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Abstract

We derive conditions that must be satisfied by the primitives of the problem in order for

an equilibrium in linear Markov strategies to exist in some common property natural

resource differential games. These conditions impose restrictions on the admissible

form of the natural growth function, given a benefit function, or on the admissible

form of the benefit function, given a natural growth function.
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1 Introduction

For some differential games, it can be shown that there exist equilibrium decision rules

that are linear in the current value of the state variables. These types of strategies, called

linear Markov strategies, are attractive because of their simplicity and ease of interpretation.

They also greatly facilitate the computation of the equilibrium and of its properties. For

these reasons, the analysis is often restricted to this class of equilibria, when they exist.

Notable examples in common property resource games are Clemhout and Wan [1], Lehvari

and Mirman [5], Plourde and Yeung [7], Fischer and Mirman [3, 4], Long and Shimomura

[6] and Dockner et al. [2].

The use of linear Markov strategies is however limited by the restrictions that must

be imposed on the primitives of the model in order for such an equilibrium to exist. In

this paper, we derive necessary conditions to the use of linear Markov strategies in natural

resource differential games.

The model is presented in section 2. In section 3, we derive restrictions that must be

imposed on the natural growth function, given the frequently assumed constant elasticity

utility function. In section 4, we derive restrictions that must be imposed on the utility

function, given a specific natural growth function. In section (5), we briefly discuss an

extension to the case where benefit is derived from the remaining resource stock as well as

the flow of consumption. We end with some concluding remarks in section 6.

2 The model

Consider a natural resource that is commonly owned and exploited by n economic agents.

Denote by x(t) the stock of the resource at time t and by ci(t) the rate of harvest of agent

i, i = 1, . . . , n. If g(x(t)) is the natural growth function of the resource stock, then the state

variable x(t) evolves according to the differential equation

ẋ(t) = g(x(t)) −
n∑

i=1

ci(t). (1)
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It is assumed that agent i derives an instantaneous net benefit u(ci(t)) from his harvest, with

u′(ci(t)) > 0 and u′′(ci(t)) < 0.

By assumption, we restrict attention to equilibria in stationary linear Markov strategies.

Stationary Markov strategies in this context are decision rules that specify an agent’s harvest

rate as a function of the current resource stock: ci(t) = φi(x(t)). A linear strategy for agent

i is a strategy of the form φi(x(t)) = δix(t), with δi > 0 a constant.

An equilibrium in linear Markov strategies, if it exists, will necessarily have the property

that a best response of agent i to linear strategies being played by each of his n− 1 rivals is

also a linear strategy. The question then is: What are the minimal restrictions that need to

be put on the primitives of the problem (the natural growth function g(x(t)) and the utility

function u(ci)) in order for this property to be satisfied?

At equilibrium it will be the case that, taking as given the vector of decision rules φj(x) =

δjx, j �= i of his (n − 1) rivals, agent i’s own decision rule, ci = φi(x), maximizes

∫ ∞

0

e−ritu(ci)dt (2)

subject to

ẋ = g(x) − ci − x
∑
j �=i

δj (3)

x(0) = x0 given (4)

ci ≥ 0, lim
t→∞

x(t) ≥ 0, (5)

where ri is agent i’s discount rate.

The current value Hamiltonian associated to this problem is

H(x, ci, λi) = u(ci) + λi[g(x) − ci − x
∑
j �=i

δj], (6)

where λi is the shadow value of the resource stock for agent i.

An equilibrium must satisfy, for i = 1 . . . , n, the following set of necessary conditions, in
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addition to (3) and (4):

[u′(ci) − λi]ci = 0, u′(ci) − λi ≤ 0, ci ≥ 0 (7)

λ̇i

λi

= ri − g′(x) +
∑
j �=i

δj (8)

lim
t→∞

e−ritλix = 0, lim
t→∞

e−ritλi ≥ 0 lim
t→∞

x(t) ≥ 0. (9)

Assume φi(x) = δix to be a solution, with δi > 0. Then, for any x > 0, it will be the case

that ċi = δiẋ and hence

ċi

ci

=
ẋ

x
. (10)

It also follows that (3) can be rewritten as

ẋ

x
=

g(x)

x
−

∑
j �=i

δj − δi. (11)

Furthermore, from (7) and (8), along an interior solution,

ċi

ci

=
1

η(ci)

[
g′(x) −

∑
j �=i

δj − ri

]
, (12)

where η(ci) is the elasticity of marginal utility1, given by

η(ci) =

[
−ciu

′′
(ci)

u′(ci)

]
. (13)

Therefore, substituting from (11) and (12) into (10), we find that the following condition

must be satisfied in order for ci = δix to be a best response:

1

η(δix)

[
g′(x) −

∑
j �=i

δj − ri

]
−

[
g(x)

x
−

∑
j �=i

δj − δi

]
= 0, (14)

1The reciprocal, 1/η(ci), can be interpreted as the instantaneous elasticity of intertemporal substitution.
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where δi and the δj’s are constants that remain to be determined.

It follows that, for any given utility function u(ci), the growth function g(x) must satisfy

the following first-order linear differential equation in x:

xg′(x) − η(δix)g(x) =

[∑
j �=i

δj + ri

]
x −

[∑
j �=i

δj + δi

]
η(δix)x. (15)

Alternatively, given a growth function g(x), the marginal utility function u′(ci) must satisfy

the following first-order linear differential equation in ci:

[
g(ci/δi)

(ci/δi)
−

∑
j �=i

δj − δi

]
ciu

′′(ci) +

[
g′(ci/δi) −

∑
j �=i

δj − ri

]
u′(ci) = 0. (16)

3 Admissible growth functions, given a utility function

Typically, in this type of problem, attention is restricted to the class of utility functions that

exhibit a constant elasticity of marginal utility. Denoting by θ > 0 this elasticity, the utility

function may then take the form:

u(ci) =
c1−θ
i

1 − θ
(17)

or

u(ci) = ln ci, (18)

which is the limiting case of (17) for θ = 1.2

In that case, η(ci) = θ, a constant, and (15) has as a unique general solution:

g(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

[
ri − θδi + (1 − θ)

∑
j �=i

δj

]
x

1 − θ
+ kxθ if θ �= 1

(ri − δi) x ln x + kx if θ = 1 ,

(19)

where k is the constant of integration.

2A more general representation of this utility function is u(ci) = a(c1−θ
i )/(1− θ) + b or u(ci) = a ln ci + b

for θ = 1. In the present context, there is no loss of generality in setting a = 1 and b = 0.
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Therefore, given a utility function of the form (17) or (18), a decision rule of the form

φi(x) = δix will be a best response to decision rules of the form φj(x) = δjx, j �= i, on the

part of i’s n − 1 rivals, only if the growth function is of the form:

g(x) =

⎧⎪⎪⎨
⎪⎪⎩

αx + βxθ if θ �= 1

αx + βx ln x if θ = 1 .

(20)

Substituting from (20) and (17) or (18) into (15), we get the following system of n

equations :

θδi + (θ − 1)
∑

j �=i δj − ri − (θ − 1)α = 0 if θ �= 1

δi = ri − β if θ = 1

(21)

which determines the constant equilibrium values of δi, i = 1, . . . , n. In particular, with

identical agents (i.e., ri = r, i = 1, . . . , n), the symmetric equilibrium is given by

δ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

r + α(θ − 1)

nθ − (n − 1)
if θ �= 1

r − β if θ = 1 .

(22)

The class of functions in (20) exhibits desirable properties for a natural growth function

when the parameter values are restricted to α ≥ 0, β < 0 and θ ≥ 1 (or α < 0, β > 0 and

0 < θ < 1). It is then strictly concave, with g(0) = 0 and g(x̄) = 0, where x̄ = (−α/β)
1

θ−1

in the case of θ > 1 (or 0 < θ < 1) and x̄ = e−α/β in the case of θ = 1.3 The stock level x̄

constitutes a stable steady-state in the absence of harvesting of the resource and captures

the idea of the natural carrying capacity of the environment.

A major drawback however is that unless we restrict the growth function to β = 0, it

must depend explicitly on a parameter of the utility function, namely θ, if the decision rule

φi(x) = δix is to be a best response to φj(x) = δjx, j �= i. This also means that unless β = 0

3Imposing α ≥ 0, β ≤ 0 and θ ≥ 1 (or α < 0, β > 0 and 0 < θ < 1) in fact guarantees the sufficiency of
conditions (7), (8) and (9). Note that when α = β = 0, we have the case of a non renewable resource.
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is imposed, heterogeneity over the θ’s is not admissible, since the growth function g(x) must

be common to all agents, by the very nature of the problem.

4 Admissible utility functions, given a growth function

Conversely, consider the case where the growth function is known to be of one of the forms

in (20), with α, β and θ being known exogenous parameters. Then, from (16), we have that

the elasticity of marginal utility must be given by:

η(ci) =
−ciu

′′(ci)

u′(ci)
=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α + θβ

(
ci

δi

)θ−1

− ∑
j �=i δj − ri

α + β

(
ci

δi

)θ−1

− ∑
j �=i δj − δi

if g(x) = αx + βxθ

α + β + β ln

(
ci

δi

)
− ∑

j �=i δj − ri

α + β ln

(
ci

δi

)
− ∑

j �=i δj − δi

if g(x) = αx + βx ln x .

(23)

It follows that a decision rule of the form φi(x) = δix can be a best response to decision

rules of the form φj(x) = δjx, j �= i, on the part of i’s n − 1 rivals only if η(ci) is of the

following form:

η(ci) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A + θBcθ−1
i

C + Bcθ−1
i

if g(x) = αx + βxθ

D + E ln ci

F + E ln ci

if g(x) = αx + βx ln x.

(24)

Hence the utility function will be of the form:

u(ci) = a

∫ ci

e−
� z η(s)

s
dsdz + b (25)

and the marginal utility function of the form:

u′(ci) = ae−
� ci η(s)

s
ds, (26)
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where a > 0 and η(ci) must be given by (24). Strict concavity is assured by imposing

η(ci) > 0 in (24).

This class of utility functions includes as a special case that specified in (17) whenever

A = θC (with b = 0 and a = 1/(1 − θ)), or that specified in (18) whenever D = F (with

b = 0 and a = 1).

Substituting from (24) into (23), we find that the constant equilibrium solution for δi,

i = 1, . . . , n, must satisfy, if g(x) = αx + βxθ:

A

B

(
1 − θ

C

A

)
βδ1−θ

i −
(
θδi + (θ − 1)

∑
j �=i δj − ri − (θ − 1))α

)
= 0

C

A
− α − ∑

j �=i δj − δi

α − ∑
j �=i δj − ri

= 0

(27)

and, if g(x) = αx + βx ln x:

δi = ri − β + (D − F ). (28)

In particular, with identical agents, the symmetric equilibrium value of δ will be given, if

g(x) = αx + βxθ, by:

A

B

(
1 − θ

C

A

)
βδ1−θ − [nθ − (n − 1)]δ − r − (θ − 1))α = 0

C

A
− α − nδ

α − (n − 1)δ − r
= 0

(29)

and, if g(x) = αx + βx ln x, by:

δ = r − β + (D − F ). (30)

Notice that if A = θC and D = F , in which case, as noted above, the utility function is

of the constant elasticity form (17) and (18) respectively, then (27) and (28) reduce to (21)

and (29) and (30) reduce to (22). But the admissible class of utility functions is wider than

the constant elasticity class. Again, however, an important drawback is that the parameters
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of the utility function depend explicitly on the exogenous parameters of the growth function,

namely α, β and θ.

5 An extension

It is sometimes appropriate to have utility depend not only on the flow of consumption

of the resource, but also directly on the stock, because of the flow of amenities it may

provide.4 To capture this, assume that agent i derives an instantaneous benefit u(ci(t), x(t))

from those two sources, with uc(ci(t), x(t)) > 0, ux(ci(t), x(t)) > 0, ucc(ci(t), x(t)) < 0 and

uxx(ci(t), x(t)) < 0. Then the equivalent of (15) is:

xg′(x) − [η(δix, x) − ξ(δix, x)]g(x) =[∑
j �=i

δj + ri

]
x −

[∑
j �=i

δj + δi

]
[η(δix, x) − ξ(δix, x)]x − S(δix, x)x, (31)

where

η(ci, x) = −ciucc(ci, x)

uc(ci, x)
and ξ(ci, x) =

xucx(ci, x)

uc(ci, x)

are respectively the elasticity of marginal utility of ci with respect to ci and x and

S(δix, x) =
ux(δix, x)

uc(δix, x)

is the marginal rate of substitution between ci and x. Given the function u(ci(t), x(t)), the

function g(x) must satisfy the first-order linear differential equation (31) if ci = δix is to be

a best response.

Consider, as an example, the following version of the constant elasticity utility function,

with σ > 0 and θ �= 1:

u(ci, x) = xσ c1−θ
i

1 − θ
(32)

Then η(δix, x) = θ, ξ(δix, x) = σ, S(δix, x) = σδi/(1 − θ) and (31) has as a general

4We thank Ngo Van Long for suggesting this extension.
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solution:

g(x) =

[
ri − (θ − σ +

σ

1 − θ
)δi + (1 − θ + σ)

∑
j �=i

δj

]
x

1 − θ + σ
+ kxθ−σ (33)

where k is the constant of integration. Hence the growth function has to be of the form:

g(x) = αx + βxθ−σ (34)

In particular, if σ = θ, then admissible functions must be of the form

g(x) = αx + β.

In that case, the utility function is homogeneous of degree one and hence marginal utility

of consumption can be written uc(ci/x, 1), which becomes a constant when we set ci = δix.

Therefore, from the first-order condition for the maximization of the Hamiltonian, λ(t) must

be a constant. It then follows directly from condition (8) that g′(x) must be a constant as

well. This will be true of any utility function that is homogeneous of degree one in c and x.

The constant equilibrium values of δi, i = 1, . . . , n are obtained as the solution to the

following system of n equations:

[
(θ − σ) +

σ

1 − θ

]
δi + (θ − σ − 1)

∑
j �=i

δj − ri − (θ − σ − 1)α = 0. (35)

Setting ri = r, the symmetric equilibrium is given by:

δ =
r + (θ − σ − 1)α

n(θ − σ) − (n − 1) + σ/(1 − θ)
.

The limiting case of (32) for θ = 1, σ > 0, provides an example of the fact that for g(x)

to satisfy condition (31), though necessary, is not sufficient for the best response to be linear.
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The utility function is then given by:

u(ci, x) = xσ ln ci, (36)

and η(δix, x) = 1, ξ(δix, x) = σ and S(δix, x) = σδi[ln x + ln δi]. The solution to the

differential equation (31) is then:

g(x) =

[
ri

σ
+ (1 − ln δi)δi +

∑
j �=i

δj

]
x − δix ln x + kx1−σ,

which means that admissible growth functions must be of the form:

g(x) = αx + βx ln x + γx1−σ.

Substituting for this form of growth function into the differential equation (31), we find that

it will be satisfied only if δi, i = 1, . . . , n, solves:

(1 − σ + σ ln δi)δi − σ
∑
j �=i

δj − ri + σα + β + σ(δi + β ln x = 0, (37)

which involves x. Clearly, for agent i’s best response to be linear in x further requires that

δi = −β > 0, with, in addition, α = ri/σ − nβ + β ln(−β)]. This in turn requires ri = r for

all i, since it is inherent to the problem that the growth function is common to all agents.

6 Concluding remarks

The above results place in proper perspective models that rely on linear Markov strategies

to study the competition over a common property resource, by showing that the parameters

of the utility function and of the growth function cannot be chosen independently of one

another, but must satisfy a precise relationship. Assigning specific numerical values to the

parameters of functional forms that happen to satisfy this relationship — for instance a unit

elasticity of marginal utility or a linear growth function — sometimes tends to obscure this
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fact.

The papers cited in the introduction all assume specific functional forms for the utility

function and the growth function that happen to jointly satisfy this necessary relationship.

Clemhout and Wan [1] and Plourde and Yeung [7] both assume a logarithmic utility function

as in (18) — hence an elasticity of marginal utility equal to one — combined with a growth

function as in (20) with θ = 1. Lehvari and Mirman [5] assume a discrete time version of the

same growth function, also combined with a logarithmic utility function. This also applies to

Fischer and Mirman [3, 4], although in those cases the growth functions allow for interaction

between two types of resources. Long and Shimomura [6] assume the utility function to be

homogeneous of degree h > 0 (or the log of such a function). Such a utility function exhibits

a constant elasticity of 1 − h (or of 1 in the case of the logarithmic version). Their growth

function is assumed homogeneous of degree one, which in effect means a function such as

that in (20) with β = 0. Dockner et al. [2] (chapter 12) study an example with a constant

elasticity function of the form (17) and a growth function as in (20) with θ �= 1.
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