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Résumé 

     Les nanoparticules polymériques biodégradable (NPs) sont apparues ces dernières 

années comme des systèmes prometteurs pour le ciblage et la libération contrôlée de 

médicaments. La première partie de cette étude visait à développer des NPs biodégradables 

préparées à partir de copolymères fonctionnalisés de l’acide lactique (poly (D,L)lactide ou PLA). 

Les polymères ont été étudiés comme systèmes de libération de médicaments dans le but 

d'améliorer les performances des NPs de PLA conventionnelles. L'effet de la fonctionnalisation 

du PLA par insertion de groupements chimiques dans la chaîne du polymère sur les propriétés 

physico-chimiques des NPs a été étudié. En outre, l'effet de l'architecture du polymère (mode 

d'organisation des chaînes de polymère dans le copolymère obtenu) sur divers aspects de 

l’administration de médicament a également été étudié. Pour atteindre ces objectifs, divers 

copolymères à base de PLA ont été synthétisés. Plus précisément il s’agit de 1) copolymères du 

poly (éthylène glycol) (PEG) greffées sur la chaîne de PLA à 2.5% et 7% mol. / mol. de 

monomères d'acide lactique (PEG2.5%-g-PLA et PEG7%-g-PLA, respectivement), 2) des 

groupements d’acide palmitique greffés sur le squelette de PLA à une densité de greffage de 

2,5% (palmitique acid2.5%-g-PLA), 3) de copolymère « multibloc » de PLA et de PEG, (PLA-

PEG-PLA)n. Dans la deuxième partie, l'effet des différentes densités de greffage sur les 

propriétés des NPs de PEG-g-PLA (propriétés physico-chimiques et biologiques) a été étudié 

pour déterminer la densité optimale de greffage PEG nécessaire pour développer la furtivité 

(« long circulating NPs »). Enfin, les copolymères de PLA fonctionnalisé avec du PEG ayant 

montré les résultats les plus satisfaisants en regard des divers aspects d’administration de 

médicaments, (tels que taille et de distribution de taille, charge de surface, chargement de 

drogue, libération contrôlée de médicaments) ont été sélectionnés pour l'encapsulation de 

l'itraconazole (ITZ). Le but est dans ce cas d’améliorer sa solubilité dans l'eau, sa 

biodisponibilité et donc son activité antifongique. Les NPs ont d'abord été préparées à partir de 

copolymères fonctionnalisés de PLA, puis ensuite analysés pour leurs paramètres physico-

chimiques majeurs tels que l'efficacité d'encapsulation, la taille et distribution de taille, la charge 

de surface, les propriétés thermiques, la chimie de surface, le pourcentage de poly (alcool 

vinylique) (PVA) adsorbé à la surface, et le profil de libération de médicament. L'analyse de la 

chimie de surface par la spectroscopie de photoélectrons rayon X (XPS) et la microscopie à force 
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atomique (AFM) ont été utilisés pour étudier l'organisation des chaînes de copolymère dans la 

formulation des NPs. De manière générale, les copolymères de PLA fonctionnalisés avec le PEG 

ont montré une amélioration du comportement de libération de médicaments en termes de taille 

et distribution de taille étroite, d’amélioration de l'efficacité de chargement, de diminution de 

l'adsorption des protéines plasmatiques sur leurs surfaces, de diminution de l’internalisation par 

les cellules de type macrophages, et enfin une meilleure activité antifongique des NPs chargées 

avec ITZ. En ce qui concerne l'analyse de la chimie de surface, l'imagerie de phase en AFM et 

les résultats de l’XPS ont montré la possibilité de la présence de davantage de chaînes de PEG à 

la surface des NPs faites de PEG-g-PLA que de NPS faites à partie de (PLA-PEG-PLA)n. Nos 

résultats démontrent que les propriétés des NPs peuvent être modifiées à la fois par le choix 

approprié de la composition en polymère mais aussi par l'architecture de ceux-ci. Les résultats 

suggèrent également que les copolymères de PEG-g-PLA pourraient être utilisés efficacement 

pour préparer des transporteurs nanométriques améliorant les propriétés de certains 

médicaments, notamment la solubilité, la stabilité et la biodisponibilité.  

 

Mots-clés: Acide poly(lactique), Architecture, PEG-PLA, Multi-bloc, Organisation de la chaîne, 

Spectroscopie de photoélectrons Rayon X (XPS), Microscopie à force atomique (AFM), 

Imagerie de phase, Faible solubilité. 
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Abstract 
     Biodegradable polymeric nanoparticles (NPs) have emerged as promising drug delivery 

carriers for the controlled drug release and targeting. The first part of this study aimed to develop 

biodegradable NPs from functionalized copolymers of poly (D,L-Lactide) (PLA). Those 

copolymers were explored as drug delivery systems in attempt to improve the drug delivery 

performance of conventional PLA NPs. The effect of PLA functionalization (insertion of 

chemical substituents onto PLA backbone) on the physicochemical properties of the obtained 

NPs was investigated. Moreover, the effect of polymer architecture (mode of organization of 

polymer chains in the resultant copolymer) on various drug delivery aspects was also studied. To 

reach those goals, various PLA based copolymers namely poly(ethylene glycol) (PEG) grafted 

on PLA backbone at 2.5% & 7% mol/mol of lactic acid monomers (PEG2.5%-g-PLA and 

PEG7%-g-PLA, respectively),  palmitic acid grafted on PLA backbone at 2.5% grafting density 

(palmitic acid2.5%-g-PLA), and multiblock copolymer of PLA and PEG, (PLA-PEG-PLA)n 

were synthesized. In the second part, the effect of different PEG grafting densities over PLA 

backbone on the properties of PEG-g-PLA NPs either physicochemical or biological properties 

was investigated to reveal the optimal PEG grafting density required to develop stealth particles 

(long circulating NPs). Finally, functionalized PEG/PLA copolymers that showed the most 

satisfactory results in terms of various drug delivery aspects, such as size and size distribution, 

surface charge, drug loading, and controlled drug release were selected for encapsulation of 

itraconazole (ITZ) to improve its aqueous solubility, bioavailability and hence its antifungal 

activity. NPs were first prepared from functionalized PLA copolymers then analyzed for their 

major physicochemical parameters such as encapsulation efficiency, size and size distribution, 

surface charge, thermal properties, surface chemistry, % poly(vinyl alcohol) (PVA) adsorbed at 

the surface of NPs, and drug release pattern. Surface chemistry analysis using x-ray 

photoelectron spectroscopy (XPS), and atomic force microscopy (AFM) phase imaging were 

used to study the chain organization behavior of each functionalized copolymer during NPs 

formulation. Generally speaking, functionalized PEG/PLA copolymers showed improved drug 

delivery behavior in terms of narrow size and size distribution, enhanced loading efficiency, less 

plasma protein adsorption onto their surfaces and less macrophage uptake, and finally better 

antifungal activity for ITZ loaded NPs. For the surface chemistry analysis, AFM phase imaging 

and XPS studies revealed the possibility of existence of more PEG chains at the surface of PEG-
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g-PLA NPs than (PLA-PEG-PLA)n during NPs formation. Our results demonstrate that 

properties of PLA-based NPs can be tuned by proper selection of both polymer composition and 

polymer architecture. Results also suggest that PEG-g-PLA copolymers could be used efficiently 

as a nanocarrier to improve various drug properties e.g. solubility, stability, and bioavailability. 

 

Keywords: Poly (D,L lactide), Architecture, PEG-PLA, Multiblock, Chain organization, X-ray 

photon electroscopy (XPS), Atomic force microscopy (AFM) phase imaging, Poor solubility. 
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1.1. A Brief Overview of Nanotechnology 
            In recent years, significant effort has been devoted to research and applications in the area 

of nanotechnology. Nanotechnology is the design, characterization, synthesis and application of 

materials, structures, devices and systems by controlling shape and size at nanometer scale [1]. 

Nanotechnology is widely applied nowadays to many areas of life as; fiber and textiles [2], 

agriculture [3], electronics [4], forensic science [5], space [6] and many other industrial 

applications. Medicine is one of the areas likely benefited from advances in nanotechnology [7-

10]. Many applications of nanotechnology in medicine have been investigated so far including 

drug delivery, both in vitro and in vivo diagnostics, and production of high quality biocompatible 

materials [11, 12]. It is reported that the global market of nanotechnology is expanding very fast 

with many expectations that it will reach $1.5 trillion by year 2012 [13].  

  

1.2. Nanotechnology and Drug Delivery  
          Development of nanotechnology for drug delivery has attracted a great deal of attention in 

recent years. Nanotechnology for drug delivery aims at formulating medicinal agents in 

biocompatible nanocarries (nanoparticles) for improving their clinical outcomes. The 

development of nanotechnology products for currently existing drugs may optimize their 

therapeutic performance, and minimize the need for developing new drugs with better properties. 

Formulating drugs into nanocarriers has proven successful to achieve all the following tasks [14]. 

To enhance the solubility and hence; absorption of poorly water-soluble drugs; efficiently target 

drugs into distant areas in the body; enhance cellular uptake of drugs across tight epithelial and 

endothelial barriers; efficiently deliver large macromolecular drugs (e.g. proteins, peptides and 

nucleic acids) to intracellular sites; deliver two or more drugs using the same carrier [15, 16]; 

and follow drug delivery journey in the body using imaging tools combined with the drug in the 

same carrier [17].  

        Nowadays, nanotechnology is widely used for encapsulating many drugs/bioactive moieties 

onto nanocarriers to improve either their pharmaceutical performance (e.g. bioavailability, 

stability, and controlled release) or their pharmacological performance (e.g. therapeutic activity, 

reducing side effects, and effective targeting) [18-20]. Several drugs used for treating incurable 

diseases like cancer [21], AIDS [22], diabetes [23], malaria [24], prion disease [25] and 

tuberculosis [26] are in the clinical testing phase and some of them are available in the market 
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[27, 28]. As a result of the last mentioned applications, nanotechnology holds enormous promise 

for drug delivery and it is widely expected that nanotechnology will be able to change the 

landscape of pharmaceutical and biotechnology industries for the foreseeable future [14]. 

 

1.3. Design of Nanotechnology–Polymeric based Drug Delivery Systems 

         There are a number of parameters that need to be considered for the development and 

manufacturing of successful drug delivery vehicles [29]. These include (a) the use of well- 

characterized, biodegradable, biocompatible materials; (b) the ability to tune the 

biophysicochemical properties of the used materials (e.g. hydrophilicity/ hydrophobicity balance, 

charge, molecular weight) to develop nanocarriers with adjustable properties (e.g. size, surface 

charge, release behavior); and (c) developing small unit operations amenable to scaling-up 

(manufacturing large quantities of drug delivery systems) for clinical applications.  Numerous 

classes of drug delivery nanocarriers composed of different materials including lipids, polymers 

and inorganic materials have been developed, resulting in different delivery systems that vary in 

their physicochemical properties and thus their pharmaceutical uses.  

         Growing interest in formulating polymeric nanoparticles is rapidly expanding for the 

following reasons. Advances in the scientific fields of polymer chemistry and polymer colloid 

physicochemistry have resulted in the availability of many tailor-made polymers for drug 

delivery. Polymeric drug delivery systems are often biodegradable, and biocompatible with 

potential of controlled drug release. They often have a superior drug delivery performance (e.g. 

size, surface charge, drug release, and cellular uptake properties) relative to other non-polymeric 

carriers. Moreover, they can be designed with hydrophilic coats, such as poly(ethylene glycol) 

(PEG), which creates a steric barrier decreasing the adsorption of opsonin proteins onto particle 

surface. This helps nanoparticles avoid recognition by the mononuclear phagocytic system 

(MPS) and circulate for prolonged period of time in the blood [30, 31]. Nanoparticles assembled 

from water soluble polymers usually have a molecular weight above glomerular filtration 

threshold (42-50 kDa), which is another cofactor for their prolonged circulation in the body [32].    

         An interesting feature of polymeric carriers is their ability to control the release of a 

therapeutic agent to achieve desired therapeutic level in certain pathological areas in the body. 

This could be achieved by the use of stimuli responsive polymers which release their payload 

under the effect of external stimuli (i.e. change in pH, temperature or ionic strength) [33, 34]. 
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This allows maximum drug release at the target site, achieving optimum therapeutic efficacy 

[35]. Polymeric nanoparticles can be delivered to distant target sites either by localized delivery 

using a catheter-based approach [36] or they can be attached to a recognition marker or/ ligand 

which could direct them to the target area [37]. They usually achieve high drug loading, which 

maximizes drug/excipients ratio. This results into reducing the frequency of administration and 

hence, patient expenses, and risks of toxicity could also be reduced.  

       One of the most distinct advantages of polymeric carriers for drug delivery is their 

adjustable nanometer size range. Due to their sub-cellular and sub-micron size, polymeric 

nanoparticles can homogenously penetrate into tissues, cross the fenestration of the epithelial 

lining (e.g., liver), and efficiently taken up by the cells [38]. In addition, their nanometer size 

range allows them to be efficiently captured by some tumor cells particularly solid tumors, 

infarcts and inflamed tissues. This phenomenon is called enhanced permeability and retention 

effect (EPR) or passive accumulation of nanocarriers into the tumor tissues [39]. EPR mainly 

occurs because of the pathophysiological features of tumors vessels that are mainly distinct from 

normal vessels. Tumor cells are characterized by hypervascularity, incomplete vascular 

architecture, poorly aligned endothelial cells and wide fenestrations (20 nm-1.2 µm) [40, 41]. 

These features make the vasculature of pathological tissues more “leaky” or more “permeable” 

than that of normal tissue. This increased permeability or leaky vasculature together with 

compromised lymphatic drainage facilitates accumulation of macromolecules and nanoparticles 

in pathological tissues. Based on the EPR effect, drug concentration in the tumor tissues was 

found to be 10-30 times higher than that in the blood and other normal tissues [42]. To sum up, 

nanoencapsulation of medicinal drugs using polymeric carriers (nanomedicines) was shown to 

enhance drug efficacy, specificity, tolerability and therapeutic index of many drugs [43-45].  

 

1.4. Review of Polymeric Nanoparticles as Delivery Systems 

         Polymeric nanoparticles are solid or semisolid colloidal particles that vary in size from 10 

nm to 1000 nm [46]. They are mainly consisting of macromolecular substances and can be used 

as drug carrier. The drug is adsorbed, dissolved, entrapped, or encapsulated into the 

nanoparticles matrix. Either nanospheres or nanocapsules can be obtained from the same 

polymer depending on the used method of preparation [47, 48]. Nanospheres are matrix systems 

in which the drug is uniformly dispersed whereas; nanocapsules are vesicular systems in which 
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the drug is confined to a cavity surrounded by a polymer shell (Fig. 1.1).  After preparation, 

nanoparticles are usually dispersed in aqueous solution. The resultant drug nanoparticle 

dispersion can be administered to humans by many routes as injection, oral route, or applied 

topically either to the skin or the eye. Nanoparticles can be also used for pulmonary delivery 

after being dried to a powder, or can be compressed into tablets or capsules.  

 

 

A                                           B                                       C 

 

 
 

 

 

 

 

 

 

 

 

 

Fig.1.1. Schematics of polymeric nanoprticles. A. Matrix type nanosphere, drug molecules are 

uniformly dispersed in the polymer matrix. B. Core shell nanocapsules, drug molecules are 

presented in an oily or aqueous core covered with polymeric shell. C. matrix type nanosphere 

where drug crystals are embedded in a polymer matrix. 

 

1.5.  Factors affecting Performance of Polymeric Nanoparticles as Delivery Vehicles 

             Formulation of nanoparticles as delivery vehicles depends on the choice of suitable 

polymeric substance having acceptable biocompatibility and biodegradability, higher 

incorporation efficiency, and an extraordinary ability to enhance the drug retention time in vivo. 

Nanoparticles are superior to conventional drug carriers (e.g. tablets, capsules….etc.) with 

respect to control release, targeted delivery and therapeutic potential.  

         Polymer chains 

Oily or aqueous core 
Drug crystals 

Drug molecules 
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          Many factors affect the drug delivery performance of polymeric nanoparticles as particle 

size, surface charge, surface modification, and hydrophobicity (Fig.1.2). Size and size 

distributions of nanoparticles play an important role in determining their release kinetics as well 

as their interaction with the cell membrane and their penetration across the biological barriers. 

The ability of nanoparticles to penetrate different biological barriers is mainly dependent on the 

particle size, the target tissue biophysiological characteristics e.g. tissue size, tissue thickness, 

and blood circulation [49]. It has been shown before that large size particles are rapidly cleared 

by mononuclear phagocytic system (MPS) than smaller size particles [50]. The size of the carrier 

might have a role in complement activation [51]. For long circulating colloidal nanoparticles, 

optimum size is favored to be 150-200 nm [52, 53].  

        Surface charge is also important in determining the in vivo stability as well as cellular 

interaction of nanoparticles. Surface charge measurement (zeta potential) evaluates whether 

nanoparticles would aggregate in blood flow or would adhere to, or interact with oppositely 

charged cells membrane [54]. As a biological rule, to enhance the rate and extent of cellular 

uptake, positively charged surfaces or cationic surface charges are required as it promotes the 

interaction of nanoparticles with the negative charges (phospholipids) of the cell membrane [10]. 

However, cationic charges could enhance the non-specific cell sticking or uptake of the particles. 

As a result, it is recommended that colloidal carriers should have neutral or near neutral surface 

charge to avoid both the non specific cell uptake and uncontrolled plasma protein adsorption 

onto their surfaces [50, 55].  

       Intravenously (IV) administered nanoparticles are easily recognized by the body immune 

system, and then massively cleared by the macrophages (MPS) rich organs such as liver, spleen, 

lungs and bone marrow [56]. The NPs surface hydrophobicity determines the amount of 

adsorbed blood components, mainly proteins (opsonins) which initiate the phagocytosis process 

[57]. Hence, to prolong the circulation time of NPs in the blood, it is necessary to minimize the 

opsonization process (plasma protein adsorption onto NPs surface). This can be achieved by 

surface modification of hydrophobic particles by coating their surfaces with different hydrophilic 

molecules such as polyethylene glycol (PEG), polyethylene oxide, polyoxamer, poloxamine and 

polysorbate 80 (Tween 80) [46, 58]. 

          Finally, the in vivo performance of nanoparticles is affected by morphological 

characteristics, surface chemistry, and molecular weight. Molecular weight of the carrier can 
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play a role in modulating the release behavior. For a slow drug release from the particles, high 

molecular weight of the starting polymer should be used [59]. Careful formulation of polymeric 

nanoparticles with respect to target and route of administration may solve many pharmaceutical 

problems of either marketed drugs or newly discovered drugs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.2. Factors affecting the drug delivery performance of polymeric nanoparticles 

 

1.6. Applications of Polymeric Nanoparticles 

        Nanoparticles in pharmaceutical applications have gained plenty of research attention 

during recent decades taking advantage of their small size, and their biodegradable nature [13]. 

Nanoparticles can be administered orally as a reconstituted aqueous dispersion. NPs dispersion is 

easily uptaken and absorbed into the systemic circulation across the mucosal epithelium by 

enterocytes [60]. They could protect the encapsulated active ingredient against the gastro-
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intestinal (GI) tract harsh conditions and/or prolong the contact time of its payload on the 

mucous membrane by efficiently adhering to mucosal surfaces (bioadhesion). Many examples of 

the oral applications of NPs are reported in the literature particularly for delicate macromolecules 

e.g. oral delivery of peptides such as salmon calcitonin [61] and elcatonin [62]. NPs were also 

used as an oral carrier for the delivery of hormones as  mifepristone [63] and estradiol [64]. Oral 

delivery of vaccines by NPs has achieved considerable success through the targeted uptake of the 

particles in the M cells of peyer’s patches. Many examples for the oral immunization using 

PLGA nanoparticles are also reported such as tetanus toxoid [65], ovalbumin [66] and bovine 

serum albumin (BSA) [67]. 

           Several applications of stealth (long circulating) nanoparticles can be found in the area of 

tumor/cancer therapy. The mean residence time, effective concentration, half life of some 

anticancer drugs loaded into polymeric nanoparticles have been enhanced compared to pure drug 

e.g. camptothecin [68], and  paclitaxel [69].  

          PLA and PLGA NPs have also been applied for the sustained delivery of many drugs into 

an intracellular target [70-72]. NPs could enhance the cytoplasmic delivery of many drugs 

through their marked ability to rapidly escape the endo-lysosomal compartment to the 

cytoplasmic compartment e.g. PCL nanoparticles [73]. Dexamethasone-loaded nanoparticles  has 

achieved higher antiproliferative activity in vascular smooth muscle cells compared to free 

dexamethasone due to the enhance uptake of NPs by the glucocorticoid receptors which are 

cytoplasmic [74].  

         Another interesting application of nanoparticles is their ability to deliver drugs across the 

Blood–Brain Barrier (BBB) [75]. Nanoparticles has been shown to sustain the delivery of 

therapeutic agents to brain tumours following the opening of tight junctions of the BBB by 

hyperosmotic mannitol [76]. Poly(alkylcyanoacrylate) nanoparticles have been widely 

investigated as a drug carrier to the brain [77]. Many types of polymeric nanoparticles have also 

been used for the brain delivery e.g. PLA-PEG nanoparticles functionalized by lectin [78], PLA-

PEG nanoparticles bearing cationic BSA coating [79], PLA-polysorbate 80 nanoparticles [80], 

and PLGA peptide nanoparticles [81]. Loperamide has been loaded into peptide derivatized 

PLGA NPs then delivered successfully to the central nervous system of rats [82]. Till now, the 

mechanisms of particle uptake across the BBB are not clearly identified; other processes may be 

also involved [83]. 
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       Nanoparticles with mucoadhesive properties have also been investigated as an ocular drug 

delivery carrier. They mainly act as an ocular carrier based on their ability to prolong the mean 

residence time of the drug in the cornea, control its release and reduce irritation after topical 

application. Flurbiprofen loaded into PLGA nanoparticles exhibited higher anti-inflammatory 

action upon instillation into the eye than free drug [84]. Similar enhancement of the ocular 

absorption of acyclovir-loaded PEG-PLA nanoparticles has been observed [85].  

        In gene delivery studies, non-viral vectors are assembled through the interaction between 

the negative charge of nucleic acids and the positive charge of the particles. Non viral vectors 

have been demonstrated a marked ability to encapsulate the entrapped gene, protect it against 

stressful body conditions, sustain its release, and facilitate its delivery and interaction with the 

cell membrane. For example, PLA-PEG nanoparticles administered orally have achieved higher 

transfection efficiency for the encapsulated DNA [86]. PLGA nanoparticles have been used as 

non viral vector for the sustained release of DNA [87]. Many challenges in nanoparticulate gene 

delivery applications are faced particularly the key challenge of enhancing the coupling potential 

between nucleic acid and the polymer while maintain the size of the carrier in the nanometer 

scale. 

      Despite the extensive research in the area of nanotechnology and drug delivery, few 

polymeric nanoparticulate products have marketed so far. A commercialized product, 

Abraxane™, obtained from the protein albumin bound with paclitaxel, is administerd 

intravenously [88]. Another product, Doxorubicin Transdrug®, consisting of doxorubicin-loaded 

poly(isohexylcyanoacrylate) nanoparticles is currently investigated clinically [89].  

      As a general summary of the investigated applications of nanoparticles in the pharmaceutical 

field, nanoparticles could protect the encapsulated active ingredient, enhance its action, reduce 

its toxicity and side effects, sustain its release and target it into the desired area. For clinical 

translation, most of the research is now focused on developing  processes for the  scaling up of 

nanoparticles [90]. A range of different types of nanoparticles and their applications are outlined 

in Table 1.1. 
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Therapeutic 
application 

Carried therapeutic 
agent/fluorescent  
marker 

Ref. Advantages 

Oral and nasal 
therapy 

Salmon calcitonin 
Elcatonin 
Mifepristone 
Estradiol 
Tetanus toxoid 
Oral vaccination, Ova-
albumin 
Bovine serum albumin 

[61] 
[62]  
[63] 
[64] 
[65] 
[66]  
 
[67] 
 

(1)  Sustained release of the encapsulated drug.  
(2) Efficient uptake and transport across the 
mucosal epithelium. 
(3) Protect the encapsulated drug against the 
gastro-intestinal (GI) tract harsh conditions.  
(4) Prolong the residence time of drug on the 
mucous membrane (mucoadhesive properties). 

Cancer therapy Campothecin 
Paclitaxel 
Tamoxifen 
Curcumin 
Doxorubicin 
Neocarzinostatin 
Atinsense oligonucleotides 
(AONs) 

[68] 
[21, 27] [69] 
[10]  
[91] 
[12] 
[39] 
[57] 
 

(1) Enhanced antitumor efficacy. 
(2) Reduced systemic side effects and toxicity 

levels. 
(3) Enhanced tumor specific uptake.  
(4) Enhanced accumulation into tumor tissues. 

Brain therapy Cisplatin 
Dalargin hexapeptide 
6-Coumarin 
FITC-Dextran 
Fluorescein 
Loperamide/ Rhodamine B 
 

[76] 
[77] 
[78, 79]  
[80] 
[81] 
[82] 
 

(1) Efficient passage across the blood brain barrier 
(BBB). 

(2) Effective targeting of the brain endothelium. 
(3) Sustained drug release into the brain cells. 
 

Gene Therapy DNA 
DNA vaccine 
DNA, siRNA, and  AONs 

[86] 
[87]  
[92] 

(1)  Increased transfection efficiency. 
(2) Protection of the encapsulated gene against in           
vivo degradation. 

Intraocular 
delivery 

Flurbiprofen 
Acyclovir 

[84] 
[85] 
 

(1) Prolonging the corneal contact time. 
(2) Controlled drug release. 
(3) Reduced ocular irritation. 

Table 1.1. Different applications of polymeric nanoparticles in pharmaceutical field.   

 (FITC-dextran): Fluorescein isothiocyanate-dextran 
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1.7. Preparation of Polymeric Nanoparticles 
 
            Polymeric nanoparticles for pharmaceutical applications are prepared from a class of 

synthetic and natural polymers. Natural polymers are considered safer and more biocompatible 

than synthetic ones. Synthetic polymers became more acceptable than before in the preparation 

of NPs due to the greater control over their biophysicochemical properties. Natural polymers 

include e.g. albumin [93], casein [91], alginate [94], gelatin [95, 96], and chitosan which is 

considered the most widely used natural polymer for nanoparticle preparation [97, 98]. Synthetic 

polymers include aliphatic polyesters, polyanhydrides, polyorthoesters, and polycyanoacrylates 

[46]. Other investigated synthetic polymers include polystyrene [99] and poyl(vinyl pyridine) 

[100].  

            Two techniques are widely used for nanoparticles preparation; (i) polymerization of 

monomers and (ii) deposition of an already synthesized or preformed polymer [58, 101]. 

Nanoparticle preparation from preformed polymers is more common because of the ease of the 

preparation, more control of the manufacturing process, and reproducibility of the used method. 

Polymer deposition method mainly depends on dissolving a preformed polymer in a convenient 

solvent followed by precipitation in a liquid medium leading to nanoparticle formation. The drug 

intended to be encapsulated in the particles is usually incorporated in the process during the 

polymer solvation process. Nanoprecipitation, salting-out, emulsification/solvent diffusion, and 

emulsification/solvent evaporation methods are widely applied techniques used for nanoparticles 

preparation by polymer deposition method [46, 102-104].   

        Nanoprecipitation method was introduced and patented by Fessi and co-workers [105]. In 

this method, particles are formed spontaneously by precipitation and subsequent solidification of 

the polymer upon rapid solvent diffusion. The polymer is dissolved in a water miscible organic 

solvent (or solvent mixture) and poured under magnetic stirring into a non solvent (usually water 

containing surfactant), in which the organic solvent diffuses. The mechanism of formation of 

NPs by this technique has been explained by the interfacial turbulence generated at the interface 

of the solvent and non-solvent. Thus, the process is often called solvent displacement or 

interfacial deposition. In the salting-out method, nanoparticle formation is based on the 

separation of a water-miscible solvent containing the polymer from aqueous solutions via a 

salting-out effect. Acetone is commonly used as the water-miscible solvent because of its 
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solubilizing efficiency and rapid separation from aqueous solutions by salting-out effect with 

electrolytes. In emulsification/solvent diffusion method, nanoparticle formation starts when the 

saturation limit of a partially water-miscible solvent (e.g. benzyl alcohol) is exceeded by addition 

of water. In both techniques, vigorous stirring is a prerequisite for inducing the phase separation. 

The emulsification solvent evaporation method is presented in section 1.7.5. Another widely 

used technique nowadays for nanoparticles preparation is supercritical fluid technology [106, 

107]. Nanoparticles can also be prepared directly from monomers using different polymerization 

techniques as described in those reviews [46, 102]. A list of some used polymers and the 

commonly used methods to prepare nanoparticles are summarized in Table 1.2.  

         Nanoparticles are usually prepared as an aqueous dispersion. If nanoparticles are stored in 

an aqueous medium, polymer degradation, drug leakage, and/ or drug degradation may occur 

[108]. In addition, handling (storage, transportation) of a liquid particle system is inconvenient. 

To improve the physicochemical stability of nanoparticles, freeze-drying in is usually performed 

to conserve the structure of particles, facilitate handling and transport, and help the further 

processing of particles into other dosage forms (e.g. tablets, capsules, and powder).  

 

1.7.1. Classification of Copolymers used for Nanoparticles Formation 

     Nanoparticles have been formulated using a wide range of polymers.  Copolymers are widely 

used than homopolymers in NPs preparation due to their tunable properties. Copolymers can be 

divided into 4 main types based on their architecture (how the building blocks are connected 

together) (Fig.1.3): 

1. Block copolymers: linear copolymers where the end group of one chain is covalently attached 

to the head of another chain giving diblock or triblock architectures [109]. 

2. Graft copolymers: branched copolymers with a comb-like architecture where different 

branches emanate from one main chain. 

3. Random copolymers: linear copolymers with the building blocks arranged randomly [110]. 

4. Alternating copolymers: linear copolymers with perfectly alternating arrangement of their 

building blocks. 
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1.7.2. Polyesters 

    Biodegradable polyesters (e.g. PLA, PGA, PLGA and PCL) are, so far, the most extensively 

used biomaterials for biomedical applications. They are the preferred synthetic polymers for 

nanoparticle preparation for the following reasons. They are mainly characterized by their 

biocompatibility and their controlled degradation to biocompatible monomers [111]. They are 

degraded by bulk hydrolysis of their ester bonds [112]. Their degradation products (e.g. lactic 

acid or glycolic acid) are eliminated from the body by citric acid cycle [113], hence, they do not 

require any kind of surgery to be removed from the body. They are easily synthesized through 

ring opening polymerization of cyclic lactones. They could efficiently protect the entrapped drug 

against degradation and control its site specific delivery. They are more efficient for 

encapsulation of many drugs particularly hydrophobic drugs. Encapsulated drugs are slowly 

released from polyester based matrices upon the controlled degradation of the polymeric 

materials. 

 

 

 

Diblock copolymer                                                                      Mutliblock copolymer 

 

 

  

 

 

                                                        Graft copolymer 

                                                 

 

Random copolymer                                                                                Alternating copolymer 

 

 

Fig.1.3. Architectures of different copolymers used in the preparation of polymeric 

nanoparticles. 
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Polymer 
class 

Examples Drug/application Preparation method Ref. 

Natural 
polymers 
 

Albumins 
 
Casein 
 
Alginate 
 
 
Gelatin  
 
Chitosan 
 

Ganciclovir 
 
Curcumin 
 
Antitubercular drugs (Isoniazide, 
Rifampicin, and Pyrazinamide) 
 
Paclitaxel 
 
Bovine serum albumin 

Coacervation 
 
Centrifugation redispersion 
 
Cation induced gelation 
 
 
Desolvation method 
 
Ionic gelation 

[93] 
 
[91] 
 
[94] 
 
 
[95] 
 
[97] 

Synthetic 
polymers 

Poly(alkyl cyanoacrylate)  
 
Poly(alkyl methacrylate) 
 
Polystyrene 
 
 
Poly(vinyl pyridine) 
 
 
Poly(ε-caprolactone) (PCL) 
 
 
 
Polylactic acid (PLA) 
 
 
 
Poly(lactic-co-glycolic acid) (PLGA) 
 

 

Tissue adhesives 
 
Tissue adhesives 
 
Progestrone 
 
 
Tebuconazole 
 
 
Many anti-cancer drugs and 
model proteins 
 
 
Bovine serum albumin 
 
 
 
Bovine serum albumin and 6-
coumarin 

Polymerization method 
 
Polymerization method 
 
Emulsification/solvent 
evapoartaion method 
 
Emulsification/solvent 
diffusion method 
 
Different Techniques are 
described in the cited 
review 
 
Emulsification/solvent 
evaporation method 
 
 
Emulsification/solvent 
evaporation method 
 

[46] 
 
[46] 
 
[99] 
 
 
[100] 
 
 
[112] 
 
 
 
[114] 
 
 
 
[74] 

Table 1.2. Polymers and methods widely used in nanoparticle preparation. 
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1.7.3. Poly(lactic acid) (PLA) 

    Poly(lactic acid) (PLA) belongs to the family of linear aliphatic polyesters commonly made 

from α-hydroxy acids. PLA mainly obtained from lactic acid monomers (Fig. 1.4.). Being 

biodegradable polyester, PLA is widely used nowadays for nanoparticle preparation. PLA is also 

used for the manufacture of resorbable sutures, bone implants, artificial organs, tissue screws, 

and contraceptive implants [115, 116].  

     PLA is the simplest hydroxy acid with an asymmetric carbon atom and exists in two optically 

active configurations. Polymers of L(+) lactic acid and D(-) lactic acid are partially crystalline, 

while the racemic poly(D,L-lactic acid) is amorphous. The self-condensation of lactic acid 

results in low molecular weight (Mwt) PLAs, whereas ring opening polymerization of lactide 

usually results into higher Mwt PLA polymers [117]. PLAs are insoluble in water and ethanol, 

but they are soluble in organic solvents such as dichloromethane and chloroform [117-119].   

     PLA  undergoes hydrolytic degradation of its ester bond in an aqueous medium [120]. The 

degradation products are biocompatible and metabolizable; they are removed from the body by 

the citric acid cycle. PLA degradation rate is mainly controlled by these factors; (i) Mwt (high 

Mwt PLAs degrade slower); (ii) crystallinity (amorphous PLA degrades faster); (iii) 

environmental conditions (pH, ionic strength, temperature); (iv) particle morphology (porous 

particles degrade faster); (v) size of the particles (small size particles degrade faster) [121]. 

Drugs encapsulated into PLA particles also could affect its degradation rate. Both acidic and 

basic drugs may catalyze the degradation of PLA polymeric carriers either microparticles or 

nanoparticles. 

 

 

 

 

 

 

 

Fig. 1.4. Chemical structure of poly(lactic acid). 
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1.7.4. Functionalized Polyesters for Nanoparticles Preparation 

             Extensive work has been recently devoted towards functionalizing polyesters in order to 

enhance the drug delivery behavior of the obtained nanoparticles, increase the number of drugs 

that can be encapsulated into the polymeric particles and finally to efficiently control the drug 

release pattern. Most polyesters do not have significant number of functional groups that could 

enhance their potential applications. Such applications are greatly widened when functional 

pendant groups are incorporated into the polymer backbone.  

            Introduction of functional groups that can be easily substituted or conjugated with the 

compound of interest is a challenge. Many synthetic protocols were tried in the past for the 

synthesis of functionalized polyesters with better characteristics [122-124]. Most of these trials 

were complex including various tedious steps and the process itself was not reproducible and out 

of control in many cases. For example, functionalized malolactonate copolymers were 

synthesized with low yields (12–45%) and polymerization reactions were very slow (over 4–30 

days) [122]. PLA grafted polysaccharide copolymers were also synthesized with a multistep 

method that required protection/deprotection step [125]. Moreover, most of the polyesters 

developed had molecular weights that are usually not high enough to be used for nanoparticles 

preparation [126]. Thus, there are very few methods that could be regarded as easy and efficient 

for the synthesis of functionalized polyesters. An efficient method for the synthesis of 

functionalized PCL and PLLA with controlled molecular weight and low polydispersity was 

previously reported [124].  

             In our study, nanoparticles were prepared from novel functionalized PLA copolymers. 

Those copolymers were developed by grafting different functional substituent as poly(ethylene 

glycol), PEG onto PLA backbone according to a previously reported method by our group [127]. 

This method simply depends on the development of versatile copolymers of PLA and allyl 

glycidyl ether. The grafted PLA with allyl group is undergoing subsequent steps to convert the 

allyl group into hydroxyl and then carboxyl groups to which various functional groups could be 

grafted easily to the polymer backbone. Various bioactive molecules like salens [128]  or ligands 

for E-selectin and for P glycoprotein were successfully grafted onto PLA Backbone. Also, 

methoxy PEG-g-PLA has been previously synthesized by our group using the same principle and 

successfully used to prepare colloidal nanoparticles for sustained drug release [129]. 
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1.7.5. Emulsification Solvent Evaporation 

             The emulsification solvent evaporation method was early described by Niwa et al and 

has been widely used to prepare NPs from a range of polymeric materials, particularly PLA and 

PLGA [130]. In this method, the polymer is first dissolved in a water immiscible, volatile 

organic solvent (e.g. chloroform, methylene chloride or ethyl acetate) then emulsified into an 

aqueous phase as shown in Fig.1.5.  Emulsification can be achieved with the help of mechanical 

stirring, sonication or a high-energy source such as ultrasound or homogenization [Fig. 1.5]. The 

aqueous phase usually containing a surfactant like poly(vinyl alcohol), PVA to stabilize the 

system and help the formation of relatively small sized particles with uniform size distribution 

[131]. Nanoparticles tend to precipitate into the aqueous phase in the form of solid particles after 

the organic solvent has been removed under reduced pressure. This technique has been widely 

used for encapsulating hydrophobic drugs. The procedure has been modified to help 

encapsulating hydrophilic compounds and large macromolecules as peptides and proteins. The 

modified protocol depends on the use of the double or multiple emulsion technique (w/o/w) 

instead of the single emulsion (o/w). Simply, a water soluble drug and a surfactant are dissolved 

in water. The primary emulsion is prepared by dispersing the aqueous phase into an organic 

solvent containing a dissolved polymer. This is then re-emulsified in an outer aqueous phase also 

containing surfactant [132-134]. From here, the procedure for obtaining the nanoparticles is 

similar to the single emulsion technique (o/w) for solvent removal.  

        Several factors can influence the physicochemical properties of the obtained particles, these 

include; type and molecular weight of the starting polymer, concentration of polymer in the 

organic phase, type of organic phase, volume ratio of organic: aqueous phase, nature and 

concentration of surfactant, and stirring speed. 

 

       The main advantages of using this technique is the use of water as the nonsolvent; this is 

reduces the cost of production, facilitates the washing step of the particles, facilitates the further 

processing of particles [102]. However, there are some major disadvantages associated with the 

use of this method to prepare NPs.  First of all, residual chlorinated solvents have serious toxicity 

potential. Second, the excess surfactant used is difficult to remove. Poly(vinyl alcohol), PVA is 

the most widely used stabilizer to prepare nanoparticles. However, PVA remains adsorbed at the 

surface of the nanoparticles and is difficult to be removed by multiple washing steps. It is 
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reported that PVA adsorbed at the surface of nanoparticles could change biodegradability, 

biodistribution, NPs cellular uptake, and drug-release pattern [135]. Third, this procedure is good 

for a laboratory-scale, but not for a large-scale pilot production.          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1.5. Schematic representation of the emulsification-evaporation technique (taken from ref. 

[102]). 

 

1.8. NPs Characterization 

            Nanoparticles as colloidal dispersions differ remarkably from other macroscopic 

dispersions.  Nanoparticles have some unique physicochemical properties related to their sub-

micron size as high surface area and surface free energy, and movement of particles by random 

motion (Brownian diffusion). Different physicochemical methods are being used specifically for 

NPs characterization to help understand their performance in vivo.  

 

1.8.1. Size and Morphology 

         Particle size affects release kinetics, biodistribution potential and cellular uptake properties 

of NPs [46, 136]. Therefore, it is crucial to measure the size of the particles before conducting 

any further characterization. A detailed knowledge of the NPs size could help identify the 
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success of the used preparation method and give an idea about the in vivo performance of the 

particles. Optical light microscopy is not suitable for nanoparticle characterization since its 

resolution limit is about 500 nm. The most commonly used techniques for the characterization of 

nanoparticle size and morphology are scanning electron microscopy (SEM) [137, 138], 

transmission electron microscopy (TEM) [105, 139], and atomic force microscopy (AFM) [15, 

129].   

         Atomic force microscopy (AFM) (scanning probe microscopy) enables the visualization of 

NPs at the atmospheric pressure without gold coating [140, 141]. Nevertheless, the resolution of 

AFM is still lower than that with SEM.  Visualization of NPs using AFM can be done by three 

modes; contact, non-contact, and tapping mode. Tapping mode AFM (TM-AFM) is more 

preferred than contact and no-contact modes because of the ability of that mode to probe soft 

samples like biological and polymeric materials under ambient conditions [142, 143]. In tapping 

mode, the cantilever oscillates close to its bending mode resonance frequency so that tip makes 

contact with the sample for only short period of time during each oscillation cycle. As the tip 

approaches the sample, the tip-sample interactions alter the amplitude, frequency, and the phase 

angle of the oscillating cantilever. During scanning, the amplitude at the operating frequency is 

maintained at the constant level, called the set-point amplitude by adjusting the relative position 

of the tip with respect to the sample. This operating method results in lower surface forces, 

particularly lateral forces causing less surface damage [142].  

        One recent approach in TM-AFM is the use of the changes in the phase angle of the 

cantilever probe to produce phase image. An interesting application of TM-AFM in nanoprticle 

field is to visually investigate the mode of chain organization of the used polymer during NPs 

formation. Phase imaging is based on the use of changes in the phase angle of cantilever probe. 

This image shows more contrast than the topographic one as well as more sensitivity to material 

surface properties such as stiffness, viscoelasticity, and chemical composition [142, 144, 145]. 

Depending on the viscoelastic differences between PLA and PEG chains, phase imaging could 

be done to directly examine PEG on the surface of pegylated NPs.  

       Photon correlation spectroscopy (PCS) is the most commonly used tool in size 

determinations of nanoparticles [15, 129, 139, 146]. PCS is mainly based on the principle of 

laser light scattering by particles in colloidal dispersion. It can be used for size measurement 

between 5 nm and 2 µm.  The size or diameter obtained by PCS is a value that refers to how a 
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particle diffuses within a fluid so it is referred to as a hydrodynamic diameter. The hydrodynamic 

diameter is the diameter of a sphere that has the same translational diffusion coefficient as the 

particle. Simply, PCS  detects the intensity variation of laser light scattered by the random 

motion of the particles (Brownian motion), and relates it to the particle size with the help of an 

autocorrelation function [147]. PCS allows the determination of the size distribution of mono and 

multidispersed particles. The advantage of this method is ease of sample preparation, fast 

technique, sensitive to nanoscale particles, and provides information about the whole colloidal 

dispersion. To be analyzed, the particles dispersion needs to be diluted, sometimes filtered to 

remove any dust particles that might interfere with the accuracy of results. Microscopic 

visualization and PCS should be used together in NPs size determinations. PCS is a 

computational technique that presumes that the particles are spherical and the size results are 

based on this assumption which might not be true in many cases. Instead, AFM/SEM provides 

visual and descriptive information, a real overview about the nanoparticles population.  

 

1.8.2. Surface Characteristics and Stability 

          Surface charge determines the stability of particles either in vitro or in vivo and also 

affects their cellular interaction in the body [58]. Colloidal dispersions are mainly stabilized 

either by electrostatic forces (surface charge) or by steric forces (polymers or surfactants at the 

particle surface), or by both forces [148, 149]. Information about the particle surface charge are 

usually obtained by zeta (ζ) potential measurement [150]. Stability for nanoparticle dispersion is 

usually achieved by high ζ-potential values. Particles with zeta potentials more positive than +30 

mV or more negative than -30 mV are normally considered stable, as the surface charge prevents 

aggregation of the particles [151]. Zeta (ζ) potential reflects the electric potential of the particles. 

It is the charge at the electrical double layer, created by ions of the liquid, which exists around 

each particle.  

      Zeta (ζ) potential measurement depends on determining the mobility of charged particles 

under the effect of electric potential (electrophoretic mobility). The electrophoretic mobility can 

be transferred to ζ-potential by applying Smoluchowski’s equation. Ζeta-potential is mainly 

affected by the conditions of the dispersing medium as pH and electrolyte concentration [152]. 

PLA NPs are mainly stabilized by ionization of carboxylic acid groups at basic pH which shifts 

the zeta potential towards the negative side (around -40 mV or more) [153, 154]. Zeta-potential 



 

 

21

values can be altered by surface modification [155] or stabilizer concentration [156].  It can also 

be used to determine whether a charged drug is entrapped into NPs or adsorbed onto the surface 

[58]. 

      Another widely used surface characterization technique particularly used for PLA 

nanoparticles modified with PEG [157] is the X-ray photoelectron spectroscopy (XPS). This 

technique, also known as ESCA (electron spectroscopy for chemical analysis), is a surface 

sensitive technique that could give information about the chemical composition and structure of 

the particles surface qualitatively and quantitatively by measuring the binding energy of 

electrons associated with the atoms in a 5–10 nm depth of the NP surface. Other  widely used 

tools for investigating the chemical composition of NPs include Fourier-transform infrared 

spectroscopy (FTIR) [158] and nuclear magnetic resonance spectroscopy (NMR) [159]. 

 

1.8.3. Drug-Polymer Interactions 

         It is crucial during NPs preparation to identify any possible drug polymer-interactions. 

Drug loading can be done by two methods: (i) adding drug during NPs preparation 

(incorporation method); (ii) adsorbing drug onto the surface of preformed particles (adsorption 

technique). Drug loading efficiency depend greatly on the solid-state drug solubility in polymeric 

matrix (solid solution or dispersion), which is related to the polymer composition, the molecular 

weight, the drug polymer interaction and the presence of end functional groups (ester or 

carboxyl) [139, 160, 161]. Two types of drug polymer interactions exist either physical 

interaction (e.g. weak van der waals attraction) or chemical interaction (e.g. strong ionic 

interaction). As a result of drug-polymer interactions, drug can be adsorbed onto the particle 

surface [162] or bound chemically within the nanoparticles [163].  

       Physical state of the drug inside the particles also affects the drug diffusion and hence drug 

release from the particles. Amorphous materials have higher solubility and hence faster release 

rate compared to crystalline substances. Crystalline drugs need to be first dissolved before 

diffusing through the NPs matrix and hence, the release pattern would be slower. The preparation 

process of NPs can play a role in modifying the final state of drug in the particles.  

          Differential scanning calorimetry (DSC), (powder) x-ray diffractometry (PXRD) and FTIR 

are commonly used techniques to identify the final state of encapsulated drug, and to investigate 

any physicochemical interaction between the drug and the matrix polymer. DSC detects changes 
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Weight of drug entrapped in NPs 

Initial weight of drug added 
% EE = X 100  (1) 

 

% DL = 

Weight of drug entrapped in NPs 

Weight of NPs 

X 100  (2) 
 

in heat flow between a sample and reference upon heating both substances at a constant heating 

rate. DSC is widely used to detect phase transitions such as glass transition, exothermic 

transitions (e.g. crystallization) and endothermic transitions (e.g. melting) [164]. PXRD analysis 

is based on determining the diffraction pattern of the x-rays from a sample as a function of 

scattering angle.  It is used to investigate the crystalline properties of drugs [165]. Absence of the 

drug melting peak and diffraction peaks of the crystal structure of the drug in DSC thermogram 

and PXRD pattern, respectively, are usually signs of amorphous or solid solution state of the 

drug within the polymer [166, 167]. FTIR can be used for identifying any chemical interaction 

between the drug and the polymer. An FTIR vibrational spectrum, characteristics for a given 

structure, is usually  obtained [168]. Any reduction or disappearance of the FRIR characteristics 

peaks of the encapsulated drug indicates an interaction between the drug and the polymer might 

have occurred.  

 

1.8.4. Drug Loading  

         After NPs preparation, it is of prime importance to determine whether the preparation 

procedure used for incorporating a drug into NPs was efficient or not. This point is also 

important when dealing with expensive drugs to be encapsulated into NPs. To this end, two main 

parameters are usually calculated to govern the process of drug loading; drug entrapment or 

encapsulation efficiency (% EE) and the loading efficiency (or drug loading, % DL). 
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      Because of the small size of nanoparticles, determinations of drug encapsulation, or drug 

loading are not always an easy task. Separation of free drug from bound or entrapped drug is 

firstly done by ultracentrifugation or ultrafiltration. Drug loading is then estimated either from 

the supernatant or after dissolution of the NPs sediment in an appropriate solvent [169-171]. In 

case of freeze-dried NPs, the particles are first dissolved then drug content can be easily analyzed 

[62, 85, 139, 172]. Depending on the loaded drug, various analytical methods can be used for 

drug detemination such as spectrophotometry, spectrofluorometry, and high performance liquid 

chromatography (HPLC). For example, UV spectroscopy was used to estimate drug loading 

efficiency of  PLGA NPs containing procaine hydrochloride after dissolving of NPs in 

acetonitrile [139]. In another case, high performance liquid chromatography (HPLC) was used to 

quantify acyclovir loaded into D,L-PLA NPs [85].  

 

1.8.5. Drug Release 

           In general, drug release from NPs is mainly governed by the following factors: (1) drug 

solubility; (2) desorption of the surface bound drug; (3) drug diffusion through the NPs matrix; 

(4) NPs matrix erosion; and (5) combination of erosion/diffusion process [58]. In case of 

uniformly distributed drug into the NPs matrix, the release occurs by diffusion or erosion of the 

matrix. In case of a crystalline drug being entrapped into the NPs matrix, drug dissolution occurs 

first followed by diffusion to initiate drug release. The rapid initial release or ‘burst’ is mainly 

attributed to desorption of the weakly bound or adsorbed drug close to the NPs surface.                                                              

          Unfortunately, the in vivo drug release environment is complex and may be difficult to 

simulate. However, in vitro release kinetics could be useful for quality control purposes and the 

prediction of in vivo release kinetic. Several techniques can be used to study the in vitro release 

pattern of the drug. Ultracentrifugation is widely used for studying the in vitro drug release [85, 

173-175]. Simply, it depends on stirring drug loaded NPs in a buffer solution mimicking blood 

components as phosphate buffer saline (PBS, pH 7.4) [175]. At predetermined intervals, a 

sample is withdrawn and ultracentrifuged. Then the drug content is analyzed from the 

supernatant by a suitable analytical method. Similarly, ultrafiltration can be used to separate the 

free drug from NPs [139, 176].   

        Dialysis bags are also used for studying the in vitro drug release. They are generally 

preferred over other methods because they save time and facilitate the separation of 
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nanoparticles from release media. NPs are immersed either in small dialysis bags in a stirred 

receptor (aqueous) medium [137, 146, 177] or in the medium containing drug-free dialysis bags 

(reverse dialysis) [171, 178]. The dialysis bag is impermeable to the NPs. The released drug 

could permeate the bag easily depending on the used molecular weight cutoff. Diffusion cells 

can also be used to monitor the drug diffusion from one compartment to another. Both 

compartments are separated from each other with a membrane that provides a possibility of drug 

not NPs permeation [179, 180]. 

 

1.9. Thesis Rationale and Research Objectives 

1.9.1. Rationale 

           Poly(lactic acid) (PLA) is a well-known biocompatible and biodegradable polyester 

polymer that is widely used in the medical field [46, 103, 181]. Different kinds of PLA-based 

drug carrier systems, such as nanoparticles, microparticles, nanocapsules, hydrogels and 

polymersomes have been prepared and investigated as a carrier for the delivery of numerous 

drugs.  Among these different carriers, nanoparticles are considered the most promising ones 

because of their superior performance either in vitro or in vivo. Nanoparticles made from 

biodegradable polymers or solid polymeric NPs including both nanospheres and nanocapsules 

offer some specific advantages over other nanoparticulate carriers. For instance, those polymeric 

NPs help to increase the stability of encapsulated drugs, and possess useful controlled release 

(CR) properties [58].    

          NPs made from PLA might suffer many drawbacks as their rapid uptake by the 

reticuloendothelial system after intravascular administration, low drug loading efficiency, 

inability to encapsulate a wide range of drugs particularly hydrophilic drugs, and in many cases 

inability to release their payload completely. Low drug incorporation of PLA usually leads to 

large drug loss during NP formulation, and hence, encapsulating insufficient drug amounts for 

therapeutic efficacy [137, 139]. The former situation necessitates the use of high polymer levels 

that might exceed their safety profile. Another drawback of PLA is that an initial burst release of 

drug can be observed in most loaded NPs, which may result in a loss of much of the therapeutic 

dose before the target site is reached by the NPs [58, 182].  Despite those drawbacks, little work 

was devoted to the development of functionalized PLA polymers in attempt to avoid the 

limitations of PLA homopolymer as drug carrier.  
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          Functionalized poly(D,L-lactide) (PLA) nanoparticles development mainly depend on  

introducing a flexible moiety onto PLA hydrophobic cores in attempt to improve the drug 

delivery properties of the obtained NPs. A variety of pendant substituents e.g. PEG, and palmitic 

acid could be grafted onto PLA to generate polymers of different physicochemical properties and 

hence different drug incorporation behavior than PLA itself. NPs formulated using those 

functionalized polymers is expected to have better delivery performance than PLA itself. 

Introduction of PEG into PLA cores could prolong the circulation time of PLA NPs in blood, 

enhance the encapsulation efficiency of PLA for many drugs particularly hydrophilic drugs, and 

enhance the drug release from PLA matrices.  

       Another interesting benefit from grafting PEG over PLA is to achieve small size particles 

benefiting from the surfactant properties of PEG-PLA polymers. This could be an advantage 

since the optimum size required to achieve an effective targeting is proposed to be 150-200 nm 

[52, 53]. Moreover, in order to achieve prolonged circulation of NPs in the blood, nanoparticles 

diameter should be ≤ 200 nm since the sub-200 nm size along with biocompatibility allows 

nanoparticles to avoid recognition by the MPS cells [183, 184]. Although the smallest capillaries 

in the body are 5-10 µm in diameter, the size of nanoparticles intended for parenteral 

administration and any possible aggregates should be far below this size to avoid blocking blood 

vessels and emboli formation [185]. Grafting PLA with palmitic acid moiety is expected to 

enhance the drug loading efficiency for hydrophobic drugs, change the release pattern of PLA 

particles since palmitate is expected to be embedded inside PLA domain lowering its chain 

rigidity. Fatty acid esters were found to have a remarkable plasticizing actions on PLA chains 

[186]. 

          It was the overall aim of this project to develop polymeric nanoparticles based on 

functionalized PLA polymers that could be used as an alternative to PLA homopolymer for the 

encapsulation of different drugs. Physicochemical properties of NPs, as well as their 

performance as drug delivery systems are affected; to a great extent by the properties of the 

copolymers used to formulate them [110, 187, 188]. Thus, chemical structure and surface 

properties of polymer biomaterials have been shown to affect NPs delivery performance either in 

vitro or in vivo [189, 190]. We believe that an understanding of the effects of polymer 

architecture on the properties of NPs in general and PLA in particular will result in the 

predictable improvement of existing biopolymers and the design of new biocompatible polymers. 
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To reveal the effect of these parameters on the properties of PLA NPs, we developed four 

functionalized PLA polymers: (i) two copolymers identical in terms of the grafting density (i.e. 

% of grafted moiety or pendant substituent inserted onto PLA backbone), but different in terms 

of the solubility of grafted moiety; and (ii) two copolymers identical in terms of the length of 

PEG blocks, but different in terms of the chain organization of the PEG block. The ability of 

these four copolymers to act as drug carrier was investigated using a model drug, ibuprofen. 

Moreover, the effect of polymer architecture on the physicochemical properties of PLA NPs was 

investigated in comparison to PLA itself. NPs were analyzed for the major physicochemical 

parameters such as encapsulation efficiency, size and size distribution, surface charge, thermal 

properties, surface chemistry, % poly(vinyl alcohol) (PVA) adsorbed at the surface of NPs, and 

drug release pattern. Surface chemistry analysis using x-ray photoelectron spectroscopy (XPS), 

and phase imaging AFM were used to study the chain organization behavior of each 

functionalized NPs during NPs formulation. Special emphasis was devoted to PEG-g-PLA 

polymers trying to optimize their drug delivery performance. The effect of different PEG 

grafting densities over PLA backbone on the properties of PEG-g-PLA NPs either 

physicochemical or biological properties was investigated to reveal the optimal PEG grafting 

density required to develop stealth particles. Finally, functionalized PEG/PLA polymer that 

showed the most satisfactory results in terms of various drug delivery aspects, such as small size, 

neutral surface charge, high drug loading, and controlled drug release was chosen for 

encapsulation of itraconazole in attempt to improve its aqueous solubility, bioavailbility and 

hence its fungal properties. 

 

1.9.2. Research Objectives 

1. Synthesis and characterization of functionalized PLA polymers according to a previously 

published protocol by our group [127]. 

      Summary: Various linear and branched poly(D,L-lactide) (PLA) based polymers, namely, 

PLA homopolymer, poly(ethylene glycol) (PEG) grafted on PLA backbone at 2.5% & 7% 

grafting density (PEG2.5%-g-PLA and PEG7%-g-PLA, respectively), palmitic acid grafted on 

PLA backbone at 2.5% grafting density (palmitic acid2.5%-g-PLA), and multiblock copolymer 

of PLA and PEG, (PLA-PEG-PLA)n were synthesized. 
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2. Studying the effect of aqueous solubility of grafted moiety on the physicochemical properties 

of Poly (D,L-lactide) (PLA) based nanoparticles (research paper published in International 

Journal of Pharmaceutics). 

     Summary: In this part, the effect of grafting PLA backbone with two substituents of nearly 

similar grafting density but having different solubility profile, on the physicochemical properties 

of PLA NPs was investigated. The polymers used in this part are; PEG2.5%-g-PLA, and palmitic 

acid2.5%-g-PLA. 

 

3. Studying the effect of polyethylene glycol (PEG) chain organization on the physicochemical 

properties of Poly (D,L-lactide) (PLA) based nanoparticles (research paper published in 

European Journal of Pharmaceutics and Biopharmaceutics). 

      Summary: In this part, a comparative study of the physicochemical properties of NPs 

obtained from two PEG/PLA copolymers of different architecture and nearly similar PEG chain 

length, PEG7%-g-PLA and (PLA-PEG-PLA)n polymers was done. Mode of PEG chains 

organization on the surface of PLA NPs was also investigated using XPS and phase imaging 

AFM. 

 

4. Characterization of rhodamine loaded PEG-g-PLA nanoparticles (NPs): Effect of 

poly(ethylene glycol) grafting density (research paper published in International Journal of 

Pharmaceutics). 

      Summary: In this part, the effect of PEG grafting density (1, 7, or 20 % mol/mol of lactic 

acid monomer) on both physicochemical and biological properties (mainly plasma protein 

binding and in vitro macrophage uptake) of PEG-g-PLA NPs was studied. The optimal PEG 

grafting density required to develop stealth PEG-g-PLA NPs suitable for parenteral 

administration was also investigated. 

 

5. Improved antifungal activity of itraconazole loaded PEG/PLA nanoparticles (research paper 

to be submitted). 

      Summary: In this part, a nanocarrier drug delivery system based on PEG/PLA copolymers 

was developed for the encapsulation of the antifungal drug, itraconazole (ITZ). NPs were 

developed to provide a controlled release pattern of ITZ as well as to improve its aqueous 
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solubility and hence enhance its antifungal action. The antifungal capability of ITZ loaded NPs 

was investigated using both Candida and Aspergillus species. Two PEG modified PLA polymers 

(PEGylated polymers) were used in this part; PEG7%-g-PLA, and multiblock copolymer of PLA 

and PEG, (PLA-PEG-PLA)n with nearly similar PEG insertion ratio and the same PEG chain 

length. 
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2.1. Abstract 

          In order to evaluate the solubility effect of grafted moiety on the physicochemical 

properties of poly(D,L-lactide) (PLA) based nanoparticles (NPs), two materials of 

completely different aqueous solubility, polyethylene glycol (PEG) and palmitic acid 

were  grafted on PLA backbone at nearly the same grafting density, 2.5% (mol of grafted 

moiety/mol of lactic acid monomer). Blank and ibuprofen-loaded NPs were fabricated 

from both polymers and their properties were compared to PLA homopolymer NPs as a 

control. NPs were analyzed for major physicochemical parameters such as encapsulation 

efficiency, size and size distribution, surface charge, thermal properties, surface 

chemistry, % poly(vinyl alcohol) (PVA) adsorbed at the surface of NPs, and drug release 

pattern. Encapsulation efficiency of ibuprofen was found to be nearly the same for both 

polymers ~ 36 % and 39 % for PEG2.5%-g-PLA and palmitic acid2.5%-g-PLA NPs, 

respectively. Lyophilized NPs of palmitic acid2.5%-g-PLA either blank or loaded 

showed larger hydrodynamic diameter (~ 180 nm) than PEG2.5%-g-PLA NPs (~ 135 

nm). PEG2.5%-g-PLA NPs showed lower % of PVA adsorbed at their surface (~ 5% 

w/w) than palmitic acid2.5%-g-PLA NPs (~ 10 % w/w). Surface charge of palmitic 

acid2.5%-g-PLA NPs seems to be influenced by the large amount of PVA remains 

associated within their matrix. Thermal analysis using DSC revealed possible drug 

crystallization inside NPs. Both AFM phase imaging and XPS studies revealed the 

tendency of PEG chains to migrate towards the surface of PEG2.5%-g-PLA NPs. While, 

XPS analysis of palmitic acid2.5%-g-PLA NPs showed the tendency of palmitate chains 

to position themselves into the inner core of the forming particle avoiding facing the 

aqueous phase during NPs preparation using O/W emulsion method. The in vitro release 
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pattern showed that PEG2.5%-g-PLA NPs exhibited faster release rates than palmitic 

acid2.5%-g-PLA NPs. PEG and palmitate chains when grafted onto PLA backbone, 

different modes of chain organization during NPs formation were obtained, affecting the 

physicochemical properties of the obtained NPs. The obtained results suggest that the 

properties of PLA- based NPs can be tuned by judicious selection of both chemistry and 

solubility profile of grafted material over PLA backbone.  

 

2.2. Keywords 

         Poly(D,L-lactide), PEG-PLA NPs, palmitic acid-PLA NPs, chain organization, X-

ray photo-electron spectroscopy (XPS) , phase imaging atomic force microscopy (AFM). 

 

2.3. Introduction 

            Controlled release technology began in 1970s and since that time great interest 

has been paid to this technology. Recently, colloidal drug carriers are widely used for the 

development of controlled release systems for large number of drugs. Those carriers 

possess important applications in the pharmaceutical field. Moreover, they offer 

numerous advantages over conventional drug delivery systems such as controlled drug 

release rate, improved therapeutic efficiency, prolonged biological activity and decreased 

administration frequency [1]. They may also act as stabilizer protecting entrapped drugs 

against degradation. A way of modifying the original pharmacokinetics and 

biodistribution of drugs is to incorporate them in submicroscopic colloidal carriers. 

Numerous classes of colloidal carriers composed of different materials including lipids, 

polymers and inorganic materials have been developed, resulting in different delivery 
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systems that vary in their physicochemical properties and thus their pharmaceutical uses. 

Growing interest in formulating NPs from synthetic polymers with tunable properties is 

rapidly expanding. 

             Despite the identification of various factors that might influence the properties of 

polymeric NPs such as the physicochemical properties of polymer and the drug [2], their 

interaction with each other [3], drug load [4], drug distribution inside the carrier, and size 

and morphology of the carrier [5], chemical constitution effect and solubility profile of 

grafted moiety of the used polymer on various drug delivery aspects remains to be 

adequately addressed. Although different nanosystems have been developed, the effect of 

grafting the starting polymer with various grafted moieties needs to be realized and 

emphasized for each nanosystem. In fact, grafting the same polymer with different 

materials  will  not only affect the physicochemical properties of the polymer, but also 

various drug delivery facets including, drug release rate, pharmacokinetics and 

biodistribution of the carrier, and even cellular uptake of the nanocarrier in vivo. It was 

previously shown that the molecular architecture of the polymer affects the cellular 

interaction of NPs prepared from different polymers [6].  

        This work is the first in-depth study of the effect of chain organization of the grafted 

moiety of the starting polymer on the major physicochemical aspects of drug delivery 

from PLA-based NPs e.g. size of the carrier, surface charge, matrix erosion, and drug 

release profile. NPs formulated using PLA-b-PEG block copolymers were extensively 

investigated in the past [7-9]. Up to now, however, relatively fewer studies have focused 

on grafted pegylated copolymer of PLA and PEG, used in our study. 
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       Objective of the present work is to compare the effect of two grafted materials of 

different composition and aqueous solubility on the physicochemical properties of PLA-

based NPs.  Effect of grafted moiety on polymer chains organization during NPs 

formation was also investigated using relatively new techniques like XPS and phase 

imaging-AFM. PLA homopolymer was proposed as the control NPs and either 

hydrophilic (PEG) or hydrophobic (palmitic acid) substance was grafted onto PLA 

backbone at nearly the same grafting density 2.5 % (mol/mol of lactic acid monomer), 

according to a previously published method by our group [10]. Ibuprofen was used as a 

model lipophilic drug to be encapsulated by PLA and grafted PLA NPs.  NPs were 

prepared using (O/W) emulsion solvent evaporation method. PVA was used as an 

emulsifier during NPs preparation since it aids the formation of relatively small sized 

particles with uniform size distribution [11]. 

 

2.4. Material and methods:  

2.4.1. Materials: 

          D,L-dilactide, poly(ethylene glycol) methyl ether (MePEG; 2000 Da) , allyl 

glycidyl ether, tetraphenyltin, polyvinyl alcohol (PVA, average Mw 9000-10,000 Da, 80% 

hydrolyzed), pyridine, acetone, diethyl ether, thionyl chloride, borane-tetrahydrofuran 

complex (1 M), and palmitoyl chloride were purchased from Aldrich Chemical Company 

Inc., Milwaukee, USA. Ibuprofen was obtained from Medisca Pharmaceutical Inc., 

Montreal, Quebec, Canada. Sodium hydroxide pellets were purchased from Anachemia 

Canada Inc. and dichloromethane (DCM) was purchased from Laboratoire Mat Inc., 

Montreal, Quebec, Canada.   
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2.4.2. Synthesis of Polymers.  

          Poly(D,L)-lactide (PLA) was synthesized by ring-opening polymerization of 

dilactide in argon atmosphere, using tetraphenyltin as the catalyst. Briefly, dilactide was 

crystallized from toluene solution and dried under vacuum before use. A weighed amount 

of purified dilactide was then placed in a round-bottom flask and purged thoroughly with 

argon. Bulk polymerization was carried at 180 °C for 6 h. The polymer thus obtained was 

dissolved in acetone and was purified by precipitating in water.  

          Polymer with poly(ethylene glycol)-grafted randomly on poly(D,L)-lactide 

(PEG2.5%-g-PLA) (PEG; Mw 2000 Da) was synthesized in our laboratory as reported 

earlier [10]. Briefly, D,L-dilactide (21.5 g, 97.5 mol %) was polymerized in the presence 

of allyl glycidyl ether (0.872 g, 2.5 mol %) with tetraphenyltin as the catalyst (1:10 000 

mol with regards to D,L-dilactide) at 180 °C for 6 h under argon. Polylactic acid with 

allyl groups was purified by dissolving in acetone and precipitating in water. The allyl 

groups were converted to hydroxyl groups by hydroboration with an equimolar quantity 

of borane in tetrahydrofuran, followed by oxidation in the presence of hydrogen peroxide 

under alkaline conditions (1.5 mol of 3 N sodium hydroxide). The hydroxyl groups were 

oxidized to carboxylic acid groups using Jones reagent, which was further converted to 

an acid chloride using thionyl chloride (1:1000 M). Finally, methoxy-PEG was grafted 

onto the polymer backbone by the reaction between acid chloride and the hydroxyl 

groups of methoxy-PEG (2000 Da) in the presence of pyridine. The final polymer was 

purified by evaporating pyridine and washing with distilled water.  
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      Palmitic acid grafted on PLA backbone at 2.5% grafting density, palmitic acid2.5%-

g-PLA was synthesized as follows, to a solution of PLA grafted with 2.5 % hydroxyl 

pendant groups (1g, 0.136 mmol) in 50 mL pyridine, palmitoyl chloride (1.8 g, 6 mmol) 

was added. The solution was stirred for 3h and then, 10 mL water was added. The solvent 

was evaporated and the product was crystallized in diethyl ether to obtain a yellow 

product.1H NMR spectra were recorded on a Brucker ARX 400 spectrometer (Bruker 

Biospin, Billerica, MA). Chemical shifts () were measured in parts per million (ppm) 

using tetramethylsilane (TMS) as an internal reference. Gel permeation chromatography 

(GPC) was performed on a Water Associate chromatography system (Waters, Milford, 

MA) equipped with a refractive index detector and a Phenomenex Phenogel 5  column. 

Polystyrene standards were used for calibration with THF as the mobile phase at a flow 

rate of 0.6 mL/min.  

 

2.4.3. Preparation of nanoparticles (NPs) 

          NPs were prepared using an (O/W) emulsion-solvent evaporation method. For 

blank NPs, each polymer (1 g) was dissolved in 35 mL DCM and emulsified in 100 mL 

PVA solution (0.5% w/v) as an external aqueous phase using high-pressure homogenizer 

(Emulsiflex C30, Avestin, Ottawa, Canada) at a pressure of 10,000 psi for 5 min. The 

emulsion was collected by washing with another 100 mL 0.5% PVA. The DCM was 

evaporated under reduced pressure with constant stirring to obtain the NPs. Finally, NPs 

obtained as a suspension were then collected by centrifugation at 18500 rpm for 1 hr at 4 

ºC (Sorval® EvolutionRC, Kendro, USA), washed four times with distilled water, then 

lyophilized to obtain dry NPs (Freeze Dry System, Lyph.Lock 4.5, Labconco) and stored 
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at 4 ºC until further use. Ibuprofen loaded NPs were prepared in a similar manner to that 

of blank NPs using initial loading of 10% w/w of each polymer. Ibuprofen was first 

dissolved in the organic phase followed by dissolution of the polymer. The emulsification 

and purification steps procedure were repeated as before. 

 

2.4.4. Characterization of NPs 

2.4.4.1. Particle size and zeta ( ) potential measurements 

          The mean hydrodynamic diameters (dh) and the polydispersity indices (PDIs) of 

NPs were measured by DLS with a Malvern Autosizer 4800 instrument (Malvern 

Instruments, Worcestershire, UK) before and after lyophilization. For all samples, fresh 

NP suspensions (0.1 mL) or lyophilized NPs (1 mg) were diluted 10 times with Milli-Q 

Water. Measurements were taken at a fixed scattering angle of 90° and at 25° C. The 

CONTIN program was used to extract size distributions from the autocorrelation 

functions. Zeta-potential measurements of NPs suspended in 0.25% w/v saline solution 

(pH 7.4) were done on Malvern ZetaSizer Nanoseries ZS (Malvern Instruments, 

Worcestershire, UK). Both measurements were performed in triplicate 

2.4.4.2. Determination of residual PVA 

           A colorimetric analysis was used for determination of PVA amount remaining in 

the NPs. The method is simply based on the formation of a colored complex between two 

adjacent hydroxyl groups of PVA and an iodine molecule [11] . For surface associated 

PVA, certain weight of NPs was suspended in distilled water followed by vigorous 

vortexing for 10 min., then fixed volumes of all formulations were taken followed by 

addition of 5 mL of saturated solution of boric acid and 0.5 mL iodine (0.1 N), and the 
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volume was made up to 10 mL with distilled water. The absorbance of the formed 

complex was measured at 660 nm against similarly treated blank. Whereas for the total 

amount of PVA associated with the particles (amount entrapped inside the matrix as well 

as present on the surface), NPs were digested in 1 N NaOH then neutralized by 1 N HCl 

followed by stirring for 1 h and the volume was made up to 5 mL with distilled water. To 

this, 3 mL of saturated solution of boric acid and 0.5 mL iodine (0.1 N) were added, and 

the volume was made up to 10 mL with distilled water. The absorbance was measured as 

before. PVA actual amount was calculated by using a calibration curve of PVA prepared 

under the same conditions. 

 

2.4.4.3. NPs surface morphology and phase image analysis 

          Nanoscope IIIa Dimension 3100 atomic force microscope (Digital Instruments, 

Santa Barbara, CA, USA) was used to study both surface morphology and phase imaging 

of lyophilized NPs. Samples were prepared by deposition of particles suspension in Milli-

Q Water on freshly cleaved mica followed by air-drying for 10 min at room temperature. 

Topography and phase images of these samples were captured simultaneously using 

TappingModeTM etched silicon probes (TESP7) with tip radius of 5–10 nm, spring 

constant of 20–100 N/m and resonance frequency of 200–500 kHz. Cantilever length was 

125 m.  

 

2.4.4.4. Encapsulation efficiency (EE) 

           For ibuprofen loaded NPs of PLA homopolymer and PEG2.5%-g-PLA, weighed 

amount of NPs was digested in 1 N NaOH for 1 h. Ibuprofen concentration was measured 
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Amount of drug entrapped in NPs 

Initial amount of drug added 

% EE = 
X 100  (1) 

 

% LE = 
Total amount of NPs 

X 100  (2) 
 

Amount of drug entrapped in NPs 

by spectrophotometry at 264 nm (U-2001 UV/Visible spectrophotometer, Hitachi). 

While, for palmitic acid2.5%-g-PLA loaded NPs, weighed NPs were also suspended in 1 

N NaOH for 1 h to which chloroform was added followed by vigorous stirring for 

another 3 h to extract ibuprofen into the chloroform layer. Then, the chloroform layer was 

collected and ibuprofen concentration was measured by spectrophotometry at 263 nm. 

Percent encapsulation efficiency (% EE) and % actual loading efficiency (% LE) were 

calculated based on the following equations: 

 

 

 

 

 

 

 

 

 

 

2.4.4.5. Differential Scanning Calorimetry (DSC) 

          The thermal properties of polymers and drug in the physical mixture and NPs were 

characterized by DSC analysis (DSC 30, Mettler TA 4000, Schwerzenbach, Switzerland) 

with refrigerated cooling. Measurements were done (n =2) on all investigated samples. 

Physical mixtures were prepared by triturating polymer and ibuprofen in a ratio similar to 

drug loaded NPs. In brief, weighed samples were sealed in crimped aluminum pans with 
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lids and heated at a rate of 10 °C/min from -50 to 200 °C for polymers and physical 

mixtures, while for NPs the samples were heated from -50 to 90 °C  at the same heating 

rate. 

 

2.4.4.6. XPS analysis 

          X-ray photoelectron spectroscopy, XPS (VG Scientific ESCALAB MK II) with a 

monochromatized Mg Ka X-rays (hv 1253.6 eV) and an electron take off angle of 0º was 

used to study the surface chemistry of pure materials, polymers, blank, and drug-loaded 

NPs. A single survey scan spectrum (0–1000 eV) and narrow scans for C1s (210–305 eV) 

and O1s (525–550 eV) were recorded for each sample with a pass energy of 1 and 0.5 

eV, respectively. Acquisition and data analysis were performed by a VGS 5000 data 

system. Peak fitting of the C1s envelope was as described by Shakesheff et al [12].  

 

2.4.4.7. 1H NMR spectroscopy 

           50 mg of lyophilized NPs of each polymer was suspended in deuterium Oxide 

(D2O). 1H NMR spectra were recorded on a Brucker ARX 400 spectrometer (Bruker 

Biospin, Billerica, MA). Chemical shifts () were measured in parts per million (ppm) 

using tetramethylsilane (TMS) as an internal reference. 

 

2.4.4.8. Erosion study 

          Mass losses of  PLA (A), PEG2.5%-g-PLA (B), and Palmitic acid2.5%-g-PLA (C) 

NPs were done by  suspending 50 mg of NPs for each time interval in 10 mL PBS, pH 

7.4 at 37 ºC in shaking water bath. The study was terminated at 0, 5, 14, 25, 35 and 45 
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days. Samples were centrifuged (5000rpm, 10 min) at the end of each time interval. The 

residues were washed two times with water to remove phosphate buffer and lyophilized 

for 24 h. The final mass of NPs was determined at each time point. 

 

2.4.4.9. In vitro drug release study 

          NPs formulations prepared using different polymers were tested for in vitro release 

of ibuprofen in triplicates in phosphate buffered saline (PBS, 10 mM, pH 7.4.). 150 mg 

NPs were suspended in 3.5 mL PBS in a dialysis tubing (Spectra Por 1 membrane, 6–8 

kDa cut-off). This dialysis tubing was placed in a screw-capped tube containing 10 mL 

PBS. The tubes were shaken at 200 rpm on a horizontal water bath shaker (Orbit Shaker 

Bath, Labline) maintained at 37±0.5 ºC. At predetermined time intervals, the whole 

medium in the tube was withdrawn and replaced by fresh PBS to maintain sink 

conditions. The aliquots were assayed for the concentration of ibuprofen released by 

spectrophotometry at 262 nm. 

 

2.5. Results and discussion: 

2.5.1. Characterization of Polymers.  

          Gel permeation chromatography (GPC) was used to measure molecular weight and 

molecular weight distribution of the synthesized polymers. Results are shown in Table 

2.1. The polydispersity was calculated by the ratio of Mw to Mn from the GPC data. All 

the synthesized polymers exhibited uniform molecular weight distribution as revealed by 

the narrow polydispersity index values. Unimodal mass distribution ruled out the 

possibility of the presence of unreacted MePEG or palmitoyl chloride with Poly(D,L-
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lactide). Typical spectrum was obtained for PLA homopolymer with a characteristic peak 

at 5.2 ppm corresponding to the tertiary PLA proton (m, -CH), and another peak at 1.5 

ppm for the pendant methyl group of the PLA chain (m, -CH3) (spectrum not shown). 1H 

NMR spectra and chemical structures of PEG2.5%-g-PLA and palmitic acid2.5%-g-PLA 

polymers are shown in Figure 2.1. A characteristic peak at 5.2 ppm corresponding to the 

tertiary PLA proton (m, -CH) was observed. Another characteristic peak at 3.6 ppm for 

the protons of the repeating units in the PEG chain (m, OCH2-CH2O), a peak at 4.3 ppm 

for the PEG connecting unit to the PLA block (m, CH2-OCO), and a peak at 1.5 ppm for 

the pendant methyl group of the PLA chain (m, -CH3) were also observed. The grafting 

density of PEG over the PLA backbone was calculated by comparing the peak intensity 

ratios of PEG (3.6 ppm) to that of PLA (5.2 ppm). The actual PEG grafting density was 

found to be 2.3 % that is close to the initial feed ratio of PEG as shown in Table 2.1. For 

palmitic acid2.5%-g-PLA polymer, the signal observed at 1.2–1.3 ppm corresponds to the 

twelve hydrogens of the palmitate CH2. The signal at 0.8– 0.9 ppm is due to the 

palmitate CH3. Palmitate grafting density was calculated by comparing peak intensity 

ratio of palmitate CH3 (0.9 ppm) and PLA (5.2 ppm). The final palmitic acid grafting 

percentage was 1.02 % that is also close to the initial feed ratio as shown in Table 2.1.  

 

2.5.2. Particle size and size distribution 

          Dynamic light scattering (DLS) data showed unimodal distribution for freshly 

prepared and lyophilized NPs in all batches. Different blank formulations showed nearly 

similar particle size to that of loaded ones for all NPs types in the range of 120–200 nm 

(Table 2.2).  
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Table 2.1. Polymers characterization by 1H NMR, DSC, and Gel Permeation Chromatography (GPC). 
 

 

 

 

 

 

 

 

 

 This might indicate that drug loading had no observable effect on NPs size, suggesting 

that the size was mainly controlled by homogenization parameters during NPs 

preparation. Lyophilized palmitic acid2.5%-g-PLA NPs either blank or loaded seems to 

have larger hydrodynamic diameters than those obtained with PEG2.5%-g-PLA NPs as 

shown in Table 2.2. This could be explained by the fact that palmitic acid2.5%-g-PLA 

NPs is more hydrophobic compared to PEG2.5%-g-PLA NPs. The hydrophobic nature of 

the obtained particles might induce their aggregating tendency due to hydrophobic 

interactions. The aggregating tendency of palmitic acid2.5%-g-PLA NPs was confirmed 

later by AFM surface analysis (Fig. 2.2(c), left panel, T). While in PEG2.5%-g-PLA, the 

Polymer Mna Mwa Mw/Mna PEG/Palmitate   

(mol%)b 

Mn (1H NMR)b Tgc  

PLA 40,318 56,171 1.4 N/A N/A 46.4 ºC 

PEG2.5%-g-PLA 4706 5171 1.1 2.3 % 8209 50 ºC 

 

Palmitic acid2.5%-g-PLA 10,185 14,050 1.4 1.02 % 14,514 19 ºC  

N/A: not analyzed. 
a Determined by GPC analysis using narrow molecular weight polystyrene standards. 

a Mw/Mn =Polydispersity index of the polymers (PDI). 

b Calculated from peak intensity ratios of PEG (3.6 ppm) in PEG2.5%-g-PLA or palmitate  

CH3 (0.9 ppm) in palmitic acid2.5%-g-PLA and PLA (5.2 ppm) from 1H NMR data analysis. 
c Calculated from the second run of DSC as half of the extrapolated tangents in case of PLA  

and palmitic acid2.5%-g-PLA or as an endothermic peak in case of PEG2.5%-g-PLA. 
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 Figure 2.1. 1H NMR spectra and chemical structures of PEG2.5%-g-PLA (1), and palmitic acid2.5%-

g-PLA (2).  

 

polymer architecture will allow PEG chains to migrate freely towards the surface of NPs 

during NPs preparation by O/W emulsion method. This would create a steric barrier 

reducing NPs aggregating tendency.  
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2.5.3. Zeta ( ) potential measurements 

          PLA and palmitic acid2.5%-g-PLA blank NPs showed lower zeta potential (close 

to zero) values than expected, -3.5 mV and -0.4 mV, respectively. This low -potential 

for both NPs could be attributed to the effective adsorption of PVA on the surface of NPs 

as will be seen in the next section which could mask the surface charge of PLA and/ or 

palmitic acid in case of PLA and palmitic acid2.5%-g-PLA NPs, respectively. -Potential 

value of palmitic acid2.5%-g-PLA NPs were lower than PLA NPs and this might be due 

to higher amount of PVA adsorbed onto the surface (8.6 % w/w) compared to PLA NPs ( 

6.7 % w/w) (Table 2.2).  Loaded NPs of both polymers also showed low zeta potential 

values explained by the same reason. Zambaux et al. also obtained a low zeta potential 

value of -4 mV for PLA NPs prepared with PVA as an emulsifier [13]. PEG2.5%-g-PLA 

NPs had also low zeta potential and this could be attributed to shielding action of PEG on 

the surface charge. Similar results to ours were reported earlier by other authors [14-16]. 

Moreover, the greater reduction in zeta potential value of PEG2.5%-g-PLA NPs 

compared to other PEG-PLA NPs reported in the last cited references could be explained 

by the existence of PVA at the surface of NPs which played also a role in masking their 

actual surface charge. PEG2.5%-g-PLA NPs showed a remarkable adsorption of 5% w/w 

PVA onto their surface as shown in Table 2.2.  

 

2.5.4. Residual PVA 

          One of the drawbacks of NPs formulation using emulsion solvent evaporation 

method is the residual surfactant remaining in NPs suspension after particles precipitation 

in the aqueous phase. Residual surfactant becomes adsorbed onto the surface of freeze 
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dried nanoparticles irrespective of the number of washing steps performed to remove it. 

This might lead to alteration of NPs physicochemical properties such as particle size, 

hydrophilicity, release kinetics, cellular uptake, etc. [11]. PVA amount remained attached 

to the nanoparticles needed to be evaluated to detect whether they are affected by the 

composition and the architecture of the starting polymer or not. It could be seen that a 

different amount of PVA remained in all the formulations even after 4 washings (Table 

2.2). It was found that the highest amounts of PVA remained attached to NPs matrix were 

9.8 % and 6.8 % w/w for palmitic acid2.5%-g-PLA and PLA NPs, respectively (Table 

2.2). This might be attributed to the enhanced hydrophobic interaction between acetate 

group of PVA and the hydrophobic PLA matrix as reported before by other authors [11, 

17]. Similar findings were obtained before by other authors. When 1% w/v PVA was 

used as an external aqueous phase emulsifier, 5–6% w/w PVA remained attached within 

PLA NPs even after 3 washings [13]. PLGA NPs also exhibited a remarkable adsorption 

of 6.15% w/w PVA into their matrix when 5% w/v PVA solution was used as an 

emulsifier. Since palmitic acid2.5%-g-PLA is expected to be more hydrophobic than 

PLA so more interaction with acetate group of PVA might take place. PEG2.5%-g-PLA 

exhibited less PVA adsorption (5% w/w, Table 2.2) onto their surface and this might be 

due to their PEG content which offered a certain degree of hydrophilicity to the NPs 

matrix so a less favored interaction with PVA should be expected. PVA amount adsorbed 

at the surface of more hydrophilic PLGA microspheres was found to be less than PLGA 

microspheres [12]. Also, blank NPs showed similar amount of PVA adsorbed on their 

surfaces as loaded NPs indicating that drug loading had no apparent effect on the amount 

of PVA associated within the NPs matrix. An attempt was made to evaluate whether 
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PVA was present either inside the polymeric matrix or on the surface of the particles. 

Nearly the same amount of PVA was present in the given NPs formulations by both 

assays confirming that the amount of PVA was mainly associated with the surface of the 

particles (data not shown).  

 

2.5.5. Surface morphology and phase analysis 

          Tapping mode atomic force microscopy (TM-AFM) was used for analysis of 

surface morphology of NPs. TM-AFM revealed that both PLA and PEG2.5%-g-PLA NPs 

were spherical with smooth surfaces. While palmitic acid2.5%-g-PLA NPs seems to have 

some irregularities at their surface. This might indicated their aggregating tendency (Fig. 

2.2(c), left panel, T) confirming the size data obtained by DLS. Phase image analysis was 

done to investigate the surface chemistry of the obtained particles. It shows more 

sensitivity to material surface properties such as stiffness, viscoelasticity, and chemical 

composition [18-20]. Phase imaging is based on the use of changes in the phase angle of 

cantilever probe. Figure 2.2 shows TM-AFM topography (left panel, T) and their 

corresponding phase images (right panel, P) of PLA, PEG2.5%-g-PLA, and palmitic 

acid2.5%-g-PLA NPs, respectively. It is evident from Figure 2.2 that phase images 

displayed more contrast than the respective topographic images. Phase images of PLA 

NPs didn’t show any clear phase separation evidenced by no colour contrast was 

observed [Fig.2.2(a); right panel, P). On the other hand, PEG2.5%-g-PLA NPs showed 

the presence of an observable phase contrast at the surface of NPs revealed by some dark 

layers at the surface of bright cores [Fig.2.2(b); right panels, P]. PEG molecules of lower 

Mw 2000 (used in our study) have smaller Young’s modulus than PLA so they are 
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expected to be softer than PLA [21]. Those mechanical differences between PLA and 

PEG will result in such phase contrast. Thus, it was expected that PEG molecule will 

result into darker regions for PEG in the phase images. This was investigated before for 

poly(styrene-b-ethylene oxide) polymer films, where softer PEG segments appeared as 

darker regions embedded in lighter polystyrene domain [22]. The immiscibility of both 

PEG and PLA blocks would result in separation of both components during NPs 

formation. Thus, PEG2.5%-g-PLA NPs will be predominantly consisting of hydrophobic 

PLA cores surrounded by hydrophilic PEG chains on the surface (Figure 2.2(b), phase 

image, P). While, in case of palmitic acid2.5%-g-PLA (Fig.2.2(c), NPs appear as if they 

were collapsed together with some deformation. This might be due to energy dissipation 

during tip-sample interaction. The last finding could be explained on the basis of the soft 

nature of the polymer resulted from grafting palmitic acid over PLA backbone. Palmitate 

chains are expected to lower the chain rigidity of PLA domains evidenced by the lower 

Tg of the polymer (19 ºC) compared to PLA homopolymer (46.4 ºC ) as will be revealed 

from DSC data (Table 2.1). Another predisposing factor for palmitic acid-g-PLA NPs 

deformation by AFM tip is that they were dried at room temperature above their Tg (19 

ºC). This might favored the existence of the polymer chains in their mobile rubbery state. 

 

2.5.6. Encapsulation efficiency (EE) 

          As seen from Table 2.2, % EE of ibuprofen was found to be 36.6 % and 39.5 % for 

PEG2.5%-g-PLA, and palmitic acid2.5%-g-PLA NPs, respectively. No marked 

difference between both polymers ability to encapsulate the drug was detected. This 

might be due to small grafting density of each polymer since 2.5 % (mol of grafted subs. 



67 
 

/mol of lactic acid) might not be big enough to affect the loading level of PLA NPs. 

Another possible reason is  the larger surface area of the obtained NPs that resulted from 

the smaller particle size of either PEG2.5%-g-PLA (135 nm) or palmitic acid2.5%-g-PLA 

NPs (147 nm), readily result in higher drug diffusion to the aqueous phase and hence, 

limited drug loading (Table 2.2) [23]. Moreover, grafting palmitate over PLA backbone 

might decreased the density of the obtained NPs (evidenced by low Mw of palmitic 

acid2.5%-g-PLA compared to high Mw PLA, Table 2.1) leading to slower precipitation 

of NPs compared to the denser PLA and this might give a chance for the drug to diffuse 

freely into the aqueous phase.  

 

2.5.7. DSC 

           DSC was used to detect the effect of grafted substance of the used polymer on the 

thermal properties of NPs. DSC was also used for investigating any possible interaction 

between the drug and the polymeric matrix. PLA showed glass transition (Tg) at 46.4 °C 

(Table 2.1). Random grafting of PEG on the PLA backbone resulted in an increased Tg 

value (by about 4 °C) due to enhanced chain rigidity (Table 2.1 and Figure 2.3.a). For 

palmitic acid2.5%-g-PLA, the glass transition of the polymer was found to be 19 ºC with 

the existence of an endothermic peak at 58 ºC corresponding to the melting peak of the 

palmitic acid crystals (Table 2.2 and Fig.2.3.b). The melting endotherm of palmitic acid 

was shifted by 4 ºC lower compared to pure palmitic acid indicating the possibility of 

physical interaction (hydrophobic interaction) between the grafted palmitic acid group 

and PLA.  
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Table 2.2. Characteristics of different NPs formulation. 
 

 

 

 

 

 

 

 

 

 

 

Formulation Size (dh) before  

freeze drying  

(nm) a, d   

 PDI b Size (dh) after 

freeze drying  

(nm) a, d 

   PDI b        Actual 

loading 

(% w/w) d   

% EE c ,d Zeta  

potential  

(mV) a, d 

Surface  

adsorbed 

PVA 

(%w/w)  d 

PLA (*) 

 

184±20.8 0.13 161±18.4 0.01 N/A N/A -3.50 ±3.1 6.76±0.4 

 

PLA (**) 

 

194±30.0 0.08 162±22.3 0.09 4.50±0.2 45.0±2.2 -0.18 ± 3.2 6.80±0.2 

PEG2.5%-g-PLA (*) 

 

122±31.6 0.14 145±24.7 0.03 N/A N/A -1.30 ± 3.5 4.87±0.4 

PEG2.5%-g-PLA (**) 

 

135±22.9 0.11 135±32.7 0.01 3.56±0.1 36.6±1.5 -0.60 ± 3.9 5.00±0.7 

Palmitic acid2.5%-g-PLA (*) 

 

176±19.7 0.04 181 ±30.8 0.13 N/A N/A -0.40 ± 3.1 8.60±0.4 

Palmitic acid2.5%-g-PLA (**) 

 

147±22.4 0.06 183±22.2 0.12 3.86±0.2 39.5±0.7 -0.14 ± 3.7 9.80±0.5 

a median. 
b refers to polydispersity index. 
C refers to encapsulation efficiency. 
d All values indicate mean±S.D. for n=3 independent measurements. 

N/A: not analyzed. 

(*) refers to blank NPs (unloaded).              

(**) refers to Loaded NPs. 
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Figure 2.2. Tapping mode AFM images of NPs, left panel shows topography (T) and right 

panel shows corresponding phase images (P); all images are acquired in air. Scan size [400 

nm × 400 nm]; PLA (a), PEG2.5%-g-PLA (b), palmitic acid2.5%-g-PLA (c).  

(a) (b) (c) 

T PT T PP

PEG chains (dark layer) PLA chains (white core) 

 

 

 

 

 

 

 

 

 

 

 

  

 

Also, this might indicate that some of palmitate chains are embedded inside PLA domain 

lowering its chain rigidity evidenced by the lower Tg of the polymer (19 ºC) compared to 

PLA homopolymer (46.4 ºC). Fatty acid esters were found to have a remarkable 

plasticizing actions on PLA chains [24]. Ibuprofen showed an endothermic peak at 78 ºC 

corresponding to the melting of ibuprofen crystals (Fig.2.3.a). As shown in Fig. 2.3.a, 

DSC curve of PEG2.5%-g-PLA/ibuprofen physical mixture showed an endothermic peak 

corresponding to the glass transition (Tg) at ~ 50 ºC. The melting endotherm of ibuprofen 

crystals could also be detected at 74 ºC. The drug melting peak was shifted by 4 ºC lower 

with some broadening of the peak, indicating the possibility of an interaction between 

drug and polymer. After encapsulation of ibuprofen in the NPs, Tg was found to be 
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reduced by 15 ºC lower (~ 35 ºC) and this due to the effect of formulation parameters. 

Surprisingly, the melting endotherm of ibuprofen crystals could also be detected at 74 ºC 

with some broadening (Fig.2.3.a). For more verification, lyophilized loaded NPs were 

washed five times with water then centrifuged to remove the surface associated drug 

followed by their lyophilization. DSC scans were done again, surprisingly; the melting 

endotherrm of ibuprofen still exists. This might indicate the detected melting endotherrm 

is for encapsulated ibuprofen which was dispersed in a crystalline form (solid dispersion) 

not molecular dispersion into PLA matrix. Moreover, the shift and broadening of the 

melting peak also indicated that an interaction between the drug in its crystalline state and 

the polymer might take place. Similar observations were noticed with PLA (DSC figure 

not shown), and palmitic acid2.5%-g-PLA (Fig.2.3.b) in both physical mixtures and NPs 

with the consideration of different Tg for each investigated polymer. Similar finding to 

ours was obtained when lidocaine was embedded into PEG-PLGA nanospheres. 

Lidocaine exhibited an endothermic peak at lower temperature or broadened melting 

peak compared to lidocaine alone. The authors also suggested that there is an interaction 

between lidocaine and the polymeric carrier [25]. 

 

2.5.8. XPS analysis  

          Surface chemistry analysis of NPs prepared from both polymers was investigated 

by means of X-ray photoelectron spectroscopy (XPS) technique. It is possible to 

determine the surface chemical composition at a depth in the range of 1-10 nm. Any 

possible interaction between PLA and PVA at the surface of NPs could also be detected 

in that range. PVA polymer showed three main characteristic peaks corresponding to C-
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Figure 2.3.a. DSC curves of ibuprofen, physical mixture of PEG2.5%-g-PLA with ibuprofen, 

PEG2.5%-g-PLA polymer, and ibuprofen loaded NPs. Inset inside the figure shows clear 

thermograms for both physical mixtures and NPs, Ibuprofen melting peak is encircled. 

 

C/C-H (285 eV), C-OH (286.7 eV) and O-C=O (289 eV) components (Table 2.3). XPS 

spectrum of PEG showed one characteristic peak corresponding to ether carbons (286.5 

eV, Table 3). For PLA homopolymer, the best envelop fit was obtained using three main 

peaks corresponding to C-C/C-H (285 eV), C-OH (287 eV) and O-C=O (289 eV) (Table 

2.3) as previously reported [12]. Ibuprofen could not be experimentally analyzed because 

it sublimes under the high vacuum of the equipment. Theoretically, ibuprofen has two 

main characteristic peaks corresponding to C-C/C-H (285 eV), and O-C=O (289 eV) 

components (Table 2.3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heat 
Flow 
(W/g) 
  
E 
N 
D 
O 
T 
H 
E 
R 
m 
 

Temperature (ºC) 

-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0.5

-20 0 20 40 60 80 100

Ibuprofen ( mwt/mgm)

Physical mixture of Ibuprofen/
PEG2.5%-g-PLA (mwt/mgm)

PEG2.5%-g-PLA polymer
(mwt/mgm) 

PEG2.5%-g-PLA NPs (mwt/mgm)
-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

-20 0 20 40 60 80 100

Physical mixture 

NPs 



72 
 

Figure 2.3.b. DSC curves of ibuprofen, physical mixture of palmitic acid2.5%-g-PLA with 

ibuprofen, palmitic acid2.5%-g-PLA polymer, and ibuprofen loaded NPs. Inset inside the figure 

shows clear thermograms for both pure polymer and NPs. Ibuprofen melting peak is encircled. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It should be mentioned that for ibuprofen to be detected at the surface of loaded NPs, an 

increase in atomic percentages of both its characteristic peaks mainly C-C/C-H (285 eV) 

is expected to be found. Both ibuprofen loaded and blank NPs of PEG2.5%-g-PLA 

grafted polymer as well as the polymer itself showed the existence of PEG chains on the 
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surface as seen by the presence of a characteristic peak corresponding to ether carbons 

(286.5 eV, Table 2.4). However, the atomic % of PEG decreased when the polymer (9.5 

%) was formulated into NPs either blank (5.4 %) or loaded NPs (5 %) as shown in Table 

2.4. This might be due to surface adsorption of PVA in case of blank NPs as shown 

before in PVA analysis section. While in loaded NPs, both PVA and ibuprofen might be 

adsorbed at the surface of NPs as evidenced from the increase in atomic % of C-C (285 

eV) in case of loaded NPs (10.8%) compared to blank NPs (7.3 %) [Table 2.4]. Such an 

adsorption might decreases the PEG content at the surface. Also, it could be seen from 

Table 2.4 that the atomic % of C-C (285 eV) decreases from the polymer (10%) to blank 

(7.3%) and then increased again in case of loaded NPs (10.8%). This might be due to 

presence of more PLA chains collapsed inside the NPs core (oil phase) during NPs chain 

organization by O/W emulsion method with less existence of PLA and hence, the C-C 

functional component at the NPs surface. This C-C content lowering was compensated by 

drug adsorption (rich in C-C component) at the surface in case of loaded NPs.  Moreover, 

to get the best envelop fit of both NPs, two additional peaks had to be added 

corresponding to C-O-*C=O (287.6 eV) and *C-O-C=O (286.2 eV) components (Table 

2.4). These new peaks obtained in both types of NPs could be the result of chemical 

interaction between PLA-COOH end and PVA-OH during NP formation. The last finding 

also supports the effective masking of negative charge of these NPs by both PEG and 

PVA chains at the surface of such NPs as shown in Table 2.2. It was shown before that 

despite of several washing steps of the separated NPs pellets, there is always a fraction of 

PVA remains associated with the NPs and this has been attributed to the hydrophobic 

interactions between vinyl acetate segment of PVA and PLA/ PLGA core [11]. O-C=O 
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functional component (289 eV) was detected also in the XPS spectrum of the PEG2.5%-

g-PLA polymer, both its blank and loaded NPs. This might be due to the presence of 

COOH functional group in the polymer structure (Fig.2.1) or due to adsorption of PVA 

(partially hydrolyzed) and ibuprofen (weak acid) at the surface of blank and loaded NPs, 

respectively. In case of palmitic acid2.5%-g-PLA polymer and its both NPs types, there 

was a marked decrease in C-C components (285 eV) atomic % from the polymer (63.8%) 

to blank (49.1%) and then to loaded NPs (42.8%). This might be due to chain 

organization during NPs formation by O/W emulsion method in such a way that showed 

the migration of palmitate (hydrophobic chain) towards NPs core (oil phase) to avoid 

facing the external aqueous phase. This process might force palmitate chains to be 

embedded into NPs core and hence decreasing the C-C content at the surface. Although 

we expected an increase in the atomic % of C-C (285 eV) from blank to loaded NPs as 

shown before with PEG2.5%-g-PLA loaded NPs, a decrease in the atomic % (from 

49.1% to 42.8%) of that component was surprisingly detected and this might be to due to 

the possibility of hydrophobic interaction between ibuprofen and palmitic acid which 

forces the drug to be embedded inside the core of NPs. The last hypothesis was supported 

by another finding that the atomic % of O-C=O (289 eV) [also characteristic for the drug] 

was very low (2.2%) in case of loaded NPs (Table 2.4).  This indicates that some 

interaction might occur between the drug and polymer shielding the drug functional 

groups from the surface. It also should be mentioned that the existence of that functional 

gp, O-C=O (289 eV) in the polymer and blank NPs spectra (4.6% and 5.7%, respectively) 

might be due to COOH of both PLA and PVA (partially hydrolyzed), respectively. Also, 

the existence of two new peaks at C-O-*C=O (287.6 eV) and *C-O-C=O (286.2 eV) 
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might confirmed PVA interaction with PLA in such kind of polymer.  This finding was 

also supported by the high % residual PVA detected at the NPs surface as shown in Table 

2.4. 

 

 

 

 

 

2.5.9. 1H-NMR of NPs in D2O 

              1H-NMR analysis of NPs in D2O was done to confirm the core-corona structure of 

PEG2.5%-g-PLA NPs and compare it with palmitate2.5%-g-PLA NPs structure. 1H-

NMR spectra of PEG2.5%-g-PLA NPs in D2O showed presence of methylene protons of 

PEG chains at 3.6 ppm (Fig.2.4).  Signals from PLA methyl or methylene protons were 

absent or diminished in intensity. Also both signals corresponding to the twelve 

hydrogens of the palmitate CH2 and the palmitate CH3 were completely absent in 1H-

NMR spectra of palmitic acid2.5%-g-PLA.  

 
 

      Binding Energy  
(functional component) 

                     Atomic Percentage (%) 

Ibuprofen PLA PVA PEG 

285   (C-C) 92.4 22.3 37.1 - 

   286.5 (C-O) - - - 100 

   286.7 (C-O) - - 23 - 

   287     (C-O) - 28.9 - - 

   289 (O-C=O) 7.6 13.9 4.3 
 
- 

Table 2.3. Relative atomic percentages calculated from XPS Surface Analysis of pure 

materials used in NPs preparation. 

N.B: Relative percentage of each functional component is calculated from the area under the 
curve from their respective peaks in XPS analysis. 
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This might indicate that both PLA and palmitate protons are in solid environment and 

can't be detected whereas PEG chains must be in mobile state. Core-corona structure of 

PLA-PEG diblock NPs was confirmed before from 1H-NMR analysis of NPs in  D2O 

[26]. 1H-NMR analysis was also used to confirm poly-(ethylene glycol)-b-(styrene-r-

benzocyclobutene) block copolymer (PEG-b-(S-r-BCB) NPs formation after 

intramolecular cross-linking of the S-r-BCB block to form a linear-nanoparticle structure. 

1H-NMR spectra of NPs showed complete disappearance of the aliphatic 

benzocylobutene protons at 3.05 ppm upon formation of the cross-linked nanoparticles 

[27] . Our results are in accordance with the above-cited references suggesting NPs made 

 
 
 
B.E.  
(functional 
component) 

     Atomic Percentage (%) 

PEG2.5%-
g-PLA  
BK NPs 

PEG2.5%-g-
PLA  
LD NPs 

PEG2.5%-g-
PLA 
polymer 

Palmitate 
2.5%-g-
PLA  
BK NPs 

Palmitate 
2.5%-g-
PLA  
LD NPs 

Palmitate 
2.5%-g-
PLA 
polymer 

285 (C-C) 7.3 10.8 10.0 49.1 42.8 63.8 

286.2 (*C-O-C=O) 2.1 2.5 - 8.6 13.9 - 

286.5 (C-O) 5.4 5.0 9.5 - - - 

287.6 (C-O-*C=O) 4.2 3.5 - 5.3 5.0 - 

289 (O-C=O) 5.5 4.1 5.0 5.7 2.2 4.6 

Table 2.4. Relative atomic percentages calculated from XPS Surface Analysis of synthesized 

polymers and formulated NPs using those polymers.  

(B.E.) refers to the binding energy 
(BK) refers to blank NPs 
(LD) refers to loaded NPs 
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of PLA and PEG corona in case of PEG2.5%-g-PLA NPs. Thus, 1H-NMR analysis 

together with XPS data of NPs might indicate that hydrophilic polymer parts (PEG) are 

oriented towards the outer phase (water) during precipitation and NP hardening whereas 

the more lipophilic polyester (either PLA or PLA and palmitate) residues form the inner 

core. A schematic representation of different chain organization of NPs depending on 

both their polymer composition and polymer architecture is shown in Figure 2.5.  For 

PEG2.5%-g-PLA NP, enhanced phase separation of both components during NPs 

formation was observed as confirmed from AFM phase imaging, XPS and 1H-NMR data. 

Thus, easy migration of PEG chains towards the surface of NPs will be favored while the 

cores will be predominantly hydrophobic. On the contrary, palmitic acid2.5%-g-PLA 

NPs showed the migration of palmitate chains into PLA core avoiding facing the aqueous 

phase during NPs preparation. 

 

 

 

 

 

 

 

 

 

 

 

(1) 

(2) 

(3) 

Figure 2.4. 1H-NMR of blank NPs of PLA (1), palmitic acid2.5%g-PLA (2), and PEG2.5%-g-

PLA (3) in D2O. PEG peaks at 3.6 ppm are encircled.  
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2.5.10. Erosion study 

            This study was conducted to investigate the effect of polymer grafting on the in 

vitro degradation rate of PLA based NPs under conditions similar to physiological ones. 

Mass loss of copolymer in phosphate buffer started after 5 days for all the investigated 

NPs. A noticeable difference in mass loss is observed between PEG2.5%-g-PLA and 

Figure 2.5. Schematic representation of polymer chain organization inside the NPs: PLA (a),  

Palmitic acid2.5%-g-PLA (b), PEG2.5%-g-PLA (c).  
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palmitic acid2.5%-g-PLA NPs after 10 days of incubation. PEG2.5%-g-PLA exhibited 

faster erosion rate ~ 43 % compared to both PLA and palmitic acid2.5%-g-PLA NPs 

which showed slower rates around 17% and 32 %, respectively after 45 days. This pattern 

is shown in Figure 2.6. Mass loss of polyester copolymers is usually enhanced by ester 

hydrolysis and transesterification mechanisms [28]. NPs erosion was initiated by 

wateruptake followed by random hydrolytic chain scission of PLA block with release of 

lactide oligomers. The more hydrophilic PEG2.5%-g-PLA initially swells to a much 

greater degree than other polymers of lower hydrophilic content, allowing more water 

uptake into the matrix, further increasing the rate of hydrolysis and breakdown of NPs 

[29, 30]. Thus PEG grafting over PLA backbone was observed to increase the 

degradation rate of PLA. The possible reason that palmitic acid2.5%-g-PLA NPs showed 

faster degradation rates than PLA NPs is that palmitic acid2.5%-g-PLA polymer has 

lower Mw compared to PLA homopolymer (Table 2.1).  

 

2.5.11. In Vitro Drug Release. 

            One of the main purposes of this study is to compare and study the effect of the 

aqueous solubility of grafted substance over PLA backbone on drug release profiles from 

modified PLA NPs. Ibuprofen showed much more rapid release from solution than its 

release from the NPs indicating that drug diffusion through the dialysis bag was not the 

release rate-limiting step (Fig. 2.7). Different NPs formulations were compared for their 

in vitro release behavior as shown in Fig.2.7. It could be seen that all formulations 

exhibited biphasic release phenomenon.  
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A rapid initial burst release varied from 10 % to 20 % of their payload and this might be 

due to the immediate release of drug particles adsorbed at or near the surface of NPs [31]. 

This phase was followed by sustained release of the drug over 300 h. Drug release during 

that phase is mainly controlled by solubility of the drug in the matrix, diffusion of drug 

into the matrix, and matrix erosion [32, 33]. The physical state of the drug inside the NPs 

matrix might have an influence on the in vitro and in vivo release behaviour of the drug. 

DSC indicated that ibuprofen mostly exists in a crystalline state inside all NPs 

Figure 2.6. Erosion of different ibuprofen loaded NPs in phosphate buffer saline (PBS, 

pH 7.4) at 37 ºC. 
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irrespective of their polymer content. The last finding indicates that the main rate limiting 

step affecting drug release will be the dissolution of drug crystals into the polymeric 

matrix followed by their diffusion out of the matrix into the release media. This finding 

also confirmed the role of NPs core wetting in enhancing drug dissolution and hence drug 

release. PEG2.5%-g-PLA NPs showed faster drug release rates compared to other 

formulations and this could be attributed to their PEG content that might led to rapide 

core wetting  resulting in faster drug dissolution followed by its rapide diffusion and/or 

more enhancement of matrix erosion. On the other hand, palmitic acid2.5%-g-PLA NPs 

showed faster drug release compared to PLA NPs although the former is expected to be 

more hydrophobic and hence more interaction with drug will be favored. This is could be 

explained on the basis that PLA polymer had large molecular weight compared to 

palmitic acid2.5%-g-PLA polymer as shown before from GPC data (Table 2.1) and this 

might slow the process of matrix erosion [25]. Erosion study showed that PEG2.5%-g-

PLA NPs exhibited faster degradation rate (Fig. 2.6) than other NPs supporting the faster 

release behaviour exhibited by those NPs. These results showed that the hydrophilicity of 

the matrix is one of the major factors that markedly influence its hydration and, in turn, 

the drug release profile [34, 35]. It also should be mentioned that both erosion and release 

rates could be affected by the size of the particle tested. However, the small size 

differences between the three tested loaded batches (PLA, 162±22.3 nm), (PEG-g-PLA, 

135±32.7 nm), and (palmitic acid-g-PLA, 183±22.2 nm) might not be fully responsible 

for such big differences in both release and erosion.  
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2.6. Conclusion 

       NPs were fabricated using grafted copolymers of PLA with two grafted substances of 

different aqueous solubility. PEG2.5%-g-PLA NP and palmitic acid2.5%-g-PLA 

polymers were synthesized and fabricated into NPs. NPs were compared for the effect of 

Figure 2.7. Effect of PLA grafting on the in vitro release behavior of ibuprofen loaded NPs; 

 values are represented as mean ±S.D. of three independent experiments. 

. 
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the aqueous solubility of grafted substance of the polymer on their physicochemical 

properties. Mode of chain organization of each polymer was also investigated. Both AFM 

phase imaging and XPS studies showed the existence of PEG chains on the surface of 

PEG2.5%-g-PLA NPs. This resulted in rapide core wetting, faster degradation of the 

polymeric matrix and faster drug release from NPs. On the contrary, palmitic acid2.5%-

g-PLA NPs showed the existence of palmitate chains embedded inside NPs core. This 

organization affected some major physicochemical properties of NPs. Our future work 

will focus on studying the cellular uptake of rhodamine encapsulated NPs made from 

different architectures.  In brief, the aqueous solubility of grafted material over the 

polymer backbone is an important parameter controlling surface characteristics of NPs 

which in turn determine their physicochemical properties like % PVA adsorbed at the 

surface of NPs, zeta potential, thermal characteristic, NPs surface organization and drug 

release kinetics. 
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Physicochemical Properties of Poly(D,L-lactide) (PLA) based 
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3.1. Abstract:  

       The aim of the present study is to evaluate the effect of polyethylene glycol (PEG) 

chain organization on various physicochemical aspects of drug delivery from poly(D,L-

lactide) (PLA) based nanoparticles (NPs). To reach that goal, two different pegylated 

polymers of poly(D,L-lactide) (PLA) were synthesized. Polymers used in this study are 

grafted one in which PEG was grafted on PLA backbone at 7% (mol/mol of lactic acid 

monomer), PEG7%-g-PLA, and multiblock copolymer of both PLA and PEG, (PLA-

PEG-PLA)n with nearly similar PEG insertion ratio and the same PEG chain length. 

Blank and ibuprofen-loaded NPs were prepared from both polymers and their properties 

were compared to PLA homopolymer NPs as a control. Encapsulation efficiency of 

ibuprofen was found to be ~ 25% for (PLA-PEG-PLA)n NPs and ~ 80% for PEG7%-g-

PLA NPs. (PLA-PEG-PLA)n NPs either blank or loaded showed larger hydrodynamic 

diameter (~ 200 nm) than PEG7%-g-PLA NPs (~ 135 nm). A significant difference was 

observed in the amount of PVA associated with the surface of both NPs where 3.6 and 

0.4 % (wt/wt) were found on the surface of PEG7%-g-PLA and (PLA-PEG-PLA)n NPs, 

respectively. No observed difference in zeta potential values for both NPs formulations 

was found. DSC showed the existence of the drug in a crystalline state inside NPs matrix 

irrespective of the type of polymer used with either shifting or/ and broadening of the 

drug melting endotherm. Both AFM phase imaging and XPS studies revealed the 

possibility of existence of more PEG chains at the surface of grafted polymer NPs than 

(PLA-PEG-PLA)n during NPs formation. The in vitro release behavior showed that 

(PLA-PEG-PLA)n NPs exhibited faster release rates than PEG7%-g-PLA NPs. The 
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physicochemical differences obtained between both polymers were probably due to 

different chain organization during NPs formulation. Such pegylated NPs made from 

these two different polymers might find many applications, being able to convert poorly 

soluble, poorly absorbed substances into promising drugs, improving their therapeutic 

performance, and helping them reach adequately their target area. Our results suggest that 

the properties of pegylated PLA-based NPs can be tuned by proper selection of both 

polymer composition and polymer architecture. 

 

3.2. Keywords 

        Poly(D,L-lactide), polymer architecture, graft polymers, multiblock, chain 

organization, X-ray photoelectron spectroscopy ( XPS), atomic force microscopy (AFM) 

phase imaging. 

 

3.3. Introduction: 

          Over the past few decades, there has been an intensive research on the development 

of biodegradable nanoparticles (NPs) as a suitable means for controlled drug release and 

targeting [1-3] Nanoparticles (NPs) are colloidal systems that vary in size from 10 to 

1000 nm. The drug is either dissolved, entrapped, encapsulated or attached to a 

nanoparticle matrix [4]. Poly(lactic acid) (PLA) or poly(lactide-co-glycolide) (PLGA) 

have been widely used to fabricate NPs owing to excellent biocompatibility, 

biodegradability and high encapsulation capability for hydrophobic drugs. However, 

uptake of such naked NPs by the reticuloendothelial system after intravascular 

administration presented a major problem for achieving effective targeting to specific 
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sites in the body other than liver and spleen [5]. Therefore, the design of long-circulating 

NPs or stealth NPs has emerged as an attempt to escape recognition by phagocytic cells 

of the blood. The most commonly used strategy for designing stealth NPs is reliant upon 

introducing flexible hydrophilic coat onto hydrophobic surfaces, shielding them against 

plasma protein adsorption, which is the first step of particle clearance mechanism by 

blood phagocytes. Covalently grafted PEG strategy was proven stable and more 

successful than physical adsorption of PEG containing surfactants onto NPs surface.  

Generally, covalent copolymers of PLA (A) and PEG (B) can be divided into single-sided 

grafted defined as grafted or diblock copolymer (A-B) and double-sided grafted denoted 

as triblock copolymer (A-B-A) or multiblock copolymer (A-B-A)n. Many attempts have 

been made in the past to fabricate NPs using diblock copolymers of either PLA-PEG or 

PLGA-PEG [3, 6]. Up to now, however, relatively fewer studies have focused on grafted 

pegylated and multiblock copolymers of PLA and PEG. In this study we are 

hypothesizing that it is difficult for hydrophilic PEG domains of multiblock copolymer 

NPs to move freely towards NPs surface as PEG-g-PLA NPs. The major objective of this 

study was first to optimize NPs formulation using two pegylated polymers of different 

PEG chain organization, one is grafted, PEG7%-g-PLA and the second is multiblock 

copolymer of PLA and PEG, (PLA-PEG-PLA)n. Second to study the effect of PEG chain 

organization on the physicochemical properties of the obtained NPs. Poly (lactic acid) 

(PLA) homopolymer was proposed as the hydrophobic control in our study. Ibuprofen 

was used as a model lipophilic drug to be encapsulated by PLA and PEG-modified PLA 

NPs. NPs were formulated using emulsion-solvent evaporation method and poly(vinyl 
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alcohol) (PVA) was  mainly used as an emulsifier to stabilize the emulsion droplets since 

it aids the formation of relatively small sized particles with uniform size distribution [7].  

 

3.4. Material and methods:  

 

3.4.1. Materials: 

          D,L-dilactide, poly(ethylene glycol) methyl ether (MePEG; 2000 Da), 

poly(ethylene glycol) (PEG, 1500 Da), allyl glycidyl ether, tetraphenyltin, polyvinyl 

alcohol (PVA, average Mw 9000-10,000 Da, 80% hydrolyzed), succinic acid, 1-ethyl-3-

[3-dimethylaminopropyl]-carbodiimide (EDC), 4-dimethylaminopyridine (4-DMAP), 

pyridine, acetone, chloroform, diethyl ether, and N,N-dimethylformamide were 

purchased from Aldrich Chemical Company Inc., Milwaukee, USA. Ibuprofen was 

obtained from Medisca Pharmaceutical Inc., Montreal, Quebec, Canada. Sodium 

hydroxide pellets were purchased from Anachemia Canada Inc. and dichloromethane 

(DCM) was purchased from Laboratoire Mat Inc., Montreal, Quebec, Canada.   

 

3.4.2. Synthesis of Polymers.  

          The homopolymer poly(D,L)-lactide (PLA) was synthesized by ring-opening 

polymerization of dilactide in argon atmosphere, using tetraphenyltin as the catalyst. 

Bulk polymerization was carried at 180 °C for 6 h in a round-bottom flask and purged 

thoroughly with argon. The obtained polymer was dissolved in acetone and then purified 

by precipitating in water.  
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    Polymer with poly(ethylene glycol)-grafted randomly on poly(D,L)-lactide at 7% 

grafting density , PEG7%-g-PLA (PEG; Mw 2000 Da) was synthesized in the laboratory 

as reported earlier by our group [8]. Multiblock copolymer, (PLA-PEG-PLA)n was also 

synthesized as previously reported [9] using PEG with Mn of 1500 and succinic acid was 

used as condensing agent to link triblock copolymers. (PLA-PEG-PLA)n was synthesized 

to yield a PEG (1500)/lactic acid monomer ratio of 7% (mol/mol).  1H NMR spectra were 

recorded on a Brucker ARX 400 spectrometer (Bruker Biospin, Billerica, MA). Chemical 

shifts () were measured in parts per million (ppm) using tetramethylsilane (TMS) as an 

internal reference. Gel permeation chromatography (GPC) was performed on a Water 

Associate chromatography system (Waters, Milford, MA) equipped with a refractive 

index detector and a Phenomenex Phenogel 5  column. Polystyrene standards were used 

for calibration with THF as the mobile phase at a flow rate of 0.6 mL/min.   

 

3.4.3. Preparation of nanoparticles (NPs) 

          NPs were prepared by an (O/W) emulsion-solvent evaporation method. It should be 

mentioned that NPs could not be prepared using the multiblock copolymer alone due to 

its low molecular weight as revealed by GPC data (Table 3.1); hence, a 1:1 mixture of 

PLA and multiblock copolymer was used for the preparation of NPs. For blank NPs, each 

polymer or polymer blend in case of multiblock (1 g) was dissolved in 35 mL DCM and 

emulsified in 100 mL PVA solution (0.5% w/v) as an external aqueous phase using high-

pressure homogenizer (Emulsiflex C30, Avestin, Ottawa, Canada) at a pressure of 10,000 

psi for 5 min. The emulsion was collected by washing with another 100 mL of 0.5% 

PVA. The DCM was evaporated under reduced pressure with constant stirring to obtain 
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the NPs. Finally, NPs obtained as a suspension were then collected by centrifugation at 

41.340 g for 1 hr at 4 ºC (Sorval® EvolutionRC, Kendro, USA), washed four times with 

distilled water, then lyophilized in the presence of 5 % w/v sucrose as a cryoprotectant to 

obtain dry NPs (Freeze Dry System, Lyph.Lock 4.5, Labconco) and stored at 4 ºC until 

further use. Ibuprofen loaded NPs were prepared in a similar manner to that of blank NPs 

using initial loading of 10% wt/wt of each polymer. Ibuprofen was first dissolved in the 

organic phase followed by dissolution of the polymer. The emulsification and purification 

steps procedure were repeated as before. 

 

3.4.4. Characterization of NPs 

 

3.4.4.1. Particle size and size distribution 

             Size and size distribution of NPs were measured by dynamic light scattering 

(DLS) with a Malvern Autosizer 4800 instrument (Malvern Instruments, Worcestershire, 

UK) before and after lyophilization. For all batches, fresh NP suspensions (0.1 mL) or 

lyophilized NPs (1 mg) were diluted 10 times with Milli-Q Water and size measurements 

were performed at 25 ºC and scattering angle of 90º. The CONTIN program was used to 

extract size distributions from the autocorrelation functions. Measurements were 

performed in triplicate. 

 

3.4.4.2. NPs surface morphology and phase image analysis 

              Surface morphology and phase imaging of NPs were studied using Nanoscope 

IIIa Dimension 3100 atomic force microscope (Digital Instruments, Santa Barbara, CA, 
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USA). Samples were prepared by deposition of particles suspension in Milli-Q Water on 

freshly cleaved mica followed by air-drying. Topography and phase images of these 

samples were captured simultaneously using TappingModeTM etched silicon probes 

(TESP7) with tip radius of 5–10 nm, spring constant of 20–100 N/m and resonance 

frequency of 200–500 kHz. Cantilever length was 125 µm. A set-point ratio (rsp, ratio of 

engaged oscillation amplitude to free air oscillation amplitude) between 0.5 and 0.7 

(moderate tapping mode) was used for all topographic and phase images unless otherwise 

stated. 

 

3.4.4.3. Zeta ( ) potential measurements 

             NPs were suspended in 0.22 µm filtered 0.25% (w/v) saline solution and -

potential was measured on Malvern ZetaSizer Nanoseries ZS (Malvern Instruments, 

Worcestershire, UK) in triplicate. 

3.4.4.4. Encapsulation efficiency (EE) 

            A weighed amount of NPs was digested in 1 N NaOH for 1 h. Ibuprofen 

concentration was measured by spectrophotometry at 264 nm (U-2001 UV/Visible 

spectrophotometer, Hitachi). Percent encapsulation efficiency (% EE) and % drug 

loading (% DL) were calculated based on the following equations: 
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Amount of drug entrapped in NPs 

Initial amount of drug added 

% EE = X 100  (1) 
 

% DL = 
Total amount of NPs 

X 100  (2) 
 

Amount of drug entrapped in NPs 

 

 

 

 

 

 

 

 

 

 

3.4.4.5. Determination of residual PVA 

              The amount of PVA remaining in the NPs was determined by a colorimetric 

method based on the formation of a colored complex between two adjacent hydroxyl 

groups of PVA and an iodine molecule [7] . First to determine the surface associated 

PVA, certain weight of NPs was suspended in distilled water followed by vigorous 

vortexing for 10 min., then fixed volumes of all formulations were withdrawn followed 

by addition of 5 mL of saturated solution of boric acid and 0.5 mL iodine (0.1 N), and the 

volume was made up to 10 mL with distilled water. The absorbance of the formed 

complex was measured at 660 nm against similarly treated blank. Whereas for the total 

amount of PVA associated with the particles (amount entrapped inside the matrix as well 

as present on the surface), NPs were digested in 1 N NaOH then neutralized by 1 N HCl 

followed by stirring for 1 h and the volume was made up to 5 mL with distilled water. To 

this, 3 mL of saturated solution of boric acid and 0.5 mL iodine (0.1 N) were added, and 
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the volume was made up to 10 mL with distilled water. The absorbance was measured as 

above. The amount of PVA was calculated by using the calibration curve of PVA 

prepared under the same conditions. 

 

3.4.4.6. Differential Scanning Calorimetry (DSC) 

             The thermal properties of the pure polymers, physical mixtures of ibuprofen with 

each polymer, and NPs were characterized by DSC analysis (DSC 30, Mettler TA 4000, 

Schwerzenbach, Switzerland) with refrigerated cooling. The purge gas was purified 

nitrogen at a pressure of 20 psi. For pure polymers, weighed samples were sealed in 

crimped aluminum pans with lids using an empty pan as a reference and were heated at a 

rate of 10 °C/min from -50 to 200 °C (two runs), while for NPs the samples were heated 

from -50 to 90 °C (two runs) at the same heating rate.  

 

3.4.4.7. XPS analysis 

             Surface chemistry of pure materials, polymers, blank, and drug-loaded NPs was 

characterized by X-ray photoelectron spectroscopy (VG Scientific ESCALAB MK II) 

with a monochromatized Mg Ka X-rays (hv 1253.6 eV) and an electron take off angle of 

0º. A single survey scan spectrum (0–1000 eV) and narrow scans for C1s (210–305 eV) 

and O1s (525–550 eV) were recorded for each sample with a pass energy of 1 and 0.5 

eV, respectively. Acquisition and data analysis were performed by a VGS 5000 data 

system. Peak fitting of the C1s envelope was as described by Shakesheff et al [10].  
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3.4.4.8. 1H NMR spectroscopy 

               A weighed amount of nanoparticles lyophilized in presence of sucrose (50 mg) 

was suspended in 10 mL distilled water, centrifuged (5000rpm, 10 min). The residues 

were washed three times with water to remove sucrose (cryoprotectant) that might show 

any interference during 1H NMR analysis of NPs. Then, NPs were lyophilized for 24 h. 

Relyophilized NPs were suspended in deuterium Oxide (D2O). 1H NMR spectra were 

recorded on the same machine used before for analysis of synthesized polymers. 

 

3.4.4.9. Erosion study 

             Erosion (mass loss) studies of (A) PLA, (B) PEG7%-g-PLA, and (C) (PLA-PEG-

PLA)n NPs were done by  suspending 50 mg of NPs for each time interval in 10 mL 

PBS, pH 7.4 at 37 ºC in shaking water bath. The study was terminated at 0, 5, 14, 25, 35 

and 45 days. Samples were centrifuged (5000rpm, 10 min) at the end of each time 

interval. The residues were washed two times with water to remove phosphate buffer and 

lyophilized for 24 h. The final mass of NPs was determined at each time point. 

 

3.4.4.10. In vitro drug release study 

               Loaded formulations prepared using different polymers were tested for in vitro 

release of ibuprofen in triplicates in phosphate buffered saline (PBS, 10 mM, pH 7.4.). 

150 mg NPs were suspended in 3.5 mL PBS in a dialysis tubing (Spectra Por 1 

membrane, 6–8 kDa cut-off). This dialysis tubing was placed in a screw-capped tube 

containing 10 mL PBS. The tubes were shaken at 200 rpm on a horizontal water bath 

shaker (Orbit Shaker Bath, Labline) maintained at 37±0.5 ºC. At predetermined time 
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intervals, the whole medium in the tube was withdrawn and replaced by fresh PBS to 

maintain sink conditions. The aliquots were assayed for the concentration of ibuprofen 

released by spectrophotometry at 262 nm. 

 

3.5. Results and discussion: 

 

3.5.1. Characterization of Polymers.  

       1H NMR spectroscopy and gel permeation chromatography (GPC) were used to 

measure the number average (Mn) and weight average molecular weights (Mw) of the 

synthesized polymers. The polydispersity was calculated by the ratio of Mw to Mn from 

the GPC data. All the synthesized polymers exhibited uniform molecular weight 

distribution as revealed by the narrow polydispersity index values (Table 3.1). Unimodal 

mass distribution ruled out the possibility of the presence of unreacted MePEG or 

Poly(D,L-lactide) in case of PEG7%-g-PLA. The results are summarized in Table 3.1. 

Typical 1H NMR spectrum was obtained for PLA homopolymer with a characteristic 

peak at 5.2 ppm corresponding to the tertiary PLA proton (m, -CH), and another peak at 

1.5 ppm for the pendant methyl group of the PLA chain (m, -CH3). Moreover, the 

integration ratio of those two characteristic peaks was 3:1 that is also a characteristic 

feature for the protons of PLA homopolymer (data not shown).1H NMR spectra and 

chemical structures of PEG7%-g-PLA, and (PLA-PEG-PLA)n polymers are shown in 

Figure 3.1. Also typical spectrum for PEG7%-g-PLA was obtained with a peak at 5.2 

ppm corresponding to the tertiary PLA proton (m, -CH), a peak at 3.6 ppm for the 

protons of the repeating units in the PEG chain (m, OCH2-CH2O), a peak at 4.3 ppm for 
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the PEG connecting unit to the PLA block (m, CH2-OCO), and a peak at 1.5 ppm for the 

pendant methyl group of the PLA chain (m, -CH3). While, for the multiblock copolymer, 

an additional peak could be seen at around 2.7 ppm corresponding to the protons of the 

succinic acid group (m, CH2-COO) used to link the triblock chains during multiblock 

synthesis. The actual PEG insertion ratio of PEG7%-g-PLA, and (PLA-PEG-PLA)n was 

calculated by comparing the peak intensity ratios of PEG (3.6 ppm) to that of PLA (5.2 

ppm). The final PEG insertion ratio in both polymers was close to the initial feed ratio as 

shown in Table 3.1.  

 

3.5.2. Particle size and size distribution 

          Particle size distribution by dynamic light scattering (DLS) showed unimodal 

distribution for freshly prepared as well as lyophilized NPs. Freshly prepared (PLA-PEG-

PLA)n NPs either blank or loaded showed larger hydrodynamic diameter (~ 200 nm) 

than PEG7%-g-PLA NPs (~ 132 nm) as shown in Table 3.2. The last finding could be 

attributed to the difference in PEG chain organization during NPs formation between 

both formulations. In PEG7%-g-PLA, PEG chains are expected to be more mobile 

creating a steric barrier around PLA core preventing particle aggregation. While, for 

multiblock copolymer, the polymer architecture allows some PEG chains to be embedded 

inside PLA core leaving some uncovered areas at the surface that might showed some 

aggregating tendency due to hydrophobic interactions. Moreover, the higher PEG content 

of multiblock copolymer (8.9 %, Table 3.1) might favor the swelling of NPs in aqueous 

media to a much degree than PEG7%-g-PLA NPs which contains lower PEG ratio (4.1 

%, Table 3.1).  
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Table 3.1. Polymers characterization by 1H NMR, DSC, and Gel Permeation Chromatography (GPC).  

 

 

 

 

 

 

 

Blank formulations showed nearly similar particle size to that of loaded ones for all NPs 

types in the range of 135–200 nm (Table 3.2). Thus, drug loading level had no apparent 

effect on particle size, suggesting that the size was largely controlled by the 

emulsification process during NPs preparation. Also, it could be noticed that the size of 

most lyophilized NPs after resuspension into Milli-Q Water was smaller with narrow 

polydispersity compared to the freshly prepared NPs suspension. The possible reason 

behind that is the tendency of freshly prepared PLA particles particularly pegylated ones 

to uptake water, allowing more swelling of the NPs matrix [11, 12], further increasing the 

size of the particles. While, after lyophilization, the size of the particles was reduced due 

to shrinkage of the swollen cores after removal of entrapped water by sublimation.  The 

Polymer Mna Mwa Mw/Mna PEG insertion  

(mol%)b 

Mn (1H NMR)b Tgc 

PLA 40318 56171 1.4 N/A N/A 46.4 ºC 

PEG7%-g-PLA 3752 8392 2.2 4.1 % 8336 53 ºC 

(PLA-PEG-PLA)n 3508 3982 1.2 8.9 % 3780 39 ºC 

N/A: not analyzed. 
a Determined by GPC analysis using narrow molecular weight polystyrene standards. 
a Mw/Mn =Polydispersity index of the polymers (PDI). 
b Calculated from peak intensity ratios of PEG (3.6 ppm) and PLA (5.2 ppm) by 1H NMR. 
c Calculated from the second run of DSC as half of the extrapolated tangents in case of PLA  

and (PLA-PEG-PLA)n or as an endothermic peak in case of PEG7%-g-PLA . 
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Figure 3.1. 1H NMR spectra and chemical structures of PEG7%-g-PLA, and multiblock copolymer,  

(PLA-PEG-PLA)n. 

 

narrow polydispersity values indicate the ability of the used cryoprotectant used (sucrose) 

to prevent particle aggregation. It was previously reported that cryoprotectants could 

efficiently prevent NPs aggregation and protect them against the mechanical stress of ice 

crystals due to the immobilization of nanoparticles within their glassy matrices [13]. 

Particle size distribution data by DLS were also supplemented with a visual method like 

tapping mode AFM as will be revealed in the next section.  
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3.5.3. Surface morphology and phase analysis 

          Tapping mode atomic force microscopy (TM-AFM) is a versatile technique, which 

allows probing soft samples such as biological and polymeric materials [14, 15]. TM-

AFM surface analysis revealed that all lyophilized NPs were nearly spherical with 

smooth surface and displayed less aggregating tendency with a size range 100- 200 nm 

(Fig. 3.2, left panels, T) confirming the size data obtained by DLS. Phase image analysis 

using the same (TM-AFM) was done on NP samples to visually examine PEG chains at 

the surface of pegylated NPs. Phase imaging is based on the use of changes in the phase 

angle of cantilever probe. This image shows more contrast than the topographic one as 

well as more sensitivity to material surface properties such as stiffness, viscoelasticity, 

and chemical composition [14, 16, 17]. Figure 3.2 shows TM-AFM topography (left 

panel, T) and their corresponding phase images (right panel, P) of PLA, PEG7%-g-PLA, 

and multiblock copolymer, respectively acquired at moderate tapping force. It can be 

seen that PLA particles had nearly homogenous surface without any clear phase 

separation [Fig. 3.2(a); right panel, P). Therefore, no contrast was observed in phase 

images of PLA NPs. On the other hand, both pegylated NPs showed the presence of an 

observable phase contrast at the surface of NPs that varies in degree from grafted to 

multiblock [Fig. 3.2(b, and c); right panels, P]. This might be due mechanical differences 

between PLA and PEG that result in such phase contrast. PEG molecule is expected to be 

softer than PLA since PEG molecules of lower Mw 2000 or 1500 (used in our study) have 

smaller Young’s modulus than PLA [18]. Thus, it was expected that PEG molecule will 

appear as darker regions in the phase images due to negative phase shift. This has already 

been shown before for poly(styrene-b-ethylene oxide) polymer films, where softer PEG 
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segments appeared as darker regions embedded in lighter polystyrene domain [19]. In the 

case of PEG7%-g-PLA, highly intense dark coat surrounds the surface of brighter core 

could be seen indicating the existence of hydrophilic PEG chains around hydrophobic 

PLA chains that represents the core. The immiscibility of these two blocks should result 

in separation of both components during NPs formation. Thus, grafted copolymer NPs 

will be predominantly consisting of hydrophobic PLA cores surrounded by hydrophilic 

PEG chains on the surface (Figure 3.2 b, phase image, P). In the case of the (PLA-PEG-

PLA)n multiblock copolymer, few dark regions are found at the surface of NPs without 

complete coverage of the surface as seen with grafted polymer. This might be due to the 

peculiar architecture of the polymer itself that mainly consist of PEG chain covalently 

linked with two PLA chains. This might affect mobility of PEG chains towards the 

aqueous phase of the O/W emulsion during NPs formation. It was shown before in a 

previous study that multiblock copolymers of PLA and PEG exhibited enhanced 

miscibility of the two blocks compared to grafted copolymers [20].  

 

 

3.5.4. Encapsulation efficiency (EE) 

          As seen from Table 3.2, % EE of ibuprofen was found to be 25.3 % and 79.7 % for 

multiblock and PEG7%-g-PLA NPs, respectively. PEG7%-g-PLA showed better % EE 

than multiblock copolymers. The last finding could be attributed to the enhanced steric 

hindrance of the more mobile PEG chains at NPs surface in the case of the grafted 

copolymers, thus reducing premature diffusion of ibuprofen into the external aqueous 

phase during solidification of the NPs. This was confirmed before by AFM phase 
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imaging where PEG chains were found to completely cover the entire NPs surface. The 

higher encapsulation efficiency obtained with PEG7%-g-PLA may have significant 

implications on the feasibility of development of PLA–PEG nanoparticluate formulations 

optimized with regard to both the longer circulation behavior and the drug loading 

properties by judicious selection of both the composition and the suitable architecture of 

the nanoparticles. Thus, the obtained data suggest that it is possible to prepare 

nanoparticles with low PEG content, which would generate favorable conditions for the 

entrapment of a hydrophobic drug, without compromising the prolonged blood 

circulation properties of the nanoparticles.  

 

3.5.5. Zeta ( ) potential measurements 

          Although zeta potential measurements didn’t show big differences between 

different formulations but two findings worthy of note were observed in Table 3.2 : 1) 

PLA showed low zeta potential (close to zero) values than expected, -3.5 mV. This lower 

-potential for NPs could be attributed to the effective adsorption of PVA on the surface 

of NPs as will be seen in the next section which could mask the surface charge of PLA. 

Zambaux et al. also obtained a low zeta potential value of -4 mV for PLA NPs prepared 

with PVA as an emulsifier [21]. 2) Pegylated polymers either grafted or block had also 

low zeta potential values for both blank and loaded NPs as shown in Table 3.2. This 

could be attributed to the shielding action of PEG on the surface charge even if most of 

PEG chains were found embedded into the NPs matrix as in case of multiblock 

copolymer. Since some of the PEG chains would be present at the surface, the copolymer 

might also keep its stealth behavior. Similar results to ours were reported earlier by other 
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authors [9, 22, 23]. Moreover, the greater reduction in zeta potential values of pegylated 

NPs compared to other PEG-PLA NPs reported in the last cited references could be 

explained by the existence of a fraction of PVA at the surface of NPs which played also a 

role in masking their actual surface charge (Table 3.2). It also should be mentioned that 

zeta potential measurements were done again in 0.5 mM NaCl solution in order to clearly 

find significant differences between different NPs formulations. However, nearly similar 

zeta potential values to the ones observed with 0.25 % w/v NaCl were obtained (data not 

shown).   

 

3.5.6. Residual PVA 

           It is widely reported that although the several washing steps of nanoparticles, yet 

some residual surfactant remains in the suspension and becomes adsorbed onto surface of  

freeze dried nanoparticles and this might lead to alteration of their physicochemical 

properties such as particle size, hydrophilicity, release kinetics, cellular uptake, etc. [7]. 

So, one of our goals was to evaluate the amount of PVA remained attached to the 

nanoparticles and whether they are affected by different PEG chain organization of the 

polymer or not. It was observed that a variable amount of PVA remained in all the 

formulations even after 4 washings (Table 3.2). An attempt was made to evaluate 

whether PVA was present either inside the polymeric matrix or on the surface of the 

particles. Nearly the same amount of PVA was present in the given NPs formulations by 

both assays confirming that the amount of PVA was mainly associated with the surface of 

the particles (data not shown). It was found that the highest amount of PVA remained 

attached to NPs matrix was 6.7 % wt/wt for PLA NPs (Table 3.2). This might be 
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attributed to the enhanced hydrophobic interaction between acetate group of PVA and the 

hydrophobic PLA matrix as reported before by other authors [7, 24]. This result is in 

accordance with other previous studies by other authors. Sahoo et al.[7] have determined 

6.15% wt/wt PVA remaining associated within PLGA NPs matrix when they used 5% 

PVA solution as external aqueous phase. Another study done by Zambaux et al. showed 

also that 5–6% wt/wt PVA remained attached within  PLA NPs after 3 washings when 

1% PVA was used as an external aqueous phase [21]. For all the other pegylated 

polymers either graft or block, they exhibited less adsorption of PVA than PLA NPs as 

shown in Table 3.2. This might be due to the PEG content which offered a certain degree 

of hydrophilicity to the NPs matrix so a less favored interaction with PVA should be 

expected. Similar results were obtained before where the amount of adsorbed PVA 

decreased with increased PEG content within the NPs matrix [10]. Multiblock copolymer 

NPs showed less PVA adsorption ~ 0.5 % compared to PEG7%-g-PLA which showed ~ 

3.5 % wt/wt. The reason behind that is the possibility of a chemical interaction between 

PVA-OH and PLA-COOH and this interaction might be less favored in case of 

multiblock copolymer NPs as will be revealed by XPS data. Also, blank NPs showed 

similar amount of PVA adsorbed on their surfaces as loaded NPs indicating that drug 

loading had no apparent effect on the amount or the orientation of PVA within the NPs 

matrix.  

 

3.5.7. DSC 

          DSC was used to detect the effect of molecular structure of the used polymer on 

the thermal properties of NPs. Moreover, DSC was also used for detecting the state of the 
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Table 3.2. Characteristics of different NPs formulation. 

encapsulated drug inside the NPs matrix as well as investigating any possible interaction 

between the drug and the polymeric matrix. PLA showed glass transition (Tg) at 46.4 °C 

(Table 3.1). Grafting PEG on the PLA backbone resulted in an increased Tg value (by 

about 7 °C) due to enhanced chain rigidity (Table 3.1 and Fig. 3.3.a).  

 

 

 

 

 

 

 

 

 

Formulation Size before 

freeze 

drying (nm)
a, d   

     PI b Size after  

freeze drying 

(nm) a, d 

   PI b        Actual 

 loading 

(% wt/wt) d   

% EE c ,d Zeta  

potential  

(mV) a, d   

Surface 

associated  

PVA 

(%wt/wt) d   

PLA BK e 

 

184±20.8 0.13 161±18.4 0.01 N/A N/A -3.5 ±3.1 6.76±0.40 

PLA LD f 

 

194±30.0 0.08 162±22.3 0.09 4.5±0.22  45±2.24   -0.18 ± 3.2 6.80±0.20   

PEG7%-g-PLA BK e 

 

132±28.0 0.16 166±30.5 0.01 N/A N/A -2.2 ± 3.0 3.57±0.60 

PEG7%-g-PLA LD f 

 

145±34.0 0.07 137±82.1 0.04 7.9±0.04  79.7±0.56  -0.2 ± 3.1 3.79±0.50  

(PLA-PEG-PLA)n  BK e 

 

202±21.2 0.01 168±42.1 0.01 N/A N/A -1.0± 3.5 0.40±0.50   

(PLA-PEG-PLA)n  LD f 199±19.8 0.10 158±31.9 0.02 2.5±0.12  25.3±1.20  -0.24 ± 3.2 0.70±0.60  

N/A: not analyzed. 
a median                         
b refers to polydispersity index.                                C refers to encapsulation efficiency. 

d All values indicate mean±S.D. for n=3 independent measurements for the same particle preparation. 
e Blank NPS               f Loaded NPS 

N.B: (PLA-PEG-PLA)n consists of 1:1 mixture of PLA: (PLA-PEG-PLA)n. 
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Figure 3.2. Tapping mode AFM images of NPs, left panel shows topography (T) and right panel  

shows corresponding phase images (P); all images are acquired in air. PLA (a) [Scan size: 1 µm 

×1 µm], PEG7%-g-PLA (b) [Scan size: 2 µm×2 µm], and (PLA-PEG-PLA)n (c) [Scan size: 750 

nm×750 nm]. 
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Similar findings were previously reported for hyperbranched polymers and dendrimers 

over their linear chain analogues [25]. However, multiblock copolymer showed lower Tg 

values at 39 °C, compared to grafted polymer (Table 3.1 and Figure 3.3.b). This might be 

attributed to their actual higher PEG content 8.9 mol % and/or low molecular weight as 

compared to the grafted polymers (Table 3.1). Also, this might indicate the presence of 

some PEG chains inside the core of PLA. The high PEG content embedded inside PLA 

chains might enhance the chain mobility of PLA due to its plasticization effect on PLA 

chains resulting in a lower Tg, as reported earlier [26, 27]. Thus, the effect of branching 
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was predominant for PEG grafting over PLA backbone, whereas the possibility of PEG 

chains entrapment inside PLA domains might lead to a predominant plasticizer effect. 

Ibuprofen showed an endothermic peak at 78 ºC corresponding to the melting of 

ibuprofen crystals (Fig. 3.3.a, and b). As shown in Fig. 3.3.a, DSC curve of PEG7%-g-

PLA/ibuprofen physical mixture showed an endothermic peak corresponding to the glass 

transition (Tg) at ~ 52 ºC. The melting endotherm of ibuprofen crystals could also be 

detected at 74 ºC. The drug melting peak was shifted by 4 ºC lower with some 

broadening of the peak, indicating the possibility of a weak interaction between the drug 

and the polymer. After encapsulation of ibuprofen into the NPs, Tg was found to be~ 20 

ºC, which might be due to process formulation parameters. Surprisingly, the melting 

endotherm of the drug was clearly observed with also some broadening of its melting 

peak (Fig. 3.3.a). This phenomenon has been related recently to the size of the 

nanocrystals obtained after the process of encapsulation [28]. For more verification of the 

final state of ibuprofen inside NPs, x-ray diffraction analysis (XRD) was carried out for 

ibuprofen loaded NPs and compared to both pure ibuprofen crystals and physical mixture 

of the polymer with the drug having the same ratio as in NPs. Ibuprofen loaded NPs 

showed the presence of crystalline ibuprofen but with slight reduction in the intensity of 

its diffraction peaks (Figure 3.S in the supporting information). XRD data confirmed 

DSC findings. Similar observations were also noticed with (PLA-PEG-PLA)n, in both 

physical mixtures and NPs with the consideration of different Tg for multiblock 

copolymer ~ 39 °C (Fig.3.3.b). Similar finding to ours was obtained when lidocaine 

embedded into PEG-PLGA nanospheres. Lidocaine exhibited an endothermic peak at 
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Figure 3.3.a. DSC curves of ibuprofen, physical mixture of PEG7%-g-PLA with ibuprofen, PEG7%-g-

PLA polymer, and ibuprofen loaded NPs. Inset inside the figure shows clear thermogram for NPs.  
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lower temperature or broadened melting peak compared to lidocaine alone. The authors 

also suggested that there is an interaction between lidocaine and the polymeric carrier [2]. 
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Figure 3.3.b. DSC curves of ibuprofen, physical mixture of (PLA-PEG-PLA)n with ibuprofen, (PLA-

PEG-PLA)n polymer, and ibuprofen loaded NPs. Inset inside the figure shows clear thermograms for 

both physical mixtures and NPs. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.8. XPS analysis  

          XPS analysis was done to investigate the surface chemistry of NPs prepared from 

different polymers and to detect any possible interaction between PLA and PVA on their 

surface. XPS spectrum of PEG showed one characteristic peak corresponding to ether 

carbons (286.5 eV, Table 3.3). PVA polymer showed three main characteristic peaks 
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corresponding to C-C/C-H (285 eV), C-OH (286.7 eV) and O-C=O (289 eV) components 

(Table 3.3). For synthesized PLA homopolymer, the best envelop fit was obtained using 

three main peaks corresponding to C-C/C-H (285 eV), C-OH (287 eV) and O-C=O (289 

eV) (Table 3.3). Similar results were obtained before with Shakesheff et al.[10]. 

Ibuprofen could not be experimentally analyzed since it was found to sublime under the 

high vacuum of the equipment. Based on theoretical estimation, ibuprofen has two main 

characteristic peaks corresponding to C-C/C-H (285 eV), and O-C=O (289 eV) 

components (Table 3.3). 

 

 

 

 

  

It should be mentioned that for ibuprofen to be detected at the surface of loaded NPs, an 

increase in atomic percentages of both its characteristic peaks mainly C-C/C-H (285 eV) 

is expected to be found. Both ibuprofen loaded and blank NPs of PEG7%-g-PLA grafted 

 
 
 

Binding Energy 
(functional component) 

Atomic Percentage (%) 

Ibuprofen PLA PVA PEG 

285   (C-C) 92.4 22.3 37.1 - 

286.5 (C-O) -  - - 100 

286.7 (C-O) - - 23 - 

287     (C-O) - 28.9 - - 

289 (O-C=O) 7.6 13.9 4.3 
 
- 

Table 3.3. Relative atomic percentages calculated from XPS Surface Analysis of pure 

materials used in NPs formulation. 

N.B: Relative percentage of each functional component is calculated from the area under the 
curve from their respective peaks in XPS analysis. 
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polymer as well as the polymer itself showed the existence of PEG chains on the surface 

as seen by the presence of a characteristic peak corresponding to ether carbons (286.5 eV, 

Table 3.4). However, the atomic % of PEG decreases from the polymer (16.9 %) to blank 

(11.8%) then to loaded NPs (8%) as shown in Table 3.4. This might be due to adsorption 

of PVA in case of blank NPs. While in loaded NPs, both PVA and ibuprofen might be 

adsorbed at the surface of NPs as evidenced from the increase in atomic % of C-C (285 

eV) in case of loaded NPs (18.6%) compared to blank NPs (13.1%) [Table 3.4]. Such an 

adsorption might decrease the PEG content at the surface. Also, it could be seen from 

Table 3.4 that the atomic % of C-C (285 eV) decreases from the polymer (18%) to blank 

(13.1%) and then increased again in case of loaded NPs (18.6%). This order might be due 

to chain organization during NPs formation by O/W emulsion method in such a way that 

PLA chains (rich in C-C) will be collapsed inside the oil droplets (internal phase) while 

PEG chains will be facing the external aqueous phase. Oil droplets tend to form the 

internal NPs core upon organic solvent removal and particle precipitation. This process 

will lower PLA chains and hence, C-C content at the NPs surface. This C-C content 

lowering was compensated by drug adsorption (also rich in C-C component as shown in 

Table 3.3) at the surface in case of loaded NPs as stated before.  Moreover, to get the best 

envelop fit of both NPs, two additional peaks had to be added corresponding to C-O-

*C=O (287.6 eV) and *C-O-C=O (286.2 eV) components (Table 3.4). These new peaks 

obtained in both types of NPs could be the result of chemical interaction between PLA-

COOH end and PVA-OH during NP formation. The last finding also supports the 

effective masking of negative charge of these NPs by both PEG and PVA chains at the 

surface of such NPs as shown in Table 3.2. The increase in atomic % of O-C=O (289 eV) 
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from the polymer (5%) to both blank and loaded NPs (7.1% and 6.9%, respectively) 

might be due to PVA (partially hydrolyzed) and ibuprofen (weak acid) adsorption at the 

surface of blank and loaded NPs types, respectively. This O-C=O (289 eV) component 

was also detected in the XPS spectrum of the polymer itself due to the presence of COOH 

functional group in the polymer structure (Fig.3.1). On the other hand, both drug loaded 

and blank NPs of (PLA-PEG-PLA)n polymer as well as the polymer itself showed also 

the existence of PEG chains on the surface as evidenced from the presence of the same 

characteristic peak corresponding to ether carbons of PEG (286.5 eV, Table 3.4). 

However, the atomic % of PEG was markedly decreased upon NPs formation compared 

to grafted polymer. PEG atomic % detected in the polymer was (31.2%) compared to 

blank (13%) and loaded NPs (11.6%). Taking into account that minimal amount of PVA 

was detected at the surface of multiblock NPs (~ 0.5% wt/wt, Table 3.2), so the last 

finding indicates that only a small fraction of the total PEG content of the multiblock 

copolymer exists at the surface of NPs while the remaining PEG chains might be 

entrapped inside NPs core. This could be also due to chain organization during NPs 

formation by O/W emulsion method in such a way that showed the difficulty of PEG 

chains migration towards the surface of NPs.  In fact the peculiar architecture of the 

multiblock copolymer (PLA-PEG-PLA)n shows that PEG chains are covalently linked 

between two neighboring PLA chains. That is why PEG chains are not easy to orientate 

towards the surface of NPs facing the aqueous phase and most of them is orientated or 

stretched more towards the core. AFM phase images of multiblock copolymer showed 

the existence of few PEG chains at the surface of NPs compared to grafted polymer 

confirming XPS findings (Fig.3.2). Moreover, no additional peaks were needed to 
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complete the fit indicating the absence of PLA interaction with PVA in multiblock 

copolymer NPs. This might be due to the lower number of free COOH end components 

available for reaction with PVA-OH components in multiblock copolymer NPs in 

contrast to grafted polymers. Since multiblock copolymer has been synthesized by the 

condensation of triblock copolymer, the number of available COOH components was 

expected to be low. The last hypothesis was supported by the lower atomic % of O-C=O 

(289 eV) component at the surface of the polymer (2.1 %), blank (2.3 %), and loaded NPs 

(3.2 %), respectively. The atomic % of C-C (285 eV) was detected in the XPS spectrum 

of blank NPs in a similar value to that of the polymer (19%) due to presence of some 

PLA chains (rich in C-C) at the NPs surface since PEG doesn’t cover the NPs surface 

completely. While, the increase in atomic % of C-C components (285 eV) in case of 

loaded NPs (21.8%) confirms the possibility of drug existence at the surface of NPs. 

 

3.5.9. 1H-NMR of NPs in D2O 

              1H-NMR analysis was done on NPs in attempt to investigate the core-corona 

structure of pegylated NPs. 1H-NMR spectra of all pegylated NPs in D2O showed 

presence of methylene protons of PEG chains at 3.6 ppm (Fig.3.4).  Signals from PLA 

methyl or methylene protons were absent or diminished in intensity. This might indicate 

that PLA protons are in solid environment and can't be detected whereas PEG chains 

must be in mobile state. 1H-NMR analysis for PLA-PEG diblock NPs confirmed their 

core-corona structure [29]. Similar finding was obtained for NPs made from comb 

polyesters of PVA-g-PLGA in water showing  reduced signal intensity of the more 

hydrophobic PLGA chains compared to hydroxyl terminated end groups of PVA [30].  
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Our results are in accordance with the above-cited reference suggesting NPs made of 

PLA core and PEG corona. Thus, 1H-NMR analysis of NPs might indicate that 

hydrophilic polymer parts (PEG) are oriented towards the outer phase (water) during 

precipitation and NP hardening whereas the more lipophilic polyester PLA residues form 

the inner core. However, these studies are not quantative to comment whereas all the 

PEG chains constitute the corona and to determine the amount of PEG exactly at the 

surface for both grafted and block pegylated NPs. 

                                                                                                                                                                                                                             

 
 
 
 

B.E.  
(functional 
component) 

Atomic percentage (%) 

PEG7%- 
g-PLA  
BK NPs 

PEG7%-
g-PLA LD 
NPs 

PEG7%-
g-PLA 
polymer 

(PLA-
PEG-
PLA)n BK 
NPs 

(PLA-
PEG-
PLA)n 
LD NPs 

(PLA-
PEG-
PLA)n 
polymer 

285 (C-C) 13.1 18.6 18 19 21.8 19.2 

286.2 (*C-O-C=O) 10.1 10.4 - - - - 

286.5 (C-O) 11.8 8 16.9 13 11.6 31.2 

287.6 (C-O-*C=O) 7.1 6.9 - - - - 

289 (O-C=O) 7.1 6.9 5 2.3 3.2 2.1 

(B.E.) refers to the binding energy 
(BK) refers to blank NPs 
(LD) refers to loaded NPs 
 

Table 3.4. Relative atomic percentages calculated from XPS Surface Analysis of 

synthesized polymers and formulated NPs using those polymers.  
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3.5.10. Erosion study 

             This study was conducted to investigate the effect of PEG chain organization on 

the degradation rate of PLA based NPs under conditions similar to physiological ones. 

Mass loss of copolymer in phosphate buffer started after 5 days for all the investigated 

NPs. Pegylated NPs showed faster degradation rates (30 %,  and  44 % for PEG7%-g-

Figure 3.4. 1H-NMR of blank NPs of PLA (1), PEG7%-g-PLA (2), and (PLA-PEG-PLA)n 

(3) in D2O. PEG peaks at 3.6 ppm are encircled.   

 



119 
 

PLA, and (PLA-PEG-PLA)n, respectively) compared to PLA NPs which showed slower 

degradation rates around 12% after 25 days. This pattern is shown in Figure 3.5. Ester 

hydrolysis and transesterification mechanisms are both responsible for mass loss of 

polyester copolymers [31]. NPs erosion was initiated by water uptake followed by 

random hydrolytic chain scission of PLA block with release of lactide oligomers. So it 

might be expected that the more hydrophilic polymer initially swells to a much greater 

degree than other polymers of lower hydrophilic content, allowing more water uptake 

into the matrix, further increasing the rate of hydrolysis and breakdown of NPs [11, 32]. 

Cleavage of the ester bonds between the PLA-PEG backbone leads to free PEG units that 

will be formed and diffuse out of the matrix. With the loss of PEG from the backbone, 

degradation of the matrix is dominated by PLA with an increase of the internal matrix-

surface in contact with water leading to higher degradation rates than that of 

homopolymer [33]. The faster degradation rate of (PLA-PEG-PLA)n NPs (44%) 

compared to PEG7%-g-PLA (30%) after 25 days emphasizes the rapid core (PLA) 

wetting in the multiblock copolymer NPs. This might be due to entrapment of most of 

PEG chains into the NPs core while in case of grafted PEG7%-g-PLA polymer, most of 

PEG was found to be at the surface of NPs as shown before by AFM phase imaging and 

XPS studies.  

 

3.5.11. In Vitro Drug Release. 

             In order to study the effect of PEG chain organization on drug release profiles 

from different PLA NPs, ibuprofen loaded NPs were compared for their in vitro release 

behavior as shown in Fig. 3.6. It could be seen that all formulations exhibited biphasic  
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release phenomenon. After 8 h of NPs immersion into the release medium, a rapid initial 

burst of ibuprofen varied from 20 % to 53 % of the drug content was clearly observed in 

all batches. This finding might be due to the desorption of the drug particles adsorbed at 

or close to the surface of NPs [34] followed by sustained release of the drug over 300 h. 

This second sustained release phase would mainly depend on both drug diffusion and the 

Figure 3.5. Erosion of different ibuprofen loaded NPs in phosphate buffer saline (PBS,  

pH 7.4)  at 37 ºC. 
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matrix erosion that was a slower process [35, 36]. In such case, the effects of porosity of 

the nanoparticles on the release property should be verified. As mentioned above in 

experimental section, that we used 5% w/v sucrose as cryoprotectant to prevent NPs 

aggregation during lyophilization. Such higher concentration was found to have pore 

blocking action particularly surface pores, an effect caused by the precipitation of 

cryoprotectant on nanoparticle surface [37]. So, we expected that NPs porosity might 

have a minor effect on ibuprofen release from NPs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3.6. Effect of PEG chain organization on the in vitro release behavior of ibuprofen  

loaded NPs; values are represented as mean ±S.D. of three independent experiments. 
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Thus, the last hypothesis might support that the slow release of drug might be mainly 

controlled by both solubility of the drug in the matrix and matrix erosion mechanism. The 

physical state of the drug inside the NPs matrix was investigated before using DSC since 

this would have an influence on the in vitro and in vivo release characteristics of the 

drug. DSC indicated that ibuprofen exists in a crystalline state inside all NPs irrespective 

of their polymer content. The last finding indicates that the main rate limiting step 

affecting drug release will be the dissolution of drug crystals into the polymeric matrix 

followed by their diffusion out of the matrix into the release media. This finding also 

confirmed the role of NPs core wetting in enhancing drug dissolution and hence drug 

release. Thus, the polymer that favors more water uptake and hence rapid core wetting 

would facilitate drug dissolution and hence faster drug release. The release pattern for all 

NPs formulations showed good correlation coefficient (R2 was close to 1) when fitted to 

Higushi square root equation of diffusion (data not shown) indicating that release will be 

mainly dominated by the diffusion of the solubilized drug crystals through the NPs 

matrix with some contribution from degradation decreasing in importance upon 

increasing the molecular weight of the polymer [36]. It could be seen that multiblock 

copolymers NPs showed faster drug release compared to PEG7%-g-PLA NPs. The 

possible reason behind that is the peculiar polymer architecture of the multiblock 

copolymer allows a major portion of PEG to be entrapped inside the core during NP 

formation as revealed from XPS and phase imaging data and hence, rapide wetting of the 

core will take place compared to grafted NPs. When PEG7%-g-PLA NPs are suspended 

into the release medium, a major fraction of PEG will be migrated easily towards the 

surface while the cores will be predominantly hydrophobic. In case of multiblock, a 
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considerable amount of PEG is expected to be embedded into the PLA core due to the 

covalent linkage of PEG with two PLA blocks as stated before which might hinder PEG 

chains to be migrated towards the surface. The hydrophilicity of the matrix is one of the 

major factors that markedly influence its hydration and, in turn, the drug release profile 

[38, 39].  Multiblock copolymer NPs were shown in the last section to erode faster than 

PEG7%-g-PLA NPs confirming the faster release rate obtained with such NPs. Another 

previous study showed that multiblock copolymers of PEG and PLA exhibited faster drug 

release compared to their PLA homopolymer and the authors attributed this also to the 

marked hydrophilic properties of multiblock copolymers [40, 41]. These results showed 

that core wetting is an important factor influencing the drug release kinetics. A schematic 

representation of different NPs chain organization depending on both their polymer 

composition and architecture is shown in Figure 3.7. This difference in chain 

organization was found to have an effect on the release kinetics of the encapsulated drug 

from NPs. Generally speaking, our results suggest the possibility of use of such pegylated 

NPs as drug carrier for poorly soluble drugs. Also, they could have the potential of 

targeting the encapsulated drugs into certain tissues depending on their ability to circulate 

for longer periods of time without being recognized by the immune system. It should also 

be mentioned that the use of multiblock copolymer would facilitate the encapsulation of 

hydrophilic drugs into their NPs matrix due to the formation of small pockets of PEG that 

might create an aqueous phase embedded inside a hydrophobic polymeric matrix. 
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3.6. Conclusion 

       NPs were fabricated using novel copolymers of PEG-modified PLA polymers with 

different PEG chain organization. Both AFM phase imaging and XPS studies showed the 

existence of PEG chains on the surface of grafted pegylated NPs. Both studies also 

showed that multiblock copolymer displayed less amount of PEG on the surface due to 

Figure 3.7. Schematic representation of polymer chain organization inside the NPs: PLA (a), 

PEG7%-g-PLA (b), and multiblock copolymers (PLA-PEG-PLA)n (c).  
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the possibility of PEG chains interpenetration inside the PLA core of NPs. This resulted 

in lower Tg, rapid degradation of the polymeric matrix, and faster drug release from NPs. 

On the contrary, grafted pegylated copolymer showed enhanced immiscibility of both 

PEG and PLA blocks resulting in enhanced phase separation of both components during 

NPs formation and hence, easy migration of PEG chains towards the surface of NPs 

while the cores will be predominantly hydrophobic. Our future work will focus on 

studying the cellular uptake of rhodamine encapsulated NPs made from different 

polymers with different PEG chain organization.  In brief, the way PEG chain organized 

onto PLA backbone is an important parameter controlling surface characteristics of NPs 

which in turn determine their physicochemical properties like encapsulation efficiency, % 

PVA adsorbed at the surface of NPs, zeta potential, thermal characteristic, and drug 

release kinetics. 

3.7. Appendix A. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at 

doi:10.1016/j.ejpb.2010.03.002 
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Figure 3.S (supporting information): XRD spectra of ibuprofen, physical mixture of PEG7%-

g-PLA with ibuprofen, PEG7%-g-PLA polymer, and ibuprofen loaded NPs. 
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4.1. Abstract: 

       In our previous study, PEG-g-PLA nanoparticles were developed and characterized. 

The aim of the present work is to investigate the effect of PEG grafting density (% PEG 

inserted onto poly(D,L)-lactide, PLA backbone) on both physicochemical and biological 

properties (mainly plasma protein binding and in vitro macrophage uptake) of PEG-g-

PLA NPs. Rhodamine B (RHO) loaded NPs were prepared from a 1:1 (wt/wt) blend of 

PLA and PEG-g-PLA copolymer of varying PEG grafting density (1, 7, or 20 % mol/mol 

of lactic acid monomer) by an o/w emulsion solvent evaporation method. These NPs 

were characterized with regard to their morphology, size, surface charge, loading 

efficiency, and rhodamine release. The extent of protein adsorption to the surface of 

different NPs was qualitatively investigated by dynamic light scattering technique. 

Additionally, the in vitro macrophage uptake following incubation of RAW 264.7 cells 

with rhodamine loaded PEG-g-PLA and PLA particles was investigated by confocal laser 

scanning microscopy (CLSM). The amount of NPs phagocytosed following incubation of 

RAW 264.7 cells with different concentrations of rhodamine loaded PLA or pegylated 

NPs for 24 h at 37 °C was also determined by fluorescence spectroscopy. ALL 

lyophilized NPs showed larger diameter in the range of 300–400 nm compared to freshly 

prepared NPs suspension indicating particle aggregation upon lyophilization. % EE of 

rhodamine was found to be between 10% and 68% wt/wt depending on PEG grafting 

density. The higher the grafting density of PEG over PLA backbone, the more the 

entrapment efficiency. All pegylated NPs showed low zeta potential (close to zero) 

values. In vitro release analysis revealed that rhodamine leaked from all nanoparticles at a 

very slow rate at physiological pH, thus making it suitable for both imaging and uptake 

studies with RAW 264.7 cells. All PEG-g-PLA NPs of different PEG grafting density 

were well tolerated and exhibited no toxicity to RAW 264.7 cells as seen by cell 

proliferation assays. Cellular uptake of NPs was mainly dependent on polymer type as 

well as PEG grafting density. Grafted copolymer NPs resulted in lower degree of 

macrophage uptake compared to PLA NPs in macrophages cell lines. The higher the PEG 

grafting density, the lower the uptake of NPs by macrophage cells. Minimum NPs uptake 

for all the investigated concentrations was achieved when the PEG grafting density was 

7% mol/mol of lactic acid. When increasing the PEG grafting density in the nanoparticles 
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above 7 %, no significant reduction in NPs phagocytosis was achieved. Thus, this study 

shows that the optimal PEG density required for designing stealth PEG-g-PLA NPs 

suitable for drug delivery applications might vary from 4-7%. 

 

4.2. Keywords  

Nanoparticles, PEG-PLA, grafting density, rhodamine, macrophage, plasma proteins. 

 
4.3. Introduction 
 
        Biodegradable nanoparticles are promising carriers to improve the administration of 

certain drugs, vaccines, nucleic acid and therapeutic proteins [1-4]. Benefits offered by 

biodegradable nanoparticles include improved therapeutic efficiency, enhanced 

protection of the active moiety from degradation, maintenance of drug concentrations 

within acceptable therapeutic limits, the need for fewer doses thus reducing dose-limiting 

side effects, prolonged biological activity, and finally better patient compliance [5, 6]. 

       Poly(lactic acid) (PLA) or poly(lactide-co-glycolide) are the most widely used 

polymers in drug delivery systems. However, NPs formulated using either PLA or PLGA 

might suffer many drawbacks as their rapid uptake by the reticuloendothelial system after 

intravascular administration, low drug loading efficiency, inability to encapsulate a wide 

range of drugs particularly hydrophilic drugs, and in many cases inability to release their 

payload completely [7]. Low drug incorporation of PLGA and PLA usually leads to large 

drug loss during NP formulation, and hence, encapsulating insufficient drug amounts for 

therapeutic efficacy [8, 9]. The former situation necessitates the use of high polymer 

levels that might exceed their safety profile. Another drawback of PLGA and PLA is that 

an initial burst release of drug can be observed in most loaded NPs, which may result in a 

loss of much of the therapeutic dose before the target site is reached by the NPs [10, 11].  

With these drawbacks of PLGA/PLA, a novel biodegradable polymer, PEG-g-PLA was 

early developed by our group [12]. Our previous work focused mainly on the 

development and characterization of functionalized poly(D,L)-lactide (PLA) 

nanoparticles in order to improve the drug delivery behavior of PLA nanoparticles [13, 

14]. Functionalized poly(D,L)- lactide (PLA) nanoparticles development mainly depend 

on  introducing a flexible moiety onto PLA hydrophobic cores in attempt to improve the 
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drug delivery properties of the obtained NPs. A variety of pendant substituents could be 

grafted onto PLA to generate polymers of different physicochemical properties and hence 

different drug incorporation behavior than PLA itself.  In the same work, we have 

reported the development and characterization of PEG-g-PLA NPs with some optimal 

properties ideal for drug delivery applications. Those properties were uniform size with 

narrow size distribution (~150-200 nm), neutral surface charge, higher encapsulation 

efficiency, and finally their ability to control the release of the entrapped model drug, 

ibuprofen for a period of two weeks.         

     In this part, we are attempting to study the effect of PEG grafting density over PLA 

backbone on the properties of PEG-g-PLA NPs either physicochemical or biological 

properties mainly in vitro plasma protein adsorption and macrophage cellular uptake. 

Another aim is to investigate the optimal PEG grafting density required to develop stealth 

particles from such type of grafted copolymers. In order to reach these goals, we prepared 

NPs encapsulating rhodamine B (RHO) as a fluorescent marker using grafted pegylated 

polymer; PEG-g-PLA with different PEG grafting densities (1, 7, or 20% mol/mol of 

lactic acid monomer). RHO was loaded into NPs in order to have labeled formulations 

suitable for investigating the cellular uptake of NPs by macrophage cell lines, RAW 

264.7. It is important that the marker used is incorporated into the NPs at a sufficient 

level to give good detection by the used analytical methods. Thus, a 1:1 wt/wt blend of 

PLA: PEG-g-PLA of different PEG density was used to efficiently entrap RHO into NPs 

matrix. An o/w emulsion solvent evaporation method was used to prepare RHO loaded 

NPs.  RHO should remain associated with the NPs so that we follow the fate of the NPs 

rather than the marker itself. Accordingly the drug incorporation and release of the 

marker from NPs were determined.   

 

4.4. Material and methods 

 

4.4.1. Materials 

          D,L-Lactide, poly(ethylene glycol) methyl ether (MePEG; 2000 Da), allyl glycidyl 

ether, tetraphenyltin, polyvinyl alcohol (PVA, average Mw 9000-10,000 Da, 80% 

hydrolyzed), borane-tetrahydrofuran complex (1 M), acetone, toluene, pyridine, 
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chloroform, thionyl chloride, rhodamine B (RHO), and albumin bovine were purchased 

from Aldrich Chemical Company Inc., Milwaukee, USA. Sodium hydroxide pellets were 

purchased from Anachemia Canada Inc. and dichloromethane (DCM) was purchased 

from Laboratoire Mat Inc., Montreal, Quebec, Canada. Fetal bovine serum and all other 

materials for cell culture were purchased from Invitrogen (Burlington, ON, Canada) 

unless otherwise stated. 

 

4.4.2. Synthesis of Polymers.  

          Poly(D,L)-lactide (PLA) was synthesized by ring-opening polymerization of 

dilactide in argon atmosphere, using tetraphenyltin as the catalyst. Briefly, dilactide was 

crystallized from toluene solution and dried under vacuum before use. A weighed amount 

of purified dilactide was then placed in a round-bottom flask and purged thoroughly with 

argon. Bulk polymerization was carried at 180 °C for 6 h. The polymer thus obtained was 

dissolved in acetone and was purified by precipitating in water.  

       Polymer with poly(ethylene glycol)-grafted randomly on poly(D,L)-lactide (PEG7%-

g-PLA) (PEG; Mw 2000 Da) was synthesized as reported earlier [12]. Briefly, D,L-

dilactide (21.5 g, 93 mol %) was polymerized in the presence of allyl glycidyl ether (2.6 

g, 7 mol %) with tetraphenyltin as the catalyst (1:10 000 mol with regards to D,L-

dilactide) at 180 °C for 6 h under argon. Polylactic acid with allyl groups was purified by 

dissolving in acetone and precipitating in water. The allyl groups were converted to 

hydroxyl groups by hydroboration with an equimolar quantity of borane in 

tetrahydrofuran, followed by oxidation in the presence of hydrogen peroxide under 

alkaline conditions (1.5 mol of 3 N sodium hydroxide). The hydroxyl groups were 

oxidized to carboxylic acid groups using Jones reagent, which was further converted to 

an acid chloride using thionyl chloride (1:1000 M). Finally, methoxy-PEG was grafted 
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onto the polymer backbone by the reaction between acid chloride and the hydroxyl 

groups of methoxy-PEG (2000 Da) in the presence of pyridine. The final polymer was 

purified by evaporating pyridine and washing with distilled water. For the 1%, and 20% 

PEG-grafted polymers (PEG1%-g-PLA, and PEG20%-g-PLA, respectively) the 

concentrations of D,L-lactide and allyl glycidyl ether were adjusted to give the desired 

ratios with the remaining synthesis procedure being the same. 1H NMR spectra were 

recorded on a Brucker ARX 400 spectrometer (Bruker Biospin, Billerica, MA). Chemical 

shifts () were measured in parts per million (ppm) using tetramethylsilane (TMS) as an 

internal reference. Gel permeation chromatography (GPC) was performed on a Water 

Associate chromatography system (Waters, Milford, MA) equipped with a refractive 

index detector and a Phenomenex Phenogel 5  column. Polystyrene standards were used 

for calibration with THF as the mobile phase at a flow rate of 0.6 mL/min.  

 

4.4.3. Preparation of nanoparticles (NPs) 

          RHO loaded NPs were prepared by an O/W emulsion-solvent evaporation method.  

It should be mentioned that NPs were prepared using a 1:1 blend of high Mwt PLA (Mwt 

=56.000 Da, Table 4.1) with each pegylated polymer, PEG-g-PLA of different PEG 

grafting density (1, 7, or 20% mol/mol of lactic acid monomer) to ensure high retaining 

ability of NPs for rhodamine B (RHO). RHO loaded NPs were prepared using an initial 

loading of 0.24% wt/wt of each polymer blend. Rhodamine (RHO) was first dissolved in 

the organic phase, 10 mL DCM followed by dissolution of each polymer blend (1 g) in 

the same phase. The organic phase was then emulsified into 30 mL PVA solution (0.5% 

w/v) as an external aqueous phase using high-pressure homogenizer (Emulsiflex C30, 

Avestin, Ottawa, Canada) at a pressure of 10,000 psi for 5 min. The O/W emulsion was 
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collected by washing with another 30 mL 0.5% PVA. The DCM was evaporated under 

reduced pressure with constant stirring to obtain the NPs. Finally, NPs obtained as a 

suspension were then collected by centrifugation at 18500 rpm for 30 min. at 4 ºC 

(Sorval® EvolutionRC, Kendro, USA), washed four times with distilled water, then 

lyophilized to obtain dry NPs (Freeze Dry System, Lyph.Lock 4.5, Labconco) and stored 

at 4 ºC until further use. Small samples of the nanoparticle suspension were taken before 

lyophilization step in order to identify the original size of the particles obtained after 

homogenization and organic solvent evaporation.  

 

4.4.4. Characterization of NPs 

           Size and size distribution of NPs were measured by dynamic light scattering 

(DLS) with a Malvern Autosizer 4800 instrument (Malvern Instruments, Worcestershire, 

UK) before and after lyophilization. DLS uses photon correlation spectroscopy to 

determine particle size from the temporal variation of light scattering caused by 

Brownian motion of the suspended particles. For all batches, fresh NP suspensions (0.1 

mL) or lyophilized NPs (1 mg) were diluted 10 times with Milli-Q Water and size 

measurements were performed at 25 ºC and scattering angle of 90º. The CONTIN 

program was used to extract size distributions from the autocorrelation functions. 

Measurements were performed in triplicate. The zeta potential of the nanoparticles was 

measured with Malvern ZetaSizer Nanoseries ZS (Malvern Instruments, Worcestershire, 

UK). Freeze dried NPs were suspended in 0.22 m filtered 0.25% (w/v) saline solution 

(pH 7.4) and zeta potential was measured in triplicate. Nanoparticle morphology was 

studied using atomic force microscopy technique (AFM). AFM was performed with 

Nanoscope IIIa, DimensionTM 3100 (Digital Instruments, Santa Barbara, CA) in tapping 

mode. Samples were prepared by suspending the nanoparticles in water at a concentration 

of 10 mg/mL. These samples were deposited on freshly cleaved mica surface and were 

allowed to dry at room temperature. Subsequently, they were imaged in air at ambient 

conditions using etched silicon probes with tip radius of 5-10 nm and spring constant in 
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Drug entrapped in NPs 

Initial amount of drug added 
% EE = 

X 100  (1) 
 

% DL = 
Drug entrapped in NPs 

Weight of NPs 

X 100  (2) 
 

the range of 20-100 N/m, oscillated at its fundamental resonant frequency (200-400 

KHz). 

 

4.4.5. Encapsulation efficiency (EE) 

           A weighed amount of NPs was dissolved into dichloromethane (DCM) followed 

by 5 min. vortexing and then stirring for 1 h. Rhodamine (RHO) concentration was 

measured by spectrofluorimetry at excitation (λex) and emission (λem) wavelengths of 

552 and 585 nm, respectively, using a Tecan Safire plate reader (Durham, NC). Percent 

encapsulation efficiency (% EE) and percent drug loading (% DL) were calculated based 

on the following equations: 

 

 

 

 

 

 

 

 

 

 

4.4.6. In vitro drug release study 

          All formulations prepared using different polymers were tested for in vitro release 

in triplicates in phosphate buffered saline (PBS, 10 mM, pH 7.4.). 30 mg NPs were 

suspended in 10 mL PBS in a dialysis tubing (Spectra Por 1 membrane, 6–8 kDa cut-off). 

This dialysis tubing was placed in a screw-capped tube containing 40 mL PBS. The tubes 

were shaken at 200 rpm on a horizontal water bath shaker (Orbit Shaker Bath, Labline) 

maintained at 37±0.5 ºC. At predetermined time intervals, 15 mL of the external medium 

was withdrawn and replaced by fresh PBS to maintain sink conditions. The aliquots were 

assayed for the concentration of RHO released by spectrophotometry at 552 nm (U-2001 

UV/Visible spectrophotometer, Hitachi). 
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4.4.7. Evaluation of protein adsorption to NPs surface 

           Dynamic light scattering (DLS) was used for measurement of the size of different 

NPs incubated with either 5 % fetal bovine serum (FBS) or 2 % bovine serum albumin 

(BSA). A weighed amount of NPs in 5 mL of either 5% FBS or 2% BSA was incubated 

at 37 °C for 24 h. Controls included the incubation of serum alone and RHO-loaded NPs 

alone with only distilled water for the same period of time. Samples were analyzed by 

DLS (n=3) at the end of the incubation period to determine if there is any change in the 

size distribution pattern of different NPs. 

 

4.4.8. Cell culture 

          Macrophage cell line, RAW 264.7 was grown in Dulbecco’s modified Eagle cell 

culture medium (DMEM) containing 10% (v/v) heat-inactivated fetal bovine serum, 100 

U/mL penicillin-G, and 100 mg/mL streptomycin (Invitrogen, Burlington, ON, Canada) 

in an atmosphere of 5% CO2 and 95% relative humidity. The cells were routinely 

passaged at 90–95% confluence. 

 

4.4.8.1. Evaluation of cellular toxicity of PEG-g-PLA NPs 

             Inhibition of cell proliferation was assessed by tetrazolium salt 3-(4,5-

dimethylthiazol-2 yl)-2,5-diphenyl tetrazolium bromide (MTT) assay. Briefly, 1 x 105 

RAW 264.7 cells were seeded in 96-well flat bottom plates (Costar, Corning, NY) and 

allowed to grow for 24 h. The cells were then incubated with increasing concentrations of 

each PEG-g-PLA NPs of different PEG grafting density for 24 h. Cell layers were 

washed with cold PBS and further incubated with 10 µL of MTT solution (5 mg/mL in 

PBS) for 4 h at 37°C. Formazan crystals formed were then dissolved along with the cell 

layers and absorbance was measured on microplate reader at 570 nm. Cell viability was 

calculated with respect to PBS as control. 

 

4.4.8.2. Cellular interaction with RAW 264.7: CLSM study 

             RAW 264.7 cells (a murine macrophage-like cell line) were seeded in eight-well 

chamber plate that contained a pre-sterilized coverslip at a concentration of 1 × 105 cells 

per well and allowed to adhere overnight in DMEM with 10% serum at 37°C.  Next day, 
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the medium was removed; the cells were washed with a sterile Hanks balanced salt 

solution (HBSS). Then cells were incubated in RPMI 1640 medium with RHO-

encapsulated nanoparticles (ensuring that rhodamine content is the same for all NPs 

batches based on the actual RHO loading) for 24h at 37°C. Next, the cells were washed 

six times with HBSS and were fixed with 4% paraformaldehyde solution. Coverslips 

were then mounted onto microscopy slides using Gel-Tol mounting medium (Thermo 

Scientific, Pittsburgh, PA, USA) to protect the samples. Microscopy slides were observed 

with an inverted Olympus IX71 microscope (Olympus Canada Inc., Markham, ON) and 

an Evolution VF camera (MediaCybernetics, Bethesda, MD) with the same 60× objective 

lens and exposure time to allow comparison of measurements. Laser sources at 476, 488 

and 496 nm were used to excite RHO and the fluorescence signal were detected in the 

550–650 nm range. All microscopy gain and offset settings were maintained constant 

throughout the study. All images were processed with ImagePro software 

(MediaCybernetics, Bethesda, MD). 

 

4.4.8.3. Cellular interaction with RAW 264.7: Fluorimetry analysis 

              RAW 264.7 cells (1 x 105 cells/ well) were plated in 24- well flat bottom plates 

(Costar, Corning, NY) and allowed to adhere overnight in DMEM with 10% serum. Next 

day, the medium was removed and replaced by RPMI 1640 without serum. The cells 

were then incubated with different concentrations of RHO encapsulated NPs for 24 h at 

37 °C. The cell monolayers were washed four times with cold PBS (pH 7.4) and then 

lysed with 0.2% Triton-X 100 in 0.2N NaOH solution. The fluorescence was measured 

on microplate reader at excitation and emission wavelength of 552 and 585 nm, 

respectively. The amount of NPs phagocytosed was calculated from calibration curve of 

NPs under the same conditions.  

 

4.4.9. Statistical analysis 

Results were expressed as mean ± SD. All data were generated in three independent 

experiments with two or three repeat. The t-test and the one-way analysis of variance 

(ANOVA) were performed to compare two or multiple groups, respectively. The 

difference between treatments was considered to be significant at a level of P<0.05. 
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Statistical analysis was performed for sizing, zeta potential, release, cellular uptake 

results, and encapsulation efficiency and loading data. 

 

4.5. Results and discussion 

       Our previous development of PEG-g-PLA NPs with suitable drug delivery properties 

e.g. small size, higher encapsulation efficiency, and prolonged release features led us to 

investigate the effect of PEG coating density on the physicochemical and in vitro 

macrophage uptake properties of the obtained NPs. We hypothesized that a high PEG 

coating density on the particles and a small particle size would improve the potential of 

PEG-g-PLA as a stealth carrier in vivo. The optimal PEG coverage density that could 

impart stealth behavior for the PEG-g-PLA NPs without compromising NPs properties 

was investigated in that study. With this purpose in mind, we synthesized PEG-g-PLA 

copolymers which differ in the PEG grafting density but have the same PEG chain lengh 

(2 kDa). Then, PEG-g-PLA nanoparticles of different PEG coating densities loaded with 

the fluorescent molecule rhodamine (RHO) were prepared as a tool for investigating NPs 

interaction with Raw 264.7 macrophage cell lines. The extent of cellular uptake of 

different particles was evaluated by fluorescence microscopy and fluorimetry analysis. 

RHO was chosen as the fluorescent label because it is more stable than fluorescein to 

quenching by light [15], efficiently entrapped and molecularly dispersed into NPs 

matrices [16], easily loaded into NPs either by simple nanoprecipitation [17] or single 

o/w emulsion solvent/evaporation method [18]. Moreover, the conditions required for 

obtaining good images for NPs inside the cells by fluorescence microscopy were found to 

be easily optimized with RHO use [19, 20] . To develop RHO loaded PEG-g-PLA NPs 

suitable for investigating the cellular interaction, NPs must show high retaining ability for 

the fluorescent marker. In order to achieve this, a 1:1 wt/wt polymer blend consisting of 

high Mwt PLA with each pegylated polymer, PEG-g-PLA of different PEG density (1, 7, 

or 20 mol %) was used to prepare NPs.  

 

4.5.1. Characterization of Polymers  

          PLA homopolymer and PEG-g-PLA copolymers of different PEG grafting 

densities were synthesized by ring-opening polymerization method. 1H NMR 
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spectroscopy and gel permeation chromatography (GPC) were used to measure the 

number average (Mn) and weight average molecular weights (Mw) of the synthesized 

polymers. The polydispersity was calculated by the ratio of Mw to Mn from the GPC 

data. GPC results are summarized in Table 4.1. All the synthesized polymers exhibited 

uniform molecular weight distribution as revealed by the narrow polydispersity index 

values as shown in the same table. Unimodal mass distribution ruled out the possibility of 

the presence of unreacted MePEG or Poly(D,L-lactide) (data not shown). The molecular 

weight of PEG-g-PLA copolymer decreases with increasing grafting density of PEG. 

Similar finding was obtained before with PLA/PEG copolymer prepared by using 

different initial feed ratios for both PEG and PLA [21]. 1HNMR spectra and chemical 

structure of PEG-g-PLA of different PEG grafting densities are shown in Figure 4.1. A 

typical spectrum for all PEG-g-PLA polymers was obtained with a peak at 5.2 ppm 

corresponding to the tertiary PLA proton (m, -CH), a peak at 3.6 ppm for the protons of 

the repeating units in the PEG chain (m, OCH2-CH2O), and a peak at 1.5 ppm for the 

pendant methyl group of the PLA chain (m, -CH3). The grafting density of PEG over the 

PLA backbone was determined by comparing the integration ratio of resonances due to 

PEG blocks at 3.64 ppm (–O–CH2–CH2–) and to the PLA blocks at 5.17 ppm (Me–CH*     

) in the 1H NMR spectra. The actual grafting density of all synthesized polymers seems 

closer to the initial feed ratio as shown in Table 4.1. Also, it could be seen from Figure 

4.1 that the intensity of PLA peak at 5.2 ppm decreased remarkably upon increasing the 

grafting density and this might indicate the successful grafting of PEG over the PLA 

backbone.  

 

4.5.2. NPs characterization 

           RHO loaded PEG-g-PLA nanoparticles were successfully prepared using an O/W 

emulsion solvent evaporation method by co-dissolving RHO and polymer blend (1:1 

wt/wt PLA: PEG-g-PLA) in DCM and precipitating the polymer into nanoparticles in an 

aqueous phase having 0.5 % PVA as a stabilizer after organic solvent evaporation. Table 

4.2 summarizes the size distribution characteristics of RHO loaded PEG-g-PLA NPs of 

varying PEG densities (1, 7, and 20 mol %). For comparison, RHO loaded PLA was also 
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Figure 4.1. 1H NMR spectra and chemical structure of PEG-g-PLA copolymers of different  

PEG grafting densities over PLA backbone. 

 

included as the control. Particle size distribution by dynamic light scattering (DLS) 

showed unimodal distribution for freshly prepared NPs dispersion (before lyophilization)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X: molar ratio of poly(lactic acid) monomers. 
Y: molar ratio of PEG grafted over PLA 
backbone. 
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Table 4.1. Polymer characterization by 1H NMR and Gel Permeation Chromatography (GPC). 
 

 

 

 

 

 

 

 

 

 

as well as lyophilized NPs. Freshly prepared NPs suspensions were found to be in the 

size range of 160–230 nm. Furthermore, a clear trend of decreasing the particle size was 

observed as their PEG content increased. Similar finding was obtained before with 

diblock copolymer PLA-PEG NPs [22]. The authors related that to the amphiphilic nature 

of PEG-PLA copolymers thus, reducing the interfacial tension between the aqueous and 

organic phases. Lyophilized NPs formulations showed larger particle size in the range of 

300–400 nm compared to freshly prepared particles (Table 4.2). Thus, lyophilization 

process might induce particle aggregation.  The size of the particles after freeze drying 

indicates that either a cryoprotectant or vigorous vortexing is needed to maintain the 

original size of the particles suspension. Vortexing for 5 min. of a suspension of 

lyophilized NPs in Milli.Q water was successfully able to break the aggregate and reduce 

Polymer     Mna  

   (Da) 

Mwa  

(Da) 

Mw/Mna  PEG (mol%)b  Mn (1H NMR)b 

         (Da) 

PLA  40.000 56.000 1.40 N/A N/A 

PEG1%- g-PLA  13.000 17.000 1.30 0.34 % 9.000 

PEG7%- g-PLA  4.000 8400 2.10 4.10 % 8.000 

PEG20%- g-PLA  2200 2300 1.05 17.00 % 4.000 

N/A not analyzed 
a Determined by GPC analysis using narrow molecular weight polystyrene standards. 
a Mw/Mn =PDI of the polymers. 
b Determined from the integration ratio of resonances due to PEG blocks at 3.64 ppm  

(–O–CH2–CH2–) and to the PLA blocks at 5.17 ppm (Me–CH*       ) in the 1H NMR spectra. 
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the size of the particles to almost its original size before lyophilization (Table 4.2). 

Particle size distribution data by DLS were also supplemented with a visual microscopic 

method like tapping mode atomic force microscopy (TM-AFM). Tapping mode atomic 

force microscopy (TM-AFM) is a versatile technique, which allows probing soft samples 

such as biological and polymeric materials [23, 24]. Figure 4.2 displays TM-AFM images 

of RHO-loaded PEG7%-g-PLA nanoparticles before and after lyophilization. The 

nanoparticles suspension before lyophilization has a roughly spherical morphology and 

sizes in the range of 100 and 250 nm, with most particles having a diameter of less than 

200 nm [Figure 4.2 (a)]. While after lyophilization, it could be seen that particles showed 

some aggregating tendency confirming the size data obtained by DLS [Figure 4.2 (b)]. 

AFM phase image analysis was also done to investigate the surface chemistry of the 

obtained particles as used before in our previous studies [13, 14]. PEG7%-g-PLA NPs 

either before or after lyophilization showed the presence of an observable phase contrast 

at the surface of NPs revealed by some dark layers at the surface of bright cores [Fig. 4.2 

(a, b); right panels, P]. These observations confirm the existence of PEG chains at the 

surface of PLA core. PEG-g-PLA NPs showed lower zeta potential values (close to zero) 

in comparison to the values reported before by other authors for PEG-b-PLA NPs [25-27] 

(Table 4.3). The greater reduction in zeta potential values of all PEG-g-PLA NPs of 

different PEG densities could be explained by the existence of a fraction of PVA at the 

surface of NPs (data not shown) which might have also played a role in masking the 

actual surface charge of PLA NPs. No significant difference in the zeta potential values 

of pegylated NPs of different PEG grafting densities was found (Table 4.3). This could 

also be explained by the same reason that the residual PVA chains at the NPs surface 

makes it difficult to estimate the real contribution of PEG coating density to surface 

charge reduction. What confirms this hypothesis that PLA NPs prepared by the same 

procedure also showed lower zeta potential values (-0.098 mV, Table 4.3) than expected 

(-40 mV) [25, 28, 29]. Zambaux et al. also reported a low zeta potential value of -4 mV 

for PLA NPs prepared with PVA as an emulsifier [30]. The zeta potential findings 

confirm that residual PVA remained onto NPs surfaces was able to reduce the actual zeta 

potential values of either PLA or PLA modified NPs (PEG-g-PLA). This could be 

explained by the ability of PVA to be adsorbed efficiently (not removed by successive 
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Table 4.2. Size distribution characteristics for different NPs after different stages of preparation. 

washing steps) onto the NPs surface masking the actual surface charge of PLA (resulted 

from COOH ionization). 

 

 

 

 

 

 

 

 

4.5.3. Encapsulation efficiency (EE) 

           As seen from Table 4.3, % EE of RHO was found to be between 10% and 68% 

wt/wt depending on the polymer type. Grafted pegylated polymers showed better % EE 

than PLA homopolymer. The higher the grafting density, the more the encapsulation 

efficiency.  The last finding could be attributed to the enhanced steric hindrance of the 

more mobile PEG chains existing at the surface of pegylated NPs, thus reducing 

premature diffusion of rhodamine into the external aqueous phase during solidification of 

the NPs. Although higher loading is readily possible since RHO favorably interacts with 

PLA, this was not necessary as the particles were already easily detected by fluorescence 

at the concentration levels tested. In a previous study by Sheng et al. [22], haemoglobin 

NPs formulation 

 

Size  before  

Freeze drying  

(nm) a, b   

  PDI  c  Size after  

Freeze drying 

 (nm)  a, b   

PDI c Size after  

Vortexing  

(nm) a, b   

 PDI c 

PLA  224.0±27 0.139 381.0±30 0.178 270.0 ±20 0.207 

PEG1%-g-PLA 200.6±28 0.002  318.0±20 0.220  250.0 ± 41 0.161 

PEG7%-g-PLA  185.6±21 0.161 388.0±14 0.078 230.0 ± 33 0.221 

PEG20%-g-PLA  169.5±23 0.092 380.9±21 0.320 211.0 ± 23 0.159 

a median. 
b All values indicate mean±S.D. for n=3 independent measurements for the same batch. 
C refers to polydispersity index. 
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Table 4.3. Other physicochemical characteristics for different NPs formulation. 

(HbP) was encapsulated into PLA-PEG block copolymer of different PEG contents. The 

% EE of HbP was found to increase by increasing the PEG content. But further increase 

of PEG content to 20 wt% caused an obvious decrease of % EE. In our case, increasing 

the grafting density to 20 mol% resulted in further increase in the % EE. This could be 

explained by the difference in the polymer architecture between PEG-g-PLA copolymer 

used in our study compared to PEG-b-PLA. PEG-g-PLA NPs exhibited different PEG 

chain organization pattern than their corresponding block copolymer NPs as confirmed 

before by us [13]. PEG chains are easily oriented towards the surface of PEG-g-PLA NPs 

compared to PEG-b-PLA NPs. This leads to effective surface coverage in case of PEG-g-

PLA NPs thus reducing the premature diffusion of drug towards the aqueous phase. 

While in PEG-b-PLA, some PEG chains might be interpenetrated inside the PLA core 

particularly at high PEG content (e.g. 20%), enhancing water uptake by the matrix, and 

hence, facilitating drug diffusion towards the external aqueous phase. 

 

 

 

 

 

 

 

 

 

NPs formulation 

 

     % EE a   % Lr (wt/wt) b  Zeta potential (mV)  

PLA  10.01±1.44 0.024±0.003 -0.098±3.78 

PEG1%-g-PLA  31.11±2.94 0.073±0.007 0.273±3.27 

PEG7%-g-PLA  37.85±0.97 0.090±0.002 0.012±3.72 

PEG20%-g-PLA  67.79±0.92 0.163±0.002 0.003±4.42 

Targeted loading for all batches=0.24% (wt/wt) 

All values indicate mean±S.D. for n=3 independent measurements. 
a  refers to encapsulation efficiency.  
b refers to actual or real loading.  
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Figure 4.2. AFM images of PEG7%-g-PLA NPs encapsulating rhodamine B (RHO), before 

(a) and after (b) lyophilization; surface morphology (left, S) and phase image (right, P). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.4. In Vitro Drug Release. 

          An in vitro release study was conducted in PBS at 37 °C in order to evaluate if the 

fluorescent marker (RHO) remains associated to the particles for a prudential period of 

time suitable for tracking NPs inside the cells. This could help us decide if RHO loaded 

NPs formulation were an optimal formulation for cellular uptake studies with RAW264.7 

cell lines. RHO release profile over a 15 days period is shown for particles made from 

(a) 

(b) 

(S) (P) 

(P) (S) 
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Figure 4.3. In vitro release behavior of RHO from different PEG-g-PLA NPs in comparison 

to PLA NPs and RHO solution; values are represented as mean ±S.D. of three independent 

experiments. 

different pegylated polymers compared to PLA homopolymer. RHO was released slowly 

from different NPs compared to RHO release from solution (Fig. 4.3). Specifically, 

within 15 h less than 20% of the agent had been released when incubated at 37°C at pH 

7.4.  No significant difference in the release profile of NPs made from different PEG 

grating densities was seen. This might indicate the ability of the high Mwt PLA added 

into each NPs formulation to efficiently trap and control RHO release over a prolonged 

period of time. Importantly, and as will be described in the cellular uptake section, 

controlled release of RHO over a time period of 24 h is more than sufficient for studying 

the interaction and uptake of nanoparticles by cells in vitro.  
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4.5.5. Plasma protein adsorption 

           It is well established that phagocytosis is a cellular phenomenon mainly initiated 

by the attachment of the foreign particles to the surface receptors of the phagocytic cells 

[31]. This phenomenon is facilitated by the adsorption of plasma proteins (opsonins) to 

the particle surface [32, 33]. Therefore, DLS was used to investigate the possibility of 

plasma protein (PP) adsorption onto the NPs surface and whether there is any difference 

between different NPs batches in their ability to adsorb PP. This was simply done by 

monitoring the size distribution changes of NPs after incubation for a period of time with 

plasma proteins solution. DLS was used to determine the fate of RHO loaded PEG-g-

PLA NPs of different PEG grafting densities, first, in the presence of 5 % fetal bovine 

serum (5% FBS), and, second, in the presence of 2 % bovine serum albumin (2% BSA). 

RHO loaded PLA NPs was also included for comparison. DLS analysis was performed 

on solutions of 5% FBS, RHO loaded NPs in distilled water and RHO loaded NPs in the 

presence of 5 % FBS following incubation at 37 °C for 24 h. The same procedure was 

done with 2% BSA. DLS analysis of NPs in the presence of total serum is not possible as 

some blood proteins (i.e. immunoglobulins) form aggregates in aqueous solution. Size 

distribution analysis of 5% FBS solution revealed the presence of two size populations at 

~ 10, and 66 nm (data not shown). Prior to incubation with 5% FBS the average diameter 

of all the investigated NPs was ranging from 200-260 nm (Fig.4.4). After 24 h incubation 

with 5% FBS the average diameter of both PEG7%-g-PLA, and PEG20%-g-PLA NPs 

remained nearly unchanged. While PLA and PEG1%-g-PLA NPs showed clear 

aggregating tendency evidenced by the larger size and the broader polydispersity indices 

obtained after incubation with 5 % FBS for 24 h [Figures 4.4 (a), and 4.S1 (a)]. This 

might indicate that either PEG7%-g-PLA or PEG20%-g-PLA NPs didn’t adsorb 

significant quantities of plasma proteins compared to either PLA or PEG1%-g-PLA NPs.  

Bovine serum albumin (BSA) is the most abundant protein in serum. Many studies have 

shown before that the major protein adsorped onto NPs surface is albumin [25, 34]. DLS 

analysis of NPs incubated with 2% BSA was also done under the same conditions as 

before with 5% FBS. Size distribution analysis of 2% FBS solution revealed the presence 

of two size populations at ~ 2, and 18 nm (data not shown). And as found with 5 % FBS, 

PLA and PEG1%-g-PLA NPs showed remarkable aggregating tendency evidenced by 
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(a) 

Figure 4.4. a): DLS size distribution data (nm) of different NPs upon incubation at 37 °C for 24 

h with 5% FBS. b): DLS size data (nm) of NPs upon incubation at 37 °C for 24 h with 2% BSA. 

 

size distribution change after incubation with 2 % BSA for 24 h [ Figures 4.4 (b), and 

4.S1 (b)]. These observations confirm that either PEG7%-g-PLA or PEG20%-g-PLA NPs 

could withstand the serum environment and that protein adsorption onto their surface 

occurs to a limited extent, if at all [35]. 
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4.5.6. Cellular toxicity and uptake studies 

           PLA is a well-known biodegradable and biocompatible polymer. NPs made from 

PEG-g-PLA polymers of different PEG densities were well tolerated and exhibited no 

adverse effects on the cell viability as shown by cell proliferation assays (Fig. 4.5).  

The interaction of RHO encapsulated nanoparticles with macrophage-like cells (RAW 

264.7 cells) was first observed by fluorescence microscopy (Fig. 4.6). Microscopy studies 

showed that a higher fluorescence intensity, corresponding to higher RHO concentration, 

was observed in cells exposed to both RHO loaded PLA, and PEG1%-g-PLA 

nanoparticles [Fig. 4.6 (b, and c, respectively)] compared to cells exposed to either RHO 

loaded PEG7%-g-PLA or PEG20%-g-PLA NPs [Fig. 4.6 (d, and e, respectively)]. This 

finding might indicate that nanoparticles made with PEG-g-PLA showed less 

internalization by macrophage cells than PLA nanoparticles. Moreover, to achieve 

sufficient masking by PEG on the surface of the nanoparticles, PEG grafting density 

higher than 1 % is usually required to obtain lower internalization by macrophage cells.  

To confirm the microscopy study results, estimation of the actual amount of NPs 

internalized after incubating RAW 264.7 cells for 24 h at 37 °C with different 

concentrations of RHO loaded NPs was investigated. Similar findings to microscopy 

results were obtained. Higher uptake was observed for PLA NPs as shown in Figure 4.7. 

This is the result of the higher hydrophobicity of PLA NPs. Increasing the incubated 

concentration resulted in an increase in the actual amount internalized. It is interesting to 

note that PEG-g-PLA NPs of different PEG densities resulted in lower degree of 

internalization compared to PLA NPs in macrophages cell lines. It also could be seen that 

the higher the PEG grafting density, the lower the uptake of NPs by macrophage cells. 

This may be ascribed to surface hydrophilicity and neutral charge of the grafted 

copolymer NPs. These results are in accordance with other authors [36-38] who have 

reported that the higher the hydrophilicity of the surface, the lower the adsorption of 

plasma proteins onto them and hence lower macrophage uptake. However, increasing the 

grafting density from 7% to 20 % didn’t show significant differences in their uptake 

ability indicating that the steric effect of PEG is concentration dependent [39].  
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Figure 4.5. Cytotoxicity of pegylated NPs of different PEG grafting densities over PLA backbone 

 (1, 7, and 20% mol/mol) in RAW 264.7 cells by MTT assay.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.6. Conclusions 

            In the present work, PEG-g-PLA copolymers of different PEG grafting density (1, 

7, or 20% mol/mol of lactic acid monomer) were used to prepare nanoparticles loaded 

with the fluorescent agent RHO. These nanoparticles were designed as models for the 

study of particles uptake by RAW macrophage cells using confocal microscopy and 

fluorimetry analysis. An O/W emusion solvent evapoartion technique was utilized for 

preparation of nanoparticles. Spherical particles with sizes in the range of 150–250 nm 

were prepared with sufficient RHO encapsulation efficiency. Release studies revealed 

that RHO nanoparticles were optimal for cellular interaction studies because the agent is 
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released at a very slow rate. DLS analysis for qualitatively studying the extent of plasma 

proteins adsorption to nanoparticle surface was also described and showed that PEG-g-

PLA NPs might adsorb less amount of PP onto their surface. In vitro cellular studies with 

RHO nanoparticles revealed that PEG7%-g-PLA NPs showed less internalization by 

RAW cells as determined by confocal microscopy and fluorimetry analysis. PEG20%-g-

PLA did not show significant difference in their phagocytosis tendency compared to 

PEG7%-g-PLA.  The obtained results suggest the possibility of use of grafted copolymer 

PEG-g-PLA NPs can be used as long-circulating drug carriers for intravenous 

administration. The optimal PEG grafting density required to achieve that might vary 

from 4-7 %. However, despite the promising ex vivo data, an actual in vivo data is 

needed to explore that indeed PEG-g-PLA NPs could exhibit stealth characteristics. A 

biodistribution study of Itraconazole loaded PEG-g-PLA NPs will be done in the future to 

support our preliminary data. 
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Figure 4.6. Fluorescence images (right panels) and their corresponding phase contrast images (left 

panels) of RAW 264.7 cells after incubation with a) RHO, b) RHO loaded PLA NPs, c) RHO 

loaded PEG1%-g-PLA NPs, d) RHO loaded PEG7%-g-PLA NPs, and d) RHO loaded PEG20%-g-

PLA NPs. red images show RHO. Scale bar=50 µm. 
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 Figure 4.7. RAW 264.7 cellular uptake of RHO encapsulated NPs made from PEG-g-PLA 

copolymer of different PEG grafting densities in comparison to PLA NPs. RAW 264.7 cells were 

incubated with NPs at 37°C for 24 h. 
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4.7. Appendix A. Supplementary material 

Supplementary data associated with this article can be found, in the online version, at 

doi:10.1016/j.ijpharm.2011.02.039. 
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Figure 4.S1. a): Polydispersity index values of different NPs upon incubation at 37 °C for 24 h 

with 5% FBS. b): Polydispersity index values of NPs upon incubation at 37 °C for 24 h with 2% 

BSA. 
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5.1. Abstract 

         PEG/PLA nanoparticles containing the hydrophobic antifungal itraconazole (ITZ) 

were developed to provide a controlled release pattern of ITZ as well as to improve its 

aqueous dispersability and hence enhance its antifungal action. Two PEG/PLA 

copolymers (PEGylated PLA polymers) were used in this study; branched PEGylated 

polymer in which PEG was grafted on PLA backbone at 7% (mol/mol of lactic acid 

monomer), PEG7%-g-PLA, and multiblock copolymer of PLA and PEG, (PLA-PEG-

PLA)n with nearly similar PEG insertion ratio and similar PEG chain length. ITZ loaded 

PLA NPs were also prepared and included in this study as a control. ITZ-NPs were 

prepared from a 1:1 w/w blend of PLA and each PEGylated polymer either PEG7%-g-

PLA or (PLA-PEG-PLA)n using an oil-in-water emulsion (O/W) evaporation method. 

The nanoparticles morphology, size and size distribution, zeta potential, loading 

efficiency, release profile, and antifungal activity were characterized. All ITZ-NPs were 

nearly spherical with smooth surface and showed less aggregating tendency with a size 

range 185- 285 nm. All ITZ-NPs measured nearly neutral zeta potential values close to 0 

mV. The % LE of ITZ was ~94% for PEG7%-g-PLA NPs and ~83% for (PLA-PEG-

PLA)n at 15.3% w/w theoretical loading. PEG/PLA NPs were stable over time regarding 

size and size distribution, and % ITZ loading efficiency (% LE). ITZ release showed an 

initial burst followed by a gradual release profile for ITZ-NPs over 5 days. (PLA-PEG-

PLA)n NPs exhibited faster release rates than PEG7%-g-PLA NPs particularly at the last 

two days. DSC and PXRD data confirmed that ITZ exists in an amorphous state or a solid 

solution state into the NPs matrix. FT-IR revealed the possibility of chemical interaction 

between ITZ and the NPs matrix polymer indicating the successful entrapment of ITZ 

inside the particles. In Hemolysis test, ITZ-NPs caused mild hemolysis over the 

concentration range (5-20 µg/mL) compared to free itraconazole (ITZ), indicating better 

safety profile of ITZ-NPs. ITZ loaded PEG/PLA NPs inhibited fungal growth more 

efficiently than either free ITZ or ITZ loaded PLA NPs. Our results suggest that 

PEG/PLA-ITZ could be used efficiently as a nanocarrier to improve the aqueous 

dispersability of ITZ, control its release over time and thereby enhance its antifungal 

efficacy. 
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5.2. Keywords 

       Nanoparticles, PEG-PLA, itraconazole, antifungal, poor solubility, hemolysis. 

 
5.3. Introduction 
 
           In recent years, fungal infections have become a serious health issue [1, 2], 

particularly in elderly patients, patients with neoplastic diseases, transplant surgeries, and 

the acquired immune deficiency syndrome (AIDS). Those patients have in common an 

immune system compromised by age, aggressive anticancer and antibacterial 

chemotherapy and long term use of immuno-suppressive agents after oral transplantation 

[3]. Moreover, spreading of clinical and microbiological resistance to current treatment 

and emergence of new pathogens have emerged the need for new effective management 

for those infections.  

           The widespread use of many available antifungal agents (amphoteriein B, 

flucytosine, miconazole, itraconazole, and ketoconazole) has achieved considerable 

success in treating fungal infections despite their potential limitations as poor solubility 

and higher toxicity.  Itraconazole (ITZ) is a triazole antifungal agent widely used 

clinically against a broad spectrum of fungal species such as those commonly caused by 

Candida albicans and Aspergillus species [4, 5]. Moreover, ITZ is highly effective for the 

treatment of both systemic fungal infections and superficial mycoses. Compared with 

other conventional antifungal agent, itraconazole has less nephrotoxicity than 

amphotericin B (AmB) [6, 7]. ITZ shows better activity and less resistance by many 

fungal species in comparison to other azole antifungals, such as fluconazole, 

voriconazole, and ketoconazole [8]. However, ITZ is poorly absorped when given orally 

since ITZ is a hydrophobic weak base with a low aqueous solubility of approximately 1 

ng/ml at pH 7 [9]. An acidic medium, such as the gastric environment of the stomach, 

enhances its solubilization (4 µg/ml at pH 1), which in turn increases its absorption [10]. 

An intravenous formulation for ITZ has been previously developed by complexing the 

drug with hydroxypropyl-β-cyclodextrin (HP-β-CD) in an attempt to enhance ITZ 

aqueous solubility. However, the accumulation of HP-β-CD can potentially lead to 

toxicity limiting the frequency of intravenous doses [11]. This is always a major concern 

for patients with renal complications, since the reduced clearance rate of HP-β-CD could 
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lead to extensive accumulation of HP-β-CD reaching toxic levels [10, 12].  Also, it has 

been reported that HP-β-CD caused pancreatic adenocarcinoma in rat carcinogenicity 

study [13]. There is an urgent need to develop ITZ formulations able to enhance its 

solubility, absorption and hence, improve its bioavailability. To address this concern, 

many formulations of ITZ such as emulsion [11], polymeric micelle [12], nanosuspension 

[14] and albumin bound nanoparticles [10] have been recently developed and studied.  

           Polymeric nanoparticles (NPs) prepared using either PLA (polylactic acid) or 

PLGA (polylactic-co-glycolic acid), have been widely used as a drug delivery tool due to 

their biodegradable and biocompatible nature, and controlled release characteristics [15, 

16]. Encapsulating bioactive moieties into these particles is expected to protect them 

from premature degradation, increase their solubility, and release the drug in a controlled 

fashion as shown before with other azole antifungal drugs [17]. The combined effect of 

these factors can lead to increased bioavailability and enhanced antifungal activity. 

Previous studies have shown improved bioavailability and reduced toxicity of AmB 

loaded PLGA nanoparticles compared to the commercially available form, Fungizone® 

[18]. Similarly, the antifungal activity of voriconazole loaded PLGA NPs was enhanced 

compared to free voriconazole [19]. PEG/PLA NPs has also been used  as a nanocarrier 

for various anticancer and antibacterial agents, achieving sustained and targeted drug 

concentrations at infected areas [20, 21]. PEG/PLA NPs offers an advantage over naked 

PLA particles in which the presence of PEG on the surface of PLA could confer a longer 

circulation of the particles in the blood [22, 23]. Studies have shown enhanced cellular 

uptake of PEG/PLA nanoparticles by various cancer cell lines, improving drug action and 

reducing its accumulation in healthy tissue [24-26].  

           To the best of our knowledge, neither PLA nor PEG/PLA NPs was investigated 

before as a vector for the delivery of an antifungal drug. The purpose of this study was 

first to develop a nanocarrier drug delivery system for the encapsulation of the 

hydrophobic drug, ITZ into either PLA or PEG-modified PLA polymers. Second to test 

the antifungal capability of ITZ loaded NPs in vitro using both Candida and Aspergillus 

species. Two PEG modified PLA polymers (PEGylated polymers) were used in this 

study; branched PEGylated polymer in which PEG was grafted on PLA backbone at 7% 

grafting density (mol/mol of lactic acid monomer), PEG7%-g-PLA, and multiblock 
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copolymer of PLA and PEG, (PLA-PEG-PLA)n with nearly similar PEG insertion ratio 

and similar PEG chain length. The capability of both polymers to act as drug carrier was 

previously investigated by us using ibuprofen as a model drug [27]. 

 

 

5.4. Material and methods:  

 

5.4.1. Materials: 

          D,L-Lactide, poly(ethylene glycol) methyl ether (MePEG; 2000 Da), poly(ethylene 

glycol) (PEG, 1500 Da), allyl glycidyl ether, tetraphenyltin, polyvinyl alcohol (PVA, 

average Mw 9000-10,000 Da, 80% hydrolyzed), borane-tetrahydrofuran complex (1 M), 

acetone, toluene, pyridine, acetonitrile (ACN), chloroform, succinic acid, 1-ethyl-3-[3-

dimethylaminopropyl]-carbodiimide (EDC), 4-dimethylaminopyridine (4-DMAP), 

diethyl ether, N,N-dimethylformamide, Tween® 80, dimethyl sulfoxide (DMSO), and  

thionyl chloride were purchased from Aldrich Chemical Company Inc., Milwaukee, 

USA. Itraconazole was purchased from PI chemicals Ltd., Shanghai, China. Sodium 

hydroxide pellets were purchased from Anachemia Canada Inc. and dichloromethane 

(DCM) was purchased from Laboratoire Mat Inc., Montreal, Quebec, Canada. C. 

albicans and A. fumigates clinical strains were obtained from the Laboratoire de Santé 

Publique du Québec, Canada.  

 

 

5.4.2. Synthesis of Polymers.  

          A detailed description of the synthetic protocols used for polymers synthesis was 

reported earlier by our group [27-29]. Briefly, Poly (D,L)-lactide (PLA) was synthesized 

by ring opening polymerization of D,L-lactide in argon atmosphere, using tetraphenyltin 

as the catalyst. The polymerization step was performed at 180 °C for 6 h in a round-

bottom flask and purged thoroughly with argon. The final polymer was purified by 

dissolving in acetone and precipitating in water.  
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      Polymer with poly(ethylene glycol)-grafted randomly on poly(D,L)-lactide at 7% 

grafting density , PEG7%-g-PLA (PEG; Mwt 2000 Da) was synthesized in the laboratory 

and the detailed procedure can be found in ref. [28]. Multiblock copolymer, (PLA-PEG-

PLA)n was also synthesized as previously reported [30] using PEG with Mn of 1500 and 

succinic acid was used as condensing agent to link triblock copolymers. (PLA-PEG-

PLA)n was synthesized to yield a PEG (1500)/lactic acid monomer ratio of 7% 

(mol/mol).  1H NMR spectra were recorded on a Brucker ARX 400 MHz spectrometer 

(Bruker Biospin, Billerica, MA). Chemical shifts () were measured in parts per million 

(ppm) using tetramethylsilane (TMS) as an internal reference. Gel permeation 

chromatography (GPC) was performed on a Water Associate chromatography system 

(Waters, Milford, MA) equipped with a refractive index detector and a Phenomenex 

Phenogel 5  column. Polystyrene standards were used for calibration with THF as the 

mobile phase at a flow rate of 0.6 mL/min.   

 

5.4.3. Preparation of nanoparticles (NPs) 

           ITZ loaded NPs were prepared by an O/W emulsion-solvent evaporation method. 

NPs were prepared using a 1:1 w/w blend of high Mwt PLA with each pegylated polymer 

either PEG7%-g-PLA or (PLA-PEG-PLA)n to ensure high retaining ability of NPs for 

ITZ. ITZ loaded NPs were prepared using an initial loading of 15.3 % w/w of each 

polymer blend. Briefly, 180 mg ITZ was first dissolved in the organic phase, 10 mL 

DCM followed by dissolution of each polymer blend (1 g) in the same phase. The organic 

phase was then emulsified into 30 mL PVA solution (0.5% w/v) as an external aqueous 

phase using high-pressure homogenizer (Emulsiflex C30, Avestin, Ottawa, Canada) at a 

pressure of 10,000 psi for 5 min. The O/W emulsion was collected by washing with 
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another 30 mL of 0.5% PVA. The DCM was evaporated under reduced pressure with 

constant stirring to obtain the NPs. Finally, NPs obtained as a suspension were then 

collected by centrifugation at 18500 rpm for 30 min. at 4 ºC (Sorval® EvolutionRC, 

Kendro, USA), washed four times with distilled water, then lyophilized without adding 

any cryoprotectant to obtain dry NPs (Freeze Dry System, Lyph.Lock 4.5, Labconco) and 

stored at 4 ºC until further use.  

 

5.4.4. Characterization of NPs 

          Dynamic light scattering (DLS) technique; Malvern Autosizer 4800 instrument 

(Malvern Instruments, Worcestershire, UK) was used for measuring both size and size 

distribution of NPs. Lyophilized NPs (1 mg) were dispersed into 10 mL Milli-Q Water 

and size measurements were recorded at a temperature of 25 ºC and a scattering angle of 

90º. Size distributions data were obtained from the autocorrelation functions using the 

CONTIN program. Measurements were done in triplicate. Malvern ZetaSizer Nanoseries 

ZS (Malvern Instruments, Worcestershire, UK) was used to measure the zeta potential of 

the nanoparticles as follows; Lyophilized NPs were suspended in 0.25% (w/v) saline 

solution (pH 7.4), sonicated for 1 min. and zeta potential was recorded in triplicate. 

Atomic force microscopy technique (AFM) was used to examine the nanoparticle 

morphology. AFM was performed with Nanoscope IIIa, DimensionTM 3100 (Digital 

Instruments, Santa Barbara, CA) in tapping mode. Samples were prepared by suspending 

the nanoparticles in water at a concentration of 10 mg/mL. These samples were deposited 

on freshly cleaved mica surface and were allowed to dry at room temperature. 

Subsequently, they were imaged in air at ambient conditions using etched silicon probes 

with tip radius of 5-10 nm and spring constant in the range of 20-100 N/m, oscillated at 

its fundamental resonant frequency (200-400 KHz). 
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Weight of drug entrapped in NPs 

Initial weight of drug added 
% LE = 

X 100  (1) 
 

% DL = 

Weight of drug entrapped in NPs 

Weight of NPs 

X 100  (2) 
 

5.4.5. Loading efficiency (% LE) 

          A weighed amount of lyophilized NPs was dissolved into acetonitrile (ACN) 

followed by 5 min. vortexing and then stirring for 1 h to ensure complete dissolution of 

the particles. Itraconazole (ITZ) absorbance was measured at a wavelength (λmax) of 265 

nm with a UV/ visible spectrophotometer (U-2001 spectrophotometer, Hitachi). ITZ 

concentration was determined using a standard curve of ITZ in acetonitrile solution 

(ACN). Percent loading efficiency (% LE) and percent drug loading (% DL) were 

calculated based on the following equations: 

 

 

 

 

 

 

 

 

 

 

 

 

5.4.6. Stability studies 

           Physical stability of the developed nanoparticles was monitored by following the 

particle size, polydispersity index, and loading efficiency (% LE) over time. A weighed 

amount of nanoparticles was reconstituted in PBS, pH 7.4 then stored for 30 days at room 

temperature. Size and size distribution was measured by DLS as described above in 

section 2.4. For loading efficiency, the amount of ITZ remaining in solution was 

measured using UV spectroscopy after extracting ITZ into ACN and then ITZ 

concentration was measured as described in section 2.5. 
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5.4.7. Differential scanning calorimetry (DSC) 

          The DSC measurements were performed on a Jade DSC instrument (PerkinElmer, 

USA). Simply, a weighed amount (5 mg) was sealed in crimped aluminum pans and 

heated at a rate of 10°C /min from -20° to 200°C. An empty aluminum pan was used as a 

reference and nitrogen gas was purged at a speed of 20 mL/min.  

 

5.4.8. Powder X-ray diffractometry (PXRD)  

          The powder X-ray diffraction patterns were acquired using a powder X-ray 

diffractometer (D8, Bruker, Germany). X-ray diffraction patterns were carried out for 

ITZ, ITZ-polymer physical mixtures and ITZ loaded nanoparticles (ITZ-NPs). All 

experiments were performed at room temperature. The conditions of the operation were 

as follows: a voltage of 40 kV and a current of 40 mA in the region of 5° ≤ 2θ ≤ 40° in 

step scan mode of 0.02° per second. 

 

5.4.9. Fourier transform infrared spectroscopy (FT-IR) study 

          FT-IR spectra were obtained using FT-IR spectrophotometer (Thermo Scientific 

Nicolet iS10 FT-IR Spectrometer) equipped with attenuated total reflection (ATR) cell. 

About 10 mg of sample was introduced onto the ATR crystal followed by acquisition of 

FT-IR spectra over the scanning range of 600–4000 cm−1. 

 

5.4.10. In vitro drug release study 

            In vitro release of itraconazole from ITZ-NPs was performed in triplicates as 

follows: 5mL of 3.3 mg/mL ITZ-NPs in PBS (10mM, pH 7.4) was sealed in a dialysis 

bag (Spectra Por 1 membrane, 6–8 kDa cut-off). The dialysis bag was immersed in a 

screw-capped tube of 45 mL PBS containing 10% (v/v) Tween® 80. The tubes were 

shaken at 100 rpm on a horizontal water bath shaker (orbit shake bath, Labline) and 

maintained at 37 ± 0.5 °C. At certain time intervals, sample (5 mL each) was withdrawn 

from the medium and same volume of fresh medium was added. ITZ solution at 1.5 

mg/mL in a solvent mixture of water: DMSO (1:3 v/v) was used as a control. The 

absorbance of the drug in the release samples was determined by UV spectrophotometry 

at 263 nm (U-2001 UV/Visible spectrophotometer, Hitachi). The concentration of ITZ 
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(Abs sample) - (Abs basal) 
 

(Abs 100%) - (Abs basal) 
 

%  Hemolysis = X 100  (3) 
 

was determined from a calibration curve of ITZ in PBS containing 10% (v/v) Tween® 

80. 

 

5.4.11. Hemolysis test 

            The lysis of erythrocytes by ITZ NPs was determined by incubating NPs with 

freshly isolated rat RBCs. Blood was collected from Wistar rats in heparinated collection 

vials as per Canadian guidelines for laboratory animals and animal ethical committee of 

University of Montreal. It was centrifuged at 5000 rpm for 10 min, washed with 0.1 M 

phosphate buffered saline (PBS, pH 7.4) three times to obtain RBCs. RBCs were diluted 

to 10 % with PBS [31]. 0.9 mL of NPs samples in PBS were incubated with 0.1 mL of 

RBC suspension at 37°C for 2 h.  After incubation, tubes were centrifuged at 5000 rpm to 

remove non-lysed RBCs. Control experiments to determine basal lysis of RBCs by PBS 

and 100 % lysis by 0.3% Triton X-100 were also carried out. The supernatant was 

collected and analyzed by UV spectrophotometer at 540 nm to estimate the amount of 

hemoglobin released.   Hemolysis was calculated by the following equation: 

 

 

 

 

Where, Abssample, Absbasal and Abs100 % are absorbance values of sample, basal lysis by 

PBS and 100 % lysis by 0.3% Triton X-100, respectively. 

 

5.4.12. Fungal Growth Inhibition Studies 

            The antifungal action of ITZ-NPs was tested on fungal growth as follows: growth 

inhibition on a lawn of conidia in a petri plate of either Candida albicans or Aspergillus 

fumigatus. ITZ-NPs were compared against two drug formulations consisting of ITZ in 

water (ITZ-Water) and an ITZ solution in DMSO (ITZ-DMSO). Stock solutions of ITZ-

Water, ITZ-DMSO, and ITZ-NPs in water were prepared at 1 mg/ml. Solvents and blank 

NPs were used as controls. Actual ITZ concentrations tested against fungal strains were 

20 µg/ml for C.albicans and 17 µg/ml for A. fumigatus. 
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5.4.13. Strains and growth media 

            Candida albicans SC5314 clinical strain was used in this study. Cells were grown 

at 30 ºC in YPD (1% yeast extract, 2% Bacto Peptone and 2% glucose), including 2% 

agar for solid medium. The Aspergillus fumigatus MY070968 clinical strain was grown 

on complete medium (CM) plates (0.1% yeast extract, 0.2% Bacto Peptone, 1% glucose, 

0.15% casamino acids, 0.6% NaNO3, 0.05% KCl, 0.05% MgSO4.7H20, 1% Vitamin 

stock solution, pH 6.8 and 2% agar). 

 

5.4.14. Petri Plate Culture 

5.4.14.1. C.  albicans 

                Cells grown overnight were resuspended in YPD to an optical density at 600 

nm (OD600) of 0.1 and 150 µl of cells were spread on YPD plates. A filter paper disc 

was placed in the center of each plate and 12.5 µl of each of the ITZ solutions was added 

to the disc. The plates were incubated for 2 days at 30 ºC before measuring the diameter 

of the zones of growth inhibition. Digital photos of the cultures were taken after 

treatments were initiated to assess the antifungal activity.  

 

5.4.14.2. A.  fumigatus 

              Cells were thawed from -80 ºC glycerol stock onto CM plates and grown for 3 

days at 30 ºC. Spores were transferred with a toothpick onto equal conc. of ITZ-

containing CM plates and incubated at 30 ºC for 3 days. Digital photos of the cultures 

were taken after treatments as before with C.  albicans.  

 

5.4.15. Statistical analysis 

              Results were expressed as mean ± SD. All data were generated in three 

independent experiments with two or three repeat. The t-test and the one-way analysis of 

variance (ANOVA) were performed to compare two or multiple groups, respectively. 

The difference between treatments was considered to be significant at a level of p<0.05. 

Statistical analysis was performed for sizing, zeta potential, release, and loading 

efficiency, hemolysis and antifungal activity. 
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5.5. Results and discussion: 

        Our previous development of PEG/PLA polymeric NPs either made from PEG-g-

PLA or (PLA-PEG-PLA)n with suitable drug delivery properties e.g. small size, higher 

loading efficiency, and prolonged release features led us to investigate the applicability of 

PEG/PLA as an efficient drug carrier [27]. We hypothesized that the presence of PEG on 

the surface of PLA particles and a small particle size would improve the potential of 

PEG/PLA as carrier for the hydrophobic drug, ITZ. To achieve this, we first synthesized 

PEG-g-PLA, and (PLA-PEG-PLA)n copolymers with nearly similar PEG insertion ratio 

and similar PEG chain length to facilitate the comparison between both PEGylated 

polymers. Then, PEG/PLA nanoparticles loaded with itraconazole (ITZ) were prepared in 

attempt to investigate the ability of such particles to enhance ITZ dispersability in water, 

control its release over time and potentially improve its bioavailability. The extent of 

PEG/PLA particles to enhance the antifungal action of ITZ was tested in vitro using both 

Candida and Aspergillus clinical strains.  

 

5.5.1. Characterization of Polymers.  

          The same polymers used in this study were previously described and characterized 

by us [27]. For a detailed discussion of the characterization results including 1H-NMR 

and GPC data, please refer to both Figure 1 and Table 1 in the last cited article.  

 

5.5.2. NPs characterization. 

          ITZ-NPs were successfully prepared using an O/W emulsion solvent evaporation 

method by co-dissolving ITZ and polymer blend [1:1 w/w of PLA: each PEGylated 

polymer either PEG7%-g-PLA or (PLA-PEG-PLA)n in DCM and precipitating the 

polymer into nanoparticles in an aqueous phase having 0.5 % PVA as a stabilizer after 

organic solvent evaporation. Major physicochemical characteristics of ITZ-NPs e.g. 

loading efficiency (% LE), particle size, PDI and zeta potential are shown in Table 5.1. 

Particle size distribution by dynamic light scattering (DLS) showed unimodal distribution  
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Table 5.1. Characteristics of different NPs formulations after lyophilization process. 
 

 

 

 

 

 

 

 

for lyophilized ITZ-NPs. All ITZ-NPs formulations showed particle size in the range of 

185–285 nm (Table 5.1). ITZ loaded PEG/PLA NPs either made from PEG7%-g-PLA, or 

(PLA-PEG-PLA)n NPs showed smaller size compared to ITZ-PLA NPs as shown in the 

same table.  This could be due to the amphiphilic nature (surfactant effect) of PEG/PLA 

copolymer thus, reducing the size of the emulsion droplet during the emulsification 

process [32, 33]. Particle size distribution data and NPs morphology were also 

investigated using a visual microscopic method like tapping mode atomic force 

microscopy (TM-AFM). Figure 5.1 displays TM-AFM images of ITZ-loaded PEG7%-g-

PLA nanoparticles after lyophilization. Lyophilized NPs were nearly spherical with 

smooth surface and displayed less aggregating tendency with a size range 150- 250 nm 

confirming the size data obtained by DLS. As seen from Table 5.1, % LE of ITZ at an 

initial loading of 15.3% w/w was found to be 82.7 % and 93.6 % for multiblock, (PLA-

PEG-PLA)n and PEG7%-g-PLA NPs, respectively. PEG7%-g-PLA showed better % LE 

than multiblock copolymers. The possible reason behind that is PEG chain organization 

Formulation Mean diameter 

     (nm) 

PDI a % DL 

(% w/w) c 

% LE b Zeta-potential                    

(mV) 

PLA 

 

284 ± 4 0.18 9.4 ± 0.3 61.7 ± 1.7     0.11 ± 4 

PEG7%-g-PLA 

 

197 ± 6 0.08 14.3 ± 0.3 93.6 ± 1.8     0.02 ± 3 

(PLA-PEG-PLA)n 185 ± 4 0.05 12.6 ± 0.4 82.7 ± 2.7     0.03 ± 4 

a  refers to polydispersity index. 
b refers to loading efficiency. 
c refers to drug loading. 

All values indicate mean±S.D. for n=3 independent measurements for the same particle  

preparation. 
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Figure 5.1.  AFM image of lyophilized ITZ loaded PEG7%-g-PLA NPs 

in case of branched polymer; PEG7%-g-PLA allows more mobile PEG chains at NPs 

surface. The PEG chains at the surface might exhibit enhanced steric hindrance, thus 

reducing premature diffusion of drug into the external aqueous phase during 

solidification of the NPs. Similar results were obtained before with us for ibuprofen 

loaded PEG/PLA NPs [27]. The zeta potential values of all ITZ-NPs were almost neutral 

(close to zero value) as shown in Table 5.1. The greater reduction in zeta potential values 

of all ITZ-NPs irrespective of the type of polymer used, could be explained by the 

existence of a fraction of PVA at the surface of NPs (data not shown) which might have a 

significant role in masking the actual surface charge of PLA NPs. Zambaux et al. also 

reported a low zeta potential value of -4 mV for PLA NPs prepared with PVA as an 

emulsifier [34]. PEG chains as well could shield the actual surface charge of PLA in case 

of PEG/PLA nanoparticles as previously shown [22, 35]. 
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5.5.3. Stability studies 

          One of the major goals of this study was to develop NPs formulations able to 

efficiently entrap ITZ for sufficient period of time and hence keep it dispersed in aqueous 

phase taking advantage of their nanosize. To check for NPs ability to perform that, 

physical stability of the prepared particles was monitored over time by following the 

changes of particle size, PDI, and % loading efficiency (% LE) during storage for one 

month after reconstituting ITZ-NPs in PBS. All ITZ-NPs seems stable to some extent in 

terms of particle size and PDI for 30 days. PLA NPs showed larger particle size and PDI 

after 30 days of storage (Fig. 5.2a, b); that is, particle size and PDI increased from 248 

nm, 0.181 up to 275 nm, and 0.345, respectively.  PEG/PLA NPs either made from 

PEG7%-g-PLA or (PLA-PEG-PLA)n looks more stable in terms of particles size and PDI 

for 30 days at room temperature than PLA particles (Fig.5.2a, b). % LE of all ITZ-NPs 

was decreased to some extent during storage (Fig. 5.2c). This might be due to ITZ 

diffusion from NPs over time followed by its precipitation in water. PEG/PLA NPs either 

made from PEG7%-g-PLA or (PLA-PEG-PLA)n showed an observable decrease in terms 

of % LE after 30 days of storage; that is, % LE decreased from 93 % to 82 %  and from 

82 % to 71 % for PEG7%-g-PLA, and (PLA-PEG-PLA)n, respectively (Fig. 5.2c). PLA 

NPs showed better stability profile after 30 days in terms of % LE; that is, % LE 

decreased from 61 % to 54 % compared to PEG/PLA NPs (Fig. 5.2c). The last finding 

could be attributed to the presence of PEG chains within PLA matrix which might 

enhance more water uptake into the particles, and hence more ITZ diffusion over time. 

However, irrespective of that decrease in % LE, the remaining ITZ in NPs seems enough 

to achieve a therapeutic effect considering dose adjustment. These results suggest that 

ITZ remains entrapped inside the PEG/PLA particles for a sufficient period of time 

without changing the particle size, PDI and slight change in % LE. 
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5.2a 

5.2b 

To be continued in the next 
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5.2c 

Figure 5.2. The stability index of ITZ-NPs in the particle size shown as diameter [D] (a), 

polydispersity index [PDI] (b), and loading efficiency [% LE] (c) during storage for 30 days [d] at 

room temperature. Data are expressed as the mean±S.D. (n = 3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.4. Differential scanning calorimetry (DSC) 

          DSC was used to investigate the physical state of the encapsulated ITZ into ITZ-

NPs. As shown in Fig. 5.3a, a sharp endothermic peak characteristic of the melting of  

ITZ was seen at 167 °C. In the thermogram of lyophilized ITZ loaded (PLA-PEG-PLA)n 

NPs, the endothermic peak of ITZ completely disappeared. This indicates that ITZ exists 

in a non crystalline state inside NPs. The physical mixture of itraconazole and (PLA-

PEG-PLA)n copolymer showed both endothermic characters of both the bulk drug and 

the polymer. In case of ITZ loaded PEG7%-g-PLA NPs (Fig. 5.3b), the endothermic peak 

of ITZ was still observed but with significantly reduced intensity compared to the same 

weight of either pure ITZ or ITZ/PEG7%-g-PLA physical mixture. This indicated also 
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Figure 5.3a. DSC curves of ITZ, physical mixture of (PLA-PEG-PLA)n with ITZ, (PLA-PEG-PLA)n 

copolymer, and ITZ loaded (PLA-PEG-PLA)n NPs.  
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that PEG7%-g-PLA NPs were able to significantly reduce ITZ crystallinity compared to 

pure ITZ drug.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.5. Powder X-ray diffractometry (PXRD) 

           For more verification of the final state of ITZ encapsulated into NPs, powder X-

ray diffractometry (PXRD) was used to investigate the crystalline structure of ITZ in 

ITZ-NPs compared to bulk ITZ as previously used by other authors [36-38]. It can be 

seen from (Figs. 5.4a, and 5.4b) that ITZ powder showed characteristic diffraction peaks 
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Figure 5.3b. DSC curves of ITZ, physical mixture of PEG7%-g-PLA with ITZ, PEG7%-g-PLA 

copolymer, and ITZ loaded PEG7%-g-PLA NPs.  
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of crystalline ITZ  at 2θ scattered angles 14.5°, 17.6°, 20.4°, 23.5° and 25.4° as 

previously described [10]. The existence of sharp diffraction peaks indicates the 

crystalline nature of ITZ. While there were no diffraction peaks of ITZ in ITZ-NPs of 

either (PLA-PEG-PLA)n or PEG7%-g-PLA NPs (Figs. 5.4a and 5.4b, respectively), 

indicating that ITZ was at an amorphous state in the ITZ-NPs. Combined with DSC 

observations as shown in (Figs. 5.3a, and 5.3b), we can deduce that ITZ was dissolved 

into the NPs matrix in the form of solid solution. 
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Figure 5.4a. XRD spectra of ITZ, physical mixture of (PLA-PEG-PLA)n with ITZ, 

(PLA-PEG-PLA)n copolymer, and ITZ loaded (PLA-PEG-PLA)n NPs.  
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Figure 5.4b. XRD spectra of ITZ, physical mixture of PEG7%-g-PLA with ITZ, PEG7%-g-PLA 

copolymer, and ITZ loaded PEG7%-g-PLA NPs. 
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5.5.6. Fourier transform infrared spectroscopy (FT-IR) study  

           FT-IR analysis was done to investigate any possibility of chemical interactions 

between ITZ and each polymeric matrix. Specific FT-IR characteristic peaks of ITZ 

powder were seen at 800–3400 cm−1 as shown in (Figs. 5.5a and 5.5b). The characteristic 

peaks of itraconazole at 1700, 1520 and 1380cm−1 were still noticed in the physical 

mixture of each polymer and itraconazole. For ITZ-NPs of either (PLA-PEG-PLA)n or 

PEG7%-g-PLA NPs, ITZ characteristic FT-IR peaks were significantly reduced in 

intensity or could not be seen in the obtained spectra (Figs. 5.5a and 5.5b, respectively). 

Similar findings were observed before with ITZ loaded albumin NPs [10]. This suggested 

that there were some interactions between ITZ and either polymer in the ITZ-NPs giving 

another evidence supporting the successful encapsulation of ITZ inside PEG/PLA NPs. 

 

5.5.7. In Vitro Drug Release. 

          The in vitro drug release features of ITZ-NPs were evaluated by the dialysis bag 

method as shown in Fig. 5.6. Tween® 80 was added to the external release medium to 

maintain sink conditions for ITZ because it has limited solubility in PBS [39]. A biphasic 

release profile was observed for all investigated ITZ-NPs. A rapid initial ITZ release of 

about 20–45% of the drug content was observed after 10 h of the release experiment. This 

finding might be due to the desorption of the drug particles adsorbed at or close to the 

surface of NPs [40]. After the initial burst, sustained release of ITZ was seen in the 

following 100 h. Both processes of drug diffusion and NPs matrix erosion govern ITZ 

release from ITZ-NPs during the second sustained phase [41, 42]. In case of ITZ solution, 

ITZ was completely released after 18h (Fig. 5.6). This could be due to the rapid diffusion 

of ITZ out of the dialysis bag. While for ITZ-NPs, slow ITZ release was observed for all 

batches. Both PEG7%-g-PLA and (PLE-PEG-PLA)n NPs exhibited faster ITZ release 

compared to PLA NPs. This could be due to the role of PEG chains that favor more water 

uptake followed by rapid core wetting and hence faster ITZ diffusion or release from the 

NPs matrix. After 4.5 days, PEG7%-g-PLA, and (PLA-PEG-PLA)n released ~ 93% and 

100% of their ITZ contents, respectively. ITZ release pattern was nearly similar for both 

PEG/PLA systems for the first 50 h. During the next 50h of the release experiment, 

(PLA-PEG-PLA)n NPs showed faster release pattern compared to PEG7%-g-PLA NPs.  
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Figure 5.5a. FT-IR spectra of ITZ, physical mixture of (PLA-PEG-PLA)n with ITZ, (PLA-PEG-

PLA)n copolymer, and ITZ loaded (PLA-PEG-PLA)n NPs [ITZ main characteristic peaks are 

marked with arrows].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The possible reason behind that is the peculiar polymer architecture of the multiblock 

copolymer, (PLA-PEG-PLA)n  allows a major portion of PEG to be entrapped inside the 

core during NP formation as shown previously [27, 43]. This might lead to rapid wetting 

of the NPs core compared to PEG7%-g-PLA NPs, in which most PEG chains are located 

at NPs surface. Overall, the results show that ITZ is released from the ITZ-NPs at a 

Itraconazol
e  

(PLA-PEG-PLA)n 
copolymer 

ITZ+ (PLA-PEG-PLA)n  
Physical mix. 

ITZ/(PLA-PEG-PLA)n  loaded 
NPs. 
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Figure 5.5b. FT-IR spectra of ITZ, physical mixture of PEG7%-g-PLA with ITZ, PEG7%-g-PLA 

copolymer, and ITZ loaded PEG7%-g-PLA NPs [ITZ main characteristic peaks are marked with arrows]. 

 

 

slower rate than from its solution and that the release patterns could be controlled by 

modulating the polymer architecture.  
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Figure 5.6. In vitro release behavior of ITZ from PEG/PLA NPs either from PEG7%-g-PLA or 

 (PLA-PEG-PLA)n in comparison to PLA NPs and ITZ solution; values are represented as mean 

 ± S.D. of three independent experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.8. Hemolysis analysis: 

          To ensure blood safety profile or hemocompatibility of the developed formulations, 

ITZ-NPs effect on RBCs hemolysis was investigated after incubating particles with rat 

blood. As shown in Fig. 5.7, all ITZ-NPs either PLA, PEG7%-g-PLA, or (PLA-PEG-

PLA)n NPs exhibited less hemolytic potential below 40% over the concentrations range 

of ITZ (5-20 µg/mL). For example, the hemolysis tendency values of ITZ-PLA, PEG7%-

g-PLA, (PLA-PEG-PLA)n NPs  at ITZ conc. of 20 µg/mL were 37.5, 33.7, and 33.5%, 

respectively. On the other hand, ITZ solution caused much more serious hemolysis. At 

the highest investigated concentration of ITZ, 20 µg/mL, the hemolysis tendency was 
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Figure 5.7. Erythrocyte lysis caused by ITZ loaded PEG/PLA NPs preparations compared 

to free ITZ and ITZ-PLA NPs. Values are expressed as mean of % lysis of three separate 

experiments ±S.D  

95%. The results indicated that ITZ-NPs did not exhibit any marked effect on RBCs 

hemolysis or in another way it could be concluded that ITZ-NPs were more 

hemocompatible than free ITZ. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5.9. Fungal growth inhibition in Petri Plate Culture  

          Five treatments [ITZ-Water, ITZ-DMSO, ITZ/PLA NPs, ITZ/PEG7%-g-PLA NPs, 

and ITZ/(PLA-PEG-PLA)n NPs] were tested on two clinical strains of either Candida 

albicans or Aspergillus fumigatus (Figs. 5.8a and 5.8b, respectively). For Candida 

results, ITZ-DMSO solution showed the highest fungal inhibitory potency evidenced by 
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the largest diameter of the inhibitory zone surrounding ITZ-DMSO application (Figure 

5.8a and Table 5.2). This might be explained by the complete solubility of ITZ in DMSO 

giving a better chance for ITZ to penetrate into the fungal cell membranes. Control 

experiment with DMSO alone did not show any observable antifungal activity. ITZ-

Water did not exhibit any marked antifungal action over the incubation period of time (2 

days). This could be due to the limited solubility of ITZ in water and hence limited 

diffusion into the agar medium. The poor solubility of ITZ could also affect its 

penetration potential  into the fungal cell membrane.  It is reported that itraconazole is an 

ergosterol synthesis inhibitor that exert its action by inhibiting the fungal CYP450 

dependant enzyme, lanosterol 14-α-methylase in the fungal cell membrane [44, 45]. For 

ITZ, to exhibit its antifungal action, it must show a sufficient penetration level into the 

fungal cell membrane which could not be achieved by ITZ-Water formulation. All ITZ-

NPs showed greater inhibition compared to ITZ-Water. This could be explained by the 

ability of NPs to enhance the aqueous solubility of ITZ, improve its bioavailability and 

hence its penetration ability into the fungal cells membrane. Moreover, it is important to 

take into consideration that nanoparticles mobility in solid media as agar is expected to be 

limited or hindered; hence inhibition of the fungal growth will be an indirect estimate for 

the ability of the particles to release ITZ into the medium in a finally dissolved form that 

is able to penetrate the fungal membrane. PEG/PLA NPs of either PEG7%-g-PLA and 

(PLA-PEG-PLA)n showed enhanced antifungal capability in comparison to ITZ-PLA 

NPs. This might be due to the faster release of ITZ from PEG/PLA NPs as seen before in 

the release section (Fig. 5.6). Over two days, ITZ was released from PEG7%-g-PLA and 

(PLA-PEG-PLA)n NPs at 58.5 % and 60 %, respectively compared to PLA NPs  where 

only 45 % of ITZ was released. Similar results were obtained with the A. fumgiatus 

strains (Fig. 5.8b), where PEG/PLA NPs exhibited greater antifungal action compared to 

either ITZ-Water or ITZ-PLA NPs. This indicated an enhanced antifungal capability of 

ITZ loaded PEG/PLA NPs in comparison to other formulations. 
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Figure 5.8a. Plates inoculated with C. albicans fungal cells and incubated at 30 ºC, treated with 12.5 µl of 

(a) ITZ-Water, (b) ITZ-DMSO, (c) ITZ-PLA NPs, (d) ITZ-PEG7%-g-PLA NPs, and (e) ITZ-(PLA-PEG-

PLA)n NPs. Lower plates (a-e) represent control experiments corresponding to each upper plate either 

using only the solvent in case of ITZ-Water, and ITZ-DMSO or only blank NPs ( no ITZ) in case of NPs 

formulations. 

Table 5.2. Diameter of growth inhibition zone measured with c. albicans fungal strains. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Formulation            Test plate (cm) 
 

  Control plate (cm) 
 

ITZ-Water 0 0 

 

ITZ-DMSO 

 

1.9 

 

0 

 

PLA NPs 

 

 

0.7 

 

0 

PEG7%-g-PLA NPs 

 

1.1 0 

(PLA-PEG-PLA)n NPs 1 0 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 
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Figure 5.8b. Plates inoculated with A. fumigatus fungal cells and incubated at 30 ºC, treated with (a) 

ITZ-Water, (b) ITZ-DMSO, (c) ITZ-PLA NPs, (d) ITZ-PEG7%-g-PLA NPs, and (e) ITZ-(PLA-PEG-

PLA)n NPs. Lower plates (a-e) represent control experiments corresponding to each upper plate either 

using only the solvent in case of ITZ-Water, and ITZ-DMSO or only blank NPs ( no ITZ) in case of NPs 

formulations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.6. Conclusions 

            In the present work, ITZ loaded PEG/PLA NPs were prepared from two 

PEGylated polymers, PEG7%-g-PLA, and multiblock copolymer of PLA and PEG, 

(PLA-PEG-PLA)n with nearly similar PEG insertion ratio and similar PEG chain length. 

These nanoparticles were formulated in order to enhance the aqueous dispersability or 

solubility of ITZ, control its release and hence improve its antifungal effect. Spherical 

particles with sizes in the range of 185–285 nm were prepared with high loading 

efficiency. In vitro release studies showed that ITZ was released from NPs in a controlled 

fashion. Hemolysis analysis revealed that all ITZ-NPs were more biocompatible than the 

free ITZ itself.  ITZ loaded PEG/PLA NPs demonstrated an enhanced antifungal action in 

comparison to ITZ-Water. The obtained results suggest the possibility of use of 

(a) 
 

(b) 
 

(c) 
 

(d) 
 

(e) 
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PEG/PLA NPs as an efficient carrier for the delivery of ITZ. This may result in reduced 

frequency of ITZ administration, reduced accumulation inside the body and hence better 

clinical outcome. However, despite the promising ex vivo data, an actual in vivo data is 

needed to explore that indeed ITZ loaded PEG/PLA NPs could exhibit an improved 

antifungal effect than ITZ itself.  
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        Nanoparticles are a particular class of submicron colloidal carriers with special 

characteristics such as their unique combination of high drug loading and the possibility 

of high stability and controlled release. This study was constituted mainly with the 

following objectives in mind; firstly, to develop polymeric nanoparticles (NPs) based on 

functionalized PLA polymers. Secondly, to understand in depth the influence of 

copolymer chemical structure and copolymer architecture on the physicochemical 

properties of the obtained particles. Polymer architecture was early defined as the 

arrangement of a single polymer molecule, which has a role in determining the 

physicochemical parameters of the whole polymer [1]. Thirdly, to develop nanoparticle 

formulations with optimal drug delivery characteristics like small size, neutral surface 

charge, sufficient drug loading, and controlled release profile. The developed particles 

were investigated as a carrier for an antifungal drug, itraconazole (ITZ). In this study we 

are also trying to understand the effect of polymer architecture on drug loading and 

release pattern from NPs matrix.  

 

        Conventional polymers such as PLA, PGA and their copolymers (PLGA) have been 

widely investigated for nanoparticle preparation [2-5]. NPs made from those polymers 

might suffer many drawbacks as their rapid uptake by the reticuloendothelial system after 

intravascular administration, low drug loading efficiency particularly for hydrophilic 

drugs, and in many cases inability to release their payload completely [6-8]. Moreover, 

the physicochemical properties of the developed particles are not easy to be tuned as 

required for each application. Hence, functionalization of polymer blocks has been 

attempted to develop copolymers with enhanced drug delivery properties, mainly high 

drug loading and controlled release behavior. Functionalized poly(D,L-lactide) (PLA) 

nanoparticles development mainly depend on  introducing a flexible moiety onto PLA 

hydrophobic cores in attempt to improve the drug delivery properties of the obtained 

NPs. A variety of pendant substituents could be grafted onto PLA to generate polymers 

of different physicochemical properties and hence different drug incorporation behavior 

than PLA itself. PLA homopolymer structure was modified by attaching different 
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functional groups to the polymer backbone and the influence of such modification or 

functionalization on the nanoparticles properties was investigated. 

 

6.1.  Synthesis and characterization of functionalized poly(D,L)- lactide (PLA) 

polymers 

        Novel functionalized poly(D,L)- lactide (PLA) copolymers were successfully 

developed using a synthetic protocol, previously published by our group [9]. This 

protocol was developed to synthesize branched polyesters having reactive groups. Allyl 

glycidyl ether (AGE) was added to dilactide to obtain a PLA backbone with pendant allyl 

functions (PLA-allyl). The major advantage of using allyl molecule is its ability to be 

easily attached to the PLA backbone after ring opening polymerization of dilactide. PLA-

allyl itself is an intermediate used to obtain various chemical functions because the allyl 

function can be easily modified. For example, by hydroboration, a primary alcohol is 

obtained and by oxidation of alcohol with Jones mixture, the corresponding acid could be 

also obtained. 

 

        We have used this synthetic protocol to synthesize functionalized PLA copolymers 

that have some potential as drug delivery systems. Various functionalized PLA 

copolymers were successfully synthesized with different grafting moieties (palmitate 

versus PEG), different PEG grafting densities (2.5%, 7%, or 20% mol/mol of lactic acid), 

or different architectures (block versus grafted copolymer). Most of the developed 

polymers were solid enough at room temperature, showing their potential to self 

assemble into solid nanoparticles as confirmed later by DLS and AFM tools. The 

synthesized copolymers present the basic nucleus for designing a comparative physico-

chemical study of nanoparticles developed from those copolymers. A detailed 

investigation of the developed particles was done to get a deeper understanding of the 

effect of PLA functionalization on drug delivery behavior from PLA particles. 

Furthermore the chain organization behavior of nanoparticles developed from 

functionalized PLA copolymers was also investigated using phase imaging AFM, 
1HNMR and XPS.  
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       Following this protocol, palmitic acid was grafted onto PLA backbone at 2.5 mol % 

of lactic acid monomer, referred as palmitic acid 2.5%-g-PLA. Also, methoxy PEG was 

grafted onto PLA backbone at different densities; 2.5, 7, and 20 mole % of lactic acid 

monomer, referred as PEG2.5%-g-PLA, PEG7%-g-PLA, and PEG20%-g-PLA, 

respectively [9]. Multiblock copolymer, (PLA-PEG-PLA)n was also synthesized as 

previously reported by our group [10] using PEG with Mn of 1500 and succinic acid was 

used as condensing agent to link the already synthesized triblock copolymers.  
             

          Gel permeation chromatography (GPC) was used to characterize the synthesized 

polymers (Tables 2.1, 3.1, and 4.1). Synthesized polymers exhibited uniform molecular 

weight distribution as revealed by the narrow polydispersity index values from GPC data. 

1H NMR spectra and chemical structures of synthesized copolymers are shown in Figs. 

2.1, 3.1, and 4.1. Typical spectra were obtained for the synthesized copolymers with the 

characteristic peaks corresponding to the major protons constituting each polymer, were 

observed. A detailed description of the 1H NMR spectra with identification of the major 

characteristic peaks can be found in chapters 2, 3, and 4. 

 

          Thermal properties of functionalized PLA copolymers and, namely, their glass 

transition temperatures (Tg’s) were investigated using differential scanning calorimetry, 

DSC (Tables 2.1, 3.1). As seen from DSC data, the molecular structure of each polymer 

affects significantly the glass transition (Tg) of PLA. For example, grafting PEG chains 

onto the PLA backbone resulted in an increased Tg value compared to PLA homopolymer 

due to enhanced chain rigidity (Tables 2.1, 3.1). Another possible factor affecting Tg, is 

the nature of pendant functional group. Tg of palmitic acid2.5%-g-PLA was shifted to a 

lower value (19 ºC) compared to either PLA homopolymer (46.4 ºC) or PEG2.5%-g-PLA 

(50ºC) [Table 2.1]. The significant lowering of Tg indicates that the nature of the pendant 

group onto PLA backbone affects remarkably the PLA backbone rigidity. Fatty acid 

esters were found to have a remarkable plasticizing action on PLA chains [11]. 

 

         Another important factor affecting Tg of functionalized PEG/PLA copolymers, is 

the PEG chain organization behavior (i.e. the way PEG and PLA chains are connecting 
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together). The organization mode of PEG chains onto PLA chains results into either 

separation or mixing between both phases in the obtained copolymer. Thus, copolymer 

thermal properties, mainly the glass transition (Tg), could be affected. Phase mixing 

between PEG and PLA chains would augment the entrapment of PEG chains into PLA 

chains. This might enhance the mobility of PLA chains or what is called plasticization 

effect, resulting in a lower Tg, as reported earlier [12, 13]. During the phase separation, 

PEG chains branched over PLA backbone might enhance the chain rigidity of PLA 

resulting in higher Tg value. The physicochemical properties of the nanoparticles are 

affected by the phase organization behavior of the polymer chains. Multiblock 

copolymer, (PLA-PEG-PLA)n showed lower Tg value at 39 °C, compared to grafted 

PEG-g-PLA copolymers, 53 °C (Table 3.1). Thus, the effect of branching (phase 

separation) was predominant for PEG-g-PLA copolymer, whereas the effect of PEG 

chains entrapment (phase mixing) inside PLA domains might lead to a predominant 

plasticizing effect in case of (PLA-PEG-PLA)n coplymer.  

       

       It can be concluded from DSC data that molecular structure, polymer architecture, 

nature of the pendant functional group and, PEG/PLA chain organization behavior 

affected remarkably the thermal characteristics of functionalized PLA copolymers.  

 
 
6.2.  Preparation and physicochemical characterization of NPs 

        NPs were successfully prepared from functionalized PLA copolymers using an O/W 

emulsion solvent evaporation method by co-dissolving the polymer (with or without the 

drug) in DCM followed by precipitating the polymer droplets into nanoparticles in an 

aqueous phase having 0.5 % PVA as a stabilizer after organic solvent evaporation. High 

pressure homogenization technique was used efficiently to control the size of the 

emulsion droplet that will be solidified later into nanoparticles. The first task was the 

assessment of the major physicochemical properties of the obtained particles e.g. size, 

zeta-potential, drug-polymer interactions, and drug loading. Monodispersed and nearly 

spherical particles with smooth surfaces were obtained by this technique (Figs. 2.2, 3.2, 

4.2, and 5.1). NPs formulations showed particle size in the range of 150–300 nm (Tables 

2.2, 3.2, 4.2, and 5.1). Blank NPs formulations (no drug) showed nearly similar particle 
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size to that of loaded ones for all NPs types (Tables 2.2, 3.2). Thus, drug loading level 

had no apparent effect on particle size, suggesting that the size was largely controlled by 

controlling the homogenization parameters (mainly pressure and time of 

homogenization). The architecture of PEG/PLA copolymers (i.e. arrangement of building 

blocks) affected the size of the obtained particles (Table 3.2). In PEG-g-PLA NPs, PEG 

chains are expected to be more mobile creating a steric barrier around PLA core 

preventing particle aggregation. In case of (PLA-PEG-PLA)n NPs, the polymer 

architecture allows some PEG chains to be embedded inside PLA core leaving some 

uncovered areas at the surface that might showed some aggregating tendency due to PLA 

hydrophobic interactions.  

         The zeta potential was calculated to assess whether the presence of PEG in 

PEG/PLA NPs affects the particle surface charge or not. The zeta potential values of all 

NPs were almost neutral (close to zero value) as shown in Tables 2.2, 3.2, 4.3, and 5.1. 

The greater reduction in zeta potential values of all NPs irrespective of the type of 

polymer used, could be explained by the existence of a fraction of PVA at the surface of 

NPs (Table 2.2, 3.2) which might have a significant role in masking the actual surface 

charge of PLA NPs. This is a major drawback of using PVA as an emulsifier that it is 

easily adsorbed onto the NPs surface, hence affecting both physicochemical and 

biological behavior of NPs.  

        

         Phase image analysis using TM-AFM was done on NP samples to detect PEG 

chains at the surface of pegylated NPs. In case of PEG-g-PLA, highly intense dark coat 

surrounds the surface of brighter core could be seen indicating the existence of 

hydrophilic PEG chains around hydrophobic PLA chains that represent the core [Fig. 

3.2(b); right panel, P].  In the case of (PLA-PEG-PLA)n multiblock copolymer NPs, 

fewer dark regions are found at the surface of NPs compared to PEG-g-PLA NPs [Fig. 

3.2(c); right panel, P]. The main differences in the AFM phase imaging could be 

explained by the peculiar architecture of each polymer. In case of (PLA-PEG-PLA)n 

multiblock copolymer, PEG chains are covalently linked with two PLA chains. This 

might affect the mobility of PEG chains towards the aqueous phase of the O/W emulsion 
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during NPs formation. PEG chains could find difficulty migrating towards the surface of 

NPs in contrast to PEG-g-PLA NPs.  

       

       PEG-g-PLA NPs showed better encapsulation efficiency (% EE) than multiblock 

copolymers either for ibuprofen (Table 3.2) or itraconazole (Table 5.1). The last finding 

could be attributed to the enhanced steric hindrance of the more mobile PEG chains at 

NPs surface in case of grafted copolymers, thus reducing premature diffusion of drug into 

the external aqueous phase during solidification of the NPs. DSC was used for detecting 

the final state of the encapsulated drug inside the NPs matrix as well as investigating any 

possible interaction between the drug and the polymeric matrix.  

                                

      Thermal analysis of NPs showed that drug molecules might be molecularly dispersed 

(solid solution) into the polymer matrix as found with itraconazole, ITZ (Figs. 5.3, 5.4) or 

in other cases, drug crystals are dispersed in the polymer matrix (solid dispersion) as 

shown with ibuprofen (Figs 2.3, 3.3). The final state of the drug inside nanoparticles 

detected by the interaction between the drug and the polymer using DSC and PXRD 

analysis.  

          

           (PLA-PEG-PLA)n NPs showed faster degradation rate ~ 44% compared to 

PEG7%-g-PLA (30%) after 25 days emphasizing the rapid core (PLA) wetting in the 

multiblock copolymer NPs (Fig. 3.5). This might be due to entrapment of most of PEG 

chains into the NPs core while in case of grafted PEG-g-PLA polymer, most of PEG was 

found to be at the surface of NPs.  

 

        The last findings confirm the following assumptions. First, high pressure 

homogenization technique is an efficient one for obtaining small sized particles, suitable 

for drug delivery applications, irrespective of the type of polymer used initially to prepare 

the particles. Second, PVA remains attached to the NPs surface, whatever the number of 

washing steps done to remove it. This affects the real contribution of PEG chains in 

masking the surface charge of PLA particles. Third, PEG chain organization behavior had 

a major impact on the size of the particles, drug loading efficiency, and surface 
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characteristics of the obtained particles. Fourth, drug could be encapsulated onto NPs 

either in the form of crystalline or molecular dispersion depending mainly on the forces 

of interactions involved between drug and polymer. Those findings also suggest that the 

physicochemical properties of PLA- based NPs can be tuned by judicious selection of 

both polymer composition and polymer architecture. 

6.3. 1H-NMR and XPS analysis of NPs  

       XPS was used to gain information on the surface chemistry of nano-scaled carriers 

developed from functionalized PLA copolymers. Another benefit of XPS is to provide a 

method for differentiating the existence of PVA, PEG, and drug (ibuprofen) at the NPs 

surface. A comparison was made between PEG-g-PLA, and (PLA-PEG-PLA)n NPs of 

similar PEG insertion ratio. The results are listed in Table 3.4. An increase in C–C–O 

peak area at 286.5 eV representing the PEG chains and a decrease in C–C peak area at 

285 eV representing the PLA chains can be observed at PEG-g-PLA NPs surface, 

indicating an increase of PEG content on the particles surface. When PEG was covalently 

attached to the PLA backbone as in case of (PLA-PEG-PLA)n NPs, the concentration of 

the repeating glycol unit C–C–O at 286.5 eV (PEG chains) was decreased 

correspondingly to the increase in C–C at 285 eV (PLA chains). Simply, these results 

showed that (PLA-PEG-PLA)n NPs displayed less existence of PEG chains at the surface 

compared to PEG-g-PLA NPs of nearly similar PEG content (Table 3.4). PEG-g-PLA 

NPs exhibited an enhanced immiscibility of both PEG and PLA chains resulting in 

enhanced phase separation of both components during NPs formation and hence, easy 

migration of PEG chains towards the surface of NPs while the cores will be 

predominantly hydrophobic. The architecture of (PLA-PEG-PLA)n NPs allowed the 

interpenetration of a major portion of PEG chains into the NPs core that is consisting 

mainly of hydrophobic PLA chains. PVA was found adsorbed onto the surface of NPs 

irrespective of the multiple washing steps performed to remove it [14, 15]. XPS showed 

the possibility of chemical interaction between PLA-COOH and PVA-OH end groups in 

case of PLA and PEG-g-PLA NPs. This reaction was diminished in case of multiblock 

copolymer. To sum up, even with the same PEG chain length and grafted degree, the 

percentage of PEG migrated to the surfaces were greatly influenced by the polymer 

architecture either grafted or block copolymer of PEG/PLA. 
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      1H-NMR measurements resolved the NPs core-corona structure. 1H-NMR spectra of 

all pegylated NPs in D2O showed the presence of methylene protons of PEG chains at 3.6 

ppm (Figs. 2.4, 3.4).  Signals from PLA methyl or methylene protons were absent or 

diminished in intensity. The results from 1H NMR experiments suggest the formation of 

micelle like NPs with some ordered configuration, presumably a core-corona system, 

where PEG segments form a highly hydrated corona surrounding a core composed of 

solid PLA. 

 

          Based on all results (AFM, DSC, 1H-NMR, erosion, and XPS), a schematic 

representation of different chain organization of NPs (depending on the polymer 

composition and architecture), is shown in Figs. 2.5, and 3.7. The difference in chain 

organization behavior was found to have an effect on the physicochemical properties of 

the obtained NPs. 

6.4. In vitro release  

         One of the main purposes of this study was to investigate the effect of the starting 

polymer architecture and copolymer composition on drug release profiles from PLA NPs. 

In the first part of the study, different NPs formulations made from different 

functionalized PLA polymers were compared for their in vitro release of ibuprofen as a 

model drug (Figs. 2.7, 3.6).  Generally speaking, drug solubility, drug diffusion and 

biodegradation of the nanoparticle matrix control the release process. In the case of 

nanoparticles, where the drug is molecularly dispersed, the release occurs by diffusion or 

erosion of the matrix under sink conditions. In case of nanoparticles entrapping the drug 

in a crystalline form, the release process will be controlled mainly by the drug dissolution 

process which is the slowest step. DSC and PXRD indicated that ibuprofen exists in a 

crystalline state inside all NPs irrespective of their polymer structure. Thus, the main rate 

limiting step controlling drug release will be the dissolution of drug crystals into the 

polymeric matrix followed by their diffusion out of the matrix into the release media. The 

polymer that favors more water uptake and hence rapid core wetting would facilitate drug 

dissolution and hence faster drug release. PEG/PLA NPs either made from PEG-g-PLA 

NPs or (PLA-PEG-PLA)n showed faster drug release compared to PLA NPs and this 
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could be attributed to the role of PEG chains in enhancing nanoparticle core wetting  

resulting in faster drug dissolution followed by its rapid diffusion. The higher release 

rates exhibited by multiblock copolymers compared to PEG-g-PLA could be also related 

to the differences in polymer architecture that allows different chain organization 

behavior when the NPs are suspended into the release medium.  In case of PEG-g-PLA, a 

major fraction of PEG chains was located at the surface as confirmed by XPS and AFM 

while the cores will be predominantly hydrophobic. For (PLA-PEG-PLA)n, a major 

portion of PEG was entrapped inside the PLA chains, enhancing the process of core 

wetting and hence faster drug dissolution. This difference in chain organization was 

found to have a major effect on the release kinetics of the encapsulated drug from NPs. 

         PEG/PLA NPs either made from PEG-g-PLA or (PLE-PEG-PLA)n were 

investigated as a drug carrier for itraconzole, ITZ. The in vitro drug release features of 

ITZ-NPs are shown in Fig.5.6. The results show that ITZ is released from the ITZ-NPs at 

a slower rate than its diffusion from solution through the dialysis membrane. PEG/PLA 

NPs prepared either from PEG-g-PLA or (PLE-PEG-PLA)n copolymers exhibited faster 

ITZ release compared to PLA NPs. This could be explained by the same fact as before 

with ibuprofen except that PEG chains would favor more water uptake enhancing faster 

ITZ diffusion not dissolution as with ibuprofen. ITZ was found molecularly dispersed 

into NPs matrix as confirmed by DSC and PXRD (Figs. 5.3a, 5.3b, 5.4a, and 5.4b).  

 

6.5. Plasma protein adsorption 

       Differences in the protein adsorption behavior could help predict the in vivo fate of 

different NPs types, and hence, design optimal drug carriers suitable for intravenous drug 

targeting. DLS was used to reveal the possibility of plasma protein (PP) adsorption onto 

NPs surface and whether there is any difference between PEG-g-PLA NPs of different 

PEG grafting densities in their ability to adsorb PP (Figs. 4.4, 4.S1). This was simply 

done by monitoring the size distribution changes of NPs after incubation for a period of 

time with plasma proteins solution. PEG7%-g-PLA or PEG20%-g-PLA NPs did not 

adsorb significant quantities of plasma proteins compared to either PLA or PEG1%-g-

PLA NPs. In fact, PEGylated NPs tend to adsorp less proteins than PLA NPs [16, 17]. It 

was important for us to perform this test to confirm the ability of PEG chains on the 
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surface of PEG-g-PLA NPs to repel plasma proteins in vitro. These observations confirm 

that either PEG7%-g-PLA or PEG20%-g-PLA NPs could withstand the serum 

environment and that protein adsorption onto their surface occurs to a limited extent, if at 

all [18].  

       

      Based on the in vitro data, plasma protein adsorption on the surface of PEG-g-PLA 

nanospheres strongly depends on PEG chain density at the surface of the particles, which 

played a major role in repelling the plasma proteins in vitro. Moreover, the optimum PEG 

grafting density expected to induces stealthiness in vivo varies from 4-7%.  

 

6.6. Cellular toxicity and uptake studies 

       NPs made from PEG-g-PLA polymers of different PEG densities were well tolerated 

and   exhibited no adverse effects on the cell viability as shown by cell proliferation 

assays (Fig. 4.5).                                 

       The interaction of RHO encapsulated nanoparticles with macrophage-like cells 

(RAW 264.7 cells) was investigated by fluorescence microscopy (qualitative) and 

fluorimetry analysis (quantitative) [Figs. 4.6, 4.7]. It could be seen from microscopy 

results (Fig. 4.6) that nanoparticles made from PEG-g-PLA copolymers showed less 

internalization by macrophage cells than PLA nanoparticles. Moreover, to achieve 

sufficient masking of NPs hydrophobic core, PEG grafting density higher than 1% is 

usually required to obtain lower internalization by macrophage cells.  

      For estimation of the actual amount of NPs internalized after incubating RAW 264.7 

cells for 24 h at 37 °C with different concentrations of RHO loaded NPs, florescence 

analysis was used (Fig.4.7). Similar findings to microscopy results were obtained. PEG-

g-PLA NPs of different PEG densities resulted in lower degree of internalization 

compared to PLA NPs in macrophages cell lines. It also could be seen that the higher the 

PEG grafting density, the lower the uptake of NPs by macrophage cells. This may be 

ascribed to surface hydrophilicity and neutral surface charge of PEG-g-PLA NPs. 

However, increasing the grafting density from 7% to 20 % didn’t show significant 

differences in their uptake ability indicating that the steric effect of PEG is concentration 

dependent [19].  
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6.7. Hemolysis analysis of ITZ-NPs 

       To demonstrate the ability of PEG/PLA copolymers as an effective carrier for ITZ, 

we investigated drug loading efficiency, release pattern, and ITZ dispersion state into 

either PEG-g-PLA or (PLA-PEG-PLA)n NPs. Preliminary in vitro characterization data 

suggested that ITZ was entrapped into NPs with good loading efficiency, slow release 

pattern, and that ITZ was molecularly dispersed into NPs. However, the safety potential 

of ITZ loaded NPs should be tested to confirm the ability of NPs to efficiently entrap 

ITZ, slowly release it, and reduce its localized concentration in contact with tissues or 

cells. To achieve that, hemolysis test was investigated after incubating particles with rat 

blood. As shown in Fig. 5.7, all ITZ-NPs either PLA, PEG7%-g-PLA, or (PLA-PEG-

PLA)n NPs exhibited less hemolytic potential  than ITZ solution over the concentrations 

range of ITZ (5-20 µg/mL). On the other hand, ITZ solution caused much more serious 

hemolysis. The results indicated that ITZ-NPs did not exhibit any marked effect on RBCs 

hemolysis or in another way it could be concluded that ITZ-NPs were more 

hemocompatible than free ITZ.  

6.8. Fungal growth inhibition in Petri Plate Culture  

       It was crucial to confirm the pharmacological activity of ITZ loaded NPs to warrant 

the ability of NPs to improve the therapeutic potential of ITZ as hypothesized. This was 

done by investigating the antifungal ability of ITZ-NPs compared to ITZ itself. Two 

clinical strains of either Candida albicans or Aspergillus fumigates were used in this 

study (Figs. 5.8a and 5.8b, respectively). Those two strains were selected due to their 

high susceptibility to ITZ action. ITZ-NPs showed greater inhibition of both fungal 

strains compared to ITZ-Water. This could be explained by the ability of NPs to enhance 

the aqueous solubility of ITZ, improve its bioavailability and hence its penetration ability 

into the fungal cells membrane. PEG/PLA NPs of either PEG7%-g-PLA and (PLA-PEG-

PLA)n showed enhanced antifungal capability in comparison to ITZ-PLA NPs. This 

could be due to the faster release of ITZ from PEG/PLA NPs as seen before in the release 

section (Fig. 5.6). Similar results were obtained with A. fumgiatus strains (Fig. 5.8b), 

where PEG/PLA NPs exhibited greater antifungal action compared to either ITZ-Water 
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or ITZ-PLA NPs. This indicated an enhanced antifungal capability of ITZ loaded 

PEG/PLA NPs in comparison to other formulations. The enhanced activity of ITZ loaded 

PEG/PLA NPs could be explained by the smaller size of the particles and the existence of 

PEG chains onto PLA particles surface. Those two factors were responsible for not only 

enhancing the aqueous solubility of ITZ but also keeping it dispersed for a period of time 

sufficient to enhance its contact and penetration potential into the fungal cell membranes. 

      Two mechanisms can be hypothesized for the delivery of ITZ from NPs into the 

fungal cells: first by releasing ITZ near the cell surface resulting in a faster internalization 

of free ITZ, and second by cellular uptake of nanoparticles followed by release of ITZ in 

the cytosol. However the solid nature of agar hindering the mobility of NPs, suggests that 

the former mechanism is the more likely to occur. In combination to these mechanisms, 

the sustained release of ITZ explains the larger inhibition zones observed over time with 

the PEG/PLA NPs compared to ITZ-water and ITZ-DMSO (Figs 5.8 a, b). 

 

       PEG/PLA NPs ability to enhance the antifungal activity of ITZ is associated with 

two aspects. The first one is the ability of small sized, water soluble PEG/PLA 

nanoparticles to enhance the dispersability of ITZ in water. The second one is the ability 

of NPs to enhance ITZ contact with the fungal spores on the plate surface leading to 

faster drug internalization [20, 21], penetration into the spores and hence, improved 

antifungal action.  
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7.1. Conclusion 

       NPs were successfully fabricated using functionalized copolymers of PLA with 

different molecular architectures.  Applying different characterization tools, notably DLS, 

AFM, XPS, and DSC, changes could be detected in the physicochemical characteristics 

of the nanoparticles prepared from different functionalized copolymers of PLA. 

Molecular architecture of the polymer is an important parameter controlling surface 

characteristics of NPs which in turn determine their physicochemical properties like 

encapsulation efficiency, % PVA adsorbed at the surface of NPs, zeta potential, thermal 

characteristic, NPs surface organization and drug release kinetics. Both AFM phase 

imaging and XPS studies showed that (PLA-PEG-PLA)n NPs displayed less amount of 

PEG on the surface due to the possibility of PEG chains interpenetration inside the PLA 

core of NPs. This resulted in lower Tg, rapid degradation of the polymeric matrix, and 

faster drug release from NPs compared to PEG-g-PLA NPs. While for PEG-g-PLA NPs, 

most PEG chains were located at the NPs surface. The architecture of PEG-g-PLA 

copolymer allowed enhanced immiscibility of both PEG and PLA blocks resulting in 

enhanced phase separation of both components during NPs formation and hence, easy 

migration of PEG chains towards the surface of NPs while the cores will be 

predominantly hydrophobic. NPs prepared from PEG-g-PLA copolymers were found to 

have more suitable drug delivery characteristics e.g. small size, good drug loading, lower 

adsorption of plasma proteins, lower uptake by macrophage cell lines, enhanced 

antifungal activity of encapsulated ITZ, and sustained release profile. For those features, 

PEG-g-PLA could be explored further as a promising nanoparticles delivery system for 

many drugs trying to optimize their biopharmaceutical performance in the body. 

 

         These results suggest that the physicochemical properties of PLA- based NPs can 

be tuned by judicious control over the following factors; polymer composition, nature of 

pendant functional group, % grafting density over the polymer backbone, and finally 

polymer architecture. Our results also favor the urgent search for another biocompatible 

emulsifier other than PVA for the preparation of NPs to avoid the unwanted effect of 

PVA on NPs properties e.g. NPs surface charge and cellular uptake pattern. This study 

has also shed the light on the use of nanospheres as a dispersing agents for slightly 
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insoluble drugs taking advantage of NPs small size, and the surfactant property of the 

used polymer i.e. PEG/PLA, to keep the drug dispersed into aqueous solution over a 

prolonged period of time. This action could enhance the pharmacological activity of 

many water insoluble drugs. 

 

7.2. Future work 

        The in vitro encouraging results obtained in this thesis justify in vivo evaluation of a 

number of PEG-g-PLA NPs formulations. Thus, ITZ loaded PEG-g-PLA NPs will be 

evaluated in vivo to determine their pharmacokinetics and biodistribution. Furthermore, 

antifungal activity of ITZ NPs will be evaluated in albino guinea pigs infected with either 

systemic aspergillosis or candidosis. When it comes to the usefulness of PEG-g-PLA 

copolymers as delivery systems, other drugs e.g. anticancer drugs may be tried to be 

encapsulated into those types of particles. 


