inhibitory effect on Ml, increasing its 

excitability. 

4. Cellular mechanisms underlying motor learning in the SMA and the cerebellum 

A relevant issue to understanding motor leaming are the mechanisms of plasticity 

subserving it. In a literature review, Sanes (2003) suggested several possibilities. (not 

mutually exclusive, but complementary) in which motor learning could be represented at 

the cortical level in areas such as the SMA: fundamental modification in neural-spiking 

properties, formation ofnew intrinsic or extrinsic synaptic contacts, long-term potentiation 

(LTP) and long-term depression (L TD) and changes in intracortical processing. In the case 

of the cerebellum, mechanisms such as L TD have been demonstrated in the cerebellar 

cortex of animaIs (Shutoh, Ohki, Kitazawa, Itohara, & Nagao, 2006; for a review, see 

Boyden, Katoh, & Raymond, 2004). 

5. Strengths and limitations of the presented studies 

The present studies have several strengths. First, we reproduced 

neuropsychological data in healthy participants by employing a new investigation 

technique, we demonstrated the utility of rTMS to study motor leaming in two execution 
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areas other than Ml, we extended findings from the TMS literature and we ensured precise 

localization of TMS administration. Indeed, the fact that we reproduced findings from 

patient studies with transient virtual lesions of the SMA and cerebellum stresses the value 

of the rTMS technique for exploring similar research questions. While many studies have 

employed rTMS on Ml to study motor learning, few have used rTMS to explore the role of 

the cerebellum and SMA in procedural learning. Our experiments serve to further extend 

previous data from the literature. We successfully reproduced findings conceming the 

participation of the cerebellum in early sequence acquisition and provided new data 

showing that this area is not critical to well-leamed sequence performance. Another novel 

finding arising from our studies is that the cerebellum is critical for eady visuo-motor 

adaptation as weIl. Moreover, we have demonstrated a necessary role of the SMA in early 

sequence learning, but not in adaptation, further specifying the functional role of this area. 

An added strength of our experiments is the use of frameless stereotaxy, a precise method 

of rTMS application in aIl subjects. 

The present experiments have a number of limitations. These are related to the 

-
tasks themselves, the research design and the sample size. For the adaptation task, we 

investigated several variables, while for the sequence task we only collected one variable, 

the reaction time. Other variables may be manipulated in the SRT task (spatial, visual, 

rhythmic and motor information). Moreover, the implicit and explicit aspect of the SRTT 

was not controlled in our experiment such that the participants started motor learning 

implicitly and then developed explicit knowledge. Even though registering different 

variables at once implicated in this task might not be possible, a viable solution would be to 
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verify how manipulation of these variables influences the participation of a target neural 

substrate. 

In our design, the participants received two rTMS sessions in succession (with one 

hour gap in-between) on the same brain region. A few studies have shown that the effect of 

rTMS outlasting the stimulation period might not wash-out in 10 or 15 minutes as 

previously thought, but in a time period of approximately one hour (Verwey, Lammens, & 

van Honk, 2002). Thus, we do not know if administering the second TMS might have had 

a cumulative effect. Should that have been the case, we might have accentuated the effect 

of the second rTMS. This idea is directly applicable to our adaptation experiment in which 

the tirst rTMS on the cerebellum had an enduring effect on spatial precision. This effect 

lasted until the end of within-day training when a second TMS was administered and at re­

test, the second day. In this case, we can only be certain of the tirst TMS effect on 

leaming. A better design for future studies would be to virtually les ion a brain region only 

once at a different leaming level. 

, The present studies were conducted with a limited number of subjects (six 

participants per group) restraining their generalizability. However, the signiticant effects 

obtained here suggest an important effect size. Employing a small number of subjects is 

common practice in the TMS literature. Moreover, we diminished interindividual 

differences in brain anatomy by ensuring precise and consistent stimulation in each subject 

by stereotaxy-guided TMS in aIl subjects 
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6. Future research 

In order to improve our understanding of the neural substrates subserving motor 

learning, we suggest: 1) better task definition, 2) focusing on stages of learning in a subject-

tailored fashion, 3) employing complementary investigation techniques, 4) employing the 

TMS technique in different ways. 

Several divergent results in the motor learning literature may be explained by 

differences in the motor tasks used. These tasks enclose different cognitive components 

(visual, spatial, sequential, adaptation or motor information) and are executed with more or 

less awareness. Depending on the contribution of these variables, different tasks are likely 

to solicit different brain substrates. While it might not be technically possible to separate 

aIl of these variables in themselves, one can collect as many dependent variables for each 

studied task and to investigate how each of these correlate with performance and/or with 

the engagement of the different brain substrates. 

Since the level of expertise is an important variable determining the participation of 

the different neural substrates to learning, an interesting suggestion would be to define the 

level of expertise in a subject-tailored fashion, because each participant needs a different 

number of sessions to achieve asymptotic performance on a task; moreover, asymptotic 

performance for a single subject might correspond to a specific pattern of brain area 

participation. 

TMS could be used in conjunction with functional imaging such as PET, fMRI and 

EEG, to complement these investigation methods by determining causal information 

between an activated region and its behavioural relevance. Several activated regions during 
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a motor learning experiment can be targeted via rTMS without necessarily an a priori 

hypothesis. For example, if the temporal cortex is activated during motor learning, 

virtually lesioning this area with rTMS will provide information about the region's 

functional significance for motor learning. 

Furthermore, the TMS technique can be used in different ways to study motor 

learning. Since TMS applied on one area can reach a circuit of interconnected structures, 

one can target two areas of the motor network with rTMS and asses how that additional 

interference interacts with motor learning. Similarly, functional connectivity analysis 

realiied on brain imaging data in our laboratory has shown that in the initial learning stage, 

a lot ofbrain regions are interconnected with each other. As motor learning progresses into 

the late phase, these connections become fewer and fewer (perhaps more specialized). A 

suggestion would be to 'virtually' lesion oné brain area implicated in the circuit. This type 

of experiment would provide information about how the brain reorganizes connections 

when one node of the network is missing in a motor learning situation. Ultimately, we can 

gain insight of how connectivity is reorganized following brain injury. 
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