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Résumé 

 Les sécrétines de l’hormone de croissance (GHRPs) sont de petits peptides 

synthétiques capables de stimuler la sécrétion de l’hormone de croissance à partir de 

l’hypophyse via leur liaison au récepteur de la ghréline GHS-R1a. Le GHRP hexaréline a 

été utilisé afin d’étudier la distribution tissulaire de GHS-R1a et son effet GH-indépendant. 

Ainsi, par cette approche, il a été déterminé que l’hexaréline était capable de se lier à un 

deuxième récepteur identifié comme étant le récepteur scavenger CD36. Ce récepteur 

possède une multitude de ligands dont les particules oxLDL et les acides gras à longue 

chaîne. CD36 est généralement reconnu pour son rôle dans l’athérogénèse et sa 

contribution à la formation de cellules spumeuses suite à l’internalisation des oxLDL dans 

les macrophages/monocytes. Auparavant, nous avions démontré que le traitement des 

macrophages avec l’hexaréline menait à l’activation de PPARƔ via sa liaison à GHS-R1a, 

mais aussi à CD36. De plus, une cascade d’activation impliquant LXRα et les transporteurs 

ABC provoquait également une augmentation de l’efflux du cholestérol. Une stimulation de 

la voie du transport inverse du cholestérol vers les particules HDL entraînait donc une 

diminution de l’engorgement des macrophages de lipides et la formation de cellules 

spumeuses. Puisque CD36 est exprimé dans de multiples tissus et qu’il est également 

responsable du captage des acides gras à longue chaîne, nous avons voulu étudier l’impact 

de l’hexaréline uniquement à travers sa liaison à CD36. Dans  le but d’approfondir nos 

connaissances sur la régulation du métabolisme des lipides par CD36, nous avons choisi 

des types cellulaires jouant un rôle important dans l’homéostasie lipidique n’exprimant pas 

GHS-R1a, soient les adipocytes et les hépatocytes. 

 L’ensemble de mes travaux démontre qu’en réponse à son interaction avec 

l’hexaréline, CD36 a le potentiel de réduire le contenu lipidique des adipocytes et des 

hépatocytes. Dans les cellules adipeuses, l'hexaréline augmente l’expression de plusieurs 

gènes impliqués dans la mobilisation et l’oxydation des acides gras, et induit également 

l’expression des marqueurs thermogéniques PGC-1α et UCP-1. De même, hexaréline 
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augmente l’expression des gènes impliqués dans la biogenèse mitochondriale, un effet 

accompagné de changements morphologiques des mitochondries; des caractéristiques 

observées dans les types cellulaires ayant une grande capacité oxydative. Ces résultats 

démontrent que les adipocytes blancs traités avec hexaréline ont la capacité de se 

transformer en un phénotype similaire aux adipocytes bruns ayant l’habileté de brûler les 

acides gras plutôt que de les emmagasiner. Cet effet est également observé dans les tissus 

adipeux de souris et est dépendant de la présence de CD36. Dans les hépatocytes, nous 

avons démontré le potentiel de CD36 à moduler le métabolisme du cholestérol. En réponse 

au traitement des cellules avec hexaréline, une phosphorylation rapide de LKB1 et de 

l’AMPK est suivie d’une phosphorylation inhibitrice de l’HMG-CoA réductase (HMGR), 

l’enzyme clé dans la synthèse du cholestérol. De plus, la liaison d'hexaréline à CD36 

provoque le recrutement d’insig-2 à HMGR, l’étape d’engagement dans sa dégradation. La 

dégradation de HMGR par hexaréline semble être dépendante de l’activité de PPARƔ et de 

l’AMPK. Dans le but d’élucider le mécanisme d’activation par hexaréline, nous avons 

démontré d’une part que sa liaison à CD36 provoque une déphosphorylation de Erk 

soulevant ainsi l’inhibition que celui-ci exerce sur PPARƔ et d’autre part, un recrutement 

de l’AMPK à PGC-1α expliquant ainsi une partie du mécanisme d’activation de PPARƔ 

par hexaréline. 

 Les résultats générés dans cette thèse ont permis d’élucider de nouveaux 

mécanismes d’action de CD36 et d'approfondir nos connaissances de son influence dans la 

régulation du métabolisme des lipides. 

Mots-clés : Adipocytes, hépatocytes, CD36, hexaréline, PPARƔ, PGC1α, biogenèse 

mitochondriale, UCP-1, oxydation des acides gras, LKB1, AMPK, HMGR, insig-2, Erk, 

OSBPs. 
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Abstract 

Growth hormone releasing peptides (GHRPs) are small synthetic peptides aimed at 

stimulating GH release from the pituitary through their binding to ghrelin receptor known 

as growth hormone secretagogue receptor 1a (GHS-R1a). Using the GHRP, hexarelin to 

study tissue distribution of GHS-R1a and its GH-independent effect, it was observed that 

hexarelin was capable of binding to a second receptor identified as scavenger receptor 

CD36. While having multiple ligands, CD36 is mainly known for binding and internalizing 

oxLDL and long chain fatty acids. CD36 is thought to play a detrimental role in 

macrophage derived foam cell formation and development of atherosclerosis. Previously, 

we have shown that in macrophages, expressing both GHS-R1a and CD36, hexarelin 

promoted an activation of PPARƔ via GHS-R1a but also through its binding to CD36. This 

activation led to the induction of the LXRα-ABC transporters pathway and an increase in 

cholesterol efflux, reducing lipid-laden macrophage content. This positive effect on 

macrophages was reproduced in apolipoprotein E-null mice on a high fat diet treated with 

hexarelin. A significant reduction in the size of atherosclerotic lesions was observed while 

similar increases in the expression of PPARƔ, LXRα and ABC transporters occurred in 

isolated peritoneal macrophages. CD36 also plays a role in fatty acid uptake, and to further 

investigate the impact of the interaction of hexarelin with CD36, we aimed at evaluating the 

role of CD36 in regulating lipid metabolism in cells devoid of GHS-R1a such as adipocytes 

and hepatocytes.  

In the present thesis, we demonstrated through its interaction with hexarelin, the 

ability of CD36 to decrease intracellular lipid content in both adipocytes and hepatocytes. 

In adipocytes, hexarelin was able to increase the expression of several genes involved in 

fatty acid mobilization, fatty acid oxidation but also to induce the expression of the 

thermogenic markers, PGC-1α and UCP-1. In addition, hexarelin increased the expression 

of genes involved in mitochondrial biogenesis which was accompanied by mitochondrial 

morphological changes in agreement with what is usually seen in highly oxidative cells. In 
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support of these findings, we also observed an increase in the activity of cytochrome c 

oxidase (a component of the respiratory chain) which could reflect an increase in oxidative 

phosphorylation. The results generated with cultured white adipocytes suggest the ability of 

hexarelin to promote changes toward a brown fat-like phenotype which also occurred in 

vivo and was dependent on the presence of CD36. In hepatocytes, CD36 was capable of 

regulating cholesterol metabolism by rapidly phosphorylating LKB1 and AMPK which 

subsequently resulted in the inactivating phosphorylation of HMG-CoA reductase, the rate-

limiting enzyme in cholesterol synthesis. Hexarelin via CD36 also induced the recruitment 

of insig-2 to HMGR, the committed step in HMGR degradation while lifting the exerted 

inhibitory effect of Erk on nuclear receptor PPARƔ activity, and promoting the recruitment 

of AMPK to PPARƔ coactivator PGC-1α, suggesting an enhanced transcriptional potential 

of PPARƔ. 

The results generated during my graduate studies represent unique and novel 

mechanisms by which CD36 is capable of regulating lipid metabolism. 

Keywords : Adipocytes, hepatocytes, CD36, hexarelin, PPARγ, PGC1α, mitochondrial 

biogenesis, UCP-1, fatty acid oxidation, LKB1, AMPK, HMGR, insig-2, Erk, OSBPs. 
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CHAPTER 1: Introduction 

1 Growth hormone secretagogues 
 Growth hormone secretagogues are a family of synthetic peptides (also called 

growth hormone releasing peptides) and peptidomimetic agonists designed to increase the 

secretion of growth hormone in GH-deficient patients.  

1.1 Design of growth hormone releasing peptides 

 Growth hormone releasing peptides (GHRPs) research stemmed from studies on 

synthetic analogs of opioid peptides during the 1970s. Opioids such as enkephalins, 

endorphins, dynorphins, and endomorphins are produced by the body in response to pain 

while naturally occurring opiates such as morphine and codeine are extracted from opium 

poppy. Enkephalins are pentapeptides that regulate nociception or pain perception via 

peripheral nerves in order to control or lessen the pain signal sent to the central nervous 

system (CNS). There are 2 forms of enkephalin which are products of the same 

proenkephalin gene: leu-enkephalin (Tyr-Gly-Gly-Phe-Leu)  and met-enkephalin (Tyr-Gly-

Gly-Phe-Met) (Udenfriend & Kilpatrick, 1983). In 1975, enkephalins were identified as the 

endogenous ligands of the morphine receptor, opioid receptor μ widely distributed 

throughout the central and peripheral nervous system (Hughes et al., 1975). With 

enkephalins as the prototype, opioid analogs were synthesized in order to develop more 

potent and less addicting analgesic compounds. Soon after, Cyril Y Bowers, Frank 

Momany and colleagues noticed that certain opioids stimulated growth hormone (GH) 

secretion (Bowers et al., 1977).  

 Also called somatotropin, GH is 191-aa hormone secreted by the pituitary gland 

(hypophysis), more precisely by the anterior part of the gland (Figure 1A). The pituitary 

gland is controlled by the hypothalamus, connected by the pituitary stalk (or infundibular 

stem). The hypothalamus directly controls the endocrine system by secreting factors that 

stimulate or inhibit the secretion of hormones released from the pituitary. The latter 
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contains 2 sections: the anterior pituitary and the posterior pituitary. The anterior pituitary 

is responsible for the secretion of various hormones including GH. The secretion of GH is 

regulated by the hypothalamic-pituitary axis (Figure 1B). Somatocrinin or growth 

hormone-releasing hormone (GHRH) is produced by the hypothalamus (Figure 1A) and 

secreted towards the pituitary (Guillemin et al., 1982). GHRH binds to somatotropes and 

induces secretion of GH into the blood circulation which will then bind to its receptor 

present in peripheral tissues. In response to GH, the liver secretes insulin-like growth factor 

1 (IGF-1) causing a negative feedback on the production of GH. The resulting increase in 

somatotropin release-inhibiting factor (SRIF) production competes with GHRH for the 

same receptor on somatotropic cells and reduces secretion of GH. The interplay between 

GHRH and SRIF results in the observed pulsatile release of GH (Brazeau et al., 1973). 

A B

Hypothalamus
Pituitary 
gland or 

hypophysis

Pituitary stalk

Anterior 
pituitary

Somatotropic
cells

GH

Neurosecretory
neurons

Posterior
pituitary

SRIF
GHRH

Pituitary

-+

Hypothalamus

GHRH SRIF

GH

Liver

IGF-1

IGF-1

Target 
Tissue

Growth

 

Figure 1. The hypothalamic-pituitary axis. (A) Functional anatomy of the 

hypothalamus and pituitary gland, (B) Regulation of the secretion of growth hormone 

by the hypothalamus 

 Regardless of the cause, in newborns and young children, a GH deficiency results in 

hypoglycemia and growth retardation. Although rare, a GH deficiency in adults (due to 

traumatic brain injury, cancer, radiotherapy) can result in prolonged fatigue, a loss in bone 
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density and a loss of muscle mass. Prior to the advent of recombinant DNA technology in 

1985, the treatment of choice for GH deficiency was the rather expensive injections of 

purified human GH. Although due to the seriousness of contracting the degenerative 

neurological disorder, Creutzfeldt-Jakob disease (CJD) from contaminated human GH 

samples, the use of hGH was soon banned from Europe and North America (Huillard et al., 

1999). This hormone represents a 191-aa protein with a molecular mass of 215 kDa and a 

low oral absorption (Nargund et al., 1998). In addition, daily injections masked the 

physiological regulatory feedback and therefore resulted in the absence of pulsatile release 

of GH. In certain cases, a deficiency in GH was not primarily due to an insufficient 

synthesis/secretion of GH but rather a poor signaling from the hypothalamus. Taking those 

two facts into account, an alternative approach was considered in which the biologically 

active portion of the 44-aa GHRH peptide would be used to stimulate GH secretion from 

the pituitary. This 29-aa synthetic bioactive truncated GHRH had the advantage of 

maintaining the pulsatile release of GH, and therefore several analogues of GHRH were 

tested in humans as an alternative to GH replacement therapy (Grossman et al., 1984). 

Following the arrival of recombinant GH on the market, studies performed on GHRH and 

its analogues could not demonstrate the advantage of using GHRH in terms of efficacy and 

bioavailability in comparison to recombinant GH (Campbell et al., 1995). 

 Following the previously mentioned observation in 1977 of Bowers, Momany and 

colleagues that enkephalins stimulated GH secretion, this team redirected their research 

from opioids and undertook the tedious task of synthesizing more potent analogues as a 

therapeutic approach to treating GH deficiency and doing so by using met-enkephalin as 

their prototype (Table 1). The peptide sequence was modified to produce analogues capable 

of eliciting a stronger GH secretion on isolated rat pituitary glands without affecting opioid 

receptors (Bowers et al., 1980;Momany et al., 1981). The analogue of met5-enkephalin, 

Tyr-DTrp-Gly-Phe-Met-NH2, illustrated in Table 1, was the first to elicit a stronger in vitro 

GH secretion; however, when tested in rat, no in vivo activity was found. The D 

conformation of the substitute aromatic amino acid, tryptophan brings a stabilizing element 
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to this peptide making it more resistant to proteases;  while the amine group (NH2) in C-

terminal renders the peptide biologically active (Kreil, 1997). Indeed, it is estimated that 

half of peptide hormones have an amine group at their C-terminus and is required for 

optimal biological activity (Kim & Seong, 2001). Theoretical conformational studies by 

Momany helped in the design of more energetically favorable and potent GHRPs (Momany 

et al., 1981;Momany & Bowers, 1996). While some were a thousand times more active 

than their predecessor, they still did not possess any in vivo activity. The main feature of all 

GHRPs synthesized that needed to be preserved in the following screenings was the 

presence, position and stereochemistry of the Trp residu at position 2.Using a trial and error 

approach, the first in vivo bioactive GHRP called GHRP-6 (His-D-Trp-Ala-Trp-D-Phe-Lys-

NH2) was finally synthesized (Momany et al., 1984). The three dimensional structure of 

GHRP-6 indicated that the N-terminal end of histidine and the C-terminal end of lysine 

were in close proximity, adopting a folded conformation. The hydrophobic indole ring of 

each tryptophan (D-Trp2 and Trp4) was directed toward one another while the phenyl unit 

of D-Phe5 interacted with the amino unit of Lys6. These particular modifications seemed to 

give GHRP-6 its bioactive feature. Unfortunately, GHRP-6 and others that followed had a 

very poor oral absorption and a short half-life. For example, oral GHRP-6 had a bioactivity 

of 0.3% to that of injected GHRP-6 with a half-life of 20 minutes (Bowers et al., 1992). 

This lack of bioavailability provided the opportunity for other research teams to search for 

nonpeptidyl compounds imitating GHRPs but with the added feature of being orally active. 
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Table 1. Evolution of growth hormone releasing peptides and their unique related 

properties 

Met-enkephalin: 
Tyr-Gly-Gly-Phe-Met

Analogue of met5-enkephalin:

Tyr-D-Trp-Gly-Phe-Met-NH2

Structure
Name: 

Peptide sequence Modification(s) Applied Function or 
Reported effect(s)

N/A Opioid μ receptor 
ligand

NH2 in C-terminal confers 
to this peptide an increase 

in bioavailability
D-Trp, conformation 

renders peptide resistant 
to proteases

GHRP-6:
His-D-Trp-Ala-Trp-D-Phe-Lys-NH2

GH secretion from 
isolated pituitary in 
vitro but not in vivo

First peptide capable of 
stimulating in vitro 
AND in vivo GH 

secretion

Methyl group provides 
an increased stability to 

this peptide. First 
peptide that can be 

taken orally. 

Several modifications were 
made to generate 

hexapeptide with a second  
aromatic aa with a D

conformation

Methyl added in position 2 
in aromatic group of D-Trp

Hexarelin: 
His-D2MeTrp-Ala-Trp-D-Phe-Lys-NH2

 

1.2 Peptidomimetic growth hormone secretagogues  

 Roy Smith and colleagues from Merck assumed the task of designing such 

compounds. To do so, they took into consideration all of the particular features that made 

GHRP-6 a bioactive peptide such as the amine group, the aromatic amino acids in position 

2, 4 and 5 as well as the unnatural D-Trp and combined them with benzodiazepine, known 

to imitate small peptides. They synthesized an array of compounds capable of secreting GH 

called benzolactames (Smith et al., 1993). The bioavailability of benzolactames, although 

superior to GHRPs, turned out to be relatively low (Leung et al., 1996). Focusing on the 

concept of “privileged structures” by Ben E. Evans and colleagues that stated that certain 

molecular units had the capacity of interacting with various receptors, the same team 
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screened different compounds within the company’s various internal projects to finally 

focus on agonists containing a spiropiperidine group (Evans et al., 1988;Jacks et al., 1996). 

More precisely, spiroindoline sulphonamide (also called MK-0677) was found to elicit GH 

release in rat pituitary cell culture assay with greater potency. MK-0677 was identified as a 

specific GHS with an elevated bioactivity, a high bioavailability of more than 60% and a 

half-life of 5 to 6 hours in dogs (Jacks et al., 1996). Merck selected MK-0677 for safety 

assessment studies which then entered clinical trials (Nargund et al., 1998).  

1.3 Growth hormone secretagogues today 

 Despite tremendous research and effort at designing efficacious GHS that will at the 

same time maintain the pulsatile release of GH and have an elevated oral bioavailability, 

injections of recombinant GH continues to be the treatment of choice for GH-deficient 

patients, mainly due to its low-cost production. Furthermore, in a high percentage of cases, 

a decrease in GH is the result of an improper activity of the pituitary gland; therefore, 

injection of GH is the logical approach to treat GH-deficiency. However, throughout the 

years, new applications were considered for GHS. For example, they have been used as a 

diagnostic tool to detect GH deficiency. In Japan, the second generation of GHRP-6, 

GHRP-2 is used as a kit to detect GH deficiency in adults (Arita et al., 2008). In addition, 

MK-0677 is being considered for its role in counteracting the reduced basal metabolic rate 

resulting from aging, from calorie-restricted diets and from wasting syndrome (cachexia) 

seen in patients suffering from chronic diseases (Nass et al., 2008;Smith et al., 

2007;Murphy et al., 1998). However, due to its effect on GH secretion and its potential in 

improving athletic performance, GHS are amongst the list of banned substances published 

by the World Anti-Doping Agency (WADA). GHS have also found their way to the black 

market for their use in bodybuilding. Recently, GHRP-2 was detected in over-the-counter 

nutritional supplemental tablets (Thomas et al., 2010). 
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2 Growth hormone secretagogue receptor and its 

natural ligand  

2.1 Identification of an alternative pathway for GH release 

 As illustrated in Figure 1B, it was first presumed that the pulsatile GH secretion was 

regulated by only two hormones: GHRH and SRIF. Following the discovery of GHRPs, 

studies pertaining to their mechanism of action have permitted to identify a second 

activation pathway for the release of GH. Based on their preliminary results, Bowers and 

colleagues suggested early on that GHRPs acted on a different pathway than that of GHRH. 

They observed that combining GHRP-6 with GHRH had an additive effect on GH secretion 

in rats (Bowers et al., 1984;Sartor et al., 1985). In addition, Roy Smith and colleagues at 

Merck reported that in isolated rat somatotropic cells, repeated treatments with GHRP-6 

resulted in the desensitization of cells to GHRP-6 without affecting its response to GHRH; 

and inversely, treatment of cells with a GHRH antagonist had no effect on the response of 

cells to GHRP-6 (Cheng et al., 1989). Similarly to opioid receptors, GHRH receptor 

(GHRHR) belongs to the family of G protein-coupled receptors (GPCRs) (Figure 2). One 

main feature of the binding of GHRH to its receptor is the increase in intracellular cyclic 

AMP (cAMP) via stimulation of adenylate cyclase (AC) by Gsα subunit (Mayo, 1992). 

Cyclic AMP activates protein kinase A (PKA) which in turn activates a range of factors 

responsible for the expression of GH and its subsequent processing and secretion (Cohen et 

al., 1999). In support of an alternative pathway for GH release, several studies have used 

GHS such as GHRP-6 and MK-0677 to reveal the following findings:  

 - GHS had no effect on intracellular cAMP levels (Cheng et al., 1989) 

 - Phorbol 12-myristate 13-acetate (PMA), an activator of protein kinase C (PKC) 

 was capable of imitating the additive effect of GHS when combined with  

 GHRH (Cheng et al., 1991) 
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 - GHS causes a rapid increase in intracellular free calcium, [Ca2+]i 

 (Herrington & Hille, 1994;Bresson-Bepoldin & Dufy-Barbe, 1994) 

 - The secretion of GH by GHS involved the inositol (1,4,5)-trisphosphate/ 

 diacylglycerol (IP3/DAG) pathway (Adams et al., 1995;Mau et al., 1995) 

Somatotropic
cell

GHRH
GHS

Adapted from  Kojima et al., TRENDS in 
Endocrinology & Metabolism 2001, 12(3): 
118-126.

AMPc [Ca2+]i

Natural ligand

GH

GH

Gαs

AC

ATP AMPc

PKA PKC

IP3
Gα11

 

Figure 2. Growth hormone-releasing hormone and growth hormone secretagogue 

pathways involved in GH release from the pituitary 

2.2 Identification of the receptor for GHS 

 In 1996, under the supervision of Lex Van der Ploeg and Roy Smith, the research 

team at Merck were the first to clone the receptor for GHS (Howard et al., 1996). Using the 

expression-cloning strategy in which size-fractionated poly A+ RNA from pig pituitaries 

were microinjected into Xenopus oocytes along with cRNA of selected G protein and 

aequorin. Using aequorin, a bioluminescent probe known to bind intracellular calcium, they 

measured levels of [Ca2+]i released following treatment with MK-0677. Exhaustive 

stepwise fractionation of positive pools finally resulted in the identification of an orphan 
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receptor. The gene for GHS receptor, called GHS-R1a codes for a 366-aa GPCR (41 kDa) 

belonging to GPCR, class A (rhodopsin-like receptors) with the typical conserved 7 

transmembrane (7-TM) α-helices and classic sequence for G protein interactions. A second 

isoform (GHS-R1b) was also cloned that represented a truncated 289-aa protein missing 

TM 6 and 7, which did not respond to GHS and was a product of pre-mRNA splicing. 

Formation of GPCRs homo- and hetero-oligomers is thought to play an important role in 

ligand binding and cell signaling (Maggio et al., 2005). It was recently shown that GHS-

R1b acts as a dominant-negative form of GHS-R1a to lessen its constitutive activity by 

forming heterodimers and when its expression exceeds that of GHS-R1a, trafficking of 

GHS-R1a to the cell surface is attenuated (Leung et al., 2007). 

2.3 Distribution of GHS-R1a 

 The tissue distribution of GHS-R1a is more widespread than first anticipated 

suggesting a role beyond that of stimulator of GH secretion from the pituitary.  Table 2 

depicts the detection GHS-R1a in various tissues or cell types. Listed also is the expression 

of scavenger receptor CD36 which will be discussed in section 5.2. The expression of 

GHS-R1a is elevated in several sections of the brain including the hypothalamus and 

pituitary gland (Guan et al., 1997). The hypothalamic nuclei play a major role in the 

regulation of food intake and energy homeostasis (Gao & Horvath, 2008;Horvath, 2005). In 

addition, GHS-R1a is also expressed in endocrine tissues such as pancreas, adrenal glands, 

thyroid, ovaries and testicles (Guan et al., 1997;Gnanapavan et al., 2002;Gaytan et al., 

2005;Tena-Sempere et al., 2002). In relation to the cardiovascular system, GHS-R1a is 

present in the aorta, the left atrium and ventricle, and more precisely in cardiomyocytes as 

well as in smooth muscle cells and microvascular endothelial cells (Nagaya et al., 

2001;Kleinz et al., 2006;Li et al., 2007a). Looking at the digestive system, GHS-R1a was 

detected in the intestine and stomach (Dass et al., 2003;Wu et al., 2004;Shuto et al., 2001). 

GHS-R1a is also found in spleen and in leukocytes such as monocytes/macrophages, 

lymphocytes and neutrophiles (Gnanapavan et al., 2002;Demers et al., 2004;Hattori et al., 
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2001). Its presence in adipose tissue has been suggested (Choi et al., 2003;Davies et al., 

2009) while in other studies it has not been detected (Gnanapavan et al., 2002;Muccioli et 

al., 2004). To support its absence in adipose tissue, GHS-R1a was undetectable in cultured 

mouse adipocytes, 3T3-L1 (Zhang et al., 2004;Rodrigue-Way et al., 2007). To explain this 

discrepancy, macrophages can be present in adipose tissue and their infiltration can 

contribute to inflammation in obese subjects (Weisberg et al., 2003). It is therefore possible 

that detection of GHS-R1a in adipose tissue in certain studies is due to contaminating 

macrophages known to express GHS-R1a. GHS-R1a is also absent in liver, primary 

hepatocytes and human hepatocellular carcinoma cell line, HepG2 (Smith et al., 

2007;Thielemans et al., 2007;Gauna et al., 2005). GHS-R1a neither was detectable in 

skeletal muscle nor in mouse differentiated myoblastic cell line, C2C12 (Ueberberg et al., 

2009;Filigheddu et al., 2007). It was also untraceable in colon, kidney and prostate 

(Ueberberg et al., 2009). 

 It is noteworthy to mention that GHS-R1a is not expressed in tissues involved in 

lipid metabolism such as adipose tissue (adipocytes), liver and skeletal muscle. 
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Table 2. Tissue- or cell-specific distribution of GHS-R1a and CD36 

√  -mRNA or protein detected
X -Undetected
? - Unknown

Tissue or cell type GHS-R1a CD36 Reference(s)
Hypothalamus √ √ Guan et al. , 1997; Le Foll et al., 2009

Pituitary gland √ √ Guan et al. , 1997; Ong et al., 1998b

Heart or cardiomyocyte √ √ Kleinz et al. , 2006; Van Nieuwenhoven et al., 1995

Vascular smooth muscle cell √ √ Kleinz et al., 2006; de Oliveira et al., 2008

Microvascular endothelial cell √ √ Li et al ., 2007a; Swerlick et al., 1992

Spleen √ √ Gnanapavan et al. , 2002; Memon et al., 1998

Pancreas √ √ Guan et al., 1997; Noushmehr et al., 2005a

Stomach √ √ Shuto et al. , 2001; Chen et al., 2001

Intestine √ √ Dass et al. , 2003;Wu et al. , 2004; Chen et al., 2001

Adrenal gland √ √ Gnanapavan et al. , 2002; Zhang et al., 2003

Macrophage √ √ Demers et al. , 2004; Endemann et al., 1993

Lymphocyte √ √ Hattori et al. , 2001; Won et al., 2008

Neutrophile √ √ Hattori et al. , 2001; Suchard et al., 1992

Ovary √ √ Gaytan et al. , 2005; Zhang et al., 2003

Testicule √ √ Tena-Sempere et al. , 2002; Gillot et al., 2005

Adipose tissue and 3T3-L1 adipocyte X √ Gnanapavan et al. , 2002; Zhang et al ., 2004; Harmon & Abumrad, 1993

Liver, primary hepatocyte and HepG2 X √
Smith et al. , 2007; Gauna et al. , 2005; Thielemans et al ., 2007; Memon et al., 
1998;Malerod et al., 2002

N9 microglia cell X √ Bulgarelli et al., 2009

Kidney X √ Ueberberg et al. , 2009; Susztak et al., 2004

Colon X √ Ueberberg et al. , 2009; Chen et al., 2001

Skeletal muscle or C2C12 myoblast X √ Ueberberg et al. , 2009; Filigheddu et al. , 2007; Van Nieuwenhoven et al., 1995

Prostate X √ Ueberberg et al. , 2009; Vallbo & Damber, 2005

Platelet/megakaryocyte ? √ Clemetson et al ., 1977

Breast ? √ Clezardin et al. , 1993

Pneumocytes ? √ Guthmann et al. , 1999

Airway epithelium ? √ Atsuta et al. , 1997

Dendritic cell ? √ Juhlin, 1989

Retinal pigment epithelium ? √ Ryeom et al. , 1996

Gustatory cell ? √ Fukuwatari et al. , 1997

Thyroid √ X Patey et al. , 1999

 

2.4 The natural ligand of GHS-R1a: ghrelin 

2.4.1 Discovery of ghrelin: classical example of reverse pharmacology 

 The endogeneous ligand of GHS-R1a was isolated in 1999 by Kenji Kangawa and 

his team in Japan (Kojima et al., 1999). The discovery of ghrelin became a classical 

example of reverse pharmacology (Libert et al., 1991). Their approach consisted of treating 
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stable GHS-R1a-transfected CHO cells with tissue extracts from brain, lung, heart, kidney, 

stomach and gut; and to monitor for changes in [Ca2+]i. Following a positive response from 

stomach extracts, they proceeded to go through intensive chromatography purification 

steps, including reversed-phase HPLC. From the final purified sample, they characterized 

and sequenced the potential GHS-R1a ligand by mass spectrometry. Finally, they identified 

a 28-aa protein with a n-octanoylated (C7H15CO) serine residue at position 3. This unique 

post-transcriptional modification was essential for its GH-releasing activity. The authors 

names this peptide “ghrelin” after the word root “ghre” in Proto-Indo-European languages 

meaning “grow” and superposed with “rel” for “release” for its GH-releasing ability 

(Kojima, 2008). It took a little less than a decade for Joseph Goldstein and Andrew Brown 

and colleagues, to discover the enzyme responsible for the acylation of ghrelin with the 

fatty acid, octanoate (Yang et al., 2008). Ghrelin O-Acyltransferase (GOAT) is the only 

member of its family capable of attaching a small fatty acid to a peptide. Due to its unique 

role, GOAT has become an interesting target in the treatment against obesity and diabetes 

(Chen et al., 2009). The majority of ghrelin in the gastrointestinal tracts is produced by a 

distinct endocrine cell type called X/A-like cells in the oxyntic gland (Date et al., 2000). 

However, ghrelin is also expressed to a smaller degree throughout the digestive system 

from the stomach to the colon and also in the pancreas, adipose tissue, heart, kidney, lung, 

adrenal gland, thyroid, pituitary and hypothalamus (Kojima et al., 1999;Ueberberg et al., 

2009). In addition to its role in secreting GH, ghrelin is an appetite-stimulating peptide 

hormone and the only gastrointestinal peptide with orexigenic powers (Asakawa et al., 

2001;Woods, 2004). 

2.4.1.1 Deacyl-ghrelin 

 The deacylated ghrelin does not bind to GHS-R1a and was considered as a non-

functional peptide until recently (Chen et al., 2009). Since deacyl-ghrelin was the major 

form secreted in the circulation, it seemed improbable that it had no physiological 

relevance. Indeed, the ratio deacyl-ghrelin:ghrelin was found to be between 2.5:1 and 9:1 

(Tsubone et al., 2005;Broglio et al., 2004;Yoshimoto et al., 2002).  The ratio deacyl-
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ghrelin:ghrelin turned out to have important physiological consequences on energy balance 

since it was discovered that deacyl-ghrelin had opposite effects to that of ghrelin on food 

intake, for example (Asakawa et al., 2005). In obese patients, circulating deacyl-ghrelin 

levels decreased greatly while ghrelin levels increased; and in obese diabetic patients, this 

change in ratio was further accentuated (Rodriguez et al., 2009). Despite its inability to 

bind GHS-R1a, deacyl-ghrelin is thought to bind a yet unknown receptor since some 

studies have shown binding sites on cardiomyocytes and C2C12 skeletal muscle cells 

(Filigheddu et al., 2007;Lear et al., 2010). 

2.5 Role of ghrelin and its binding to GHS-R1a 

 Given the broad distribution of GHS-R1a and ghrelin, it wasn’t surprising to 

discover that their influence on energy homeostasis went far beyond that of simply 

controlling GH secretion. As stated previously, a major role was given to ghrelin as an 

appetite-stimulating hormone (Asakawa et al., 2001). In addition, central and peripheral 

injections of ghrelin in mice provoked a decrease in energy expenditure, an increase in 

respiratory quotient (RQ= CO2 eliminated /O2 consumed) and a decreased in oxygen 

consumption (Tschop et al., 2000;Asakawa et al., 2005). Using neuropeptide Y (NPY)-

deficient mice, injections of ghrelin were shown to increase body weight and adiposity 

independently from its orexigenic effect due to the absence of NPY, the regulator of food 

intake (Tschop et al., 2000). Ghrelin decreased adipocyte thermogenesis suggesting a GHS-

R1a-independent effect (Tsubone et al., 2005).  Adipogenesis is a carefully controlled event 

during which the timing in the expression of specific genes is important in the induction of 

the differentiation program and proper functioning of adipocytes. Adipogenesis is further 

discussed in Section 7.2. Both chronic intracerebroventricular infusion of ghrelin in rats and 

treatment of human visceral adipocytes resulted in the increased expression of 2 genes 

involved in adipocyte differentiation, nuclear receptor peroxisome proliferator-activated 

receptor gamma (PPARγ) and sterol-regulatory element binding protein-1 (SREBP-1) as 

well as several genes involved in adipocytic function such as lipoprotein lipase (LPL), 
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acetyl-CoA carboxylase (ACC), fatty acid synthase (FAS) and  stearoyl-CoA desaturase-1 

(SCD-1) (Rodriguez et al., 2009;Theander-Carrillo et al., 2006). Ghrelin is shown to 

activate 5' adenosine monophosphate-activated protein kinase (AMPK) in tissues 

expressing GHS-R1a  such as the hypothalamus and the heart while inhibiting AMPK in 

GHS-R1a-negative tissues such as the liver and adipose tissue (Kola et al., 2005). 

However, ghrelin had no effect on AMPK in skeletal muscle. AMPK is a key regulator of 

energy homeostasis further presented in Section 9.1. The GH-independent cardioprotective 

effect of ghrelin might be due in part to the activation of AMPK (Frascarelli et al., 2003). 

In general, the orexigenic effect of ghrelin ties macronutrient composition with regulation 

of energy balance by the CNS but it also has direct GHS-R1a-dependent and -independent 

effects of peripheral tissues. 

2.6 Therapeutic interest of ghrelin and GOAT 

 Based on its role in energy balance, ghrelin has become an interesting therapeutic 

target for certain pathophysiological conditions. In cancer patients as well as in patients 

with severe chronic wasting diseases such as chronic obstructive pulmonary disease and 

renal failure, infusion of ghrelin resulted in a marked improvement in appetite, food intake 

and nutrient absorption (Neary et al., 2004;Nagaya et al., 2005;Ashby et al., 2009). Along 

with the identification of GOAT in 2008 and the importance in the ratio deacyl-

ghrelin:ghrelin, much attention is given to GOAT and its role in controlling ghrelin’s action  

(Romero et al., 2010). However, the use of an agonist or antagonist of GOAT still remains 

to be determined since the physiological effects of ghrelin are multiple, sometimes opposite 

and difficult to interpret based on the various sites of action of ghrelin independent and 

dependent of GHS-R1a.  
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3 The growth hormone releasing peptide, hexarelin  

3.1 A novel GHRP 

 Hexarelin made its appearance in 1994 when Vittorio Locatelli and colleagues in 

Italy synthesized a derivative of GHRP-6 in which they substituted D-Trp for D-2-methyl-

Trp (see Table 1) making this peptide chemically more stable than GHRP-6 and above all 

the first orally active GHRP (Deghenghi et al., 1994;Ghigo et al., 1994). Initially called EP 

23905, hexarelin was synthesized during the era when intensive search for a highly orally 

active GHS was conducted. Despite the superior bioavailability of peptidomimetic GHS, 

studies using GHRPs, including hexarelin, were pursued in humans and various animal 

models in the hopes of understanding its biological effect but also to mainly justify its use 

as a therapeutic or a diagnostic tool (Micic et al., 1999). Hexarelin studies were quickly 

undertaken in humans to verify its efficacy on GH secretion. Hexarelin was well tolerated 

in humans without any reported side-effects and elicited a substantial elevation in plasma 

GH concentrations in a dose-dependent manner (Imbimbo et al., 1994). Even though 

hexarelin was orally active, it still did not mirror the efficacy of the orally active GHS, MK-

0677. Because of the highly vascularized nasal cavity, intranasal administration was 

proposed for hexarelin as a therapeutic tool for GH deficiency instead of IV injections 

(Laron et al., 1994;Laron et al., 1995;Pontiroli, 1998). Today, hexarelin is used mainly in 

research but it also has become a popular choice as a performance enhancement drug. 

3.2 The dual action of hexarelin 

 Prior to the detection of GHS-R1a in the myocardium, GH-independent studies 

suggested that hexarelin possessed cardioprotective properties distinct from that of GH 

(Berti et al., 1998;Rossoni et al., 1998). It was suggested that perhaps in addition to GHS-

R1a, GHRPs were capable of binding to a sub-type of GHRP receptor. In 1998, the group 

of Magnus Nilsson performed binding assays on membrane extracts from human, bovine 
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and porcine anterior pituitaries to identify hexarelin’s receptor (Ong et al., 1998b). They 

developed a photoreactive analogue of hexarelin containing a photoactivatable amino acid, 

p-benzoyl-L- phenylalanine and iodine-125 labeled ([125I]iodoTyr-Bpa-Ala-Hexarelin) 

(Dorman & Prestwich, 1994). They identified a 57 kDa photolabeled protein in all samples 

analyzed that was distinct from the 41-kDa GHS-R1a protein. Another protein capable of 

interacting with hexarelin and with a molecular weight of 84 kDa was detected in heart 

(Ong et al., 1998a). However, when the heart photolabeled protein was treated with N-

glycosidase F, a decrease in its MW to ~57 kDa was observed suggesting that this receptor 

contained oligosaccharide chains and was therefore heavily N-glycosylated in the heart but 

not in the pituitary gland (Bodart et al., 1999). In addition, the binding was specific to 

hexarelin since MK-0677 and EP51389 (another potent GHRP) were unable to compete 

with the photoactivatable hexarelin for this unidentified receptor. In support of these 

findings, another study showed that hexarelin had a different binding pattern than that of 

MK-0677 or ghrelin (Papotti et al., 2000). Binding of hexarelin was detected in decreasing 

order in heart, adrenal gland, gonad, artery, lung, liver, skeletal muscle, kidney, pituitary, 

thyroid, adipose tissue, vein, uterus, skin and lymph node. In 2002, the second receptor for 

hexarelin was identified as the scavenger receptor, CD36 (Bodart et al., 2002). 

4 Scavenger receptors 
 The role of certain cell types as scavengers was first suggested by Joseph Goldstein, 

Andrew Brown and associates (Goldstein et al., 1979). They observed that in presence of 

acetylated 125I-labeled low density lipoprotein (125I-acLDL) cultured macrophages would 

internalize these particles at a much higher rate than native LDL particles. This uptake 

resulted in the accumulation of intracellular cholesterol and a transformation of cells into 

foam cell-like phenotype similar to what is observed in atherosclerotic plaques. These 

results implied the presence of receptors capable of binding modified LDL particles and 

were therefore referred to as scavenger receptors.  
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4.1 The role of scavenger receptor in the formation of 

atherosclerotic lesions 

 It was later determined that the formation of oxidized LDL (oxLDL) particles rather 

than acLDL was a likely occurrence since oxLDL particles were present in atherosclerotic 

plaques (Palinski et al., 1989;Yla-Herttuala et al., 1989).The first step in the development 

of atherosclerotic plaques is the appearance of fatty streaks consisting primarily of foam 

cells loaded with lipids and T lymphocytes within the vessel’s subendothelial space or 

intima (Daugherty & Roselaar, 1995). Oxidation of LDL particles is thought to occur not in 

the circulation but rather in the intima following their infiltration in specific locations of a 

vessel (Chow et al., 1998;Rangaswamy et al., 1997). The oxidation of imprisoned LDL 

particles is a long and complex process that is still considered a key step in the development 

of atherosclerosis (Stocker & Keaney, Jr., 2005;Steinberg, 2002). The core of a LDL 

particle contains cholesterol esters (CE) and triglycerides (TG) while the surface is covered 

with a single layer of phospholipids (PL), including phosphatidylcholine, molecules of non-

esterified cholesterol and a single molecule of apolipoprotein B-100 (apoB100) that 

specifically interacts with the LDL receptor on neighboring cells (Steinberg, 2002).While 

cholesterol is less susceptible to oxidation, an important variety of oxidized PL was 

detected within lesions and especially in oxLDL (Berliner et al., 2001).When phospholipids 

are minimally modified (mmLDL), they become negatively charged, have an anti-apoptotic 

effect on scavenger cells, and stimulate secretion of chemokines and cytokines from 

neighboring endothelial cells lining the blood vessels (Berliner et al., 1995;Boullier et al., 

2006). Consequently, monocytes are recruited from the circulation toward the site of 

inflammation.  Subsequently, within the intima, the infiltrated monocytes differentiate into 

macrophages. The constant recruitment of inflammatory cells results in increased cytokine 

secretion and continuous oxidation of mmLDL. Phospholipids are increasingly oxidized on 

LDL while apoB100 undergoes modifications and unfolds (Hamilton et al., 2008). 

Oxidized LDL is no longer recognized by LDLR but becomes a ligand for scavenger 
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receptors. Macrophages, endothelial cells and even vascular smooth muscle cells (VSMC) 

take up oxLDL via their scavenger receptors. This process allows especially macrophages 

to clear the intima from the harmful presence of oxLDL. In addition, the oxidized lipids 

taken up by the macrophage serve as ligands to nuclear receptor, PPARγ and induce the 

expression of genes involved in the reverse cholesterol transport such as ATP-binding 

cassette transporter AI (ABCA1) which shuttles internalized cholesterol into nascent HDL 

particles for clearance by the liver (Chawla et al., 2001). However, when macrophages 

become overloaded and overwhelmed by oxLDL, an imbalance occurs between the uptake 

and the clearance of lipids and cells  become consequently lipid-laden macrophages, or 

foam cells (Faggiotto et al., 1984). In atherosclerosis, progression in the formation of foam 

cells, but also in the increase in inflammation, in cellular necrosis, and thinning of the 

fibrotic plaque eventually lead to plaque rupture and thrombosis (Lusis, 2000). Therefore, 

scavenger receptors are thought to play a detrimental role in the pro-atherogenic effect of 

modified LDL particles.  

4.2 Scavenger receptor classes 

 Scavenger receptors (SR) have been identified and grouped based on their capacity 

to bind modified lipoprotein particles and their contribution to the development of 

atherosclerosis. They have been categorized into different classes based mainly on their 

structural features and functional domains (Krieger, 1997;Horiuchi et al., 2003).  Figure 3 

provides an illustration of the different classes of SR. Members of class A have a single TM 

region, a trimeric formation (α-helices) and possess an affinity for acLDL and oxLDL. This 

class includes SR-A type 1 and type 2 (SR-A1 and SR-A2) which are encoded by the same 

gene and alternatively spliced (Kodama et al., 1990;Rohrer et al., 1990). Members of class 

A, mainly expressed in macrophages, play a major role in the development of 

atherosclerosis (Sakaguchi et al., 1998;Suzuki et al., 1997).  A marked decrease in lesion 

size was observed in SR-A knockout mice on either an apoE- or a LDLR-deficient 

background (atherosclerotic models). The main feature of members of Class B, such as 
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CD36 and SR-BI, consists of two TM domains separated by N- and C-terminal cytosolic 

extremities, forming a large loop-like extracellular structure. CD36 will be discussed 

further in the following section. SR-BI binds to oxLDL, acLDL, native LDL, apoptotic 

cells and also lipopolysaccharide (LPS) found on bacteria. It is however mainly known for 

its ability to bind HDL particles and its central role in reverse cholesterol transport (Acton 

et al., 1996). SR-BI is expressed on macrophage, endothelial cell as well as in liver, adrenal 

gland, placenta and gonad (Landschulz et al., 1996). SR-BI is also highly glycosylated and 

comparisons between SR-BI and CD36 show several conserved extracellular cysteine 

residues; however their TM and cytosolic domains share little resemblance (Krieger, 1999). 

Class C initially thought to be expressed in mammals is only found in drosophila (dSR-CI) 

and was characterized based on its ability to bind acLDL (Pearson et al., 1995). Class D 

features CD68 which is mostly present in the macrophage endosome (Ramprasad et al., 

1996). When the cell is activated, CD68 is translocated to the cell surface for binding to 

oxLDL, acLDL and native LDL. CD68 is heavily O-glycosylated accounting for two thirds 

of its molecular weight (Holness & Simmons, 1993). Class E is represented by lectin-like 

oxLDL receptor-1 (LOX-1) expressed mainly on endothelial cells but also on macrophages, 

smooth muscle cells (SMC) and platelets (Sawamura et al., 1997;Apostolov et al., 2009). 

LOX-1 contains a type C lectin-like domain that recognizes specific carbohydrate 

structures (Drickamer, 1988). Special attention is given to LOX-1 since in addition to 

binding to oxLDL and acLDL, it also binds to carbamylated LDL (cLDL) particles, 

recently associated with oxidative stress and inflammation (Apostolov et al., 2009). Class F 

is defined by the scavenger receptor expressed by endothelial cells proteins (SREC-I and –

II) which have repeats of EGF-like cysteine-rich motifs (Ishii et al., 2002;Adachi et al., 

1997). While their expression pattern is similar (endothelial cells, macrophages and SMC), 

they differ in their ligand recognition. SREC-I recognizes oxLDL, acLDL and bacterial 

surface proteins. SREC-II does not bind native or modified LDL particles, technically not 

qualifying as a scavenger receptor. However, due to its EGF-like domain, SREC-II 

participates in cell aggregation by interacting with SREC-I in absence of modified LDL 
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particles (Ishii et al., 2002). Class G protein, SR-PSOX/CXCL16 binds oxLDL and 

phosphatidylserine, and contains a chemokine domain and mucin-like domain (Shimaoka et 

al., 2000;Matloubian et al., 2000). Phosphatidylserine, usually in the inner-leaflet of the 

membrane, becomes exposed on cell surface of apoptotic cells (Fadok et al., 1992).  

Proteolysis of the chemokine portion of this receptor results in the release of the soluble 

CXCL16 and acts to attract CXCR6-positive lymphocytes (van der Voort et al., 2010). 

PSOX/CXCL16 is expressed on macrophages, and also on dendritic, endothelial and 

smooth muscle cells (Sheikine & Sirsjo, 2008). All these classes, with the exception of 

class C, have been present in atherosclerotic lesions and are involved in foam cell 

formation. Scavenger receptors on phagocytic cells act primarily to detect abnormal 

specific motifs and are considered multi-ligand receptors. Each class possesses distinct 

properties; however, their ligand-recognition ability often overlaps and complicates our 

understanding of their role and downstream effects. It is clear however that in a healthy 

individual, the role of scavenger receptors is to clear the body of infection, of apoptotic 

cells and of modified lipoprotein that might be potentially harmful. For the purpose of this 

thesis, the focus will remain on CD36. 
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Figure 3. Classification of scavenger receptors and their proposed structural features 

5 Scavenger receptor, CD36 

5.1 Identification of CD36 and its various designations 

 Blood platelets play a crucial role in hemostasis and coagulation. When activated 

following an injury, platelets adhere to the solid surface of a vessel to form aggregates with 

other platelets and prevent hemorrhage (Cooper et al., 1976). Little less than forty years 

ago, studies on polypeptides and glycoproteins located on the surface of platelets were 

undertaken to determine the physiological role and biochemical nature of this anucleated 

cell. Three types of glycoprotein (I, II and III) were identified as major platelet surface 

proteins involved in adherence and aggregation (Phillips, 1972;Nachman & Ferris, 1972). 

Glycoprotein IV (GPIV) also present on platelets was identified as a protein with a MW of 

~88 kDa (Clemetson et al., 1977). During the 1980’s, more than a hundred ninety 
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laboratories collaborated for the 3rd International Workshop on Human Leukocyte 

Differentiation Antigens to characterize a little over 800 antibodies in the hopes of 

describing and identifying human leukocyte surface molecules. During that time, the 

leukocyte differentiation antigen Cluster of Differentiation 36, CD36 was identified as the 

antigen for anti-human monocyte antibody OKM5 (Shaw, 1987;Knowles et al., 1984). It 

was soon determined that GPIV and CD36 were the same protein (Tandon et al., 1989b). 

Due to its  multi-ligand pattern recognition function, CD36 is also known as 

thrombospondin (TSP) receptor, collagen receptor, fatty acid translocase (FAT) and finally 

the commonly referred name, scavenger receptor CD36 (Asch et al., 1987;Tandon et al., 

1989a;Harmon & Abumrad, 1993;Endemann et al., 1993). 

5.2 Tissue distribution 

 CD36 is expressed in various tissues and cell types. As mentioned in the previous 

section and listed in Table 2 (page 11), CD36 was first identified on 

platelets/megakaryocytes (Clemetson et al., 1977;Tandon et al., 1989b) but it is also found 

in heart and skeletal muscle (Van Nieuwenhoven et al., 1995), kidney (Susztak et al., 

2004), pancreas (Noushmehr et al., 2005a), spleen (Memon et al., 1998), stomach (Chen et 

al., 2001), liver (Memon et al., 1998;Malerod et al., 2002), gonad (Gillot et al., 2005), 

adrenal gland (Zhang et al., 2003), prostate (Vallbo & Damber, 2005), hypothalamic 

ventromedial nucleus (VMN) neurons (Le Foll et al., 2009) and pituitary gland (Ong et al., 

1998b). CD36 is also found on the surface of different types of leukocytes such as 

monocytes/macrophage (Endemann et al., 1993), neutrophiles (Suchard et al., 1992),  B 

lymphocytes  (Won et al., 2008), dendritic cells (Juhlin, 1989) and microglia cells 

(macrophages residing in the brain and spinal cord fluid) (Coraci et al., 2002). CD36 is also 

expressed on vascular SMC (de Oliveira et al., 2008) and microvascular endothelial cells 

(Swerlick et al., 1992), in addition to airway epithelium (Atsuta et al., 1997), pneumocytes 

(Guthmann et al., 1999), breast (Clezardin et al., 1993) and retinal pigment epithelium 

(Ryeom et al., 1996). Moreover, it is  highly expressed in cell types involved in lipid 
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metabolism such as adipocytes (Harmon & Abumrad, 1993), hepatocytes (Maeno et al., 

1994), enterocytes of the small intestine (Chen et al., 2001) and even on gustatory cells 

(Fukuwatari et al., 1997).  However, thyrocytes did not seem to express CD36 (Patey et al., 

1999). Table 2 compares the tissue/cell type distribution between GHS-R1a and CD36. It is 

interesting to note that CD36 is present in tissues involved in lipid metabolism, which are 

negative for GHS-R1a. Therefore, in adipocytes or hepatocytes, hexarelin would only act 

through CD36. 

5.3 The role of the multi-ligand receptor CD36 in different 

biological processes 

 Based on the different studies published, it is apparent that the role of CD36 is 

primarily defined by its ligand and by the cell type in which it is expressed. CD36 is known 

to bind TSP-1 (Silverstein et al., 1989), oxLDL (Endemann et al., 1993), apoptotic cells 

(Albert et al., 1998;Fadok et al., 1998), malaria parasites (Biggs et al., 1990), bacteria 

(Hoebe et al., 2005) and long chain fatty acids (Abumrad et al., 1993).To better define its 

functions, the following section is divided by ligands and when applicable, sub-divided into 

reported functions. 

5.3.1 Thrombospondine-1 (TSP-1) and CD36  

 Like CD36, TSP-1 is referred to as a multifunctional protein due to its capacity to 

bind to at least a dozen different receptors (Bornstein, 1995). TSP-1 is involved in cell 

proliferation, apoptosis, cell migration, phagocytosis, coagulation and angiogenesis. One of 

its receptors was identified in 1987 as an 88-kDa protein reacting with OKM5 monoclonal 

antibody and was later identified as CD36 (Asch et al., 1987;Silverstein et al., 1989). Due 

to this interaction, CD36 was associated with the following biological processes: 
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5.3.1.1 Hemostasis and platelet aggregation 

 Platelets, or thrombocytes, were thought to bind to collagen via CD36 on damaged 

arterial or vessel walls to form a platelet plug (Tandon et al., 1989a). In fact, CD36 was 

indirectly associated with binding of platelets to collagen through its direct binding to TSP-

1 (Legrand et al., 1991). Therefore, one of the first roles given to CD36 was the activation 

and aggregation of platelets via its binding to TSP-1. 

5.3.1.2 Thrombosis 

 The formation of a thrombus, or blood cloth, constitutes the last stage in hemostasis. 

However, during the development of an atherosclerotic plaque, a thrombus can 

pathologically lead to thrombosis, or blood vessel occlusion. In addition to its implication 

in platelet aggregation, CD36 was also shown to mediate the association platelet/monocyte 

and platelet/endothelial cell via TSP-1, supporting a role for CD36 in the development of 

obstructive blood clots (Silverstein et al., 1989). 

5.3.1.3 Angiogenesis 

 TSP-1 is a potent inhibitor of angiogenesis rendering endothelial cells insensible to 

a variety of vascularization stimulators (Good et al., 1990). Since CD36 is expressed on 

microvascular endothelial cell surface; Noël Bouck and colleagues discovered that the 

antiangiogenic effect of TSP-1 was in fact due to its interaction with CD36 on endothelial 

cells, causing an inhibition in cell migration and capillary tube formation (Dawson et al., 

1997). 

5.3.1.4 Endothelial cell apoptosis 

 TSP-1 can render microvascular cells sensitive to apoptosis in order to control 

angiogenesis and limit blood vessel density within normal tissue (Guo et al., 1997). 

Induction of apoptosis by TSP-1 is dependent on activation of CD36, Fyn kinase, caspase-3 

and mitogen-activated protein kinases (MAPKs) (Jimenez et al., 2000). 
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5.3.1.5 Corneal neovascularization 

 Normally, the cornea is devoid of blood vessels; however, corneal 

neovascularisation can occur due to prolong uninterrupted contact lens wear, inflammation, 

infection or trauma and result in impaired vision. CD36 contributes significantly to the 

maintenance of corneal avascularity by inhibiting neovascularisation. Blocking CD36 

activity leads to corneal neovoascularization (Mwaikambo et al., 2006). While in a hypoxic 

state, CD36 expression is increased by the transcription factor, hypoxia-inducible factor-1 

(HIF-1) as an adaptive response (Mwaikambo et al., 2009).  

5.3.2 Modified LDL particles, atherosclerosis and inflammation 

 CD36 is  notoriously associated with atherosclerosis; or more precisely, the binding 

of CD36 on monocytes/macrophages to oxLDL and foam cell formation (Endemann et al., 

1993). The capture and internalization of oxidized lipids lead to the activation of PPARγ 

and promotion of monocyte to macrophage differentiation and eventually to foam cell 

differentiation (Tontonoz et al., 1998). However, since CD36 is also expressed on platelets, 

endothelial cells and vascular smooth muscle cells (VSMC), binding of oxLDL on these 

cell types can also play an important role in the development of atherosclerosis. Indeed, 

foam cells derived from VSMC were also detected in atherosclerotic lesions and are known 

to play a role in its formation, in addition to its inflammatory response to oxLDL (Faggiotto 

et al., 1984;Lim et al., 2006). Binding of oxLDL to endothelial cells via CD36 is linked to 

endothelial dysfunction in atherosclerosis (Kopprasch et al., 2004), while on monocytes 

and macrophages it can induce an inflammatory response and stimulate phagocytosis (Harb 

et al., 2009). 

5.3.3 Phagocytosis of apoptotic cells 

 The phagocytosis of apoptotic or senescent cells by specialized cells is essential for 

tissue remodeling or for the resolution of an inflammatory response to avoid the spilling of 

toxic intracellular content and amplification of tissue injury (Savill et al., 1989). 
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Phagocytes recognize apoptotic cells via the exposed phosphatidylserines on the surface of 

apoptotic cells. CD36 expressed on macrophages and dendritic cells intervenes in this 

process (Albert et al., 1998;Fadok et al., 1998). The recently proposed Lipid Whisker 

Model states that when the cell membrane undergoes lipid peroxidation, the hydrophobic 

portion of fatty acids flips from the internal side of the bilayer to the extracellular surface 

enabling CD36 to recognize the apoptotic cell through binding with the oxidized lipid 

components (Greenberg et al., 2008). 

5.3.4 Bacterial infection 

 CD36 is also involved in the phagocytosis of, and the pro-inflammatory response to 

Gram-positive and Gram-negative bacteria. Lipoteichoic acid (LTA) and 

lipopolysaccharide (LPS) on the surface of Gram-positive bacteria and Gram-negative, 

respectively, are recognized by CD36 and contribute to the recruitment of LTA and LPS to 

Toll-like receptors (TLR) responsible for the activation of cells involved in the immune 

response (Baranova et al., 2008;Triantafilou et al., 2006). 

5.3.5 Parasitic infection 

 When infected with the malaria parasite, Plasmodium falciparum, erythrocytes 

express on their surface the adhesion protein Plasmodium falciparum erythrocyte 

membrane protein 1 (PfEMP1). The infected erythrocytes are isolated from blood 

circulation due to their adhesion to microvascular endothelial cells. This sequestration 

contributes directly to the pathology related to malaria: hemolysis of red blood cells and 

severe anemia. CD36 expressed on the surface of the endothelial cells are responsible for 

the adherence of erythrocytes (Ockenhouse et al., 1989;Biggs et al., 1990). 

5.3.6 Long chain fatty acids 

 CD36 is also known as fatty acid translocase (FAT) for its ability to bind and 

internalize long chain fatty acids (LCFA) (Abumrad et al., 1993). A comprehensive 

description of the effect of CD36 in LCFA uptake is presented in Section 6.3.3. 
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5.3.6.1 LCFA uptake 

 LCFA are a main source of energy and can diffuse passively through the cell 

membrane lipid bilayer; however, their transfer is more efficient by means of various fatty 

acid transporter proteins (FATP1 to 6), fatty acid binding protein (FABPpm) and CD36.  

The majority of free fatty acids (FFA) are coupled to albumin while the rest is transferred 

from lipoprotein particles and require transporters for rapid uptake (Bierbach et al., 1979). 

In addition, they also play a secondary role in the coupling between FA uptake and their 

efficient use in various required biological processes including energy production (Glatz et 

al., 2010). Compared to other FA transporters, the uptake of LCFA by CD36 in various 

tissues is a key event influencing general energy metabolism (Nickerson et al., 2009;Hajri 

& Abumrad, 2002;Ehehalt et al., 2006). 

5.3.6.2 Orosensory detection of fatty acids 

 Following the detection of CD36 on gustatory cells, a potential role in the detection 

of fatty acids present in nutrients was therefore proposed (Fukuwatari et al., 1997). 

However, for a proper detection, with the help of Von Ebner`s glands secreting lingual 

lipase, triglycerides are hydrolyzed to release fatty acids (Field et al., 1989).  It was 

recently shown that the freed FA then binds to CD36, causing an increase in [Ca2+]i and a 

neurosensorial stimulation along with a rapid increase in the flux and protein content of 

pancreatic juice (El-Yassimi et al., 2008;Gaillard et al., 2008). Detection of fat in the 

mouth cavity by CD36, allows the digestive system to prepare for a fatty meal. A decrease 

in the expression of CD36 on gustatory cells resulted in the absence of satiety signals 

following a fatty meal and favored the development of obesity in rat and mice fed ad 

libitum (Schwartz et al., 2008;Zhang et al., 2010).  

5.4 CD36 gene 

The 46-kilobase gene encoding for CD36 is located on chromosome 7q11.2 (Fernandez-

Ruiz et al., 1993). As illustrated in Figure 4, CD36 gene is encoded by 15 exons; however, 



 

 

28

 

only part of exon 3, exon 4 to 13, and part of exon 14 encode for the protein (Armesilla & 

Vega, 1994). The remaining exons form the 5’ and 3’ untranslated regions (UTRs.) 

CD36 protein
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Figure 4. Schematic representation of CD36 gene and protein 

5.4.1 CD36 alternative transcripts and mutations 

 Regulation of the expression of CD36 is complex and reflects the multifunctionality 

of this receptor. To date, there are 5 alternative first exons (exon 1a, 1b, 1c, 1e and 1f-

Figure 4) that are controlled by 3 alternative promoters for which their usage is dependent 

on the tissue and the general physiological condition (Armesilla & Vega, 1994;Sato et al., 

2002;Zingg et al., 2002;Noushmehr et al., 2005b;Andersen et al., 2006). For example, in 

THP-1 macrophages, all alternative transcripts of CD36 are upregulated in the presence of 

oxLDL (Andersen et al., 2006). Alternative exon 1a is higher in adipose tissue followed by 

heart, skeletal muscle and monocytes and weakest in liver; while the transcript containing 
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exon 1b is higher in adipose tissue and monocytes compared to other tissues (Andersen et 

al., 2006). In addition, treatment of mice with PPARα synthetic agonist WY-14,643, 

known to upregulate the expression of CD36, resulted in the differential expression of 

CD36 transcripts in a tissue-dependent manner (Motojima et al., 1998;Sato et al., 2007). In 

response to WY-14,643, exon 1a was increased in liver, skeletal muscle, adipose tissue and 

tongue. Exon 1c alternative transcript was increased in intestine, adipose tissue and tongue 

while exon 1b mRNA isoform remained unaffected. The induction of CD36 expression 

through one of its promoters in response to hormones and nutrients seems to be gender-

dependent. The expression of CD36 in the liver is higher in females than in males possibly 

suggesting a hormonal regulation of CD36 (Cheung et al., 2007). This particular study 

demonstrated that in female rats, a prolong fasting period had a repressive effect on CD36 

expression in liver while having a stimulating effect in skeletal muscle; however in male 

rats no effect was observed in the liver. It is clear that these changes in the expression of 

CD36 and in the pattern of alternative first exon transcripts reflect the ability of the tissue to 

respond to precise physiological needs through the use of its different promoters. As stated 

earlier, while different transcripts of CD36 exist, they all contain the same coding sequence 

and therefore produce an identical CD36 protein.  

 In rare cases, functional diversity also exists for CD36 due to alternative splicing. A 

truncated CD36 protein was isolated from human erythroid leukemia (HEL) cells which 

resulted from the deletion of exons 4 and 5, producing a 369-aa protein missing the original 

amino acids 41 to 143 which included the phosphorylation site on CD36, three 

glycosylation sites, the TSP-1 binding site as well as a portion of PfEMP1 binding site (see 

the following section 5.5 on CD36 structure and ligand binding sites) (Tang et al., 1994). It 

turns out that this deletion provided some protection against complications related to 

malaria. A polymorphism in the CD36 gene in which TG repeats in intron 3 caused a jump 

in the splicing of the pre-mRNA (Omi et al., 2003). Table 3 (page 31) describes different 

reported mutations in the human CD36 gene. Nucleotide substitutions in the human gene 

have been reported in several studies (Kashiwagi et al., 1993;Gelhaus et al., 2001;Omi et 
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al., 2003;Imai et al., 2002;Hanawa et al., 2002;Aitman et al., 2000;Lepretre et al., 2004). 

Several other studies have reported deletions (Kashiwagi et al., 1994) (Tanaka et al., 2001) 

(Kashiwagi et al., 2001) (Curtis et al., 2002), short insertions (Tanaka et al., 2001) 

(Kashiwagi et al., 1996), duplications (Tanaka et al., 2001), nucleotide rearrangements as 

well as repetitive sequences (Aitman et al., 2000;Omi et al., 2003) ; all capable of affecting 

expression or activity of CD36. Two types of deficiency have been given to CD36 solely 

based on their expression in monocytes and in platelets. Type I CD36 deficiency is defined 

by an absence of CD36 in monocytes and in platelets. Mutation C268T in exon 4 of CD36 

is the most common mutation, responsible for 50% of mutated alleles in type I Asian 

population (Kashiwagi et al., 1993;Kashiwagi et al., 2001). This substitution causes a 

premature degradation of CD36. Although rare, other mutations such as 949insA or 329-

330delAC were also reported to be the cause of a type I deficiency (Kashiwagi et al., 

1996;Kashiwagi et al., 1994). Type II CD36 deficiency is defined by the absence of CD36 

in platelets only. Type II is predominant in the African-American and Asian population (3 

to 4% of each population) and is extremely rare in Caucasians (Take et al., 

1993;Yamamoto et al., 1994). The molecular or genomic causes of type II deficiency are 

not well understood. Yuji Matsuzawa and his colleagues have done extensive work 

identifying several mutations in the Japanese population. They observed that cDNA 

samples from monocytes from two patients with type II deficiency were heterozygous for 

C268 and T268 (exon 4) while only the protein originating from the T268 isoform was 

found in their platelets suggesting that the expression of CD36 in platelets was controlled 

by other specific hereditary factors (Kashiwagi et al., 1993;Kashiwagi et al., 2001;Imai et 

al., 2002).  
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Table 3. Exons, introns and mutations in the human CD36 gene 

Exon number Next intron length mRNA nucleotidesa Amino acids 
encoded Change in nucleotide sequenceb Change in amino acid 

sequence Reference

1a (1c) 7341 (43708)c −289 to −184 (−356 to −184)c None
2 470 −183 to −90 None (Curtis et al. , 2002) 

3 9679 −89 to +120 1–40
4 4362 121–281 41–94 C268T Pro90Ser (Kashiwagi et al., 1993)

5 1779 282–429 94–143 319–324delGCTGAG inframe del AA 107–108
329–330del AC frameshift at AA 110
G367A Glu123Lys (Gelhaus et al., 2001)

C380T Ser127Leu (Omi et al., 2003)

T411C Ala137Val (Imai et al., 2002)

6 1236 430–609 144–203 560insT frameshift at AA 187 (Tanaka et al., 2001)

7 1945 610–701 204–234 619–624del ACTGCA /ins AAAAC frameshift at AA 207 (Kashiwagi et al. , 2001) 

691–696del AAAGGT inframe del AA 231–232 (Aitman et al. , 2000) 

8 3463 702–748 234–250 None reported N/A
9 954 749–818 250–273 T760C Phe254Leu (Hanawa et al. , 2002) 

10 757 819–1006 273–336 845–849del ACGTT frameshift at AA 282 (Aitman et al. , 2000) 

949insA frameshift at AA 317 (Kashiwagi et al. , 1996) 

T975G Tyr325Term (Aitman et al. , 2000) 

11 729 1007–1125 336–375 T1079G Leu360Term (Lepretre et al. , 2004) 

12 511 1126–1199 376–400 Del tttagAT skipping exon 12 (Tanaka et al. , 2001) 

1140–1146delTTTACAA/insCCAAA frameshift at AA 380

G1150C  + 1155delA Ala384Pro + frameshift 
at AA 385

13 573 1200–1254 400–418 del tattacagAG skipping exon 13

dupl. 1204–1246 frameshift at AA 416
1218–1224delGAGGAAC frameshift at AA 406

1228-1239delATTGTGCCTATT
deletion of Ile-Val-Pro-
Ile

A1237C Ile413Leu (Hanawa et al. , 2002) 

14 2236 1255–1688 419–472
15 — 1420–2044 None

aGenbank NM 000072; the first mRNA nucleotide encoding CD36 protein is +1.
bLowercase nucleotides are located in an intron.
cAlternatively spliced exon 1 (Genbank NM 001001547).

(Kashiwagi et al. , 2001) 

    del exons 1–3 no expression of CD36 
protein

 (Kashiwagi et al., 1994)

(Aitman et al. , 2000) 

(Tanaka et al., 2001)

(Adapted from Rac et al ., Mol. Med. 13 (5 - 6): 288-296)  

5.5 CD36 structure and post-translational modifications 

 CD36 nucleotide sequence predicts a 472-aa protein with a MW of 53kDa 

(Fernandez-Ruiz et al., 1993). However, considerable post-translational modifications can 

generate a protein with a MW between 78 and 88 kDa, depending on the cell type and the 

level of modifications.   
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Figure 5. Schematic representation of CD3 protein, ligand-binding sites and post-

translational modifications 

 The main structural features of scavenger receptor class B, CD36 are the large 

extracellular domain (ectodomain) flanked by transmembrane (TM) domains as well as 

short intracellular N- and C-terminal extremities (IC). As shown in Figure 5, the 

extracellular domain is approximatively 400-aa long and similarly to SR-BI, it is heavily N-

glycosylated. Nine out of the ten possible N-glycosylation sites on asparagines residues (N-

X-S/T, X≠P) were recently confirmed (Hoosdally et al., 2009). Expression of recombinant 

CD36 in the insect cell line, Spodoptera frugiperda 21 (Sf21) provided an understanding on 

the role of glycosylation in the maturation of CD36 and its movement towards cell surface. 

Predicted N-glycosylation sites Asn-79, -102, -134, -163, -205, -235, -247, -321 and -417 

were confirmed while no evidence of glycosylation was observed for Asn-220. In addition, 

glycosylation of CD36 was necessary for the efficient transport towards cell surface since 
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the non-glycosylated CD36 mutant was no longer located on the plasma membrane. 

Glycosylation of CD36 was not necessary for ligand binding, neither was it shown to 

influence the proper folding of CD36 protein. Contrary to SR-BI, which possesses two 

obligatory N-glycosylation sites for its transport to the cell surface, no similar sites were 

found for CD36 (Vinals et al., 2003;Hoosdally et al., 2009).  

 CD36 is constitutively phosphorylated on threonine 92 by an ectoprotein kinase and 

its level of dephosphorylation plays a role in the binding of certain ligands and the 

subsequent downstream molecular signaling (Asch et al., 1993;Hatmi et al., 1996). The 

binding of PfEMP1 expressed on the surface of Plasmodium falciparum-infected 

erythrocytes to CD36 on endothelial cells causes the dephosphorylation of CD36 by an 

ecto-alkaline phosphatase (Ho et al., 2005). The dephosphorylated CD36 has a higher 

affinity for infected erythrocytes and this interaction is proposed to mimic its binding to 

TSP-1 (Asch et al., 1993).  

 The N-terminal domain of CD36 contains approximately 7 aa while the C-terminal 

domain is ~13-aa long. Each extremity has two palmitoylated cysteine residues (Cys-3, -7, -

464 and -466, Figure 5) allowing the tails to associate with the inner-layer of the cell 

membrane (Tao et al., 1996). Palmitoylation of CD36 was recently suggested to regulate its 

post-transcriptional processing and maturation in the ER. Inhibition of CD36 

palmitoylation by cerulenin (an antifungal antibiotic that inhibits fatty acid and steroid 

biosynthesis) or by mutation of its cysteine residues, caused a delay in the maturation of 

CD36 in the endoplasmic reticulum (ER), a decrease in its incorporation into lipid rafts, a 

reduction in its capacity to internalize oxLDL as well as a decrease in its half-life (Thorne 

et al., 2010). Cytosolic lysines 469 and 472 are subjected to ubiquitination rendering CD36 

susceptible to degradation (Smith et al., 2008). 

5.6 Binding sites on CD36 

 TSP-1 is an adhesive glycoprotein capable of binding among other proteins 

fibrinogen, collagen, fibronectin, integrin and also CD36 (Lahav et al., 1982;Asch et al., 
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1987;Taraboletti et al., 1990). As stated in Section 5.3.1, the interaction CD36/TSP-1 plays 

a critical role in the inhibition of angiogenesis (Dawson et al., 1997). Such as illustrated in 

Figure 5 (linear display of CD36), TSP binds to the region within residues 93 to 120 (in 

yellow) which is also known as the CLESH adhesion domain (CD36 LIMP-II Emp 

sequence homology) (Leung et al., 1992;Frieda et al., 1995;Simantov et al., 2005). Regions 

93 to 120 (yellow) and 155 to 183 (green) are involved in the recognition and endocytosis 

of apoptotic cells (Navazo et al., 1996b;Ren et al., 1995). PfEMP1 binds to the region 

between residues 146 and 164 (red rounded line) (Baruch et al., 1999). Although the LCFA 

binding site on CD36 has not been characterized, comparison of the ectodomain of CD36 

with that of the FA binding region on muscle fatty acid binding protein (M-FABP) showed 

a sequence homology as high as 73% with the region between residues 127 and 279 (black 

double arrowed line) (Prinsen & Veerkamp, 1996;Baillie et al., 1996). Anionic 

phospholipids present on oxLDL particles are thought to be responsible for their binding to 

CD36 (Rigotti et al., 1995). In 2002, Stanley Hazen and colleagues identified specific 

components on oxLDL capable of binding to CD36, oxidized phosphatidylcholine called 

oxPCCD36 (Podrez et al., 2002a;Podrez et al., 2002b). Lysines 164 and 166 are 

indispensable to CD36’s binding to oxPCCD36 due to its electrostatic properties in which the 

negatively charged oxidized phospholipids interact with the positively charged lysine 

residues within the oxLDL binding region 155-204, shown in Figure 5, in green (Kar et al., 

2008;Navazo et al., 1996a). Protein residue regions 28-93 and 120-155 also seemed to be 

important for oxLDL binding (Pearce et al., 1998). Lysine 472 (K472) in the C-terminal 

cytosolic region of CD36 was shown to be important in the binding, internalization and 

degradation of oxLDL (Malaud et al., 2002). Endocytosis of oxLDL following its binding 

to CD36 on macrophages requires the presence of lipid rafts and dynamin proteins but does 

not seem to involve clathrine or caveolae (Sun et al., 2007a;Zeng et al., 2003). And finally, 

hexarelin’s binding site on CD36 was identified and spanned from asparagine 132 to 

glutamic acid 177; more particularly, the presence of methionine 169 was necessary for 

hexarelin interaction with CD36 (Demers et al., 2004). This region overlaps with the 
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binding site of oxLDL and explained in part the anti-atherogenic effect of hexarelin which 

blocked the binding of oxLDL to CD36 (Demers et al., 2004;Avallone et al., 2006).  

6 Regulation of CD36 
 The present section will discuss the regulation of CD36 through gene expression 

changes by various transcriptional regulators (Section 6.1) but also by factors influencing 

its mobilization (section 6.2). Since more is known about the regulation of CD36 and its 

impact in atherosclerosis, much of this section will discuss changes in CD36 expression in 

macrophages therefore providing an insight in the key regulators of CD36 expression. 

Although more limited, factors reported to influence the expression of CD36 in adipocytes 

and hepatocytes will be presented as well. 

6.1 Regulation of CD36 gene expression 

 As mentioned previously, much of the regulation of CD36 expression depends on 

the tissue, physiological condition, gender and promoter usage. 

6.1.1 In atherosclerosis 

 The increase in the expression of CD36 in macrophages, endothelial cell and VSMC 

is often associated with formation of atherosclerotic plaques. The role that CD36 plays in 

atherosclerosis is mainly due to its binding and internalization of oxLDL particles. 

6.1.1.1 Nuclear receptors in monocytes/macrophages 

 The adhesion of monocytes to endothelial cells stimulates the expression of CD36 

on these leukocytes. Their subsequent differentiation into macrophages stimulates 

furthermore its expression (Prieto et al., 1994;Huh et al., 1996). The presence of scavenger 

receptors on macrophages such as CD36 assures a proper endocytosis and clearance of such 

particles in the subendothelial space (Han et al., 1997). The nuclear family peroxisome 

proliferator-activated receptor (PPAR) contains 3 members: PPARα, PPARβ/δ and PPARγ 
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(Laudet et al., 1999). They form heterodimers with the versatile retinoid X receptor (RXR) 

and activate transcription by binding to their response element (PPRE) on the promoter of 

target genes mainly involved in lipid metabolism and energy balance (Yessoufou & Wahli, 

2010). The mechanism of action of PPARγ will be further presented in Section 8. The 

internalization and degradation of oxLDL by monocytes/macrophages provides ligands to 

PPARγ, and more specifically the content of this cargo such as 9- and 13- 

hydroxyoctadecadienoic acid (9- and 13-HODE) are known potent activators (Nagy et al., 

1998) . The activation of PPARγ induces important transcriptional changes in genes, 

including CD36, involved in the differentiation of monocytes into macrophages and 

eventually into foam cells (Tontonoz et al., 1998). The degree of oxidation of oxLDL lipids 

will influence the level of activation of nuclear receptors. The minimally and moderately 

modified LDL (mmLDL) particles had a greater influence on the expression of CD36 in 

cultured human monocyte-derived macrophages while extensively oxidized LDL had no 

effect on CD36 expression (Kavanagh et al., 2003). Using electrophoretic mobility shift 

assay (EMSA), the DNA binding activity of PPARs was shown to be higher in mmLDL-

exposed macrophages. PPARγ-deficient stem cells were capable of differentiating into 

macrophages therefore demonstrating that PPARγ is not vital to macrophage differentiation 

(Moore et al., 2001). While the basal expression of CD36 is dependent on the presence of 

PPARγ, the sole activation of RXR (LG268 or retinoic acid agonists) was capable of 

increasing the expression of CD36 even in absence or through inhibition of PPARγ activity, 

demonstrating that other nuclear receptors associated with RXR are capable of controlling 

CD36 expression as well (Moore et al., 2001;Han & Sidell, 2002). Indeed, PPARα seems 

also to upregulate CD36 in macrophages since exposure to cholesterol ester hydroperoxides 

(CEOOH) found in mmLDL increases the binding of PPARα to the PPRE site on the 

proximal promoter of CD36 (Jedidi et al., 2006). PPARβ/δ was found to be ubiquitously 

expressed while its role remained mainly unknown for more than a decade (Schmidt et al., 

1992). It turns out that PPARβ/δ possesses properties that seemed to combine both some of 
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the positive effects of both PPARγ and PPARα, and is today considered also as a potential 

therapeutic target for treating metabolic syndrome-related diseases (Barish et al., 2006). 

PPARβ/δ mediates the macrophages-derived inflammatory response (Lee et al., 2003). Its 

expression was found to be increased during macrophage differentiation and following 

treatment of cells with its synthetic agonist, compound F, PPARβ/δ activation resulted in 

the increase in CD36 expression (Vosper et al., 2001). Another nuclear receptor, farnesoid 

X receptor (FXR) was also shown to heterodimerize with RXR (Forman et al., 1995a). 

Following binding of bile acid, FXR/RXR negatively and positively regulates many of its 

target genes (Makishima et al., 1999;Parks et al., 1999). FXR is a regulator of cholesterol 

homeostasis, triglyceride synthesis and lipogenesis. Its expression is elevated in liver, 

intestine and kidney but it is also found at lower levels in other tissues and cell types such 

as leukocytes. One of the side-effects of ritonavir, a protease inhibitor against HIV, is 

dyslipidemia which threatens patients with cardiovascular diseases such as atherosclerosis 

(Periard et al., 1999).  The accumulation of plaques and cell foam formation was shown to 

be associated with an elevation in the expression of CD36 (Dressman et al., 2003). A recent 

study demonstrated that the activation of FXR by one of the major bile acids, 

chenodeoxycholic acid (CDCA) in the atherosclerotic mouse model ApoE-/- treated with 

ritonavir, resulted in a marked decrease in atherosclerotic plaque formation as well as an 

attenuated expression of CD36 in circulating monocytes (Mencarelli et al., 2010). This 

effect on CD36 expression was also observed in cultured macrophages. The testicular 

orphan nuclear receptor 4 (TR4) also functions as a sensor for fatty acid and regulates 

glucose and lipid metabolism (Liu et al., 2007). TR4 is activated by polyunsaturated fatty 

acids (PUFAs) and retinoids but does not form a heterodimer with RXR (Zhou et al., 

2011). TR4 induces the expression of CD36 by binding to its response element TR4RE 

found on the promoter of CD36 and contributes also to foam cell formation (Xie et al., 

2009). 
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6.1.1.2 Cytokines and inflammation 

 Inflammatory response is an essential component of the immune response to 

pathogens and damaged cells. Cytokines are secreted by macrophages, monocytes, T 

lymphocytes, platelets, endothelial cells and VSMC. Cytokines include tumor necrosis 

factor alpha (TNF- α), interleukins (ILs), chemokines, interferons (IFNs), tumor growth 

factors (TGFs), as well as colony stimulating factors (CSFs); all of which contributes to the 

proper control of the immune response. IL-4, secreted by T lymphocytes, increased the 

activity of macrophage 12/15-lipoxygenase, which synthesizes 13-hydroxyoctadecadienoic 

acid (13-HODE) and 15-hydroxyeicosatetraenoic acid (15-HETE) from linoleic and 

arachidonic acids, respectively (Huang et al., 1999). Therefore, this activation via IL-4 was 

shown to provide ligands for PPARγ and induce expression of CD36 in a PKC-dependent 

manner (Feng et al., 2000). Other cytokines such as TGF-β, IFN-γ and IL-10 also had an 

effect on CD36 expression. In monocytes, IFN-γ and TGF-β decreased the expression of 

CD36 (Nakagawa et al., 1998;Han et al., 2000b); while IL-10 increased both the expression 

of CD36 and ABCA1, facilitating the uptake but also the clearance of cholesterol by 

macrophages (Han et al., 2009). 

6.1.1.3 Other factors 

 Many different factors other than nuclear receptors were also identified as potential 

regulators of CD36 expression. The transcription factor Runt-related 3 (RUNX3) 

participates in the transcriptional reprogrammation of the dendritic cells after pathogen and 

apoptotic cell recognition and was shown to be a negative regulator of CD36 (Puig-Kroger 

et al., 2006). The immunosuppressant drug, cyclosporine A (CsA), is associated with the 

development of atherosclerosis. A marked increase in PPARγ and CD36 was observed in 

THP-1 macrophages treated with CsA (Jin et al., 2004). Aspirin increases expression of 

CD36, SR-BI and ABCA1 in cultured macrophages (Vinals et al., 2005). 

Phytohemagglutinin (PHA) is a lectin commonly found in legumes which can be toxic at 

high levels. PHA induces mitosis and affects cell membrane permeability; it is known to 
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cause agglutination of red blood cells. PHA induces the expression of CD36 in 

lymphocytes which is shown to be partially dependent on phosphoinositide 3-kinase (PI3K) 

activation (Tassone et al., 1998). The expression of CD36 in monocytes from diabetic 

patients is high, increasing their risk of developing atherosclerosis (Sampson et al., 2003). 

Hyperglycemia induces oxidative stress in diabetic patients. High glucose is known to 

induce oxidation of LDL particles which contributes furthermore to oxidative stress and 

microvascular endothelial cell dysfunction. Glucose was shown to increase the expression 

of CD36 in endothelial cells making the diabetic patient more susceptible to cardiovascular 

complications related to diabetes (Griffin et al., 2001;Farhangkhoee et al., 2005). Nuclear 

factor E2-related factor 2 (Nrf2) is usually a key transcription factor in the anti-oxidative 

response and was found to be activated by oxLDL. More precisely, 4-hydroxynonenal 

(HNE), a lipid peroxidation product found in oxLDL, is a potent activator of nuclear 

tanslocation of Nrf2. In absence of Nrf2, it was shown that macrophage CD36 expression is 

only partially increased in response to oxLDL (Ishii et al., 2004). Nrf2 regulates directly 

the expression of CD36 by binding to its anti-oxidant response element, ARE on the 

promoter upstream of exon 1a (Maruyama et al., 2008). Despite its role in the anti-

oxidative response, it was recently given a pro-atherogenic role since it was observed that 

in double deficient ApoE/Nrf2 mice, a decrease in CD36 expression coincided with a 

decrease in plaque formation (Barajas et al., 2011). 

6.1.1.4 Statins 

 Statins are inhibitors of the rate-controlling enzyme, HMG-CoA reductase (HMGR) 

and are prescribed for the treatment of hypercholesterolemia. However, interesting 

pleiotropic effects are observed for statins which were independent of changes in serum 

cholesterol such as reduced vascular inflammation and decreased VSMC migration and 

proliferation (Sadowitz et al., 2010). Statins also decrease cell proliferation and oxLDL 

uptake by monocytes and macrophages (Senokuchi et al., 2005). In addition, several studies 

have shown a decrease in CD36 expression in statin-treated monocytes and macrophages 
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adding to their anti-atherogenic properties (Hrboticky et al., 1999;Han et al., 2004;Mandosi 

et al., 2010). 

6.1.2 Adipose tissue and adipocytes 

 Studies conducted on CD36 in tissues and cell types outside the realm of 

atherosclerosis, such as adipose tissue are more limited. However, in recent years a greater 

interest in the impact of CD36 on metabolic disorders has given rise to many publications. 

In adipose tissue and adipocytes, reports have focused mainly on the role of CD36 in the 

uptake of fatty acids. PPARγ regulates the differentiation program in adipocytes and is a 

well known transcriptional regulator of CD36 (Teboul et al., 2001). Activation of PPARγ 

by glitazones in mouse adipose tissue is also capable of further increasing CD36 expression 

(Sato et al., 2002).  A more complete description of adipocyte differentiation is presented in 

Section 7.2. The differentiation of pre-adipocytes involves the induction and activity of 

particular transcription factors in a time-specific manner. PPARγ is a key regulator of 

adipocyte differentiation but its own expression depends on the induction of 

CCAAT/enhancer-binding protein (C/EBP)  β and δ (Wu et al., 1995). Alone or together 

with PPARγ, C/EBP α is capable of controlling the expression of many genes involved in 

adipocyte function (Gregoire et al., 1998). Recently, C/EBP α was shown to also regulate 

the expression of CD36 in 3T3-L1 (Qiao et al., 2008). Fibrates, PPARα agonists, are 

hypolipidemic agents used for lowering cholesterol and triglyceride plasma levels. Fibrates 

were shown to increase expression of CD36 in adipocytes and to increase fatty acid 

oxidation by inducing the expression of muscle carnitine palmitoyltransferase I (M-CPT-1) 

and oxidative phosphorylation uncoupling proteins 2 and 3 (UCP-2 and -3) (Cabrero et al., 

2001;Zhao et al., 2004). Nrf2 increased the expression of CD36 in 3T3-L1 adipocytes 

exposed to oxLDL as well (D'Archivio et al., 2008). Glucocorticoids modulate glucose 

homeostasis and lipogenesis in adipocytes (Sakoda et al., 2000;Berdanier, 1989). A recent 

study on dexamethasone-treated differentiated 3T3-L1 adipocytes showed an increase in 

the expression of CD36, and chromatin immunoprecipitation sequencing (ChIP-Seq) 
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experiments performed on these samples enabled the identification of glucocorticoid 

receptor binding regions near several genes involved in TG homeostasis and lipid transport 

including the CD36 gene (Yu et al., 2010). In a diabetic rat model, it was shown that the 

expression of CD36 was increased in many organs including adipose tissue while insulin 

injection was able to normalize its expression (Chen et al., 2006). In comparison, oral 

administration of vanadate, which corrects hyperglycemia without affecting insulin levels, 

had a similar effect, suggesting that glucose was responsible for the modulation of CD36 

expression. LCFA also has an effect on CD36 expression. LCFA is capable of inducing 

CD36 expression in pre-adipocytes while reducing its expression in differentiated cells 

(Sfeir et al., 1997;Yang et al., 2007). 

Phloretin, a dihydrochalcone that belongs to the class of flavonoids found in apple leaves, 

are potent inhibitor of FA uptake (Abumrad et al., 1981). Treatment of 3T3-L1 adipocytes 

with phloretin increased the expression of CD36, although probably as a compensatory 

mechanism to a decrease in FA uptake (Hassan et al., 2007). In rodents, diet- or cold-

induced thermogenesis occurs in brown adipose tissue (BAT) to burn off excess fat and/or 

to produce heat (section 7.8.3). Cold exposure increases the expression of CD36 in BAT; 

and its activity in combination with that of LPL is crucial for the clearance of TG from the 

circulation and during  thermogenesis (Bartelt et al., 2011). 

6.1.3 Liver and hepatocytes 

 Differential regulation of CD36 is suggested between liver and adipose tissue in 

response to PPARα and PPARγ agonists. WY-14,643 (PPARα) increases the expression of 

CD36 in rat hepatoma cell line, Fao (Motojima et al., 1998). WY-14,643 and clofibrate also 

increase the expression of CD36 in mouse liver and intestine. This effect was dependent on 

PPARα since no effect was seen in PPARα-null mice. While PPARγ regulates CD36 

expression in adipose tissue, troglitazone (PPARγ) had no effect on CD36 expression in 

Fao cells. The differential regulation of CD36 between PPAR agonists seen in liver can be 

explained by selective promoter occupation by PPAR α and γ in a tissue-dependent manner 
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(Sato et al., 2002). Non-alcoholic fatty liver disease (NAFLD) regroups a wide spectrum of 

liver diseases with abnormal retention of lipids, and is associated with diseases related to 

the metabolic syndrome such as obesity, dyslipidemia and diabetes (Postic & Girard, 2008). 

The extreme form of NAFLD, non-alcoholic steatohepatitis (NASH) leads to inflammation 

and cirrhosis. In fatty liver, the expression of CD36 is elevated compared to normal liver; 

and in patients that develop hepatic steatosis, hepatocyte apoptosis was found to be 

associated with high CD36 expression (Greco et al., 2008;Bechmann et al., 2010). Nuclear 

receptors, PPARγ, LXRα, LXRβ and pregnane X receptor (PXR) are associated with the 

accumulation of hepatic TG (Inoue et al., 2005;Lee et al., 2007;Zhou et al., 2006). Their 

respective response elements were all found in the promoter regions of CD36, establishing 

this gene as a common target in the promotion of liver steatosis (Zhou et al., 2008). PPARγ 

coactivator-1-beta (PGC-1β) co-activates SREBPs and stimulate lipogenic gene expression 

contributing to hepatic lipid synthesis. However, the increased expression of PGC-1β due 

to a high fat diet (HFD) results ironically in the reduction of hepatic fat accumulation (Lin 

et al., 2005).  This is described by an increase in circulating TG and cholesterol (VLDL) 

influenced by PGC-1β co-activation of LXRα and stimulation of lipoprotein transport. Its 

overall action leads to hyperlipidemia and atherosclerosis. Hepatic overexpression of PGC-

1β alone was sufficient to induce hyperlipidemia while decreasing the expression and 

activity of PPARα and increasing the expression of CD36 (Lelliott et al., 2007). In rodents 

on a HFD, treatment with the PPARβ/δ agonist, NNC61-5920, attenuated hepatic insulin 

resistance and decreased the expression of SCD-1, LPL and CD36 (Ye et al., 2011). 

Hepatic stellate cells are specialized pericytes that occupy the perisinusoidal space 

(between the sinusoidal blood vessel and hepatocytes) and are responsible to storing 

retinoids derived from vitamin A in their intracellular lipid vesicles. Esterification of 

vitamin A is dependent on the newly formed esters in lipid vesicles and therefore dependent 

on LCFA uptake (Moriwaki et al., 1988). Treatment of activated stellate cells with another 

PPARβ/δ agonist, L165041 further induced CD36 expression (Hellemans et al., 2003). The 

Aryl hydrocarbon receptor (AhR) belongs to the family of basic-helix-loop-helix 
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transcription factors and plays a role in hepatic growth and development (Schmidt et al., 

1996). Activation of AhR induces spontaneous hepatic steatosis which is explained in part 

by the binding of AhR to its element on CD36 promoter and the resulting increased in its 

expression (Lee et al., 2010). 

6.2 CD36 localization 

6.2.1 In lipid rafts and caveolae 

 Lipid rafts are organized in dynamic microdomains that travel freely within the cell 

membrane. Rafts are composed of sphingolipids and cholesterol in the outer-layer 

connected with phospholipids and cholesterol of the membrane’s inner-layer. Permanent 

lipid raft residents are also found such as glycophosphatidylinositol (GPI-anchored) 

proteins, Gα subunits of heterotrimeric G proteins  and tyrosine kinases of the Src family 

(Src, Fyn, Lyn, Yes). Certain members are temporary residents, dependent on the presence 

of their ligand.  Cholesterol serves as a spacer between saturated hydrocarbon chains of 

sphingolipids and helps in maintaining components of the lipid raft in close proximity to 

each other (Simons & Toomre, 2000). Cholesterol depletion or inhibition of sphingolipids 

causes a disassembly of lipid rafts and proteins (Ehehalt et al., 2003;Ehehalt et al., 2008).  

 Caveolae are a sub-type of lipid rafts represented as small invaginations formed by 

the polymerization of their palmitoylated integral membrane proteins, caveolins (1, 2 or 3), 

which also bind cholesterol (Smart et al., 1999). Caveolae are present on various cell types 

and are particularly abundant on adipocytes (Scherer et al., 1994). Lipid rafts play a central 

role in several cellular processes such as membrane trafficking, cellular polarization and 

signal transduction, regulating cell growth and survival, involved in the defence against 

pathogens but also in the uptake of glucose and fatty acid (Janes et al., 2000;Kolesnick, 

2002;van der Goot & Harder, 2001;Ortegren et al., 2007). CD36 is detected in lipid-raft- 

and/or caveola-rich fractions (Lisanti et al., 1994).  CD36 distribution on cellular 

membrane of CHO cells and human melanoma C32 cells is more homogeneous compared 
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to caveolin-1, which has a punctuated cell distribution due to its presence in caveolae (Zeng 

et al., 2003). However, isolation of lipid rafts yielded samples containing CD36; suggesting 

that in these cell types, CD36 was associated with lipid rafts but not with caveolae. This 

same study showed that endocytosis of oxLDL via CD36 requires neither caveolin-1 nor 

clathrin (protein involved in endocytosis of coated vesicles). Endosomal structures 

containing CD36 and oxLDL were devoid of caveolin-1 and transferrin but contained the 

lipid raft protein, GPI-anchored protein decay accelerating factor, DAF. Endocytosis of 

oxLDL by CD36 was however dependent on dynamin, a GTPase playing a role in 

endocytosis in lipid rafts, clathrin-coated vesicles and caveolae (Sun et al., 2007a). In other 

cell types, such as in pneumocytes, and transfected COS-7, HEK-293 and CHO cells, 

studies have shown that CD36 can be co-localized and even associated with caveolin-1 

(Scherer et al., 1995b;Frank et al., 2002;Eyre et al., 2008).  Moreover, the muscle specific 

caveolin-3 was found to be co-localized with CD36 in human skeletal muscle (Vistisen et 

al., 2004).  Caveolin-1 is particularly expressed in adipocytes and is thought to play a role 

in FA uptake (Scherer et al., 1994;Trigatti et al., 1999). The interrelationship between 

CD36 and caveolins seems to be crucial in the internalization of LCFA. In caveolin-1-

deficient mouse embryonic fibroblasts (MEFs), CD36 was no longer present on the cell 

surface and FA uptake was greatly affected (Ring et al., 2006). Adenoviral expression of 

caveolin-1 in these cells redirected CD36 to the cell membrane and rescued FA uptake. 

Caveolin-1-deficient mice have a dramatic reduction in aortic CD36 expression and share 

similar phenotypes with CD36-null mice such as elevated circulating TG and FA, and a 

reduced clearance of TG while in contrast being protective against the development of 

aortic atheromas by reducing oxLDL uptake (Razani et al., 2002;Frank et al., 2004).  

 Src kinases have been found to associate with the C-terminal extremity of CD36 in 

platelets and in microvascular endothelial cells (Huang et al., 1991;Bull et al., 1994). 

Linoleic acid binds to CD36 on gustatory cells inducing phosphorylation and activation of 

Src family of kinases (Fyn and Yes) and the downstream signaling cascade involved in the 

orosensory detection of fatty acid (FA) (El-Yassimi et al., 2008). While CD36 is not a 
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target of Src kinases, several reports have shown that caveolin-1 is targeted by Src kinases 

in response to variety of growth factors such as VEGF, EGF and PDGF (Li et al., 

1996;Fielding et al., 2004;Kim et al., 2000;Labrecque et al., 2003). Palmitoylation of 

caveolin-1 on Cys-156 is essential for its interaction with Src and its subsequent 

phosphorylation on Tyr-14 (Lee et al., 2001). In addition, the mere presence of CD36 on 

caveolae was sufficient to abrogate caveolin-1 phosphorylation by Src. Overall it seems 

that the presence of caveolin-1 is necessary for CD36 localization to the cell surface; while 

inversely, CD36 has an inhibitory effect on Src-mediated phosphorylation of caveolin-1, 

potentially having an effect on growth. Palmitoylation of CD36 has also been shown to 

influence the localization of CD36 on lipid rafts/caveolae and affecting FA uptake (Thorne 

et al., 2010).  

 Different subclasses of caveolae have been isolated in adipocytes based on their 

protein content. A subclass of caveolae on adipocytes was suggested to be specialized in 

FA uptake and conversion to TG; and harbored many proteins involved in these processes 

such as fatty acid transport protein-1 and -4 (FATP-1 et -4), fatty acyl-CoA synthetase 

(FACS), hormone-sensitive lipase (HSL), perilipin and glucose transporter-4 (GLUT4); 

however, CD36 was not mentioned as being a member of this subclass (Örtegren et al., 

2006). Two populations of CD36 have been found on cells, a raft-associated one which 

leads to FA uptake in a cholesterol/sphingolipid-dependent manner and another population 

dissociated from lipid rafts. Cross-linking experiments of CD36 with GPI-anchored protein 

placental alkaline phosphatase (PLAP) resulted in the marked internalization of FAs, 

reaching the conclusion that FA uptake by CD36 is increased when associated to lipid rafts 

(Ehehalt et al., 2008). Interestingly, FATP-4 and CD36 were not found to be co-localized 

which suggests that the previously mentioned subclass involved in TG storage containing 

FATP-4 might not include CD36 or an absolute need for CD36 in TG synthesis. Therefore, 

the presence of CD36 on lipid rafts/caveolae seems to be essential to its role in FA uptake 

but not necessarily in TG synthesis.  
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 In skeletal muscle and heart, CD36 is present in intracellular compartments and 

studies have reported that its translocation to the cell surface is stimulated by muscle 

contraction and insulin (Bonen et al., 2000;Schwenk et al., 2008). No direct association of 

CD36 with caveolins have been reported in hepatocytes; however, a recent study indicated 

that overexpression of caveolin-1 increased oxLDL uptake by CD36 (Truong et al., 2009). 

6.2.2 Mitochondrial CD36 

 LCFA must enter the mitochondrion to be oxidized and for ATP to be produced. In 

2004, Arend Bonen and colleagues stated that the inhibition of carnitine-palmitoyl 

transferase-1 (CPT-1) by malonyl CoA was not sufficient to explain the changes in FA 

transport especially when energy demand dramatically increased such as during an 

intensive exercise. Therefore, they proposed the existence of an alternative LCFA 

transportation system. They identified  fractions of purified mitochondria containing CD36 

which also co-immunoprecipitated with CPT-1 (Campbell et al., 2004). In addition, they 

demonstrated that thirty minutes of electrical stimulation of hindlimb muscles did not 

increase CD36 expression but increased the presence of CD36 in mitochondria. Since then, 

several studies have confirmed the presence of CD36 in mitochondria; however, its 

influence on FA oxidation remains controversial. Maria Febbraio and colleagues also 

isolated mitochondria from skeletal muscle and heart in CD36-null mice and compared the 

mitochondrial respiration with isolated mitochondria from wild-type mice and found no 

differences between groups (King et al., 2007). Arend Bonen’s team used the same 

experimental approach but challenged the muscles with electrical stimulation. While they 

observed no differences between the groups at rest, they did detect a decrease in 

mitochondrial respiration in the CD36-deficient challenged group (Holloway et al., 2009). 

6.3 Ligand-dependent signaling pathways and CD36 movement  

 The intracellular extremities of CD36 are relatively short, with no reported kinase or 

phosphatase activity, no interaction with GTPases and no known scaffolding domains. 
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Regardless of those facts, several studies have shown that CD36 is capable of activating 

various signaling pathways depending on its ligand and on the cell type in which CD36 is 

expressed. The response of CD36 to its ligand possibly involves its C-terminal cytoplasmic 

tail since mutations or Tyr-463 and Cys-464 results in the loss of its phagocytic potential in 

response to S.aureus (Stuart et al., 2005). LTA present on the Gram-positive bacterium 

binds CD36 and causes the association of CD36 with TLR2/TLR6 resulting in the secretion 

of pro-inflammatory cytokines; while in the Tyr-463/Cys-464 mutants this response is lost 

(Triantafilou et al., 2006). A common factor among CD36 signaling in platelets, 

macrophages, microsvascular endothelial cells, microglial cells and gustatory cells is the 

interaction of its C-terminal tail with Src family kinases, Fyn, Lyn and Yes (Huang et al., 

1991;Moore et al., 2002;El-Yassimi et al., 2008). This association is important in 

apoptosis, cell migration, inflammation, and foam cell formation. Although much is still 

unknown about the detailed mechanism(s) of action of CD36, the following sub-sections 

will focus on reported signaling cascades involving specific ligands. Figure 6 illustrates 

some of the ligand-specific binding to CD36 and the resulting downstream signaling 

events. 
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Figure 6.  CD36 ligand-specific downstream events 

6.3.1 TSP-1/platelets 

 When TSP-1 binds to CD36 on endothelial cells, an association with, and 

phosphorylation of Fyn occurs, which in turn results in the phosphorylation of caspases and 

MAP kinase p38 inducing cellular apoptosis and inhibition of angiogenesis, Figure 6A 

(Jimenez et al., 2000). 

6.3.2 LDLox/macrophages 

 Activation of CD36 on macrophages by oxLDL involves Src kinase, Lyn but also 

MAPKs, JNK and p38 (Figure 6B). Roy Silverstein and colleagues have shown by co-

immunoprecipitation experiments and pull-down assays that CD36 formed a complex with 

Lyn and MEKK2, and that activation of JNK via CD36 was necessary for oxLDL uptake 

and foam cell formation (Rahaman et al., 2006). Members of the Vav family of guanine 
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nucleotide exchange factors (GEFs) were recently shown to interact with Lyn and are 

considered key player(s) in foam cell formation (Rahaman et al., 2011). Activation of Src 

amplifies CD36 response to oxLDL in turn by activating numerous signaling pathways. For 

example, Src activates focal adhesion kinase (FAK) inducing actin polymerization, 

macrophage spreading while inhibiting cell migration from the intima (Park et al., 2009). 

The interaction CD36/oxLDL on foam cells can also induce apoptosis via activation of 

caspase-3 (Wintergerst et al., 2000).  As previously mentioned, internalization of oxLDL 

components, such  as 9- and 13-HODE, serve as ligands to PPARγ and its activation in turn 

increases the expression of CD36 causing a positive autoregulatory loop with increased 

foam cell formation (Nagy et al., 1998) . In addition, the binding of oxLDL to CD36 

activates various other kinases shown to have a direct effect on PPARγ in a ligand-

independent manner. Indeed, several kinases such as Akt, PKC and p38 were activated in 

response to oxLDL and were shown to affect PPARγ activity (Munteanu et al., 2006;Feng 

et al., 2000;Zhao et al., 2002). PKC also targets NF-κB which responds to oxLDL by 

stimulating the transcription of inflammatory cytokines (Han et al., 2000a). Extracellular 

signal-regulated protein kinases 1 and 2 (Erk1/2) are also activated in response to oxLDL 

but in macrophages were not dependent on the presence of CD36 (Rahaman et al., 2006). 

However, activated Erk1/2 is capable of phosphorylating and inhibiting PPARγ (Hu et al., 

1996). Phosphorylation of PPARγ by Erk is further discussed in Section 8.3. Activation of 

PPARγ is normally considered to have an anti-inflammatory effect; however, its activation 

becomes pro-inflammatory and pro-atherogenic in the context where oxLDL is abundant 

and macrophages overwhelmingly try to clear these particles from the intima. 

6.3.3 Fatty acids 

 Studies on the signaling events via CD36 are often centered around its interaction 

with oxLDL due to its impact on atherosclerosis. However, emerging reports on signaling 

events involving LCFA show certain similarities with oxLDL while others depict a very 

different mechanism of action. 
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6.3.3.1 Fatty acids and gustatory cells 

 Binding of linoleic acid to CD36 on gustatory cells induces the phosphorylation of 

Src kinases, Fyn and Yes (El-Yassimi et al., 2008). This activation led to an increase in 

[Ca2+]i and secretion of neurotransmitters,5-hydroxytryptamine and noradrenaline. It is 

possible that in other cell types involved in FA uptake, Src kinases play a role in the 

response of CD36 to LCFA. However, studies have mainly focused on the mechanisms 

involved in LCFA internalization and CD36 movement. 

6.3.3.2 Fatty acids and muscles 

 Studies on the role of CD36 in cardiac and skeletal muscles are focused on the 

events surrounding LCFA influx, FA homeostasis and energy production. The heart takes 

70% of its energy from oxidation of fatty acids while the remaining originates from 

glucose, lactose and pyruvate oxidation (Stanley et al., 2005). However, in 

pathophysiological conditions such as ischemia, hypoxia and diabetes, the heart turns 

towards the hypoxic foetal program in which glucose becomes the main source of energy 

(Taegtmeyer et al., 2010). In the heart and skeletal muscle, the majority of LCFA are taken 

up by CD36 (Luiken et al., 2002a;Bonen et al., 1998). An important mechanism regulating 

fatty acid uptake by CD36 is the translocation of CD36 from intracellular compartments to 

the cell surface of muscle cells called the sarcolemma (Bonen et al., 2000;Luiken et al., 

2002a). In the non-stimulated cardiomyocytes, CD36 distribution between the sarcolemma 

and the endosomes is relatively equal (Luiken et al., 2004). Translocation of CD36 and 

transport of LCFA in the cell are increased within minutes following the first contractions 

(Bonen et al., 2000;Luiken et al., 1999). Certain chronic conditions can influence LCFA 

transport by modifying the expression of CD36 but also by modifying CD36 cell surface 

translocation. In chronic electrically stimulated rat hindlimb muscles, the expression of 

CD36, its presence on the sarcolemma and LCFA transport are all increased (Koonen et al., 

2004;Bonen et al., 1999). While in cardiomyocytes and in perfused hearts, treatment with 

insulin for 2 hours also resulted in increased presence of sarcolemmal CD36 and LCFA 
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uptake (Luiken et al., 2002a;Chabowski et al., 2004). Interestingly, insulin causes a 

decrease in the ubiquitination of CD36 and therefore a decrease in the degradation rate of 

CD36 while FA had the opposite effect (Smith et al., 2008). Contractions are also known to 

stimulate FA oxidation (FAO) and stimulate glucose uptake via translocation of glucose 

transporter 4 (GLUT4) to the cell surface from intracellular compartments (Merrill et al., 

1997). In absence of contraction, activation of AMPK by 5-amino-4-imidazolecarboxamide 

ribonucleoside (AICAR), an analogue of adenosine, results in the translocation of CD36 to 

the sarcolemma (Bonen et al., 2007;Luiken et al., 2003;Chabowski et al., 2005). 

 In muscle cells, insulin and AMPK regulate therefore CD36 translocation (Figure 

6C). In addition, CD36 seems to regulate FA metabolism since in absence of CD36, FAO 

stimulation by AMPK or esterification of FA by insulin (storage) is impeded (Bonen et al., 

2007). Overexpression of CD36 in mouse muscles resulted in a decrease in total body 

weight caused by a decrease in adipose tissue volume, an increase in muscle FAO, a 

decrease in circulating TG and FFA, and even a slight decrease in total plasma cholesterol 

level (Ibrahimi et al., 1999). Compared to other fatty acid transporters, only the 

overexpression of CD36 in muscle was capable of increasing FA uptake and oxidation 

(Nickerson et al., 2009). Knowledge of CD36 signaling events in muscle, adipose tissue 

and liver are relatively limited. Instead, Figure 6C presents a summary of different factors 

that were shown to play a role in CD36 translocation and related FA metabolism but mostly 

in muscle. As previously mentioned, AMPK and insulin are capable of influencing CD36 

translocation through two different pathways. Contractile activity temporarily increases 

AMP/ATP ratio causing the phosphorylation and activation of AMPK by liver kinase B1 

(LKB1), a key regulator in energy homeostasis (Woods et al., 2003;Habets et al., 2009). 

Insulin’s binding to its receptor activates PI3K and Akt and also stimulates CD36 

translocation; while inhibition of PI3K was shown to impede the translocation of CD36 by 

insulin (Luiken et al., 2002a). Translocation induced by insulin seemed to be dependent on 

PKCζ but not on PKA (Luiken et al., 2009;Luiken et al., 2002b). Erk is also activated by 

muscular contraction and its inhibition prevented cell surface translocation of CD36 in 
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skeletal muscle while having no effect in the heart (Turcotte et al., 2005;Chabowski et al., 

2006b). In the rat intact perfused heart, it was shown that activation of PPARα or PPARδ 

induced CD36 translocation without affecting the activity of AMPK or Erk while PPARγ 

agonists had no effect on translocation (Kalinowska et al., 2009). Finally the transcription 

factor, FoxO1 regulates metabolic adaptation by inhibiting glucose oxidation in muscles, 

was shown to recruit CD36 to the sarcolemma and to stimulate FAO (Bastie et al., 2005). 

In extreme metabolic conditions such as obesity and type 2 diabetes, dissociation occurs 

between regulation of CD36 expression, cell surface translocation, and FA uptake and 

metabolism. In obese subjects, the expression of CD36 in muscles is not changed compared 

to normal individuals. However, its translocation to the sarcolemma is increased resulting 

in the increase in LCFA uptake and the accumulation of intramuscular TG due to increased 

esterification of FA but unchanged FAO (Bonen et al., 2004;Luiken et al., 2001). In obese 

Zucker rats, a permanent relocation of CD36 to cell surface of cardiomyocytes was 

responsible for the observed accumulation of intracellular TG (Coort et al., 2004).  This 

increase in CD36 translocation was explained by elevated insulin levels and by insulin 

resistance in cardiomyocytes, a phenomenon usually observed in obese models. In type 2 

diabetic models, the expression of CD36 is increased along with its sarcolemmal 

translocation in muscles, while dysfunctional cardiac contractions are accompanied by 

increased internalization and esterification of FA (Chabowski et al., 2006a;Ouwens et al., 

2007). 

6.3.3.3 Fatty acid uptake by CD36 in adipose tissue and liver 

 In adipocytes, translocation of CD36 to the cell surface was also demonstrated 

following treatment of 3T3-L1 either with insulin or with chromium picolinate, an activator 

of AMPK (Wang et al., 2010;Wang et al., 2009). Similarly to adipocytes, studies on 

hepatic CD36 signaling events are limited. Initially, the level of CD36 was considered low 

and even absent in liver (Maeno et al., 1994;Abumrad et al., 1999) ; however present in 

hepatocytes, CD36 levels were found to be influenced by metabolic demands, gender and 
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genetic background (Abumrad et al., 1993;Pelsers et al., 1999;Zhang et al., 2003;Stahlberg 

et al., 2004;Truong et al., 2010). The LCFA transporters in liver are FATP2 and FATP5 

(Hirsch et al., 1998). They account for the majority of LCFA being internalized in the liver 

(Doege et al., 2006;Falcon et al., 2010). CD36-null mice show even an increase in hepatic 

LCFA uptake (Coburn et al., 2001;Coburn et al., 2000;Febbraio et al., 1999). However, the 

overexpression of hepatic CD36 caused an increase in LCFA uptake and intracellular TG 

accumulation similarly to what is observed in obesity and type 2 diabetes (Koonen et al., 

2007). Indeed, in humans high expression of CD36 in the liver is associated with insulin 

resistance, hyperinsulinemia and hepatic steatosis (Miquilena-Colina et al., 2011). The 

expression of CD36 was increased in the liver of mice on a HFD, in ob/ob mice (leptin 

deficient) and in db/db mice (deficient in leptin receptor) (Ge et al., 2010). The expression 

of CD36 was positively correlated with LCFA in the HFD group. In the leptin signaling 

deficient groups (ob/ob and db/db), CD36 expression was not accompanied by an increase 

in LCFA uptake suggesting that perhaps leptin played a role in hepatic CD36 translocation. 

In HepG2, CD36 is found in intracellular compartments and plays a minor role in 

cholesterol efflux (Truong et al., 2010). On the other hand, overexpression of CD36 

resulted in the increase in its participation in cholesterol efflux into HDL3 particles. CD36 

is  also known to bind HDL particles and a recent study demonstrated that uptake of HDL 

by CD36 in the liver and cultured hepatocytes accounted for approximately 30% of total 

HDL uptake (Brundert et al., 2011). It was recently shown that CD36 is capable of 

internalizing oxLDL in liver while possibly delaying native LDL clearance (Luangrath et 

al., 2008;Truong et al., 2009). In adipocytes and hepatocytes combined, much more has 

been done to study the impact of CD36 expression and CD36 translocation on TG 

accumulation and LCFA uptake than studies regarding the actual signaling events 

following ligand binding such as LCFA. Such findings might provide further insight on its 

role and impact in adipocytes and hepatocytes. 



 

 

54

 

6.4 Mouse and human CD36 deficiency  

 The generation of CD36-null mice by the team of Roy Silverstein in 1999 provided 

an insight into the functional role of CD36 (Febbraio et al., 1999). CD36-null mice were 

considered asymptomatic and generally healthy. However, accompanied by a reduced 

binding and uptake of oxLDL in macrophages, plasma lipid levels were also elevated. 

When they crossed CD36-null strain with the atherogenic ApoE-null strain, they observed a 

net decrease in aortic sinus lesion area (Febbraio et al., 2000). However, in CD36-null 

mice, internalization of LCFA was greatly affected in cardiac and skeletal muscles, and 

also in adipose tissue; resulting in an overall deregulation of circulating lipids (Coburn et 

al., 2000;Coburn et al., 2001). Mutations occurring in the human CD36 gene, as discussed 

previously, offered an understanding of the impact of CD36 on the development of 

atherosclerosis, inflammation, malaria and lipid metabolism (Yamashita et al., 2007;Omi et 

al., 2003). Althought increased CD36 expression is considered proatherogenic, CD36 

deficiency in humans is associated with increased plasmatic TG, decreased HDL-

cholesterol, increased LDL-cholesterol, high blood pressure, elevated fasting plasma 

glucose and insulin resistance leading to a higher incidence of coronary heart disease 

(CHD) (Miyaoka et al., 2001;Yanai et al., 2000;Yamashita et al., 2007). A deficiency in 

CD36 implies a poor internalization and use of FA by various organs such as heart, muscle 

and adipose tissue while favoring an abnormal use of glucose as a source of energy and 

promoting development of metabolic syndrome-related diseases (Fukuchi et al., 

1999;Kintaka et al., 2002;Kushiro et al., 2005;Kuwasako et al., 2003;Corpeleijn et al., 

2006;Love-Gregory et al., 2008). While it is clear that CD36 plays an important role in 

lipid metabolism; somewhat, it remains unclear whether the inhibition or the activation of 

CD36 would have an overall physiological beneficial effect. It seems that in a healthy 

individual, the absence or decrease in CD36 could eventually lead to CHD; while an 

increased expression of CD36 could render the individual more susceptible of developing 
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atherosclerosis.  In any case, when the body is challenged metabolically, the presence of 

CD36 plays a detrimental role on the physiological outcome. 

 Regardless, the study of the effect of hexarelin on CD36 function provides a unique 

opportunity to understand the downstream events in adipocytes and hepatocytes which have 

been left mainly unexplored. 

7 Fatty acid metabolism in adipocytes 
 Adipose tissue was traditionally viewed as a reservoir for triglycerides, a mere 

storage device for the body. However, with the discovery of numerous proteins being 

secreted by adipocytes called adipokines, the adipose tissue was quickly in the forefront of 

influencing systemic metabolism by regulating appetite, controlling energy expenditure and 

influencing immunological responses. Two types of adipocytes exist; white adipocytes that 

serve as storage depot for excess energy whereas brown adipocytes generate heat through 

thermogenesis. White adipose tissue was thought to be the sole type of fat in human adults; 

however, after much debate on the issue, it was recently confirmed that brown adipocytes 

were indeed present in humans (Cypess et al., 2009). Brown adipocytes are found also in 

rodents for hibernation and in infants. The main characteristic of brown adipocytes is its 

adaptive thermogenesis potential through mitochondrial uncoupling fatty acid oxidation. As 

seen in Figure 7, differences between adipocyte types show that brown fat cells have a 

higher number of mitochondria than white adipocytes and numerous smaller lipid vesicles. 

Depot of white adipose tissue is found throughout the body but the most abundant forms 

are visceral and subcutaneous adipose tissues that produce adipokines shown to contribute 

to the development of metabolic disorders (Samaras et al., 2010). 
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Figure 7. Adipocytes: Differences between white and brown adipocytes 

7.1 The origin of adipocytes 

 The origin of adipocytes and the molecular events leading to the commitment of 

mesenchymal precursor cells to the lineage of adipocytes have been analyzed in depth. 

Because the master regulator of adipocyte differentiation, PPARγ controls both white and 

brown adipocytes differentiation, it was thought that these cells arose solely from a 

common mesenchymal progenitor. However, as shown in Figure 8A, it was recently 

discovered by Bruce Spiegelman and colleagues that brown adipocytes can originate from 

Myf-5-expressing myogenic precursors as well (Seale et al., 2008). These precursors 

represent the crossroad of differentiation toward either brown adipocytes or skeletal 

myocytes. The transcriptional regulator PRDM16 (PRD1-BF1-RIZ1 homologous domain 
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containing 16) controls the fate between these two cell types mainly by interacting with 

PPARγ and stimulating brown adipogenesis from myogenic precursors. Brown fat cells can 

also emerge within white adipose tissue in response to chronic cold exposure or β-

adrenergic stimulation (Cousin et al., 1992;Himms-Hagen et al., 2000). Therefore, factors 

influencing the switch between the white towards the brown fat phenotype has been of 

great interest as a therapeutic option for treating obesity and metabolic diseases. 
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Figure 8. Adipocyte differentiation (A) Determination of adipocyte fate from 

mesenchymal precursors, (B) factors regulating white adipocyte differentation 

7.2 Differentiation of adipocytes 

 The elucidation of the precise molecular events involved in the differentiation of 

white adipocytes was achieved mostly by using in vitro models such as 3T3-L1 

preadipocytes (Green & Kehinde, 1974;Green & Kehinde, 1979). Optimized differentiation 

of 3T3-L1 fibroblast-like preadipocytes is achieved upon treatment with a combination of 

insulin, dexamethasone, 3-isobutyl-1-methylxanthine (IBMX), fetal bovine serum and high 
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percentage of CO2 (Student et al., 1980). Insulin acts on the IGF-1 receptor which is 

essential for adipocyte differentiation. Dexamethasone is a synthetic agonist that stimulates 

the glucocorticoid receptor pathway. IBMX, a cAMP-phosphodiesterase inhibitor, 

stimulates the cAMP-dependent protein kinase pathway. The very early event in 

differentiation of the committed preadipocyte arises from cellular confluence and growth 

arrest (Figure 8B). Following hormonal induction, expression of transcription factors at 

specific differentiation times come into play, in turn inducing the expression of genes that 

will define the function of adipocytes. CCAAT/enhancer binding proteins β and δ 

(C/EBP β and δ) are among the first to be implicated in the differentiation process (Cao et 

al., 1991). C/EBP β and δ are responsible for the induction of the expression of PPARγ and 

of C/EBP α occurring during intermediate differentiation. C/EBPα is abundant in mature 

adipocytes and is responsible for insulin-dependent glucose uptake (Wu et al., 1999b). 

Genome-wide analysis reveals that C/EBPα,β and PPARγ co-localizes on many genes to 

orchestrate their expression and regulate the function of adipocytes (Lefterova et al., 2008). 

However, in C/EBPα-deficient mouse embryonic fibroblasts, C/EBPα was shown to be 

dispensable since introduction of PPARγ in these cells still promoted adipogenesis (Rosen 

et al., 2002). PPARγ is an absolute requirement for adipogenesis and no other factor to date 

has been identified capable of rescuing adipogenesis in absence of PPARγ (Tontonoz et al., 

1994b). PPARγ will be further discussed in the context of adipocytes and hepatocytes in 

sections 8.4 and 8.5.  

7.3 Adipokines and adipose tissue 

 Table 4 lists examples of secreted adipokines and their role in energy homeostasis 

and inflammation. Factors secreted by adipose tissue are collectively called adipokines 

whether they are adipocyte-specific or not (Haque & Garg, 2004). In 1993, Bruce 

Spiegelman and colleagues showed that TNF-α, a pro-inflammatory factor could also be 

produced by the adipose tissue and directly contribute to insulin resistance in obese rats 
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(Hotamisligil et al., 1993). The potential influence of adipokines on overall energy balance 

came with the identification of leptin capable of regulating food intake and its association 

with obesity (Zhang et al., 1994). The identification of adiponectin, exclusively expressed 

in adipocytes, demonstrated a new potential for adipocytes at reducing pro-inflammatory 

response while increasing insulin-sensitivity and providing protection against several 

metabolic disorders related to obesity (Scherer et al., 1995a). The only other anti-

inflammatory adipokine identified to date is the secreted frizzled-related protein 5 (SFRP5) 

recently associated with obesity and diabetes (Ouchi et al., 2010).The pro-inflammatory 

resistin has been shown to induce insulin resistance in mice and linking obesity to diabetes 

(Steppan et al., 2001). Other pro-inflammatory adipokines are IL-6, IL-18, lipocalin 2, 

angiopoietin-like protein 2 (ANGPTL2), CC-chemokine ligand 2 (CCL2) and nicotinamide 

phosphoribosyltransferase (NAMPT) (Esposito et al., 2003;Yan et al., 2007;Tabata et al., 

2009;Kanda et al., 2006;Revollo et al., 2007). Adipose tissue is comprised not only of 

adipocytes but also to a smaller extent of preadipocytes, macrophages, lymphocytes, 

fibroblasts, capillaries and blood vessels (vascular smooth muscle and endothelial cells). In 

mild and advanced metabolic dysfunctions, there is an increase in macrophage and 

lymphocyte infiltration caused by the release of adipokines in the circulation due to the 

proximity of blood vessels within the adipose tissue (Weisberg et al., 2003). 
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Table 4. Adipokines and their role in inflammation, energy metabolism or insulin 

resistance 

Leptin

Resistin

Lipocalin 2

ANGPTL2

TNF-a

IL-6

CCL2

NAMPT

IL-18

Adiponectin

SFRP5

Adipokine Reference

Hotamisligil et al., 1993

Zhang et al., 1994

Scherer et al., 1995a

Ouchiet al., 2010

Steppan et al., 2001

Esposito et al., 2003

Esposito et al., 2003

Yan et al., 2007

Tabata et al., 2009

Kanda et al., 2006

Revollo et al., 2007

Role 

Appetite inhibition, energy expenditure

Receptor or Partner 

TNF receptor

Leptin receptor

ADPN receptor-1,-2
T-cadherin, calreticulin-CD91

Unknown

Unknown

Unknown

Unknown

CCR2

IL-6 receptor

IL-18 receptor, 
IL-18 BP

WNT5a

Pro-inflammatory reaction

Anti-inflammatory reaction, insulin sensitizer

Anti-inflammatory reaction, WNT signaling
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7.4 Fatty acid transport into adipocytes 

 In addition to CD36 as a fatty acid transporter, adipocytes express FATP1 and 

FATP4 which unlike CD36 possess also a FACS activity that allows esterification of FA 

for proper storage as TG (Hall et al., 2003;Hall et al., 2005). It was recently shown in 3T3-

L1 adipocytes that silencing by CD36 siRNA resulted in a 30-40% decrease in basal 

palmitate uptake and a 40-45% drop in insulin-stimulated FA uptake (Lobo et al., 2009). 

FATP1 silencing resulted in a 25% reduction in FA uptake and a complete loss of FA 

uptake stimulation by insulin; however, the silencing of FATP4 had no impact on FA influx 

(Lobo et al., 2007). The absence of FATP4 resulted in an increase in basal lipolysis and its 

activity is proposed to be linked with the reesterification of FA following lipolysis in 

adipocytes. The difference between insulin stimulation effect in absence of either CD36 or 

FATP1 can be explained by the localization of CD36 in the bulb of caveolea for fatty acid 
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uptake whereas FATP1 is not (Pohl et al., 2005). Interestingly, the insulin receptor is found 

at the neck of caveolae but not in the bulb and could interact more favorably with FATP1 

(Foti et al., 2007). Overall, CD36 and FATP1 play a major role in FA uptake in adipocytes 

(Figure 9). 
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Figure 9. Fatty acid uptake, triglyceride synthesis and lipid droplets 

7.5 Storage of fatty acids in lipid droplets 

 Figure 9 illustrates the conventional steps in FA uptake and esterification, and the 

subsequent storage of FA as triglycerides in lipid droplets in white adipocytes. LCFAs 

generated from hydrolysis of triglycerides from chylomicrons (CM) or VLDL by LPL are 

taken up by transporters (CD36 and FATP1). Circulating FFA is coupled to albumin. Fatty 

acids are stored in lipid droplets of adipocytes in the form of triglycerides which constitutes 

a glycerol backbone to which three molecules of fatty acids have been esterified. Since 

white adipocytes have little to none glycerol kinase, dihydroxyacetone phosphate (DHAP), 
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produced during glycolysis, becomes the precursor for production of glycerol-3-phosphate 

(G-3-P) and TG synthesis. Therefore, a supply of glucose is crucial for synthesis of TG and 

is controlled by insulin via GLUT4 translocation to the adipocyte membrane from 

intracellular compartments. Once the fatty acid is transported inside the cell, it undergoes 

esterification for the synthesis of triglycerides. Diacylglycerol acyltransferase (DGAT) 

catalyzes the terminal step converting DAG into TG. Interestingly, adipocytes of CD36-

null mice accumulate DAG and have low levels of TG compared to wild type control 

(Coburn et al., 2000). DGAT activity was similar in both groups and therefore could not 

explain the accumulation of DAG in cells. However, lipolysis enzyme activity was not 

measured in this study. During fasting, the glyceroneogenesis pathway (pyruvate 

carboxylase and cytosolic phosphoenolpyruvate carboxykinase (PEPCK)) is the major 

source of triglyceride glycerol (Nye et al., 2008).  Mitochondrial- or endoplasmic 

reticulum-associated glycerol-3-phosphate acyltransferase (GPAT) catalyzes the committed 

step in de novo TG synthesis (Cao et al., 2006). Interestingly, hepatic deficiency in 

mitochondrial GPAT resulted in redirection of FA towards oxidation (Hammond et al., 

2005). FA synthesis is also possible through activity of (1) fatty acid synthase (FAS) which 

catalyzes the conversion of acetyl-CoA and malonyl-CoA into long-chain saturated fatty 

acids, (2) acetyl-CoA carboxylase (ACC) which synthesizes malonyl-CoA the first 

committed step in FA synthesis and (3) stearoyl-CoA desaturase-1 (SCD-1) which is the 

rate-limiting enzyme involved in the synthesis of the major monounsaturated fatty acids 

oleic acid and palmitoleic acid (Girard et al., 1994). Newly synthesized TGs are stored in 

actively forming lipid droplets near the ER which are surrounded by the PAT family of 

scaffold proteins: perilipin A, adipophilin and tail-interacting protein 47 (TIP47) 

(Nagayama et al., 2007;Wolins et al., 2005). Perilipin A is the major protein found in lipid 

droplets and through its phosphorylation state by PKA, it plays a major role in lipolysis by 

providing a protective barrier from lipases (Greenberg et al., 1991). Perilipin A-null mice 

have elevated basal lipolysis, reduced WAT mass, display significant resistance to diet-

induced obesity and have increased fatty acid oxidation (Saha et al., 2004).  
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7.6 Lipolysis 

 Adipocyte lipolysis represent the hydrolysis of triglycerides into fatty acids and 

their subsequent release into circulation for use as energy source by other tissues such as 

the heart and skeletal muscles. In order to respond quickly to energy demands, the lipid 

pool is in a constant cycle of lipolysis and re-esterification (Kalderon et al., 2000). When 

changes in metabolic conditions arise, adipocytes respond by a shift in lipolysis to satisfy 

the energy demand. Lipolysis is carefully regulated and represents a skillfully orchestrated 

event, as observed in Figure 10. Fasting stimulates lipolysis through secretion and binding 

of the primary activators, catecholamines such as norepinephrine to their receptor on 

adipocytes. β-adrenergic receptor coupled to Gs-proteins transcends this signal to adenylyl 

cyclase. The produced cAMP gives rise to the activation of protein kinase A. PKA 

catalyzes the phosphorylation of hormone-sensitive lipase (HSL) on Ser-659 and -660 

causing activation and translocation of HSL to the lipid droplet (Su et al., 2003). PKA also 

targets Ser-563 on HSL, which is a site aimed at directly preventing phosphorylation of 

Ser-565 by AMPK, known to inactivate HSL (Djouder et al., 2010). PKA also targets 

perilipin A at up to six identified sites: Ser-81, Ser-223, Ser-277, Ser-434, Ser-492, and 

Ser-517 (Greenberg et al., 1993). The phosphorylation of perilipin A alone is sufficient to 

increase lipolysis (Tansey et al., 2003). Phosphorylation of perilipin facilitates its 

interaction with translocated HSL on lipid droplets and favors lipolysis (Miyoshi et al., 

2006).  The action of PKA results therefore in the movement of perilipin away from the 

lipid droplet, a remodelling of lipid droplet surface available for lipolytic attack and an 

activation of HSL mediated by its interaction with perilipin (Clifford et al., 

2000;Marcinkiewicz et al., 2006;Sztalryd et al., 2003).  
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Figure 10. Regulation of lipolysis in adipocytes 

 In contrast, AMPK demonstrates an anti-lipolytic effect in adipocytes through 

phosphorylation of HSL at Ser-565 (Daval et al., 2005). However, it was recently 

demonstrated by Whilhelm Krek and colleagues, that PKA also targets inactive AMPK 

(Ser-173) and prevents further activation of AMPK at Thr-172 as a mean to control 

lipolysis (Djouder et al., 2010). When the ratio AMP/ATP rises from the energy consuming 

reesterification process, AMPK is activated and targets HSL for inactivation (Daval et al., 

2005;Gauthier et al., 2008). Until the advent of HSL-null mice, it was thought that HSL 

was the rate-limiting enzyme in adipocyte lipolysis, hydrolyzing triacylglycerol (TAG or 

TG) and DAG while monoacylglycerol lipase (MGL) was responsible for the hydrolysis of 

MAG. However, HSL-null mice showed massive accumulation of DAG demonstrating that 

HSL was not mainly involved in hydrolysis of TAG into DAG but rather DAG into MAG 

(Osuga et al., 2000). This finding prompted the search and discovery of the adipose 

triglyceride lipase (ATGL) (Zimmermann et al., 2004). The released FA is then transported 

out of the cell by fatty acid carrier, adipocyte protein 2 (aP2).  Glycerol produced cannot be 
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recycled since white adipocytes do not express glycerol kinase and therefore is secreted out 

of the cell through aquaporin for utilization by other tissues. Reesterification of fatty acids 

is part of the mechanism that controls FA release from the cell. Reesterification requires 

glycerol-3-phosphate which cannot be synthesized from glycolysis since it is reduced 

during fasting; therefore, glyceroneogenesis and PEPCK also play a role in the recycling of 

fatty acids (Forest et al., 2003). Insulin is the main negative regulator of lipolysis. Upon 

feeding, insulin binds to its receptor on adipocytes, causing the recruitment and 

phosphorylation of its substrate, IRS-1. Subsequent activation of PI3K and Akt results in 

the targeted activation of phosphodiesterase 3 and phosphatases 2A, 2C and 1 which will 

hydrolyze cAMP and dephosphorylate HSL and perilipin, respectively (Figure 10, shaded 

area) (Langin, 2006). The basal lipolysis in obese patients is increased while 

cathecholamine-stimulated lipolysis is reduced in part due to a decreased in the expression 

and function of HSL (Large et al., 1999). The increased basal lipolysis can be explained by 

an impaired sensitivity to insulin and an increase in TNF-α secretion in adipocytes. 

Through TNF receptor, Erk1/2 and JNK are activated and causes the downstream decrease 

in the expression of perilipin (Ryden et al., 2004;Ryden et al., 2002).  

7.7 White to brown transdifferentiation of adipocytes  

  With the appearance of brown adipocytes in visceral fat pads of mice exposed to 

cold, the question remained whether these cells originated from a pool of precursor cells 

already present in WAT or converted into brown adipocytes from white fat cells (Young et 

al., 1984). Today, there is mounting evidence that white adipocytes can be converted or 

transdifferentiated into brown adipocytes even in humans (Cinti, 2002;Puigserver et al., 

1998;Himms-Hagen et al., 2000;Tiraby et al., 2003). While PPARγ plays a central role in 

the differentiation of white and brown adipocytes, it is not the primary determinant whether 

a cell assumes either phenotype since PPARγ is present in both cell types. Nonetheless, 

brown fat cells can appear within WAT using PPARγ agonists (Nedergaard et al., 2005;Sell 

et al., 2004). PPARγ coactivator-1α (PGC-1α) is expressed at extremely low levels in 
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white adipocytes but is highly expressed in brown fat cells. PGC-1α plays a critical role in 

initiating the thermogenic program by inducing oxidative metabolism and mitochondrial 

biogenesis (Spiegelman & Heinrich, 2004). Ectopic expression of PGC-1α in white 

adipocytes was shown to induce the expression of UCP-1, of several mitochondrial 

enzymes of the respiratory chain and to increase mitochondrial DNA cellular content 

(Puigserver et al., 1998). Perilipin overexpression in white adipose tissue of transgenic 

mice resulted in the induction of a brown fat-like phenotype (Sawada et al., 2010). In 

addition to its role in brown adipogenesis in Myf-5-positive cells, PRDM16 is capable of 

inducing, in white pre-adipocytes, brown adipocyte differentiation (Seale et al., 2007). 

PRDM16 coactivates PGC-1α, PPARγ and other transcription factors and suppresses the 

expression of white adipocyte markers (Kajimura et al., 2008). Moreover, shRNA-mediated 

knockdown of PRDM16 in brown preadipocytes allows normal differentiation into fat cells 

while losing altogether their brown fat phenotype (Seale et al., 2007). PRDM16 induction 

has become therefore an interesting approach in treating obesity-related disorders. 

7.8 Mitochondria and fatty acid oxidation 

 Fatty acid β-oxidation takes place in the peroxisome and the mitochondrion and 

both organelles work closely together in order to efficiently produce ATP (Schrader & 

Yoon, 2007). Peroxisomes and mitochondria contain their own set of β-oxidation enzymes 

and show different substrate specificity; therefore, very long chain fatty acids (VLCFA) are 

first oxidized in the peroxisome and after a few rounds, the shortened fatty acid chain is 

shuttle towards the mitochondrion for further oxidation while LCFA are readily transferred 

into mitochondria. Among other roles, mitochondria are considered power plants of the cell 

to produce ATP for various in-house reactions. Despite a lower number of mitochondria in 

white fat cells compared to brown, mitochondrial biogenesis occurs during white adipocyte 

differentiation (Ducluzeau et al., 2011). In support of an important role in white adipocytes, 

mitochondrial dysfunction in white adipocytes is associated with obesity and insulin 

resistance (Choo et al., 2006;Sutherland et al., 2008;Gao et al., 2010).  
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7.8.1 Mitochondrial Biogenesis 

 Mitochondrial biogenesis represents the adaptation of any cell to a rise in energy 

demand by increasing the overall mitochondrial network. This definition was initially 

applied by John Holloszy who observed a 60% increase in protein content in mitochondrial 

fractions, accompanied by an increase in oxidative phosphorylation, extracted from muscles 

of rats subjected to a strenuous exercise routine (Holloszy, 1967). The mitochondrion 

houses over a thousand different proteins distributed among four different compartments: 

the inner and outer membranes, the intermembrane space and the matrix. Mitochondrial 

DNA code for 13 out of the 80 different proteins of the respiratory chain, 2 ribosomal 

RNAs and 22 transfer RNAs; therefore 99% of its proteins are encoded by the nuclear 

genome. Consequently, these newly synthesized mitochondrial preproteins are escorted into 

the mitochondrion through specialized protein import machinery (figure 11). All 

preproteins must pass the translocase of the outer membrane (TOM complex) and from the 

intermembrane space, four specific import pathways branch off to shuttle the preproteins 

into one of the four compartments. The sorting and assembly machinery (SAM) transfers 

proteins into the outer membrane, while translocase of the inner membrane 22 (TIM22 

complex) transfers selected proteins into the inner membrane. The TIM23 complex 

distributes soluble proteins into the matrix and the mitochondrial intermembrane space 

import and assemble (MIA pathway) takes care of the remaining protein location (Gabriel 

et al., 2007;Pfanner et al., 2004;van et al., 1999).  
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Figure 11. Mitochondrial Biogenesis, protein import and translation 

 Mitochondrial biogenesis begins with external stimuli to induce changes in the 

expression of various nuclear genes encoding mitochondrial proteins predominantly 

through the activation of transcription factors and co-activators.  PGC-1α is a master 

regulator of mitochondrial biogenesis and respiration (Wu et al., 1999a). Transcriptional 

activation of mitochondrial genes of the respiratory chain is increased following the escort 

of 3 known transcription factors into the mitochondrial matrix, Tfam, p43 and mtTFB 

which are required for biogenesis (Gordon et al., 2001). Mitochondrial ribosomal proteins 

for the translation of mitochondrial mRNAs are also amongst the proteins being imported. 

High density crystal formation within the mitochondrion is an indication of highly 

oxidative tissue and changes during mitochondrial biogenesis (Gilkerson et al., 2003). 

Increase in the expression of PGC-1α, mitochondrial transcription factors and proteins such 
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as Tfam, Tim(s) and Tom(s) and MRPs, and changes in morphology are all indicative of an 

increase in oxidative phosphorylation and mitochondrial biogenesis.  

FFA

FA-CoA

β-oxidation

ATP 
synthase

H+

ATP

TCA
Cycle

NADH
Succinate

Acetyl-CoA

I

III

IV

II

NADH

e -

Cyt C

O
2

H+

H+

H+

Q
succinate

 

Figure 12. Steps in β-oxidation of fatty acids, oxidative phosphorylation coupled with 

ATP production 

7.8.2 FAO and oxidative phosphorylation in white adipocytes 

 Figure 12 depicts all necessary steps from transport of FA into mitochondria, β-

oxidation, tricarboxylic acid cycle (TCA cycle), electron transport chain and production of 

ATP. The initial step in fatty acid oxidation is the conversion of FA into fatty acyl-coA by 

acyl-CoA synthase (ACS) for its transport across the outer and inner mitochondrial 

membranes (Figure 13). The inner membrane is impermeable to CoA therefore carnitine 

becomes the carrier to transport acyl group across the inner membrane. CPT-I transfers the 

acyl group to carnitine then the acyl-carnitine exchanges with free carnitine across the inner 

membrane by carnitine acylcarnitine transferase (CAT). Finally, the fatty acyl is transferred 

back to CoA by CPT-II and enters the β-oxidation pathway.  
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Figure 13. Initial Steps Fatty Acid Oxidation 

 Fatty acid entry into the mitochondrion is mainly controlled through the activity of 

the rate-limiting enzyme in FA uptake and oxidation, CPT-I. ACC catalyzes the rate-

limiting reaction in the synthesis of LCFA by synthesizing from acetyl-CoA, malonyl-CoA, 

the substrate for FA synthesis. Binding of malonyl-CoA to CPT-I inhibits its activity 

(Murthy & Pande, 1987). Hence, ACC controls the activity of CPT-1 by producing malonyl 

CoA (Ha et al., 1996). In turn, acetyl-CoA carboxylase (ACC) can be phosphorylated and 

inactivated at Ser79 by AMPK when energy supply is low, demonstrating an intricate 

system to control energy expenditure (Ha et al., 1994). Malonyl-CoA decarboxylase 

(MCD) also controls the level of malonyl-CoA, while depletion of MCD was shown to 

increase malonyl-CoA and decrease FAO (Dyck et al., 1998;Bouzakri et al., 2008).  Two 
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isoforms exist for CPT-I. CPT-1a is expressed primarily in the liver but is also found in 

other tissues including adipose tissue while CPT-1b in human is expressed in adipose 

tissue, heart, skeletal muscle and testis. However, gender- and species-differences in the 

expression of both isoforms exist. Interestingly, CPT-1b is the predominant form expressed 

in rat and mouse white and brown adipose tissue; however in mouse 3T3-L1, CPT-1a is the 

major isoform (Brown et al., 1997;Esser et al., 1996). CPT-1b is far more sensitive to 

malonyl-CoA than CPT-1a; whereas unlike CPT-1b, CPT-1a sensitivity to malonyl-CoA is 

influenced by thyroid hormone and insulin (Park et al., 1995;Saggerson & Carpenter, 

1981).  
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Figure 14. β-oxidation reaction of fatty acids 
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 Fatty acid oxidation occurs in all tissues with the exception of brain, erythrocytes 

and adrenal medulla which utilize mainly glucose as its source of energy (Sabyasachi 

Sircar, 2007). As seen in Figure 14, fatty acyl-CoA once inside the mitochondrion is broken 

down to generate acetyl-CoA which then enters the TCA cycle. Typically, each cycle of β-

oxidation produces one molecule of acetyl-CoA and leaves the fatty acid short of 2-carbon 

unit. As the chain shortens, various acyl-CoA dehydrogenases come into play depending on 

its affinity for the fatty acyl-CoA length.  

 Succinate and NADH (electron donor) produced by the TCA cycle are then 

oxidized by the electron transport chain. Electrons are transferred from donors to acceptors 

carried across protein complexes and the energy released by this flow is used to transport 

protons across the inner membrane and into the intermembrane space, forming a pH 

gradient and an electrical potential. This allows the protons to flow back into the matrix 

down this gradient through a large protein complex called ATP synthase that converts ADP 

into ATP from the energy created with the proton movement (Figure 15). Oxidative 

phosphorylation is a coupled event where energy-releasing reactions are used for energy-

required reactions for the purpose of producing ATP.  Each complex of the respiratory 

chain consists of several subunits that are defined by their substrate such as NADH-

coenzyme Q oxidoreductase (complex I), succinate-Q oxidoreductase (complex II), 

electron transfer flavoprotein-Q oxidoreductase, Q-cytochrome c oxidoreductase (complex 

III) and cytochorme c oxidase (complex IV). Cytochrome c oxidase activity is often used to 

evaluate the level of oxidative phosphorylation leading to ATP production. 
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Figure 15. Oxidative phosphorylation 

7.8.3 Respiratory uncoupling and thermogenesis in brown adipocytes 

 The brown adipocyte phenotype is essentially conferred by the presence of 

uncoupling protein-1 and the large amount of mitochondria. UCP-1 also called thermogenin 

decreases proton gradient in the intermembrane space built up by the respiratory chain by 

allowing protons back into the mitochondrion matrix and therefore releasing the energy 

from fatty acid oxidation as heat (Figure 16, box). The sympathetic nervous system controls 

the mobilization of stored energy and adaptive thermogenesis in adipose tissue through the 

activation of β-adrenergic receptor (Figure 16). UCP-1 is a 32-KDa BAT-specific protein 

present in mitochondria as a homodimer, not typically found in white adipocytes (Nicholls 

et al., 1978). However, as stated in section 7.7, under the control of PGC-1α, the induction 

of UCP-1 is possible in white adipocytes (Puigserver et al., 1998). Overexpression of UCP-

1 in transgenic mice using the promoter of aP2 resulted in leaner mice with thermogenically 

active white adipocytes (Kopecky et al., 1995). Thyroid hormones play a role in energy 

expenditure and adaptive thermogenesis in brown adipocytes (Bianco & Silva, 1987). Two 

thyroid responsive elements are found in the promoter region of UCP-1 and it was recently 

found that the expression of UCP-1 is reduced in mice suffering from thyroid resistance due 

to a frameshift mutation in the thyroid hormone receptor β (TRβ) (Ribeiro et al., 2010). 
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Several mouse models have identified negative regulators of UCP-1 expression such as the 

co-repressor receptor interacting protein 140 (RIP140), LXRα and raptor, an essential 

component of mTORC1 (key regulator of cell growth and metabolism) (Wang et al., 

2008;Polak et al., 2008). The small 220-bp enhancer region in the promoter of UCP-1 

harbors a number of important sequences such as the cAMP-responsive element 2 (CRE2) 

which is recognized by ATF2, the response element of PPARs (PPRE) and the newly 

identified response element for LXRα (LXRE) (Cao et al., 2004;Wang et al., 2008). In 

presence of LXRα ligands, RIP140 is recruited to the transcriptional complex therefore 

facilitating transcriptional repression. Since PPRE and LXRE are at close proximity, it is 

suggested that LXR displaces PPAR preventing transcriptional activation of UCP-1. 

Chronic treatment of mice with ghrelin downregulated the expression of  UCP-1 in brown 

adipocytes (Tsubone et al., 2005). Overexpression of ATGL increased lipolysis and also 

the expression of UCP-1 in white adipocytes rendering mice resistant to diet-induced 

obesity (Ahmadian et al., 2009). Therefore, the presence of UCP-1 is positively linked to 

increased lipolysis and resistance to diet-induced obesity. The discovery of functional 

human BAT certainly offers a new possibility of regulating energy expenditure valuable to 

treat obesity and other metabolic disorders. 
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Figure 16. Adaptive thermogenesis and uncoupling protein-1 in brown adipocytes 

8 PPAR gamma 
 The peroxisome proliferator-activated receptor family comprises of PPARα, 

PPARβ/δ and PPARγ (Laudet et al., 1999). They are lipid-sensing receptors involved in 

lipid and glucose metabolism, and energy homeostasis. PPARα was discovered for its 

ability to bind a class of hepatocarcinogens capable of inducing peroxisome proliferation 

(Issemann & Green, 1990). PPARα is primarily expressed in brown adipocytes, liver, 

kidney, heart and skeletal muscle and plays a role in the regulation of fatty acid oxidation 

(Kliewer et al., 1994;Lemberger et al., 1996;Kersten et al., 1999). PPARβ/δ is ubiquitously 

expressed but is present in liver at a lower level and plays a broad role in fatty acid 

catabolism and energy homeostasis (Kliewer et al., 1994;Braissant et al., 1996). PPARγ is 

expressed at high level in adipose tissue, macrophages, endothelial cells and large intestine 

but is also found in liver (Vidal-Puig et al., 1996;Auboeuf et al., 1997). PPARγ, in addition 
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to its role in lipid and glucose metabolism, in macrophage foam cell formation and 

inflammatory response (section 6.3.2), it also plays a major role in adipogenesis (section 

7.2) (Kubota et al., 1999;Tontonoz et al., 1994b).  

8.1 PPARγ isoforms, structure and heterodimerizaton 

 Two isoforms exist for PPARγ resulting from different promoters and alternate 

splicing (Sundvold & Lien, 2001;Chen et al., 1993). PPARγ1 is expressed in all PPARγ-

positive tissues; however, PPARγ2 is mainly present in adipocytes (Mukherjee et al., 

1997;Tontonoz et al., 1994a). PPARγ shares a common structure with other nuclear 

receptors (Laudet et al., 1992;Beato et al., 1995). Figure 17 represents functional domains 

of PPARγ and differences between isoforms. PPARγ1 and γ2 only differ in their N-termini, 

PPARγ2 having an extra 28 amino acids encoded by a single exon (Zhu et al., 1995;Yanase 

et al., 1997). Nuclear receptors were originally divided into 6 regions containing functional 

domains (A to F) based on the sequence homology between human and chicken oestrogen 

receptor alpha (Krust et al., 1986). Region A/B contains the ligand–independent activation 

function 1 (AF-1) which is 5 times more active in PPARγ2 than in γ1 (Werman et al., 

1997). Insulin can activate the transcriptional activity of PPARγ through AF-1 domain. 

Region C contains the DNA binding domain (DBD) that recognizes the PPAR response 

element (PPRE) while D represents the hinge region. Finally, region E/F contains the 

ligand binding domain (LBD) followed by a second activation function (AF-2). This region 

is important for the assembly of co-activators (Nolte et al., 1998). Regions C and E also 

allows the dimerization of PPARγ with its partner RXR (Gearing et al., 1993;Miyata et al., 

1994). 
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Figure 17. PPARγ isoforms, structure, and heterodimerization with RXR 

 All three isoforms of RXR (α, β and γ) can form heterodimers with PPARγ (Figure 

17) and are activated by 9-cis retinoic acid (Issemann et al., 1993). The heterodimer binds 

to the PPRE site upstream of its target gene which consists of a direct tandem repeat of the 

consensus AGGTCA element with one intervening nucleotide (Palmer et al., 1995). PPRE 

are often found in an upstream enhancer region rather than in the proximal promoter 

(Tontonoz et al., 1994a;Tontonoz et al., 1995). Either ligands for PPARγ or for RXR can 

independently activate the heterodimer; however, a co-activation of PPARγ and RXR has 

an additive response (Cha et al., 2001). Interestingly, it was previously assumed that PPAR 

and RXR only heterodimerize in the presence of ligand; however, it was demonstrated by 

fluorescence resonance energy transfer (FRET) that PPARs form heterodimers with RXRs 

even in absence of ligand which supports the possibility of ligand-independent activation of 

PPAR (Feige et al., 2005).  

8.2 Regulation of PPARγ activity 

8.2.1 Natural and synthetic ligands 

 The large binding pocket of PPARγ rearranges itself to accommodate a large variety 

of agonists (Kallenberger et al., 2003;Togashi et al., 2005). The identity of the true 

biological ligand(s) of PPARγ remains unknown. However, a putative endogenous ligand is 
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produced early in adipogenesis of 3T3-L1 cells, and an organic extract containing this 

unidentified ligand was capable of inducing lipid accumulation as efficiently as the typical 

differentiation cocktail (Tzameli et al., 2004). Component(s) of this extract competed for 

the binding of rosiglitazone. Compared to the other PPARs, PPARγ does not respond to 

native fatty acids while modified fatty acids elicit a stronger activation. PUFAs such as 

arachidonic and linoleic acids as well as eicosanoids 15-deoxy-∆ 12,14 prostaglandin J2 

(15-dPGJ2) are considered natural ligands of PPARγ (Krey et al., 1997;Keller et al., 

1993;Forman et al., 1995b;Kliewer et al., 1995). In vivo level of ligands such as 15-dPGJ2 

is so low that they are unlikely to be considered biologically significant ligands.  

 Major oxidized lipids on oxLDL particles 9- and 13-hydroxyoctadecadienoic acid 

(9- and 13-HODE) are potent ligands of PPARγ (Nagy et al., 1998). Thiazolidinediones 

(TZD) antidiabetic effect was observed in humans treated with troglitazone, glucose 

tolerance was increased while insulin resistance was reduced (Nolan et al., 1994). With the 

exception of troglitazone which was later shown to have high liver toxicity, TZDs are used 

regularly to treat type 2 diabetes (Gale, 2006;Cohen, 2006). Soon after the determination of 

its potential as an antidiabetic drug, TZD was shown in adipocytes to increase the 

expression of aP2 through increased transcriptional activity of ARF6 DNA-binding 

complex on its promoter. It was later determined that ARF6 was in fact the PPARγ/RXR 

heterodimer and that TZD was a ligand of PPARγ (Lehmann et al., 1995;Tontonoz et al., 

1994a;Harris & Kletzien, 1994). 

8.2.2 Corepressors 

 No specific co-factor for PPARγ has been identified; however, several common 

coactivators and corepressors for the nuclear receptor family of proteins are known to 

interact with PPARγ. In absence of ligand, corepressors are bound to the receptor complex 

and recruit histone deacetylases (HDACs). Nuclear receptor corepressor protein (NCoR) 

and silencing mediator of retinoid and thyroid hormone receptors (SMRT) have been 

shown to interact with PPARγ and inhibit adipogenesis in 3T3-L1 (Horlein et al., 
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1995;Chen & Evans, 1995;Yu et al., 2005). RIP140 is capable of repressing PPARγ even in 

presence of ligand (Treuter et al., 1998). 

8.2.3 Coactivators  

 Ligand binding increases PPARγ affinity for coactivators and results in chromatin 

remodelling leading to the recruitment of the basal transcriptional machinery at the PPARγ 

site. The short alpha-helical motif LXXLL is an essential motif for co-factors to bind to 

nuclear receptors (Heery et al., 2001). These include co-activators such as cAMP response 

element binding protein (CREB) binding protein (CBP/p300), steroid receptor co-activator 

(SRC) family, and the critical thyroid receptor associated protein 220 (TRAP220) 

(Mizukami & Taniguchi, 1997;Leo & Chen, 2000;Ge et al., 2002). 

8.2.3.1 PPARg coactivator-1α (PGC-1α)  

 Since PPARγ was expressed in brown adipocytes and played a role in the 

expression of UCP-1, Bruce Spiegelman and colleagues searched for components that were 

present in brown adipocytes capable of regulating the expression of UCP-1 while absent in 

white adipocytes (Puigserver et al., 1998). Using a yeast two-hybrid system, they identified 

a 92-kDa protein called PPARγ coactivator 1 (PGC-1α) that interacted not only with 

PPARγ but with other nuclear receptors. PGC-1α was dramatically induced in BAT and 

skeletal muscle following exposure to cold. PGC-1α initiated a broad program of 

mitochondrial gene expression, thermogenesis and cellular respiration. Interestingly, the 

expression of PGC-1α does not lead to an increased expression of all PPARγ targets such 

as aP2, expressed in both white and brown adipocytes (Puigserver et al., 1998).  Figure 18 

illustrates the regulation of PGC-1α by different factors. Cytokines in muscle activates p38 

MAP kinase, which in turn activates PGC-1α by phosphorylation on 3 possible sites 

(Thr262, Ser265 and Thr298) causing an increase in the expression of mitochondrial genes 

and energy expenditure (Puigserver et al., 2001). Also, activation of PGC-1α by p38 was 

shown to be essential for its recruitment to UCP-1 promoter (Robidoux et al., 2005). In 
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liver, PGC-1α is mainly known for promoting gluconeogenesis (such as the expression of 

PEPCK and glucose-6-phosphatase) and repressing glycolysis, resulting in increased 

glucose output during fasting (Yoon et al., 2001). In addition, in skeletal muscle activated 

AMPK targets PGC-1α on Thr177 and Ser538 (Jager et al., 2007). PGC-1α activation is 

also triggered by arginine methylation by protein arginine methyltransferase 1 (PRMT1), 

another nuclear receptor coactivator (Teyssier et al., 2005). While acetylation of PGC-1α 

by the histone acetyltransferase GCN5 (general control nonderepressible 5) was shown to 

inhibit its activity; its inhibition can be reversed by the protein deacetylase SIRT1 (Rodgers 

et al., 2005;Lerin et al., 2006). Through the action of insulin, the activated Akt2/PKB-β 

phosphorylates and inhibits PGC-1α (Ser570) and prevents its recruitment to target 

promoters, impairing its ability to promote gluconeogenesis and fatty acid oxidation (Li et 

al., 2007b). It was recently demonstrated that GCN5-mediated lysine acetylation required 

phosphorylation of PGC-1α at Ser570 by Akt (Xiong et al., 2010).  
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Figure 18. Regulation of PGC-1α activity 

 Figure 18B depicts different possible regulation of PGC-1α dependent on energy 

demand. SIRT1 requires NAD+ as a cofactor and is inhibited by NADH (proton donor for 

the respiratory chain) (Rodgers et al., 2005). AMPK stimulates fatty acid oxidation which 

results in the production of NADH and oxidation by the respiratory chain therefore 
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increasing NAD+/NADH ratio. Activation of AMPK was found to positively modulate 

SIRT1 activity by increasing NAD+/NADH ratio (Canto et al., 2009). These mechanisms 

influencing PGC-1α activity demonstrate the carefully orchestrated events that ultimately 

control the metabolic response to a variety of nutrients and physiological signals. 

8.3 Post-translational modifications of PPARγ 

 Similarly to other nuclear receptors and their cofactors, the transcriptional activity 

of PPARγ can be regulated by post-translational modifications independent of ligand 

binding. Such modifications include ubiquitination, sumoylation, nitration and 

phosphorylation (Hauser et al., 2000;Pascual et al., 2005;Shibuya et al., 2002); however, 

due to space constraint, only phosphorylation of PPARγ will be discussed in this section. 

Phosphorylation of nuclear receptors can favor the recruitment of co-factors and 

components of the transcriptional machinery but can also inhibit response to ligands 

(Rochette-Egly, 2003). Peter Tontonoz, Erding Hu and Bruce Spiegelman observed that 

when the N-terminal region of PPARγ2 containing the AF-1 domain was removed, this 

truncated protein had a greater transcriptional activity (Tontonoz et al., 1994b). It was later 

determined that adipogenesis could be inhibited by Erk activation via phosphorylation of 

PPARγ2 at Ser112 (Hu et al., 1996). Phosphorylation of PPARγ1 on Ser84 by Erk and by 

JNK was also confirmed while PPARγ was weakly phosphorylated by p38 (Figure 17) 

(Adams et al., 1997;Camp et al., 1999). Whereas Erk and JNK were known to inhibit 

PPARγ, Akt was shown by us and others to phosphorylate and activate PPARγ; however, 

the phosphorylation site of Akt has not been identified (Feige et al., 2006;Demers et al., 

2009).  Since insulin was previously shown to potentiate the activity of PPARγ AF-1 

domain, it is possible that Akt targets the AF-1 domain as well (Werman et al., 1997). 
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8.4 Role of PPARγ in adipocytes 

 As mentioned in section 7.2, the master regulator role in adipogenesis is attributed 

to PPARγ. C/EBP-β and –δ in cooperation with sterol response element binding protein 1c 

(SREBP-1c) induce of the expression of PPARγ and upon ligand activation, PPARγ itself 

induces the expression of many target genes involved in lipogenesis and adipogenesis such 

as LPL, aP2, PEPCK, GLUT4, adiponectin and C/EBPα (Figure 8B, page 57) (Kim & 

Spiegelman, 1996). C/EBPα in turn is able to bind to its site on the promoter of PPARγ and 

assure a positive feedback regulation loop for PPARγ expression (Tontonoz et al., 

1998;Nagy et al., 1998). C/EBPα also induces the expression of lipin-1, a newly discovered 

co-factor for PPARγ playing a role in maturation of adipocytes (Koh et al., 2008). 

PPARγ is also expressed in the brown adipocyte and plays a role in its differentiation and 

expression of target genes such as UCP-1 (Tai et al., 1996;Sears et al., 1996). PPARγ is 

essential for the viability of BAT and WAT and the maintenance of mature adipocytes 

(Tamori et al., 2002;Imai et al., 2004). PPARγ-targeted deletion in adipocytes resulted also 

in the loss of fat mass, in elevated circulating FFA and TG, and in the induction of insulin 

resistance in adipose tissue and liver but not in muscle (He et al., 2003). The discovery of 

TZDs as ligands of PPARγ brought further understanding of its role in insulin sensitivity 

and glucose metabolism as well as its role in mature adipocytes. The effect of antidiabetic 

effect of TZDs is thought to stem from adipose tissue.  Type 2 diabetes is associated with 

increased circulating FFA and storage of lipids in tissues other than adipose such as in the 

liver and skeletal muscle. Accumulation of FFA and TG is linked with insulin resistance 

and impaired glucose metabolism (Sinha et al., 2002). Activation of PPARγ in adipocytes 

is thought to increase FA storage, TG synthesis and glucose uptake through increased 

expression of its target genes in addition to increasing the secretion of adipokines (such as 

adiponectin) that will signal to decrease lipid accumulation and to increase glucose uptake 

and FAO in other tissues. In adipocytes, TZDs also increases FA reesterification by 
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inducing the expression of glycerol kinase while also inducing FAO and mitochondrial 

biogenesis in adipocytes (Guan et al., 2002;Wilson-Fritch et al., 2003;Wilson-Fritch et al., 

2004). Those effects are thought to be PPARγ−dependent since mice lacking adipose-

specific PPARγ are markedly deficient in their response to TZDs (He et al., 2003). In vivo, 

TZDs promote adipogenesis and increased fat mass (Tai et al., 1996). However, rather than 

increasing adipocyte volume, the increased in fat mass was explained by an increase in the 

number of adipocytes which incidentally were smaller and more sensitive to insulin (Okuno 

et al., 1998). Due to the high expression of PPARγ in adipose tissue, it is considered the 

primary target of TZDs. 

8.5 Role of PPARγ in hepatocytes  

 However present, PPARγ in hepatocytes is expressed at lower levels compared to 

other tissues and therefore its role or influence in liver is not fully known. Much negative 

attention was given to PPARγ and the hepatotoxicity effect of troglitazone. Other 

generations of glitazones are now used to treat diabetes such as rosiglitazone (GSK-

Avandia®) and pioglitazone (Takeda-Actos®). It is thought that the toxic effect of 

troglitazone is independent of PPARγ activity. It was recently shown that primary human 

hepatocytes treated with troglitazone for 24 hours at concentration equal or exceeding 20 

uM resulted in mitochondrial DNA damage, mitochondrial dysfunction and cell death while 

rosiglitazone had no effect (Rachek et al., 2009). Troglitazone effect was not abrogated by 

PPARγ antagonist GW9662. A recent study confirmed that the TZD ring of troglitazone 

may be partially responsible for its liver toxicity in humans by inducing the production of 

toxic reactive metabolites (Saha et al., 2010). Nonetheless, PPARγ expression level in 

hepatocytes is linked with liver steatosis in rodent but not necessarily in human (Yu et al., 

2003;Gavrilova et al., 2003). Indeed, a pilot study was performed on 18 non-diabetic 

patients with non-alcoholic steatohepatitis (NASH) treated with pioglitazone for 48 weeks 

(Promrat et al., 2004). Patients gained weight during treatment due to increased adiposity 

seen by dual-energy x-ray absorptiometry (DEXA) while magnetic resonance imaging of 



 

 

84

 

the liver showed a marked decrease in volume and in fat content. In addition, glucose and 

FFA sensitivity to insulin were improved. Patients with fatty livers are significantly more 

likely to develop type 2 diabetes within the next 5 years than those with healthy livers 

(Sung & Kim, 2011). Interestingly, in PPARα-null mice on a HFD, PPARγ hepatic 

expression was increased 20-fold; however, which isoform of PPARγ was affected was not 

determined (Patsouris et al., 2006).To further investigate the role of PPARγ in the liver, 

adenoviral overexpression of PPARγ1 in liver of PPARα-null mice resulted in the 

expression of several lipogenic and adipogenic genes but also of PPARα target genes 

involved in FAO. While PPARγ1 is the predominant form in hepatocytes, it was found that 

insulin or oleic acid, found in olive oil, increased the expression of PPARγ2 in mouse 

cultured hepatocytes (Edvardsson et al., 2006). Normal mice fed a HFD had an increased 

expression of PPARγ2 in the liver (Vidal-Puig et al., 1996). Induction of PPARγ2 in the 

liver might be an adaptive response to increase lipid utilisation. Due to the more active 

ligand–independent AF-1 domain in PPARγ2, perhaps it is more responsive to signaling 

events induced by insulin, glucose and lipids (Werman et al., 1997). Understanding the 

precise role of PPARγ in the liver remains an interesting research avenue. 

9 Regulation of cholesterol synthesis 

9.1 AMP-activated protein kinase (AMPK) 

 AMPK is the major cellular energy sensor and master regulator of cellular energy 

homeostasis. AMPK is a heterotrimeric enzyme comprised of a catalytic subunit (α1 or α2) 

and two regulatory subunits (β1 or β2 and γ1, γ2 or γ3), all encoded by separate genes 

(Kahn et al., 2005). AMPK is activated by three distinct pathways either by a calcium-

dependent pathway involving Ca2+/calmodulin-dependent protein kinase kinase 

(CaMKKβ), by AMP-dependent pathway mediated by liver kinase B1 (LKB1) and recently 

by TGFβ-activated kinase-1 (TAK1) (Shaw et al., 2004;Momcilovic et al., 2006;Sanders et 
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al., 2007). CaMKK expression unlike LKB1 and TAK1, is more abundant in neuronal and 

haematopoietic cells. As seen in Figure 19, CaMKKβ is activated by an increase in 

intracellular Ca2+ released by the ER which in turn activates AMPK. Although still 

unknown, in activated T lymphocytes, it is speculated that the rise in Ca2+ stimulates a 

feed-forward signal that anticipates a large demand for ATP (Tamas et al., 2006). 

Autophagy is the degradation of the cell’s own internal organelles in development, 

differentiation, and tissue remodelling (Shintani & Klionsky, 2004). It is a major 

mechanism by which a cell recycles nutrients from unnecessary processes towards 

indispensable ones. Tumour necrosis factor (TNF)-related apoptosis-inducing ligand 

(TRAIL) is a multifunctional cytokine originally identified as an apoptosis-inducing 

member of the TNF superfamily. TRAIL-induced autophagy is dependent on AMPK which 

is phosphorylated by TAK1 (Herrero-Martin et al., 2009).  LKB1 is an important tumor 

suppressor and the LKB1-AMPK pathway is activated by the elevation in the AMP/ATP 

ratio (Hardie et al., 1999). Inactive LKB1 is predominantly found in the nucleus (Nezu et 

al., 1999). 
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Figure 19. Activation of AMPK and its effect on downstream targets and events 

 LKB1 is activated through obligatory phosphorylation of Ser428 and translocated to 

the cytoplasm following changes in the AMP/ATP ratio (Shaw et al., 2004;Xie et al., 

2008).  AMP binds to the regulatory γ subunit of AMPK and induces a conformational 

change rendering the kinase less susceptible to dephosphorylation of Thr-172 (Riek et al., 

2008). All 3 kinases phosphorylate AMPKα subunit at Thr-172 which is an absolute 

requirement for AMPK activity (Hawley et al., 1996). Figure 19 displays some important 

targets of AMPK and their downstream effect. Understandably, depending on the tissue, 

some of these pathways more than others might be greatly affected by AMPK activation. 

As discussed previously, activation of AMPK can result in the translocation of GLUT4 or 

CD36 to the cell surface promoting glucose and fatty acid uptake, respectively (Merrill et 

al., 1997;Bonen et al., 2007;Luiken et al., 2003;Chabowski et al., 2005). Glycogen is an 

important source of energy and an important substrate in muscle (exercise) and in liver 
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(fasting). In a state of increased energy demand, glycogen synthesis is inhibited through the 

inhibition of its key enzyme, glycogen synthase (GS) by AMPK (Carling & Hardie, 1989). 

In addition, AMPK promotes the breakdown of glucose by activating phosphorylating 6-

phosphofructokinase-2 (PFK2) (Marsin et al., 2000). As previously presented in section 

7.8.2, AMPK decreases the content of malonyl-CoA by inhibiting acetyl-CoA carboxylase 

(ACC) and consequently stimulates fatty acid oxidation and inhibits fatty acid synthesis 

(Ha et al., 1994). In addition, AMPK also decreases the expression of SREBP-1c and 

subsequently fatty acid synthase (FAS), although the mechanisms by which AMPK acts on 

both are still unknown (Foretz et al., 2005). Following AMPK activation, FAS was found 

to be phosphorylated and inactivated in 3T3-L1 adipocytes (An et al., 2007). As presented 

in Figure 10 and section 7.6, AMPK inactivates HSL and reduces lipolysis rate in cells 

(Djouder et al., 2010). AMPK also has an impact on protein synthesis and cell growth. 

AMPK phosphorylates and activates eukaryote elongation factor 2 kinase (eEF2K), which 

in turn phosphorylates eEF2 and inhibits protein synthesis (Browne et al., 2004). AMPK 

activates the tumor suppressor tuberous sclerosis 2 (TSC2) and results indirectly in the 

inactivation of mammalian target of rapamycin (mTOR), which controls among other 

things protein synthesis and cell growth (Reiter et al., 2005;Inoki et al., 2006). Activation 

of AMPK also leads to targeted phosphorylation of PGC-1α and its subsequent activation 

for induction of mitochondrial gene expression, biogenesis and fatty acid oxidation (Jager 

et al., 2007). 

 Overall, once activated, AMPK’s main goal is to switch on catabolic pathways that 

generate ATP, while switching off ATP-consuming processes such as biosynthesis, cell 

growth and proliferation. The remainder section on AMPK will focus on its role in 

hepatocytes as it pertains to the present thesis and the second part of my project. 

9.1.1 AMPK in the liver 

 The liver is central in maintaining glucose homeostasis and energy storage. Its 

energy metabolism changes drastically throughout the day between physiological 
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conditions such as when nutritionally depleted or replenished. The liver is therefore the 

mediator between endogenous/dietary energy sources and extrahepatic organs. Due to its 

high energy demand, hepatic AMPK plays an important role in fatty acid oxidation and 

controls lipogenesis and glucose production. Gluconeogenesis represents the generation of 

glucose from sources such as lactate, glycerol, pyruvate and glucogenic amino acids 

(alanine and glutamine). Glucose production is controlled by transcription factor hepatic 

nuclear factor 4α (HNF-4α) which regulates the expression of key enzymes such as L-type 

pyruvate kinase, and PEPCK (Hall et al., 1995;Leclerc et al., 2001). AMPK influences 

glucogenic gene expression by phosphorylating and inhibiting HNF-4α and therefore 

gluconeogenesis (Figure 19) (Hong et al., 2003). De novo cholesterol synthesis occurs in 

all cells; however, it is prominent in the liver due to its role in lipid distribution (Babin & 

Gibbons, 2009). HMG-CoA reductase (HMGR) is the rate limiting enzyme for isoprenoid 

and cholesterol synthesis and its activity is regulated by states of phosphorylation and 

dephosphorylation (Beg et al., 1978). AMPK is the only kinase to date known to 

phosphorylate and inactivate HMGR at Ser-872 (Clarke & Hardie, 1990).  

9.2 HMG-CoA reductase 

 HMGR, the rate-controlling enzyme in cholesterol synthesis, is a 97-kDa integral 

protein of the endoplasmic reticulum (ER) which catalyzes the synthesis of mevalonate 

from HMG-CoA (Liscum et al., 1983). Statins are inhibitors of HMGR and are the most 

widely prescribed cholesterol-lowering drugs in humans. Statins are competitive inhibitors 

of HMGR, possessing a HMG-like moiety which occupies a portion of the HMG-CoA 

binding site (Endo et al., 1976). HMGR contains two distinct structural domains: a C-

terminal catalytic domain of 549 aa and a N-terminal of 339 aa (Liscum et al., 1985). As 

shown in Figure 20, HMGR is integrated into the ER membrane with the help of its eight 

membrane-spanning N-terminal region while the C-terminal domain projects into the 

cytosol where it exerts its catalytic activity (Roitelman et al., 1992). The N-terminal region 

is extremely well conserved among mammalian species indicating a role beyond that of a 
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membrane anchorage domain (Luskey & Stevens, 1985). Helices 2 to 6 of HMGR show 

sequence resemblance to helices 2 to 6 of SREBP cleavage-activating protein (SCAP) 

which will be presented later. The effects of sterols on the activity of HMGR and SCAP are 

mediated through this section called the sterol-sensing domain (SSD) within the N-terminal 

region (Hua et al., 1996).The complexity of HMGR regulatory system was first exposed 

with the use of compactin, a member of the statin family by the Nobel Prize laureates, 

Joseph Goldstein and Michael Brown (Brown et al., 1978). Treatment of human fibroblasts 

with compactin blocked the synthesis of mevalonate. Cells strongly responded by 

drastically increasing the level of HMGR owing to the increased transcription of its gene, 

the efficient translation of its mRNA and the prolonged half-life of HMGR. 
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Figure 20. Cholesterol synthesis pathway and structure of its rate-controlling enzyme, 

HMG-CoA reductase 



 

 

90

 

9.2.1 Phosphorylation of HMGR 

 Over the years, HMGR has proven to be an exceedingly regulated enzyme. Early 

on, it was determined that HMGR activity in the liver was decreased following feeding or 

in fibroblasts treated with LDL; however the rapid decline in activity could not be 

explained by degradation or reduced protein synthesis (Brown et al., 1973;Higgins & 

Rudney, 1973). In addition, HMGR activity was found to be rapidly modulated by 

ATP/Mg2+ (Beg et al., 1973). As mentioned in the section on AMPK, it was later proven 

that phosphorylation of HMGR by the so called HMGR kinase was in fact AMPK which 

targeted HMGR at Ser-872 and resulted in rapid inhibition of cholesterol synthesis (Clarke 

& Hardie, 1990).  

9.2.2 Gene expression regulation of HMGR 

 The main transcriptional regulators of HMGR are the basic helix-loop-helix (bHLH) 

leucine zipper sterol regulatory element-binding proteins (SREBPs). There are 3 major 

isoforms of SREBP encoded by 2 genes: SREBP1a and 1c produced from the same gene by 

two different promoters and SREBP-2 (Hua et al., 1995;Miserez et al., 1997). SREBP-1a 

and -1c are similar with the exception of their N-terminal activation domain responsible for 

their differing co-activator interaction (Toth et al., 2004). SREBP-1a and SREBP-2 have 

similar potent activation domains. SREBPs regulate the expression of target genes involved 

in cholesterol, fatty acid and triglyceride syntheses. SREBP-1c and -2 predominates in the 

liver (Shimomura et al., 1997). SREBP-2 has a preference for cholesterol synthesis genes 

while SREBP-1 is associated with fatty acid synthesis genes; however, all 3 isoforms can 

drive the expression of HMGR by binding to its SRE in the proximal promoter region of 

this gene (Osborne et al., 1988;Horton et al., 2002;Horton et al., 2003;Bennett et al., 2008). 

 In one study, PPARγ was suggested to regulate the expression of HMGR through 

the use of a PPRE decoy in THP-1 macrophages (Iida et al., 2002). Tro- and pioglitazone 

were found to upregulate the expression of HMGR while the presence of PPRE decoy 
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competing for PPARγ binding suppressed the expression of HMGR. Thyroid hormone (T3) 

is known to increase the expression of HMGR despite a lack of thyroid response element in 

HMGR promoter (Simonet & Ness, 1988). Recently, thyroid-stimulating hormone was 

found to increase the expression of HMGR through the cyclic adenosine 

monophosphate/protein kinase A/cyclic adenosine monophosphate–responsive element 

binding protein (cAMP/PKA/CREB) signaling system (Tian et al., 2010).  

 The synthesis of one molecule of cholesterol from acetyl-CoA requires 11 

molecules of O2; therefore in a hypoxic state, the shutdown of the cholesterol synthesis 

pathway is mandatory to prevent accumulation of methylated sterols such as lanosterol and 

24,25-dihydrolanosterol without affecting the activity of SREBP (Nguyen et al., 2007). In 

such a condition, hypoxia-inducible factor α escapes degradation and modulates the 

expression of more than 70 genes involved in oxygen deprivation. Paradoxically, while 

HIF-1α stimulates degradation of HMGR, it also stimulates its expression by interacting 

with HRE found in the promoter region of HMGR (Pallottini et al., 2008). Since SREBPs 

are not affected by hypoxia, HMGR expression can also increase through SREBP when 

sterol levels decrease. 

9.3 Regulation of cholesterol synthesis by sterols 

 It was observed early on that incubation of cultured cells with LDL (cholesterol), 

25-hydroxycholesterol and mevalonate resulted in the decrease of HMGR activity and its 

cellular protein content (Faust et al., 1982;Edwards et al., 1983). This drastic decrease in 

cholesterol synthesis could be explained by two major and distinct mechanisms: (1) 

decrease in the expression of HMGR (Luskey et al., 1983) and (2) accelerated degradation 

of HMGR (Chin et al., 1985). A major breakthrough in the understanding of the 

mechanism of regulation of cholesterol synthesis by sterols came with the discovery of the 

insulin-inducible genes-1 and -2 (insig-1 and -2) proteins and the subsequent elucidation of 

their role in HMGR degradation and, SREBP processing and maturation. 



 

 

92

 

9.3.1 Insig-1 and -2  

 Insig-1 was first cloned in rat as the most highly insulin-induced gene in liver 

(Diamond et al., 1993). The human gene was then cloned and insig-1 was found to be 

highly expressed in adipose tissue and liver especially during differentiation and 

regeneration, respectively (Peng et al., 1997). Later, insig-1 was cloned from HepG2 cells 

and identified as an ER protein interacting with SCAP thus identifying insig-1 as a key 

player in cholesterol homeostasis (Yang et al., 2002). Insig-2 was cloned shortly after and 

shown to play a similar role to insig-1 (Yabe et al., 2002). Insig-1 and -2 have comparable 

expression patterns, expressed in multiple tissues but at higher level in liver (Yabe et al., 

2002). Despite their functional similarities, insig-1 and -2 conceal important differences. 

Insig-1 and insig-2 are encoded by two different genes and their proteins are 59% identical. 

Insig-1 is a target of SREBP and therefore insig-1 mRNA levels are high in sterol-depleted 

cells (Janowski, 2002). Insig-2 is not a target of SREBPs and is more stable than insig-1. 

Recently, it was found that insig-2 expression was mediated by the phosphorylated Ets 

family member of transcription factors involved in cell proliferation and differentiation, 

SRF accessory protein-1a (SAP1a) (Fernandez-Alvarez et al., 2010). Insig-1 is rapidly 

ubiquitinated and degraded in comparison to insig-2 (Lee & Ye, 2004). In a sterol-depleted 

environment, insig-1 is degraded 15 times faster than insig-2 and this difference is due to 

optimal ubiquitination sites present in insig-1 but absent in insig-2 (Lee et al., 2006). Since 

insig-2 has a longer life span and its degradation is not mediated by sterols, insig-2 is an 

interesting target in modifying cholesterol homeostasis outside the tightly regulated 

mechanism observed with insig-1 (Lee & Ye, 2004;Gong et al., 2006).  

9.3.2 Sterol-regulated SCAP-SREBP pathway 

 As mentioned previously, similarly to HMGR, SCAP possesses a SSD region within 

its N-terminal transmembrane region while the C-terminal region mediates constitutive 

association with SREBP (Nohturfft et al., 1998). In addition to SCAP’s role as a sterol 



 

 

93

 

sensor, it also serves as an escort protein bringing SREBP to the Golgi for processing (Hua 

et al., 1996). When depleted in cellular sterols (Figure 21, upper box), SCAP enables 

SREBP to cluster with coat protein complex II (COPII consisting of Sar-1, Sec23/Sec24 

complex, and Sec13/Sec31 complex) and form a vesicle that will be carried to the Golgi 

where SREBP will then be cleaved by 2 proteases (Site-1 protease (S1P) and Site-2 

protease (S2P)) releasing the basic helix-loop-helix leucine zipper (bHLH) active fragment 

(Horton et al., 2002). The NH2-terminal domain nuclear SREBP (nSREBP) translocates to 

the nucleus and activates transcription of target genes. Sec24 binds to the hexapeptide 

sorting signal, MELADL on SCAP, this interaction is required for the translocation of 

SREBP to the Golgi (Sun et al., 2005).  
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Figure 21. Mechanistic schema showing how sterols and insigs regulate post-

translational proteolysis and activation of SREBPs 
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 As shown in Figure 21, lower box, cholesterol and oxysterol block this binding by 

inducing an interaction between insig and SCAP but through different mechanisms (Yabe 

et al., 2002;Yang et al., 2002;Adams et al., 2003). With a rise  in ER sterols, cholesterol 

binds to SCAP and induces a conformational change in SCAP ,making MELADL no 

longer available to Sec24 while insig interacts with SCAP resulting in the overall retention 

of the SCAP/SREBP complex in the ER (Sun et al., 2007b). Alternatively, insig can 

interact with oxysterol triggering insig to bind to SCAP. The end-result of this interaction is 

a decrease in the level of nuclear transcriptionally active SREBP and a decrease in the 

expression of SREBP target genes. 

9.3.3 Degradation of HMGR 

 Much of our understanding of the mechanism for sterol-accelerated degradation of 

HMGR stemmed from the comparison between SCAP and HMGR. Both insig-1 and insig-

2 are capable of inducing the degradation of HMGR (Sever et al., 2003). As shown in 

figure 22, when sterols accumulate in the ER, a conformational change occurs in the sterol-

sensing domain of HMGR and promotes the binding of either insig-1 or insig-2 to HMGR 

resulting in a rapid ubiquitination and degradation of HMGR through the ubiquitin-

proteosome system (Song et al., 2005;Sever et al., 2003). Accumulation of lanosterol 

mediates HMGR binding to insig while oxysterol mediates interaction of insig with HMGR 

(Song et al., 2005). Overall, the swift degradation of HMGR protein and the retention of 

SREBP in the ER prevent the accumulation of sterols to toxic levels within the cell.  Not 

much has been shown to directly affect the degradation of HMGR independently of the 

effect of intracellular sterol levels. Only a few studies have demonstrated that it is possible 

to bypass the firm control exerted by sterol levels. Such an example show forms of vitamin 

E that can induce degradation of HMGR  by mimicking sterols (antioxidants) 

demonstrating the potential to increase the degradation of HMGR independent of the 

influence of intracellular cholesterol levels (Song & DeBose-Boyd, 2006).  
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Figure 22. Mechanistic schema showing how sterols and insigs regulate HMGR 

degradation 

10 Effect of hexarelin through its interaction with CD36 
 Extensive studies have been made on hexarelin as a bona fide GHRP; therefore, 

results were interpreted in connection with its binding to GHS-R1a in a GH-dependent or 

GH –independent manner while mostly disregarding its ability to bind CD36 (Loche et al., 

1995;Cella et al., 1996;Desaphy et al., 1998). A limited amount of papers looked at the 

effect hexarelin on GHS-R1a–negative tissues such as adipocytes, hepatocytes or skeletal 

muscle cells. Some studies reported effects of hexarelin on skeletal muscle and adipose 

tissue in aging subjects but as a GH-releasing peptide (Cella et al., 1996;Desaphy et al., 

1998). In rat isolated epididymal white adipocytes, hexarelin reduced isoproterenol-induced 



 

 

96

 

lipolysis (β-adrenergic receptor agonist) but no further effects were investigated (Muccioli 

et al., 2004). Accumulation of fibrillar β-amyloid protein occurs in the brain of patients 

with Alzheimer’s disease and in atherosclerotic plaques. β-amyloid is also a CD36-ligand 

that initiates a signaling cascade involving Src kinases and Erk1/2 responsible for the 

downstream inflammatory response (Moore et al., 2002). The effect of hexarelin on 

inflammatory response was studied in N9 microglia cells, which are specialized 

macrophages found in the brain, that express CD36 but not GHS-R1a (Bulgarelli et al., 

2009). Hexarelin interfered with β-amyloid inflammatory response as seen by the impeded 

rise in IL-6 mRNA. Independently from the effect of GH release, hexarelin was shown to 

possess cardioprotective properties by preventing ventricular dysfunction and by protecting 

the heart from postischemic reperfusion damage (Locatelli et al., 1999;De Gennaro-

Colonna et al., 1997). Ghrelin was far less effective at preventing ischemia-reperfusion 

damage therefore owing the beneficial effects of hexarelin mainly to CD36 (Torsello et al., 

2003). Macrophage infiltration and the subsequent inflammatory response play a major role 

in the damage and necrosis caused during reperfusion after ischemia (Vilahur et al., 

2011;Bohle et al., 1991). Considering the impact that CD36 could have on the heart’s 

function and mainly on the development of atherosclerosis, our group set off to determine 

the mechanism of action of CD36 and hexarelin in macrophages and its impact on 

atherosclerosis. Huy Ong, in collaboration with André Tremblay and their respective team 

showed that treatment of ApoE-null mice on a HFD with EP80317, a CD36 ligand derived 

from the GHRP family, resulted in a marked decrease in lesion areas (Marleau et al., 2005). 

The interaction with CD36 was suggested to interfere with oxLDL binding on macrophages 

and resulted in the activation of PPARγ-LXRα-ABC transporters cascade involved in 

reverse cholesterol pathway. Using hexarelin to study its interaction with GHS-R1a and 

CD36, our group also observed a significant regression in the size of atherosclerotic lesions 

in ApoE-null mice maintained on a HFD (Avallone et al., 2006). Treatment of 

differentiated THP-1 macrophages and mouse peritoneal macrophages with hexarelin 

resulted in an increase in cholesterol efflux. This increase in efflux correlated with an 
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increase in the expression of LXRα, ApoE, ABCA1 and ABCG1, the key players involved 

in the HDL-mediated cholesterol efflux pathway (Figure 23).  The expression of LXRα is 

mediated by PPARγ and considering the potential of CD36 to activate PPARγ via 

internalization of oxLDL, PPARγ activity in response to hexarelin was analyzed. In PPARγ 

+/- peritoneal macrophages, the response to hexarelin was strongly impaired implying that 

the activation of PPARγ was critical. Furthermore, cell reporter assays showed that the 

interaction of hexarelin with either CD36 or GHS-R1a resulted in the activation PPARγ. 

The activation of PPARγ did not lead to an increase in CD36 expression as seen with 

binding to oxLDL and the subsequent positive autoregulatory loop.  Surprisingly, the 

PPARγ LDB was not necessary for its activation by hexarelin suggesting that AF-1 might 

mediate transcriptional activation in response to intracellular signaling transduction 

pathways. In support of this, phosphorylation of PPARγ was observed in treated THP-1 

cells. In macrophages, hexarelin interferes with the balance between uptake and efflux that 

usually leads to intracellular cholesterol accumulation and foam cell formation. Through 

interaction with CD36 and GHS-R1a, hexarelin is capable of (1) activating PPARγ in a 

ligand-independent manner, (2) breaking the autoregulatory loop leading to an increase in 

CD36 expression and (3) increasing overall cholesterol efflux from cells. 
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Figure 23. Hexarelin-mediated activation of the PPARγ-LXRα-ABC metabolic 

pathway in macrophages (Demers et al., 2008) 

11 Hypothesis and project objectives 
 Differing roles and various impact of CD36 on health arise mainly from its ligand 

selection, tissue type and level of expression. While the role of CD36 in atherosclerosis via 

oxLDL internalization has been well characterized, emerging studies on the influence of 

CD36 in fatty acid uptake and in lipid metabolism in muscle demonstrate that lipid 

metabolism via CD36 remains an interesting avenue to explore but on a different front than 

its role in atherosclerosis.  Beyond its role in cardiac and skeletal muscles, far less is known 

about the influence of CD36 in adipocytes and in hepatocytes, especially when downstream 

signaling events and overall effect following ligand binding are concerned.  

 The selected project for my graduate studies aimed mainly at understanding the role 

of CD36 in lipid metabolism outside the realm of its impact on atherosclerosis. Considering 
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the beneficial effect that was uncovered in macrophages, the use of hexarelin solely as a 

CD36-ligand offered the unique opportunity of looking at the events following its 

interaction with CD36 in cell types where the function of CD36 is far less known. Since our 

group has shown that hexarelin activates PPARγ in macrophages and that CD36 is 

responsible for the uptake of LCFA, we hypothesized that hexarelin through its interaction 

with CD36 will be capable of modulating PPARγ activity and influencing lipid homeostasis 

in both adipocytes and hepatocytes. 

The objectives of my doctoral studies were: 

I. To determine the impact of hexarelin binding to CD36 on lipid metabolism in 

differentiated adipocytes and adipose tissue by: 

 a)  Establishing, as an investigative measure, a gene expression profile of 

 adipocytes treated with hexarelin using microarray technology to explore known 

 and novel outcomes of CD36 activation 

 b)  Using troglitazone to illustrate possible similarities and differences in gene 

 expression changes and downstream events between hexarelin/CD36 and 

 PPARγ activation in adipocytes 

 c)  Determining total lipid content and potential lipid mobilization pathways in 

 in response to hexarelin 

 e)  Confirming the effect(s) of hexarelin via CD36 in vivo  

II. Based on the findings that hexarelin via CD36 increases fatty acid oxidation (Part I) and 

on the fact that CD36 was not known to be a major FA transporter in hepatocytes, the 

possible impact of hexarelin on cholesterol synthesis was explored by:  

 a) Determining if LKB1-AMPK is activated and if the downstream HMGR was 

 targeted 

 b)  Measuring total cholesterol and HMGR protein content in hepatocytes 

 c)  Determining the mechanism involved in decrease cholesterol synthesis 

 c) Exploring the signaling pathways involved in PPARγ activation and its 

 effect on cholesterol synthesis 
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CHAPTER 2: Results 
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A growth hormone-releasing peptide promotes mitochondrial biogenesis and a fat burning-
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Scavenger Receptor CD36 mediates inhibition of cholesterol synthesis via activation of the 

LKB1-AMPK pathway in hepatocytes. Amélie Rodrigue-Way, Stéphanie Bilodeau, Meryl 

Hassan, Véronique Caron, Emile Lévy, Grant A. Mitchell, and André Tremblay. In 

preparation for Molecular Endocrinology. 
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signaling in macrophages. Demers A, Caron V, Rodrigue-Way A, Wahli W, Ong H, 
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A growth hormone-releasing peptide that binds scavenger receptor CD36 and ghrelin 

receptor up-regulates sterol transporters and cholesterol efflux in macrophages through a 

peroxisome proliferator-activated receptor gamma-dependent pathway. Avallone R, 

Demers A, Rodrigue-Way A, Bujold K, Harb D, Anghel S, Wahli W, Marleau S, Ong H, 
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Foreword for paper #1 

The accumulation of lipid-laden cells in atherosclerotic plaques originates mainly from 
monocytes/macrophages internalizing oxLDL particles and subsequently differentiating 
into foam cells. The involvement of CD36 in the development of atherosclerotic plaques 
was elucidated with the advent of the CD36/apoE-null mice (Febbraio et al., 2000). The 
absence of CD36 in the atherosclerotic mouse model resulted in a clear decrease in 
atherosclerotic lesion sizes owing to a reduced internalization of oxLDL particles. The 
treatment of ApoE-null mice on a HFD with a GHRP was also capable of reducing lesion 
sizes (Avallone et al., 2006). As presented in Section 10, we had previously shown that 
hexarelin was capable of activating PPARγ via its binding to CD36 on macrophages. In 
addition to promoting adipogenesis, PPARγ is crucial in the maintenance of the mature 
adipocyte’s function (Imai et al., 2004). Targeted deletion of PPARγ leads to cell death, 
loss of fat mass, elevated circulating FFA and TG while activation results in increase FA 
uptake, TG synthesis but also FAO (He et al., 2003;Wilson-Fritch et al., 2003). 
The first part of my project was aimed at studying the effect of hexarelin by looking at 
expression changes of genes involved in lipid metabolism in mature adipocytes and 
compare those changes with those stemming from the activation of PPARγ. Since CD36 
plays an important role in FA uptake and metabolism, special attention was given to 
intracellular lipid content in adipocytes. From this approach, we discovered that hexarelin 
had a transdifferentiation-like effect of white adipocytes into brown adipocytes causing an 
increase in FAO and a reduction in lipid content in a manner dependent on the presence of 
CD36. 
 
Contributions of authors: 
Amélie Rodrigue-Way: Developed project. Designed, performed experiments and 
analyzed results. Wrote the first draft of the manuscript.  
Annie Demers: Helped with mouse adipose tissue. Participated in project and paper 
discussion. 
Huy Ong: Designed in vivo experiments. Participated in project discussion. 
André Tremblay: As my PhD supervisor, supervised and participated in the conception of 
my project and the design of experiments. Corrected and submitted finished manuscript.  
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Abstract 
 Whereas the uptake of oxidized lipoproteins by scavenger receptor CD36 in 

macrophages has been associated with foam cell formation and atherogenesis, little is 

known about the role of CD36 in regulating lipid metabolism in adipocytes. Here we report 

that treatment of 3T3-L1 adipocytes with hexarelin, a GH-releasing peptide that interacts 

with CD36, resulted in a depletion of intracellular lipid content with no significant change 

in CD36 expression. Microarray analysis revealed an increased pattern in several genes 

involved in fatty acid mobilization toward the mitochondrial oxidative phosphorylation 

process in response to hexarelin. Interestingly, many of these up-regulated genes are known 

targets of peroxisomal proliferator-activated receptor (PPAR)γ, such as FATP, CPT-1, and 

F1-ATPase, suggesting that adipocyte response to hexarelin may involve PPAR activation. 

Expression studies also indicate an increase in thermogenic markers PPAR coactivator 1α 

and uncoupling protein-1, which are normally expressed in brown adipocytes. Electron 

microscopy of hexarelin-treated 3T3-L1 adipocytes showed an intense and highly 

organized cristae formation that spans the entire width of mitochondria, compared with 

untreated cells, and cytochrome c oxidase activity was enhanced by hexarelin, two features 

characteristic of highly oxidative tissues. A similar mitochondrial phenotype was detected 

in epididymal white fat of mice treated with hexarelin, along with an increased expression 

of thermogenic markers that was lost in treated CD36-null mice, suggesting that the ability 

of hexarelin to promote a brown fat-like phenotype also occurs in vivo and is dependent on 

CD36. These results provide a potential role for CD36 to impact the overall metabolic 

activity of fat usage and mitochondrial biogenesis in adipocytes. 
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Introduction 
 THE MAJOR ROLE of the adipose tissue is to store energy in the form of 

triglycerides and release it as fatty acids in response to an increase in energy demand, such 

as during fasting or exercise. Peripheral tissues such as skeletal muscle and heart oxidize 

fatty acids in mitochondria to produce ATP. However, when energy storage is in excess, 

such lipid accumulation in adipose tissue can result in many pathological states associated 

with the metabolic syndrome, including central obesity, type 2 diabetes, and insulin 

resistance (1, 2).  

The scavenger receptor CD36, also known as fatty acid translocase, is expressed in 

adipocytes to mediate the uptake of long chain fatty acids (3), but much of the 

characterization of the role of CD36 has focused on its scavenging ability to interact and 

mediate the internalization of oxidized low-density lipoproteins (oxLDL) in macrophages. 

The selective uptake of oxLDL by CD36 is considered a critical step in the atherogenic 

formation of foam cells in the extracellular matrix of lesion-prone sites of the arterial wall 

(4). In addition to initiating a proinflammatory response by monocytes/macrophages, such 

internalization of oxLDL by CD36 provides a source of oxidized fatty acids and oxysterols 

that serve as endogenous ligands for the activation of the nuclear receptors peroxisomal 

proliferator-activated receptor (PPAR)γ and liver X receptor (LXR)α, and subsequent up-

regulation of downstream targets involved in reverse cholesterol transport, such as ATP-

binding cassette transporters ABCA1 and ABCG1, and apolipoprotein E (5, 6).  

Our recent work has identified hexarelin and other analogs of the GH-releasing peptide 

(GHRP) family as high affinity ligands of CD36 (7, 8). GHRPs were originally described to 

stimulate central GH release through binding of the GH secretagogue-receptor-1a, a G 

protein-coupled receptor later defined as the receptor for ghrelin and expressed 

predominantly in the hypothalamic-pituitary region (9, 10). In recent studies, we observed 

that GHRPs markedly decreased plaque formation in a mouse model of atherosclerosis, an 

effect that was shown to require CD36 expression (11, 12). These beneficial effects of 

GHRPs on cholesterol metabolism were dependent on PPAR and the activation of the 
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PPAR-LXR-ABC metabolic cascade in macrophages, leading to cholesterol efflux into the 

high-density lipoprotein reverse pathway (12).  

Whereas the role of CD36 in mediating cholesterol and fatty acid uptake by macrophages is 

well characterized, little is known about how CD36 may impact the overall metabolic 

activity of fat storage and mobilization by adipocytes. Here we report on the changes in 

expression of genes related to fatty acid import and oxidation as well as in morphological 

changes of mitochondria in adipocytes induced by GHRP hexarelin. The resulting increase 

in expression of F1-ATP synthase, coactivator PPARγ coactivator (PGC)-1α and 

uncoupling protein (UCP)-1, all normally found in brown adipocytes, suggests that fatty 

acids are ushered toward mitochondria oxidative phosphorylation and biogenesis, rather 

than being converted to triglycerides for their subsequent storage in lipid vesicles. The 

overall effect is a decrease in total lipid content in fat cells, which provides a functional role 

of CD36 to modulate fatty acid metabolism and mitochondrial functions.  

 

Materials and Methods 
Cell culture and treatments 

 Mouse 3T3-L1 preadipocytes were grown in DMEM supplemented with 10% fetal 

calf serum. Two days after confluence (d 0), adipocyte differentiation was initiated with the 

addition of 115 µg/ml 3-isobutyl-1-methylxanthine, 1 µM dexamethasone, and 0.167 µM 

insulin in DMEM supplemented with 10% fetal bovine serum (FBS) for 2 d. On d 2, the 

media was replaced with DMEM/10% FBS containing insulin for 2 more d and then 

maintained in DMEM/10% FBS until d 8. Treatments with hexarelin (10–7 to 10–5 M) and 

troglitazone (8 µM) were done for 48–72 h with fresh medium replacement at intervals of 

24 h.  

Lipid staining 

 3T3-L1 cells were fixed with 3.7% formaldehyde/PBS and stained with oil red O 

(Sigma, St. Louis, MO). Quantification of lipid accumulation was achieved by extracting 
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oil red O from stained cells with isopropyl alcohol and measuring the OD of the extracts at 

510 nm.  

Triglyceride measurement 

 Lipids from differentiated 3T3-L1 adipocytes were extracted with Folch solution 

consisting of a mixture of 2:1 (vol/vol) chloroform/methanol and resuspended in 20% 

Thesit (Sigma) in Folch solution before evaporation under nitrogen gas. Triglyceride 

content was determined using a colorimetric assay kit (Zen-bio, Research Triangle Park, 

NC) and normalized against total protein from each sample determined by Bradford reagent 

(Sigma).  

Microarray analysis 

 Differentiated 3T3-L1 adipocytes were treated with 10–5 M hexarelin or 8 µM 

troglitazone for 48 h. Total RNA was isolated from 3T3-L1 cells using TRIzol reagent 

(Invitrogen, Burlington, Ontario, Canada), according to the manufacturer’s protocol. 

Biotinylated cRNA was generated from 10 µg of total RNA, and hybridized onto mouse 

430.2 oligonucleotide arrays. All procedures were followed according to Affymetrix 

protocols (Santa Clara, CA). Data were analyzed and compared with a second set of 

hybridization experiments using the Gene-Chip analysis suite software (Affymetrix) and 

representative results were generated with TM4 software (TiGR, The Institute for Genomic 

Research, Rockville, MD).  

RT-PCR analysis 

 3T3-L1 cells were treated as above and cDNA was synthesized from 400 ng of total 

RNA using oligo(dT) primers and RevertAid H minus M-MuLV reverse transcriptase 

(Fermentas, Burlington, Ontario, Canada). PCR amplification was usually performed in a 

volume of 20 µl with 0.5–1 µl of reverse transcription reaction for 25–35 cycles. Sequences 

of the murine primers used in PCR are available upon request. The PCR products were 

separated on a 2% agarose gel, stained with ethidium bromide, and the relative signal 

intensity was analyzed (Alpha Innotech, San Leandro, CA) from at least three separate 

experiments.  
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Cytochrome c oxidase (COX) activity 

 COX activity was measured on isolated mitochondria from treated and untreated 

3T3-L1 adipocytes. Briefly, adipocytes were collected and resuspended in mitochondrial 

buffer [0.2 mM EDTA, 0.25 M sucrose, and 0.1 mg/ml digitonin in 10 mM Tris (pH 7.8)]. 

Cells were ruptured using a glass-Teflon Potter-Elvehjem homogenizer, and the 

homogenates were centrifuged at 1000 x g for 10 min. Mitochondria were then pelleted at 

12,000 x g spin for 15 min and resuspended in mitochondrial buffer supplemented with 

protease inhibitor cocktail (Roche, Laval, Québec, Canada). Protein content was 

determined by the Bradford method (Bio-Rad, Mississauga, Ontario, Canada). COX 

activity was determined from 10 µg of mitochondrial proteins from each treatment 

according to the manufacturer’s protocol (Sigma). The activity was calculated from the rate 

of decrease in absorbance of ferrocytochrome c at 550 nm (ε= 21.84 mM–1cm–1), added to 

the assay at a final concentration of 10 µM, and represented as milliunits per milligram of 

protein per minute where 1 U is the amount of enzyme needed to oxidize 1 µmol of 

ferrocytochrome c per minute (pH 7.0) at room temperature. To assure total 

permeabilization of mitochondrial membrane, the assay was performed in the presence of 

2.5 mM n-dodecyl ß-D-maltoside (Sigma). No significant COX activity was detected in the 

12,000 x g spin supernatants.  

Fluorescence microscopy 

 Eight-day differentiated adipocytes seeded in Lab-Tek coverglass chambers (Nalge 

Nunc, Rochester, NY) were treated for 72 h with either hexarelin or troglitazone. Live cells 

are then rinsed with PBS and labeled at 37 C for 15 min with 1 mg/ml rhodamine-123, a 

mitochondrial-specific fluorochrome (Sigma), as described by the manufacturer. 

Mitochondria are visualized by fluorescence microscopy (TE-2000; Nikon, Melville, NY) 

with an excitation at 488 nm and emission at 525 nm. Photobleaching is reduced with 1 

mg/ml ascorbic acid.  

Antibodies and immunoblotting analysis 
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 Antibodies to PPARγ, ATP synthase (F1 subunit), PGC-1α, adipocyte- specific fatty 

acid binding protein (aP2) and ß-actin were obtained from Santa Cruz Biotechnology 

(Santa Cruz, CA), and the anti-UCP1 and -UCP2 antibodies were purchased from 

Calbiochem (San Diego, CA). The antibody against CD36 has been described (8). 

Immunoblotting analysis was performed as described (13). Briefly, cells were lysed in PBS 

buffer containing 1% Triton X-100, 0.5% deoxycholate acid, 0.1% sodium dodecyl sulfate, 

1 mM phenylmethylsulfonyl fluoride, and protease inhibitors (Roche). Proteins were then 

resolved by SDS-PAGE and transferred to nitrocellulose for immunoblotting. Membranes 

were blocked at 4 C with blocking reagent (Roche) in Tris-buffered saline, probed with 

selected antibodies, and signals revealed by enhanced chemiluminescence using appropriate 

horseradish peroxidase-conjuguated secondary antibodies. For fat tissue, proteins were 

isolated using Trizol standard procedure and resuspended in 1% sodium dodecyl sulfate for 

immunoblot analysis.  

In vivo experiments 

 Wild-type C57BL/6 and CD36-deficient mice were previously described (11) and 

maintained in a 12-h dark, 12-h light cycle with a standard pelleted diet and water ad 

libitum. At 12 wk of age, male mice were fed a 60% kcal/60% fat diet (Research Diets Inc., 

New Brunswick, NJ) and treated with sc injection of 100 µg/kg·d hexarelin, a dose known 

not to promote GH release (14), or 0.9% NaCl (control) for 12 wk, as previously described 

(12). Fat tissues were collected from the epididymal fat pads of control and treated mice 

and rapidly frozen at –80 C. All experimental procedures were done in accordance with the 

Institutional Animal Ethics Committee of the University of Montreal and the Canadian 

Council on Animal Care guidelines for use of experimental animals.  

Electron microscopy 

 3T3-L1 cells and mouse fat tissue were fixed in 3% glutaraldehyde in 0.1 M 

phosphate buffer (pH 7.3). Samples were postfixed with 4% OsO4 and dehydrated with 

ethanol. Before sectioning, tissues were embedded in epoxide resin (Epon 812; Sigma). 

Ultrathin cryosections were collected on metal grids and poststained with electron-dense 
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uranyl acetate and lead citrate solutions and electron micrographs were recorded with an 

electron microscope (model 208S; Philips Medical Systems, Andover, MA). Mitochondria 

size and cristae formation were determined using an image analyzer (Alpha Innotech).  

 

Results 
CD36 ligand hexarelin decreases total lipid content in mature 3T3-L1 adipocytes 

 Our recent studies using cultured THP-1 macrophages have shown that hexarelin 

caused a significant decrease in total lipid accumulation via CD36, resulting in an 

augmentation of cholesterol efflux from cells (11, 12). Because adipocytes are known to 

express CD36 and not the other known hexarelin receptor-1a (Refs. 15 and 16 and data not 

shown), we evaluated the effect of hexarelin on lipid content in cultured 3T3-L1 

adipocytes. 3T3-L1 cells were differentiated to mature adipocytes for 8 d with 

insulin/dexamethasone/3-isobutyl-1-methylxanthine, and treated with 10–7 and 10–5 M 

hexarelin for 48 h with a media change at 24 h. After treatment with hexarelin, a marked 

decrease in total cellular lipid and in the size of the lipid droplets was observed, compared 

with untreated cells (Fig. 1A). Whereas differentiation of 3T3-L1 preadipocytes into 

adipocytes resulted in a strong accumulation of lipids in vesicles, mature adipocytes treated 

with hexarelin showed a significant decrease in total lipid amount, compared with untreated 

cells (Fig. 1B). Such decrease was comparable with cells treated with troglitazone, a 

specific PPARγ ligand known to deplete lipid content in adipocytes (17). The decrease in 

lipid staining is associated with a significant reduction in intracellular triglyceride levels in 

adipocytes treated with hexarelin (Fig. 1C). 

Microarray analysis of genes regulated by hexarelin in 3T3-L1 adipocytes 

 To address the overall effect of hexarelin on genes involved in lipid metabolism in 

adipocytes, we performed microarray analysis on differentiated 3T3-L1 adipocytes treated 

with hexarelin and compared the expression profile with cells treated with troglitazone, 

relative to untreated cells. Total RNA was harvested from each sample treatment and 

probed against Affymetrix mouse 430.2 oligonucleotide chip. Probe sets that were 
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identified as absent calls across all samples and experiments were removed from analysis. 

The relative gene expression levels in each treated sample were compared with untreated 

controls to determine significant changes. Selected genes were listed according to their 

known function (Fig. 2A). 

 Of the entire probe sets analyzed, 1119 were up-regulated in cells treated with 

hexarelin, suggesting that interaction with CD36 induces profound changes in the 

expression profile of adipocytes. Interestingly, many of these genes were shared with 

troglitazone treatment, indicating that PPARγ may be considered as a common regulator in 

both responses. Consistent with this, among the genes up-regulated by hexarelin, we found 

many established PPARγ targets, such as nuclear receptor LXRα, fatty acid transport 

protein (FATP)-1, and ATP synthase (Fig. 2A). However, the response to hexarelin was not 

totally mimicked by troglitazone as other described PPARγ targets, such as adipocyte fatty 

acid binding protein-4 (also referred to as aP2), and lipid droplet-associated protein 

adipophilin remained mostly unchanged upon treatment with hexarelin (Fig. 2, A–C). In 

addition, troglitazone treatment led to a decrease in PPARγ expression in adipocytes (0.6-

fold in protein levels, compared with untreated cells), a finding also observed by others 

(18), whereas hexarelin did not significantly modify PPARγ expression (Fig. 2). We also 

reported a similar response in PPARγ expression in macrophages, indicating that this 

regulation is not cell specific (12).  

 Given the decrease in triglyceride content in cells treated with hexarelin (Fig. 1), we 

looked at several genes involved in various aspects of fatty acid metabolism including those 

involved in entry, transport, synthesis, and mobilization. Of those, hormone-sensitive 

lipase, GDSL motif-containing lipase, fatty acid synthase, acetyl-CoA synthase, and 

FATP1 were all up-regulated by hexarelin (Fig. 2A). In contrast, glycerol-3-phosphate 

acyltransferase (GPAT), which catalyzes the initial and committed step in glycerolipid 

biosynthesis, was down-regulated by hexarelin. This type of profile is strongly suggestive 

of an increase in the cellular mobilization of free fatty acids in response to hexarelin.  
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Hexarelin up-regulates genes involved in fatty acid oxidation and oxidative 

phosphorylation 

 What seemed more striking from the microarray experiments was the expression 

changes of mitochondrial genes involved in fatty acid metabolism. Several genes required 

for fatty acid transport into mitochondria, such as mitochondrial acyl carrier protein, acyl-

CoA binding protein, and carnitine/acylcarnitine carrier protein were up-regulated by 

hexarelin (Fig. 2A). Similarly, many genes involved in fatty acid oxidation and oxidative 

phosphorylation were also up-regulated by hexarelin, such as acetyl-CoA acyltransferase 1 

and 2, hydroxyacyl-CoA dehydrogenase, and several subunits of the ATP synthase 

complex (Fig. 2, A and B). These changes may reflect an increased activity of 

mitochondrial processes toward oxidation of fatty acids and oxidative phosphorylation, two 

features closely related to mitochondrial thermogenic activity and biogenesis.  

 One of the key enzymes involved in ß-oxidation of long-chain fatty acids for energy 

production is the carnitine palmitoyltransferase (CPT). The muscle isoform M-CPT I, also 

known as CPT1b, is not normally expressed in mouse adipose tissue (19). Interestingly, we 

observed by RT-PCR a strong induction of the expression of CPT1b in 3T3-L1 adipocytes 

treated with hexarelin and with troglitazone (Fig. 2B). Because mitochondrial proteins that 

process fatty acids through entry and oxidation in mitochondria are often associated with 

energy production, we next analyzed the expression of genes involved in ATP production. 

Mitochondrial F1-ATPase is responsible for the synthesis of ATP during oxidative 

phosphorylation to generate energy. Interestingly, the expression of F1-ATP synthase was 

increased by hexarelin to levels slightly lower than those obtained with troglitazone when 

compared with untreated cells (Fig. 2, B and C). Protein levels of F1-ATPase were 

increased by 3.1- and 3.4-fold in response to, respectively, 10–7 and 10–5 M hexarelin, 

whereas troglitazone induced a 4.4-fold increase, compared with controls (Fig. 2C). These 

results correlate with the microarray data showing many of the catalytic subunits of F1-

ATPase up-regulated in response to hexarelin. These results therefore link the response of 

adipocytes to hexarelin with the production of energy.  
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Hexarelin promotes the expression of thermogenic markers in 3T3-L1 adipocytes 

 The increase we observed in the expression of genes involved in ß-oxidation of fatty 

acids and oxidative phosphorylation in response to hexarelin suggests that these cells may 

generate more ATP. Several studies have shown that such metabolic needs for energy 

requires the PPARγ coactivator PGC-1, which by inducing the expression of UCP1, a 

biological uncoupler of mitochondrial oxidative phosphorylation, initiates a broad program 

of thermogenesis in brown fat and muscle tissues (20, 21, 22, 23, 24). Although both 

proteins are poorly expressed, if not absent in white adipocytes, we found a remarkable 

increase in the expression of PGC-1α and UCP1 in 3T3-L1 adipocytes treated with 

increasing doses of hexarelin (Fig. 2, B and C). Protein levels of PGC-1α and UCP1 

reached, respectively, a 5.1- and 4.2-fold increase in response to 10–5 M hexarelin. Similar 

increases were also observed in cells treated with troglitazone, suggesting that the response 

to troglitazone and hexarelin may converge at some point with PPARγ activation. UCP2 

was detected in 3T3-L1 adipocytes but was not substantially modulated by hexarelin.  

Mitochondrial cytochrome c oxidase activity is increased by hexarelin in 3T3-L1 

adipocytes 

 In view of the above results indicating a marked increase in genes related to energy 

production, we measured the activity of COX, which catalyzes the terminal and rate-

limiting step of the energy-transducing respiratory chain in mitochondria leading to ATP 

production. We found that treatment of 3T3-L1 adipocytes with hexarelin for 72 h 

significantly induced COX activity in isolated mitochondria, compared with untreated cells 

(Fig. 2D). Similarly, COX activity was also augmented in response to troglitazone using 

the same conditions. These changes in COX activity are consistent with the increases in 

expression levels of subunits forming COX enzymatic complex and other components of 

the respiratory chain in cells treated with hexarelin (Fig. 2A) and therefore support the 

ability of hexarelin to induce mitochondrial activity in adipocytes.  

Hexarelin induces ultrastructural changes indicative of increased mitochondrial 

activity and biogenesis 
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 Expression of PGC-1α is known to stimulate mitochondrial energy-producing 

capacity and biogenesis in tissues with high oxidative potential, such as heart, muscle, and 

brown fat (24, 25). First, we determined whether the changes in mitochondrial gene 

expression correlated with changes in mitochondrial morphology by staining differentiated 

3T3-L1 adipocytes with rhodamine-123, a nontoxic mitochondrial fluorescent dye. 

Mitochondria of untreated cells were seen as a dense interconnected reticular motif (Fig. 

3A), a pattern also reported by others (26). However, when treated with hexarelin for 72 h, 

the mitochondrial appearance was remodeled into individual densely packed structures, 

highly similar to the mitochondrial shape observed in cells treated with troglitazone (Fig. 

3A). 

 The ultrastructure of the mitochondria was further defined using electron 

microscopy. Mitochondria of 3T3-L1 adipocytes treated with hexarelin were characterized 

by an increase in size and intense formation of lamellar cristae, compared with untreated 

cells (Fig. 3B). In addition, the cristae membrane of mitochondria from cells treated with 

hexarelin was highly organized and linearly displayed across the entire width of the 

organelle, compared with controls. The average mitochondrial size and percentage of 

mitochondrial matrix occupied by cristae were calculated and showed that mitochondrial 

size was increased by more than 2-fold (P < 0.001), and the percentage of surface within 

the mitochondrial matrix occupied by cristae membrane increased from 32% to almost 45% 

(P < 0.001) in adipocytes treated with hexarelin, compared with control cells (Fig. 3, C and 

D). This particular phenotype depicts a condition to maximize the intramitochondrial 

spanning of cristae, a pattern highly characteristic of mitochondria from tissues with high 

energy production rate, such as brown adipose tissue, heart, and skeletal muscle (27).  

Consistent with enhanced de novo mitochondrial synthesis, we found that hexarelin 

increased the expression of several translocases of the outer and inner membrane (TIM) of 

mitochondria (Fig. 3E). The translocases of the outer membrane and TIMs are responsible 

for the import of mitochondrial proteins encoded by the nuclear genome into the matrix and 

the intermembrane space of mitochondria (28). Among these family translocases, TIM17b 
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reached a 3.8-fold increase in response to hexarelin, compared with control cells. 

Interestingly, TIM17b is ubiquitously expressed in humans and mice with a higher 

expression pattern in tissues with high oxidative potential, such as heart and skeletal muscle 

(29). Also up-regulated by hexarelin were several of the mitochondrial ribosomal proteins 

or MRPs involved in the translation of many proteins of the respiratory chain (30), 

indicating that mitochondrial transcription and translation was increased in response to 

hexarelin (Fig. 3E). In addition, both subunits of prohibitin, which form a large complex in 

the mitochondrial inner membrane to stabilize newly synthesized subunits of the respiratory 

chain (31), were up-regulated by hexarelin (Fig. 3E). It was reported that impaired function 

of these subunits resulted in a decreased number and mass of mitochondria and was 

associated with deficient mitochondrial biogenesis (32).  

Induction of thermogenic markers and mitochondrial biogenesis by hexarelin occurs 

in vivo and is dependent on CD36 

 To address whether the phenotypic changes we observed in cultured adipocytes in 

response to hexarelin could also occur in vivo, we treated C57BL/6 mice with saline 

(control) or 100 µg/kg·d hexarelin for 12 wk. The concentration of hexarelin used in this 

study was reported not to elicit GH release and therefore prevented any undesired effects of 

GH (11, 12, and 14). No adverse health problems were noticed throughout the treatment. 

The epididymal white fat was collected from treated mice and saline controls and analyzed 

by electron microscopy. Electronic images of fat tissues of hexarelin-treated mice showed 

an intense cristae formation in mitochondria, compared with controls, and more noticeably, 

the size in mitochondria was increased by 55% in these conditions (Fig. 4, A and B). In 

addition, we performed Western blot analysis on epididymal tissue that showed that protein 

levels of F1-ATPase and thermogenic markers PGC-1α and UCP1 were increased in 

response to hexarelin (Fig. 4C). In contrast, there were no apparent changes in steady-state 

levels of these proteins in epididymal fat tissue derived from CD36-null mice treated as 

above with hexarelin, compared with saline-treated CD36-null mice (Fig. 4C). Invalidation 

of CD36 also induced an increase in F1-ATPase levels in epididymal fat, whereas those of 
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PGC-1α and UCP1 remained mostly unchanged. These results therefore suggest that the 

ability of hexarelin to promote mitochondrial metabolic changes in cultured adipocytes can 

be transposed in vivo and are dependent on CD36.  

 

Discussion 

 One of the critical regulators of fatty acid metabolism in fat is PPARγ, which 

controls the expression of a broad range of genes involved in fatty acid and glucose uptake, 

ß-oxidation, and lipid storage (33). Based on our previous reports that ligands of the GHRP 

family interact with scavenger receptor CD36 to promote PPARγ activation and 

downstream effects on cholesterol metabolism in macrophages (11, 12), we hypothesized 

that GHRP hexarelin might have an impact on adipocytes that express CD36. In this article, 

we described profound changes in the gene expression profile and mitochondria 

morphology in white fat cells treated with hexarelin correlating with a fat burning-like 

phenotype characteristic of brown adipocytes.  

 Interestingly, many of the genes up-regulated by hexarelin were shared with 

troglitazone treatment, indicating that PPARγ activation is likely to be involved in the 

response of adipocytes to hexarelin. Among the PPARγ target genes up-regulated by 

hexarelin, we found nuclear receptor LXR, FATP1, FATP4, CPT1b, and F1-ATP synthase. 

Otherwise, not all established PPAR genes were regulated in the same manner as with 

troglitazone. Genes such as aP2 and adipophilin remained unaffected in hexarelin-treated 

cells, suggesting that the response to hexarelin is likely to be more complex than the sole 

activation of the PPARγ pathway. Consistent with this, CD36 gene expression was 

modestly increased by hexarelin with no change in protein levels, whereas troglitazone 

significantly induced both in treated adipocytes. Similar results were found in macrophages 

in which CD36 expression remains mostly unaffected by GHRPs, whereas troglitazone 

significantly up-regulated CD36 (11, 12). Such regulation was associated with a differential 

CD36 promoter occupancy by PPARγ as determined by chromatin immunoprecipitation 

assay (12). Additionally, PPARγ expression seems to be regulated differently in response to 
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GHRPs than PPARγ ligands. We found that treating adipocytes with troglitazone lead to a 

decrease in PPARγ expression, a finding that was not associated with a decrease in target 

gene expression in mature adipocytes (18, 34) and that is generally observed for many 

nuclear receptors in response to ligands. However, the PPARγ mRNA level was slightly 

increased in response to hexarelin, whereas no obvious change was noticed for its protein 

level. A similar observation was also obtained in macrophages, suggesting that GHRPs 

contribute to maintain steady-state levels of PPARγ (11, 12). The mechanism by which 

hexarelin stimulates PPARγ activity but not down-regulating its expression deserves further 

investigation.  

 The white adipose tissue is the major site for triglyceride storage in the body and 

plays a critical role in maintaining homeostatic levels of circulating fatty acids and energy 

balance by promoting triglyceride breakdown and fatty acid release. Our results indicate 

that adipocytes respond to hexarelin with an increased mobilization of fatty acids rather 

than triglyceride synthesis. The depletion in lipid content in cells treated with hexarelin 

correlates with an increase in expression level of hormone-sensitive lipase, the enzyme 

involved in lipolysis. Genes involved in fatty acid synthesis and import were also 

augmented, such as fatty acid synthase and transporters FATP1 and FATP4. Interestingly, 

the expression of mitochondrial GPAT was decreased in adipocytes treated with hexarelin. 

It was recently shown that mitochondrial GPAT1, which catalyzes the initial and rate-

controlling step in glycerolipid synthesis, partitions acyl-CoAs toward triacylglycerol 

synthesis and its deficiency in mice resulted in a redirection of fatty acids into the oxidation 

pathway in liver (35).  

 Such apparent mobilization of fatty acids induced by hexarelin seems to be 

unexpectedly directed toward the ß-oxidation pathway in treated mature white adipocytes. 

Adipose tissue functions normally to release fatty acids in the circulation to be used by 

peripheral tissues of high oxidative potential, such as heart and muscle to produce ATP in 

response to energy expenditure. Brown adipocytes also use fatty acid oxidation to burn fat 

necessary for adaptive thermogenesis. We found that cultured 3T3-L1 adipocytes treated 
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with hexarelin exhibit an increased expression profile of mitochondrial genes related to 

long-chain fatty acid oxidation. The expression of CPT1b, a key enzyme for fatty acid 

oxidation in the heart, skeletal muscle and brown adipose tissue in human and rat, but 

normally absent in mouse white adipocytes or in 3T3-L1 cells (19), was strongly induced 

by hexarelin. Induction in CPT1b was described to be responsible for the dramatic increase 

in fatty acid oxidation that occurs in the heart after birth in which energy production 

switches from glucose to fatty acid use (36). Compared with its related isoform CPT1a, 

mainly expressed in liver, kidney, and intestine, CPT1b is more sensitive to the inhibition 

by malonyl-CoA (37). The expression of malonyl-CoA decarboxylase, which catalyzes the 

conversion of malonyl-CoA to acetyl-CoA, was up-regulated by hexarelin. Such an 

increase would potentially result in CPT1 activation by relieving the inhibitory effect of 

malonyl-CoA, and therefore increasing fatty acid oxidation. 

 Studies using genetic approaches and PPAR ligands have described the gene for 

CPT1 as regulated by PPAR isoforms, including PPARα and PPARß (38, 39, 40). 

Although the precise role of PPARß on adipocyte functions remains to be determined, 

PPARα plays a pivotal role in fatty acid metabolism by regulating the expression of genes 

involved in mitochondrial and peroxisomal ß-oxidation pathways (41, 42). This raises the 

possibility that, in response to hexarelin, the increase of the expression of genes related to 

fatty acid oxidation in adipocytes might also depend on PPARα activation. Consistent with 

this, we found that hexarelin contributed to activate all three PPAR subtypes using a cell 

reporter assay, suggesting that cellular signaling induced by CD36 might influence PPAR 

activity (12). However, because the PPARs can all be activated to various degrees by low 

micromolar concentrations of unsaturated fatty acids (43), we cannot exclude the possibility 

that the mobilization of free fatty acids in cells due to hexarelin could provide endogenous 

ligands to selectively activate the PPARs and therefore fatty acid oxidation. Nevertheless, 

using genetically ablated PPARγ ± macrophages, we showed that the activation of PPARγ 

target genes such as LXRα in response to hexarelin was impaired, suggesting that PPAR 
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activation is a major determinant of the response to GHRPs (12). Further studies are 

required to determine the exact contribution of hexarelin to PPARγ activation in adipocytes.  

Genes involved in oxidative phosphorylation and ATP synthesis were also strongly up-

regulated by hexarelin, supporting the redirection of fatty acids toward mitochondrial 

oxidation rather than their release or their conversion into triacylglycerol. This profile was 

supported by a significant increase in F1-ATP synthase expression and mitochondrial COX 

activity and a noticeable change in mitochondrial morphology in either treated adipocytes 

or mouse white adipose tissue. Electronic microscopy showed a significant increase in the 

intramitochondrial matrix surface and an intense cristae formation that spans the entire 

width of the organelle in response to hexarelin. Microarray analysis indicated an increase in 

the expression of many catalytic subunits of the ATPase and COX multimeric complexes, 

which both reside within the cristae membrane. Such phenotypic organization of 

mitochondria is typical of tissues with high oxidative potential, including muscle and 

brown fat, to support an enhanced activity in ATP production by the ATP synthase 

complex and mitochondrial respiration process (27). Most strikingly were the enhanced 

mRNA and protein levels of PGC-1α and UCP1 in response to hexarelin, which rose from 

low detectable levels normally found in white adipocytes to those mainly characteristic of 

brown fat. Under the same conditions, UCP2, a more ubiquitously expressed protein than 

UCP1 but for which its role is normally less related to the thermogenic response (44, 45, 

46), appeared not to be regulated by hexarelin, indicating that the effects of hexarelin in 

promoting mitochondrial metabolic activity are more dependent on UCP1 up-regulation. 

PGC-1α is highly expressed in brown fat and plays a critical role in initiating a broad 

program of thermogenesis that includes enhanced oxidative metabolism and mitochondrial 

biogenesis (22). Interestingly, the transgenic expression of PGC-1α in white fat cells was 

shown to induce UCP1 expression and mitochondrial biogenesis, indicative that uncoupling 

of mitochondrial respiration is an important component of energy expenditure in vivo (47). 

Such metabolic need for energy supported by PGC-1α and UCP1 expression and 

mitochondrial morphological changes also occurred in white fat of treated mice, indicating 
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that the ability of hexarelin to promote a fat burning-like phenotype was maintained in 

vivo. PGC-1α also controls critical aspects of energy metabolism in other tissues such as 

heart and muscle and largely contributes to the expression of genes of gluconeogenesis in 

liver (21, 23, 48, 49). Thus, modulating the relative activity of PGC-1 within a particular 

tissue may lead to fine-tuning of mitochondrial function in fatty acid oxidation and energy 

balance. Whether hexarelin may promote similar effects in other tissues expressing PGC-

1α remains to be determined. In addition, with the propensity of PGC-1α to coactivate 

other nuclear receptors besides PPARγ, such as thyroid hormone receptor-, retinoic acid 

receptor-, estrogen-related receptor, and PPARα, and to result in enhanced UCP1 

expression (47), it is expected that these pathways may also be affected by hexarelin. 

 Although the exact mechanisms by which GHRPs exert their effects through CD36 

are not fully understood, it becomes clear that interacting with CD36 induces profound 

changes in metabolic activities of target tissues, especially regarding PPARγ-regulated 

events. In macrophages, GHRPs induced the PPARγ-LXRα-ABC pathway, leading to 

cholesterol efflux and reduction of atherosclerosis (11, 12). Here we report that hexarelin 

promotes the expression of key regulatory genes in fat metabolism, many of which are 

controlled by PPARγ, resulting in the mobilization of fatty acids toward mitochondria 

oxidative phosphorylation and biogenesis in white fat cells. These results therefore 

implicate CD36 in the regulation of the overall metabolic activity of mitochondria in 

adipocytes. With the emerging evidence that mitochondria dysfunction is associated with 

metabolic defects such as insulin resistance and type 2 diabetes (50), one can expect that 

modulating CD36 function might be potentially beneficial. 
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Figure legends 

 
Figure 1. Hexarelin reduced lipid content in mouse 3T3-L1 adipocytes. A, 

Representative images of differentiated 3T3-L1 adipocytes untreated (Diff) or treated with 

10–5 M hexarelin for 48 h. Lipids were stained with oil red O and examined by 

microscopy. B, Photometric measurement of lipids stained with oil red O from 
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undifferentiated (–) or differentiated 3T3-L1 cells treated with hexarelin or troglitazone 

(Tro) or left untreated (Diff). Data are presented as mean ± SEM of at least six separate 

experiments. C, Intracellular triglyceride content in 3T3-L1 adipocytes treated with 

hexarelin or troglitazone, compared with untreated cells as in A. Data are presented as 

mean ± SEM of at least six separate experiments. *, P < 0.05 and **, P < 0.01 vs. untreated 

differentiated cells. 

 

Figure 2. Hexarelin induced the expression of genes associated with fatty acid 

oxidation and brown adipocyte phenotype. A, DNA microarray analysis of differentiated 

3T3-L1 adipocytes treated with troglitazone, or hexarelin. Shown are selected PPAR target 

genes and genes associated with fatty acid metabolism. Results are presented as fold 

changes compared with control cells set at 1.0. B, RT-PCR analysis of selected markers 

from differentiated 3T3-L1 cells treated with troglitazone (Tro) or hexarelin (Hexa) or left 

untreated for 48 h before RNA isolation. Representative images are shown from at least 

three separate experiments. 36B4 expression was used to normalize samples. C, Western 

analysis of 3T3-L1 adipocytes treated as above. Samples were normalized for protein 

loading with ß-actin. D, Hexarelin (Hexa) induces COX activity in 3T3-L1 adipocytes. 

Differentiated adipocytes were treated with hexarelin or troglitazone (Tro) or left untreated 

(Diff) for 72 h, and COX activity was measured on isolated mitochondria and normalized 

to protein content. Data are presented as mean ± SEM of at least six separate experiments. 

*, P < 0.005 vs. untreated differentiated cells. 

 

Figure 3. Hexarelin induces morphological changes in mitochondrial ultrastructure. 

A, Representative images of 3T3-L1 adipocytes stained with mitochondria-specific 

rhodamine-123 dye. Cells were untreated (Diff) or treated with 10–5 M hexarelin (Hexa) or 

8 µM troglitazone (Tro) for 72 h before staining and microscopic analysis. Magnification, 

x100. B, 3T3-L1 cells were treated with 10–5 M hexarelin for 72 h or left untreated and 

visualized by electron microscopy. Representative images show an increase in 
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mitochondrial size and cristae formation in response to hexarelin. C, Quantification of the 

average mitochondrial size in hexarelin-treated 3T3-L1 adipocytes, compared with 

untreated cells. Sizes are depicted as the mean of calculated surface area ± SEM of more 

than 70 mitochondria per group. *, P < 0.001. D, Relative surface area occupied by the 

cristae membrane within mitochondria expressed as % of total surface area. Data are 

presented as mean ± SEM of more than 25 mitochondria per group. *, P < 0.001. E, DNA 

microarray analysis of selected genes involved in mitochondrial biogenesis and found to be 

up-regulated by hexarelin, compared with untreated 3T3-L1 cells. Results with troglitazone 

are also shown. Fold changes are presented as in Fig. 2A. 

 

Figure 4. Hexarelin induced expression of thermogenic markers and mitochondrial 

biogenesis in vivo. A, C57BL/6 mice were treated with hexarelin or saline (control) for 12 

wk, and epididymal adipose tissue was analyzed by electron microscopy. Representative 

images from both samples are shown. B, Quantification of the average mitochondrial size 

in adipose tissue from mice treated as in A. Sizes are depicted as the mean of calculated 

surface area ± SEM of more than 50 mitochondria per group. *, P < 0.001. C, Western 

analysis of epididymal fat isolated from C57BL/6 wild-type and CD36-null mice treated 

with hexarelin (Hexa) or saline for 12 wk. Shown are samples obtained for each treatment 

from two separate experiments. 
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Foreword for paper #2 

Despite an ongoing interest in both CD36 and PPARγ, their role in liver or hepatocytes 

remains somewhat less well defined. Previous studies demonstrated that administration of 

hexarelin in rodents reduced total plasma cholesterol, increased HDL-c, but decreased 

LDL-c (De Gennaro-Colonna et al., 2000;Pang et al., 2010). We wanted to establish aside 

from its role in the activation of the reverse cholesterol transport pathway (in 

macrophages), if a decrease in de novo cholesterol synthesis could be factored into the 

effect of hexarelin via CD36. Based on the results generated in Paper #1, we set out to 

determine if in hepatocytes, hexarelin’s binding to CD36 would result in the induction of 

FAO. We looked at the cell’s response following activation of the key regulators of FAO, 

LKB1 and AMPK. Since cholesterol synthesis in hepatocytes is particularly important and 

AMPK is known to target HMGR, special attention was given to the impact of AMPK 

activation on cholesterol synthesis. In addition, the downstream effect on PPARγ activity 

was also evaluated. 
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Abstract 
 Scavenger receptor CD36 is known to play a central role in lipid metabolism 

through at least the uptake of oxidized LDL in macrophages and its ability to internalize 

long chain fatty acids in adipocytes. Here, we demonstrate that CD36 activity impacts 

cholesterol synthesis in hepatocytes. Using hexarelin, a growth hormone-releasing peptide 

that interacts with CD36, we found a rapid phosphorylation of LKB1 which led to 

subsequent AMPK phosphorylation in treated HepG2 cells. HMG-CoA reductase, which 

catalyzes the rate-limiting step in cholesterol synthesis, was phosphorylated and inactivated 

by AMPK following hexarelin treatment. This was accompanied with a significant 

degradation of HMG-CoA reductase by the ubiquitin-proteosome system in response to 

CD36 activation through an enhanced recruitment of the escort protein Insig-2 in 

hepatocytes. We also determined that hexarelin lifted the exerted inhibitory effect of Erk on 

nuclear receptor PPARγ activity through a rapid dephosphorylation of Erk, and promoted 

the recruitment of AMPK to PPARγ coactivator PGC-1α, suggesting an enhanced 

transcriptional potential of PPARγ. Several genes of the oxysterol-binding protein (OSBP) 

family were found upregulated by hexarelin and PPARγ ligand troglitazone in treated cells, 

supporting an enhanced shuttling of cholesterol from endoplasmic reticulum and 

identifying OSBPs as PPARγ-regulated genes. These results provide a mechanistic basis by 

which CD36 modulates HMG-CoA reductase degradation and PPARγ coactivation through 

the LKB1/AMPK pathway, providing a novel role of CD36 to regulate cholesterol 

synthesis in hepatocytes. 
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Introduction 

The pathogenesis of the metabolic syndrome is thought to involve a complex 

interaction of multiple factors, which include central obesity, insulin resistance, 

inflammation, hypertension, atherogenic dyslipidemia, and prothrombotic states. 

Restoration of these individual metabolic abnormalities currently involves numerous 

treatment options with various efficacies and development of novel approaches is of intense 

interest. Inherent to its direct impact on glucose and lipid metabolism, the peroxisome-

proliferator activating receptor PPARγ is a therapeutic target of the thiazolidinedione 

family of compounds currently used to improve insulin sensitivity. PPARγ is a transcription 

factor that upon ligand activation regulates the expression of a number of gluco/lipogenic 

genes in tissues such as heart, muscle, liver and fat.  

By providing fatty acid derivatives which serve as endogenous ligands for PPARγ 

through the selective uptake of long chain fatty acids or internalization of oxidized LDL 

particles, the scavenger receptor CD36 has been associated with PPARγ activation. In 

macrophages, this CD36-PPARγ pathway has been linked to pro-atherogenic events by 

contributing to a positive feedback loop in which activation of PPARγ results in enhanced 

expression of CD36, itself a target gene of PPARγ, thereby delivering more ligands to 

PPARγ. To escape this atherogenic loop, macrophage-internalized oxidized LDL also 

provides oxysterols which can activate nuclear receptor LXRα, leading to enhanced 

cholesterol efflux through expression of ABC sterol transporters and apolipoprotein E. In 

particular, the role of CD36 in macrophages is best known for the uptake of oxLDL 

particles and the subsequent formation of foam cells contributing to atherosclerotic plaque 

formation (1-3).  

Hexarelin was originally described to stimulate central GH release through its 

binding to the GH secretagogue-receptor-1a (GHS-R1a), a G protein-coupled receptor now 

recognized as the ghrelin receptor (4;5). Hexarelin and other synthetic GH-releasing 

peptide (GHRP) were also shown to interact with CD36 in myocardium (6;7). The 
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peripheral distribution of CD36 and GHS-R1a receptors in tissues such as heart, adrenals, 

fat and bone has supported physiological roles of hexarelin not exclusively linked to GH 

release. For instance, we have shown that hexarelin impacted fatty acid mobilization 

through CD36 in white fat by increasing fatty acid oxidation and mitochondrial biogenesis 

with an enhanced expression of PPARγ target genes, resulting in a thermogenic-like profile 

(8). In addition, hexarelin exerted an enhanced cholesterol removal from macrophages 

through the activation of the PPARγ-LXRα-ABC metabolic pathway, resulting in 

beneficial reduction in plaque formation in atherosclerotic mice (9). These studies have 

provided a potential for hexarelin to regulate peripheral fatty acid and cholesterol 

metabolism through CD36.  

The ubiquitously expressed 3-hydroxy-3-methylglutaryl coenzyme A reductase 

(HMGR) is the rate-limiting enzyme in the cholesterol synthesis pathway. HMGR enzyme 

is tightly regulated by cellular cholesterol and this at various levels including gene 

expression regulation, inactivation via enzyme phosphorylation and protein degradation 

(10). The expression of HMGR as well as several other genes involved in cholesterol 

synthesis are regulated by sterol regulatory element-binding proteins SREBP-1 and -2, 

which are endoplasmic reticulum (ER) membrane-embedded transcription factors that are 

released to translocate to the nucleus upon sterol depletion (11-15) . When sterols 

accumulate in cells, HMGR is rapidly degraded in a process involving binding to the 

insulin-inducible genes Insig-1 and -2. Such recruitment of Insigs results in a rapid 

ubiquitination and degradation of HMGR through the ubiquitin-proteosome system (16;17). 

Insigs are also know to inhibit SREBP processing and activation by binding to SREBP 

cleavage-activating protein Scap also embedded in the ER membrane, therefore 

sequestering the Scap/SREBP complex in the ER and subsequently decreasing the 

expression on SREBP target genes when high cellular sterol levels are achieved (18-20). 

The Insig-regulated swift degradation of HMGR protein and retention of SREBP in the ER 

prevent the accumulation of sterols to toxic levels within the cell. Insig-1 and -2 are highly 

expressed in liver (18), and despite their functional similarities, they conceal important 
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differences. Unlike Insig-2, Insig-1 is a target of SREBP and therefore its expression is 

high in sterol-depleted cells, whereas like HMGR, it is rapidly ubiquitinated and degraded 

in the presence of sterols (21). With its longer life span and insensitivity to sterols, Insig-2 

appears as an interesting target in modifying cholesterol homeostasis outside of the tightly 

regulated mechanism observed with Insig-1 (21;22).  

AMP-activated kinase (AMPK) is activated under energy deprivation conditions 

typically inhibiting anabolic reactions such as fatty acid and protein synthesis and 

enhancing catabolic processes such as fatty acid oxidation with the overall goal to produce 

more ATP (23). In a state of energy expenditure, AMPK was shown to phosphorylate 

HMGR at Serine 872 leading to enzyme inhibition and therefore providing more acetyl-

CoA substrate for oxidation (24). All these actions are aimed at reducing energy 

expenditure and favoring ATP production, which defines AMPK as a cellular energy 

sensor. 

Here, we demonstrate that hexarelin inhibits cholesterol synthesis in hepatocytes 

through the activation of the LKB1/AMPK pathway and HMGR phosphorylation, 

supporting a role of CD36 in regulating AMPK activity and downstream targets. In 

addition to enzyme inhibition, HMGR protein ubiquitination and degradation was also 

favored, with a concomitant increase in the expression of Insig-2, resulting in an increased 

interaction between Insig-2 and HMGR in a CD36-dependent manner. We also show that 

hexarelin caused a rapid dephosphorylation of Erk which, in conjunction with AMPK 

activation of PGC-1α, results in the downstream activation of PPARγ and increased 

expression of several genes of the oxysterol-binding protein family, highlighting the 

potential of CD36 to regulate intracellular cholesterol trafficking in hepatocytes. 

 

Material and Methods 
Cell Culture, Reagents and Treatments 

 The human liver hepatocellular carcinoma cell line HepG2 were grown in DMEM 

supplemented with 10% fetal bovine serum (FBS).  At 70-80% confluence, media of 
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HepG2 cells was changed either to DMEM supplemented with 10%FBS or without serum 

for 16 hours prior to treatment with hexarelin (ProSpec-Tany TechnoGene, Ltd., Rehovot, 

Israel) for the determined time and concentration. Treatment with either lanosterol (2.5 uM) 

or 25-hydroxysterol (2.5 uM) (Sigma) was done for 5 hours unless otherwise stated. 

Troglitazone (8 uM) and Rosiglitazone (1 uM) were purchased from Cayman Chemicals 

(Ann Arbor, Michigan, USA). Lanosterol (2.5 uM), 25-hydroxyxholesterol (2.5 uM), the 

PPAR gamma antagonist GW9662 (10 uM), the AMPK agonist AICAR, 5-amino-4-

imidazolecarboxamide riboside (0.2-2 mM) and its inhibitor Compound C (20 uM) were 

purchased from Sigma and used from the indicated times. PD98059 (50 uM) and 

SB203580 (10 uM) were purchased from BioMOL Research Labs and LY294002 (10 nM) 

from Enzo Life Sciences Plymouth Meeting, US). 

RNA isolation and RT-PCR analysis 

 Total RNA was isolated from HepG2 cells using TRIzol reagent (Invitrogen, 

Burlington, Ontario, Canada) and RT-PCR analysis was done as described (8;9;25). PCR 

products were analyzed on gel (Alpha Innotech, San Leandro, CA) from at least 3 separate 

experiments. All values were normalized against 36B4 expression. Primers were designed 

for human HMG-CoA reductase, mevalonate kinase, CD36, SREBP-2, insig-1 and insig-2, 

PPARγ, ABCA1, lanosterol synthase, oxysterol-binding protein, OSBP-related proteins  

and  36B4. 

RNA Interference  

 To silence CD36 expression, small hairpin RNA duplexes targeting the sequence 

AGGTCAACATATTGGTCAA of human CD36 (shCD36) were inserted into the pSuper 

lentiviral vector for small interfering RNA production. A shRNA containing the sequence 

of luciferase (shLuc) was used as a negative control. Viral particles were produced in 293T 

cells as described previously (26), and used to infect HepG2. CD36 efficient knockdown 

was monitored by RT-PCR and Western analysis (data not shown). 

Total Cellular Cholesterol Measurement 
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 Total lipid content was extracted using the method of Folch (8;27) and total 

cholesterol measurement was determined using a detection kit by Roche as described 

previously (28). Briefly, lipids HepG2 cells were extracted with Folch solution consisting 

of a mixture of 2:1 (vol/vol) chloroform/methanol and resuspended in 20% Thesit (Sigma) 

in Folch solution before evaporation under nitrogen gas. Total cellular cholesterol is 

determined by the means of cholesterol esterase and cholesterol oxidase and the amount of 

H2O2 produced is measured by colorimetric assay involving peroxidase. The amount of 

cholesterol is normalized against total protein from each sample which was determined by 

Bradford reagent (Sigma). 

Stable cell line 

 pCMV-Insig-2-Myc was purchased from ATCC (Manassas, VA, USA). Plasmid 

construct was introduced into HepG2 cells using the calcium phosphate precipitation 

method as described as previously (29). Stable transfectants of Insig-2/Myc were obtained 

following selection with G418 at 1000 ug/ml for 6 weeks. For a lack of a suitable antibody 

against insig-2, cells that expressed stable Insig-2-Myc were monitored by Western using 

anti-myc antibody (9E10 hybridoma) as described as previously (19;30) prior to co-

immunoprecipitation experiments. 

Plasmid Constructs, DNA Transfection and Luciferase Assay 

 The pHMGR-bLuc reporter plasmid was generated by cloning the 247-bp portion of 

the promoter region of HMG-CoA reductase (positions -243 to +4 of human gene) 

containing the characterized SREBP-responsive element (SRE) into the b-luciferase 

reporter gene (31). Typically, for luciferase assay, HepG2 cells were seeded into 24-well 

plate and transfected with 500 ng pHMGR-bLuc construct and 200 ng pCMX-βgal in a 

total of 1.5 ug DNA per well. After 16 hours, the medium was changed. Forty-eight hours 

after transfection, medium was changed to DMEM without serum overnight. Cells were 

treated with 10-5 M hexarelin or with 2.5 uM 25-hydroxycholesterol. Cells were then 

harvested in potassium phosphate buffer containing 1% Triton X-100 and lysates were 

analyzed for luciferase activity using a luminometer (Wallac, Turku, Finland). Luciferase 
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values were normalized for transfection efficiency to β-galactosidase activity and expressed 

as relative fold response compared to controls. Luciferase assays were performed in 

triplicates from at least three independent experiments. The Gal4-PPARγ1 and Gal4-

PPARγ1 serine-84 to alanine mutant (Gal4-PPARγ1S84A) have been described previously 

(25). HepG2 cells were transfected with either PPARγ1 construct and UAStkLuc reporter 

as described above. Typically, 500 ng of reporter plasmid, 100 ng PPARγ1 expression 

vector and 200 ng pCMX-βgal in a total of 1.5 ug DNA were added per well. Cells were 

treated with hexarelin or rosiglitazone at the indicated concentration. pSV-SPORT-PGC-1α 

was a generous gift from Bruce M. Spiegelman. PGC-1α was extracted and subcloned into 

pCMX-HA vector using the Bam HI sites. HepG2 cells were transfected and co-

immunoprecipitation experiments were performed as described in the cell lysates, 

immunoprecipitation and immunoblotting analysis section to analyze the HA-PGC-1α and 

AMPK interaction in response to hexarelin. 

Antibodies 

 Antibodies to phospho-AMPK (Thr172), phospho-LKB (Ser428), LKB, phospho-

AKT (Ser473) and total AKT were obtained from Cell Signaling Technologies (Beverly, 

MA). Antibodies to AMPK, PPAR gamma, PGC-1, HMGR, anti-ubi, SCAP and F1-ATP 

synthase were purchased from Santa Cruz Biotechnology (Santa Cruz, CA). Antibodies to 

phospho-ERK1/2 (Thr202/Tyr204) and ERK1/2 were obtained from Invitrogen (Carlsbad, 

CA). Antibodies to HMGR and phospho- PPARγ (Ser84/Ser112) were obtained from 

Upstate (Lake Placid, NY). Antibodies to HMGR, phospho-HMGR (Ser871) and anti-β-

actin were purchased from Abcam (Cambridge, MA). Antibodies to c-myc have been 

described previously (32). HA antibody was purchased from Roche (Laval, Quebec, 

Canada). 

Cell Lysates, Immunoprecipitation and Immunoblotting Analysis 

 Immunoblotting analysis was performed as described (8). Briefly, cells were lysed 

in RIPA, consisting of PBS buffer containing 1% Triton X-100, 0.5% deoxycholate acid, 

0.1% sodium dodecyl sulphate (SDS), 1 mM sodium fluoride, 1 mM sodium 
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orthovanadate, 1 mM phenylmethylsulfonyl fluoride (PMSF), and protease inhibitors 

(Roche, Laval, Qc). Proteins were then resolved by SDS-PAGE and transferred to 

nitrocellulose for immunoblotting. Membranes were blocked with blocking reagent (Roche) 

in Tris-buffered saline, probed with selected antibodies, and signals revealed by Enhanced 

Chemiluminescence or ECL Plus Western Blotting Detection System (Amersham) using 

appropriate horseradish peroxidase-conjuguated secondary antibodies. Co-

immunoprecipitation of insig-2-Myc with HMGR was performed as follow. HepG2 stable 

insig-2-Myc transfectants were incubated overnight in DMEM without serum at 70% 

confluence. MG132 (10nM) was added to100-mm dishes 1 hour prior to treatments and 

treatments were done at the indicated concentration and time. Cells were collected in ice-

cold PBS 1x and spun at 8000xg, 5min. Cells were lysed in modified Nonidet P-40 buffer 

(50 mM Hepes-KOH (pH 7.4), 100mM NaCl, 1.5 mM MgCl2, 0.5% NP-40, 1 mM sodium 

orthovanadate, 1 mM sodium fluoride, 1 mM PMSF, and protease inhibitors) as previously 

described (33;34). Briefly, cell lysates were passed through 26-gauge needle 15 times and 

then extracted for 1.5 hours at 4 C. For co-immunoprecipitation, cell lysates were 

precleared prior to incubation with anti-myc antibody (9E10) overnight at 4 C with gentle 

agitation. Immune complexes were recovered with protein A/G-PLUS agarose (Santa Cruz 

Biotechnology), washed four times in lysis buffer and subjected to SDS-PAGE and 

immunoblotting with indicated antibody. Two different antibodies were used to confirmed 

presence of HMGR in insig-2-myc precipitates. Immunoprecipitation of PPARγ was done 

essentially as described (25). Cells were lysed in modified RIPA consisting of 1% Nonidet 

P-40, 0.25% deoxycholate acid and 0.7M NaCl. Immunoprecipitation of HMGR was done 

as described above with addition of N-ethylmaleimide (25mM) in modified RIPA for the 

detection of Ubi-HMGR. 

 

Results 
Activation of CD36 by hexarelin promotes the LKB1-AMPK pathway in hepatocytes 
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 We previously showed that activation of CD36 by hexarelin induced an increase in 

fatty acid oxidation and metabolic regulation of mitochondrial energy pathway in 

adipocytes (8). Based on these findings and on the prominent role of AMPK in cellular 

energy sensing mechanism, we wanted to analyze the effect of hexarelin on AMPK activity 

in HepG2 cells. Cultured hepatocarcinoma HepG2 cells exhibit high oxidative capacity and 

express CD36 at high levels while GHS-R1a expression was not detected (35;36) (and data 

not shown). We found that treatment of HepG2 cells with 10-5M hexarelin induced a rapid 

time-dependent increase in AMPK phosphorylation at Thr-172, a required activating site of 

AMPK catalytic α-subunit (Fig.1). The upstream LKB1 kinase, known to phosphorylate 

AMPKα Thr-172, was also activated by hexarelin in a manner preceding AMPK 

phosphorylation (Fig.1). These results indicate that hexarelin activates the LKB1-AMPK 

pathway in HepG2 cells, which suggests a role in modulating energy metabolism in these 

cells. 

Hexarelin decreases HMG-CoA reductase and total cholesterol content in HepG2  

 AMPK is considered a metabolic sensor of cellular energy depletion state which 

upon its activation, acts on different targets to arrest energy expenditure and produce ATP. 

HMG-CoA reductase (HMGR), which catalyzes the rate-limiting step in cholesterol 

synthesis, is amongst the proteins targeted by AMPK. We thus examine by Western 

analysis the steady-state levels of HMGR and found that hexarelin treatment of HepG2 

cells for 6 hours reduced HMGR protein to levels comparable with sterols 25-

hydroxycholesterol and lanosterol, both known to regulate sterol-dependent inhibition and 

degradation of HMGR (Fig. 2A). To correlate with the reduction of HMGR, we measured 

total cellular cholesterol content in cells following treatment with hexarelin for up to 24 

hours. We observed a time-dependent decrease in total cholesterol that reached a significant 

2.4-fold reduction at 12hrs of treatment compared to control cells, and that was maintained 

with a 1.7-fold decrease after 24 hours (Fig.2B). These results suggest that the reduction in 

HMGR protein following hexarelin treatment results in total cholesterol depletion in 

hepatocytes. 



 

 

145

 

Sterol depletion caused by hexarelin induced a rapid and transient increase in 

expression of SREBP-regulated genes 

 Gene expression of HMGR and other enzymes involved in cholesterol synthesis and 

uptake is tightly regulated by SREBPs, which upon proteolytic release from the Golgi, 

translocate to the nucleus to regulate transcription (10). We thus measured the 

transcriptional activity of SREBPs in HepG2 using a luciferase reporter gene under the 

control of the proximal promoter of HMGR which contains a SREBP-responsive element 

(SRE). We found that hexarelin treatment of HepG2 cells induced a modest and transient 

increase in SREBP activity over a 24hr period (Fig.3A). As a control, treating cells with 

25-OH cholesterol resulted in the expected sterol-mediated inhibition of SREBP. We then 

measured the expression of HMGR and other components of cholesterol metabolism in 

HepG2 cells and found that hexarelin exerted a rapid increase of HMGR expression, and of 

mevalonate kinase (MVK) and lanosterol synthase (LSS), also involved in key steps of 

cholesterol biosynthesis and under SREBP regulation (Fig.3B). SREBP-2 was itself 

upregulated by hexarelin and maintained over the 6hr period of treatment.  Despite a 

similar decrease in HMGR protein content as with hexarelin (Fig.2A), exposing HepG2 

cells to 25-OH cholesterol did not result in increased expression of SREBP and target genes 

as opposed to hexarelin, indicating a different mechanism of action of hexarelin in 

comparison with sterol loading.  In line with the reduced HMGR and cholesterol content 

exerted by hexarelin in HepG2 cells (Fig.3), the transient increase of genes directly 

involved in de novo cholesterol synthesis we observed might represent a compensatory 

mechanism intended to counteract the decrease in cholesterol. 

Phosphorylation of HMG-CoA reductase by AMPK 

 Our results suggest that CD36 activation with hexarelin might impact HMGR 

function at the protein level. We thus tested the possibility that by promoting AMPK 

activity, hexarelin can direct HMGR phosphorylation at Ser-872, described to be targeted 

by AMPK and inactivate the enzyme to halt cholesterol synthesis (24;37). Treatment of 

HepG2 cells with increasing amounts of hexarelin (10-7M to 10-5M) and over a period of 
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30min to 24hrs resulted in enhanced specific phosphorylation of HMGR Ser-872 as 

determined by Western analysis (Fig.4A and B). Such increase in HMGR phosphorylation 

was paralleled with a corresponding phosphorylation of AMPK Thr-172, demonstrating the 

concomitant activation of AMPK. As Ser-872 phosphorylation is involved in HMGR 

inhibition and that HMGR activity is highly controlled through degradation by the 

ubiquitin-proteasome system, we measured HMGR ubiquination in HepG2 cells in 

response to hexarelin. Cells were first serum-depleted to reduce the rate of degradation of 

HMGR, and then treated for 1-24hrs and subjected to immunoprecipitation of HMGR prior 

to Western analysis with anti-ubiquitin antibody. We found that in these conditions, 

hexarelin promoted the ubiquitination of HMGR in a time-dependent manner, with a peak 

at 6hrs of treatment, corresponding to also maximal HMGR phosphorylation (Fig.4C). This 

suggests that hexarelin has a direct impact on HMGR degradation. 

CD36-dependent regulation of HMG-CoA reductase degradation is mediated by 

Insig-2 

 In order to further investigate the molecular events responsible for HMGR 

ubiquitination and degradation;  we next analyzed the contribution of Insigs in the response 

to hexarelin. In response to sterols, endoplasmic reticulum (ER)-embedded Insig-1 and -2 

were described to directly interact with HMGR and Scap, an another ER protein, which 

results in respective HMGR ubiquitination and SREBP sequestration in order to limit 

cholesterol synthesis (10). Interestingly, gene expression analysis revealed that expression 

of Insig-2 was increased in hexarelin-treated HepG2 cells, while Insig-1 remained 

unaffected (Fig.5A), suggesting an isoform-specific effect of hexarelin. These changes did 

not correlate with the expected decrease in Insig-1 and no change in Insig-2 expression 

following treatment with 25-OH cholesterol (38), again indicating a different mechanism 

triggered by hexarelin as opposed to sterol loading (Fig.5A). To address the functional role 

of Insig-2 in the response to hexarelin and to ensure unregulated constitutive expression in 

respect with hexarelin effect on Insig-2 expression, we generated stable transfectants of 

HepG2 cells expressing myc-tagged Insig-2 to perform co-immunoprecipitation studies of 
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Insig-2 with HMGR. Treatment of the Insig-2/HepG2 cells with hexarelin promoted the 

interaction of Insig-2 with HMGR both in a time- and concentration-dependent manner, 

with a peak at 5hrs of treatment (Fig.5B and C). Although less pronounced, a similar 

recruitment of Scap with Insig-2 was noticed under the same conditions, indicating that 

hexarelin also promotes to some extent the retention of SREBP in the ER through Insig-2 

and Scap (Fig.5B). These effects possibly prevent a more pronounced increase in 

expression of target genes in order to compensate for the reduced total cholesterol in treated 

cells (Fig.2B). In addition, Figure 5D shows that the hexarelin-induced recruitment of 

HMGR to Insig-2 was completely abrogated using a lentiviral knockdown strategy with a 

shCD36 as previously described (25). These results indicate that CD36 is essential in 

mediating the effects of hexarelin on Insig-2/HMGR assembly  

The recruitment of Insig-2 to HMGR is triggered by the activation of AMPK 

 In order to establish whether phosphorylation of HMGR is involved in Insig-2 

recruitment, therefore linking phosphorylation of HMGR with its degradation process, 

Insig-2/HepG2 cells were treated with the AMPK agonist, 5-amino-4-

imidazolecarboxamide riboside (AICAR) in presence or absence of hexarelin. Figure 6A 

shows a potent increase in the interaction of Insig-2 with HMGR in AICAR-treated cells 

compared to untreated cells. The Insig-2/HMGR recruitment was further enhanced when 

hexarelin was combined with AICAR, suggesting an additive recruiting effect of both 

compounds (Fig.6A). To further demonstrate the contribution of AMPK, hexarelin-induced 

Insig-2/HMGR interaction was abrogated in the presence of the AMPK inhibitor 

Compound C, suggesting an obligatory role of AMPK in mediating the response to 

hexarelin on HMGR recruitment to Insig-2 (Fig.6B).  

PPARγ mediates the effect of CD36 on HMGR and Insig-2 interaction 

 Our previous studies have shown that hexarelin induces the transcriptional activity 

of nuclear receptor PPARγ in macrophages and adipocytes, establishing a CD36-PPARγ 

pathway that regulates expression of target genes involved respectively in cholesterol 

removal and lipid metabolism, including PPARγ itself but without affecting CD36 
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expression (8;9). In order to determine whether such pathway is functional in hepatocytes 

and might translate the effects of hexarelin on HMGR degradation, we observed a rapid 

increase in PPARγ expression in HepG2 cells treated with hexarelin, while CD36 remained 

unaffected (Fig.7A), suggesting a similar situation as in macrophages and adipocytes. 

Interestingly, HepG2 cells treated with troglitazone, a synthetic agonist of PPARγ of the 

thiazolidinedione family, exhibit an increase in AMPK activity (Fig.7B), which support 

previous findings in skeletal muscle and fibroblasts that ascribed such effect to a rise in 

AMP levels (39;40). In our conditions, troglitazone was even more potent in activating 

AMPK compared to hexarelin or AICAR, providing an important contribution of PPARγ. 

Troglitazone was also as effective as hexarelin in promoting the recruitment of HMGR to 

Insig-2 in stable HepG2 cells (Fig.7C). In order to determine the involvement of PPARγ in 

translating the effect of hexarelin, we found that treating Insig-2 stable cells with the 

PPARγ inhibitor GW9662 abolished the interaction of Insig-2 with HMGR in the presence 

of hexarelin (Fig.7D), suggesting that the elicited degradation of HMGR by hexarelin 

required activation of PPARγ.  

Hexarelin relieves the inhibitory effect of Erk on PPARγ in HepG2 cells 

 In order to clarify the role of PPARγ in HMGR degradation, we sought to determine 

by which intracellular pathway hexarelin can modulate PPARγ activity in hepatocytes. Not 

much is known about the signalling events induced by CD36, especially regarding those 

triggered by hexarelin. These issues have been mostly covered with the reported activation 

of the ghrelin GHS-R1a receptor by hexarelin. In particular, we have shown that GHS-R1a 

activation by hexarelin induced PPARγ phosphorylation and subsequent activation in 

macrophages involving a concerted action of the Erk and Akt kinase pathways (9). We thus 

analyze the effect of hexarelin on both pathways in HepG2 cells. We found a rapid and 

prolonged decrease in Erk activity over a period of 60min of treatment with hexarelin, 

while Akt was activated under the same conditions in HepG2 cells (Fig.7E). In respect with 

this differential effect in kinase activity and based on previous work that reported an 

inhibitory role of Erk-mediated phosphorylation of PPARγ1 Ser-84 and corresponding Ser-
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112 of fat specific-PPARγ2 isoform (41-43), we analyzed PPARγ1 (isoform present in 

hepatocytes) Ser-84 specific phosphorylation in HepG2 cells. We observed a marked and 

rapid de-phosphorylation of PPARγ Ser-84 by hexarelin, which was maintained from 

15min to 24hrs of treatment (Fig.7F), suggesting that the inhibitory effect of Ser-84 

phosphorylation was relieved in hexarelin-treated HepG2 cells. To directly address the 

effects of hexarelin on PPARγ activity, we performed luciferase assay on HepG2 cells 

transfected with a Gal4-PPARγ construct along with a UAStkLuc reporter, and observed a 

significant increase in PPARγ activity in response to hexarelin (Fig.7G). Altogether, these 

results demonstrate the ability of hexarelin to signal to and activate PPARγ in HepG2 cells 

through the release of the inhibitory action of the Erk kinase pathway. These results also 

suggest a role of Akt to act as an activating signal leading to PPARγ Ser-84 independent 

phosphorylation and activation, as it was demonstrated in other cell systems (9;44;45). 

CD36 promotes activation and recruitment of coactivator PGC-1α to PPARγ  

 Based on the critical role of PPARγ in regulating glucose and lipid metabolism, and 

on the ability of CD36 to promote PPARγ-dependent expression of mitochondrial proteins 

involved in fatty acid oxidation in adipocytes (8), we tested whether a similar outcome was 

also taking place in hepatocytes. We observed that protein levels of F1-ATP synthase, a 

target of PPARγ which catalyzes mitochondrial ATP production during oxidative 

phosphorylation, and of PGC-1α, a nuclear receptor transcriptional coactivator involved in 

energy metabolism and mitochondrial biogenesis, were both increased in HepG2 cells 

treated with hexarelin (Fig.8A). The increase in PGC-1α prompted us to examine its 

potential role in the response to hexarelin. Using co-immunoprecipitation assay, we found 

that hexarelin caused a rapid and prolonged increase in the recruitment of PGC-1α to 

PPARγ in HepG2 cells (Fig.8B). Such interaction correlated with a time-dependent increase 

in AMPKα recruitment to PGC-1α following hexarelin treatment (Fig.8C). AMPKα was 

described to directly phosphorylate and activate PGC-1α (46). Therefore, our results 

provide a molecular mechanism by which hexarelin promotes PGC-1α phosphorylation and 
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activation, resulting in enhanced coactivation of PPARγ and target gene expression in 

hepatocytes. 

Expression of oxysterol-binding proteins (OSBPs) is upregulated by hexarelin 

 Newly synthesized cholesterol is rapidly transferred out of the endoplasmic 

reticulum by lipid transfer proteins (LTP), in order to maintain a low ER sterol content. The 

oxysterol-binding proteins (OSBP) and OSBP-related proteins (ORP) are members of the 

LTP family which bind sterol derivatives to achieve various cellular processes including 

cholesterol/oxysterol transfer, sterol sensing, cell signaling, lipid metabolism, vesicular 

trafficking and SREBP regulation (47). In view with our observation that hexarelin 

contributes to lower cholesterol levels while increasing genes involved in cholesterol 

synthesis, we addressed whether expression of several OSBP family members was 

regulated in these conditions. We found that expression levels of OSBP1 and ORP2, ORP3, 

ORP9 and to a lesser extent ORP11 were all increased in a time-dependent manner by 

hexarelin in HepG2 cells (Fig.9). Interestingly, all these genes were also upregulated to 

some extent by troglitazone, indicating a shared mechanism of regulation between 

hexarelin and PPARγ. However, treating cells with AICAR did not achieve a similar 

upregulation of OSBP1 and related ORPs, suggesting that AMPK activation is not 

sufficient in promoting a maximal response of these genes. These results provide a link 

between a possible redistribution of cholesterol to and from the ER with the sterol-sensing 

mechanism that directs HMGR degradation, and also identify OSBP members as novel 

PPARγ-regulated genes in hepatocytes. 

Discussion 
 Unquestionably, AMPK plays an imperative role in energy balance. Most 

commonly, upon activation by an increase in AMP/ATP ratio following an increase in ATP 

spending, AMPK targets a plethora of pathways for the main purpose of reducing energy 

usage and produce readily available fuel for the cell. Thanks to AMPK, fatty acid oxidation 

is increased to produce acetyl-CoA which will then be shuttle towards the TCA cycle and 

oxidative phosphorylation to produce ATP. Cell proliferation, lipid synthesis and protein 
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synthesis are reduced as well as gluconeogenesis depending on the cell type and function 

(48). Hepatocytes have a high rate of fatty acid oxidation and AMPK activity, and are a 

major site for cholesterol synthesis. Our previous work with hexarelin in adipocytes has 

shown a marked increase in fatty acid oxidation and activation of PPARγ in a CD36-

dependent manner (8). Based on these results, we hypothesized that hexarelin would have a 

similar effect in hepatocytes and that this effect would also have a direct impact on 

cholesterol synthesis by means of the activation of AMPK. In this article, in addition to 

showing an increase in phospho-AMPK and a propensity towards fatty acid oxidation, we 

show that AMPK also inactivates HMGR through phosphorylation. More importantly, we 

described for the first time the unexpected finding that hexarelin caused HMG-CoA 

reductase degradation in hepatocytes causing a marked decrease in total cellular 

cholesterol. 

 In hepatocytes, we established that hexarelin promoted a rapid increase in the 

phosphorylation of LKB and its downstream target AMPK. LKB1 mediates AMPK 

activation through the AMP-dependent pathway suggesting that hexarelin binding to CD36 

in hepatocytes might cause an increase in AMP/ATP ratio and therefore activating LKB1 

and AMPK. In addition, we determined that protein level of known factors involved in fatty 

acid oxidation such as PGC-1α and ATP synthase subunit F1 were increased in treated 

HepG2 cells conveying in this manner our previous findings in adipocytes to hepatocytes as 

well. What was surprising was the rapidity of the response to hexarelin. We saw an increase 

in pLKB and pAMPK within 5-10 minutes of treatment with hexarelin in HepG2 cells. 

Given one of the roles of CD36 in internalizing long chain fatty acids, it still remains 

interesting that the interaction of hexarelin with CD36 is capable of rapidly activating 

AMPK and signaling to the cell a need to conserve energy in hepatocytes. A reverse 

phenomenon is observed in cardiomyocytes, in which contractions decrease AMP levels 

and stimulate LKB1/AMPK pathways resulting in the translocation of CD36 to the cell 

membrane to increase LCFA uptake suggesting a crosstalk between CD36 and AMPK that 

can be triggered (49). 
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 We wanted to extend our research beyond the realm of AMPK activation by 

hexarelin and look at its downstream impact on cholesterol synthesis in hepatocytes. We 

determined that AMPK rapidly targeted HMG-CoA reductase by inactivating it through 

phosphorylation at Ser-872. We also found that there was a marked decrease in total 

cellular cholesterol at 12 hours and was still maintained at lower levels even after 24 hours 

compared to untreated. The short time point suggested a rapid effect of hexarelin on 

cholesterol metabolism and therefore our analysis was focused mainly on the early events 

occurring in hepatocytes that would lead to cholesterol depletion. Acetyl-CoA can be 

produced from glycolysis or from fatty acid oxidation. Fatty acid oxidation generates a 

much larger quantity of acetyl-CoA depending on the length of fatty acid chain than 

glucose which generates only two molecules of acetyl-CoA demonstrating the more 

efficient pathway of FAO to produce large quantities of ATP from fat rather than sugar. 

Acetyl-CoA is associated with various pathways and its usage is closely monitored to 

provide cells with the capacity to respond to various conditions such as proliferation, 

energy consumption and production, lipid metabolism and distribution. In a sense, AMPK 

finds itself at the center of many of these processes to control energy consumption. Since 

the synthesis of HMG-CoA requires 3 acetyl-CoA molecules, it is of no surprise that the 

pathway to cholesterol synthesis would be inhibited or decreased if more energy is 

required. We therefore show that hexarelin caused a shift in energy balance towards 

preservation of energy expenditure and burning of fat to produce ATP by means of AMPK 

activation and inhibition of HMGR. 

 Unexpectedly, we observed that total HMGR protein level was decreased with 

hexarelin treatment following a short time period of 5 hours coinciding with the shortened 

half-life of HMGR exposed to high level of sterols (16). Along with an increase in HMGR 

phosphorylation by AMPK, hexarelin caused a decrease in protein level and an increase in 

ubiquitination of HMGR suggesting that HMGR underwent degradation. Association of 

insigs with HMGR is an absolute requirement and non-reversible step prior to 

ubiquitination and degradation of HMGR. Given the rapidity of the response, we looked at 
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earlier expression changes of genes involved in cholesterol metabolism. Genes involved in 

cholesterol synthesis such as HMGR and mevalonate kinase that are under the control of 

SREBPs were rapidly upregulated; however, the expression decreased roughly 6 hours 

despite a decrease in intracellular cholesterol. We also found that insig-2 but not insig-1 

expression changed in response to hexarelin. Insig-1 expression is inversely correlated with 

its protein level while the expression of insig-2 is not; this is mainly due to differences in 

their degree of stability. Despite their functional similarities in retaining SCAP in the ER 

and accelerating degradation of HMGR, the differences observed in their protein level 

versus their expression level are due to the presence of ubiquitination sites in insig-1 (50). 

In the absence of sterols, SREBPs are translocated to the Golgi for processing and 

activation leading to an increase in the expression of insig-1. Its protein is no longer 

associated with SCAP and is susceptible to ubiquitination and proteosomal degradation 

making its expression level high while its protein level low. The expression of insig-2 is not 

controlled by SREBPs and has been shown to be upregulated by PPARα and γ agonists in 

hepatocytes and downregulated by insulin while its protein not susceptible to degradation 

has a longer half-life than insig-1 (51;52). To favor a strong detection of an interaction 

between HMGR and insig-2, we stably transfected insig-2 coupled to 6 copies of Myc (18). 

In insig-2 stably transfected cells treated with hexarelin, we observed an increase in the 

binding of insig-2 and HMGR. Therefore, the degradation of HMGR was not solely 

dependent on the increase in insig-2 expression but also on other events regulating the 

degradation of HMGR. In addition, the lack of more prominent increase in the expression 

of genes involved in cholesterol synthesis was explained by the fact that insig-2 also bound 

to SCAP, retaining SCAP/SREBP complex in the ER and preventing activation of 

SREBPs. Given the coincidence between AMPK activation and HMGR degradation by 

hexarelin, we wondered if the latter was influenced by AMPK activation. Indeed, we did 

see that activation of AMPK through the use of AICAR was contributing to HMGR 

degradation indirectly while the use of the inhibitor of AMPK, compound C abrogated the 

effects of hexarelin.  



 

 

154

 

 In the present study, we discovered a new mechanism via CD36 capable of 

triggering the degradation of HMGR through increased insig-2 expression and activation of 

insig-2/HMGR/ubiquitination without a rise in cholesterol or oxy/sterols. In an attempt to 

understand the events that led to the degradation of HMGR by hexarelin, we discovered 

that binding of hexarelin to CD36 resulted in a rapid dephosphorylation of Erk1/2. OxLDL 

activates Erk in THP-1 macrophages contributing to migration and foam cell formation 

(53). Interestingly, oxLDL and hexarelin share the same binding region on CD36 (6). In 

macrophages expressing both GHS-R1a and CD36, binding to either receptor can have 

opposite effects. Indeed, in a recent study, we demonstrated that treating macrophages with 

ghrelin caused an increase in phospho-Erk1/2 and while this activation can result in 

inactivation of PPARγ, we found that Dok-1 associated to GHS-R1a restrains the inhibitory 

potential of Erk (25). In the current study, we demonstrate that in the absence of GHS-R1a, 

the binding of hexarelin to CD36 in hepatocytes causes a decrease in phospho-Erk which 

can no longer phosphorylate PPARγ at Ser84. Therefore, hexarelin lifts the exerted 

inhibitory effect of Erk on PPARγ activity. To add to this effect, we found that hexarelin 

caused an increase in the interaction between AMPK and its known target, PGC-1α. 

Surprisingly, both AMPK and PPARγ seem to trigger HMGR degradation as both use of 

AICAR (known to increase PPARγ expression) or troglitazones can induce interaction of 

insig-2 with HMGR. Insig-2 is much more stable than insig-1; therefore, its effect on lipid 

metabolism can be sustained by an increase in its expression (52). What is surprising is that 

HMGR degradation is thought to only be triggered by sterols; which brings us to consider 

potential mechanisms capable of bypassing this tightly regulated pathway. Although, 

insigs, HMGR and SCAP have determinant roles in the fate of HMGR half-life and SREBP 

activity, it seems logical to deduce that the amount of sterol in the ER is the predominant 

factor affecting cholesterol metabolism. The ER is the main site for cholesterol synthesis; 

however cholesterol is rapidly transported to other organelles, making the cholesterol 

content in the ER approximately 5 mol% (54). Sterol concentrations are highly controlled 

and monitored to maintain cholesterol at this level in the ER (55;56). Recent studies have 
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emerged demonstrating that a concentration below that point triggers the SCAP/SREBP 

complex to be translocated to the Golgi for subsequent activation of SREBPs and target 

genes (55;56). On the other hand, the cholesterol concentration in plasma membrane is 

around 30 mol% (54). Once synthesized, the cholesterol in the ER is rapidly transported to 

other organelles such as the plasma membrane and the Golgi (54). The search for oxysterol-

binding protein (OSBP) and OSBP-related proteins (ORPs) was prompt by the notion that 

cholesterol and other lipids in order to be relocated to and from various biological 

membranes would require transporters (47). OSBP/ORPs are part of a large family of 

proteins encoded by 12 genes and which result in 16 protein products that have cholesterol 

and oxysterol-binding motifs along with regulatory and membrane targeting domain 

functions and are involved in sterol signaling and sterol transport functions between lipid 

rafts, ER, Golgi, possibly having distinct effects in cholesterol metabolism (47;57). The 

affinity of OSBP/ORPs for specific subcellular membranes and how their membrane-

association is regulated still remains elusive. However, studies on specific family members 

are emerging and clearly demonstrate that individual members seem to have a specific role 

and preference in lipid transport and cell signaling. For example, depletion of membrane 

cholesterol has been shown to increase the level of phospho-Erk in caveolea membranes 

and cytosolic fractions and OSBP was found to indirectly control Erk through its 

association with cholesterol and Erk phosphatases (58). Another study showed that ORP2 

overexpression increased HMGR activity by increasing export of cholesterol from ER by 

ORP-2 (59).  ORP9 was recently shown to mediate the transport of sterols between the ER 

and trans-Golgi/trans-Golgi network (60). New studies show that OSBP/ORPs are also 

targets of kinases; for instance, ORP3 was shown to be phosphorylated when macrophages 

lost their adhesion contact while OSBP was recently shown to be phosphorylated by protein 

kinase D (61;62). A recent study demonstrated the association of the regulation of 

cholesterol synthesis with the mobilization of cholesterol to the ER without modifying 

exposure of cells to sterols (63). For instance, treatment of human fibroblasts with bacterial 

SMase C, which degrades the sphingomyelin (component of cell membrane known to 
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interact with cholesterol) into ceramide caused a rapid translocation of plasma cholesterol 

to the ER. This change in ER cholesterol content resulted in a 90% inactivation of HMGR 

represented by an increase in its phosphorylation. However, in this study the authors failed 

to show the steady state of HMGR and therefore degradation of HMGR was not analyzed. 

No studies have reported a role of AMPK in the phosphorylation of OSBP or ORP; 

however, given our results demonstrating a role of AMPK in HMGR degradation, it would 

be interesting to determine if OSBP/ORPs are indeed targets of AMPK. We were able to 

determine that hexarelin and troglitazone induced expression changes of OSBP and several 

ORPs indicating a disruption in the transport of cholesterol between different compartments 

and these changes in expression may represent a direct effect of hexarelin on HMGR 

degradation. These results offer a potential explanation for changes of cholesterol content 

triggering HMGR degradation. These studies demonstrate the capability of hexarelin to 

change the expression of OSBP and ORPs which control the trafficking of sterols to and 

from the ER and other organelles. Therefore, we speculate that the increase in HMGR 

degradation due to hexarelin might result from the involvement of one or more oxysterol-

binding proteins influenced by the activity of PPARγ and possibly AMPK. It is possible 

that in response to hexarelin binding to CD36, a deregulation in the expression and/or the 

activity of one or more OSBPs occurs, causing an increase in cholesterol in the ER, an 

indirect inactivation of Erk by OSBP and degradation of HMGR. Moreover, the failed 

increase in SREBP activity in cholesterol depleted cells treated with hexarelin can also be 

linked to Erk and OSBP since that in addition to its effect on PPARγ, Erk is known to target 

SREBPs and that OSBP expression has a repercussion on the activity of SREBP-1c 

(64;65). Evidently, given the emerging studies on OSBPs, it will be important to determine 

the precise role of AMPK, PPARγ and possibly OSBPs in HMGR degradation.  

 As depicted in Figure 10, the present study demonstrates that the binding of 

hexarelin to CD36 causes the activation of AMPK which in turn inactivated HMGR and 

activated PGC-1 thus promoting fatty acid oxidation. We also observed a decrease in 

phospho-Erk1/2 and an increase in PPARγ activity in a ligand-independent manner causing 
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a modification in the expression of several key genes involved in cholesterol metabolism 

such as insig-2, and OSBP/ORPs. The interaction of hexarelin with CD36 caused the 

degradation of HMGR following its interaction with insig-2. We extrapolate our findings 

by suggesting that OSBP/ORPs might be the binding factors between AMPK and PPARγ 

by causing a deregulation in cholesterol trafficking in the ER and thereby triggering the 

degradation of HMGR.   

 Although the precise mechanisms by which hexarelin exerts its effect through CD36 

is not fully known, it had become clear that interacting with CD36 induces profound 

changes in lipid metabolism. We have shown previously that hexarelin induces gene 

expression changes of key regulators in fat metabolism under the control of PPARγ 

resulting in the mobilization of fatty acids toward mitochondrial oxidation phosphorylation 

in white adipocytes. In the present study, we demonstrated that a similar phenomenon 

occurs in hepatocytes, an important site for fatty acid oxidation. In addition, along with an 

activation of PPARγ, we observed an activation of AMPK and a degradation of HMGR. 

These results implicate for the first time CD36 in the regulation of cholesterol synthesis via 

an AMPK- and/or PPARγ-dependent pathway(s) through its interaction with hexarelin. 

Therefore, modulation of CD36 function might be an interesting approach to treating 

hypercholesterolemia.  
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Figure Legends 
 

Figure 1. Hexarelin induces phosphorylation of LKB1 and AMPKα in human 

hepatoma cell line, HepG2. Phosphorylation of AMPKα and LKB1 in HepG2 cells 

treated with hexarelin 10-5M for 5 to 60 minutes. Cell lysates were analyzed by immunoblot 
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using a phospho-AMPKα (Thr172) or a phospho-LKB1 (Ser473) antibodies and 

normalized to anti-AMPK and anti–LKB1 antibodies. Protein loading was normalized 

using anti-β-actin antibody. 

 

Figure 2. Hexarelin decreases HMG-CoA reductase and induces a net decrease in 

total intracellular cholesterol in HepG2. (A) Hexarelin causes a decrease in HMGR 

protein level. Western analysis of serum-deprived HepG2 cells treated with either hexarelin 

10-5M and 10-6M, with lanosterol (2.5uM) or with 25-hydroxycholesterol (2.5uM) for 5 

hours was performed and compared to untreated. HMGR protein level was determined 

using an anti-HMGR antibody. Samples were normalized for protein loading with β-actin.  

(B) Measure of the total intracellular cholesterol in HepG2 cells treated with hexarelin at 

10-5M between 1 and 24 hours, with 25-hydroxycholesterol (25-HC) at 2.5 uM for 24 hours 

or left untreated. Cells were serum-deprived for 24 hours prior to treatment. Total lipid 

content was extracted and total cholesterol in cells was measured as described. The amount 

of cholesterol was normalized against total protein. 

 

Figure 3. Hexarelin induces a rapid and transient increase in SREBP activity. (A) 

Measurement of endogenous activity of SREBPs in response to hexarelin in hepatocytes. 

HepG2 cells were transfected with pHMGR-bLuc reporter plasmid containing a portion of 

the promoter of HMGR containing a SREBP-responsive element (SRE). Cells were then 

treated with hexarelin 10-5M between 3 and 24 hours in absence or in presence of serum or 

with 25-hydroxycholesterol 2.5uM (25-HC) for 6 hours. Results are expressed as fold 

response compared to untreated (set at 1.0) from at least 3 separate experiments. (B) 

Hexarelin causes a rapid but transient increase in the expression of genes involved in 

cholesterol synthesis. RT-PCR analysis of selected cholesterol metabolism markers in 

HepG2 cells treated with hexarelin 10-5M for the indicated times (between 1 and 6 hours), 

with 25-hydroxycholesterol for 6 hours or left untreated prior to RNA isolation. 
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Representative images are shown from at least 3 separate experiments. 36B4 expression 

was used to normalize samples.  

 

Figure 4. Hexarelin induces the phosphorylation of AMPK and HMGR, and impacts 

HMGR ubiquitination. 

(A) Phosphorylation of HMGR and AMPK in HepG2 cells treated with hexarelin 10-5M, 

10-6M or 10-7M or left untreated for 30 minutes. Western analysis was performed on whole 

cell extract using specific phospho-HMGR (Ser871) or phospho-AMPKα (Thr172) 

antibodies. Samples were normalized for total HMGR using anti-HMGR antibody or for 

protein loading with anti-β-actin antibody. (B) Phosphorylation of HMGR and AMPK in 

HepG2 treated with hexarelin 10-5M in function of time (1 to 24 hours). Western analysis 

performed as described above. (C) Hexarelin causes an increase in the ubiquitination of 

HMGR. HepG2 cells were treated between 1 and 24 hours with hexarelin 10-5M. Cell 

extracts were immunoprecipitation with an anti-HMGR antibody and ubiquitination of 

HMGR was determined by immunoblot using an antibody against ubiquitin. Samples were 

normalized using HMGR antibody.  

 

Figure 5. Hexarelin causes the recruitment of insig-2 to HMGR in a CD36-dependent 

manner. (A) RT-PCR analysis of insig-1 and insig-2 in HepG2 cells treated with hexarelin 

10-5M for the indicated times (between 1 and 6 hours), with 25-hydroxycholesterol for 6 

hours or left untreated prior to RNA isolation. Representative images are shown. 36B4 

expression was used to normalize samples. (B) Increased association between HMGR and 

insig-2 in HepG2 cells due to hexarelin. Stable transfected HepG2 cells expressing Insig-

2/Myc were serum-deprived overnight, pre-treated with proteasome inhibitor MG132 

(1uM) for 1 hour  then treated between 1 and 24 hours with hexarelin 10-5M, or with 

lanosterol (2.5uM) or 25-hydroxycholesterol (2.5 uM) for 5 hours.  Cell extracts were 

subjected to co-immunoprecipitation using anti-myc antibody. Protein complex was 

analyzed by immunoblotting with specific anti-HMGR, anti-SCAP and anti-myc 
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antibodies. (C) Co-immunoprecipitation was performed as described in (B) in insig-2/Myc 

stable HepG2 cells treated with hexarelin 10-5M and 10-6M. (D) CD36 is required for 

HMGR degradation by hexarelin. CD36 expression was silenced by infecting cells with 

lentivirus carrying a shCD36 plasmid or a negative control shLuc plasmid. Infected cells 

were treated at the indicated time with hexarelin 10-5M. Co-immunoprecipitation was 

carried out as described above using anti-myc antibody and analyzed by immunoblot using 

anti-HMGR and anti-myc antibodies. 

 

Figure 6. The recruitment of Insig-2 to HMGR is dependent on AMPK activation. (A) 

The AMPK agonist, AICAR increases the interaction between HMGR and insig-2. Stable 

transfected HepG2 cells expressing insig-2 were serum-deprived overnight, pre-treated with 

proteasome inhibitor MG132 (1uM) for 1 hour prior to treatment with AICAR (0.2mM) 

and/or hexarelin 10-5M for 5 hours. Co-immunoprecipitation was performed as described in 

Fig 4. The protein complex was analyzed by immunoblotting with specific anti-HMGR and 

anti-myc antibodies. (B) AMPK inhibitor, Compound C abrogates the effect of hexarelin. 

Stable insig-2 cells were treated as in (A) with the exception of samples pre-treated with 

CC (20uM) 1 hour before addition of hexarelin (10-5M). HMGR/Insig-2/myc complex was 

analyzed by Western blot.  

 

Figure 7. Hexarelin relieves the inhibitory effect of Erk on PPARγ which then 

mediates the effect of CD36 on the recruitment of insig-2 to HMGR. (A) RT-PCR 

analysis of PPARγ and CD36 in HepG2 cells treated with hexarelin 10-5M for the indicated 

times (between 1 and 6 hours), with 25-hydroxycholesterol for 6 hours or left untreated 

prior to RNA isolation. Representative images are shown. 36B4 expression was used to 

normalize samples. (B) The PPARγ agonist, troglitazone (Tro) induces the phosphorylation 

of AMPK in cultured hepatocytes. HepG2 cells were treated either with hexarelin (10-5M), 

Tro (8uM) or AICAR (2mM) at the indicated times. Whole cell extracts were analyzed by 

immunoblot using a phospho-AMPKα (Thr172) antibody and protein loading was 
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normalized using β-actin. (C) Troglitazone induces similar effect to hexarelin and AICAR 

on HMGR interaction with insig-2. Treatments and co-immunoprecipitation were carried 

out as described in Figure 6. Insig-2 stable cells were treated with Tro (8 uM), hexarelin 

(10-5M) or left untreated for 5 hours. (D) The inhibitor of PPARγ, GW9662 abrogated the 

effect of hexarelin on HMGR/insig-2 interaction. Treatments and co-immunoprecipitation 

were carried out as described in Figure 6. Insig-2 stable cells were treated with hexarelin 

(10-5M), GW9662 (10-6M), a combination of both or left untreated for 5 hours. (E) 

Hexarelin decreases Erk1/2 activity in overnight serum-deprived HepG2 cells when treated 

between 5 and 60 minutes at 10-5M. Cell lysates were analyzed by immunoblot using 

specific antibodies to phospho-Erk, total Erk, phospho-Akt and total Akt. (F) 

Phosphorylation of PPARγ Ser-84 is decreased following inhibition of Erk by hexarelin. 

Cells were treated as in (E) at the indicated times, and lysates were immunoprecipitated 

with a PPARγ-specific antibody, and analyzed by immunoblot using phospho-PPARγ 

(Ser84), total PPARγ antibodies. (G) The activation of PPARγ by hexarelin is dependent on 

its Erk phosphorylation site at Ser-84 in hepatocytes. HepG2 cells were transfected with 

UAStkLuc, and with Gal4-PPARγ or Gal4-PPARγS85A plasmids. Transfected cells were 

then treated with hexarelin 10-5M or with Rosi (1uM) for 24 hours. Normalized values are 

presented as relative luciferase units (RLU). 

 

Figure 8. CD36 promotes the activation and the recruitment of PGC-1α to PPARγ in 

HepG2. (A) Effect of hexarelin (10-5M) on protein level of PGC-1α and F1-ATP synthase 

in HepG2 treated for 24 hours. Western blot analysis was performed on total cell lysates 

using anti-PGC-1α and F1-ATP synthase antibodies. Protein level of each marker in 24-

hour treatment was compared to untreated samples and loading was normalized using anti-

β-actin antibody. (B) Hexarelin increases the interaction between the co-activator PGC-1 

and PPARγ. HepG2 cells were treated with hexarelin (10-5M) ranging from 5 minutes to 24 

hours and cell extracts were subjected to co-immunoprecipitation using a PPARγ antibody. 
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Protein complex was analyzed by immunoblot using PGC-1 and PPARγ antibodies. (C) 

Hexarelin increases the interaction between PGC-1 and AMPK. HepG2 cells were 

transfected or not (Ctl) with HA-PGC-1 construct and treated as indicated in (B) at the 

indicated time points. Samples were subjected to co-immunoprecipitation using an HA 

antibody and protein complex was analyzed by immunoblot using AMPK and PGC-

1antibodies. 

 

Figure 9. Gene expression changes of oxysterol-binding protein (OSBP) and OSBP-

related proteins (ORPs) by hexarelin. RT-PCR analysis of selected OSBP and ORP 

genes in HepG2 cells treated with hexarelin 10-5M, with troglitazone 8 uM for the indicated 

times or left untreated prior to RNA isolation. Representative images are shown. 36B4 

expression was used to normalize samples. 

 

Figure 10. Schematic representation of the proposed effect of hexarelin in hepatocytes 

through its interaction with CD36. Binding of hexarelin to CD36 promotes a rapid 

phosphorylation/activation of AMPK and Akt, and dephosphorylation/inactivation of 

Erk1/2. In turn, AMPK phosphorylates/inactivates HMG-CoA reductase (HMGR) rapidly 

inhibiting cholesterol synthesis. AMPK also activates PGC-1α which then associates with 

PPARγ to increase expression of fatty acid oxidation marker and OSBP/ORPs genes. 

Binding of hexarelin to CD36 also leads to degradation of HMGR via its association with 

insig-2 possibly through a pathway involving AMPK and OSBP/ORPs. Insig-2 also 

prevents the translocation of SREBP to the Golgi by retaining the insig-2/SCAP/SREBP 

complex in the ER. The multi-level signaling pathway activation by hexarelin results in a 

decrease in cholesterol synthesis in hepatocytes. 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 7 (Continued) 
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Figure 8 
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Figure 9 
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Figure 10 
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CHAPTER 3: General discussion, perspectives and 

conclusions 

1 Discussion  

1.1 Elucidation of the impact of CD36 on lipid metabolism 

 The major contribution of the work presented in this thesis was the demonstration of 

the profound impact that CD36 has on lipid metabolism through its interaction with 

hexarelin. Two different cell types were used to study (1) its impact on the fate of 

intracellular lipids (adipocytes) and (2) its control exerted on cholesterol synthesis 

(hepatocytes). Given its multi-ligand receptor properties, it is not difficult to appreciate the 

challenges involved in the task of elucidating the role(s) of CD36 in different tissues. CD36 

is not considered an inert protein that simply imports lipoprotein particles and LCFA into 

the cell. CD36 is rather viewed as a protein that dynamically interacts with specific ligands 

and that is capable of triggering important signaling cascades which results in important 

changes in cellular function. The use of hexarelin brought a unique approach to studying 

CD36 since it does not entirely mimic binding of ligands but nonetheless elicited 

interesting and unforeseen cellular changes. We set out to decipher the effect of hexarelin 

interaction with CD36 in cell types solely expressing CD36 and not GHS-R1a. In addition, 

the role of CD36 in these cell types was somewhat elusive and therefore provided the 

opportunity to further our knowledge of the impact of CD36 on lipid metabolism. 

1.1.1 CD36 in Adipocytes 

 The role of CD36 in adipocytes is correctly associated with the uptake of LCFA and 

their storage in the form of TG. With the finding that the absence of CD36 in adipocytes 

resulted in a 60-70% reduction of the cell’s FA uptake potential, this places CD36 as an 
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essential transporter of FA (Coburn et al., 2000).  Since GHS-R1a is not expressed in 

adipocytes, the interaction of hexarelin with CD36 could only but have an important effect 

on the outcome of intracellular lipids. 

1.1.1.1 Hexarelin reduces lipid content in adipocytes  

 Given the role of CD36 in FA uptake, the first rational effect to examine was the 

intracellular lipid content. We looked at both lipid staining and TG measurement to confirm 

our finding that hexarelin caused a net decrease in intracellular lipid content in adipocytes. 

As expected, treatment of differentiated 3T3-L1 adipocytes with troglitazone also showed a 

similar decrease in intracellular lipids (Okuno et al., 1998). Since we have previously seen 

that hexarelin increased the activity of PPARγ through its interaction with CD36, 

troglitazone was used throughout this study as a comparitive tool to evaluate the role of 

PPARγ in the cell’s response to hexarelin. Previous studies of acute administration of 

hexarelin in young dogs and in rats have shown a marked increase in food intake similarly 

to ghrelin through direct action on hypothalamic GHS-R1a (Rigamonti et al., 1999;Torsello 

et al., 1998). Since hexarelin also binds to GHS-R1a, it would be expected that similarly to 

ghrelin, administration of hexarelin would results in increase adiposity and weight gain. 

Long-term effect of hexarelin therapy on GH release was performed in humans and while 

changes in food intake were never addressed, total body fat was unchanged by hexarelin 

after 16 weeks (Rahim et al., 1998). More recently, Antonio Torsello and colleagues have 

further investigated the orexigenic potential of hexarelin in young and old rats (Bresciani et 

al., 2008). Hexarelin, at a minimal level to induce maximal stimulation of food intake, was 

chronically administered during a period of 8 weeks.  A persistent orexigenic effect was 

observed in both young and old rats due to hexarelin; however, this increase in food intake 

was not accompanied by weight gain. We had therefore shown an unexpected and direct 

effect of hexarelin on adipocyte fat content.  To ascertain whether hexarelin is capable of 

reducing adipocyte lipid content in vivo, further studies would be required; however it is 
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possible that an increase in food intake induced by hexarelin via GHS-R1a could 

counterbalance its effect on reducing adiposity via CD36.  

 The potential region of interaction of LCFA on CD36 is relatively large and has not 

been fully characterized. The putative region is based on the comparison of CD36 

ectodomain with FA binding region of M-FABP (Baillie et al., 1996). Since hexarelin 

inhibits the binding and internalization of oxLDL owing in part to its anti-atherogenic 

properties (Demers et al., 2004), the question remains whether hexarelin blocks in fact FA 

uptake in adipocytes which could result in a decrease in intracellular lipid. If we assume 

that hexarelin blocks FA uptake, hexarelin would somewhat mimic the absence of CD36. In 

CD36-deficient humans and in CD36-null animal models, the absence of CD36 results in 

marked elevation in circulating FFA but also TG plasma level (Febbraio et al., 1999;Moore 

et al., 2005;Yamashita et al., 2007). However, chronic administration of hexarelin in both 

lean and obese Zucker rats significantly decreased plasma cholesterol concentration in 

obese rats while having no effect on TG levels in both lean and obese rats (De Gennaro-

Colonna et al., 2000). In addition, 30-day treatment with hexarelin in atherosclerotic rats 

showed a marked improvement in their cholesterol profile but had no effect on the TG 

levels (Pang et al., 2010). Moreover, treating rats with hexarelin would result in an increase 

in food intake combined with a decreased capacity in FA uptake which would ultimately 

lead to an increase in TG plasma level. Given the reported effect of hexarelin on TG, an 

inhibition of FA uptake seems to be an unlikely event in the reduction in adipocyte lipid 

content following hexarelin treatment. It is possible, however, that the inhibition of FA 

uptake through CD36 triggers a compensatory mechanism to re-establish FA uptake (see 

FATP1, next section). 

1.1.1.2 Gene expression profiling: an indication of important changes in lipid 

metabolism 

 One of the first approaches to determine the effect of hexarelin on adipocytes was to 

establish a profile of genes changed by hexarelin which were then categorized according to 

their function. We chose to look at gene changes after 48 hours of treatment, at which point 
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the response and adaptation of adipocytes to hexarelin would give time for any phenotypic 

changes to occur. More than a thousand probesets were upregulated demonstrating an 

important cellular response to hexarelin; however, only those indicative of a role in lipid 

metabolism were discussed. Many gene changes due to hexarelin were paralleled to those 

in troglitazone-treated cells. However, certain interesting genes were found to be 

upregulated by hexarelin while unchanged by troglitazone (such as FAS), while 

troglitazone had a greater effect on certain genes such as aP2, adipophilin and 

carboxylesterase 3. Hexarelin increased the expression of HSL and it was shown that in 

human adipose tissue, HSL expression level was negatively correlated with adiposity 

(Nagashima et al., 2011).  Interestingly, FATP1 was also upregulated by hexarelin but not 

by troglitazone. Since CD36 and FATP1 (Lobo et al., 2007) are the major LCFA 

transporters in adipocytes, it is possible that in the event that hexarelin blocks FA uptake by 

CD36, the upregulation of FATP1 could compensate eventually for the decrease in FA 

uptake. While interpreting gene expression changes, we were well aware of its limitations. 

Undoubtedly, the use of microarray technology was an ideal primary approach to elucidate 

the downstream effect of hexarelin on mature adipocytes. Moreover, microarray 

experiments were never previously performed on hexarelin-treated cells. However, gene 

expression changes while often regarded as a causative effect on cellular function, 

expression changes can also represent a compensatory one. In addition, gene expression 

upregulation does not always imply an increase in protein level or in its activity; and 

similarly, a decrease in expression does not necessarily mean a reduction in its protein 

activity (Schena et al., 1998;Stolovitzky, 2003). For instance, activation of nuclear 

receptors are often accompanied by a decrease in expression level (as seen in this paper 

with adipocytes treated with troglitazone and a reduction in PPARγ expression) and a 

decrease in protein level, the latter due to increased protein degradation (Perrey et al., 

2001;Picard et al., 2008). The same is observed for insig-1 for which in a sterol-depleted 

environment, degradation of insig-1 protein is coupled with increased in its expression (Lee 
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et al., 2006). Ideally, as a cautionary approach, gene expression changes have to be 

sustained by enzymatic activity and in our case also by phenotypic changes.  

1.1.1.3  The influence of CD36 in the induction of mitochondrial biogenesis and 

phenotypic changes of 3T3-L1 cells into brown fat cells 

 Several genes involved in the transport of FA into mitochondria, genes involved in 

various steps of FAO, respiratory chain as well as oxidative phosphorylation were 

upregulated by hexarelin namely the muscle isoform of CPT-1 (CPT1b) and several 

subunits of ATP synthase. Although CPT-1b is also found in adipose tissue, the 

predominant isoform normally found in 3T3-L1 cells is CPT-1a (Brown et al., 1997). 

Interestingly, CPT-1b is more sensitive to malonyl-CoA (Saggerson & Carpenter, 1981) 

and this isoform expression induction might depict a change in the sensitivity to cellular 

energy supply induced by hexarelin. The observed gene expression changes were supported 

by equal changes in selected protein level. In addition, to confirm an increase in oxidative 

phosphorylation, cytochrome c oxidase activity (Complex IV of the respiratory chain) was 

measured. Adipocytes treated with either troglitazone or hexarelin resulted in a significant 

increase in the oxidative capacity of mitochondria isolated from treated cells. Along with 

the increased capacity of hexarelin-treated cells to burn fat, we looked at the expression and 

protein level of two important markers of brown fat phenotype, PGC-1α and UCP-1. Both 

markers were induced in adipocytes treated with hexarelin and troglitazone. As previously 

stated, PGC-1α plays a critical role in the initiation of the thermogenic program to induce 

oxidative metabolism and mitochondrial biogenesis (Spiegelman & Heinrich, 2004). 

Following external stimulation, mitochondrial biogenesis begins with induction of nuclear 

genes encoding mitochondrial proteins. Mitochondrial transcription factors such as Tfam, 

p43 and mtTFB escorted into the mitochondrion will activate the transcription of the few 

mitochondrial genes (13 components of the respiratory chain, 2 ribosomal RNAs and 22 

transfer RNAs) while the prohibitins stabilize newly synthesized mitochondrial proteins 

(Nijtmans et al., 2000). And since the vast majority of mitochondrial proteins are encoded 
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by the nuclear genome, a carefully orchestrated protein import complex takes care of 

transporting proteins into the mitochondrion (TIMs and TOMs). Several of these key 

components to protein import (Tims and toms), mitochondrial ribosomal proteins (MRPs) 

and prohibitin 1 and 2 were found to be upregulated by hexarelin and troglitazone. 

Prohibitins are associated with mitochondrial biogenesis and stabilization of oxidative 

phosphorylation complexes, but its expression is markedly reduced in senescence (Coates 

et al., 2001). Recently, prohibitins were also shown to be essential in cristae morphogenesis 

(Merkwirth et al., 2008). Many of the listed genes involved in mitochondrial biogenesis 

such as prohibitins, upregulated by hexarelin or troglitazone could possibly be new and 

interesting targets of PPARγ and/or PGC-1α. To confirm the gene expression profile that 

suggested an induction in mitochondrial biogenesis in treated adipocytes, we looked at 

structural characteristics of mitochondria. By electron microscopy, we were able to 

determine two important features: (1) an increase in mitochondrial size and (2) an increase 

in cristae; both indicative of an increased oxidative potential in adipocytes in response to 

hexarelin. 

 The possibility of the role of the transcriptional regulator PRDM16 in brown 

adipocyte transdifferentiation was not addressed in our studies which was published prior to 

the discovery of PDRM16 participation in this process; but given our results, PRDM16 

could potentially play a role in hexarelin’s effect since it coactivates with PGC-1α and 

PPARγ to suppress the expression of white adipocyte markers (Seale et al., 2007;Kajimura 

et al., 2008). 

1.1.1.4  In vivo confirmation of the role of CD36 in the mediation of the effect of 

hexarelin on adipocytes 

 In vivo studies demonstrated that hexarelin was capable of triggering GH release 

from the pituitary gland via its interaction with GHS-R1a (Imbimbo et al., 1994). Because 

of the opposite effect of GH and hexarelin on lipolysis as well as the various potential 

anabolic effects of GH, it was important to evaluate the overall influence of hexarelin on 
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specific mitochondrial protein markers and ultrastructure in treated adipose tissue.  In the 

context of the adipose tissue project, we were neither able to monitor food intake,  nor to 

determine the overall fat mass (such as Dual-Energy X-ray Absorptiometry or DEXA scan) 

or look at adipocyte volume in treated mice. However, protein level of ATP synthase, UCP-

1 and PGC-1a as well as analysis of mitochondrial morphology indicated that in mice, 

hexarelin was capable of inducing similar phenotypic changes in WAT. More importantly, 

the effect of hexarelin on those key proteins level was abrogated in absence of CD36 as 

seen in CD36-null mouse adipose tissue. 

 So through interaction with CD36, hexarelin was able to induce important 

phenotypic changes leading to a net decrease in intracellular lipid content by inducing the 

expression of the master regulator of mitochondrial biogenesis, PGC-1α, and by increasing 

the expression of several genes involved in various steps of FAO, in the respiratory chain 

and in oxidative phosphorylation. Although activation of PPARγ by troglitazone was 

shown to have certain similarities to the effect of hexarelin, this was the first study 

demonstrating the potential involvement of CD36 in inducing changes that pushed white 

adipocytes toward a brown-like phenotype. Figure 24 depicts the overall effect of hexarelin 

on adipocyte lipid metabolism. AMPK presented in this figure is further discussed in 

section 1.1.1.6. 
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Figure 24. The effect of hexarelin’s interaction with CD36 on lipid metabolism in 

adipocytes 

 

1.1.1.5  Role of PPARγ and PGC-1α in mediating hexarelin`s effect on mitochondrial 

function 

 Similar studies using TZDs have shown the induction of mitochondrial biogenesis 

and increase in FAO (Guan et al., 2002;Wilson-Fritch et al., 2003;Wilson-Fritch et al., 

2004). Subtle differences in the gene expression pattern between hexarelin and troglitazone 

gave rise to the possibility that not all the effects seen with hexarelin are solely explained 

by the activation of PPARγ. Indeed, using a cell reporter assay, we have previously shown 

that hexarelin was capable of activating all three subtypes of PPAR (α, β/δ and γ) 

(Avallone et al., 2006). Both PPARα and β/δ play important roles in fatty acid oxidation 
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and mitochondrial function and could potentially mediate hexarelin’s effect such as an 

increase in the expression of CPT-1b (Kersten et al., 1999;Brandt et al., 1998;Wang et al., 

2003). In addition, PGC-1α is known to associate with several other nuclear receptors that 

play a role in mitochondrial biogenesis and oxidative phosphorylation. Estrogen-related 

receptor alpha (ERRα) expression is strongly induced by PGC-1α but also requires PGC-

1α for its own activation (Huss et al., 2002;Schreiber et al., 2003). In ERRs-deficient heart, 

reduced oxidative phosphorylation gene expression and decreased ATP synthesis rate were 

observed (Huss et al., 2007). The transcription factor, Yin-Yang 1 (YY1) directly activates 

the expression of mitochondrial genes such as several subunits of ATP synthase while 

nuclear respiratory factor 1 (NRF-1) controls the expression of mtTFA (Breen et al., 

1996;Wu et al., 1999a). White and brown adipocytes share similar transcriptional programs 

but most notably they share the expression of PPARγ. Specific gene regulatory programs 

for WAT and BAT involving co-regulators might also contribute to the phenotypic 

transformation induced by hexarelin via PPARγ. Other than PGC-1α, the involvement of 

PPARs co-regulators such as co-repressors RIP140, NCoR, SMRT and even PRDM16, and 

other co-activators such as CREB, CBP/p300, SRC and TRAP220 have not been addressed 

in this study but could also have played a role in selective activation or inhibition of PPAR 

target genes.  Such an example is the activation of PPARγ by hexarelin without the rise in 

the expression of aP2 and adipophilin as seen with troglitazone. Various co-regulators for 

WAT and for BAT have been suggested to play a specific role in either adipocyte type. For 

example, steroid receptor coactivator-1 (SRC-1) promotes energy expenditure in BAT 

while SRC-2 (or TIF2 for transcriptional intermediary factor 2) stimulates TG 

accumulation (Picard et al., 2002). CBP/p300 is mainly functional in WAT and was 

recently shown to be recruited to A/B-domain of PPARγ2 (Yamauchi et al., 2002;Bugge et 

al., 2009). Two co-repressors, NCoR and SMRT, are recruited to PPARγ2 and repress the 

expression of glycerol kinase in white adipocytes (Guan et al., 2005;Yu et al., 2005). To 

determine the role of these co-regulators in the response of 3T3-L1 to hexarelin, further 

investigation is required. 
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1.1.1.6  Potential influence of hexarelin on CD36 translocation and on lipolysis 

through AMPK activation 

 Given the results combining an increase in the expression of genes involved in 

FAO, cytochrome c oxidase activity, changes in mitochondrial ultrastructure and a decrease 

in TG cellular content, demonstrating an activation of AMPK was not necessary. However, 

with today’s knowledge of the involvement of AMPK in lipolysis and in CD36 

mobilization, as well as in other aspects of adipocyte’s function, knowing whether AMPK 

was activated by hexarelin could provide a more complete picture of the events following 

hexarelin binding to CD36 (Gauthier et al., 2008;Wang et al., 2010;Wang et al., 2009). 

Indeed, along with treatments of hepatocytes with hexarelin, the level of AMPK 

phosphorylation was evaluated in adipocytes (data not shown). We detected a rapid 

phosphorylation of AMPK at its obligatory activation site, Thr-172 in treated adipocytes.  

This observation adds weight to the induction of FAO but also provided an interesting link 

with perhaps CD36 mobilization to cell surface (contributing to increasing FA uptake) and 

inhibition of HSL (linked with resistance to obesity). 

 In muscle cells, contractions or direct activation of AMPK induces the translocation 

of CD36 to the cell surface (Bonen et al., 2000;Luiken et al., 1999;Bonen et al., 2007). A 

recent study showed that translocation of CD36 due to AMPK was also possible in 

adipocytes (Wang et al., 2010). However, to date, no studies have ever reported an 

activation of AMPK following ligand binding to CD36. It is possible that in adipocytes, 

following AMPK activation by hexarelin, more CD36 proteins are translocated to the cell 

surface to increase FA uptake (hypothetically presented in Figure 24). Lipolysis was not 

addressed in our study either but given the possibility of AMPK activation by hexarelin, it 

could represent an additional downstream effect. During lipolysis, AMPK is activated by 

changes in AMP/ATP ratio due to the energy consuming reesterification process therefore 

causing AMPK to inhibit HSL (Gauthier et al., 2008). It was previously shown that HSL 

disruption had a protective effect against HFD-induced obesity (Osuga et al., 2000). The 

reesterification of FA is an important step in controlling the rate of hydrolysis and 
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excessive transport of FA outside the cell (Zambell et al., 2001). FATP4, like other 

members of its family, exhibits acyl-CoA synthetase (ACS) activity and plays an important 

role in reesterification of FA (Hall et al., 2003;Lobo et al., 2007). HSL hydrolyzes mainly 

DAG to MAG and to a lesser degree TAG to DAG; therefore, absence of HSL leads to 

accumulation of DAG (Shen et al., 2011). Interestingly, an increase in DAG intermediates 

was also observed in adipose tissue of CD36-null mice which could not be explained by a 

decrease in TG synthesis from DAG by DGAT (Coburn et al., 2000). Perhaps inhibition of 

HSL by AMPK in absence of CD36 is the key to this reported observation. If this is the 

case, then the question still remains whether hexarelin mimics an absence (or inhibition) of 

CD36.  In any event, hexarelin through activation of AMPK could potentially inhibit HSL, 

limiting lipid hydrolysis. In support of this, one of the few studies of the effect of hexarelin 

in adipose tissue reported a decrease in isoproterenol-induced lipolysis (β-adrenergic 

receptor) (Muccioli et al., 2004). However, caution must be taken on this interpretation 

since they measured the release of glycerol from cells. Because hexarelin induce a brown 

cell-like expression program, it is possible that the expression of glycerol kinase is also 

induced (as seen with TZDs), re-entering the glycerol into the FA reesterification cycle. 

 Even if the rate of lipolysis is decreased, based on our results it seems that due to 

hexarelin, imported or freed FA is redirected toward mitochondria for oxidation resulting in 

the overall net decrease in cellular lipid content. It is difficult to consolidate earlier events 

such as AMPK phosphorylation with later actions such as an increase in the expression of 

HSL and FATP4 which could simply represent compensatory mechanisms to regulate the 

initial signaling events. It is clear however that interaction of hexarelin with CD36 results 

in important changes in lipid metabolism and an increased demand in energy production, 

suggestive of fat burning conditions that could be beneficial to treating obesity.  

1.1.2 CD36 in hepatocytes 

 The biodistribution of BMIPP and IPPA, two LCFA analogs, did not show any 

difference in their uptake between liver from wild type and from CD36-null mice, 
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signifying a minimal role by CD36 in hepatic FA uptake (Coburn et al., 2000).  However, 

from the standpoint of gene expression, these studies suggest an important influence of 

CD36 on hepatic lipid metabolism. Under normal conditions, CD36 does not seem to 

participate in FA uptake. However, overexpression of hepatic CD36 stimulate LCFA 

uptake and intracellular TG accumulation similarly to what is observed in obesity and type 

2 diabetes (Koonen et al., 2007). Similarly, the expression of CD36 was increased in the 

liver of mice on a HFD and its expression was positively correlated with LCFA uptake (Ge 

et al., 2010). In contrast, CD36 accounts for 30% of total HDL uptake in cultured 

hepatocytes (Brundert et al., 2011). CD36 is also capable of internalizing oxLDL while 

possibly delaying native LDL clearance (Luangrath et al., 2008;Truong et al., 2009). 

Strong upregulation of CD36 seems however to be linked to various pathologies. In fatty 

liver, the expression of CD36 is elevated compared to normal liver while in patients with 

hepatic steatosis, hepatocytes apoptosis was found to be positively correlated with high 

CD36 expression (Greco et al., 2008;Bechmann et al., 2010). In HepG2, CD36 was 

reported to be in intracellular compartments and played a minimal role in cholesterol efflux 

(Truong et al., 2010). However, in NAFLD patients, CD36 is predominantly present on the 

plasma membrane of hepatocytes and its elevated expression is associated with insulin 

resistance (Miquilena-Colina et al., 2011). In the second paper, we have been able to 

identify an important influence on cholesterol synthesis via the interaction of hexarelin with 

CD36 involving AMPK, PGC-1α and PPARγ. 

1.1.2.1   Hexarelin and cholesterol 

 VLDL particles (containing ~50% TG and ~20% cholesterol) produced by the liver 

are eventually remodelled in the circulation into LDL particles (containing ~45% 

cholesterol and ~10% TG) following loss of TG due to LPL activity on peripheral tissues. 

LDL particles have a longer life span compared to other lipoprotein particles, and LDL-

cholesterol was considered one of the major predictors of coronary heart disease (CHD) 

(Langer et al., 1972). Today, other factors such as low HDL-cholesterol, 
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hypertriglyceridemia, hypertension, inflammation, elevated visceral adiposity are 

considered important predictors of coronary events. Cholesterol content in VLDL produced 

by the liver comes from the diet and de novo cholesterol synthesis. Statins, HMGR 

inhibitors, are first-line drugs to prevent CHD by lowering LDL-cholesterol (NCEP, 2002). 

The relationship between CD36, hexarelin and cholesterol is mainly associated with its 

impact on oxLDL uptake, HDL-cholesterol and the reverse cholesterol pathway. Indeed, 

oxLDL plasma level is elevated in CHD patients (Holvoet, 2004). While the effect of 

hexarelin against foam cell formation is well recognized, we still wondered whether a 

decrease in total cholesterol and in LDL-cholesterol levels observed in rats was solely due 

to an increase in cholesterol efflux associated with the reverse cholesterol pathway (De 

Gennaro-Colonna et al., 2000;Pang et al., 2010). More importantly, since hexarelin was 

shown to compete for the binding of oxLDL on CD36, unless the uptake of oxLDL is 

increased via other scavenger receptors, the decrease in LDL-cholesterol cannot be 

explained by an oxLDL-CD36 interaction (Demers et al., 2004).  In this second paper, we 

provided an alternative explanation to how hexarelin can possibly lower plasma LDL-

cholesterol through a decrease in hepatic de novo cholesterol synthesis. 

1.1.2.2   Activation of LKB1-AMPK by hexarelin 

 Upon activation of AMPK by an increase in AMP/ATP ratio following an increase 

in ATP spending, AMPK targets a plethora of pathways for the main purpose of reducing 

energy usage and produce readily available fuel for the cell. Fatty acid oxidation is 

increased to produce acetyl-CoA which will then be shuttle towards the TCA cycle and 

oxidative phosphorylation to produce ATP. Cell proliferation, lipid synthesis, protein 

synthesis and gluconeogenesis can be affected depending on the cell type and function. 

Hepatocytes have a higher rate of fatty acid oxidation and AMPK activity, and are a major 

site of cholesterol synthesis. Glycogen is the most readily available source of energy for 

muscles during exercise and liver during fasting. As another pathway to control energy 

usage, AMPK inhibits hepatic gluconeogenesis (Andreelli et al., 2006). Treatment of 

adipocytes with hexarelin showed a marked increase in fatty acid oxidation and an 
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activation of PPARγ in a CD36-dependent manner (Rodrigue-Way et al., 2007). Based on 

these results, we hypothesized that hexarelin would have a similar effect in hepatocytes and 

that this effect would also have a direct impact on cholesterol synthesis by means of the 

activation of AMPK.  

 While the activation of AMPK leads to CD36 translocation to the plasma membrane 

in muscle and adipose tissue, to date no reports showed that interacting with CD36 results 

in the activation of AMPK. Activation of LKB1-AMPK pathway by hexarelin binding to 

CD36, suggests a rapid shift in energy demand which explains in part the resulting increase 

in FAO. AMPK can be activated by different pathways; although not obligatory, the 

phosphorylation by LKB1 is often associated with a decrease in AMP/ATP ratio.  

 Dysregulation in the control of AMPK activity arises in different diseases or 

conditions. A decrease in AMPK activity is observed in obesity and it is mostly associated 

with development of insulin resistance and diabetes. AMPK is reduced in the heart and 

liver of genetic models of obesity while conflicting results on its activity in skeletal muscle 

have been reported (Steinberg et al., 2004;Turdi et al., 2011;Ha et al., 2011). The activation 

of AMPK by AICAR increases glucose uptake and FAO in both animal models and in 

humans, and remains an interesting therapeutic potential to bypass skeletal muscle insulin 

resistance (Bergeron et al., 2001;Koistinen et al., 2003). Metformin, used to treat type 2 

diabetes, reduces plasma glucose and lipids, and increases insulin sensitivity (Knowler et 

al., 2002). The interest in AMPK was heightened following the discovery that metformin 

increased AMPK activity providing insight to some of its beneficial effects in diabetic 

patients (Zhou et al., 2001). A recent study elucidated part of the mechanism of action of 

metformin (Xie et al., 2008). Without affecting the AMP/ATP ratio, PKCζ was shown to 

be activated by metformin and translocated to the nucleus where it phosphorylated LKB1 at 

Ser428 resulting in its nuclear export and AMPK activation. 

 The phosphorylation site on HMGR (Ser872) by AMPK was identified by Grahame 

Hardie and colleagues in 1990 (Clarke & Hardie, 1990). Phosphorylation of HMGR was 

initially thought to be associated with its degradation until it was later disproven (Zammit 
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& Caldwell, 1992). Since then, HMGR phosphorylation and degradation were mainly 

handled as two distinct events, one regulated by AMPK activity while the other by sterol 

levels, respectively. Around 70% of HMGR is phosphorylated while 30% remains active 

and the interconversion is played between the activity of AMPK and the protein 

phosphatase 2A. The resulting ratio of unphosphorylated over total HMGR impacts the 

overall HMGR activity (Ching et al., 1996;Gaussin et al., 1997). AICAR drastically 

decreases cholesterol synthesis in rat liver causing a decrease in HMGR activity to almost 

15% of its initial activity (Henin et al., 1995). Metformin via AMPK activation also 

decreased cholesterol synthesis in HepG2 cells (Zang et al., 2004). In my second paper, we 

have shown for the first time that an increase in AMPK phosphorylation resulted in both 

HMGR inhibition and degradation. Although no studies so far have shown a link between 

AMPK activity and HMGR degradation, studies on aging have shown an effect on both 

enzymes. Indeed, during aging, HMGR activity increased in ad libitum fed rats while 

AMPK activity is reportedly reduced (Marino et al., 2002;Reznick et al., 2007). In 

addition, the rate of degradation of HMGR was significantly lower in older rats resulting in 

hypercholesterolemia (Pallottini et al., 2004;Trapani et al., 2010).  

1.1.2.3   Cholesterol fate 

 While the inhibition of HMGR by AMPK is based on energy demand, the 

expression and the degradation of HMGR is considered to be primarily affected by 

intracellular sterol levels. Our results demonstrate that hexarelin caused an inhibition of 

HMGR and a marked decrease in intracellular cholesterol. Other causes for a decrease in 

cholesterol content should be considered such as cholesterol efflux from cells triggered by 

LXR-ABC transporters pathway. LXRα and LXRβ regulate the expression of genes 

involved in cholesterol efflux but also those involved in cholesterol storage, catabolism and 

excretion (Lu et al., 2001). In addition to ABCA1, the hepatic expression of ABCG5 and 

ABCG8 is increased during a high cholesterol diet by LXRα and LXRβ and are involved in 

the cholesterol catabolism into bile acids (Repa et al., 2002).  Even though PPARγ is 
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known to regulate the expression of LXRs, we have not determined the expression or 

activity of LXRs in hepatocytes in response to hexarelin. Based on these previous reports, a 

decrease in intracellular cholesterol through LXR-ABC transporters seemed unlikely since 

efflux occurs in excess of cholesterol while treatment of hepatocytes with hexarelin resulted 

in the inactivating phosphorylation of HMGR. A recent study reported that in response to 

energy depletion, dietary fuel absorption is activated mainly through the action of AMPK 

aimed at phosphorylating and activating steroid receptor coactivator-2, SRC-2 (Chopra et 

al., 2011). In adipocytes, SRC-2 is associated with TG accumulation (Picard et al., 2002). 

However, in a liver-specific manner, the AMPK-SRC-2 axis involving bile salt export 

pump (BSEP), ABCG5 and ABCG8 stimulate bile acid secretion into the gut. Bile acids are 

necessary for the excretion of cholesterol but also for dietary lipid uptake in the gut. We 

cannot therefore exclude the involvement of LXRs in the hepatocyte’s response to 

hexarelin. And since bile acids are synthesized from cholesterol, we currently do not know 

the role that they might play in reducing intracellular cholesterol.  

1.1.2.4  The impact of increased insig-2 expression  

 The decrease in HMGR protein combined with an increase in its ubiquitination 

coincides with the decrease in intracellular cholesterol content due to hexarelin. These 

results suggested that hexarelin in addition to inhibiting HMGR activity, unexpectedly 

caused its degradation. The multitude of reports demontrating that the interaction of insig 

with HMGR is the committed step in HMGR degradation and our results showing an 

increase in the expression of insig-2 due to hexarelin prompted us to further investigate its 

interaction with HMGR. Based on their role in sequestering SREBPs/SCAP in the ER, 

changes in the expression of insig-1 or insig-2 have been associated mostly with alterations 

in the expression of genes involved in TG or cholesterol synthesis; however, the impact on 

their interaction with HMGR in those instances was not always considered. Insigs have 

overlapping functions by interacting with HMGR and with SCAP. In hepatic insig-1/-2 

double KO mice, TG and cholesterol accumulated in the liver owing to elevated levels of 

nuclear SREBPs and to decreased rate of  HMGR degradation (Engelking et al., 2005).One 
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study using siRNA inhibition of insigs showed that insig-1 had an important role in 

regulating SREBPs activity while insig-2 silencing had a less significant effect on SREBP 

target genes in human hepatoma cell lines, suggesting a different involvement of insig-2 in 

lipid metabolism (Krapivner et al., 2008).  An increase in the expression of insig-1 is 

consistent with an increase in the activity of SREBPs since it is a known target of SREBPs; 

however, insig-2 expression regulation is more elusive (Janowski, 2002). Both human 

insig-1 and insig-2 expression are increased in response to insulin. Insulin promotes the 

phosphorylation of SREBP-1c and its association with COPII vesicles therefore increasing 

the expression of insig-1 (Yellaturu et al., 2009). Insulin also promotes the phosphorylation 

of SAP1a recently found to stimulate the expression of insig-2 (Fernandez-Alvarez et al., 

2010). However because of their differences in stability, they can play different roles in 

modulating cholesterol metabolism. As stated previously, insig-2 is more stable than insig-

1 and is not degraded in presence of sterols. Therefore unlike insig-1, its expression level is 

paralleled by its protein level and upregulation of insig-2 can have a direct impact on the 

fate of SREBP and of HMGR (Lee & Ye, 2004;Gong et al., 2006). In a hyperlipidemic 

setting, overexpression of insigs in obese Zucker diabetic rats and fasted/refed normal rats 

showed a marked decrease in liver steatosis and hyperlipidemia (Takaishi et al., 2004). 

Interestingly, activation of either PPARγ or PPARα using respectively troglitazone or WY 

14,643, resulted in an increase expression of insig-1 and insig-2 after 6 hours of treatment; 

with troglitazone having the strongest effect on insig-2 expression in rat hepatoma cells, 

Fao (Konig et al., 2009). The increase in expression of insig-1 or insig-2 was followed by a 

reduction in nuclear SREBP-1 after 24 hours along with a decrease in intracellular TG and 

marked decrease in VLDL-secreted TG. Troglitazone was also shown to lower cholesterol 

synthesis by reducing nuclear SREBP-2 in both HepG2 and Caco-2 but its role in HMGR 

degradation was never assessed (Klopotek et al., 2006). We detected a similar effect with 

hexarelin in which insig-2 expression was rapidly increased.  
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1.1.2.5   Role of PPARγ and PGC-1α in the recruitment of insig-2 to HMGR 

 Our previous studies indicated that hexarelin activated PPARγ in both macrophages 

and possibly adipocytes. In addition, troglitazone was reportedly shown to increase insig-2 

expression, to influence cholesterol synthesis and to induce expression of HMGR. Hence, 

we also looked at the effect of troglitazone on insig-2 recruitment to HMGR. Indeed, 

treatment of hepatocytes with troglitazone also resulted in the recruitment of insig-2 to 

HMGR. However, troglitazone is known to also activate AMPK (LeBrasseur et al., 2006). 

Therefore, to assure that the effect was dependent on PPARγ, cells were treated with 

hexarelin in combination with PPARγ antagonist, GW9662. We found that PPARγ in 

addition to regulating the expression of HMGR was also capable of possibly inducing its 

degradation. The involvement of PPARγ in promotiong insig-2 recruitment to HMGR due 

to hexarelin coincided with the activation of AMPK, the recruitment of AMPK to PGC-1α, 

and the recruitment of PGC-1α to PPARγ. Although we cannot fully describe the intricate 

steps that lead to HMGR degradation, it is clear that there is an important interplay among 

hexarelin, CD36, AMPK, PGC-1α and PPARγ involved in, and therefore capable of 

influencing cholesterol synthesis.  

1.1.2.6   The dual effect of hexarelin/CD36 on PPARγ activity 

 We observed that PPARγ1 was activated in our luciferase assay experiments 

performed on hexarelin-treated hepatocytes. Assuming that activation of PPARγ was 

ligand-independent, we looked at 2 different kinases known to affect PPARγ activity: Akt 

for its activation and Erk for its inhibition (Adams et al., 1997;Feige et al., 2006;Demers et 

al., 2009). Phosphorylation level of both kinases was affected by hexarelin. As stated in 

Section 8.3 (page 80), Erk inactivates PPARγ1via phosphorylation on Ser84 while Akt 

activates PPARγ through phosphorylation on a yet unknown site.  Although we did not 

confirm Akt actions on PPARγ1, pAkt was found to be increased by hexarelin. Erk was 

rapidly dephosphorylated (inactivated) by hexarelin and was maintained in such a state 
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beyond 60 minutes. This inactivation of Erk resulted in the reduction of the inhibitory 

effect exerted on PPARγ1 as shown by a rapid and prolonged dephosphorylation of Ser84 

and an increase in PPARγ1 activity. Surprisingly, a previous study using EP80317 (another 

GHRP analog) known to bind CD36, showed a slower increase in Erk phosphorylation in 

treated macrophages which express both CD36 and GHS-R1a (Bujold et al., 2009). It was 

demonstrated that EP80317 did not displace ghrelin on GHS-R1a. However, a previous 

study demonstrated a competition between EP80317 and ghrelin on cells expressing GHS-

R1a (Muccioli et al., 2001). Assuming that EP80317 only binds to CD36, perhaps the 

differences observed between the effects of hexarelin and EP80317 on the phosphorylation 

level of Erk lie in the cell type used. Since hexarelin would bind to GHS-R1a and to CD36 

on macrophages, experiments using EP80317 on hepatocytes would have to be performed 

to compare. Only one study so far looked at the effect of hexarelin on Erk in the brain, 

which expresses both GHS-R1a and CD36 (Brywe et al., 2005). These investigators found 

no changes in phosphorylation of Erk in response to hexarelin. In macrophages expressing 

both GHS-R1a and CD36, binding to either receptor was shown to have opposite effects on 

phospho-Erk. We recently demonstrated that treating macrophages with ghrelin caused an 

increase in phospho-Erk (Demers et al., 2009). While this activation could result in the 

inactivation of PPARγ, we found that Dok-1 associated to GHS-R1a restrains the inhibitory 

potential of Erk. Therefore, it would be interesting to determine the fate of phospho-Erk 

and phosphorylation of PPARγ on Ser84 in hexarelin-treated macrophages. In our second 

paper, we demonstrate that in the absence of GHS-R1a, the binding of hexarelin to CD36 in 

hepatocytes causes a decrease in phospho-Erk which can no longer phosphorylate PPARγ 

at Ser84. In addition, we indirectly demonstrated that following dephosphorylation of Erk, 

PPARγ is activated when compared to PPARγS84A mutant.  

 PPARγ2, mainly found in adipocytes, is more responsive to insulin, glucose and 

lipids and plays a major role in lipid accumulation (Werman et al., 1997). While PPARγ1 is 

the predominant form in hepatocytes, oleic acid or insulin were found to increase the 

expression of PPARγ2 in cultured mouse hepatocytes (Edvardsson et al., 2006). Normal 
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mice fed a HFD had an increased expression of PPARγ2 in the liver (Vidal-Puig et al., 

1996). Hepatocytes stably expressing PPARγ2, showed phenotype similar to hepatic 

steatosis with increase in SREBP-1 activity, expression of FAS and lipid accumulation 

(Schadinger et al., 2005). However, treatment of NASH patients with pioglitazone showed 

marked improvement of liver fat content demonstrating the beneficial effect of activating 

PPARγ (Promrat et al., 2004). While we showed an increase in the expression of PPARγ in 

hepatocytes treated with hexarelin, we did not determine whether the expression of 

PPARγ2 was induced.  

 In parallel with PPARγ activation through its dephosphorylation at Ser84, we found 

that AMPK was rapidly recruited to PGC-1α following treatment of hepatocytes with 

hexarelin, adding to PPARγ`s effect on insig-2 recruitment to HMGR. It might seem like a 

paradox that while AMPK inhibits gluconeogenesis it also activates PGC-1α, a key player 

in gluconeogenesis; however, AMPK inhibits gluconeogenesis primarily by targeting HNF-

4, leaving the active PGC-1α to co-activate other targets involved in mitochondrial 

biogenesis and FAO (Hong et al., 2003). 

 Finally, with the observation that hexarelin also increased phosphorylation of Akt, it 

seems unlikely that Akt would target and inactivate PGC-1α (Section 8.2.3.1, Figure 18A, 

page 80) since the inhibitory phosphorylation on Ser570 would result in its acetylation by 

GCN5 which in turn would prevent phosphorylation by AMPK and recruitment to PPARγ 

(Li et al., 2007b;Xiong et al., 2010). 

1.1.2.7  Possible mechanism of action of hexarelin in its inhibition of cholesterol 

synthesis  

1.1.2.7.1 Cholesterol trafficking 

 Taking into account the rigorous mechanism that regulates cholesterol synthesis 

which is governed mostly by cholesterol and sterol levels in the ER, we wondered whether 

other factors were able to disturb this elaborate equilibrium between cholesterol synthesis 
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and HMGR degradation. Newly synthesized cholesterol moves rapidly from the ER to the 

plasma membrane, to extracellular acceptors or to the Golgi with a half-time of 18 minutes 

(Baum et al., 1997). Any event disturbing this trafficking would result in rapid 

accumulation of cholesterol in the ER surpassing its 5 mol% threshold and triggering 

cholesterol synthesis inhibition mechanisms (Sokolov & Radhakrishnan, 2010). Possible 

activation of other pathways involving cholesterol or intermediates such as isoprenoids, bile 

acids, steroid hormones and vitamin D would result in a decrease and not an accumulation 

of cholesterol. Due to the hydrophobic nature of cholesterol molecules, they require 

specific transporters in order to be move to other organelles following synthesis. The 

oxysterol-binding protein (OSBP)-related proteins (ORPs) became interesting candidates 

for hexarelin’s effect on cholesterol synthesis. ORPs are members of a large family of lipid 

transfer proteins possessing a core lipid binding domain with a hydrophobic pocket that can 

accommodate a single lipid molecule shielded from the aqueous environment. ORPs are 

involved in sterol signaling and sterol transport functions between lipid rafts and various 

intracellular compartments such as ER and Golgi; possibly having distinct effects in 

cholesterol metabolism (Raychaudhuri & Prinz, 2010). The location, the regulation and the 

mode of action for many of these ORPs are still unknown. 

 As stated in the discussion of my second paper, recent studies demonstrated the 

impact that regulation of ORPs might have on cholesterol mobilization and on HMGR 

activity (Hynynen et al., 2005;Wang et al., 2005;Ngo & Ridgway, 2009;Nhek et al., 2010). 

Probing into this field of research, we wondered if gene expression of some ORPs could be 

influenced by hexarelin or troglitazone. Although not all, the expression of some ORPs was 

rapidly upregulated by hexarelin and to some degree by troglitazone. Since changes in the 

rate of HMGR degradation occurs even earlier than 5 hours, hexarelin might also influence 

their activity; perhaps inactivation of Erk or activation of AMPK can have a repercussion 

on the export of cholesterol from the ER. 

 Conceivably, the key to hexarelin’s effect on cholesterol synthesis may involve one 

of these ORPs and could even impact its activity. Nonetheless, we do know that hexarelin 
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and troglitazone are capable of modulating the expression of at least a few of these 

candidates. Future knowledge of their function and their influence on lipid trafficking could 

eventually single out specific candidates to be studied. Although we cannot be certain this 

is the mechanism by which hexarelin acts, it is certainly an interesting avenue to further 

explore.  

1.1.2.7.2  Possible hypoxic state? 

 The combined observations that hexarelin triggers (1) a rapid AMPK 

phosphorylation, (2) a rapid increase in insig-2 expression, (3) a recruitment of insig-2 to 

HMGR, along with reports of similar effect of troglitazone on insig-2 expression and 

reduce cholesterol synthesis, suggest a complex interplay among these key players in lipid 

metabolism, which we attempted to elucidate. A potential effect that we have not addressed 

in our paper was the link between AMPK activation and hypoxia. Several reports have 

shown that hypoxia activates AMPK in response to increase in ROS but independently of 

AMP/ATP ratio (Laderoute et al., 2006;Emerling et al., 2009). However, while it can be 

damaging in certain pathologies or during exhaustive training, production of ROS during 

moderate exercise is necessary and beneficial for mitochondrial adaptation to increased 

energy demand. An interesting study depicted the effect of antioxidant in young men 

subjected to moderate exercise and on ROS, known to be increased during hypoxia 

(Gomez-Cabrera et al., 2008). While antioxidants may be beneficial in aging and metabolic 

diseases, vitamin C in these young subjects caused a reduction in the exercise-induced 

expression of key regulators of mitochondrial biogenesis such as PGC-1α and mtTFA and 

reduced VO2 max.  

 Given that the synthesis of cholesterol requires a large amount of oxygen, the 

shutdown of this pathway is obligatory to prevent accumulation of sterol intermediates such 

as lanosterol but this occurs without inhibiting SREBP activity (Nguyen et al., 2007). ROS 

has been suggested to possibly prevent degradation of HIF-1α (Chandel et al., 1998). As 

previously mentioned in section 9.2.2, HIF-1α escapes degradation and stimulates 
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degradation of HMGR while increasing HMGR expression via binding to HRE on its 

promoter region (Pallottini et al., 2008). Lanosterol has an affinity for HMGR and therefore 

specifically targets HMGR degradation which explains the induction of HMGR degradation 

during hypoxia without affecting SREBP activity. During hypoxia, the expression of both 

insig-1 and insig-2 was dependent on HIF-1α and was observed in combination with 

HMGR degradation (Nguyen et al., 2007;Kayashima et al., 2011). We observed a time-

dependent, multi-level effect of hexarelin involving  (1) a rapid phosphorylation of AMPK, 

(2) an increase in the expression of insig-2, (3) a possible sequestration of SREBP (via 

SCAP), (4) but also a recruitment of insig-2 to HMGR which was shown to be dependent 

on CD36. With the exception of changes in SREBP activity and the involvement of CD36, 

all the other events are seen in hypoxia including increase in PGC-1α to induce 

mitochondrial biogenesis. However, unlike hypoxia, hexarelin did not influence the 

expression of insig-1. Interestingly, in a hypoxic state, the expression of CD36 in human 

retinal pigment epithelial cells is increased by HIF-1α as an adaptive response 

(Mwaikambo et al., 2009). However, in hepatocytes (with the exception of 25-HC), we did 

not see an increase in the expression of CD36 due to hexarelin.  Despite that, it is possible 

that the increased in FAO might trigger a hypoxic state similar to what is seen in moderate 

exercise and stimulating mitochondrial biogenesis. Looking at the protein level of HIF-1α 

for example in hepatocytes treated with hexarelin could determine whether hypoxia plays a 

role in the decrease in intracellular cholesterol.  

2 Perspectives 
 The results generated during my graduate studies have led to several new and 

interesting mechanisms of action of hexarelin through its association with CD36. 

Nonetheless, while some questions are left unanswered, our results give rise to many other 

possible interesting projects. 
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2.1 Studies to complement our results 

 In adipocytes, we have shown that through CD36, hexarelin causes (1) an increase 

in the expression of genes involved in mitochondrial biogenesis, FAO and oxidative 

phosphorylation, (2) an induction of brown adipocyte phenotype, and (3) a decrease in lipid 

content. In adipocytes, secretion of some adipokines can have important impact on 

inflammation and lipid homeostasis. CD36 has been shown to play a role in the 

inflammatory response in adipocytes and macrophages in presence of oxLDL, LPS and 

serum amyloid A (Baranova et al., 2010;Kennedy et al., 2011). However, blocking ligand 

interaction with a CD36 peptide based on hexarelin’s binding site reduced the inflammatory 

response mediated by JNK and to a lesser degree Erk. It would be interesting to look at the 

expression of TNF-α, resistin, leptin and various interleukins as well as anti-inflammatory 

adiponectin and SFRP5 in adipocytes treated with hexarelin. Since hexarelin blocks 

binding of pro-inflammatory ligands, we could expect a reduced inflammatory response. In 

addition to regulating FAO, AMPK also affects lipolysis; it would be interesting to measure 

the rate of lipolysis, and the levels of phosphorylation of HSL, perilipin and ATGL as well 

as their expression in hexarelin-treated adipocytes. A previous report indicated that 

hexarelin decreased lipolysis in rat adipocytes which was measured by glycerol release 

(Muccioli et al., 2004). Due to the brown fat phenotype induced by hexarelin it is possible 

that glycerol kinase might be upregulated. Therefore, using [1-14C]palmitate incorporated 

into TG then measuring labeled-FA released from cells and 14CO2 produced from FAO 

might provide further knowledge on the capacity of hexarelin to influence lipolysis. A full 

metabolic profile on hexarelin-treated mice would provide further insight on its overall 

physiological impact. However, since hexarelin binds to both CD36 and GHS-R1a, results 

could be difficult to attribute solely to its binding to CD36. Generation of a specific CD36 

hexarelin derivative such as EP 80317 would be a better study candidate. Since we have 

seen a reduction in adipocyte TG content, DEXA scanning could be used to measure total 

body composition and fat content following hexarelin treatment. 
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 One important question that remains unanswered is whether hexarelin blocks fatty 

acid uptake in adipocytes. A possible blockage by hexarelin in FA uptake could have an 

important impact on lipid homeostasis. Therefore, simple approaches are accessible to 

determine hexarelin’s influence on lipid uptake. Iodine 125 fatty acid analogs such as 

BMIPP are readily used to monitor FA uptake and have been extensively used for this 

purpose (Coburn et al., 2000). Alternatively, the use of fluorescent FA analogs coupled 

with a quench technology such as QBT™ Fatty Acid Uptake Assay by Molecular Devices 

(Sunnyvale, California, United States) have been used on 3T3-L1 adipocytes and offer a 

rapid, one-step detection of the level of FA uptake in response to hexarelin. 

 In hepatocytes, we have observed (1) phosphorylation of AMPK, (2) a decrease in 

intracellular cholesterol, (3) a recruitment of insig-2 to HMGR dependent on AMPK and 

PPARγ, (4) a recruitment of AMPK to PGC1α and PGC-1α to PPARγ, (5) 

dephosphorylation of Erk resulting in activation of PPARγ and (6) increased expression of 

selected ORPs. It would be of great interest to determine the precise role of ORPs in 

regulating hexarelin’s effect on HMGR activity, and to determine if AMPK targets 

members of this family. Cholesterol distribution within the cell would also provide insight 

as to whether cholesterol trafficking is affected by hexarelin mainly if it accumulates in the 

ER. Also as stated previously, whether hypoxia could play a role in the response of 

hepatocytes to hexarelin would be interesting to evaluate.  

 Since many studies on the role of CD36 in FA uptake and its translocation 

following activation of AMPK have been performed in skeletal muscles, it would certainly 

be appealing to look at the effect of hexarelin on muscle performance and skeletal muscle 

cell function. 

2.2 Signaling cascade(s) involving the binding of hexarelin to 

CD36 

 Although we have identified AMPK and Erk as downstream kinases involved in 

CD36 response in hepatocytes, in macrophages other kinases such as JNK and p38 are also 
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involved in CD36 signaling in response to oxLDL and are known to target PPARγ.  

Therefore, it would be interesting to look at the response of these kinases following 

treatment with hexarelin. As presented earlier, Src family kinases are known to associate 

with CD36 and are activated in response to FA and oxLDL. The association of Src with 

CD36 is important in inflammation and foam cell formation as well as gustatory cell 

signaling in response to dietary fat. Interestingly, loss of Fyn resulted in the increase in 

FAO in adipose tissue and skeletal muscle (with less in liver) indicating Fyn as a negative 

regulator of FAO (Bastie et al., 2007). Recently, studies done by the same group showed 

that Fyn targets LKB1 (tyrosine 261 and 365) trapping LKB1 in the nucleus where it is 

inactive.  SU6656, a Src inhibitor, rapidly increases energy expenditure, fatty acid 

oxidation, and increases AMPK phosphorylation at Thr-172 in wild-type mice. Inhibition 

of Fyn causes LKB1 to relocate to the cytosol and target AMPK for activation (Yamada et 

al., 2010). How hexarelin and CD36 would affect Fyn’s activity is uncertain. Nonetheless, 

with our finding that hexarelin triggers FAO and that Fyn is known to bind to CD36, it 

would certainly be of great interest to determine how Fyn (or other Src kinases) would react 

in presence of hexarelin. A possible role of Src kinase in hexarelin’s effect on lipid 

metabolism would provide us with a more concrete mechanism of action between CD36 

and FAO in adipocytes.  

2.3 Other pathways affected by CD36/hexarelin interaction 

 Binding to CD36 has the potential to impact several pathways. In the presence of 

oxLDL or TSP-1, in addition to increasing inflammation, CD36 impairs insulin signaling, 

induces apoptosis and influences cell proliferation (Kennedy et al., 2011). Hexarelin 

suppressed cardiac fibroblast and VSMC proliferation while inhibiting cardiomyocyte 

apoptosis following heart failure in rats (Xu et al., 2007;Pang et al., 2010;Pang et al., 

2004;Xu et al., 2005). Depending on the cell type, ghrelin can have a similar effect. In rat 

hippocampal progenitor cells, hexarelin and ghrelin showed increased cell proliferation; 

however only hexarelin had anti-apoptotic effect on these cells (Johansson et al., 2008). 
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Since AMPK inhibits protein synthesis and cell proliferation it would be interesting to see 

if hexarelin via CD36 plays a role in these pathways. 

2.4 Lipid rafts and CD36  

 Cholesterol is an important component in lipid rafts and caveola that helps to 

maintain caveolar structure intact and components together. Cholesterol depletion results in 

the disassembly of the rafts and their proteins such as CD36 and has been shown to inhibit 

FA uptake (Covey et al., 2007;Ehehalt et al., 2008). Therefore, since hexarelin reduces 

intracellular cholesterol, it would be important to determine if this could impact cholesterol 

distribution to plasma membrane and FA uptake. In absence of caveolin-1, CD36 is no 

longer present on the cell surface while in presence of CD36, caveolin-1 is not longer a 

target of Src kinases (Ring et al., 2006). Thus, given that there is an inter-relationship 

among caveolin-1, Src kinases and CD36 it would be interesting to investigate the effect of 

hexarelin on the presence of CD36 in lipid rafts. Since AMPK induces translocation of 

CD36 to plasma membrane even in adipocytes, determining the distribution of CD36 in 

response to hexarelin would be important. However, one report showed that in stimulated 

muscle, inhibition of Erk using PD-98059 abolished the translocation of CD36 and increase 

in FA uptake following contractions (Turcotte et al., 2005). Therefore, determining whether 

hexarelin affects FA uptake through activation of AMPK or inhibition of Erk would 

provide further insight on its impact in adipocyte lipid metabolism. 

2.5 The impact of hexarelin on lipid metabolism mediated by 

other nuclear factors 

 We previously reported that hexarelin also activated PPARα and β/δ which are also 

involved in regulating lipid catabolism (Avallone et al., 2006). Fatty acids and their 

derivatives activate PPARα which plays a major role in FAO, gluconeogenesis, lipid 

transport and ketogenesis in the liver.  Recently, 1-palmitoyl-2-oleoyl-sn-glycerol-3-

phosphocholine (16:0/18:1-GPC) was identified as the physiologically relevant endogenous 
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PPARα ligand synthesized from DAG and CDP-choline by choline-

ethanolaminephosphotransferase-1 (CEPT1) (Chakravarthy et al., 2009). The PPARα-

dependent gene expression, at least in the liver, is dependent on the expression of FAS 

which leads to production of DAG. Since in adipocytes, the absence of CD36 results in the 

accumulation of DAG perhaps hexarelin mimics a similar event by increasing FAS 

expression, by increasing DAG levels and indirectly increasing synthesis of 16:0/18:1-GPC  

which in turn activates PPARα. 

 Agonists of AMPK and of PPARβ/δ induced the expression of metabolic genes but 

also drastically increased exercise endurance even in sedentary mice (Narkar et al., 2008). 

Moreover, in adipocytes, PPARβ/δ selectively activates genes involved in fatty acid 

oxidation and energy uncoupling (Wang et al., 2003). Since PGC-1α can also be recruited 

to other nuclear receptors in response to activation by AMPK, it would be interesting to 

determine if hexarelin can also trigger those recruitments and influence the activity of 

PPARα and PPARβ/δ in adipocytes and hepatocytes. 

3 Conclusions 

 The World Health Organization estimates that as of 2008, 1.5 billion adults 

worldwide were overweight with 500 million being clinically obese (body mass index equal 

to or greater than 30 kg/m2). In 2010, approximately 43 million children under the age of 

five were overweight. Obesity can lead to complications associated with type 2 diabetes, 

cardiovascular and fatty liver diseases. Healthy diet and exercise still remains the best 

approach to reducing weight. Despite that knowledge, lifestyles are difficult to modify. 

Research is aimed at providing further insight to factors leading to obesity and related 

complications and finding possible alternatives to reversing obesity. In addition to 

decreasing foam cell formation and atherosclerotic plaque area, the interaction of hexarelin 

with CD36 also reduces lipid content in adipocytes, induces fatty acid oxidation; and in 

hepatocytes, hexarelin decreases intracellular cholesterol by inhibiting HMGR activity and 

stimulating the recruitment of insig-2 to HMGR, the committed step in HMGR 
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degradation. Although the use of a CD36-specific synthetic peptide would be preferable, 

our results certainly have contributed to further the knowledge of the impact that this 

interaction has on lipid metabolism. To determine the beneficial role it might have on 

reducing obesity and improving circulating lipid profile and body composition, further in 

vivo investigation is required. In conclusion, the ligand-mediated manipulation of CD36 

may provide a useful alternative approach to the modification of lipid metabolism. 
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