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Résumé  

Les protéines DOCK180 et ELMO coopèrent ensemble biochimiquement et 

génétiquement afin d’activer la GTPase Rac1 lors de plusieurs évènements biologiques. 

Toutefois, le rôle que jouent ces protéines dans la signalisation par Rac est encore mal 

compris. Nous émettons l’hypothèse que Dock180 agit comme activateur de Rac, alors 

que ELMO est requis pour l’intégration de la signalisation de Rac plutôt que son 

activation per se. Nous postulons que ELMO agit comme signal de localisation 

intracellulaire afin de restreindre de façon spatio-temporelle la signalisation de Rac en 

aval de Dock180, et/ou que ELMO agit comme protéine d’échafaudage entre Rac et ses 

effecteurs pour amplifier la migration cellulaire. 

Dans l’objectif nº 1, nous démontrons que le domaine PH atypique de ELMO1 

est le site d’interaction principal entre cette protéine et DOCK180. De plus, nous 

démontrons que la liaison entre ELMO et DOCK180 n’est pas nécessaire pour 

l’activation de Rac, mais est plutôt essentielle pour faciliter la réorganisation du 

cytosquelette induite par l’activation de Rac en aval de Dock180. Ces résultats 

impliquent que ELMO pourrait jouer des rôles additionnels dans la signalisation par 

Rac. Dans l’objectif nº 2, nous avons découvert l’existence d’une homologie 

structurelle entre ELMO et un module d’autorégulation de la formine Dia1, et avons 

identifié trois nouveaux domaines dans la protéine ELMO : les domaines RBD, EID et 

EAD. De façon analogue { Dia1, nous avons découvert que ELMO { l’état basal est 

autoinhibé grâce à des intéractions intramoléculaires. Nous proposons que l’état 

d’activation des protéines ELMO est régulé de façon similaire aux formines de la famille 

Dia, c’est-à-dire grâce { des interactions avec d’autres protéines. Dans l’objectif nº 3, 

nous identifions un domaine RBD polyvalent chez ELMO. Ce domaine possède une 

double spécificité pour les GTPases de la famille Rho et Arf. Nous avons découvert que 

Arl4A agit comme signal de recrutement membranaire pour le module 

ELMO/DOCK180/Rac. Nos résultats nous permettent de supposer que d’autres 



vi 

 

 

GTPases pourraient être impliquées dans l’activation et la localisation de cette voie de 

signalisation.  

Nous concluons qu’{ l’état basal, ELMO et DOCK180 forment un complexe dans 

lequel ELMO est dans sa conformation autoinhibée. Bien que le mécanisme d’activation 

de ELMO ne soit pas encore bien compris, nous avons découvert que, lorsqu’il y a 

stimulation cellulaire, certaines GTPases liées au GTP peuvent intéragir avec le 

domaine RBD de ELMO pour relâcher les contacts intramoléculaires et/ou localiser le 

complexe { la membrane. Ainsi, les GTPases peuvent servir d’ancrage au complexe 

ELMO/DOCK180 pour assurer une regulation spatiotemporelle adequate de 

l’activation et de la signalisation de Rac.  

 

Mots-clés : Migration cellulaire, DOCK180, ELMO, Rac GTPase, Arl4 GTPase, RBD 
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Abstract 

 DOCK180 and ELMO cooperate biochemically and genetically to activate Rac in 

several biological events. However, the role of these proteins in Rac signaling is still 

poorly understood. We hypothesize that DOCK180 functions as a RacGEF, with ELMO 

binding to DOCK180 being required for integration of proper Rac signaling rather than 

Rac activation per se. We postulate that ELMO acts as a subcellular targeting signal for 

spatio-temporal restriction of DOCK180-mediated Rac signaling and/or as a scaffold 

for Rac effectors to enforce cell migration. 

 In Aim #1, we elucidate that the atypical ELMO1 PH is the major DOCK180 

binding site. We demonstrate that the binding of ELMO1 to DOCK180 is not necessary 

for Rac GTP-loading, but is instead required to facilitate Rac-GTP induced cytoskeletal 

changes following DOCK180 activation. These results imply additional roles for ELMO 

in mediating Rac signaling. In Aim #2, we reveal structural homology between ELMO 

and an autoregulatory module in the formin, Dia1, and identify three novel domains in 

ELMOs: the RBD, EID and EAD. Analogous to Dia1, we uncovered that ELMO is 

autoinhibited via intramolecular interactions at basal state. We propose that the 

activation state of ELMO proteins is regulated, much like in Dia-family formins, via 

interaction with other proteins. Aim #3 identifies a polyvalent RBD in ELMO with dual 

specificity for Rho and Arf family GTPases. We found Arl4A as a novel membrane 

recruitment signal for the ELMO/DOCK180/Rac module. Our results may have broad 

implications in the activation and localization of this pathway by additional GTPases. 

We conclude that, at basal levels, ELMO/DOCK180 is complexed, with ELMO in an 

autoinhibited state in the cytosol. Through cell stimulation, certain GTPases will be 

activated that now bind the ELMO RBD and alleviate the intramolecular contacts. In this 

way, the GTPase anchors the activated ELMO/DOCK180 module in place for proper spatio-

temporal regulation of Rac activation and signaling. 

Keywords : Cell migration, DOCK180, ELMO, Rac GTPase, Arl4 GTPase, RBD 
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INTRODUCTION 
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1. The renegade cancer cell  

 Cancer is a leading cause of death worldwide, accounting for 13% of all deaths 1. 

Closer to home, almost 45% of Canadians will develop cancer during their lifetimes, 

causing death in approximately 25% of the population each year 2. Rather than the 

primary tumour, it is cancer metastasis, the colonizing of cancer cells from a primary 

tumor to secondary sites in the body, which underlies the vast majority of cancer-

related deaths.  

 Lying at the heart of this unwelcome disease is a founder cell, the renegade 

cancer cell, which deviates from its original internal program and wreaks havoc on an 

otherwise pristine biological system. The evolution of a metastatic tumour requires 

tumour cells to overcome a series of hurdles in its path. Triumph of a tumour over 

these obstacles allows dispatched malignant cells to infiltrate the circulation and 

burrow into surrounding tissue to found new settlements of destruction.  

 Presently, patients with metastatic disease have few treatment alternatives 

besides chemotherapy, hormonal therapy and radiation 3. Insight into the molecular 

basis of cellular motility will expand development of novel alternative therapies for 

cancer patients in the future.  
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2. The multi-step process of cell migration 

 Cell migration is an essential feature of all living cells. This highly complex and 

intricate process is an underlying characteristic of a multitude of biological events, 

such as embryonic morphogenesis, immune response, tissue repair and regeneration, 

and angiogenesis. It is equally prominent during pathophysiological processes 

including cancer cell invasion and metastasis. The modes of cell migration can be 

divided into two categories: (i) individual (amoeboid or mesenchymal) or (ii) collective 

(migration of cohesive multicellular units) 4 (Figure 1.1, pg. 4). Cell type, constituents 

of the extracellular matrix, as well as gene expression profiles are key factors that will 

determine which type of migration a cell will undergo.  

 Amoeboid migration can be observed during brain development, in 

hematopoietic stem cells, leukocytes, and even in some cancer cells 5,6.  During this type 

of motility, cells will appear rounded or ellipsoid in shape and lack mature focal 

adhesions and stress fibers, leading to low polarity and poor adhesiveness7,8. These 

cells can constantly change their shape and depend on swift forming protrusions and 

retractions that propel cell movement (Figure 1.2, pg. 5). 

 Mesenchymal migration is a signature of specific cell types, such as, fibroblasts 

and certain tumour cells 4. This form of migration can be segmented into five well-

defined steps that will lead to directed-cell movement towards a migratory attractant 

or  other gradient  (external or internal signals)  of some  kind:  (i)  cell  polarization,  



Amoeboid
Migration

‘blebby’ ‘pseudopod-like’

Mesenchymal
Migration

single cohesive

Figure 1.1. Modes of Cell Migration and their Morphologies.
The types of cell motility can be divided into two groups:  amoeboid and mesenchy-
mal.  Amoeboid migration is characterized by ‘blebby’cells that can extend 
pseudopod-like extensions to infiltrate its three dimensional surroundings. These cells 
are constant shape-shifters, with poor adhesiveness and low polarity, and use propul-
sive force to move themselves forward.  Mesenchymal migration is characterized by 
elongated, polarized cells with high adhesive properties. These cells can form cell-cell 
contacts, and can also migrate as a group of cells commonly referred to as cohesive or 
collective cell motility.  Cells are also in tune with their surroundings and can transition 
from amoeboid-to-mesenchymal migration and vice-versa as an environmental adap-
tive response.

4



FrontBack

Direction of Migration

a) Polarization

b) Membrane extension

c) Adhesion

d) Contraction and retraction

e) Diassembly of rear adhesions

Figure 1.2. Steps of mesenchymal migration.
Mesenchymal migration occurs in distinct steps in response to a stimulus gradient. a) 
Polarization: The cell will react first by spatio-temporally reorganizing its cellular com-
ponents and growing an extensive actin network in the direction of migration. b) 
Membrane extension: This is followed by protrusion formation (examples include 
lamellipodia and filopodia). c) Adhesion:  Cellular extensions then require sites of 
attachment (green box) to stabilize the protrusive structures.  d) Contraction and 
retraction: The cell will use these adhesion sites, as well as the force generated from 
contraction and retraction of the cell body at the rear of the cell, as a support system 
to push itself forward. e) Disassembly of rear adhesions:  Finally, rear adhesion sites will 
be disbanded to allow for translocation of the cell body.
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(ii) membrane protrusion formation at the leading edge, (iii) adhesion, (iv) contraction 

and retraction of the lagging end, and (v) disassembly of rear adhesion sites 9,10 

(Figure 1.2, pg. 5).  As mesenchymal migration is the focus of this thesis, below, I 

discuss in more detail the five steps. 

2.1 Polarization 

 A cell must acquire spatial asymmetry of molecular signals to generate the force 

required for net cell movement. A clear distinction in cell front and rear is observed in 

a migrating cell (Figure 1.2a, pg. 5). A few characteristic molecular changes can be 

noted at the leading edge, where cells can display accumulation of filamentous actin (F-

actin) 11, forward redistribution of chemosensory signaling receptors 12 and/or 

integrin adhesion receptors 13, and receptor/cytoskeletal crosslinking 14. Ras family 

GTPases are key in initiating this polarity (see section 4. The Ras superfamily of 

GTPases). As well, mounting evidence indicates that specific lipid accumulation also 

reinforces leading edge formation and maintenance of cell polarity 15. Restriction of 

PtdIns(3,4,5)P3 to the cell front is encouraged by the degradation of lipids at the sides 

and the back of the cell. PTEN is a phosphoinositide 3’-specific phosphatase that 

dephosphorylates PtdIns(3,4,5)P3 to PtdIns(4,5)P2, and in migratory cells, is found to 

be excluded from the migratory front 16-18. In this way, a steep gradient of the lipid 

signaling molecule, PtdIns(3,4,5)P3, can be maintained. Additionally, a positive 

feedback loop consisting of PtdIns(3,4,5)P3 and the Rho GTPases is proposed to 

preserve cell polarity by perpetuating GTPase activity, through recruitment of 
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RhoGEFs to sites of lipid accumulation 19,20. As well, the Rho GTPase, Rac, has also been 

shown to directly bind and recruit PI3K at the leading edge, promoting the cycle of 

PtdIns(3,4,5)P3 generation and Rac localization 21.  

2.2 Membrane extension 

 At the polarized front, a cell will extend its membrane and form distinct 

protrusions. The most well-defined of these protrusions are lamellipods (broad, flat, 

sheet-like structures) and filopods (thin, cylindrical, needle-like projections) 9. These 

structures are rich in actin and actin-associated proteins 9,22. Several actin-binding 

proteins are key players at this stage, regulating the rate and organization of actin 

polymerization in protrusions by contributing to the pool of available actin molecules 

and filaments  23,24. 

2.3 Adhesion 

 Once a cell generates membrane protrusions at the leading edge, adhesion site 

formations are favoured in order to offer an anchorage point for the moving cell. 

Through various interactions with the ECM, the cell will form adhesion sites which 

allows the cell to migrate over them effectively, and they will persist and remain fixed 

to the substrate until they reach the rear or edge of a cell 9 (Figure 1.2b, pg. 5). Rapid 

turnover ensues for the majority of nascent adhesions, while a few mature behind the 

leading edge in response to tensile stress 25. Mature adhesions either go through a 

round of disassembly or are diminished to form fibrillar adhesions 26,27. 
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 While many molecules can contribute to cell-substratum anchorage, the 

integrins are major pro-migratory factors and key players in this event. These 

receptors act as the “feet” of a migrating cell by supporting adhesion to the ECM and by 

connecting via adaptors with actin filaments on the inside of the cell 28. Integrin 

stimulation can induce the activation or phosphorylation of a plethora of migration-

related signaling molecules, such as FAK, paxillin, and tensin, that are integral for focal 

adhesion complex formation 29-31 (Figure 1.2c, pg. 5).  

2.4 Contraction and retraction 

 Following the protrusive force that is generated to extend membrane processes, 

a second contractile force is needed to propel the cell body forward (Figure 1.2d, pg. 

5). Cell contraction is dependent on the interaction between myosin II and actin 

filaments attached to adhesion sites 28,32. Myosin II is activated via myosin light chain 

(MLC) phosphorylation, resulting in increased contractility and tensile strength to 

adhesion sites.  MLC kinase (MLCK) and Rho kinase (ROCK) are positive modulators of 

MLC, while MLC phosphatase, which is itself phosphorylated and inhibited by ROCK, is 

a negative regulator in this instance 33. 

2.5 Disassembly of rear adherences 

 Migration of a cell requires adherences at the rear of the cell to be released. 

Often, the tension generated by rearmost adhesion sites anchoring the cell to the 

substratum, is sufficient to physically sever the integrin/actin cytoskeleton link. This 
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step of migration shows membrane ‘ripping’, as a major fraction of integrins is left on 

the substratum as the cell releases and moves forward 9,34 (Figure 1.2e, pg. 5). Other 

contributing factors of rear release are low membrane support by the cytoskeleton in 

this region, as well as diminished integrin-cytoskeletal connections, and cytoskeletal 

contraction 9,14. A combination of these and several, unrelated mechanisms are 

probably responsible for disassembly of rear adhesions.   

 It becomes evident that the actin cytoskeleton is an integral component of 

mesenchymal cell migration; this incredibly dynamic and versatile structure is 

discussed below. 

3. The dynamic actin cytoskeleton 

 The actin cytoskeleton constitutes the cell’s backbone, and supplies the 

mechanical force required to propel the cell forward in a desired direction. Actin is one 

of the most abundant proteins in all eukaryotes and is highly conserved between 

species 35. Globular actin (G-actin) is a monomer that can readily polymerize into 

filamentous actin (F-actin). Essentially, monomeric G-actin binds ATP and, soon after 

assembly into filaments, hydrolyzes ATP, creating helical filaments 36,37 (Figure 1.3, 

pg. 10). These filaments are arranged in a polarized fashion with the ‘barbed’ or 

polymerizing end facing the cell membrane and the ‘pointed’ or depolymerizing end 

extending into the cytosol (Figure 1.3, pg. 10). The process of de novo actin filament 

polymerization  can  be  simplified  into three  steps: (i) nucleation, (ii) elongation, and  



pointed barbed

Actin alone

Arp2/3 complex

Spire

Formin

Figure 1.3. Actin filament genesis.
During actin polymerization, actin monomers (G-actin) act as the building blocks of 
growing actin filaments (F-actin). Spontaneous actin polymerization is an unstable 
process, where small oligomers of actin filaments are quickly disassembled back to 
actin monomers. Nucleation promoting factors (NPFs) will bind actin monomers and 
allow for stable extension of actin filaments. The Arp2/3 complex binds the side of an 
actin filament and promotes branching of filaments. Formins and Spire bind actin 
monomers and allow for the growth of linear actin filaments. Formins move along 
with the filament at the barbed end, while Spire remains stationary at the pointed end 
of filaments. Adapted from 43.
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 (iii) termination. During the nucleation phase, initiation of actin polymerization is a 

slow event, because small oligomers are very unstable, but once overcome, filament 

elongation is much more rapid 37,38. This initial step is kinetically unfavourable and 

exploits nucleation factors to favour assembly of actin-based structures 39. The 3 

known classes of nucleation factors are: the Arp2/3 complex, formin proteins and 

Spire (discussed below) 40,41,42. These proteins will aid in the initial nucleation of an 

actin filament, and then the elongation of an actin filament until the pool of available 

actin monomers is exhausted to a point where actin polymerization and filament 

growth has reached a steady-state. During this steady-state, the filament array has a 

constant length where steady barbed-end growth balances steady pointed-end 

depolymerization 35. 

3.1 Regulators of the actin cytoskeleton  

3.1.1 Nucleation factors 

 Of the aforementioned nucleation factors, the Arp2/3 complex was the first to 

be identified. This complex consists of seven polypeptides (ARPC1-5, Arp2 and Arp3) 

and plays a critical role in the generation of arborized filament networks. At the outset, 

this complex needs to be activated via nucleation promoting factors (NPFs), such as 

WASP and Scar/WAVE, allowing for the Arp2/3 complex to act as an initiation 

template for a new filament on an existing filament in a y-branch arrangement with a 

70° branch angle 43 (Figure 1.3, pg. 10).  Coalescing of nucleation and branching 
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activity via Arp2/3 promotes the formation of a lattice meshwork of actin filaments 

fundamental for lamellipodia formation and functionality.  

 The second class of nucleation factors are the multidomain formins. Through 

their signature Formin Homology 1 (FH1) and FH2 domains, these proteins exercise 

their actin nucleation and polymerization activity 37,44. These proteins nucleate linear, 

unbranched actin filaments and stay bound to the barbed-end of actin polymers 

preventing the access of capping proteins 44,45,46. Formin-mediated elongation is 

further enhanced through its ability to directly bind profilin, an actin-binding protein, 

allowing for the progressive addition of actin subunits to a growing filament 47. In this 

way, formins remain associated with growing barbed-ends, and essentially, ‘walk’ 

along the polymerizing filament 43,44. Interestingly, some formins have the capacity to 

bundle, sever, or depolymerize actin filaments, indicating the multi-faceted role of 

these proteins in cytoskeletal processing (Figure 1.3, pg. 10) 48-51. Formins are potent 

cytoskeletal regulators, as some members also have the ability to bind and influence 

microtubule dynamics 52-55. Formins are discussed in more detail in section 5.2 

Liberating formins.    

 The third nucleation factor is Spire, a multidomain protein comprising 4 WH2 

domains each capable of binding one actin monomer. Similar to formins, Spire 

nucleates linear, unbranched actin filaments, although through an entirely different 

mechanism. Spire recruits and organizes actin monomers to form a pre-nucleation 
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complex acting as the building block for filament formation from the side 56 (Figure 

1.3, pg. 10). 

 The nucleation factors can generate new actin filaments via de novo nucleation, 

pre-existing free barbed ends, or newly exposed free barbed ends due to severing of 

filaments. In addition to these nucleators, a myriad of actin-binding proteins (ABPs) 

will sculpt actin structure and dynamics by: capping, stabilizing, severing, 

depolymerizing, crosslinking, bundling, sequestering or delivering monomers, or by 

promoting monomer nucleotide exchange 43. Once nucleated, actin filaments can then 

be assembled into a wide variety of higher-order cellular structures. 

3.1.2 Nucleation Promoting Factors (NPFs)  

Alone, the Arp2/3 complex is not a potent actin nucleator. This action requires 

filament binding by the complex and phosphorylation events to boost nucleation 

activity 57. Apart from these two events, NPFs are critical collaborators of actin filament 

growth. Class I NPFs are categorized into five subfamilies: (i) Wiskott-Alrich Syndrome 

Protein (WASP) and Neural WASP (N-WASP); (ii) WASP-family verprolin homologue 

(WAVE, also known as SCAR) 1-3; (iii) WASH; (iv) WHAMM; and (v) JMY 42,58. All family 

members contain diverse N-terminal regulatory regions and share at least one VCA 

(verprolin, central, acidic) domain, a key structural element, at the C-terminus vital for 

actin regulation. The VCA domain is responsible for binding simultaneously to G-actin 

monomers, via the V region, and Arp2/3, via the CA region, priming Arp2/3 for 

nucleation 58-60. For these proteins, most research has focused on the WASP and WAVE 
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members where two models are proposed for the regulation of these proteins. In the 

past, it was generally accepted that WASP proteins at basal state were regulated via 

intramolecular inhibitory interactions between its N-terminal GTPase-binding domain 

(GBD) and C-terminal VCA domain  42,58. Binding partners for the GBD or surrounding 

regions (ex. Cdc42 or PIP2), as well as phosphorylation events affecting the GBD, 

relieve autoinhibition and activate WASP proteins to serve out many of its functional 

roles, such as, phagocytic and endocytic structure, stress fiber, and membrane ruffle 

and lamellipodia formation 61. However, other findings support the notion that, rather 

than a monomeric autoinhibited conformation, N-WASP is predominantly found in 

complex with WASP-interacting protein (WIP) which is thought to stabilize the 

autoinhibited N-WASP conformation 62,63. These models are equally attractive and can 

co-exist, increasing the complexity arising from this regulation.  

Unlike WASP, constituents of the WAVE family are not regulated via 

autoinhibition. Rather, these proteins form a pentameric heterocomplex with ABI, 

NAP1, SRA1, HSPC300 where the SRA1/NAP1 dimer binds the WAVE/ABI/HSPC300 

trimer and inhibits the action through this complex 64,65. Release comes in the form of 

specific protein binding to one or more of the complex components, such as Rac-

binding via SRA1. Similar to WASP proteins, the WAVE family is suggested to be 

regulated by additional factors, such as PIP3 binding and phosphorylation events 65. 

Still, there are questions concerning the role of the WAVE complex during Arp2/3 

activation; this, and the exact mechanism regulating WAVE activation has stirred up 
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many conflicts and remains an area of intense research. WASP and WAVE will be 

discussed further in section 5. Modes of GTPase regulation.  

The vast interest in molecules that modulate the actin cytoskeleton has greatlyly 

expanded our knowledge of signaling cascades manipulating cell movement. 

Entrenched as critical components of cell migration are the Ras superfamily of small 

GTPases, and our attention now turns to this limb of the expansive tree of actin 

regulators.  

4. The Ras superfamily of GTPases 

The Ras G proteins, also known as Ras GTPases, are key units of central control 

systems coordinating signaling pathways immersed in numerous aspects of cell 

biology, such as, cytoskeletal reorganization, cell cycle progression, and gene 

transcription. Under the umbrella of the Ras superfamily of small GTPases, there are 

over 150 members in mammals, with evolutionarily conserved orthologs found in 

Drosophila, C. elegans, S. cerevisiae, S. pombe, Dictyostelium and plants 66. Based on 

sequence and functional similarities, the superfamily is divided into 5 subfamilies: Ras, 

Rho, Ran, Rab, and Arf 67 (Figure 1.4, pg. 16). These enzymes act as molecular 

switches that are turned on by GTP-binding and turned off by hydrolyzing GTP to GDP, 

a cycle that is tightly managed by various regulatory proteins 68 (discussed in section  

4.2  Rho GTPase regulators)  (Figure 1.5, pg. 17).  Most  Ras  GTPases  display  
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Figure 1.4. The Ras Superfamily of GTPases.
The Ras superfamily consists of over 150 GTPases divided into five subfamilies: Ras, Arf, 
Rho, Ra, and Rab. Of the five subfamilies, the Rho family is heavily implicated in actin 
cytoskeletal rearrangement. Rho members are further sub-classified based on primary 
sequence similarities. Of these, Rac, RhoA, and Cdc42 are the extensively studied and 
best characterized. These proteins are implicated in a diverse assortment of cellular 
functions, such as, cytoskeletal rearrangment, gene expression regulation and cell 
cycle progression. Adapted from 67.
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Figure 1.5. The Rho family GTPase cycle
Rho proteins are enzymes that cycle between inactive (GDP-bound) and active (GTP-
bound) conformations.  This cycling process is promoted by the guanine nucleotide 
exchange factors (GEFs) which GTP-load and activate the GTPase, while the GTPase 
activating proteins (GAPs) hydrolyze and downregulate GTPases. Activated Rho 
proteins couple to specific effectors which mediate diverse biological processes, such 
as remodeling of the actin cytoskeleton. A few of the active forms of RhoGTPases are 
associated with distinct actin structures (indicated in figure above). Adapted from 68.

Effectors
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high-affinity binding for GDP and GTP, and have low intrinsic GTP hydrolysis and 

GDP/GTP exchange activities. Positive regulators are known as guanine nucleotide 

exchange factors (GEFs) and negative regulators as GTPase-activating proteins (GAPs). 

As well, members of the Rho and Rab subfamilies are also subject to negative 

regulation by virtue of guanine nucleotide dissociation inhibitors (GDIs). 

 Characteristic of all small G proteins are the ‘switch regions’. Mechanistically, 

these regions, termed switch I and switch II, connect to the gamma phosphate of GTP 

and form the ‘loaded spring’ conformation. GTP hydrolysis results in the release of the 

gamma phosphate, unloading the ‘spring’ and relaxing the structure for a GDP-loaded 

conformation 69. Conformational changes in the GTPase switch regions between the 

two nucleotide-bound structures are sensed by regulatory proteins and effectors to 

discern nucleotide status of the GTPase. Another important feature of small G proteins 

is their ability to be lipid modified at their extreme C-termini (ex. Rho GTPases), and in 

some cases, at their N-termini (ex. Arf GTPases). These modifications allow for the 

stable anchorage of these relay switches to a lipid bilayer permitting them to fulfill 

actin regulation at specific sites 70,71. 

4.1 The Rho GTPases: versatile actin regulators 

The Rho family is a major branch of the Ras family of small GTPases. Members of 

the Rho family direct a plethora of biological processes, such as, cell cycle progression, 

gene expression, and most notably, actin cytoskeleton reorganization. This protein 
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family encompasses over 20 members in the human genome and sequence alignment 

analysis divides it into 8 subgroups (as depicted in Figure 1.4, pg. 16). The Rho 

GTPases can be described as classical or atypical Rho GTPases. The atypical members 

diverge in the sense that they are predominately GTP-bound owing either to amino 

acid substitutions at residues critical for GTPase activity (ie. Rnd proteins and RhoH) 

or to increased nucleotide exchange activity (ie. RhoU) 72,73. Rather than being under 

the influence of GEFs and GAPs, these proteins are thought to be managed via gene 

expression, protein stability and phosphorylation 73. 

Despite the fact that the Ras superfamily is highly conserved in structural detail, 

each subfamily is associated with a structurally distinct and highly specific family of 

regulatory elements. Our interests lie at the heart of Rho family GTPases and given the 

intricate signaling networks powered by these proteins, it becomes obvious the 

necessity of tight spatio-temporal regulation of their GTP-binding and hydrolysis cycle.  

4.2 Rho GTPase regulators 

Regulatory factors of Rho GTPases are instrumental for cycling of these proteins 

from active to inactive states. The sheer volume of GTPase regulators in mammals 

outnumbers the quantity of known Rho GTPases. A reasonable explanation for this fact 

is that the specialized function of individual regulators is dependent on spatial-

temporal positioning and catalytic selectivity, making it discriminatory for a specific 

Rho GTPase or more promiscuous towards several Rho proteins. The concerted action 

of regulatory molecules is said to be required for efficient GTPase signaling to 



20 

 

 

downstream components 74. Below, we discuss 3 groups of well-known Rho family 

GTPase regulators, with special emphasis on guanine nucleotide exchange factors as 

they are a central topic of this thesis.   

4.2.1 Guanine nucleotide exchange factors (GEFs)  

GEFs are important positive regulators for the cycling of GTPases from GDP- to 

GTP-bound. In response to extracellular signaling, these enzymes interact with the 

switch I and II regions of a GTPase. Structurally, these enzymes promote release of GDP 

due to the expulsion of the Mg2+ ion from the GTPase, and bind and stabilize the 

transient nucleotide-free form 69. The normal function of magnesium is to neutralize 

the negative charge offered by the phosphate groups and increase nucleotide affinity. 

Magnesium exclusion promotes nucleotide ‘depletion’ of the GTPase, readying it for 

GTP-loading. The nucleotide-free transition state is now free to be loaded with GTP, 

which is found at higher intracellular levels than GDP, and allows for a Mg2+ ion to 

come in and strengthen the GTPase-GTP bond 48,75. Dbl was isolated from human B-

lymphoma cells and demonstrated to be the first mammalian RhoGEF 76,77. Now, over 

70 members comprise the Dbl family of GEFs, all sharing the Dbl-Homology (DH) 

catalytic unit responsible for its enzymatic action. Almost all Rho GEFs possess a 

Pleckstrin Homology (PH) domain adjacent and C-terminal to the DH domain. PH 

domains can interact with phosphoinositides and proteins 78,79. This domain is 

suggested to function as a membrane targeting signal and/or as a key component 

modulating the catalytic function of the DH domain 75,80-82. In most cases, this DH-PH 
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module constitutes the minimal structural unit that can promote nucleotide exchange 

in vivo. Aside from the DH-PH module, RhoGEFs contain a large and diverse array of 

motifs suggesting an equally diverse mode of RhoGEF regulation reflecting the many 

biological activities in which these motifs are known to participate.  

 In the last decade or so, a new family of atypical RhoGEFs has been discovered 

called the DOCK family (or CZH family) 83. This family diverges from the classical Dbl 

family by lacking the ever present DH domain and instead possesses a novel form of 

the catalytic domain, termed the DOCK Homology Region-2 (DHR-2). The DHR-2 is a 

distinguishing feature of  the DOCK family and is found in all members (mammalian 

DOCK1-11) 83. While crystallization of classical DH-PH modules (alone or in complex 

with their favoured GTPase) allowed us to understand structurally how a GEF 

activated and selected a Rho GTPase, the mechanism of activation by the DOCK family 

for their respective GTPases, was unknown 84. Most recently, the solving of the crystal 

structure of the DHR-2 of DOCK9 in complex with the Rho GTPase, Cdc42, has revealed 

a nucleotide sensing element within the α10 helix of the DHR-2. This sensor has the 

unique ability to ‘sense’ the nucleotide-bound state of Cdc42 and allows for transient 

binding of nucleotide-free Cdc42 to the DHR-2. The α10 helix interacts with the GTPase 

switch I region and clamps open the nucleotide-binding site. In the same instance, a 

highly conserved Valine at the tip of the α10 helix contributes towards nucleotide 

release by occlusion of Mg2+. The nucleotide-free GTPase is now stably, but transiently, 

bound to the DHR-2 and free to be loaded with GTP. Once activated, Cdc42-GTP will be 
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detected by the α10 helix due to the accompanying presence of Mg2+, leading to α-

helix- assisted opening of the switch I region of the GTPase, and finally expulsion of 

Cdc42-GTP 85. This study documents for the first time the complete structural 

mechanism of GTPase exchange by a GEF.  

It is becoming increasingly evident that these positive regulators of the Rho 

GTPase cycle are themselves tightly monitored. Some general mechanisms of 

regulation include: (i) relief of intramolecular inhibition (ii) stimulation via protein-

protein interactions, (iii) intracellular re-localization, and (iv) downregulation of GEF 

activity 86. For example, it has been demonstrated that intramolecular contacts 

between the DH and PH domains constrain Vav2 GEF activity 87. In response to PI 3-

kinase activation and production of the lipid PIP3, the PH domain binds the lipid and 

exposes the DH domain to tyrosine phosphorylation, relieving autoinhibitory 

interactions 88. Thus, Vav2 exemplifies how two forms of regulation cooperate to reveal 

GEF activity.  

4.2.2 GTPase activating proteins (GAPs) 

Although small G proteins are interchangeably termed as GTPases, these 

proteins have low inherent GTPase activity 89,90. GAPs are enhancers of this low 

intrinsic enzymatic activity, leading to accelerated GTPase inactivation by several 

orders of magnitude 91. The signature of Rho family GAPs is the evolutionarily 

conserved RhoGAP domain, sharing at least 20% sequence identity with family 

members 92. It is this domain that is responsible for the catalytic function of RhoGAPs. 
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Biochemically, these enzymes catalyze the stability of a GTPase’s intrinsic mobile 

catalytic machinery, and offer a catalytic residue in trans that allows for G protein 

hydrolysis and release of the gamma phosphate, resulting in a form switch from active 

GTP- to inactive GDP-bound 93. Moreover, the multi-domain nature of RhoGAPs has 

lead to the intriguing hypothesis that multiple signaling pathways may use RhoGAPs as 

a convergence point, directing tight regulation of GAP activity 90.  

Finally, similar to regulatory events presiding over RhoGEFs, data indicates that 

RhoGAPs can be tightly managed by post-translational modifications, protein-protein 

interactions, lipid-protein interactions, and/or binding of second messengers 90,91. 

These events re-sculpt RhoGAPs and pave the path for translocation of these enzymes 

to distinct areas requiring GTPase regulation. 

4.2.3 Guanine nucleotide dissociation inhibitors (GDIs) 

In addition to GEFs and GAPs, another level of regulation is seen with GDIs for 

the Rab and Rho GTPase subfamilies. These proteins can inhibit the dissociation of 

bound GDP from the partner GTPase, thus most likely sequestering the GTPase in an 

inactive form unable to interact with GEFs or GAPs 94,95. Specifically, GDIs are capable 

of extracting the membrane-associated, post-translationally modified GDP-bound 

GTPase from the lipid bilayer via binding of the prenylated C-terminus, thus shielding 

the lipid-binding moiety from the lipid cell membrane 96-98. In this fashion, GDIs serve 

as cytosolic pools of inactive Rab and Rho GTPases. Acting as controllers steering the 

reversible membrane versus cytosolic pools of GTPases, GDIs need to be disassociated 
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from GTPases at the opportune time and location. The mechanism of dissociation can 

come in the form of phosphorylation, protein displacement factors, or even localized 

increase of specific phospholipids, resulting in GDI/GTPase complex abrogation 99-104.  

Interestingly, Hancock and Hall demonstrated in vitro that GDIs can complex the 

active form of a Rho GTPase and prevent GAP activity, possibly allowing for shuttling of 

Rac-GTP between physically separated activators and effectors in the cell 105. While 

initially seen as having a negative regulatory role, GDIs are fast becoming 

acknowledged as positive regulators that can correctly target and regulate GTPase 

activities.  

4.2.4 Regulation-defective Rho GTPases 

The creation of constitutively active and dominant negative versions of Rho 

GTPases offers powerful tools in studying cellular processes. A constitutively active 

form of a GTPase carries a mutation that renders it immune to hydrolysis, and 

therefore locked in the GTP-bound form, forming a GTPase-dead or perpetually active 

mutant 106-108. These mutants are de-sensitized to intrinsic GAPs and are activated in a 

ligand-independent fashion. A second type of activated mutant is personified by a 

guanine nucleotide-binding deficient variant termed a ‘fast’-cycling’ protein. These 

proteins have an accelerated rate of GTPase hydrolysis, with excess intracellular levels 

of GTP favouring GTP-loading of these mutants 109,110. Conversely, dominant negative 

mutants have a single point mutation that confers a nucleotide-free state, competing 

with wild-type GTPases for GEF binding; these mutants have low affinity for GTP and 
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are incapable of binding downstream target proteins, forming ‘dead-end’ complexes 

via inhibition of GEF function 111. Another form of GTPases is represented by mutants 

of the CAAX-box. These mutants are unable to be lipid-modified, thus they cannot be 

attached to cell membranes and/or are mistargeted resulting in aberrant function of 

the GTPase 112,113. The final class of mutants are those that contain select missense 

mutations in the core effector domain, resulting in differential effector binding. These 

mutants allow for the study of the contribution of a particular effector for specific 

GTPase signaling and/or function 114,115. However, the advent of these powerful tools 

comes with a negative side. These mutants can have unwanted non-specific effects. 

Constitutively active mutants can horde effector molecules shared by other GTPases, 

and effectively inhibit signaling by these other GTPases 116. Also, dominant-negative 

GTPases can sequester a GEF that acts on more than one GTPase 117,118. Therefore, 

nowadays, more studies are turning to knockdown approaches or knockout animals of 

GTPases to dissect their functions in cells and in vivo 119. 

4.3 Specific Rho GTPases 

The Rho GTPases RhoA, Rac, and Cdc42 constitute the most highly conserved 

members and are the most heavily studied and best characterized. All exert intense but 

notably unique effects on the actin cytoskeleton. RhoA is associated with stress fiber 

assembly, while Rac induces membrane ruffling and lamellipodia formation, and Cdc42  

usually promotes filopodial structures 120    (Figure 1.6,  pg. 26).   As   we  are  



Figure 1.6 . Distinct structures of the actin cytoskeleton
The Rac, Cdc42, and RhoA GTPases, in their active conformation, are commonly associ-
ated with distinct features of the actin cytoskeleton. RhoA is responsible for stress 
fibers. Rac is associated with creating a meshwork of actin filaments that organize into 
lamellipodia structures and membrane ruffling. And finally, Cdc42 activation leads to 
formation of tight parellel bundles that create finger-like filopodia structures. 
Adapted form 120.
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interested in studying the elaborate nature of lamellipodia formation, our interest is 

peaked by the Rac subgroup (Rac1, Rac2, Rac3, and RhoG). 

4.3.1 Rac 

 There are three isoforms of Rac (Rac1-3) in mammals, with over 90% sequence 

similarity between them 121,122. Of the three, Rac1 is the most extensively studied and 

the best characterized. Although involved in a diverse array of biological functions, the 

Rac proteins are reputed for their action on the cytoskeletal infrastructure of the cell. 

Specifically, these proteins are famous for creating membrane ruffling and 

lamellopodia at the cell leading edge 123. Interestingly, fluorescence resonance energy 

transfer (FRET)-based assays have revealed Rac-GTP is also found at the non-

protrusive rear of fast-moving neutrophils, suggesting active Rac has a hand in both 

leading edge formation and tail retraction 124. Protrusive activity is carried out by 

numerous downstream cytoskeletal remodeling effectors. The serine/threonine kinase 

Pak was first uncovered as a Rac binding partner in 1995 and years of research have 

established this duo as a potent actin regulator 125. At basal levels, a subset of Pak 

kinases (Pak 1-3) are repressed via intramolecular interactions, and Rac binding is able 

to unhinge the inhibitory contacts and stimulate kinase activity 126,127. Myosin, LIM 

kinase, and cortactin are among the cohort of Pak substrates that influence cell shape 

and movement 128. Besides Pak, it is demonstrated that Rac-induced actin remodeling 

can also occur indirectly through its interaction with the WAVE complex, activating it, 

and in turn activating the Arp2/3 complex 64. This occurs in one of two ways: either 
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through (i) Rac-IRSp53 or (ii) Rac-WAVE complex subunits. Another group actually 

argues that the Rac-WAVE interaction is a localization signal rather than an activation 

signal for the WAVE complex at the cell periphery 129.   

 Intriguingly, Rac1, Rac2 and Rac3 share identical effectors loops and, at least in 

vitro, can bind and activate the same set of effectors 130,131. However, expression of 

each of these proteins in cells leads to different phenotypes 122. There is now ample 

evidence suggesting that subcellular targeting of these proteins, via the hypervariable 

C-termini of Rac GTPases, is responsible for this differential pattern 132-134. Moreover, 

dissection of expression patterns has found Rac2 to be exclusively expressed in the 

hematopoietic system, while Rac3 is found predominantly in the adult brain, and Rac1 

is distributed ubiquitously in mammals135-138. The generation of knock-out and 

conditional knock-out mice has immensely expanded our knowledge of Rac proteins in 

vivo. In 1998, the group of Katsuki demonstrated that Rac1-null mice are embryonic 

lethal 139. These animals die in utero by E9.5 and uncover Rac1 involvement in 

lamellipodium formation, cell adhesion, and cell migration in vivo, suggesting that 

Rac1-mediated cell adhesion is essential for the formation of three germ layers during 

gastrulation 139. Conditional knockout mice demonstrate that Rac1 is vital for 

polarization of neuronal cells through WAVE-induced actin cytoskeleton remodeling 

140. Another Rac1 conditional knockout model mirrors results obtained in Drosophila, 

where Rac1 is deemed necessary for myoblast fusion by remodeling the actin 

infrastructure at contact sites of fusing myoblasts 141-143. 
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 Neutrophils isolated from Rac2 knockout mice demonstrate faults in 

cytoskeletal remodeling 144. Aside from these hematopoietic deficiencies, Rac2-null 

mice develop normally and are fertile, most likely due to the restrictive expression 

profile for Rac2. Studies where both Rac1 and Rac2 have been knocked out in the 

hematopoietic system have offered intriguing insight into the roles of these two 

GTPases. While both Rac1 and Rac2 are required for B cell development and 

maintenance, another study has shown that these GTPases manifest distinct functions 

during actin remodeling, survival, and proliferation in hematopoietic stem cells 145,146. 

Therefore, Rac1 and Rac2 display both redundant and unique tasks at different levels 

of hematopoietic system development and functioning.  

 In situ hybridization analysis indicates that Rac3 is specifically expressed in 

several populations of neural cells of the developing mouse 138. Corbetta and colleagues 

reveal that Rac3-deficient mice survive embryogenesis in contrast to Rac1 knockout 

mice, and thus, Rac3 is not strictly required for normal development 147.  Surprisingly, 

deletion of Rac3 does not create any gross anatomical irregularities and no major 

effects on brain morphogenesis are detected; it is hypothesized that Rac1 may play a 

compensatory role here, although no upregulation of Rac1 or Rac2 was noted in the 

Rac3 knockout mice 147. However, these mice do display discrete behavioural 

differences as Rac3 knockout animals present superior motor skills that may be 

accredited to subtler defects due to Rac3 deletion. In support of complementary roles 

of Rac1 and Rac3 in neural development, conditional and complete knockout mice of 
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Rac1 and Rac3, respectively, display motor defects, epilepsy, perturbed brain 

development, and premature death 148. In contrast to the balancing act portrayed for 

Rac1 and Rac3 in brain development, another study found opposing functions for Rac1 

and Rac3 during neuronal cell spreading and differentiation. Here, while Rac1 

promotes cell spreading and neuritogenesis, Rac3 evokes cell rounding and hampers 

differentiation 149. Both Rac1 and Rac3 interact with GIT1, and their divergent effects 

are correlated with differential modulation of GIT1 signaling, as well as differential 

subcellular localization of the proteins 150. 

4.3.2 RhoG 

RhoG is part of the Rho family of GTPases and shares high primary sequence 

similarity to Rac1 (72%) and Cdc42 (62%). Irrespective of this sequence similarity, 

RhoG does not bind any known Rac1 and Cdc42 effectors 151. An eminent RhoG binding 

partner is ELMO (For further discussion see section 7.2 ELMO). Early studies showed 

that only active GTP-loaded RhoG can interact with ELMO, and this interaction can 

activate Rac through the ELMO/DOCK180 complex 152. It was also concluded that RhoG 

is critical for integrin-stimulated Rac activation and cell spreading 152. A more recent 

study by Meller and colleagues clearly demonstrates that RhoG is not required for 

integrin-mediated Rac activation and cell shaping. In fact, endogenous RhoG is not 

detected to be activated via integrin stimulation at all. Rather, RhoG is found to be a 

component of Rac-independent cell migration 153. Mice knock-outs of critical Rho 

GTPases important for integrin-mediated cell spreading and migration, such as, Rac1 
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and Cdc42, are embryonic lethal 139,154. A further proof that RhoG is not part of the 

machinery critical for integrin-mediated cell migration is the fact that RhoG-null mice 

are viable with subtle defects in the blood system 155. Clearly, further studies exploring 

cell type specificities and spatio-temporal location are required to understand the 

debated involvement of RhoG during mammalian cell migration. 

 In the following section we will discuss another family of small GTPases, the Arf 

family, which themselves are integral components of the machinery controling cell 

shape. We are particularly interested in this family, since, in Aim #3 (Chapter 4) of my 

thesis, we uncover the Arf family member, Arl4A, as a novel ELMO binding protein. 

4.4 The Arf family  

The complete human Arf family consists of 29 members, divided into three 

subfamilies: Arf, Arf-like (Arl) and Sar1 156. The biological role(s) of this protein family 

is not well understood, although some members are well-known to be critical elements 

regulating membrane trafficking and cytoskeletal re-structuring 157 . Similar to other 

Ras family members, these proteins are tightly regulated by GEFs and GAPs, and are 

subject to lipid modifications leading to membrane anchorage 157. However, the Arf 

family is divergent from other small G proteins in two distinct ways and these features 

are universal amongst all members. For one, unlike GTPases that have lipid tail 

modifications at the C-terminus, the Arf family members are lipid-modified at the N-

terminal amphipathic helix via myristoylation 157,158. This helix is retracted into the 

protein core in the inactive state, so that inactive Arfs are primarily cytosolic 159. The 
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second feature is the interswitch region located between the two switch regions 160,161. 

In the inactive form, the interswitch is fastened to the N-terminal helix and blocks the 

GTP binding site 161. Once in the GTP-bound form, the interswitch will displace the N-

terminal helix and promote its insertion into a lipid membrane. These uncommon 

features of the Arf family define its members and have many functional consequences. 

Firstly, the nucleotide state is tightly coupled to membrane binding. Secondly, the link 

between the amphipathic helix and the rest of the molecule is short, leaving effectors 

bound to the effector core region very close to the lipid bilayer.   

4.5 Arf regulators 

4.5.1 Arf GEFs 

In a manner reminiscent to Rho GEFs, Arf GEFs positively regulate members of 

the Arf family. This action is matched with interswitch displacement leading to tight 

tethering of the N-terminal amphipathic helix to the membrane 160,162. Studies from 

yeast to mammals have unveiled a patent trademark for Arf GEFs with regard to 

domain architecture. These proteins may differ highly in terms of overall structure, but 

one universal consistency is the ~200-residue Sec7 domain responsible for catalytic 

function of the GEFs 163,164. The exception to the rule is mSec12, an Arf GEF for Sar1, 

which contains no such obvious enzymatic domain 165,166. Using the Sec7 as a signature, 

research has exposed 15 Arf GEFs grouped into six evolutionarily conserved families: 

GBF1, BIG, PSD, IQSEC, cytohesins, and FBXO8 157.  
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4.5.2 Arf GAPs 

Similar to most Ras GTPases, most Arf members have a slow intrinsic hydrolysis 

rate. To shut off these proteins, there exists a wide array of ArfGAPs. These GAPs are 

defined by the unique ~130-residue Arf-GAP domain responsible for promoting GTP 

hydrolysis, and thus far, have only been shown to act on the Arf subfamily (Arf1-6). To 

date, 31 human ArfGAPs have been identified and classed into 10 families 167. Akin to 

the Arf GEFs, the ArfGAPs families share a signature domain but otherwise can be 

highly divergent in structure 157,167,168. Of note is the recently uncovered ELMOD family 

of ArfGAPs that lack the signature Arf-GAP domain, but displays GAP activity for 

certain Arf and Arl GTPases 169. This is the first demonstration of a GAP for an Arl 

member, which proposes that a whole new realm of regulators is waiting to be 

discovered for the Arl family. 

4.6 Arf6  

 There are six mammalian Arfs divided into three classes based on their 

sequence similarity: Class I (Arf1-3), Class II (Arf 4-5) and Class III (Arf6) 170. The six 

members of this GTPase family are outnumbered by their regulators, indicating tight 

management of signaling events is at play here. 

 Arf1 and Arf6 are the most well studied of the family 157,171-173. Arf1 is 

implicated in endoplasmic reticulum-to-Golgi transport, Golgi function, transport from 

the trans-Golgi network, transport in the endocytic pathway and recruitment of 
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paxillin to focal adhesions 174-178. Arf6 is attributed with many cytoskeleton remodeling 

roles and has been found to affect endocytosis, phagocytosis, receptor recycling and 

the formation of actin rich protrusions and actin-rich membrane ruffles 173,179. Arf6 can 

traffic the notorious cytoskeletal remodeller, Rac1, to distinct areas of the cell 

periphery (see section 5.3.2 Arf6-Rac) and overexpression studies place Arf6 upstream 

of Rac1 180-183. Indeed, it has been demonstrated that Arf6 and Rac1 are able to form a 

complex, albeit transient, at the cell membrane 184. Arf6 can also influence actin 

through other mechanisms. For example, Arf6 has been found to activate 

phosphatidylinositol 4-phosphate 5-kinase, resulting in the accumulation of 

PtdIns(4,5)P2, a lipid that binds to actin regulators 185-188.  

 In vivo, Arf6 and its GEF, loner, play a role during myoblast fusion in Drosophila. 

The loner-Arf6 partnership is deemed a controller of dRac1 targeting since loner 

mutants reveal a diffuse pattern of dRac1 localization 189.  In mammals, in vivo 

knockout studies demonstrate that Arf6 mice die at birth, with principle defects in liver 

development attributed to inefficient alignment of hepatocytes. However, the 

molecular mechanisms involved in this deficiency remain a mystery 190.  

4.7 Arl4  

 In the pursuit of identifying additional Arf family members, a whole subfamily of 

Arf-related proteins was unearthed and termed the Arf-like (Arl) GTPases 191 192. In 

mammals there are 22 identified Arl forms 156. Although generally similar in structure 

to traditional Arf GTPases, the Arls GTPases can differ considerably in terms of 
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mechanisms of intracellular targeting and activation 193. Arls display a large range of 

function as they have been implicated as regulators of microtubule-dependent 

processes (Arl2 and Arl3 194-198), lysosome mobility and microtubule binding (Arl8 

199,200), ciliogenesis (Arl3 and Arl6 201-206), and tumorigenesis (Arl11 207,208). To date, 

the roles of most Arl GTPases remain unsolved.  

 Notable among Arls are the Arl4 proteins (Arl4A, Arl4C, and Arl4D) which have 

recently emerged as important cytoskeletal regulators 209,210. In terms of structure, 

these three proteins are similar to other Arf family members, yet are unique by virtue 

of a short basic extension at the C-terminus 161 (Figure 1.7, pg. 36). Interestingly, the 

N-terminal amphipathic helices of the Arl4 proteins are shorter and less hydrophobic 

than those of other Arf family members. Deletion of the C-terminal basic extension in 

cells results in displacement of Arl4A from the plasma membrane, advocating that this 

basic extension may function as a support system rather than the major localization 

factor of Arl4 proteins to membranes 209. Although this basic extension has also been 

noted to bear a striking similarity to nuclear localization signals 211,218, none of the full-

length proteins of this family are restricted to nuclear compartments 212. 

 Alignment of primary sequences reveals a close-knit Arl4 family 212. However, 

analysis of expression patterns in human tissues paints a different localization picture, 

with Arl4A predominant in the testis, Arl4C chiefly in brain tissue, but also in spleen, 

thymus, esophagus, stomach, intestine, and uterus, and Arl4D principally located in 

kidney,  testis,  esophagus and  uterus 212.  It  is  noteworthy to mention that  
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Figure 1.7. The Structure of Arf Family GTPases.
Schematic representation depicting the difference in structure of a typical Arf 
subfamily member (top) and Arl4 (bottom). Myristoylation occurs at the N-terminus 
on a conserved Glycine at position 2.Since the N-terminal helix in Arl4 is less hydro-
phobic than those of other Arf family members, it is hypothesized that its unique 
C-terminal basic region aids the helix-lipid interaction by offering a stabilizing effect.
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these proteins exhibit unusually high guanine nucleotide exchange rates in vitro 212, 

suggesting that they are in constitutively active forms in cells. 

 In situ hybridization studies of mammalian Arl4A demonstrate developmental 

regulation of Arl4A mRNA and implicates this protein in spermatogenesis, 

somitogenesis, and embryogenesis of the central nervous system 213. A knock-out 

mouse model of Arl4A supports its role during spermatogenesis 214. Moreover, these 

mice are viable and display only a reduced sperm count with fertility being normal in 

males 214. Reduced sperm count is often associated with a defect in apoptotic cell 

removal, where non-clearance of lingering cells marked for death leads to poor sperm 

quality 215. In depth in vivo analysis of all Arl4 forms with classical and conditional 

knock-out animals are alluring. These mice would help to decipher differences 

between the three proteins, and if compensation is an important factor at play. 

 In 2007, two independent studies demonstrated that the Arl4 family members 

are capable of binding cytohesins 209,210. Cytohesins are multidomain proteins that 

include a Sec7 and PH domain, and are branded ArfGEFs, well-known to contribute to 

the remodeling of the actin network of cells 173, 159. As previously mentioned, Arf6 can 

control several processes such as endocytosis and actin dynamics, and cytohesin-2 (or 

ARNO) is a major activator of this GTPase 216 173. To do so, ARNO needs to be recruited 

from the cytosol to the membrane where Arf6 is located; it has been suggested that this 

recruitment was occurring through the dual binding capability of the PH domain for 

phosphoinositides and Arf6 159,217, 218. The groups of Munro and Lee discovered that 
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active Arl4D binds the PH domain of ARNO and recruits the molecule to the membrane 

and the lipid-binding affinity of the ARNO PH domain is not required for this action 

209,210. Together, these data argue that Arl4D is a novel upstream component controling 

ARNO and promoting Arf6 activation and cytoskeletal rearrangement 209,210. However, 

how the active Arl4 protein is itself targeted to specific locations at the right instances 

remains an open question.  

5. Modes of GTPase regulation 

 Ras G proteins control numerous protein functions, and are themselves 

managed by a variety of protein-protein interactions. Many proteins have been cited to 

positively or negatively influence GTPase signaling. In Chapter 3 of my thesis, we 

introduce a novel mechanistic hypothesis for Rac GTPase regulation via the 

DOCK180/ELMO complex that is reminiscent of GTPase regulation via the formins. 

Highlighted below are some modes of GTPase regulation by formin proteins. 

5.1 Liberating formins  

 Not only are formins actin nucleators, but they also act as Rho family effectors, 

increasing signaling intricacies downstream of these proteins 219. In mammals, the DRF 

family includes Dia1-3, DAAM1-2, FMNL1-3, FHOD1 and FHOD3 220. Structurally, this 

protein family is distinct by virtue of a GTPase Binding Domain (GBD), Diaphanous 

Inhibitory Domain (DID), Diaphanous Autoregulatory Domain (DAD), and a short basic 

region at the C-terminus (Figure 1.8,  pg. 39) 221-225.  Essentially, at basal  
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Figure 1.8. Dia family domain architecture and modes of regulation.
a) Schematic representation of the domain structure of Dia-related formins (DRFs). At 
the N-terminus, the GTPase-binding domain is followed by the inhibitory DID, 
dimerization domain (DD), coiled-coil region (CC), and the actin nucleation module of 
FH1 and FH2 regions. Finally, at the C-terminus is the autoregulatory DAD. These form-
ins are repressed via intramolecular contacts between the DID and the DAD at basal 
levels, masking its actin nucleation activity. Relief of autoinhibition of DRFs can occur 
through b) GTPase binding (ex. RhoA binding to Dia1 GBD) or c) C-terminal binding 
(ex. Dvl binding to DAAM1 DAD). 
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unstimulated levels, DRFs form a repressed autoinhibited state through intramolecular 

contacts between the N-terminal DID and the C-terminal DAD. Structurally, the DID is 

made up of tandem armadillo repeats, known protein-protein interfaces 221, that create 

a stunning helical arrangement with a hydrophobic groove. The MDxLL consensus 

motif of the DAD forms a core α helix that collapses into the concave site of the DID 

hydrophobic groove 224,225. This repression is released via protein binding to different 

modules of the DRF, unleashing formin nucleation activity and actin polymerization 

through the newly exposed dimeric catalytic FH2 domain 226,227, 228, 229, 230, 221 (Figure 

1.8, pg. 39).   

5.2.1 Dia Family 

Dia1 is the best structurally and functionally characterized formin to date 231. 

Dia1 was first described as an effector for RhoA, with active RhoA binding to the GBD 

disrupting the intramolecular DID/DAD dormant conformation and inducing formation 

of thin actin stress fibers 226,227,229,232 (Figure 1.8, pg. 39). The importance of the GBD 

regulatory feature is amplified by the finding that deletion of this domain results in a 

constitutively active variant of Dia1 that epitomizes strong cytoskeletal remodeling 

even in the absence of GTPase-binding. 

Most recently, Rif, another Rho family GTPase, was found to form complexes 

with both Dia1 and Dia2 233, 234. As is the case for Rho-Dia interactions, the Rif-Dia 

coupling occurs through the Dia GBD, releasing Dia from its inhibition. Intriguingly, Rif 

binding to Dia1 and Dia2 induces completely different cytoskeletal forms. While Rif 
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triggers stress-fiber formation through Dia1, the Rif-Dia2 complex sparks filopodia 

formation in epithelial cells233, 234. Previously, the traditional cytoskeletal structures of 

stress fibers and filopodia were considered under the control of RhoA and Cdc42, 

respectively. The influence of Rif on these structures reveals how non-classical Rho 

GTPases are quickly budding into interception points for creating new signaling 

avenues for cytoskeletal regulation. 

The opening up of autoinhibited DRFs leads to some exciting possibilities. Not 

only is the actin polymerization activity of these proteins unmasked, but other regions 

may also only become accessible once the proteins are awakened.  Case in point, the 

Dia1 DID has recently been found to couple with IQGAP1, and this interaction is 

permitted only once Dia1 is activated through RhoA-binding to its GBD, making the 

hidden DID region available to IQGAP1 235. IQGAP1 is a cytoskeletal scaffold protein 

that is necessary for subcellular localization of Dia1 in human cells 235. This interaction 

also appears to be critical for phagocytic cup formation in macrophages, displaying 

how a variety of molecules can converge to control the many facets of actin 

rearrangement.  

5.2.2 DAAM1 

Restricted in a similar fashion as Dia proteins, DAAM1 needs to be freed from its 

locked conformation in order to carry out its biological functions. Reports indicate that 

DAAM1 plays a vital role during Xenopus embryogenesis through control of planar cell 

polarity 236,237. Similar to Dia1, DAAM1 can bind RhoA through its N-terminal GBD 236. 
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Interestingly, rather than a Rho GTPase binding-dependent release of autoinhibition, 

DAAM1 is found to bind Dvl through its C-terminally positioned DAD, leading to 

downstream RhoA activation possibly through DAAM1 interaction with a RhoGEF 

and/or RhoGAP. Therefore, in this instance, instead of being turned on via GTPase 

binding, DAAM1 is an upstream component for Rho activation and modulator of the 

actin cytoskeleton for noncanonical Wnt signaling and cell motility during vertebrate 

gastrulation 236 (Figure 1.8, pg. 39).  

Interestingly, biochemical studies show that Rho does not fully activate the 

formin Dia1 in vitro 44,228,238,239, implying that other mechanisms are at play to render 

formins to a fully active state. Whether other carboxyl-terminal binding proteins are 

responsible for their full activation, as is the case for DAAM1, remains to be uncovered 

44,228,238. 

5.2.3 FHOD1 

Crystallization of the N-terminal region of the DRF FHOD1 quickly 

acknowledged FHOD1 as an outlier of this family in terms of GBD structure. The 

FHOD1 GBD reveals an ubiquitin superfold very similar to that of the Ras-binding 

domains (RBDs) of c-Raf1 and PI3 kinase, and has the characteristic of binding Rac and 

not Rho or Cdc42 240,241. As demonstrated for other formin members, the GBD is 

viewed as a key GTPase docking site that, when engaged, releases and activates the 

protein. The unusual nature of the FHOD1 GBD (herein referred to as the FHOD1 RBD) 

is illustrated by deletion experiments that demonstrate that removal of the RBD does 
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not activate the formin as in Dia.  Rather, the interaction with Rac seems to be a 

recruitment signal and is insufficient in activating the protein 241. Notably, 

phosphorylation events by ROCK at three specific sites within the DAD unlock the 

compressed autoinhibited state and induce F-actin stress fiber assembly 242. This data 

points to potential alternative roles of the formin GBD that have yet to be defined 

231,243. 

5.3 GTPase cascades 

An interesting concept that has arisen in recent years is the regulation of Ras 

GTPases by other Ras GTPases. Nature has evolved a spectacular web of liaisons 

between members of the Ras family of G proteins, leading to elaborate manipulation of 

cell shape and motility. Discussed below are the following GTPase cascades: (i) Arf6-

Rac, (ii) RhoG-ELMO-DOCK180-Rac1, (iii) Arl4-ARNO-Arf6-Rac1. 

5.3.1 Arf6-Rac 

Cross-talk between the Arf6 and Rac pathways is present during many 

biological processes. One of the earliest studies found Arf6 to be required for Rac-

mediated membrane ruffling in macrophages, and subsequent research has endorsed 

this partnership during neurite outgrowth, cell spreading, cell migration, and 

phagocytosis 180,244-246. The question of how Arf6 regulates Rac activity is quite 

complex. One early model suggests Arf6-mediated endosomal trafficking of Rac 

positions this GTPase at the migrating front of cells. Another model hypothesizes that 

Arf6 activation will recruit the DOCK180/ELMO complex, a bipartite Rac GEF, to the 
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leading edge of a cell 180. The exact mechanism by which Arf6 positions this bipartite 

GEF to the cell periphery remains obscure. A recent study proposes a direct interaction 

between Arf6 and DOCK180; essentially, multi-complex formation between ARNO and 

DOCK180, an Arf6 and Rac GEF, respectively, promotes cell migration. This Arf6-to-Rac 

signaling entails the interaction of scaffold proteins GRASP and IPCEF with ARNO to 

direct Arf6 towards Rac 182. 

An interesting finding in polarized Madin-Darby canine kidney (MDCK) cells 

induced to scatter demonstrates that the Arf6 effect on Rac activity is biphasic 247. 

Initially, as the cells scatter, the levels of Rac-GTP undergo a transient drop. This 

decrease in Rac activity may partially be explained by Arf6 recruitment of NM23-H1, an 

inhibitor of the Rac GEF, Tiam1 248. Gradually, Rac-GTP levels are restored as cells take 

on a migratory phenotype with extensive lamellipods at the leading edge of cells. This 

latter phase coincides with an increase in Arf6 activity, leading to an interesting idea 

where Arf6 may act as an attractant for specific Rac GEFs. Therefore, in this cell type, 

Arf6 acts as both a negative and positive regulator of Rac activation.  

Balasubramanian and colleagues suggest that rather than being a delivery 

system for Rac to the cell periphery, Arf6 can traffic lipid rafts to the membrane to 

which Rac can then anchor onto 249. Lipid rafts are known to be transported to the 

membrane in an integrin-dependent manner, and therefore, this theory offers an 

attractive mode of Arf6-mediated regulation of Rac that is cell adhesion-dependent. 
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5.3.2 RhoG-ELMO-DOCK180-Rac1 

A genetic cascade starting with RhoG and ending with Rac1 has been 

demonstrated in both mammalian cells and in C. elegans. ELMO is at the heart of this 

signaling cascade, bringing together the two Rho family GTPases. In mammalian cells, 

active RhoG binding to ELMO is coupled to localization of the ELMO/DOCK180 and/or 

ELMO/DOCK4 complexes to the cell periphery for spatially restricted Rac activation 

and subsequent cell spreading and migration 250,251. In vivo in C. elegans, a well-defined 

signaling network of ced-2/ced-5/ced-12 (worm orthologs of mammalian 

CrkII/DOCK180/ELMO, respectively) is positioned upstream of the Rho GTPase ced-10 

(worm ortholog of mammalian Rac1) during phagocytosis of apoptotic cells and cell 

migration processes 252-254. MIG-2 (worm ortholog of mammalian RhoG) is proposed to 

be an upstream component of this pathway 255. Here, ELMO is postulated to serve as a 

scaffold where MIG-2 binding to the ELMO N-terminus and DOCK180 binding to the 

ELMO C-terminus, bridge RhoG and Rac, both critical for proper clearance of apoptotic 

cells.  

5.3.3 Arl4-ARNO-Arf6-Rac1 

 An interesting case of GTPase signaling cascades is offered by the 

connection between Arl4-Arf6 and Arf6-Rac. Two independent studies revealed that 

Arl4 is able to bind the Arf6 GEF, ARNO, localize it to the plasma membrane and induce 

Arf6 activation and cytoskeletal changes 209,210. Many other studies document that Arf6 

activity is required for proper spatial restriction of Rac activation in the cell 
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180,181,183,184,256. It is possible that signaling through Arl4 can assemble Arf6, and in turn, 

Rac, to the leading edge of a migrating cell where Rac GEFs can locally activate the 

GTPase.   

5.3.4 Rab5-Rac1 

Rac-induced cell motility requires a restricted pattern of Rac localization at the 

leading edge. Although many avenues to constrained localization are possible, a recent 

study proposes an interesting notion where Rab5 controls endosomal trafficking of Rac 

to the plasma membrane 257. Also, it is proposed that Rac is activated on the endosome 

through simultaneous recruitment of the Rac GEF, Tiam1. In this way, rather than 

having arbitrary Rac activation at the cell periphery, the Rab5 endosomal pathway will 

target active Rac to discrete areas of the cell. Intriguingly, this process is dependent on 

Arf6, as Arf6-knockdown blocked shuttling of Rac from endosomes to the plasma 

membrane 257. However, whether the role of Arf6 in this process is dependent on its 

well documented function in endocytosis or its involvement in targeting lipid rafts to 

the membrane (sites of Rac attachment) remains to be demonstrated.  

6. The DOCK family of atypical GEFs 

6.1 History of DOCK discovery 

 The discovery of DOCK180 (also known as DOCK1) unlocked a gateway to novel 

regulators of Rho GTPases. First discovered as a Crk-binding protein with unknown 

function, Hasegawa et al.’s initial study revealed that this protein was able to induce 
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morphological cell changes when artificially targeted to the plasma membrane in 

cellulo 258. This same group later found DOCK180 to work downstream of integrins and 

upstream of Rac, and demonstrated that DOCK180 can directly interact with Rac1 259. 

However, the mechanism by which DOCK180 was acting as an activator for Rac was 

still unknown. Studies in the model organisms C. elegans and Drosophila identified ced-

5 and Myoblast City (MBC), respectively, as orthologs of mammalian DOCK180 260,261. 

In C. elegans, ced-5 is required for phagocytosis of cell corpses by engulfing cells and for 

coordinated migration of gonadal distal tip cells (DTCs), two processes that require 

active and dynamic restructuring of the actin cytoskeleton 261. The DOCK180 link to 

both CrkII and Rac was also made in the worm, as mutants of ced-2 (worm ortholog of 

CrkII) and ced-10 (worm ortholog of Rac1) display the same defects as ced-5 mutants 

261,262. These three proteins were found to act in the same genetic pathway during 

phagocytosis of apoptotic cells and DTC migration 262 (Figure 1.9, pg. 48). The alliance 

of ced-2/ced-5/ced-10 in C. elegans was also found to act in mammalian cells during 

phagocytosis. It was demonstrated that the integrin αvβ5 recruits the 

CrkII/DOCK180/Rac complex for efficient recognition and internalization of apoptotic 

cells 263.  

 In Drosophila, mutants of MBC are defective in myoblast fusion, dorsal closure 

and cytoskeletal remodeling 260. These defects mimic those of mutant dRac1 (fly 

ortholog of Rac1) leading to the hypothesis that similar to mammalian DOCK180 and  
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Figure 1.9. Overview of DOCK180 and its orthologs in Drosophila and C. elegans 
in various biological processes. 
DOCK180, ELMO, and Crk (and their orthologs in the worm and fly) are part of an 
evolutionarily conserved signaling pathway upstream of the Rho GTPase, Rac. 
Through various effector molecules, this signaling module has been shown to 
perform in a plethora of biological processes requiring dynamic cytoskeletal reorgani-
zation. Some of these events include cell migration, phagocytosis of apoptotic cells, 
and myoblast fusion.  Adapted from 68.
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Rac, and worm ced-5 and ced-2, MBC and dRac1 are part of the same pathway in 

Drosophila 142,264. Although it seems obvious that these proteins are involved in the 

same genetic cascade, important questions remained unanswered: How is DOCK180 

connected to Rac? Is it a direct activator of Rac or does it act as a scaffold for the true 

Rac activator?  

 In comparison to the classical DH-PH Rho GEFs, the DOCK proteins were 

initially viewed as non-conforming activators of GTPases. Below, we discuss in detail 

DOCK family members, their evolution as bona fide Rho GTPase activators, and their 

roles in various biological settings. 

6.2 Structure and function 

The original discovery of the DOCK superfamily was made with primary 

sequence analysis using human DOCK180. The mammalian DOCK family of GEFs 

consists of 11 members and is classed into 4 subfamilies based on sequence similarity, 

structural homology and GTPase-selectivity: DOCK-A (DOCK180, DOCK2, DOCK5), 

DOCK-B (DOCK3, DOCK4), DOCK-C (DOCK6, DOCK7, DOCK8), and DOCK-D (DOCK9, 

DOCK10, DOCK11) 265-267 (Figure 1.10, pg. 50). The pertinent Drosophila and C. 

elegans orthologs, MBC and ced-5, respectively, are grouped in the DOCK-A subfamily. 

Orthologs have also been identified in D. discoideum (amoeba), A. thaliana (plant) and 

S. cerevisae (fungi), showing conservation of these proteins through evolution 265,266. 

Structurally, these unconventional GEFs deviate from classical GEFs due to two 

defining  modules  that  are  exclusive  to  this  protein  family: the  DOCK  Homology  
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Figure 1.10. The DOCK Family of Atypical GEFs.
There are eleven DOCK180-related proteins in mammals: DOCK1 (DOCK180) - 
DOCK11.  The DOCK members are grouped into four subfamilies (DOCK-A to DOCK-D) 
depending on sequence similarities and domain architecture. All members contain  
the signature evolutionarily conserved domains DOCK Homology Region (DHR)-1and 
DHR-2. The DHR-1 displays lipid-binding and membrane-targeting properties, while 
the DHR-2 is responsible for GEF activity towards their respective Rho family GTPase(s).    
The four subfamilies are also grouped via substrate specificity, with DOCK-A and 
DOCK-B displaying Rac GEF activity, DOCK-C demonstrates dual GEF activity on Cdc42 
and Rac, and DOCK-D is specific for Cdc42. One exception is DOCK4,  which also dem-
onstrates GEF activity for Rap1 (indicated above by **). Percentages indicate the 
sequence similarity (identity) between the DHR-1 and DHR-2 between DOCK subfami-
lies. Adapted from 68.

Rap1**

50



 

 

51 

 

Region-1 (DHR-1) and DHR-2, with the percentage of identity for these domains 

decreasing from subfamily DOCK-A to DOCK-D 68,265,266 (Figure 1.10, pg. 50). The 

DHR-2 is responsible for the catalytic function of DOCKs, serving as the counterpart to 

the enzymatic activity of the DH/PH module of classical GEFs.  Studies by many 

different groups demonstrate that DOCK180, DOCK2-DOCK7, DOCK9 and DOCK10 all 

display catalytic function towards various GTPases 85,250,268-273. 

The DOCK proteins have demonstrated specificities for different Rho GTPases 

(Figure 1.10, pg. 50). Members of the DOCK-A and DOCK-B families exhibit specificity 

for  Rac  (with the exception of  DOCK4  which  is  also  a  Rap1  GEF),  while  DOCK-C 

members display dual specificity for Rac and Cdc42, and the DOCK-D subfamily is 

confined to Cdc42 68. Crystallization of the DOCK9 DHR-2 in complex with Cdc42 has 

enlightened our mechanistic understanding of how this family of RhoGEFs activates 

GTPases. However, the structural determinants that bias a DOCK GEF for specific Rho 

GTPase remain unknown. Controversy has arisen in the literature questioning whether 

the DHR-2 of a DOCK GEF is necessary and sufficient for GTPase activation or whether 

an additional factor (ie. ELMO) is required to uncover its GEF activity. This subject will 

be addressed in Aim #1 (Chapter 2) of my PhD thesis.  

The other well-conserved feature in DOCKs is the DHR-1. Functionally in cells, 

DOCK180 DHR-1 point and deletion mutants did not hinder Rac activation, but were 

unable to localize efficiently to the plasma membrane and showed deficiencies in cell 

polarization (elongation) and migration, pointing to the functional necessity of this 
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conserved domain 274. Primary sequence alignment found that the DHR-1 bears 

similarity to C2 domains, known lipid-binding modules. Concurrently, it was 

demonstrated that the DHR-1 of DOCK180 binds specifically to the PI3K by-product, 

PtdIns(3,4,5)P3 in vitro 274. Further studies have attributed the same property to the 

DHR-1 of DOCK2 and DOCK4 in vitro 275,276. Although the isolated DHR-1 of DOCK9 has 

not been tested for lipid binding, the full-length protein demonstrates affinity for 

PtdIns(4,5)P2, PtdIns(3,5)P2, and PtdIns(3,4,5)P3 277. Thus, this region is reported to 

have both lipid-binding and membrane-targeting ability. Our recent structural study 

revealed the crystal structure of the DHR-1 of DOCK180 278. This region contains a core 

Type II C2 domain with important distinguishing insertions which, in the past, were 

likely responsible for the non-identification of the DHR-1 as a canonical C2 domain-

containing region by sequence analysis. Three upper surface loops are responsible for 

interaction with the head group of the phospholipids PtdIns(4,5)P2 and PtdIns(3,4,5)P3 

in vitro, and for localizing the protein at the cell membrane 278. One model suggests that 

this dual ability to bind PtdIns(4,5)P2 and PtdIns(3,4,5)P3 allows for targeting to the 

membrane via the more abundant PtdIns(4,5)P2, which then allows the DOCK protein 

to search the vicinity for the more rare and localized PI3K-generated PtdIns(3,4,5)P3 at 

the leading edge of a cell 278.  

In addition to the well-conserved DHR-1 and DHR-2, primary sequence 

alignment revealed that the DOCK subfamilies contain other well-conserved domains. 

All members display a C-terminally positioned proline-rich region. At the N-terminus, 
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members of DOCK-A and DOCK-B subfamilies have a SH3 domain, while those from 

subfamily DOCK-C contain a PH domain 83,266 (Figure 1.10, pg. 50). These regions of 

the DOCK proteins are typically linked in the literature with two other proteins: CrkII 

and ELMO. These DOCK interacting partners will be reviewed in the next section as 

they are pertinent for understanding DOCK function and regulation. DOCK and ELMO 

are inseparable in many important biological processes and will be discussed further 

in section 9. Physiological functions of DOCK and ELMO. 

7. DOCK-interacting partners 

7.1 Crk 

The original discovery of DOCK180 was made in 1996 by the group of Matsuda 

in search of novel Crk-binding partners. Crk (chicken tumour virus no. 10 [CT10] 

regulator of kinase) was initially identified as a viral oncogene capable of transforming 

chicken embryo fibroblasts 279. Crk was the first identified adaptor protein and is a 

multi-tasking scaffold that can act as a docking station for a plethora of 

molecules/complexes leading down to a variety of signaling highways essential for cell 

remodeling and migration. The Crk family includes 4 members: CrkI, CrkII, CrkIII, and 

Crk-like (CrkL). CrkI-CrkIII are splice variants of the same gene and CrkL is a product 

of a distinct gene 280-283. These adaptor proteins feature no catalytic activity, but are 

able to bridge together many molecules due to well-defined modules that can initiate a 

cascade of signaling pathways.  
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Highly homologous in terms of structure, Crk proteins are composed virtually solely of 

SH2 and SH3 domains (Figure 1.11, pg. 54). SH2 domains are known to bind 

phosphorylated tyrosine residues and Crk has been associated to many tyrosine-

phosphorylated proteins, such as, Gab1, and to the focal adhesion components, 

p130Cas and paxillin 284-286. SH3 domains generally bind proline-rich motifs and are 

known  protein-protein  interaction  modules.  Both the GEFs C3G and DOCK180 bind 

Crk through the N-terminal SH3 domain 259,287,288. In the members that contain a 

second SH3 domain, this region has no known binding partners. CrkII is less effective 

than CrkI in promoting p130Cas tyrosine phosphorylation, cell spreading and 

transformation, supporting a role for this domain as a negative regulator 282. Another 

study found the C-terminal SH3 domain of CrkII to play a role in removal of apoptotic 

cells and cell spreading in C. elegans 289. However, in mammals, in vivo gene-trap 

deletion of this latter SH3 domain in CrkII, while producing a truncated CrkI-like 

protein, does not demonstrate any obvious physiological defects in mice 290. CrkL null 

mice are embryonic lethal and display defects in cranial and cardiac development 291. 

These results also show that neither CrkI nor CrkII can compensate for CrkL during 

development.  Since loss of CrkII does not induce any gross phenotypical abnormalities 

in mice, a knock-out mouse for CrkI and CrkII was generated and studied. These 

animals die before birth, with embryos presenting cardiovascular and craniofacial 

defects 292, leading to the conclusion that CrkL, which shares 60% primary sequence 

identity and significant structural homology to CrkII, is unable to compensate for both 

CrkI and CrkII 280,292.  
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7.2 ELMO  

DOCK can almost never be mentioned without its binding partner ELMO 

(engulfment and cell motility). Originally, ELMO/ced-12 was identified in C. elegans, 

and studies showed that ced-12 mutants phenocopied mutants of ced-2, ced-5, and ced-

10 252-254. In fact, ced-12 was part of the same genetic cascade as Ced-2/Ced-5/Ced-10 

involved in mediating phagocytosis of apoptotic bodies and DTC migration 254. The 

ELMO proteins (~82kDa) are evolutionarily conserved and include 3 mammalian 

members represented by ELMO1-3, with orthologs in C. elegans (ced-12) and 

Drosophila (dELMO). ELMOs are characterized by an N-terminal RhoG-binding, ERM-

binding (cytoskeletal cross-linking protein) and IpgB1 (bacterial protein) binding 

regions 83. A large portion of the N-terminus is also the interaction site for the Bai1 

phagocytosis receptor 293. The ELMO C-terminus houses a PH and proline-rich domain, 

with the proline-rich motif proposed to be the binding site for DOCK proteins 252,294,295 

(Figure 1.11, pg. 54). Thus far, both ELMO1 and ELMO2 have demonstrated binding to 

DOCK1-4 83.  

 The ELMO proteins possess no obvious catalytic activity and, so far, seem to 

function as scaffold platforms for an array of molecules. Interestingly, a very important 

theme has emerged surrounding the ELMO PH domain in conjunction with DOCK 

proteins. Many reports from the Ravichandran lab state that DOCK180 displays no Rac 

GEF activity alone 267,294,296. Rather, these studies indicate that although ELMO has no 

enzymatic activity on its own, it functions in trans with DOCK180 through its PH 
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domain to uncover DOCK180 GEF activity towards Rac 294. This bipartite GEF model is 

highly contested in the literature by other groups who have demonstrated that DOCK 

alone is necessary and sufficient as a Rac GEF both in vitro and in cellulo 265. A possible 

explanation for this discrepancy is the difference in experimental methods employed to 

study DOCK180 GEF activity. Clearly, further detailed work is required to resolve this 

controversy to fully understand DOCK180 function and the ELMO contribution 

towards Rac signaling. Part of my thesis work is dedicated to uncovering the 

molecular mechanism by which DOCK180 and ELMO interact and testing the 

importance of this partnership for DOCK180 Rac GEF activity. 

Interestingly, Bowzard and colleagues identified three proteins, ELMOD1-3, 

from bovine testis that share primary sequence similarity to the three mammalian 

ELMO proteins 169. The region with similarity in the two sets of proteins is termed the 

ELMO domain and is positioned centrally in ELMO1-3 (Figure 1.11, pg. 54). However, 

no other feature is found to be conserved between the ELMO (1-3) and ELMOD (1-3) 

proteins. Not only is this study the first to demonstrate mammalian Arl family GAP 

activity, the ELMOD2 member was also shown to display GAP activity towards Arf1 

and Arf6 in vitro, a rather surprising finding since none of the ELMOD proteins contain 

the canonical trademark Arf GAP domain 169. This is an exciting discovery since Arf6 

has already been linked to Rac activation and signaling in mammalian cells via the 

DOCK180/ELMO complex 180.  Although ELMO1-3 have been tested for Arf family GAP 

activity in vitro, no GAP function has been established to date 169.  
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7.2.1 The ELMO Pleckstrin Homology (PH) domain  

 The first PH domain was identified in the pleckstrin protein and subsequent 

research has revealed its existence in a myriad of proteins, such as protein kinases, 

GAPs, GEFs, and lipid transport proteins 297,298. Structurally, canonical PH domains are 

characterized by a core three-stranded and four-stranded β-sheet ‘sandwich’ capped at 

its C-terminus by an α-helix (constitutes the PH ‘superfold’), and three variable loops 

79,299,300. A trademark attributed to PH domains is the ability to bind a wide range of 

phosphoinositides through the phosphoinositol headgroup, and thus target proteins to 

cellular membranes without showing any major membrane insertion of the domain 301. 

Lipid binding is credited to the heart of the variable loops region which creates a 

positively-charged interface 79,301,302. The selectivity for different forms of lipid by-

products is proposed to direct different PH domain-containing proteins to discrete 

subcellular locations. Nonetheless, although PH domains are clearly branded with this 

lipid-binding ability, only about 10-15% of known PH domains strongly display this 

characteristic. Most PH domains harbor very weak affinity and low selectivity towards 

PI3K by-products 79.  

 It is suggested that additional binding partners of PH domains and/or other 

domains within PH domain-containing proteins can strengthen subcellular targeting 

cues for these proteins. Additionally, rather than acting as localization cues, these 

binding partners are also proposed to effect functioning of proteins. One recent 

example is that of the PH domain of Bcr-Abl. This PH domain demonstrates high 
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specificity binding towards lipids and the proteins SMC1, DOCK9, PLCε and β–tubulin 

in vitro 303. Clearly, further studies are required to investigate this potential function of 

PH domains through binding partners other than the extensively studied lipids.  

 To date, a defining feature of ELMO proteins is its PH domain. Although well 

conserved in the ELMO family, the PH domain has not been properly investigated for 

lipid-binding and membrane-targeting properties. In cellulo work with mammalian 

cells shows that the ELMO PH domain is necessary for DOCK180/ELMO-mediated 

membrane ruffling 304. Moreover, functional studies in C. elegans demonstrate that the 

ELMO PH domain is required for proper engulfment functions, with transgenic 

embryos lacking this domain showing diffuse localization of the protein 253. Whether 

these defects are due to mislocalization of ELMO still needs to be explored. One goal of 

my thesis is to examine the lipid binding property of the ELMO PH domain and 

how this region is involved in DOCK180/ELMO Rac signaling during cell 

migration.  

8. Regulation of DOCK and ELMO 

The regulation of DOCK and ELMO is quite complex. Many components have 

been associated in regulating these proteins and ensuing signaling cascades. As well, 

both post-translational modifications and the structural aspects of these molecules add 

another layer of complexity to DOCK/ELMO complex regulation. 



60 

 

 

8.1 Intramolecular interactions 

Intramolecular contacts are said to be present in DOCK proteins. One model 

portrays DOCK180 to be autoinhibited at basal levels. Essentially, the DOCK180 SH3 

domain is proposed to unite with the DHR-2, creating a steric clash with Rac and 

blocking access between the DHR-2 and Rac 295. It is suggested that ELMO binding via 

its PxxP region to the DOCK180 SH3 domain releases the SH3/DHR-2 interaction, 

rendering the DHR-2 now accessible to Rac. This unleashing of DOCK180 is said to 

enable the bipartite DOCK180/ELMO to carry out its Rac GEF activity 295. Although an 

interesting model of DOCK180 regulation, the steric-inhibition model lacks important 

elements. Firstly, the group fails to determine whether DOCK180 and ELMO are 

induced to form a complex only upon an extracellular stimulus or if these two proteins 

are always present in a complex even at basal levels. Also, if the former is true, what 

are the stimuli that would induce DOCK180/ELMO complex formation?   

8.2 Phosphorylation 

8.2.1 DOCKs 

Phosphorylation of DOCK180 is seen after integrin stimulation and in v-Crk or v-

Src-transformed cell lines 287. However, the type and sites of these phosphorylation 

events are unclear.  The functional importance of such events remains to be elucidated. 

DOCK7 is richly expressed in neural Schwann cells. In these cells, the ErbB2 

receptor has been directly linked to binding and phosphorylation of DOCK7 305.  
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Functionally, ErbB2-stimulation resulted in an increase in DOCK7 GEF activity towards 

both Rac1 and Cdc42 in cellulo, with these cells displaying increased migratory 

phenotypes. 

8.2.1 ELMOs 

Stimulation by the Src family tyrosine kinase, HCK, induces ELMO 

phosphorylation 306. Mutation of critical tyrosines in ELMO resulted in decreased 

phagocytic ability and cell migration of mammalian cells 306. These ELMO mutants also 

caused a substantial decrease in Rac activation in cells, suggesting that ELMO 

phosphorylation is an important regulatory factor for DOCK180-mediated Rac activity. 

Mechanistically, how ELMO phosphorylation manipulates DOCK180/ELMO signaling 

remains a mystery. A possible answer may be that ELMO phosphorylation events ‘free’ 

an otherwise autoinhibited ELMO protein. Other possibilities include the recruitment 

of additional factors important for Rac signaling downstream of DOCK180.  

8.3 Ubiquitylation 

While DOCK180 expression alone is less stable due to ubiquitylation events, co-

expression of ELMO1 hampers DOCK180 ubiquitylation in cellulo 307. Interestingly, it 

has been mentioned that the ELMO contribution is responsible for priming DOCK180 

Rac GEF activity 267,294,296. This study offers an attractive alternative idea that ELMO 

stabilizes the expression of the DOCK protein rather than actually physically engaging 

in DOCK180-mediated Rac activation events.  
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8.4 Oligomerization 

Certain members of the classical DH-PH RhoGEF family can oligomerize through 

their respective DH domains, a process often required for optimal GEF activity 308-311.  

For the DOCK family, DOCK9 is reported to dimerize through the DHR-2 domain in 

each molecule 312. Most recently, the crystal of the DOCK9 DHR-2 unveiled that 

homodimerization sites are distinct from Cdc42-binding sites leaving the GEF openly 

accessible to activate the GTPase 85. However, it has yet to be determined whether 

dimerization via DHR-2 is a universal feature and if there are any functional 

consequences.  

9. Physiological functions of DOCK and ELMO 

Over the years, whether alone or in unison, DOCK and ELMO have been 

implicated in various biological processes. Initial discovery of these proteins were 

made in the research of cell migration in cellulo, phagocytosis, and myoblast fusion in 

model organismal systems of Drosophila and C. elegans and in mammalian cell lines. 

Below, we discuss the biological relevance of these proteins and downstream signaling 

cascades.  

9.1 Phagocytosis 

Phagocytosis is an effective cellular method employed to engulf and remove 

apoptotic cell bodies and pathogens. Efficient clearance of dying cells by phagocytes 

encourages healthy cellular functioning of a host. Molecular pathways that control this 
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process are well studied in C. elegans and mammalian cells. The first evidences for 

teamwork between ced-5, ced-2 and ced-10 were made in C. elegans during 

phagocytosis of apoptotic cells 262. Further genetic studies identified ced-12 to function 

at the same molecular step as ced-5 during engulfment, also revealing the importance 

of the ced-12 PH and proline-rich regions for ced-12 function 252-254. It was also found 

that ced-5 and ced-12 regulation of ced-10 was necessary for proper cytoskeletal 

reorganization 252-254.  

The first bona fide receptor found to trigger DOCK180-mediated phagocytosis is 

the integrin αvβ5 263. This integrin recruits phosphorylated p130Cas-CrkII-DOCK180 to 

cell surfaces for efficient Rac activation and phagosome formation by mammalian 

phagocytes. 

Dying cells are known to expose ‘eat-me’ signals at their cell surface when the 

time is right, readying themselves for the ‘clean-up crew’ that will recognize these 

signals and proceed with their disposal 313-315. One such signal is supplied by 

phosphatidylserine (PtdSer). Normally present on the inner leaflet of cells, an 

apoptotic cell will flip-out this ‘eat-me’ signal, an attractive cue for the PtdSer receptor 

(PSR) 316,317. psr-1 (ortholog of mammalian PSR) is genetically linked to the ced-2/ced-

5/ced-12/ced-10 pathway in C. elegans, potentially through a direct interaction via ced-

5 or ced-12 or both proteins 318.  

Opsonization of apoptotic cells refers to binding of soluble bridging signals that 

‘prime’ a cell for detection by a phagocytosis receptor. The secreted glycoprotein milk-
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fat globule EGF-factor 8 (MFG-E8) is a known opsinizing agent of PtdSer that can be 

recognized directly by either integrin αvβ3 or αvβ5 319-321. As αvβ5 has already been 

linked to the CrkII-DOCK180-Rac1 pathway, an interesting study found that MFG-E8 is 

functionally connected to αvβ5 and DOCK180 and potentiates integrin-mediated Rac 

activation 322. Effectively, knockdown of DOCK180 hinders MFG-E8-αvβ5-mediated Rac 

activity and phagocytosis of dying cells 322.  

Gas6 is another opsonizing agent of PtdSer acting through the receptor tyrosine 

kinase, Mer 323. Mer stimulation by Gas6 results in activation of the Src signaling 

pathway, FAK phosphorylation and recruitment of the αvβ5 integrin 324. Intriguingly, 

Mer and integrin αvβ5 have been linked due to the shared downstream signaling 

pathway. Essentially, it is suggested that these two receptors display synergy during 

phagocytosis in cells due to collective phosphorylation of p130Cas leading to 

recruitment of CrkII/DOCK180 and localized Rac1 activation 324. Mer is unable to 

promote phagocytosis in cells where integrin αvβ3 and αvβ5 have been knocked down, 

showing the dependence of Mer on integrins during engulfment 324. Both receptor 

families have been implicated in other biological processes that require versatile and 

dynamic cytosketelal restructuring, such as cell migration and invasion. It will be 

interesting to see whether these receptors also cross-talk in these processes using a 

similar DOCK180-signaling module. 

The most recent receptor to be identified upstream of the ELMO/DOCK180/Rac 

unit is mammalian BAI1 (brain-specific angiogenesis inhibitor 1) 293. BAI1 is a seven-
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transmembrane GPCR that directly binds the apoptotic signaling molecule PtdSer. It 

was found that BAI1, through direct interaction with the N-terminal region of ELMO1, 

enters into a trimeric complex with ELMO1 and DOCK180 293. This complex formation 

was essential for phagocytosis by professional and non-professional phagocytes, as 

knockdown of BAI1 expression, hindering ELMO1/DOCK180 complex formation or 

inhibiting Rac GEF activity significantly reduced necrotic cell removal. BAI1 is a novel 

receptor now being tied to the ELMO/DOCK180 complex during uptake of apoptotic 

cells. BAI1 has also been linked to brain tumours and future studies will enlighten us 

on what roles, if any, these molecules have in ensuing signaling cascades during cancer. 

The accumulated evidence pointing to the importance of the ELMO/DOCK180 

configuration during engulfment of apoptotic cells is further substantiated by an in vivo 

mouse model where ELMO1-deficient mice demonstrate disrupted removal of germ 

cells 325. These mice are viable and are born at Mendelian ratios. While overall gross 

anatomy of these animals was normal, defects were seen at the level of Sertoli cell 

function. One such function is the activity as disposal systems for apoptotic germ cells. 

This action is suggested to require ELMO, since a dominant negative ELMO1 (ELMO11-

624) was not able to rescue phagocytosis defects of Sertoli cells as comparable to wild-

type ELMO1 325. Interestingly, this dominant-negative ELMO1 mutant lacks the 

DOCK180 binding site; it is suggested that Rac activation is an important signaling 

event required for phagocytosis by these cells.  
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9.2 Gonadal development  

The pioneering discovery of the ced-2/ced-5/ced-12/ced-10 signaling pathway is 

much indebted to the genetically tractable system of C. elegans. This pathway was first 

simultaneously acknowledged during phagocytosis of dying cells and during gonadal 

tip cell (DTC) migration 252-254. DTCs are positioned at the extremities of the two 

gonadal arms and steer the lengthening of each arm to form a U-shaped gonad during 

development in C. elegans 326. Mutants of any component of this cascade will result in 

defective DTC migration. Moreover, just as in phagocytosis, ced-5 and ced-12 are 

positioned downstream of ced-2 and upstream of ced-10, demonstrating the conserved 

nature of this signaling unit in different physiological processes.  

9.3 Oogenesis  

Another well exploited genetic tool to study directed cell migration is the model 

organism Drosophila. During fly oogenesis, the anterior of the egg chamber contains a 

huddle of border cells that will collectively migrate towards the oocyte at the posterior 

end. Duchek et al. show that border cells express the tyrosine kinase receptor, PVR 

(ortholog of mammalian PDGF and VEGF receptor), and respond to the release of the 

guidance molecule PVF1 by the oocyte 327. This study also brought to light that MBC 

and Rac activation are important downstream components of PVR signaling during 

border cell migration. A few years later, this same group revealed that border cell 

migration occurs via distinct signaling events that direct two different modes of 
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migration 328. There are two phases to border cell migration: the early and late phase. 

The early phase uses internal signaling cues in a ‘leader’ cell to direct the initial 

polarized migration towards the oocyte in a collective fashion. It is during this step that 

MBC and dELMO are found to be essential, with mutants displaying blocked migration. 

In the late phase, MBC/dELMO-independent cell migration is dominant where border 

cell migration depends rather on the assessment of signaling cues from individual units 

in the cluster to direct collective cell movement 328.  

9.4 Muscle development 

The significance of DOCK180 during muscle development was first 

acknowledged in Drosophila. In this organism, multinucleated muscle fiber formation 

involves fusion of two sets of muscle cell populations: founder and fusion-competent 

cells. Duf, Sns and Rst are the receptors that mediate fusion between the two types of 

cells and trigger an internal signaling cascade involving MBC 329,330. MBC is found in 

both cell populations and mutant flies demonstrate a serious defect at the myoblast 

fusion step, with resulting single mononucleated fibers 260,329-331. MBC is suggested to 

act upstream of Rac during myoblast fusion and the relationship between DOCK and 

Rac is exemplified in vivo, since loss-of-function mutations in MBC recapitulate 

musculature defects seen in dominant negative, constitutively active and loss-of-

function mutants of Rac1 and Rac2 142,143,332. A structure-function study in vivo in 

Drosophila found that the SH3 domain, DHR-1 and DHR-2 are crucial for proper 

myoblast fusion 331. However, although the DHR-1 is able to bind PIP3, during fusion, it 
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seems this effect is not its primary role since MBCΔDHR-1 is still membrane-targeted. It is 

shown that the popular DOCK180 binder, Crk, while able to bind MBC, is not required 

for MBC function during muscle formation 331.  

 dELMO has emerged as a vital component of Drosophila myoblast fusion, 

exhibiting binding with MBC SH3 domain and coinciding with MBC expression patterns 

during development. Similar to MBC, loss of dELMO results in defective myoblast 

fusion 333. Intriguingly, while singly overexpressed dELMO or MBC has no phenotypic 

consequence, an overdose of both proteins disrupts fusion events. This effect is 

attributed to cooperation between dELMO and MBC in favour of Rac GEF activity 333. 

A pioneering study in zebrafish suggests that DOCK180 may have a similar role 

to MBC in vertebrates 334. Using morpholino-based knockdown of DOCK180 and its 

close homolog DOCK5, Moore et al. demonstrate requirement of both GEFs during 

fusion of fast-twitch myoblasts during zebrafish development. Interestingly, in contrast 

to findings in Drosophila, Crk proteins also play a part during this process in zebrafish 

334. 

Mammalian myogenesis differs from that of Drosophila in a distinct way. In 

mammals, no founder or fusion-competent cells are present. Instead, mononucleated 

myoblasts form syncytial muscle fibers via fusion with each other and with existing 

myotubes 335. The first study to examine DOCKs in mammals found that DOCK180-null 

mice exhibit severe reduction in skeletal muscle formation, an effect exacerbated by 

knockdown of DOCK5 336. Deletion of DOCK180 and DOCK5 results in defective 
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myoblast fusion in vitro and in vivo 336. While mammalian DOCK180 seems to mirror 

Drosophila MBC, components acting upstream and downstream of DOCK180 in muscle 

formation have yet to be studied in the mouse. So far, the Crk-null mouse and the 

recently published ELMO1-knockout mouse have not been identified to demonstrate 

musculature abnormalities.  

9.5 Immune system 

Due to its temporal location, DOCK2 is a unique DOCK member. This GEF is 

exclusive to the hematopoietic system and critical for lymphocyte migration 337,338. 

Fukui and colleagues found that similar to DOCK180 regulation of Rac, DOCK2 is found 

to activate Rac in T cells and induce actin polymerization 337. Study of DOCK2-null mice 

uncovered its essential role during T and B lymphocyte migration, a role dependent on 

Rac-mediated cytoskeletal remodeling 337. A later study found that similar to the 

DOCK180/ELMO interaction, the C-terminal region of ELMO1 binds DOCK2 via its N-

terminal in cellulo 339. In cells, this association was required for Rac activation, 

however, whether ELMO is required for migratory effects of DOCK2 remains to be 

seen.  

PI3K and Rac activity have been diagnosed as key contributing factors for 

neutrophil motility in the face of a chemoattractant. DOCK2 has also been shown to 

contribute towards stimulus-induced neutrophil migration and polarity through Rac 

activation. Intriguingly, an elegant study by Nishikimi and colleagues nicely shows a 

two-step process for instigating neutrophil migration 276. They demonstrate that 
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although PIP3 generation at the leading edge induces the initial rapid localization of 

DOCK2 at the cell front, a secondary production and positioning of phosphatidic acid 

(PA) stabilizes and focuses DOCK2 through an interaction with its polybasic C-terminal 

276. Blocking PA generation effectively blocks DOCK2 accumulation at the leading edge 

and subsequent neutrophil motility is hindered. While the existence of a positive-

feedback loop for PIP3 accumulation is acknowledged through interplay between PIP3 

and Rac, the mechanistic collection of PA at the leading edge remains elusive. This 

mode of membrane recruitment of DOCK2 has also been investigated briefly for 

DOCK180, which was also found to bind PA 276. This result reveals that regulation of 

DOCK GEFs via sequential lipid binding properties may be a universal concept. 

9.6 Cancer 

As stated in previous sections, the DOCK GEFs play a part in various forms of 

cell migration. Understanding these events has led to key insights into understanding 

tumour cell motility. Cancerous cells migrate in either a mesenchymal or amoeboid 

fashion and some can actually transition between the two modes of migration when it 

is deemed convenient to promote invasive phenotypes.  

Glial cells are found exclusively in the central nervous system. When they 

become cancerous, prognosis for patients is generally very poor with only 25% 

surviving two years after the initial diagnosis 340. Concrete evidence for DOCK180 and 

ELMO1 in tumour progression came when both proteins were found to be highly 

expressed in human gliomas. The pattern of expression showed that the two proteins 
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were expressed almost selectively at the periphery of the tumour, while central regions 

were devoid of DOCK180 and ELMO1 expression 341. Excitingly, DOCK180 and ELMO1 

expression strongly correlated with the aggressiveness of invasive tumours. It was 

found that knockdown of either protein significantly diminished cell migration and 

invasion of glioma cell lines, and this was probably due to the decrease in Rac 

activation in these cells 341. As well, exogenous expression of these proteins resulted in 

enhanced invasiveness of gliomas. Further studies are required to determine which 

factors trigger this distinct upregulation of DOCK180 and ELMO1 at the borders of 

these deadly tumours. 

Overexpression of the uPAR receptor is linked to many forms of cancer 342-346. 

Cancer cells hijack this receptor and downstream signaling components to promote its 

malignancy. Recently demonstrated, uPAR activation induces phosphorylation of 

p130Cas which in turn favours p130Cas-CrkII complex formation 347. It is suggested 

that invasiveness of uPAR-expressing tumour cells is dependent on DOCK180-

mediated Rac activation which is recruited to the membrane by CrkII. Of note, the β3 

integrin was shown to participate with uPAR to promote Rac activation in uPAR-

expressing tumours 348. It remains to be determined whether this cooperation is a 

result of direct or indirect interactions between the two receptors and whether this 

avenue of Rac activation involves DOCK180.  

As mentioned, cancer cells can be extremely versatile in the face of the cellular 

microenvironment, switching from an amoeboid-to-mesenchymal migration mode and 
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vice versa in order to facilitate tumour migration and invasion. Two DOCK GEFs have 

been identified as important participants of these transitions. Firstly, DOCK3 is 

required for mesenchymal movement of melanoma cells through activation of Rac and 

WAVE2 349. However, not only does DOCK3 promote mesenchymal motion, but in the 

same instance it also stifles amoeboid migration due to its Rac GEF activity and 

reduction of MLC2 phosphorylation and ROCK activity (Rho kinase). Conversely, a 

transition to amoeboid movement is made by shutting off Rac activity through ROCK 

activation of a Rac GAP, ARHGAP22 350.  

In contrast to the DOCK3 requirement for a mesenchymal-like phenotype, 

DOCK10 Cdc42 GEF activity is necessary for amoeboid-type movement and 

invasiveness of melanoma cells 273. The effectors N-WASP and Pak2 are critical 

elements of this cascade, with Pak2 leading to phosphorylation of ROCK and a rounded 

cell shape 273. These findings are fascinating in the sense that DOCK family members, 

through their specific GEF activities for different GTPases, can control completely 

opposite forms of cancer cell migration. 

While most DOCKs seem to be involved in the promotion of cancer, DOCK4 is 

identified as a potential candidate for tumour suppression. DOCK4 demonstrates 

specificity for both Rac1 and Rap1, a GTPase implicated in promoting tight adherens 

junctions 351. DOCK4 was found to be deleted in a bone cancer mouse model. Tumour 

cells from these animals could be rescued by reintroducing DOCK4, displaying less 

invasive and growth phenotypes. Additionally, many human cancer cell lines present 
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frequent mutations in DOCK4. One such mutation, Pro1718Leu, causes defective Rap1-

GEF activity. Rap1 activity to promote cell-cell contacts seems to be an important 

property for tumour suppression in these cancer cell lines. In support of this, 

introduction of a constitutively active form of Rap1 in these DOCK4-null cells promoted 

adherens junction formation and reduced tumour growth and invasiveness in cellulo. 

10. Rationale of research 

In the blueprint of cell migration, the Rho GTPases emerge as key components 

which filter signals from cell surface receptors and transduce the information to key 

regulators of the actin cytoskeleton.  Rac, a member of the Rho GTPases superfamily, is 

a convergence point to several pathways leading to actin reorganization. DOCK180 is 

an atypical GEF and potent activator for Rac. A signaling pathway comprised of 

DOCK180 and ELMO1 demonstrates how these proteins interact biochemically and 

genetically to activate Rac in several important biological events. However, much 

controversy surrounds the molecular mechanism of interaction between the two 

proteins. As well, contradicting evidences in the literature have made it difficult to 

reconcile whether DOCK180 activity as a Rac GEF is ELMO-dependent (bipartite GEF 

model) or if the ELMO contribution plays some other vital role during Rac signaling 

events downstream of the DOCK180/ELMO complex.  

Our central hypothesis, then, is that DOCK180 alone is necessary and 

sufficient for Rac GEF activity, and the DOCK180 interaction with ELMO is 

required for integration of proper Rac signaling. Specifically, we surmise that 
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DOCK180 binding to ELMO can spatio-temporally restrict localization of 

DOCK180-mediated Rac signaling and/or act as a scaffold for Rac effectors to 

enforce directional cell migration.  

10.1 Aim #1 (Chapter 2) 

 In Aim #1 of my PhD thesis, we strive to elucidate how the molecular complex 

between DOCK180 and ELMO is formed, and we address the question of whether complex 

formation contributes to Rac activation. Because of the intricate nature of this 

interaction, we opted for a combination of structural and biochemical approaches to 

delineate the interaction surfaces on DOCK180 and ELMO. Binding-defective mutants 

of both proteins will be tested in functional assays for their effect in integrin-

stimulated cell morphologies and for Rac activity. 

10.2 Aim #2 (Chapter 3) 

 In Aim#2 of my PhD thesis, the question then becomes what are the implicated 

domain(s) and the mechanism by which ELMO proteins facilitate Rac signaling? Our 

work presented in Aim #1 (Chapter 2) supports a role for the ELMO1 N-terminus in 

Rac signaling by the DOCK180/ELMO1 complex. It is possible that ELMO is acting as a 

scaffold in this process and linking DOCK180 to downstream effectors required for 

cytoskeletal changes. On the other hand, it is also possible that ELMO is acting as a 

localization signal, through protein-protein or protein-membrane interactions, for the 

targeted activation of DOCK180. 
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To de-mystify the role of the ELMO1 N-terminus, we initiated bioinformatic 

analyses on various amino terminal boundaries. Our results suggest the presence of 

Armadillo Repeats similar to those found in Dia1, a formin. The region in the formins 

with homology to ELMO N-terminus is known as the Diaphanous Inhibitory Domain 

(DID) and is characterized to engage in intramolecular interactions with the 

Diaphanous Autoinhibitory Domain (DAD) to maintain these molecules in a repressed 

state 221,224-226. We propose that ELMO molecules may likewise be autoinhibited by 

intramolecular interactions between similar modules. Such intramolecular interaction 

may provide regulation of the activity of the ELMO1/DOCK180 complex by masking 

protein-protein interaction sites or other functional domains present in proteins.  

10.3 Aim #3 (Chapter 4) 

In parallel to our bioinformatics query into the ELMO N-terminal (Aim #2 

(Chapter 3)), our curiosity led us to Aim #3 of my PhD thesis and the search for novel 

ELMO-binding partners capable of binding ELMO and releasing it from its ‘dormant’ 

state. Aim #3 entailed a yeast two-hybrid experiment using ELMO1 as bait to screen a 

mouse embryo head cDNA library. A novel and alluring candidate was identified: the 

Arf family GTPase, Arl4A. Recent reports suggest that Arl4s are involved in cytoskeletal 

rearrangement through their ability to bind the Arf6 guanine exchange factor, ARNO 

209,210. Our study will investigate how Arl4A binding contributes towards 

DOCK180/ELMO-mediated Rac signaling and cytoskeletal remodeling. In essence, 

being a GTPase, Arl4A may bind the ELMO RBD, the release button that would allow 
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ELMO to spring open from its closed conformation, or even as a localization signal for 

the ELMO/DOCK180 complex at the plasma membrane.  
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CHAPTER 2 

 

An alpha-helical extension of the ELMO1 pleckstrin homology 

domain mediates direct interaction to DOCK180 and is critical in 

Rac signaling 
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ABSTRACT 

 

The mammalian DOCK180 protein belongs to an evolutionarily conserved 

protein family, which together with ELMO proteins, is essential for activation of Rac 

GTPase-dependent biological processes. Here, we have analyzed the DOCK180-ELMO1 

interaction, and map direct interaction interfaces to the N-terminal 200 amino acids of 

DOCK180, and to the C-terminal 200 amino acids of ELMO1, comprising the ELMO1 PH 

domain. Structural and biochemical analysis of this PH domain reveals that it is 

incapable of phospholipid binding, but instead structurally resembles FERM domains. 

Moreover, the structure revealed an N-terminal amphiphatic -helix, and point 

mutants of invariant hydrophobic residues in this helix disrupt ELMO1-DOCK180 

complex formation. A secondary interaction between ELMO1 and DOCK180 is 

conferred by the DOCK180 SH3 domain and Pro-rich motifs at the ELMO1 C-terminus. 

Mutation of both DOCK180-interaction sites on ELMO1 is required to disrupt the 

DOCK180-ELMO1 complex. Significantly, although this does not affect DOCK180 GEF 

activity towards Rac in vivo, Rac signaling is impaired, implying additional roles for 

ELMO in mediating intracellular Rac signaling.  

 

Keywords: DOCK180/ELMO1/Rac activation/PH domain/Cell migration 
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INTRODUCTION 

 

 DOCK180 family members are conserved bona fide guanine nucleotide exchange 

factors (GEFs) for Rho GTPases 83. A subgroup of these proteins, the CDM members (C. 

elegans Ced-5, Drosophila Myoblast City and mammalian DOCK180), regulate several 

Rac-dependent biological processes including phagocytosis of apoptotic cells, cell 

migration, axon pathfinding and myoblast fusion in vivo 261,352-354. Mechanistically, 

DOCK proteins rely on a conserved DOCK Homology Region (DHR)-2 domain to 

promote the GDP/GTP exchange of Rho GTPases 265,267. DOCK proteins are also 

endowed with a conserved DHR-1 domain capable of direct interaction with 

phosphoinositides (PI), in particular phosphatidylinositol-(3,4,5)-trisphosphate 

(PtdIns(3,4,5)P3) 274, and this activity appears to be important in Rac-mediated cell 

polarity and migration in addition to myoblast fusion 83. 

 

The identification of C. elegans Ced-12 in a screen for genes that control necrotic 

and apoptotic cell phagocytosis 355 led to the recognition of a unique family of highly 

conserved engulfment and motility (ELMO) family proteins in eukaryotes 356-358. ELMO 

proteins physically interact with a subset of DOCK180-related proteins 359, including 

DOCK180 (DOCK1) and DOCK2-5, characterized by the presence of an amino-terminal 

Src Homology (SH)-3 domain 360,361. The remaining DOCK-related proteins, including 

DOCK6-8 and DOCK9-11/Zizimin1-3, lack a discernable SH3 domain and have not been 

reported to physically interact with ELMO proteins.  

 

Several of the biological functions of DOCK180 characterized to date have been 

demonstrated to also require ELMO proteins. One established model proposes the idea 

of a bi-partite exchange factor formed from DOCK180 and ELMO 362, supported by the 

finding that co-expression of ELMO was required to stimulate the Rac GEF activity of 

DOCK180 362. However, in conflict with this model, we and others have found that 

DOCK180 displays substantial GEF activity when it is expressed alone in cells 361,363-366. 
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In support of this autonomous GEF model, the purified recombinant DHR-2 domain of 

DOCK180 is active towards Rac in vitro 265. Nevertheless, it is generally agreed that 

ELMO is essential for physiological DOCK180 function, since interfering with the 

protein’s properties, such as RhoG- or ERM-binding, results in impaired Rac-dependent 

cell migration and phagocytosis of apoptotic cells 328,356-358,360.  

 

 The contribution of ELMO proteins for Rac signaling is poorly understood, and 

the mode of interaction between ELMO and DOCK proteins is not established. Some 

data indicate that the SH3 domain of DOCK180 binds to a proline-rich (Pro-rich) motif 

at the C-terminus of ELMO 356 and this interaction may regulate the activation state of 

DOCK180 367. However, since the ELMO/DOCK180 interaction is not completely 

blocked when either of these motifs are mutated 367, additional contact regions 

between the two proteins presumably facilitates the high affinity binding 359. 

 

A second interaction site between ELMO and DOCK180 was shown to involve, 

indirectly, the atypical PH-domain of ELMO 368. In agreement with this, the ELMO PH 

domain was reported to provide a stabilizing effect towards a complex of nucleotide-

free Rac and the DOCK180 DHR-2 domain 368. It was found that in such a complex, the 

ELMO PH domain does not interact with DOCK180 directly, but rather stabilizes the 

critical reaction intermediate in trans, directly increasing the GEF activity of DOCK180 

towards Rac by two-fold 368.  

 

 In this study we aimed to investigate the exact mechanism of interaction 

between ELMO1 and DOCK180 in order to assess the contribution of these two 

proteins in Rac GTP-loading and signaling. In contrast to a previous report 368, we find 

that the atypical PH domain of ELMO1 directly interacts with DOCK180 in a Rac-

independent and constitutive manner. Structural analysis of the atypical ELMO1 PH 

domain reveals an amphiphatic N-terminal α-helical extension, and we identify 
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residues in this region required for DOCK180/ELMO1 interactions. Our data reveal 

that whereas the Pro-rich region of ELMO1 and the SH3 domain of DOCK180 are 

dispensable for complex formation, these motifs are important for the physiological 

functions of ELMO1/DOCK180. Double mutation of both the ELMO1 amphiphatic helix 

and Pro-rich motif is necessary to fully abrogate signaling from this complex. 

Importantly, we detect no difference in DOCK180 Rac GEF activity even in cells with 

defective ELMO1/DOCK180 signaling, arguing against a direct role of ELMO1 in 

DOCK180 GEF activity. Together, our findings provide novel insight into how ELMO 

proteins bind to and regulate DOCK proteins.  
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MATERIAL AND METHODS 

 

Additional Material and Methods. Detailed information on the plasmids used in this 

study is available in the Supplementary Material (Material and Methods). 

 

Antibodies, cell culture and transfections. The following antibodies were obtained 

commercially: anti-DOCK180 (C-19 and H-4), anti-Myc (9E10), anti-GFP (B-2) were 

from Santa Cruz Biotechnologies, anti-Rac was from Millipore and anti-FLAG M2 was 

from Sigma. A polyclonal antibody was generated against DOCK180 using a His-tagged 

fragment of DOCK180 as an immunogen (His-DOCK180 422-619). HEK293T cells were 

cultured in DMEM supplemented with 10% fetal bovine serum, penicillin and 

streptomycin (Gibco-BRL) and transfected by calcium phosphate or Lipofectamine 

2000 (Invitrogen) using standard procedures. The CHO cell line, LR73 subclone, was 

maintained in alpha-MEM supplemented with 10% fetal bovine serum, penicillin and 

streptomycin (Gibco-BRL) and transfected using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s instructions. Biochemical and cell biological studies 

were performed 24-48 hours after transfection.  

 

Immunoprecipitation, GST-fusion protein pulldowns and Rac-GTP assays. Cells 

were lysed for 10 min in a buffer consisting of 50mM Tris-HCl pH 7.5, 150mM NaCl, 1% 

NP-40 and 1X Complete protease inhibitor (Roche). For immunoprecipitation, clarified 

cell lysates were incubated with the appropriate antibody and immune complexes 

were allowed to form for 1 h at 4˚C. Protein A-sepharose was added for 30 min to 

isolate the immune complex. For GST-fusion protein pulldowns, the GST-fusion 

proteins were expressed in bacteria and purified on Glutathione-Sepharose 4B 

according to manufacturer’s instruction (Amersham). Equal amounts of the various 

GST-fusion proteins bound to Glutathione Sepharose 4B were next incubated with cell 

extracts (500 μg of protein per condition). In both types of assays, the beads were 
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washed three times with lysis buffer and the bound proteins were analyzed by SDS-

PAGE and immunoblotting. The GTP-loading status of Rac in CHO LR73 and HEK293T 

cells was analyzed by GST-PAK-PBD affinity precipitation as described previously 363. 

Rac activation was quantified by densitometry analysis using ImageJ software. Signal 

for Rac-GTP was normalized to total Rac present in the cell lysate. 

 

Cell morphology and cell migration assays. LR73 cells transfected with the indicated 

plasmids were subject to cell morphology or migration assays as previously described 

364. Briefly, cells were transfected with the indicated plasmids and serum starved (0.5% 

FBS) overnight. Cells were gently detached (0.01% trypsin and 5 mM EDTA in Hanks 

balanced solution), washed in fibroblast basal media supplemented with 0.5% BSA and 

100 000 cells were then allowed to spread for 2 h before fixing with 4% 

paraformaldehyde. Cells were permeabilized with 0.2% Triton X-100 in PBS and 

blocked in PBS-1% BSA prior to staining with anti-DOCK180 (H4), DAPI and phalloidin. 

The remainder of the cells was lysed to verify the expression levels of the exogenous 

proteins by western blotting. For migration assays, the cells were transfected with 

pEGFP-C2 (0.5 μg, in addition to the indicated plasmids) as a tracker and were 

prepared as described above. 100 000 cells were loaded, in duplicate for each 

condition, in modified Boyden Chambers (COSTAR) for which the underside of the 

membrane was pre-coated with 10 ug/ml of fibronectin. Cells were allowed to migrate 

for 4 hours prior to fixation in 4% paraformaldehyde. Cell in the upper chambers were 

mechanically removed using cotton swabs. GFP-positive cells that migrated to the 

underside were counted from 3-5 independent fields on each membrane (20x 

magnification). The remainders of the cells were lysed to verify the expression levels of 

the exogenous proteins. For both assays, cells were photographed using a Leica 

DM4000 microscope equipped with a Retiga EXi (QImaging) camera. ANOVA and all 

Pairwise Multiple Comparison Procedures (Holm-Sidak method) were performed for 

statistical analysis (n=6 for each condition). 
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Lipid binding assays. GST ELMO1, ELMO1 532-707, BTK PH domain and His 

DOCK180 DHR-1 were produced in bacteria and purified as previously described 274. 

Purified proteins were quantified and 1 μg of each was used in lipid-coated beads pull-

down (Echelon Biosciences) exactly as previously described 274. 

 

In vitro transcription/translation. The T7 TnT system (Promega) and 35S methionine 

was used, according to manufacturer’s instruction, to generate the radiolabeled 

recombinant DOCK180 protein fragments. Interaction between DOCK180 and the 

ELMO1 GST-fusion proteins, performed as described above, were detected by Amplify-

enhanced autoradiography (Applied Biosystem). 

 

Protein purification for structural studies. Three C-terminal human ELMO1 

constructs (532-675, 532-707, 532-727), encompassing the PH domain, were cloned 

into the pGEX6-P1 vector, which contains a PreScission protease-cleavable GST tag. 

The fusion proteins were expressed in BL21-DE3 cells overnight at 25 C after 

induction with 150 µM IPTG at an OD600 of 0.8. Cells were lysed in Buffer A (300 mM 

NaCl, 25 mM Tris pH 8.50, 5 mM DTT, 1 mM EDTA) complemented with 1 mg/ml 

Lysozyme, 0.1 mg/ml DNAse I and Complete protease inhibitor tablets (Roche), and 

sonicated at 4 C. Insoluble material was removed by centrifugation for 30 min at 

40000 x g, and the lysate was incubated with Glutathione Sepharose 4B resin 

(Amersham) for 1 hour at 4 C. The resin was washed with 100 ml Buffer A, 500 ml 

Buffer A with 500 mM sodium chloride, and 200 ml Buffer A with 200 mM sodium 

chloride. GST-PreScission protease was added (0.1 mg/ml), and the resin was 

incubated overnight at 4 C with agitation. The eluate, containing the ELMO1 PH 

domain, was collected, concentrated to 5 ml and further purified on a Superdex75 gel 

filtration column, coupled to a 5 ml HiTrap Glutathione Sepharose column to clear 

residual GST and GST-PreScission protease. The protein was concentrated in VivaSpin 

concentrators (VivaScience, 10000 MW cut-off) to a maximum concentration of 19 
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mg/ml, and dynamic light scattering indicated a monodisperse, non-aggregated 

sample. A two L bacterial culture produced up to 80 mg of pure ELMO1 PH for all 

constructs tested.  

 

Crystallization. Crystallization screening was performed with all three ELMO1 PH 

proteins in a sitting drop setup by mixing 1 µl protein with 1 µl mother liquor. 

Although crystals were obtained from all constructs, diffracting crystals were only 

obtained for the shortest ELMO1 PH domain (532-675), from mother liquor containing 

2.1 M sodium malonate [pH 6.75]. Hexagonal crystals grew after 2 days, and reached a 

maximum size of 0.3 x 0.3 x 0.3 µm after 7 days. The protein crystals were flash frozen 

in a nitrogen cryo-stream without further cryo-protection. For experimental phasing, 

ELMO1 PH domain crystals were soaked in mother liquor enriched with 1 mM EMTS 

(ethyl mercury thiosalicylate) for 60 minutes, and back-soaked for 20 seconds in EMTS 

free mother liquor prior freezing.  

 

Data collection and structure determination. Data on ELMO1 PH crystals were 

collected at the European Synchrotron Radiation Facility (ESRF, Grenoble) station 

ID23-1. Native data were collected to 2.30 Å resolution, and derivative data with 22-

fold anomalous multiplicity at the Hg edge (1.0086 Å) were collected to 3.0 Å 

resolution. The crystals displayed the high symmetry space group P6122, which 

facilitated anomalous data collection (see Table 2.1 for data collection statistics). The 

data was processed with Mosflm and Scala from the CCP4 suite 369. The structure was 

solved in a SIRAS experiment, using SHELX / hkl2map 370, and SHARP 371. SHARP 

determined a solvent content of 68 %, with 2 molecules/AU and a Matthews coefficient 

of 4.8. Excellent phases were obtained, and automated model building with ArpWarp 

372 built ~85 % of the model. Alternating further rounds of model building in Coot 373 

and refinement, initially with CNS simulated annealing 374, and subsequently using TLS 

restrained refinement in Refmac5 375, were performed, leading to the final refinement 

statistics in Table 2.1. 
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RESULTS 

 

The atypical PH domain of ELMO1 directly interacts with DOCK180 

 

 We initiated a detailed study to analyze which ELMO region is involved in the 

interaction with DOCK180. ELMO proteins contain three main conserved regions 

(Figure 2.1A, pg. 93). The N-terminal region (residues 1-280, ELMO1 numbering) 

binds to RhoG 361,365, ERM proteins 376,377 and Shigella IpgB1 377. The middle domain 

comprises an ELMO-domain (318-491), specific to ELMO proteins 169. At the C-

terminus, ELMO proteins contain an atypical PH domain (555-676) 358. Lastly, a Pro-

rich motif (707-714) typical of SH3-interacting proteins and implicated in interactions 

with DOCK180 368, is located at the extreme C-terminus. 

 

 Secondary structure prediction of the C-terminal region of ELMO1 (residues 

532 to 727) was performed (data not shown). In these analyses, α-helical regions were 

predicted both N-terminal (536-557) and C-terminal (679-697) to the annotated PH 

domain (Figure 2.1A, pg. 93, light blue regions). Using GST fusion proteins of the 

ELMO1 PH domain with and without the flanking regions, we tested the ability of these 

fragments to bind DOCK180. GST-tagged ELMO1 (532-707), containing both flanking 

regions, could robustly precipitate DOCK180 (Figure 2.1B, pg. 93). The flanking 

regions were crucial for the observed interaction, as deletion on the N- or C-terminal 

side (GST-ELMO1 555-707 and GST ELMO1-532-675, respectively) reduced DOCK180-

binding significantly (Figure 2.1B, pg. 93). These results are in agreement with a 

previous report 368, with the important difference that in that study, Rac1 was required 

to bridge the interaction between DOCK180 and ELMO1. We find a robust interaction 

between DOCK180 and ELMO1 in the absence of Rac1 both in vitro and in vivo.  
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Figure 2.1. The atypical PH domain of ELMO1 directly interacts with DOCK180. 

(A) Domain architecture of ELMO1 (following ProSite annotation) indicating known 

protein interaction and functional regions. The N-terminal region of ELMO1 binds to 

RhoG 365, ERM proteins 376, and Shigella IpgB1 377. The middle (ELMO) domain of 

ELMO1 has no assigned function, but is conserved in ELMO proteins. The C-terminal 

200 amino acids encompassing the PH domain (blue) and flanking regions (light blue) 

and the Pro-rich C-terminus (purple) is the focus of this study. (B-C) The PH domain of 

ELMO with N- and C-terminal flanking regions interacts with DOCK180, and the 

flanking regions are important in the interaction.  (B) GST-tagged versions of the 

indicated fragments of ELMO1 PH region were used to pulldown FLAG-tagged 

DOCK180 from HEK293T lysate. (C) Similar experiment to (B) with GFP-tagged ELMO1 

variants. HEK293T cells were co-transfected with the indicated plasmids, and lysates 

were subjected to immunoprecipitation with an anti-DOCK180 antibody. (D) The 

ELMO1PxxP mutant is not sufficient to abrogate DOCK180/ELMO binding in vivo. Lysates 

of HEK293T cells transfected with the indicated plasmids were immunoprecipitated 

with an antibody against the Myc-epitope of ELMO1. Immunoblot analysis using anti-

DOCK180 rabbit polyclonal and anti-Myc antibodies established the co-precipitation of 

DOCK180 and ELMO proteins. (E) Disruption of a possible SH3:PxxP interaction 

between DOCK180 and ELMO1 is not sufficient to uncouple DOCK180/ELMO1 binding 

in vitro. Purified GST, GST-ELMO1WT, or GST-ELMO1PxxP were used in pulldown 

experiments using lysates from HEK293T cells transfected with DOCK180WT, 

DOCK180W45K, or DOCK180ΔSH3. The bound proteins were detected by immunoblotting 

with an anti-DOCK180 antibody (C-19). 
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Involvement of the DOCK180 SH3 domain in ELMO1 binding  

 

DOCK180 contains an SH3 domain at its N-terminus, and ELMO1 contains a Pro-

rich motif (PxxP) at its C-terminus (Figure 2.1A, pg. 93). We analyzed the contribution 

of this potential interaction in the formation of the DOCK180/ELMO1 complex. As 

indicated in Figure 2.1B, ELMO1 (532-707), devoid of the Pro-rich motif, robustly 

interacted with DOCK180, indicating that a SH3/PxxP interaction is dispensable for 

complex formation. Furthermore, GFP-fusion proteins of the ELMO1 PH domain, with 

or without the PxxP motif, were tested for their ability to co-immunoprecipitate with 

DOCK180. These experiments revealed that, in cells, the PH domain of ELMO1 

(residues 532-707) is the minimal domain capable of binding to DOCK180 (Figure 

2.1C, pg. 93). However, the addition of the Pro-rich region of ELMO1 PH seemed to 

enhance its ability to interact with DOCK180 (Figure 2.1C, pg. 93). 

 

 To understand the contribution of the DOCK180 SH3 domain in the interaction 

with ELMO1, the proline residues 707, 710-712, 714 and 727 of ELMO1 were mutated 

to alanines (ELMO1PxxP). Co-immunoprecipitation experiments of myc-tagged 

ELMO1WT and ELMO1PxxP in HEK293T cells indicated that both proteins interacted to 

an equivalent extent with exogenously expressed DOCK180 (Figure 2.1D, pg. 93). For 

the reverse experiment, DOCK180 lacking the SH3 domain (DOCK180ΔSH3) and a 

mutant in which a conserved Trp residue in the SH3 domain of DOCK180 was mutated 

to Lys (DOCK180W45K), abolishing the binding of the SH3 domain to PxxP sequences 378, 

were tested for their ability to bind ELMO1WT or ELMO1PxxP. GST-tagged full-length 

ELMO1WT and ELMO1PxxP bound equally well to DOCK180, DOCK180ΔSH3 and 

DOCK180W45K in pulldown experiments (Figure 2.1E, pg. 93). These results indicate 

that the DOCK180/ELMO1 interaction is not dependent on the additional SH3/PxxP 

interaction, although in vivo, such an interaction might well exist. However, it is also  
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possible that both motifs have additional functions and/or binding partners in cells 

that contribute to the cellular function of the DOCK180/ELMO complex (see below).  

 

Structural analysis of the ELMO1/DOCK180 interaction 

 

 Our data indicated that on ELMO1, the PH domain and its flanking regions 

mediate the principle interactions responsible for complex formation with DOCK180. 

To understand the interaction between ELMO1 and DOCK180 in molecular detail, we 

initiated structural studies of the ELMO1 PH domain (Figure 2.2A, pg. 97). The ELMO1 

PH domain is classified as a false-negative PH domain in ProSite (PS50003, 379), as it 

does not fit the canonical PH domain profile, and therefore sequence comparison with 

crystallized PH domains is of limited value to aid domain boundary definition. Another 

crystallized member of this subgroup of PH domains is that of PDK1 which was found 

to form a unique N-terminal helical extension 380. This prompted us to include the N-

terminal flanking region of the ELMO1 PH domain in our constructs for crystallization. 

Three ELMO1 PH domain constructs were analyzed, comprising residues 532-675, 

532-707 and 532-727. Diffraction quality protein crystals could only be obtained for 

the shortest construct, lacking the C-terminal flanking region (532-675). Diffraction 

data were collected to 2.3 Å resolution at the ESRF, and the structure was solved by 

SAD phasing using a mercury derivative. Excellent experimental phases were obtained 

and the structure was built and refined to a final R-factor of 0.208 (Rfree 0.239) (Table 

2.1, pg. 98). Two molecules of the ELMO1 PH domain are present per asymmetric unit, 

which superpose with an RMSD of 1.0 Å (over 132 C  atoms). In the subsequent 

analysis we will focus on one molecule only.   
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Figure 2.2. Structure of the ELMO PH domain and conservation in the ELMO 

family. 

 (A) The structure of the ELMO1 PH domain (residues 532-675) is shown in cartoon 

representation. The N helix is shown in green, the PH domain fold in teal, the VL1 

region in yellow, and the β5/β6 loop is shown in orange. (B) A sequence alignment of 

the crystallized ELMO1 PH domain region and C-terminal residues from various 

species, as well as the ELMO2 and ELMO3 isoforms is shown. Secondary structure 

elements are indicated and labeled according to (A), and a black line indicates the end 

of the crystallized construct. Boxes indicate the VL1 and β5-β6 loop regions highlighted 

in (A). At the C-terminus, the SH3 binding region is boxed and the predicted helical 

region (αC2), which is not part of the structure, is indicated.  
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Table 2.1 Data collection, phasing and refinement statistics. 

Values in brackets are for the highest resolution bin. All measured data were included 
in structure refinement. 
 

 ELMO1 PH domain 

EMTS 

ELMO1 PH domain 

Native 

Data collection   

Beamline ID23-2 ID23-2 

Wavelength (Å) 1.0086 1.0000 

Space Group P6122  P6122 

Unit Cell (Å) 

    

a,b = 165.47, c = 81.47 a,b = 166.02, c =81.70 

Resolution (Å)  80.0-3.00 (3.16-3.00) 40.0-2.30 (2.42-2.30) 

Observed reflections 555933 (82449) 188356 (28101) 

Unique reflections 13668 (1941) 29960 (4298) 

Multiplicity 40.7 (42.5) 6.3 (6.5) 

Completeness (%) 100.0 (100.0) 99.9 (100.0) 

Rmerge 0.124 (0.537) 0.058 (0.229) 

<I> / I 35.5 (8.7) 22.7 (8.3) 

Phasing statistics   

Anomalous completeness (%) 100.0 (100.0)  

Anomalous multiplicity 22.2 (22.5)  

<FOM> before/after DM 0.26 / 0.83  

Phasing power anomalous 1.96  

Phasing power isomorphous 1.55  

Refinement   

Reflections in test set  1504 (5%) 

Rcryst  0.208 

Rfree  0.239 

   

Number of groups   

Protein residues  288 

Water  150 

Wilson B (Å
2
)  43.1 

<B> protein (Å
2
)  19.1 

<B> water (Å
2
)  23.0 

   

RMSD from ideal geometry   

Bond length (Å)  0.020 

Bond angles (°)  1.9 

Main chain B (Å
2
)  1.3 
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Structure and evolutionarily conserved features of the ELMO1 PH domain 

 

The crystallized ELMO1 construct contains two main structural features. The N-

terminal 23 residues form a single extended -helix ( N, residues 532-554), which, 

without break leads into the 1-strand of a following canonical PH domain fold 

(residues 555-675,) (Figure 2.2A, pg. 97). This fold is defined by a three-stranded and 

a four-stranded -sheet forming a sandwich structure that is capped on one side by a 

C-terminal -helix ( C) 79 (Figure 2.2A, pg. 97). The C-terminal helix of the ELMO1 PH 

domain interacts with invariant hydrophobic residues of the N-terminal helix (Leu553, 

Leu558), which stabilizes the striking 70  angle between helices (Figure 2.2A and B, 

pg. 97). Notably, the extended N-terminal helix in the ELMO1 PH domain is a unique 

feature of ELMO proteins, bearing no resemblance to the extension seen in the PDK1 

PH domain 380, nor has it been observed in any other PH domain structurally 

characterized to date. 

 

We performed sequence analysis of ELMO1 PH domains from different species 

and also compared the three mammalian ELMO isoforms for conserved features in 

their PH domain region (Figure 2.2B, pg. 97). The PH domain including the N-terminal 

helix extension is well conserved throughout species from Drosophila melanogaster to 

Homo sapiens and contains a large number of invariable residues. Strong sequence 

conservation within the three isoforms of human and mouse ELMO proteins suggests 

very similar structures of the PH domain regions of ELMO proteins (Figure 2.2B, pg. 

97). The sequence similarity, length and conservation of loop insertions (VL) and the 

large number of invariant residues indicates that the ELMO PH domain fold is 

conserved in all ELMO isoforms, indicating a general functional equivalence of this 

region in ELMO proteins.  
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The ELMO1 PH domain is unable to bind phosphoinositides 

 

 In order to identify similar structures in the protein data bank, we performed a 

DALI search 381 with the PH domain region of ELMO1 (residues 554-675) (Table 2.2, 

pg. 101). The highest similarity to the ELMO PH domain was found with the PH 

domain of phospholipase C  (PLC ) in complex with inositol (1,4,5)-trisphosphate 

(Ins(1,4,5)P3) (pdb-id 1mai, Z-score 10.5) 301 (Figure 2.3B, pg. 103), and with the PH 

domain of Dual Adaptor of Phosphotyrosine and 3-Phosphoinositides (DAPP1) in 

complex with inositol (1,3,4,5)-tetrakisphosphate (Ins(1,3,4,5)P4) (pdb-id 1fao, Z-score 

9.0) 382 (Figure 2.3C, pg. 103, Table 2.2, pg. 101). DAPP1 and PLC  both contain 

insertions in the 5/ 6 loop similar to ELMO1, probably accounting for the high Z-

scores. Notably, DALI analysis did not detect similarities of the ELMO1 PH domain with 

PH domains from the other large family of Rho family GEFs that contain a catalytic Dbl-

Homology (DH)/PH domain tandem. 

 

The overall structural similarity of ELMO1 with PLC  and DAPP1 suggested that 

the phospholipid-binding properties might be conserved, and that the ELMO1 PH 

domain might have a role in localizing the ELMO1/DOCK180 complex to membranes. 

The common site of interaction with phosphoinositides (PI) in PH domains is created 

by three Variable Loops, connecting 1/ 2 (VL1), 3/ 4 (VL2), and 6/ 7 (VL3), 

respectively, located opposite of the -helices at the open side of the -sheet sandwich 

382. The Variable Loops create a positively charged pocket for interaction with the 

negatively charged phosphoinositides (Figure 2.3, pg. 103). Two key basic residues 

are conserved in this pocket of PI-binding PH domains 382, namely a Lys residue on 1 

located in the back of the pocket, which interacts with the D4-phosphates of 

Ins(1,4,5)P3 or Ins(1,3,4,5)P4, and an Arg residue in the 2-strand, which interacts with 

the adjacent phosphate group of the ligand  (Figure  2.3B and  C,  pg. 103).  In  
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Table 2.2  DALI analysis of the ELMO1 PH domain fold.  

 

PH domain PDB-ID Z-score RMSD aligned 

residues 

PLC -IP3 1mai 10.5 2.4 Å  96 

DAPP1-IP4 1fao 9.0 2.5 Å 86 

Moesin 1ef1 8.8 2.3 Å 83 
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Figure 2.3. Comparison of the PH domain fold of ELMO with other PH domains 

(A) Representation of the ELMO1 PH domain structure. On the left hand side, the PH 

domain fold is shown with an orientation looking into the putative ligand binding site. 

In the middle image, the 1- and 2-strands and VL1 region is shown in cartoon 

representation, and key residues involved in PI-binding and ligands are drawn. 

Hydrogen bonds are indicated as black dotted lines. The right hand image is an 

electrostatic surface potential calculated with APBS of the same view as to the left. Blue 

regions indicate positive surface potential, red regions indicate negative surface 

potential and white indicates uncharged regions. Key residues, loop regions and 

ligands are labeled. (B) PLC  PH domain in complex with Ins(1,4,5)P3 (1mai, 301), 

shown as in (A). The ligand is shown in stick representation with red oxygens and 

purple phosphorous atoms. (C) DAPP1 PH domain in complex with Ins(1,3,4,5)P4 (1fao, 

382).  (D) F3 subdomain of Moesin bound to its C-terminal tail peptide in yellow (1ef1, 

383).  
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ELMO1, Lys residue is conserved (Lys564), however, the Arg-equivalent residue is 

substituted by a Trp (Trp575), forming a hydrophobic rather than a positively charged 

base of the pocket (Figure 2.3A, pg. 103). More strikingly, the position of the 

guanidine-group of the conserved Arg residue is structurally replaced by the sidechain 

carboxy-group of Asp590, which neutralizes the charge of Lys564, and in addition 

would repel a phosphate group of a bound PI-ligand (Figure 2.3A, pg. 103). Notably, 

residues Lys564, Trp575 and Asp590 are invariant in all ELMO PH domains (Figure 

2.2B, pg. 97). Hence, ELMO PH domains display structural features incompatible with 

PI-binding analogously to PLC  or DAPP1 (Figure 2.3, pg. 103, further analysis in 

Supplementary Material). In agreement with the structural results, we found that 

neither full length ELMO1 nor the isolated ELMO1 PH domain were capable of specific 

binding to any phosphorylated PI in vitro, in lipid-coated beads pulldown experiments 

or phospholipid overlay assays (Supplementary Figure 2S1, pg. 130). We conclude 

that ELMO1 does not serve as a phospholipid-targeting module in the 

ELMO1/DOCK180 complex. 

 

 Further analysis of the ELMO1 PH domain fold revealed significant similarity 

with the F3 subdomain of FERM (band Four point one, Ezrin, Radixin, Moesin) 

domains (see Figure 2.3D, pg. 103, Supplementary Material, and Supplementary 

Figure 2S2, pg. 132). Interestingly, in the context of FERM domains, the PI-binding 

site equivalent region is utilized as a protein-protein interaction site 383. Future work 

will address whether the similarly shaped ELMO PH domain interacts with protein 

motifs through this site.  

 

Analysis of the N-terminal helical extension of the ELMO1 PH domain 

 

The N-terminal helical extension is a defining feature of the ELMO1 PH domain, 

and this region is involved in several crystal lattice contacts, forming a tight dimer 
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interaction with the second molecule in the asymmetric unit, and with a 

crystallographically related second dimer in the crystal lattice (Figure 2.4A, pg. 107, 

Supplementary Material and Supplementary Figure 2S3, pg. 134). These 

prominent helix-helix interactions suggest that the N-terminal -helix might be 

involved in protein-protein interactions. 

 

Further analysis shows that the N-terminal -helix is amphiphatic in nature: 

hydrophobic Leu and Ile residues (Ile533, Leu536, Ile540, Ile544, Leu545, Leu547, 

Ile548) are all located to one side of the helix, while the opposite surface shows a 

hydrophilic character (Figure 2.4A and B, pg. 107). This pattern of Leu/Ile residues 

with a spacing of four amino acids is reminiscent of coiled-coil-proteins, which often 

interact in a well-described coiled-coil or Leu-zipper fashion. Examination of the 

electrostatic potential and conservation of this region indeed reveals a hydrophobic 

ridge spanning the entire length (27 Å) of the protruding helix (Figure 2.4B, pg. 107). 

Importantly, the involved Leu and Ile residues are fully conserved in ELMO proteins 

and Ced-12 (Figure 2.4C, pg. 107), indicating potential functional relevance. 

 

The hydrophobic side of the ELMO1 N helix is a DOCK180-binding surface 

 We tested whether the strikingly conserved hydrophobic residues of the N 

helix were involved in DOCK180-binding.  Fully conserved hydrophobic residues in 

ELMO1 were mutated to negatively charged residues (L536D, I544D, L545E, L547E 

and I548D, termed ELMO N hereafter) and the resulting Myc-tagged or GST fusion 

proteins expressed at similar levels with the wild-type proteins. The mutant proteins 

were tested for their ability to co-immunoprecipitate DOCK180. While full-length 

ELMO1WT and ELMO1PxxP bound to DOCK180 (Figure 2.4D, pg. 107), ELMO1 N and the 

ELMO N/PxxP double mutant completely lost their ability to interact with DOCK180 

(Figure  2.4D,  pg. 107).  The  same  ELMO1  mutants  (ELMO N,  ELMO1PxxP  and  
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Figure 2.4. The extended N-terminal -helix of ELMO1 PH domains is a DOCK180 

binding site. 

(A) Cartoon representation of the N-terminal -helix colored according to Figure 2.2A. 

Hydrophobic Leu and Ile residues are shown and labeled (see Figure 2.2B, pg. 97). 

The second molecule of the asymmetric unit is shown in yellow, interacting through 

the helix in an anti-parallel fashion but not employing the hydrophobic Leu/Ile 

residues; the Leu/Ile sidechains of both molecules point towards the same side, 

generating a large hydrophobic platform which interacts with the same -helical 

region of a crystallographically related dimer (also see Supplementary Figure 2S3, 

pg. 134). (B) Electrostatic surface potential calculated with APBS. Blue regions indicate 

positive surface potential, red regions indicate negative surface potential and white 

indicates hydrophobic regions. (C) The surface of the ELMO1 PH domain is colored 

from white (fully conserved) to black (no conservation). (D-E) Mutation of conserved 

hydrophobic residues in the N-helix of the ELMO1 PH domain abolishes the 

DOCK180/ELMO1 interaction. (D) Lysates of HEK293T cells transfected with the 

indicated plasmids were immunoprecipitated with an antibody against the Myc-

epitope (ELMO1). The co-precipitation of the various ELMO1 proteins and DOCK180 

was analyzed via immunoblotting with anti-Myc (ELMO) and anti-FLAG (DOCK180) 

antibodies, respectively. (E) Lysates of HEK293T cells transfected with FLAG-DOCK180 

were subjected to pulldown assays with GST-ELMO1 proteins. The precipitation of 

DOCK180 by the various ELMO1 fusion proteins was detected via immunoblotting with 

anti-FLAG (DOCK180). 
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ELMO N/PxxP) expressed as GST proteins were also tested for their ability to precipitate 

with DOCK180 from cell lysates. In agreement with the above data, the ELMO1WT and 

ELMO1PxxP bound equally well to DOCK180 in pulldown experiments (Figure 2.4E, pg. 

107). However, minimal but reproducible binding to DOCK180 could be observed for 

the ELMO1 N while the double mutant ELMO1 N/PxxP completely lost the ability to 

interact with DOCK180 (Figure 2.4E, pg. 107). To confirm these results, we also 

generated similar mutants of ELMO1 with minimal mutations in the αN helix 

(ELMO1L547E/I548D and ELMO1L547E/I548D/PxxP) and obtained identical results with respect 

to DOCK180 binding (Supplementary Figure 2S4, pg. 136). In addition, we also 

created an ELMO1 mutant in which the hydrophobic residues were mutated to alanine 

(ELMO1L547A/I548A), instead of charged residues, and we demonstrated that this mutant 

lacks DOCK180-binding activity (Supplementary Figure 2S4, pg. 136). We conclude 

that we have identified a single helix on ELMO proteins, preceding the PH domain, 

which mediates direct hydrophobic interactions with DOCK180. 

 

Identification of ELMO1-binding sites on DOCK180 

 

Having identified crucial regions within ELMO1 for DOCK180 binding, we 

attempted to map the reciprocal interaction sites on DOCK180.  DOCK180 contains 

three annotated domains: an N-terminal SH3 domain, and DHR-1 and DHR-2 domains 

which function as PI-binding and GDP/GTP exchange domains, respectively 363,364 

(Figure 2.5A, pg. 110). At its C-terminus, several Pro-rich regions implicated in 

interactions with SH3 domains are found 83. As mentioned above and in agreement 

with a previous study 360, we found that DOCK180ΔSH3 interacts with ELMO1 (Figure 

2.5B, pg. 110) in co-transfection experiments using HEK293T cells. However, deletion 

of the N-terminal 536 amino acids of DOCK180 (DOCK180Δ1-536) completely abrogated 

its ability to interact  with  ELMO1  (Figure 2.5B,  pg. 110),  suggesting  the  
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Figure 2.5. Identification of a novel ELMO1-binding region on DOCK180. 

(A) Schematic representation of DOCK180. The SH3 domain (red), DHR-1 (yellow) and 

DHR-2 (green) domains mediate protein-interaction, PI-binding and Rac GDP/GTP 

exchange, respectively 363,364. Pro-rich motifs at the C-terminus (purple) bind in trans 

to SH3 domains 83. The N-terminal 200 amino acids encompass the ELMO-binding 

region 83 (pink). (B) The N-terminal region of DOCK180 is essential for ELMO binding.  

HEK293T cells were transfected with DOCK180WT, DOCK180 SH3 or DOCK180 1-536, and 

cell lysates were subjected to immunoprecipitation against Myc-tagged ELMO1. Bound 

proteins were analyzed by immunoblotting using anti-DOCK180 and anti-Myc 

antibodies. (C) The first 200 amino acids of DOCK180 harbor the ELMO binding 

domain. A panel of N-terminal GST-DOCK180 constructs was used in a pulldown assay 

with a lysate from Myc-ELMO1 transfected HEK293T cells. Bound proteins were 

detected by immunoblotting with an anti-Myc antibody. (D) The SH3 domain of 

DOCK180 contributes in ELMO1 binding. GST-fusion proteins of the residues 1-200 of 

DOCK180WT or DOCK180W45K were used in a pulldown assay with a lysate of Myc-

ELMO1 transfected HEK293T cells. Bound proteins were detected by immunoblotting 

with an anti-Myc antibody. (E-F) Residues 69-187 of DOCK180 are sufficient for 

binding to ELMO while the SH3 domain provides a stabilizing effect in the formation of 

DOCK180/ELMO complex. (E) DOCK1801-187, DOCK1801-422 and  (F) DOCK18069-187 

fragments specifically interact with ELMO1 and were visualized by autoradiography 

according to Material and Methods. (G) Hydrophobic residues of a predicted alpha-

helical region between the SH3 and DHR-1 domain of DOCK180 are involved in 

ELMO1-binding (also see (A) and Supplementary Figure 2S4). GST-fusion proteins of 

the residues 1-200 of DOCK180WT, DOCK180L96D/W99E and DOCK180I132D/L133D were 

used in a pulldown assay with a lysate of Myc-ELMO1 transfected HEK293T cells. 

Bound proteins were detected by immunoblotting with an anti-Myc antibody. 
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presence of an ELMO1 binding site within the N-terminal region of DOCK180. A series 

of GST fusion proteins of N-terminal fragments of DOCK180 (1-450, 1-357, 1-250, 1-

200, 1-150, 1-100, 1-69) were generated to delineate this ELMO1-binding site. These 

studies revealed that the first two hundred amino acids of DOCK180 are required to 

efficiently pulldown ELMO1 from cell extracts (Figure 2.5C, pg. 110, colored pink in 

Figure 2.5A, pg. 110). Interestingly, in the context of DOCK180 1-200, the W45K 

mutation in the SH3 domain significantly impairs its ability to precipitate ELMO1 

(Figure 2.5D, pg. 110). 

 

In reverse experiments, we studied whether N-terminal fragments of DOCK180, 

expressed by in vitro transcription/translation (IVT), were able to associate with GST 

ELMO1. While both DOCK180 1-422 and 1-187 were active in binding ELMO1, a 

DOCK180 fragment comprising residues 187-603 was incapable of such association 

(Figure 2.5E, pg. 110). Next, we tested the ability of GST-ELMO1 to precipitate the IVT 

DOCK180 fragments 1-69, 1-100 and 69-187. While no interaction of the SH3 domain-

containing fragments of DOCK180 (1-69 and 1-100) to ELMO1 could be detected 

(Figure 2.5F, pg. 110), ELMO1 specifically precipitated albeit weakly the DOCK180 

69-187 protein (Figure 2.5F, pg. 110). We conclude that the N-terminal 187 amino 

acids of DOCK180 harbor the binding site for ELMO proteins, with a primary binding 

site between residues 69-187. Importantly, we note that in the latter experiments, 

Rac1 is absent, highlighting that DOCK180/ELMO1 complex formation is Rac1 

independent. Interestingly, in these in vitro experiments, more efficient association 

was observed in the DOCK180 fragment containing the SH3 domain (residues 1-69, 

Figure 2.5E) , pg. 110, in contrast to some of our co-immunoprecipitation and 

pulldown experiments. It therefore appears that in the IVT system, the 

DOCK180/ELMO1 interaction is stabilized by the SH3/PxxP interaction of the two 

molecules. 
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Secondary structure prediction of the first 200 amino acids of ELMO-interacting 

DOCK proteins (DOCK1/DOCK180, 2,3,4 and 5) from multiple species uncovered a 

helical region from residues 80-153 in DOCK180, which overlaps with a highly 

conserved region in these proteins (Figure 2.5A, pg. 110, Supplementary Figure 

2S5, pg. 138). We speculated that these predicted helical/coiled-coil regions of 

DOCK180 might interact directly with the N-helix of the ELMO1 PH domain in a 

coiled-coil fashion, and hence we designed mutations in two hydrophobic patches 

within this region in GST-DOCK180 1-200. The mutant proteins were soluble and 

expressed to similar levels with the WT counterpart. Significantly, both resulting 

proteins, DOCK180 L96D/W99E and DOCK180 I132D/L133D, were unable to precipitate 

ELMO1 from cell extracts (Figure 2.5G, pg. 110). Hence, within the minimal ELMO1 

binding domain of DOCK180, both hydrophobic and SH3-mediated interactions are 

utilized, and as for ELMO1, mutation of a few hydrophobic amino acids completely 

disrupts DOCK180/ELMO complex formation.  

 

ELMO1 does not contribute towards DOCK180-mediated Rac activation 

 

Previous findings indicated that complex formation between ELMO1 and 

DOCK180 promotes the GEF activity of DOCK180 towards Rac by two-fold 362,368. In 

contrast, we demonstrated that DOCK180 alone activates Rac, and that the DHR-2 

domain of DOCK180 is necessary and sufficient for this activity 363,364. In order to 

clarify this ambiguity, we precipitated the GTP-bound form of Rac1 using the p21 

binding domain of PAK1 (PBD-assay) 363. We found that DOCK180 is indispensable for 

promoting Rac GTP-loading in CHO LR73 cells, and the presence of ELMO1WT did not 

increase Rac activation (Figure 2.6A, pg. 114). Furthermore, the ELMO1 N/PxxP double 

mutant defective in DOCK180 binding did not alter Rac GTP-loading in comparison to 

ELMO1WT (Figure 2.6A, pg. 114). To ascertain that we performed these Rac activation 

measurements in the linear range of the assay, we included a condition  
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Figure 2.6. ELMO1 does not contribute towards DOCK180-mediated Rac 

activation 

(A) Rac activation by DOCK180 is independent of ELMO1 in CHO LR73cells. Cells were 

transfected with the indicated plasmids and GTP-loaded Rac was pulled down from cell 

lysates using the p21-binding domain of PAK fused to GST (PBD-assay). The amount of 

Rac in pulldowns and in total cell lysates (TCL) was detected by immunoblotting with 

an anti-Rac antibody. Expression levels of the various proteins, and equal loading of 

Rac in all samples, were analyzed by immunoblotting of the TCL using anti- FLAG, anti-

Myc and anti-Rac antibodies. This is a representative experiments from four 

independent assays. (B) Quantification of Rac activation by the various proteins was 

performed by densitometry from the experiment in (A). (C) A form of DOCK180 lacking 

the ELMO1 binding region robustly activates Rac. HEK293T cells were transfected with 

the indicated plasmids and GTP-loaded Rac was pulled down from cell lysates in a 

PBD-assay. The amount of Rac in pulldowns and in total cell lysates (TCL) was detected 

by immunoblotting with an anti-Rac antibody. Expression levels of the various 

DOCK180 proteins, and equal loading of Rac in all samples, were analyzed by 

immunoblotting of the TCL using anti-DOCK180 and anti-Rac antibodies. 
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with saturating amount of DOCK180 (4 g instead of 1 g of plasmid). We noted a 

further increase in Rac activation in comparison to the samples expressing DOCK180 at 

lower levels, therefore, proving the linearity of the Rac-PBD assay in these conditions 

(Figure 2.6A, pg. 114). Similar results were obtained in HEK293T cells (data not 

shown). To test if DOCK180 can activate Rac in an ELMO independent manner, a 

DOCK180 mutant incapable of binding to ELMO1 (DOCK180Δ1-536) was expressed in 

HEK293T cells and Rac activity was measured. We found that much like DOCK180WT, 

DOCK180 Δ1-536 robustly activated Rac when expressed alone in cells (Figure 2.6B, pg. 

114). As above, we added a control where DOCK180 is expressed to saturation in order 

to demonstrate that the activities of DOCK180WT and DOCK180Δ1-536 toward Rac were 

measured in the linear range of the assay. These results emphasize an intrinsic GEF 

activity in DOCK180 which is independent of ELMO binding.  

 

Both the PH domain and PxxP motifs of ELMO1 contribute to DOCK180/ELMO1 

signaling 

 

 We tested our model of DOCK180/ELMO1 interaction on Rac signaling using 

functional cell spreading and migration assays in CHO LR73 cells. These cells express 

endogenous ELMO proteins and DOCK180 (data not shown). We found that exogenous 

expression of ELMO1WT or ELMO1 N/PxxP had no effect on spreading of LR73 cells on 

fibronectin when expressed alone (data not shown and 274). However, when ELMO1WT 

or ELMO1 N/PxxP were overexpressed in LR73 cells (2 μg instead of 0.3 μg of plasmids), 

we noted that both proteins could partially interfere with cell spreading, probably by 

sequestering essential components for Rac signaling (Supplementary Figure 2S6, pg. 

140).  

 

Co-expression of DOCK180/ELMO1/CrkII results in cell elongation when LR73 

cells are replated on fibronectin-coated dishes 364. We co-expressed ELMO1WT and 
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mutants together with DOCK180 and CrkII and examined the morphology of the 

transfected cells. In agreement with our biochemical characterization, ELMO1PxxP had 

no effect on the ability of the ELMO1 protein to promote the elongation of cells when 

co-expressed with DOCK180 and CrkII (Figure 2.7A-C, pg. 118). ELMO1 N prevented 

signaling from this complex to a small extent, as judged by morphological differences in 

elongated cells in comparison to the control conditions (Figure 2.7A and B, pg. 118). 

Interestingly, the double mutation ELMO1 N/PxxP markedly prevented cell elongation 

on fibronectin (Figure 2.7A and B, pg. 118).  

 

 When the cells were tested for their ability to migrate, similar results were 

obtained. As reported earlier 364, LR73 expressing ELMO1WT/DOCK180/CrkII had an 

increased capacity to migrate towards fibronectin in a boyden-chamber (Figure 2.7D 

and E, pg. 118) and ELMO1PxxP promoted cell migration just as well as its wild-type 

counterpart (Figure 2.7D and E, pg. 118). ELMO1 N led to a slight reduction in the 

ability of LR73 cells to migrate towards fibronectin (Figure 2.7D and E, pg. 118). 

Mutations in both the N helix and in the PxxP motif of ELMO1 were required to 

abrogate the ability of this protein to support cell migration (Figure 2.7D and E, pg. 

118). These results show that ELMO1/DOCK180 complex formation is required for 

DOCK180 function in cells. Furthermore, the functional data indicate that ectopic 

expression of ELMO1 mutants display dominant effects without affecting Rac 

activation. These results strengthen our notion that DHR-2 mediated Rac GEF activity 

of DOCK180 is ELMO independent.  
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Figure 2.7. Abrogating DOCK180/ELMO1 interaction in vivo results in defective 

cell elongation and migration. (A-E) DOCK180/ELMO1 binding is required for 

proper cell elongation.  (A) Serum-starved LR73 cells transfected with the indicated 

plasmids were detached and plated on fibronectin–coated chambers for 1 h. Cells in 

the top panels were stained with an antibody against DOCK180 (H-4), while bottom 

panels represent an overlay of the anti-DOCK180, rhodamine-phalloidin and DAPI 

stains. Cells were photographed at 100X magnification. A scale bar represents 10 μm. 

(B) Quantification of the effect on cell elongation in response to disruption of the 

DOCK180/ELMO1 interaction. Several independent fields of the experiments from (A) 

were photographed at a magnification of 20X, and cells were scored for three 

phenotypes: round (attached and minimally spread), spread (clearly spread and flat 

cells) and elongated (elongated cells with polarity). (C) Expression levels of the 

transfected proteins for spreading assays were analyzed by immunoblotting cell 

lysates with anti-FLAG and anti-Myc (ELMO1 and CrkII) antibodies, as indicated. (D) 

Serum-starved LR73 cells transfected with a GFP vector in addition to the indicated 

plasmids were detached and placed in the upper compartment of a Boyden chamber. 

Cells were allowed to migrate for 4 h towards fibronectin and then fixed and stained 

with DAPI. GFP/DAPI double-positive cells that migrated to the underside of the 

membrane were counted from photographs taken at 20X magnification. The migration 

assay was performed in triplicate and data is shown as mean + s.d. *P < 0.002; one-way 

ANOVA. (E) Expression levels of the transfected proteins for migration assays were 

analyzed by immunoblotting cell lysates with anti-FLAG and anti-Myc antibodies, as 

indicated. 
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DISCUSSION 

 

Two contact regions between DOCK180 and ELMO1 

 

 Analysis of the molecular details of the DOCK180 and ELMO1 interaction has 

highlighted some inconsistencies 83,359, however, definitive information is essential for 

the understanding of Rac activation and signaling mediated by this complex. Here we 

present data that DOCK180 and ELMO1 interact directly through the N-terminal 187 

amino acids of DOCK180 and the C-terminal 195 amino acids of ELMO1 (residues 532-

727). The primary interaction between these two regions involves the atypical ELMO1 

PH domain (residues 532-707), especially the N-helix (residues 532-555), and, on 

DOCK180, a previously uncharacterized region between the SH3 and DHR-1 domains 

(residues 69-187). Further analysis revealed the existence of an evolutionarily 

conserved alpha-helical region (residues 80-153) in DOCK180, which is likely to 

mediate direct contacts with the atypical hydrophobic αN-helix of the ELMO1 PH 

domain. A second interaction involves the N-terminal SH3 domain of DOCK180 and the 

C-terminal PxxP motifs of ELMO1. Our biochemical results support a mechanism 

whereby the PH domain of ELMO1 and its flanking regions, especially the N helix, is 

the main determinant for binding to DOCK180, whereas the secondary SH3/PxxP 

interaction is not sufficient to promote complex formation. In cells however, functional 

analyses revealed that the PxxP motifs in ELMO1 also contribute in promoting efficient 

cell spreading and cell migration. Our findings in cells correlate with in vivo data in C. 

elegans where both the PH domain and Pro-rich region were necessary for the 

engulfment function of Ced-12 358. The functional, but not biochemical necessity of the 

DOCK180 SH3 domain and ELMO1 PxxP motif, might indicate other uncharacterized 

binding partners for these regions. CrkII and p130Cas are other components that have 

been implicated to signal to the DOCK180 complex, and these proteins also contain 
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SH3 domains and PxxP motifs. Further structural characterization and identification of 

additional components of the signaling complexes will be required.  

 

Additional functions of the PH domain of ELMO? 

 

The structural analysis of the ELMO1 PH domain enabled a detailed 

characterization and comparison with other PH domains. We were able to confidently 

exclude an involvement of the PH domain in PI-binding, as the common PI binding site 

in ELMO1 is not capable of interacting with such positively charged ligands. Recently, 

structural analyses of the ESCRT-II GLUE domain 384, Tiam1 and ArhGAP9 385 have 

revealed a second mode of PH domain - PI interactions through conserved regions 

outside of the common PI binding site. In ELMO1 however, this binding site is also 

different, both at a structural and sequence level. 

 

Instead, we have found strong similarities with FERM domains that contain 

within their F3 subdomain a PH-like fold, and which use the common PI binding site 

instead as a protein interaction interface 383. Further functional and structural 

characterization of this putative protein interaction interface is required, but it is 

tempting to speculate that ELMO may also interact with proteins through this surface.  

 

PH domains appear essential in DOCK GEFs. DOCK1, 2, 5 and DOCK3 and 4 bind 

to ELMO and utilize its PH domain, while Zizimin1/DOCK9, 10 and 11 contain PH 

domains themselves in their N-termini 83. A structure of the DOCK9 PH domain has 

recently been deposited in the protein databank (Supplementary Figure 2S5, pg. 

138). This PH domain does not resemble the ELMO1 PH domain, and analysis of the 

surface potential suggests that it might interact with PIs (Figure 2.3, pg. 103 and 

Supplementary Material). Indeed, it was recently reported that the DOCK9 PH 

domain binds to PI ligands and may target DOCK9 to membranes 277. Hence, it appears 
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that PH domains of the DOCK GEFs may function in various ways (protein-protein 

interaction in ELMO/DOCK180 as opposed to membrane interaction in DOCK9), and 

future research will need to address their roles in more details.  

 

PH domain of ELMO1: Direct or indirect binding to DOCK180 and the 

implications for Rac GTP-loading? 

 

 A previous study highlighted a fragment of ELMO1, virtually identical to the one 

characterized here, that was unable to bind DOCK180 directly, but could only interact 

with a pre-formed complex between DOCK180 and nucleotide-free Rac 368. 

Mechanistically, these findings were proposed to regulate the catalytic GEF-activity of 

DOCK180 towards Rac and at least partially explained the bi-partite GEF model 368, in 

which DOCK180 and ELMO act somehow together in GDP/GTP exchange.  Our detailed 

mapping of the respective binding sites conflicts with such a ‘trans’ binding mode, as 

we observe direct interaction independent of Rac. Our structure-based mutagenesis 

identified key conserved hydrophobic residues in ELMO1 that mediate the direct 

interaction with DOCK180, and point mutations disrupt this binding. We found that 

ELMO1 does not affect GTP loading of Rac by DOCK180, however it is required for 

signaling to or from the DOCK180/ELMO1 complex. However, as these studies were 

performed in cells expressing endogenous ELMO1, further studies and knockout 

models for ELMO family members are required to fully comprehend a contribution of 

ELMO proteins in DOCK180 mediated Rac GEF activity. The ability of ELMO1 to signal 

to the actin cytoskeleton likely resides in its N-terminal region where it can bind to 

ERM proteins and RhoG. These ELMO1-mediated interactions might also play a 

targeting role (e.g. RhoG resides at the plasma membrane), and in fact point to a role of 

ELMO1 as an interaction platform for other molecules involved in the pathway. We are 

now investigating the exciting possibility that ELMO proteins may have a scaffolding 

function in connecting Rac activators and Rac effectors. 
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SUPPLEMENTARY MATERIAL 

 

SUPPLEMENTARY TEXT 

 

Detailed structural analysis of the PH domain fold of ELMO1 

 

In the main text, we focused our analysis of the ELMO1 PH on the putative PI 

binding site and the N helix. Here we extend the structural analysis, highlighting 

additional interesting features of ELMO1 PH domains, which account for the 

classification of the ELMO1 PH domain as an outlier to the classical PH domain fold. 

The ELMO1 PH domain varies from the canonical PH domain fold in two regions: the 

VL2 loop region (residues 592-604) is unusually long compared to other PH domains 

and folds back over the four-stranded -sheet (Figure 2.2A, pg. 97). The interactions 

between VL2 and the outer side of the four-stranded -sheet are mainly hydrophobic 

(Cys561, Phe574, and Tyr 576 on strands 1 and 2; Leu591, Pro595, Val599 and 

Leu604 in VL2), and hence are unlikely to allow a large degree of movement of VL2. 

Another insertion of 20 amino acids exists between -strands 5 and 6 (residues 619-

639), and folds over the three-stranded -sheet, forming an additional fourth loop 

shaping the putative ligand-binding site. Overall, the insertions cover a large surface on 

the -sheets, thereby determining surface features of the ELMO PH domain. 

 

Further analysis of the PI-binding region of the ELMO1 PH domain reveals 

similarity to FERM domains 

 

 We noted in the main text, that the ELMO PH domain is incapable of PI-binding 

due to replacement of key conserved residues. In addition to this, other differences 

between ELMO PH domains and PI-binding PH domains can be found. The 1-strand in 

ELMO1 does not contact the 7-strand as observed in PI-binding PH domains, resulting 
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in a parallel orientation of the -sheets rather than a barrel-like structure. This 

markedly shapes the surface of this region, and alters the electrostatic potential of the 

ELMO1 PH domain dramatically compared to PI-binding family members (Figure 2.3, 

pg. 103). ELMO1 features a large hydrophobic platform (formed by the highly 

conserved residues Trp575, Cys577, Tyr588, Leu608, Tyr646, Leu652 and Phe654), 

which is confined on one side by VL1 and the 5/ 6 insertion, and on the other side by 

the VL3 region (Figure 2.2B, pg. 97 and 2.3A, pg. 103). Both VL1 and the 5/ 6-

insertion show positive electrostatic potential, whilst VL2 is negatively charged 

(Figure 2.3A, pg. 103).  

Nevertheless, the conserved nature of this common PH domain interaction 

surface suggests a different functionality. Interestingly, further examination of the 

DALI analysis indicated significant similarity with another class of PH domain folds 

occurring in FERM domains. FERM domains consist of three subdomains F1, F2 and F3, 

with the F3 subdomain comprising a PH domain fold. The ELMO1 PH domain and the 

FERM domain of Moesin (pdb-id 1ef1, 383) share a Z-score of 8.8 (Table 2.2, pg. 101) 

and superimpose with an RMSD of 2.4 Å over 83 C  atoms (Figure 2.3D, pg. 103). 

 Importantly, the F3 subdomain in FERM proteins is a protein-interaction 

domain, and utilizes the common PI-binding site for interaction with the tail-region of 

the ERM protein via an intramolecular contact (Figure 2.3D, pg. 103 and 

Supplementary Figure 2S2, pg. 132). The last ten amino acids of Moesin form a short 

helix, which occupies the largely hydrophobic PI-equivalent binding pocket in the F3 

subdomain of Moesin (Figure 2.3D, pg. 103). Superposition of Moesin and the ELMO1 

PH domain places this Moesin tail-helix onto the hydrophobic patch of ELMO1, and the 

single Phe residue in the Moesin tail is located in a complementary hydrophobic pocket 

on ELMO1, reminiscent of the intramolecular Moesin interaction (Supplementary 

Figure 2S2, pg. 132). In contrast, the Gln571 and Asp590 of ELMO1 overlap with the 

C-terminal Met residue of Moesin (Supplementary Figure 2S2, pg. 132). ELMO1 has 

been reported to bind to ERM proteins, but this was attributed to N-terminal regions of 
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ELMO1 360,377. The similarity of ELMO PH domains with the F3 subdomain of ERM 

proteins nevertheless suggests that this site in ELMO1 could be utilized for 

peptide/protein binding in an analogous manner to FERM domains. DOCK180 itself 

does not contain sequences similar to the ERM tail region, and hence, such an 

interaction is unlikely to be utilized in DOCK180/ELMO complex formation. Further 

research will be required to determine the potential protein ligand(s) for this 

conserved putative protein interaction surface in the ELMO PH domain. 

 

Conserved hydrophobic residues C-terminally to the ELMO PH domain are not 

involved in DOCK180 interaction 

 

To achieve robust complex formation with DOCK180, the PH domain of ELMO1 had to 

be extended on both the N- and C-terminus. While we identified key interacting 

residues in the N-helix, the contribution of the C-terminal extension is not clear. This 

region is not included in the crystal structure (Figure 2.1B, pg. 93); however, 

secondary structure prediction and conservation analysis identifies a putative 

helical/coil-coil signature comprising several invariant hydrophobic residues (Figure 

2.2B, pg. 97). We tested whether mutation of such residues had a similar effect in 

abrogating complex formation as mutation of the N helix did. GST-fusion proteins of 

ELMO1L689A/L690A and ELMO1R697A/L698A/L699A did not affect complex formation 

significantly (Supplementary Figure 2S1, pg. 130). Therefore, structural 

consequences of the C-terminal extension of the ELMO PH domain, and its position in 

relation to the PH domain fold and N helix, are currently unclear, and further 

structural studies on full-length ELMO and complexes between ELMO and DOCK 

proteins will be required. 

 

 

 



126 

 

 

ELMO1 is a monomer in solution and in cells 

 

The ELMO1 PH domain crystallized by tight packing of the N-helix, forming a four-

helix bundle (Supplementary Figure 2S3, pg. 134). Although this is often a 

crystallization artifact, the possibility existed that ELMO dimerizes/oligomerizes in 

vivo, and that the N-helix functions as a dimerization/oligomerization domain. 

However, in gel filtration analysis of the ELMO1 PH domain and of full-length ELMO1, 

the proteins elute at the expected molecular weight for monomers (data not shown). 

Hence, the oligomerization is likely to be induced during formation of the crystal 

lattice. Additionally, the ability of full length Myc- and GFP-tagged ELMO1 to dimerize 

could not be supported experimentally in co-immunoprecipitation experiments 

(Supplementary Figures 2S8, pg. 144). We conclude that the α-helical extension of 

the ELMO1 PH domain does not support dimerization of the ELMO1 PH or ELMO1 

molecules in solution. Interestingly, DOCK proteins have been shown to be dimeric in 

cells, and the stoichiometry of a DOCK180/ELMO complex hence requires further 

analysis.  

 

A PI-binding PH domain in Zizimin-1/DOCK9 

 

Another member of the DOCK180-family of RhoGEFs is the Cdc42-specific 

DOCK9/Zizimin1 protein 386. DOCK9 contains the DHR-1 and DHR-2 regions also found 

in DOCK180, but differs from DOCK180 in a different domain organization 386. Instead 

of an N-terminal SH3 domain and ELMO-interaction region in DOCK180, DOCK9 

contains a PH domain at its N-terminus 83,359. 

 

 Having identified unique features in the PH domain of ELMO proteins, we 

wondered whether these are also present in other DOCK180-related Rho-family GEFs. 

A structure of the DOCK9/Zizimin1 PH domain solved by an NMR structural genomics 
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consortium (RIKEN) has been deposited in the protein data bank (pdb-id 1wg7, 

Supplementary Figure 2S6, pg. 140). Compared to the ELMO1 PH domain, it lacks the 

N-terminal helical extension, and contains shorter versions of the VL2-flap and the 5-

6 insertion. In contrast to the ELMO1 PH domain, the DOCK9 PH domain structure 

shows all features of PI-binding PH domains (Supplementary Figure 2S7, pg. 142). It 

displays a similar, strongly positively charged PI-binding pocket, and features the 

conserved Lys (Lys26 in DOCK9), and Arg (Arg43 in DOCK9) residues, as well as 

further positively charged residues (Lys41, Lys70) required for PI-binding. Based on 

the structure, we suspect the PH domain of DOCK9 to be a PI binding domain. Recent 

data indeed suggest the possibility that the DOCK9 PH domain is able to contribute 

directly to membrane localization of DOCK9 by interacting with phosphoinositides 277. 

This highlights yet again the remarkable versatility of PH domains, which in the case of 

the DOCK180-related RhoGEFs seem to have evolved to take part in entirely different 

regulatory processes.  
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SUPPLEMENTARY MATERIAL AND METHODS 

 

Plasmid Constructs. pCNX2 Flag-DOCK180, pCNX2 Flag-DOCK180ΔSH3, pCAGGS 

DOCK180Δ1-536 and pCAGGS Myc-CrkII were gifts from M. Matsuda. pcDNA3.1 Myc-

ELMO1 and pEBB ELMO1-GFP were previously described 363. Plasmids coding for 

DOCK180 GST-fusion proteins (residues 1-450, 1-357, 1-250, 1-200, 1-150, 1-100 and 

1-69) were generated by PCR using the DOCK180 cDNA as a template and cloned into 

the SalI/NotI sites of pGEX4T-1. The pGEX4T-1 DOCK180W45K (1-200), 

DOCK180L96D/W99E (1-200) and DOCK180I132D/L133D (1-200) were generated by site-

directed mutagenesis (QuickChange; Stratagene). The pcDNA3.1 ELMO1PxxP 

(P707A/P710A/P711A/P712A/P714A/P717A) and the ELMO1 N 

(L536D/I544D/L545E/L547E/I548D) were generated by site-directed mutagenesis. 

To construct ELMO1 N/PxxP double mutant of Myc-ELMO1 in pcDNA3.1, the 

EcoRV/BamHI fragment of the N mutant cDNA was subcloned into the same sites of 

the ELMO1 PxxP mutant. A similar strategy was used to generate the pcDNA3.1 

ELMO1 N/PxxP and ELMO1L547E/I548D/PxxP. Full length ELMO1 GST-fusion constructs ( N, 

PxxP, N/PxxP, L547E/I548D and L547E/I548D/PxxP mutants) were generated by 

subcloning the BamH1/XhoI fragment of the ELMO1 cDNA in pcDNA3.1 into the 

BamHI/SalI sites of pGEX4T1. GST ELMOL547A/I548A was generated by site directed 

mutagenesis. The various ELMO1 PH GST-fusion and GFP-fusion constructs were 

generated by PCR using the ELMO1 cDNA as a template and cloned into the XhoI/EcoRI 

sites of pGEX4T-1 and EcoRI/SalI sites of pEGFP-C2, respectively. The plasmids used 

for expression of the N-terminus of DOCK180 (residues 1-69, 1-100, 1-187, 1-422, 69-

187 and 187-603) by in vitro transcription/translation were constructed as followed: 

corresponding cDNA was amplified by PCR and cloned in the BglII/XhoI sites of 

pCMVTag-1 (Promega) downstream of the T7 RNA polymerase promoter. pET28a 

DOCK180 DHR-1 and pGEX4T1 BMX/Etk PH were previously reported 274. 
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Supplementary Figure 2S1. List of ELMO1 constructs tested for binding with 

DOCK180 and phosphoinositides. Table. Summary of the various ELMO1 constructs 

which were generated and tested for DOCK180- and PI-binding in this study.  (A) 

ELMO1 is incapable of binding to lipids in vitro. Purified recombinant GST-ELMO1 or 

GST-ELMO1 PH proteins (1 μg each) were incubated with beads coated with the 

indicated phosphoinositides, or as a control, with beads alone. The bound proteins 

were detected by immunoblotting with anti-GST antibodies. (B-C) As positive controls, 

the DHR-1 domain of DOCK180 (B) and the PH domain of BMX/Etk (C) were purified 

and subjected to binding to various phosphoinositides, as in (A).  
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Myc- ELMO1 1d, 5b +++ b
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Myc- ELMO1F641A/S642A/I643A Not shown +++ b

Myc- ELMO1W665A Not shown +++ b

GFP- ELMO1 1c +++ b

GFP- ELMO1 532-727 1c +++ b

GFP- ELMO1 532-707 1c ++ b

GFP- ELMO1 532-675 1c - b

GFP- ELMO1 557-707 1c - b

GFP- ELMO1 566-707 1c - b

GFP- ELMO1 675-707 1c - b

Myc- ELMO1L689A/L690A Not shown +++ b

Myc- ELMO1R697A/L698A/L699A Not shown +++ b
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Myc- ELMO1 Δ548-727 Not shown - b
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Supplementary Figure 2S2. Comparison of conserved features between Moesin-

tail interaction and ELMO1 PH domain. 

(A) A detailed view of the interactions between the Moesin F3-subdomain (under a 

grey surface) and the Moesin tail helix (in yellow). Hydrophobic residues (shown as 

sticks under the surface) are labeled and form a pocket for the interaction with 

Phe574. (B) Similar conserved, hydrophobic residues in the ELMO1 PH domain form a 

similarly sized pocket. (C) Superposition of the ELMO1 PH domain and Moesin places 

the tail region and Phe574 neatly into the hydrophobic pocket on ELMO1. However, 

steric clashes are present with the C-terminus of the tail region (Met577) on Moesin 

and Asp590/Gln571 on ELMO1.  
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Supplementary Figure 2S3. Involvement of the N-terminal helical extension of 

the ELMO1 PH domain in crystal packing.  

(A) The asymmetric unit of the crystals contains a dimer of the ELMO1 PH domain, in 

which the N-terminal helices pack against each other in an anti-parallel fashion. This 

exposes the conserved hydrophobic residues to one side of the dimer. (B) A dimer-

dimer interaction is created by a two-fold crystallographic axis. A four-helix bundle is 

formed by hydrophobic helix interactions. The oligomerisation is likely to be induced 

during formation of the crystal lattice, as the analyzed proteins are monomeric in 

solution (judged by gel filtration analysis, data not shown). Additionally, the ability of 

full length Myc- and GFP-tagged ELMO1 proteins to dimerize could not be supported 

experimentally in co-immunoprecipitation experiments (Supplementary Figure 2S6). 
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Supplementary Figure 2S4. Mutations in conserved hydrophobic residues in the 

N-helix of the ELMO1 PH domain abolishes the DOCK180/ELMO1 interaction. 

(A) Lysates of HEK293T cells transfected with the indicated plasmids were 

immunoprecipitated with an antibody against the Myc-epitope (ELMO1). The co-

precipitation of the various ELMO1 proteins and DOCK180 was analyzed via 

immunoblotting with anti-Myc (ELMO1) and anti-FLAG (DOCK180) antibodies, 

respectively. (B) Lysates of HEK293T cells transfected with the FLAG DOCK180 were 

subjected to pulldown assays with GST ELMO1WT, ELMO1L547E/I548D, 

ELMO1L547E/I548D/PxxP and ELMO1L547A/I548A proteins. The precipitation of DOCK180 by 

the various ELMO1 fusion proteins was detected via immunoblotting with anti-FLAG 

(DOCK180). 
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Supplementary Figure 2S5. Sequence alignment and secondary structure 

prediction of the minimal ELMO-binding region of DOCK180 uncover a conserved 

alpha-helical region. 

A sequence alignment, of the minimal ELMO-binding region in DOCK180, from several 

DOCK180-family members and multiple species is shown. Predicted alpha-helical 

regions are shown in red. Hydrophobic amino acids that were mutated in Figure 2.5G 

are indicated by arrows. Notably, the mutations of these amino acids in GST DOCK180 

1-200 completely abolished binding to Myc-ELMO1. 
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Supplementary Figure 2S6. Overexpression of dominant-negative Rac, ELMO1WT 

or ELMO1 N/PxxP mutant alone in LR73 cells interferes with cell spreading. (A) 

Quantification of the effect on cell spreading in response to overexpression of the 

indicated proteins. RacN17 was used as a dominant-negative mutant to interfere with 

cell spreading. Several independent fields were photographed at a magnification of 20X 

and cells were scored for three phenotypes: round (attached and minimally spread), 

spread (clearly spread and flat cells) and elongated (elongated cells with polarity). (B) 

Expression levels of the indicated overexpressed proteins for spreading assays were 

analyzed by immunoblotting cell lysates with anti-Myc (ELMO) and anti-FLAG 

(RacN17) antibodies, as indicated. 
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Supplementary Figure 2S7. A PI-binding PH domain in other DOCK proteins. 

Structure of the DOCK9/Zizimin1 PH domain solved by NMR (1wg7, unpublished), 

which shows all features of a phosphoinositide-binding PH domain. The view is shown 

as in Figure 2.3.  
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Supplementary Figure 2S8. ELMO1 proteins do not dimerize in cells. 

Differentially tagged ELMO1 constructs with GFP- and Myc-tags were co-expressed in 

HEK293T cells and cell lysates were subjected to immunoprecipitation against Myc 

(ELMO1).  Immunoblot analysis detected no co-precipitation of ELMO1 (GFP) with 

ELMO1 (Myc). Reverse experiments were also performed (GFP IP) and no interaction 

with Myc-ELMO1 were detected (not shown). 
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Summary 

 

DOCK proteins encompass a family of guanine nucleotide exchange factors 

(GEFs) controling the spatiotemporal activity of Rac1/Cdc42 GTPases during 

polarity, migration, phagocytosis and myoblast fusion 83,293,336,387. ELMO proteins 

physically associate with a subset of DOCK members and are emerging as critical 

regulators of Rac signaling 252,267,357,358,360,365. While formation of a 

DOCK180/ELMO complex is not essential for Rac1 activation, ELMO mutants 

deficient in binding to DOCK180 were unable to promote cytoskeleton-

remodeling 388. Exactly how ELMO regulates signaling through DOCK GEFs is 

poorly understood. Here, we identify an auto-inhibitory switch in ELMO 

presenting structural homology to an analogous regulatory unit described for 

Dia-family formins. One part of the switch, composed of tandem canonical Ras-

Binding Domain (RBD) and Armadillo repeats, is positioned N-terminally while 

the other is housed in the C-terminus. We demonstrate physical interaction 

between these fragments suggesting auto-inhibition of ELMO at the basal state. 

Using a BRET2 intra-molecular biosensor, we establish that ELMO undergoes 

conformational changes upon disruption of auto-inhibitory contacts. We found 

that engagement of ELMO to active RhoG, via the RBD, or with DOCK180, 

promoted the relief of auto-inhibition in ELMO. Functionally, ELMO mutants with 

impaired auto-regulatory activity were found to promote both cell elongation 

and migration. These results demonstrate an unsuspected level of regulation for 

DOCK180-mediated Rac1 signaling via auto-inhibition of ELMO. 
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Results and Discussion 

 

The GEF activity of DOCK proteins is mediated by the DOCK homology region-2, 

a module exclusive to this family of GEFs 85,267,272,363. The identification of upstream 

regulators of the DOCK180-Rac pathway revealed a role for this GEF in developmental 

and pathological processes 293,328,347,389,390. Previous studies demonstrated a total 

requirement for ELMO proteins in biological processes controlled by DOCK180 83,388. 

Nevertheless, the molecular mechanisms by which ELMO orchestrate Rac signaling in 

concert with DOCK180 remain to be established. We used bioinformatics to search for 

novel structural elements in ELMO that could regulate Rac signaling. Threading 

analysis performed with the Phyre algorithm identified Armadillo Repeats (ARR), in 

ELMO1,2,3 and Drosophila ELMO, bearing structural homology to ARR found in the 

formin Dia1 226 (Figure 3S1A, pg. 167). Structural homology between ELMO1 and the 

formins Dia1 221,224 and FHOD1 391 was also detected using the 3D-Jury structure 

prediction algorithm (Figure 3S1B, pg. 167). Finally, BLAST searches uncovered 

primary amino acid sequence similarity between ELMO1 and FHOD1 (Figure 3S1C, pg. 

167). The region in Dia1 and FHOD1 sharing homology to ELMO is the Diaphanous 

Inhibitory Domain (DID) and is characterized to engage in intra-molecular interactions 

with a Diaphanous Auto-regulatory Domain (DAD) to maintain these proteins in a 

repressed state 392. A hallmark of this regulatory switch is the presence of a GTPase 

binding site N-terminal to the DID. Mechanistically, engagement of GTPases to auto-

inhibited formins disrupts the inhibitory DID-DAD interactions, therefore exposing 

their actin polymerization activity 224,391. As the region in ELMO preceding the ARR 

interacts with RhoG 365, this led us to hypothesize that the N-terminus of ELMO may 

constitute part of a similar auto-inhibitory module. We therefore termed the ARR in 

ELMO as the ELMO Inhibitory Domain (EID) (Figure 3.1A,  pg. 151). Based on 

sequence alignment with FHOD1, the EID is defined by one  
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Figure 3.1. Intra-molecular interactions in ELMO1 through novel domains. (A) 

Schematic representation of the structural homology between ELMO and Dia-family 

formins. (B) The ELMO1 EID domain is composed of HEAT and Armadillo Repeats 

(ARR). Predicted α-helices (grey); Hydrophobic residues of the ARR consensus 

sequence (yellow); Polar residues (blue and red); I204 in ARR-3 is a conserved residue 

of ELMO proteins (green). (C) Sequence alignment of the auto-regulatory domains of 

ELMO (EAD) and Dia-related formins (DAD). Red arrows indicate highly conserved 

residues forming the core motif. Mutation of critical EID or EAD residues disrupts 

EID/EAD interaction in co-immunoprecipitation (D) and yeast two-hybrid system (E). 

(D) Lysates of HEK293T cells transfected with the indicated plasmids were subjected 

to immunoprecipitation with an anti-FLAG (lane 1-4) or anti-DOCK180 H-70 (lane 5-8) 

antibody. Immunoblots were analyzed using anti-Myc (ELMO1) and anti-DOCK180 (H-

70) antibodies. HC=IgG heavy chain. (E) Yeasts co-transformed with LexA fusion 

construct of ELMO11-315 and B42 fusion constructs of ELMO1315-727 were grown on non-

selective and selective (-Leucine) medium for a nutrient selective growth assay. (F) 

Mapping of critical EAD region boundaries. Yeasts co-transformed with the indicated 

plasmids were assayed as in (E). See also Figure 3S1. 
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HEAT domain followed by four ARR (Figure 3.1B, pg. 151). Searching for the 

equivalent of the formins’ DAD in ELMO is not straightforward since this functional 

region is not a domain but rather, a short amphipatic helix. We nevertheless identified 

a C-terminal region in ELMO that resembles the formins DAD 225,226, and we named it 

the ELMO Auto-Regulatory Domain (EAD) (Figure 3.1A, C, pg. 151). 

 

If the EID and EAD of ELMO behave like the analogous domains in formins, they 

should interact directly. We tested whether ELMO11-315 can interact with ELMO1315-727 

and found that these two ELMO1 fragments specifically co-precipitated with DOCK180 

(Figure 3.1D, pg. 151). The critical residues of Dia1 and FHOD1 DIDs involved in 

binding the DAD, Alanine 256 and Valine 228, respectively, are located in a 

hydrophobic region of the last helix of the third ARR 226,391. Structure-based alignment 

of the ELMO EID with the DIDs of Dia1 and FHOD1 suggested L202, I204 and L205 as 

candidate residues potentially important for the function of the ELMO EID.  By 

analyzing the Phyre generated 3D-model of the ELMO1 EID and comparing it to the 

structures of Dia1 and FHOD1, I204 was found to be surface exposed and is thus likely 

to contribute to EAD binding (Figure 3S1D, pg. 167). We found that two mutants in 

this hydrophobic patch, ELMO11-315(I204D) and ELMO11-315(L202E/I204D/L205E), lost the 

ability to interact with ELMO1315-727 both in co-immunoprecipitation and yeast two-

hybrid assays (Figure 3.1D,E, pg. 151). Mutation of another close by residue in the 

ELMO1 EID, Y216F, did not affect the EID/EAD interaction (Figure 3.1D,E, pg. 151). 

Next, we investigated which residues in the EAD are critical in EID binding. To provide 

evidence that the EAD is included in the predicted α-helix located between aas 681-701 

of ELMO1 (Figure 3.1C), we used the yeast two-hybrid system. We found that nested C-

terminal truncations (ELMO1532-727 and ELMO1532-707) maintained interaction with 

ELMO11-315 whereas further deletion of the region containing the predicted EAD 

(ELMO1532-675) diminished the binding (Figure 3.1F, pg. 151). In both FHOD1 and 

Dia1, the conserved Methionine of the DAD is responsible for extensive contacts with 
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the DID 225,226 (Figure 3.1C, pg. 151). Therefore, the equivalent Methionine 692, in 

addition to the highly conserved Glutamate 693, of ELMO1 were both mutated to 

Alanine. We found that ELMO11-315 was incapable of binding ELMO1315-727(M692A/E693A) 

in a yeast two-hybrid interaction assay, yet this mutant retained the ability to bind 

DOCK180 (Figure 3.1E, pg. 151 and 3S1E, pg. 167). Importantly, mutation of other 

residues in this region, namely R697A/L698A/L699A, had no effect on the EID/EAD 

interaction (Figure 3.1D,E, pg. 151). 

 

 The presence of GTPase-binding activity at the N-terminus of ELMO proteins 365 

suggest that the EID/EAD interactions could be regulated by engagement of active 

RhoG in a model suggestive of Dia-family formin activation 392. Despite similarity in 

their DIDs, the GTPase binding domains of Dia1 and FHOD1 are structurally unrelated 

393. In Dia1 it is solely α-helical and Rho-selective while in FHOD1 it is composed of an 

ubiquitin-fold found in Ras-Binding Domains (RBD) and is Rac-specific 224,391. Our 

bioinformatic analyses uncovered that the GTPase-binding boundary of ELMO proteins 

belongs to the family of RBDs 394. We found homology between ELMO, FHOD1 and c-

Raf RBDs. Superimposition of FHOD1 and c-Raf RBD structures results in the alignment 

with ELMO shown in Figure 3.2A (pg. 155), allowing us to narrow in on Leucine 43 as 

a likely candidate in the ELMO1 RBD to mediate contact to active RhoG on the basis 

that the analogous residue in c-Raf is in contact with Ras 394. In GST pull-down assays, 

both ELMO1L43A and ELMO11-315(L43A) were incapable of binding RhoGV12 (Figure 3.2B, 

pg. 155). Similarly, ELMO11-315(L43A) was impaired in RhoGV12-binding in co-

immunoprecipitation assays (Figure 3.2C, pg. 155). Functionally, we found that 

ELMO1 mutants lacking RBD activity failed to synergize with DOCK180 and CrkII in 

promoting cell elongation (Figure 3.2D, pg. 155) suggesting that this domain is 

essential for biological activity of the complex. 
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Figure 3.2. The N-Terminus ELMO1 contains a Ras-Binding Domain. (A) Secondary 

structure and sequence comparison between ELMO-family proteins, FHOD1, and Raf1 

indicates an evolutionarily conserved RBD characterized by the presence of an 

ubiquitin-like subdomain. ELMO secondary structure was predicted with Jpred3. 

FHOD1 PBD=3dad and Raf1 PBD=1gua. Residues potentially involved in contacting 

RhoG are shown in red. E=β-strand, H=α-helical. (B-C) L43A mutation in ELMO1 RBD 

abolishes the interaction with RhoGV12. (B) GST-tagged versions of the indicated 

ELMO1 proteins were used to pulldown HA-tagged RhoGV12 from HEK293T lysates. 

Bound proteins were detected by immunoblotting with an anti-HA antibody. (C) 

Transfected HEK293T cells were subjected to immunoprecipitation against Myc-tagged 

ELMO1. Bound proteins were analyzed by immunoblotting using anti-HA (RhoGV12) 

and anti-Myc (ELMO1) antibodies. (D) Mutational inactivation or deletion of the 

ELMO1 RBD results in defective cell elongation. Images represent an overlay of anti-H-

4 (DOCK180), rhodamine-phalloidin and DAPI stains. Scale bar, 10 μm. Several 

independent fields of the experiments were scored for the indicated phenotypes. 
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Although ELMO associates with RhoG 365, the minimal protein surface responsible for 

the interaction is poorly characterized. We investigated whether the RBD of ELMO is 

sufficient for membrane targeting by RhoG. We found that both the RBD (Myc-ELMO11-

113) and the RBD-EID unit (Myc-ELMO11-315), but not the L43A mutant counterparts, re-

localized to the membrane when co-expressed with RhoGV12 (Figure 3.3A, pg. 158 and 

3S2A, pg. 169). ELMO1 lacking the RBD, ELMO1113-727, also failed to re-localize to the 

membrane when co-expressed with RhoGV12 (Figure 3.3A, pg. 158). These results 

support the hypothesis that engagement of the RBD of ELMO proteins to GTPase(s) 

may be a key event to localize and anchor the ELMO/DOCK complex at the membrane. 

To test whether the engagement of active RhoG to the RBD competes with the EID/EAD 

interaction, we performed a biochemical cell fractionation assay. We observed that the 

RBD-EID unit of ELMO (Myc-ELMO11-315) is, as expected, enriched in the membrane 

fraction when expressed with RhoGV12 (Figure 3.3B,C, pg. 158). Co-expression of an 

ELMO fragment containing the EAD (Myc-ELMO1315-727) in this system coerced the 

RBD-EID fragment away from RhoGV12 at the membrane, increasing the proportion of 

Myc-ELMO11-315 in the cytosol (Figure 3.3B,C, pg. 158). 

 

To address whether intra-molecular interactions would take place in full-length 

ELMO, we developed a bioluminescence resonance energy transfer (BRET2) ELMO 

conformation biosensor. We tagged ELMO2 at its extremities with GFP10 and Renilla 

Luciferase (RlucII) tags (Figure 3.3D, pg. 158). ELMO2 was chosen, as it is compatible 

for cloning in the BRET2 vector and shares 88% similarity with ELMO1. Since our 

model predicts spatial proximity between the N- and C-terminal ends of ELMO 

proteins, BRET2 signal should occur in the auto-inhibited state and decrease in the 

active conformation. Indeed, BRET2 signal is detected when GFP10-ELMO2-RlucII is 

expressed alone (Figure 3.3D, pg. 158). Importantly, the BRET2 signal observed is 

independent of the concentration of ELMO2 indicating that intra-molecular  
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Figure 3.3. Full length ELMO2 is auto-inhibited and regulated by RhoG-binding to 

the RBD. (A) Membrane recruitment of ELMO1 RBD by RhoG. HeLa cells were 

transfected with the indicated plasmids and ELMO1 and RhoGV12 localization was 

analyzed using anti-Myc and anti-HA antibodies, respectively. Scale bar, 20 μm. (B-C) 

In the presence of RhoGV12, ELMO1 EAD-containing fragment coerces ELMO1 RBD-EID 

away from the membrane and into the cytosol. HEK293T cells were transfected with 

the indicated plasmids and cytosolic and membrane fractions were biochemically 

purified and analyzed via immunoblotting with the indicated antibodies. Quantification 

of band intensity was used to calculate the ratio of protein found in the membrane vs. 

the cytosol; error bars represent s.d., n=3. (D) Disrupting the EID/EAD interaction 

leads to conformational changes in ELMO2.  Schematic model of the GFP10-ELMO2-

RlucII conformation biosensor. Luminescence at 400 nm and fluorescence at 510 nm 

were measured upon addition of DeepBlueC in HEK293T cells expressing indicated 

proteins, n=3. ANOVA tests and Bonferroni’s multiple comparison were performed to 

compare each condition (***, P<0.001; error bars represent s.e.m, n=3). See also 

Figures 3S2. 
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interactions instead of oligomerization events are observed (Figure 3S2B, pg. 169). 

To test if disturbing the EID/EAD interaction in ELMO2 leads to conformational 

changes, we expressed GFP10-ELMO2-RlucII with function inactivating mutations in the 

EID (I196D or L194E/I196D/L197E) and detected a decrease in BRET2 signal 

suggesting that these mutants are in an open conformation (Figure 3.3D, pg. 158). 

Mutation of residue L43A in the RBD did not affect BRET2 signal (Figure 3.3D, pg. 

158). We used this probe to test if interaction of ELMO2 with its binding partners 

RhoGV12 and DOCK180 could affect the conformation state of ELMO2. Unfortunately, 

the bulky tags on the GFP10-ELMO2-RlucII almost totally abolished the interaction with 

RhoGV12 (Figure 3S2C, pg. 169) preventing us to conclusively determine if this GTPase 

can alter ELMO2 conformation in this assay. Interestingly, the binding of DOCK180 to 

GFP10-ELMO2-RlucII, which still occurs, promoted conformational changes in ELMO2 

suggesting that DOCK180 can participate in promoting the open conformation of ELMO 

(Figure 3S2D,E, pg. 169).  

 

 A previous report highlighted that ELMO can induce stress fibers 358 while other 

studies noted that ELMO has no effect on the cytoskeleton 252,360,364,388.  We reasoned 

that if ELMO auto-inhibition is important for regulating Rac signaling, activated 

mutants of ELMO1 should promote cytoskeletal changes. We studied the impact of 

ELMO1 in the presence/absence of RhoGV12 on the morphology of HeLa cells grown on 

poly-L-lysine. Expression of ELMO1WT, ELMO1I204D, ELMO1M692A/E693A or ELMO1L43A did 

not induce morphological alteration in comparison to control cells (Figure 3S3A, pg. 

171). In contrast, expression of RhoGV12 amplified cell spreading as judged by 

morphology and quantification of the Feret’s diameter (Figure 3.4A, B, pg. 161). 

When RhoGV12 was co-expressed with ELMO1WT and ELMO1L43A, membrane ruffles 

additionally characterized the cells but, notably, their Feret diameters were unchanged 

with respect to cells expressing RhoGV12 (Figure 3.4A, B, pg. 161). Strikingly, the 

active ELMO mutants ELMO1I204D and ELMO1M692A/E693A distinctly  
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Figure 3.4. The EID/EAD intra-molecular interaction is a regulatory feature of 

ELMO in cells. (A) Activated ELMO1 mutants synergize with RhoG to promote cell 

elongation. HeLa cells were transfected with the indicated plasmids and ELMO1 and 

RhoGV12 localization was observed with anti-Myc and anti-HA antibodies, respectively. 

Scale bar, 20 μm. (B) Quantification of the effect of ELMO1 mutations on cell 

elongation. The morphology of cells in (A) was analyzed using anti-Myc antibodies. For 

each condition, the Feret’s diameter of >40 cells was measured (bars represents lowest 

and highest values; see method). (C) Activated ELMO1 mutants promote cell elongation 

on fibronectin. Serum-starved LR73 cells transfected with the indicated ELMO1 

plasmids were detached and plated on fibronectin-coated chambers for 2 h. Cells were 

stained for ELMO1 (anti-Myc) and DOCK180 (H-70). Scale bar, 20 μm. (D) 

Quantification of cell morphology (see Materials and Methods). >More than 100 cells 

were analyzed for each condition. In both set of experiments, ANOVA tests and 

Bonferroni’s multiple comparison were performed to compare each condition 

(*, P<0.05; **, P<0.005; ***, P<0.001; error bars represent s.e.m, n=3). See also Figure 

3S3. 
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promoted cell elongation when expressed with RhoGV12 (Figure 3.4A, B, pg. 161). We 

next analyzed the morphology of integrin-activated HeLa cells expressing ELMO1 and 

found that ELMO1WT and ELMO1L43A failed to induce cytoskeletal changes (Figure 

3.4C, D, pg. 161). In agreement with our data suggesting a central role for the RBD in 

localizing ELMO at the membrane during integrin signaling, we noted that ELMO1L43A 

remained cytosolic (Figure 3.4C, pg. 161). Notably, ELMO1 mutants lacking auto-

regulatory properties (ELMO1I204D and ELMO1M692A/E693A) efficiently accumulated at 

cell extremities and induced cell elongation (Figure 3.4C,D, pg. 161). As a control, we 

found that mutants in which the EID/EAD interaction is not abrogated, ELMO1Y216F and 

ELMO1R697A/L698A/L699A, behaved like ELMO1WT (Figure 3.4C,D, pg. 161). Furthermore, 

we found that constitutively activated ELMO1 variants (ELMO1I204D and 

ELMO1M692A/E693A) were sufficient to induce more than two-fold increase in cell 

motility (Figure 3S3B, pg. 171). Significantly, uncoupling DOCK180-binding from 

these constitutively activated ELMO1 mutants abrogated the cell elongation phenotype 

indicating that they are dependent on DOCK180-mediated activation of Rac (Figure 

3S3C, pg. 171). Finally, we observed little impact on the global Rac activation in either 

293T or LR73 cells expressing active ELMO1 mutants (Figure 3S3D, pg. 171). Instead, 

we found that these mutants promote cell elongation by localizing DOCK180 at the 

membrane (Figure 3.4C, pg. 161). 

 

In this study, we identified three novel domains in ELMOs: the RBD, EID and 

EAD. We propose that the activation state of ELMO proteins is regulated, much like in 

Dia-family formins, via interaction with other proteins. We provided biochemical 

evidence that active RhoG and the ELMO EAD are competing for binding to the ELMO 

RBD-EID unit suggesting that RhoG could actively participate in unleashing the 

EID/EAD negative regulation. Alternatively, we cannot rule out the hypothesis that 

RhoG recruits “inactive” ELMO to the membrane where an additional interaction 

partner comes into play to stabilize ELMO in an active conformation. We also found 
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that DOCK180 binding to ELMO promotes conformational changes in ELMO. This result 

is in agreement with several reports suggesting that co-expression of ELMO and 

DOCK180 is essential for optimal activity of the complex and we now propose that this 

may be a consequence of favoring the open conformation of ELMO. 

 

The physiological relevance of the RhoG/ELMO/DOCK180 interaction is not 

clear. In fact, new lines of evidence suggest that RhoG may modestly contribute to the 

regulation of this pathway. First, while DOCK180 mutant mice suffer from defects in 

myoblast fusion 336, mice lacking RhoG undergo normal development 395 suggesting 

that this GTPase cannot be a master regulator of DOCK180 signaling. Second, while 

RhoG is a bona fide ELMO binder, it is not activated by integrin engagement and is not 

an essential component upstream of DOCK180 in cell spreading 153. Here, we 

demonstrated that ELMO recruitment at the membrane is dependent on the activity of 

the RBD during integrin signaling suggesting that additional GTPase(s), activated by 

integrins, must bind ELMO. The exact mechanism whereby open ELMO mutants are 

able to promote polarity is not understood. Our model is that ELMO may enter in a 

repressed state to mask an intrinsic enzymatic activity much like formins do to control 

their actin nucleation potential. The central region of ELMO contains an 

uncharacterized ELM domain suspected to house GAP activity toward Arf GTPases 169. 

Our structure/function analysis suggests that the ELM is essential for the polarization 

activity of the ELMO/DOCK180 complex (not shown). We are currently testing if the 

ELM carries GAP enzymatic activity and most importantly if the auto-inhibitory switch 

regulates it. 
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MATERIALS AND METHODS 

 

All experimental procedures are described in the Supplemental Material section.  
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Figure 3S1. Identification of the ELMO Inhibitory Domain (EID) and its homology 

to Dia-family Formins; Related to Figure 3.1. (A) Threading analysis using the Phyre 

Server 396 on ELMO1 aas 79-305 uncovers ARRs structurally similar to ARRs of Dia 

family formins. Shown is the top hit retrieved by the server: corresponds to the DID 

domain of Dia1 in complex with the DAD 225,226 (PDB=2bap). Similar analyses of 

ELMO2, ELMO3 and Drosophila ELMO produce equivalent results (data not shown). 

(B) 3D-Jury 397 predictions of ARRs in ELMO N-Terminus. The top 7 hits obtained after 

submitting ELMO1 N-Terminus (aas 1-340) to 3D-Jury prediction are all ARRs present 

in Dia and FHOD1 formins. 3D-Jury generates meta-predictions based on several 

prediction algorithms (RPSB_01, FFAS_03, BASI_01, BASI_02, BASI_04, PSIB_01) and 

scores models by their similarity to other models. Jscores above 50 indicate correct 

fold assignment with >90% probability. (1), (4) and (6) correspond to the DID domain 

of FHOD1 391,393 (PDB=3dada) and were predicted by the RPSB_01, BASI_01 and 

PSIB_01 servers, respectively. (2) and (3) correspond to the unbound DID domain of 

Dia1 224 (PDB=1z2cb) and were predicted by the FFAS_03 and BASI_02 servers, 

respectively. (5) and (7) correspond to the dimeric DID domain of Dia1 221 (PDB=2bxa) 

and were predicted by FF3A_07 and BASI_04 servers, respectively. (C) BLAST analysis 

using ELMO1 aas 74-279 reveals primary sequence amino acid similarity between 

ELMO1 and the FHOD1 N-Terminal region corresponding to the DID domain of FHOD1. 

(D) Volume contour models of the ELMO1 EID (aas 80-305, generated by Phyre), DID 

of FHOD1 (aas 115-339; PBD=3dad) and DID of Dia1 (aas 135-435; PBD=2bap). I204 of 

ELMO1 is surface exposed and was predicted as the equivalent of the critical DID 

residues (indicated in orange) of FHOD1 (V228) and Dia (A256) implicated in binding 

the DAD. (E) Lysates of HEK293T cells transfected with the indicated plasmids were 

immunoprecipitated with an anti-Myc antibody. Immunoblot analysis using anti-FLAG 

(DOCK180) and anti-Myc (ELMO1) antibodies demonstrates that the ELMO EAD 

mutation (M692A/E693A) does not hinder co-precipitation with DOCK180. (F) 

Schematic representation of all ELMO constructs used in this study. 
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Supplementary Figure 3S1 
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Figure 3S2. Characterization of the ELMO1 RBD and of an ELMO2 conformation 

biosensor, and demonstration of conformational changes in ELMO following 

binding to DOCK180; Related to Figure 3.3. (A) Shown are the complementary 

controls to Figure 3.3A. HeLa cells were transfected with the indicated plasmids. After 

24 h, the localization of ELMO1 and RhoGV12 was analyzed using anti-Myc and anti-HA 

antibodies, respectively, by laser scanning microscopy. Scale bar, 20 μm. (B) The BRET2 

ratio of the GFP10-ELMO2-RlucII biosensor is independent of protein expression levels. 

100 ng to 800 ng of plasmid coding for the ELMO2 BRET2 biosensor were transfected 

in HEK293T. RLucII activity and BRET2 ratios were experimentally obtained and 

plotted. Importantly, similar BRET2 ratios were obtained independent of protein 

expression levels. These results denote that the GFP10-ELMO2-RlucII biosensor acts 

autonomously and not via protein oligomerization and/or aggregation. (C) GFP10-

ELMO2-RlucII biosensor is unable to bind RhoG as compared to Myc-ELMO2. Lysates of 

HEK293T cells transfected with the indicated plasmids were subject to pulldowns with 

streptavidin-Dynabeads (RhoG). Immunoblot analysis was performed with anti-

ELMO2 and streptavidin-HRP (RhoG). (D) Lysates of HEK293T cells transfected with 

the indicated plasmids were immunoprecipitated with an anti-FLAG antibody. 

Immunoblot analysis using anti-ELMO2 and anti-FLAG (DOCK180) antibodies 

demonstrates the co-precipitation of DOCK180 with Myc-ELMO2 and GFP10-ELMO2-

RLucII. (E) Binding of DOCK180 to ELMO2 alters ELMO2 conformation. BRET2 signal 

(400 nm luminescence and 510 nm fluorescence) measurements after DeepBlueC 

addition in HEK293T cells expressing indicated proteins (***, P<0.001, by ANOVA test 

and Bonferroni’s multiple comparison; error bars represent s.e.m, n=6).
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Supplementary Figure 3S2 
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Figure 3S3. Auto-regulatory defective ELMO mutants promote migration and 

cytoskeletal changes in a DOCK180-dependant manner; Related to Figure 3.4. (A) 

Shown are the complementary control conditions of Figure 3.4A. HeLa cells were 

transfected with the indicated plasmids. After 24h incubation, the localization of 

ELMO1 and RhoGV12 was observed with anti-Myc and anti-HA antibodies, respectively, 

using a laser scanning microscope. Scale bar, 20 μm. (B) Left Panel: Activated ELMO1 

mutants promote cell motility. Right Panel: Activated ELMO1 mutants synergize with 

DOCK180 and CrkII to promote cell motility. Migration of LR73 cells was evaluated by 

Transwell migration assays. Relative cell migration was determined by the number of 

migrated cells normalized to ELMO alone (Left panel) or ELMO1+DOCK180+CrkII 

(Right panel) conditions which were arbitrarily set at 100% (*, P<0.05; **, P<0.005; ***, 

P<0.001, by ANOVA test and Bonferroni’s multiple comparison; error bars represent 

s.e.m, n=4). Expression levels of the transfected proteins for migration assays were 

analyzed by immunoblotting cell lysates with anti-DOCK180 (H-70) and anti-Myc 

(ELMO1 and CrkII) antibodies, as indicated. (C) Activated mutants of ELMO1 are 

dependant on DOCK180 for their biological activity. Upper panel: serum-starved LR73 

cells transfected with the indicated ELMO1 plasmids were detached and plated on 

fibronectin-coated chambers for 2 h. Cells were stained for ELMO1 (anti-Myc) and 

phalloidin-Alexa 633. Scale bar, 20 μm. Bottom: quantification of cell morphology. 

More than 100 cells were analyzed for each condition (***, P<0.001, by ANOVA test and 

Bonferroni’s multiple comparison; error bars represent s.e.m, n=3). (D) Active ELMO1 

mutants do not promote global Rac activation. HEK293T and CHO LR73 cells were 

transfected with the indicated plasmids and GTP-loaded Rac was pulled down from cell 

lysates using the p21-binding domain of PAK fused to GST (PBD-assay). The amount of 

Rac in pulldowns and in total cell lysates (TCL) was detected by immunoblotting with 

an anti-Rac antibody. Expression levels of the various proteins, and equal loading of 

Rac in all samples, were analyzed by immunoblotting of the TCL using anti-FLAG 

(DOCK180), anti-Myc (ELMO1) and anti-Rac antibodies. 
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 MATERIALS AND METHODS 

Antibodies, cell culture and transfections. Anti-DOCK180 (H-4 and H-70), anti-Myc 

(9E10), and anti-HA (Y-11) were from Santa Cruz Biotechnologies. HEK293T and HeLa 

cells were cultured in DMEM supplemented with 10% fetal bovine serum, penicillin 

and streptomycin (Gibco-BRL) and transfected by calcium phosphate or Lipofectamine 

2000 (Invitrogen) using standard procedures. The CHO cell line, LR73 subclone, was 

maintained in alpha-MEM supplemented with 10% fetal bovine serum, penicillin and 

streptomycin (Gibco-BRL) and transfected using Lipofectamine 2000 (Invitrogen) 

according to the manufacturer’s instructions. Biochemical and cell biological studies 

were performed 24-48 hours after transfection.  

 

Plasmid Constructs. pCNX2 Flag-DOCK180 and pCAGGS Myc-CrkII were donated by 

Dr M. Matsuda. HA-RhoG was kindly provided by Dr P. Fort. pcDNA3.1 Myc-ELMO1 was 

previously described 363. Plasmids coding for Myc-ELMO1 proteins (aas 1-113, 1-315, 

113-727, 212-727 and 315-727) were generated by PCR using Myc-ELMO1 as a 

template and cloned into the BamHI/XhoI sites of pcDNA3. HA-RhoGV12, Myc-

ELMO1I204D (WT, 1-315), Myc-ELMO1L202E/1204D/L205E (WT, 1-315), Myc-ELMO1Y216F 

(WT, 1-315), Myc-ELMO1M692A/E693A (WT, 315-727), ELMO1R697A/L698A/L699A (WT, 315-

727), and Myc-ELMO1L43A (WT, 1-113, 1-315) were generated by site-directed 

mutagenesis (QuickChange; Stratagene). pEG202 and pJG4-5alt  were obtained from 

Dr. J. Archambault. Yeast constructs for ELMO1 (WT, 1-315, 1-315I204D and 1-

315L202E/1204D/L205E) were generated via PCR using the Myc-ELMO1 as a template and 

cloned into the BamHI/XhoI sites of pEG202 (LexA-tagged vector). pEG202-ELMO11-315 

(Y216F) was generated by site-directed mutagenesis. ELMO1532-727, 532-707 and 532-675 were 

generated via PCR using the Myc-ELMO1 as a template and cloned into the BglII/XhoI 

sites of pJG4-5alt (B42-tagged vector). pJG4-5alt-ELMO1315-727 (M692A/E693A) and 

ELMO1315-727 (R697A/L698A/L699A)  were generated via site-directed mutagenesis. pcDNA3.1 

GFP10-ELMO2-RLucII was generated by subcloning ELMO2 Kpn1/HindIII into 
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pcDNA3.1 GFP10-EPAC1-RLucII whereby replacing the EPAC1 coding sequence by 

ELMO2 while keeping identical linkers. ELMO2, ELMO2L43A, ELMO1I196D and 

ELMO1L194E/I196D/L197E mutants were generated by site-directed mutagenesis and were 

tagged with GFP10 and LucII with the same aforementioned cloning strategy. The 

pBABE rtTA and pOZ hBirA plasmids were gifts from Dr. Paul Jolicoeur and Dr. Vasily 

Ogryzko, respectively. Plasmids coding for RhoGWT were generated via PCR, cloned into 

the EcoRI/BamHI sites of (pTRE-Biotag-TEV), and finally subcloned into the XhoI site 

of CMV-deleted pcDNA3. To create RhoGV12, a site-directed mutagenesis was done 

using pcDNA3-TRE-Biotag- RhoGWT. 

 

Immunoprecipitation, GST-fusion protein and streptavidin pulldowns. GST-fusion 

protein pulldowns and immunoprecipitation experiments were performed as 

previously described 388. In Figure 3.1D (pg. 151), cells were first treated with the 

reversible DSP cross-linker (Pierce; 2 μM final) for 30 min prior to lysis and 

immunoprecipitation. Streptavidin pulldowns were performed as suggested by the 

manufacturer. Briefly, transfected cells were lysed with MLB buffer (1% NP-40, 25mM 

Hepes pH 7.5, 150mM NaCl, 10mM MgCl2, 1mM EDTA, 10% glycerol) and incubated 

with washed Streptavidin-beads (Dynabeads M-280 Streptavidin; Invitrogen) for 30 

min at 4°C. Beads were collected using a magnet and washed three times with MLB 

buffer followed by fractionation of bound material by SDS-PAGE. 

 

Rac-GTP assays. The GTP-loading status of Rac in HEK293T cells was analyzed by 

GST-PAK-PBD affinity precipitation as described previously 363.  

 

Yeast Two-Hybrid Interaction Assay. The genotype of the yeast reporter strain 

EGY48 is MATα ura3 trp1 his3 6lexAop-LEU2, auxotrophic for tryptophan (Trp), uracil 

(Ura), histidine (His), with LEU2 as a reporter gene. Yeast were grown in rich medium 

(1% yeast, 2% Bacto-peptone, 2% glucose) or in synthetic minimal medium with 

appropriate supplements. Yeasts were transformed by the lithium acetate method 
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using standard protocol, with LexA-tagged ELMO1 constructs (HIS3) screening B42-

tagged ELMO1 constructs (TRP1) for interaction. Double transformants were plated on 

non-selective (-Histidine, -Tryptophan) and selective (-Histidine, -Tryptophan, -

Leucine) medium containing galactose. Plates were incubated at 30°C for 3-5 days. 

 

Cell fractionation assay.  Cell fractionation was performed as previously described 

364. Equal amounts of proteins (20 μg) were resolved by SDS-PAGE and proteins of 

interest were analyzed via immunoblotting with appropriate antibodies.  

 

Cell spreading and colocalization assays. For integrin independent assays, HeLa and 

LR73 cells were grown for 24 h in 4-well LabTeck chambers (25,000 cells per well, 

Falcon) coated with poly-L-lysine (26 µg/cm2, Sigma). Cells were then transfected with 

the indicated plasmids and grown for an additional 24 h. Cell were fixed by 4% 

paraformaldehyde treatment. Immunofluorescence was performed and Feret 

diameters of more than 40 cells were analyzed using the threshold function of Image-J 

software (NIH) (n=3 for each condition). Diameters are presented as “box and whisker” 

plots showing means, quartile, and highest and lowest values. For the cell-spreading 

assay on fibronectin, LR73 cells were transfected with the indicated plasmids and were 

subjected to cell morphology analysis as previously described 364. Briefly, serum 

starved cells (0.5% FBS, overnight) were gently detached (0.01% trypsin and 5 mM 

EDTA, in Hanks balanced solution, Gibco), washed in Fibroblast Basal Medium 

(Clonetics) supplemented with 0.5% BSA (Sigma) and 40,000 cells were allowed to 

spread on fibronectin (10 µg/cm2) for 2 h before fixing with 4% paraformaldehyde. 

Morphology of the cells expressing the various ELMO1 mutants was analyzed by 

immunofluorescence. Cells were scored for three phenotypes: spread (normal), flat 

(increased spreading and rounder) and elongated (polarized-like) (more than 100 cells 

per condition were analyzed, n=3). 
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Immunofluorescence. Cells were fixed with 4% paraformaldehyde, permeabilized 

with 0.2% Triton X-100 (Sigma) in PBS and blocked in PBS-1% BSA (United States 

Biological). Cells were incubated with anti-Myc and anti-HA antibodies (1:200 and 

1:100 dilution, respectively) for 45 min, and then incubated with goat anti-mouse 

Alexa488 and goat anti-rabbit Alexa 633 (Invitrogen) (both 1:1,000 dilution) for 30 

min. After one wash in Tween 0.2% (Sigma) in PBS and three in PBS alone, the 

chambers slides were mounted with coverslips using Slow Fade® Gold antifade reagent 

with DAPI mounting medium (Invitrogen). Fluorescence images were captured with a 

Zeiss LSM510 confocal microscope, and the quantitative cell morphology analysis was 

performed using images taken with a Leica DM4000 epifluorescence microscope 

(Deerfield, IL) equipped with a Retiga EXi (QImaging, Burnaby, BC, Canada) camera. 

 

Cell migration assay. Cell migration assays were performed using modified Boyden 

chambers as previously described 364. Briefly, 6.5 mm-diameter transwell inserts with 

8-µm pores were used in 24-well plates (Corning, CA). LR73 cells were transfected, 

using Lipofectamine 2000 (Invitrogen), with the indicated plasmids and were serum 

starved (0.5% FBS) overnight. Cells were prepared as for spreading assays on 

fibronectin and 100,000 cells were seeded in transwells inserts precoated with 

fibronectin (90 µg/cm2). Cells were allowed to migrate for 4 h prior to fixation in 4% 

paraformaldehyde. Then, the top surface of the chamber was wiped using a cotton 

swab and chambers were stained with anti-Myc and anti-mouse Alexa488 antibodies 

(1:200 and 1:1,000 dilution, respectively). Fluorescence images were acquired with a 

Leica DM4000 epifluorescence microscope (Deerfield, IL) equipped with a Retiga EXi 

camera (QImaging, Burnaby, BC, Canada), for 15 fields per insert using a 10X lens. The 

number of positive cells was counted using the threshold function of Image-J software 

(NIH). Migration was normalized to ELMO1 alone or to the ELMO1+DOCK180+CrkII 

condition that was arbitrarily set at 100%. Expression levels of the exogenous proteins 

were verified by western blotting using the remaining cells. Measurements were done 

in duplicate (n=4). 
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BRET2 Assay.   HEK293T cells were transfected with the ELMO2 biosensor or 

pcDNA3.1 RlucII alone using Lipofectamine 2000. 24-48h post-transfection, cells were 

harvested in DMEM and washed once with PBS. For each sample, 50,000 or 100,000 

cells in PBS were distributed in 96-well white opaque plate (Optiplate, Perkin Elmer). 

The luciferase substrate, DeepBlueC (Biotium), was added at a final concentration of 

5 μM. The luminescence at 400 nm and fluorescence at 510 nm were measured with 

the PHERAstar (BMG Labtech). The BRET2 ratios were calculated as described 398 

(n=3). 

 

Statistical analysis. Statistical differences between two groups of data were analyzed 

using ANOVA test and Bonferroni’s multiple comparison procedures (minimum of 

n=3). 
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The Arf family GTPase, Arl4A, complexes with ELMO and reveals 

a polyvalent Ras-Binding Domain in ELMO 
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Abstract 

 Directed cell migration is integral during various biological processes, such as, 

embryonic development, immune response, and cancer metastasis. Tight control of the 

Rho GTPase Rac is a key molecular event underlying spatio-temporal coordination of 

Rac activation and ensuing signaling pathways. The DOCK family members of guanine 

nucleotide exchange factors (GEFs) have emerged as important positive regulators of 

Rho GTPases. The prototypical DOCK protein, DOCK180, is linked to ELMO during cell 

migration, phagocytosis, and myoblast fusion. Until recently, the role of ELMO during 

DOCK180-mediated Rac activation and signaling was poorly understood. We found 

that ELMO was not required for DOCK180 Rac GEF activity, but rather for the 

proceeding Rac signaling cascade. Specifically, at basal state, our work revealed ELMO 

to be regulated via intramolecular contacts similar to an autoinhibitory module found 

in formins. In formins, release of this autoinhibition comes via GTPase binding a 

GTPase binding domain (GBD). We also found that ELMO contains a GBD similar in 

structure to that of the formin FHOD1, and is referred to as a Ras-binding domain 

(RBD). The ELMO RBD was found to be important for membrane targeting and 

autoinhibition relief of ELMO.  

 This study identifies Arl4A, an Arf-related GTPase, as a novel ELMO binding 

partner. Specifically, Arl4A binds the ELMO RBD and acts as a membrane recruitment 

signal for the ELMO/DOCK180/Rac module to induce cytoskeletal changes. Our data 

reveals that ELMO is proficient for interaction with GTPases from divergent families, 

leading to the conclusion that ELMO contains a polyvalent RBD. This is the first study 

to identify an RBD with dual specificity for Rho and Arf family GTPases. Our results 

may have broad implications in the activation and localization of this pathway by 

additional GTPases. 
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Introduction  

 An elaborate cast of players are directed to coordinate Rho GTPases during 

numerous basic biological processes such as cell migration, polarity and adhesion. The 

evolutionarily conserved family of DOCK proteins mediates guanine nucleotide 

exchange on a subset of these Rho GTPases to control active remodeling of the actin 

cytoskeleton 83. Amongst the eleven mammalian proteins, DOCK180 (also known as 

DOCK1)-5 and DOCK9-11 are characterized as specific activators of Rac and Cdc42 

GTPases, respectively 83,266. Deviants of the distinctive DH-PH Rho GEFs, the DOCK 

proteins rely on the DOCK homology region-2 (DHR-2) for guanine nucleotide 

exchange activity, and a lipid-binding DHR-1 for membrane targeting 265,274.  

 Amid the DOCK proteins, the CDM members (C. elegans ced-5, Drosophila 

Myoblast City and mammalian DOCK1/2/5) have been reported to regulate a number 

of Rac-dependent biological events including cell migration, cell polarization, myoblast 

fusion and engulfment of apoptotic cells 180,253,336,399. The interaction of DOCK180 with 

various proteins is critical in regulating Rac signaling. One major protein family 

interacting with DOCK180 is the ELMO family. Genetic analyses in worms and flies 

suggest that ELMO is crucial for all studied biological functions of DOCK180 83,266. Cell 

biology studies in mammalian cells suggest that disrupting the ELMO/DOCK180 

interaction blocks signaling from this complex.  

 Until recently, the implicated domain(s) and the mechanism by which ELMO 

proteins facilitate Rac signaling were obscure. Our findings identified three previously 

uncharacterized modules of ELMO proteins: Ras-Binding Domain (RBD), ELMO 

Inhibitory Domain (EID), and ELMO Autoregulatory Domain (EAD) 400. We discovered 

an autoinhibitory switch in ELMO presenting structural homology to an analogous 

regulatory unit described for Dia-family formins 220,231,400,401. The switch is organized 

via physical bridging of a tandem RBD-EID at the N-terminus, and an EAD at the C-

terminus. At basal levels, the intramolecular interaction between these fragments is 

suggested to sequester ELMO in a closed conformation, and it is hypothesized that 
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additional binding partners will alleviate this autoinhibited state once the cell is 

stimulated. Functionally, ELMO1 mutants with defective autoregulatory activity were 

found to promote cell elongation and migration, highlighting the importance of tight 

conformational regulation of ELMO 400. 

 An indication that proper membrane targeting of ELMO is an important event in 

DOCK180-Rac activation came from the demonstration that expression of 

myristoylated ELMO2 induces uncontrolled membrane ruffles 402. Due to its ability to 

interact with membrane-localized and signaling proteins, the N-terminus of ELMO is a 

strong candidate for proper targeting of the ELMO/DOCK180 complex 152,293,402,403. 

RhoG, in its active GTP-bound state, was demonstrated to recruit ELMO/DOCK180 to 

the membrane and induce Rac-dependent cytoskeletal changes promoting efficient cell 

migration, phagocytosis and neurite outgrowth 152,250,251,255,404. However, a later study 

demonstrated that RhoG is not required for integrin-mediated Rac signaling and 

motility 153. It is evident that understanding the molecular events that regulate 

ELMO/DOCK180 recruitment to the membrane is an important area of investigation to 

fully comprehend how these proteins are controlled. 

 This study investigates a novel molecular event capable of controling ELMO 

recruitment to the membrane. We initiated a screen to identify unknown ELMO 

binding proteins and identified an Arf-related GTPase, Arl4A, as a candidate to 

promote signaling by the ELMO/DOCK180/Rac pathway via a membrane recruitment 

mechanism. Our data reveal that the ELMO N-terminus is capable of interacting with 

GTPases from divergent families, leading to the conclusion that ELMO contains a 

polyvalent RBD. To our knowledge, this is the first study to identify an RBD with dual 

specificity for Rho and Arf family GTPases. Our results may have broad implications in 

the activation and localization of this pathway by additional GTPases. 
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Results 

An Arf-related GTPases, Arl4A, binds the ELMO1 Ras Binding Domain (RBD) 

We previously reported that the formation of an ELMO/DOCK180 complex is 

essential for Rac GTP-induced cytoskeletal changes but not for Rac GTP-loading per se, 

the latter being solely dependent on the intrinsic GEF activity of DOCK180 388. The C-

terminal atypical PH domain of ELMO1 was found to mediate binding to DOCK180 and 

we proposed that the N-terminal region is likely to contain either membrane targeting 

and/or Rac effector recruitment activity to promote efficient Rac signaling.  

Since ELMO proteins are repressed via intramolecular interactions, we 

reasoned that molecules that interact with the RBD might activate or spatially position 

the ELMO/DOCK180 complex for activation. To identify novel partners of the N-

terminus of ELMO1, we performed a yeast-two hybrid screen using ELMO1 as bait and 

an embryonic mouse brain cDNA library as prey. Among the novel candidate ELMO1 

partners, we decided to study in more detail Arl4A, a small GTPase of the Arf family. 

The Arf family member, Arf6, is heavily implicated in cytoskeletal reorganization via 

numerous signaling events 180-182,209,210. One such pathway places Arf6 upstream of 

DOCK180 and ELMO and ensuing Rac activation and signaling 180. However, the exact 

mechanism by which Arf6 controls ELMO/DOCK180-mediated Rac signaling is poorly 

understood. Arl4A belongs to the large family of Arf-related proteins. The Arl4 family 

consists of three closely related members: A, C, and D 156. Unlike the other members of 

this family, Arl4s are preferentially GTP-loaded due to their weak affinity for 

nucleotides and therefore exhibit high spontaneous nucleotide exchange rates 212. 

Recent reports suggest that Arl4s are involved in cytoskeletal rearrangement through 

their ability to bind the Arf6 guanine exchange factor ARNO and localize it to the cell 

periphery for Arf6 activation 209,210.  

We used the yeast two-hybrid system to verify which isoforms of Arl4s interact 

with ELMO proteins. Using ELMO1 as bait revealed specificity for the Arl4A protein 

since no interaction was noted for Arl4C or Arl4D (Figure 4.1A, pg. 187). Moreover, 
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ELMO1 binding to Arl4A was nucleotide-state dependent, with ELMO1 selectively 

interacting with the WT and constitutively active (Q79L) forms but not with dominant 

negative (T34N) Arl4A (Figure 4.1A, pg. 187). To validate these results in a 

mammalian cell context, we co-expressed Myc-ELMO1 with the WT, Q79L and T34N 

forms of Arl4A in 293T cells. Similar to what was observed in yeast, specific interaction 

between ELMO1 and both Arl4AWT and Arl4AQ79L was observed (Figure 4.1B, pg. 

187). Finally, we could generalize the binding of Arl4A to all isoforms of ELMO since 

we found a specific interaction in co-immunoprecipitation between Arl4A and Myc-

ELMO1, Myc-ELMO2 and Myc-ELMO3 (Figure 4.1C, pg. 187). 

To map the active ELMO1 binding interface for Arl4A, we used a panel of 

ELMO1 truncation mutants (Figure 4.2A, pg. 189) in the yeast two-hybrid system. Our 

data suggests that the first 113 amino acids of ELMO1 have the ability to complex with 

Arl4A (Figure 4.2B, pg. 189). Similarly, deletion of the first 113 amino acids was 

sufficient to abrogate binding of ELMO1 to Arl4A. Moreover, we also found that 

ELMO11-113 was sufficient to bind Arl4A in 293T cells (Figure 4.2C, pg. 189). A mutant 

of ELMO1 lacking the first 113 amino acids was difficult to express, but we could 

demonstrate that the first 212 amino acids of ELMO1 are required for interacting with 

Arl4A since ELMO1212-727 is unable to co-precipitate Arl4A (Figure 4.2C, pg. 189). 

Together, these results demonstrate that Arl4A interacts specifically with the RBD of 

ELMO that was previously identified for the interaction with RhoG-GTP. Consistent 

with our original hypothesis, active Arl4A would be a good candidate to relieve the 

inhibitory EID-EAD interaction in ELMO and localize ELMO/DOCK180 to the 

membrane for Rac activation.  

 Our discovery that the Arl4A binding site encompasses the ELMO RBD led to an 

exciting possibility. Similar to active RhoG, Arl4A may also have specific affinity for this 

protein module. Our prior findings disclosed ELMO1 residue Leucine 43 as the 

cornerstone for forging the ELMO1 RBD/RhoG-GTP contact 400. In a yeast two-hybrid 

assay,  we  found  that  both  Arl4AWT and  Arl4AQ79L   were   unable   to   interact  with  
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Figure 4.1. Arl4A is a novel ELMO-interacting partner binding the extreme N-

terminal region of ELMO. (A) Arl4A WT and Q79L interact with ELMO1 in a yeast 

two-hybrid system. Yeast strain EGY48 co-transformed with LexA BD fusion construct 

of ELMO1WT and the B42 fusion constructs of the indicated Arl4s were grown on 

selective (-Histidine, -Trytophan, -Leucine) and non-selective (-Histidine, -Trytophan) 

medium for a nutrient selective growth assay. (B) Arl4A and ELMO1 interact in vivo in 

cells. HEK293T cells transfected with the indicated plasmids were subject to a 

crosslinker, lysed and immunoprecipitated with an anti-Myc antibody (ELMO1). 

Immunoblot analysis using anti-Myc and FLAG-HRP antibodies established the co-

precipitation of ELMO and Arl4A proteins.  (C) Arl4A interacts with all forms of ELMO. 

HEK293T cells transfected with the indicated plasmids were crosslinked, lysed and 

immunoprecipitated with an antibody against the Myc-epitope (ELMO1-3). The co-

precipitation of the various ELMO proteins and Arl4A was analyzed via 

immunoblotting with anti-Myc (ELMO1-3) and anti-FLAG-HRP (Arl4A) antibodies, 

respectively. 
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Figure 4.2. Arl4A binds the ELMO1 RBD through a key evolutionarily conserved 

RBD residue. (A) Schematic representation of ELMO1 deletion mutants used in yeast 

two-hybrid experiments. (B) The ELMO1 N-Terminus is required for Arl4A binding. 

Yeast strain EGY48 co-transformed with LexA BD fusion construct of ELMO1WT and 

deletion mutants and the B42 fusion constructs of the indicated Arl4As were grown on 

selective (-Histidine, -Trytophan, -Leucine) and non-selective (-Histidine, -Trytophan) 

medium for a nutrient selective growth assay. (C) The Arl4A/ELMO1 interaction in 

cellulo requires the ELMO1 RBD. HEK293T cells transfected with the indicated 

plasmids were crosslinked, lysed and immunoprecipitated with an antibody against 

the Myc-epitope (ELMO1). The co-precipitation of the various ELMO1 proteins and 

Arl4A was analyzed via immunoblotting with anti-Myc (ELMO) and anti-FLAG-HRP 

(Arl4A) antibodies, respectively. (D) Mutation of a key conserved residue in the ELMO 

RBD (L43A) abolishes Arl4A binding. Yeast strain EGY48 co-transformed with LexA BD 

fusion construct of ELMO1 (WT or L43A) and the B42 fusion construct of Arl4A (WT or 

Q79L)  were grown on selective (-Histidine, -Trytophan, -Leucine) and non-selective (-

Histidine, -Trytophan) medium for a nutrient selective growth assay. 
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ELMO11-212 (L43A) in comparison to its wild-type counterpart (Figure 4.2D, pg. 189). 

This result validates our previous finding that ELMO proteins contain a previously 

unrecognized canonical RBD. Furthermore, our data supports the notion that the ELMO 

RBD, similar to other ubiquitin superfold RBDs, has the potential to attract GTPases of 

different families. Our study identifies, for the first time, an RBD with the ability to 

interact with both Rho and Arf family GTPases. 

Arl4A targets ELMO to the membrane  

 Our results are consistent with the model that Arl4A interacts with the RBD of 

ELMO proteins to relieve the ELMO intramolecular interaction and/or favor membrane 

recruitment. RhoG was previously reported to activate the ELMO/DOCK180 pathway 

by localizing ELMO to the membrane in a manner dependent on its nucleotide-state 251. 

To test if Arl4A also promotes membrane recruitement of ELMO1, we analyzed the 

cellular distribution of ELMO1 in cells expressing the various forms of Arl4A (WT, 

Q79L and T34N). While Myc-ELMO1 expressed alone is cytoplasmic, co-expression 

with WT and active Arl4A led to its membrane recruitment (Figure 4.3, pg. 192). The 

specificity of ELMO-binding to Arl4A was further demonstrated by colocalization 

experiments that revealed that ELMO1 does not colocalize at the membrane with 

either Arl4C or Arl4D, with these cells showing a less protrusive phenotype (data not 

shown). This suggests that ELMO proteins are bona fide effectors of Arl4A and act by 

localizing ELMO/DOCK180 to the membrane for Rac activation. 

Arl4A induces actin cytoskeleton remodeling in an Arf6-independent manner 

 Previous studies demonstrated that activated Arl4A, C, and D could recruit 

ARNO GEFs to the membrane 209,210. Arl4D was studied in more detail and was 

reported to induce actin stress fiber disassembly through an ARNO-Arf6 dependent 

pathway 209,210. Independent work also reported that the ARNO-Arf6 pathway might 

facilitate  membrane  recruitment  of  ELMO/DOCK180 and promote  Rac-dependent  

Figure 4.3. ELMO1 colocalizes with Arl4A at membrane protrusions. In adherent 

HeLa cells, expression of Myc-ELMO1 alone displays a cytosolic distribution. Co-
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expression of Arl4AWT with Myc-ELMO1WT promotes membrane ruffling and 

localization of ELMO1 to membrane protrusions. HeLa cells were stained for Arl4A 

(red) and ELMO1 (green) using anti-Arl4A and anti-Myc antibodies, respectively. 
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migration 180. Similar to what was reported for expression of Arl4DQ80L in HeLa cells, 

we found that Arl4AQ79L promotes actin stress fiber disassembly (Figure 4.4A, pg. 

195). Additionally, to determine whether Arl4A is stimulated downstream of integrin 

signaling, we plated transfected cells on fibronectin and found that cells expressing 

Arl4AWT demonstrated cell spreading and membrane ruffling at a higher level 

compared to control cells (Figure 4.4B, pg. 195). Incidently, in marked contrast to 

what was observed with Arl4D, co-expression of Arf6T27N did not block Arl4A-induced 

stress fiber disassembly (Figure 4.4C, pg. 195). Furthermore, compared to exogenous 

expression of Arl4AT34N, Arl4AWT expression in Arf6-depleted HeLa cells demonstrated 

actin stress fiber disassembly (Supplementary Figure 4S1, pg. 209).  These results 

suggest that Arl4A may be signaling via an alternative pathway to regulate remodeling 

of the actin cytoskeleton.  

 We next investigated if Arl4A can regulate localization and activity of Rac in 

HeLa cells. We found that exogenous Arl4AQ79L co-localizes with GFP-Rac1 in HeLa cells 

(Figure 4.4D, pg. 195). Moreover, we noted a more cytosolic distribution of GFP-Rac1 

with a marked decrease in membrane protrusiveness in cells co-expressing Rac1 and 

the dominant-negative form of Arl4A (Figure 4.4D, pg. 195).  In addition, 

downregulation of Arl4A protein levels with a specific Arl4A RNAi decreased the level 

of active Rac when compared with HeLa cells transfected with a non-targeting RNAi 

(Supplementary Figure 4S2, pg. 211). Cells treated with RNAi against Arf6 did not 

lead to decreased active Rac levels, suggesting that here, at least in this context, Rac 

activation is Arf6-independent (Supplementary Figure 4S2, pg. 211). Together, these 

results suggest that active Arl4A can impact the actin cytoskeleton, Rac localization and 

Rac GTP-loading in an Arf6-independent manner. 
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Figure 4.4. Arl4A induces cytoskeletal changes and membrane ruffling in an 

Arf6-independent manner. (A) Overexpression of Arl4AWT and Arl4AQ79L alters actin 

structure in HeLa cells, but Alr4AT34N does not. Active Arl4A was overexpressed in 

HeLa cells and stained for Arl4A (red) and phalloidin (green) using anti-Arl4A and 

Fluor 488 phalloidin, respectively. The bar chart indicates quantification results for 

each condition. The area of each cell was delineated and the mean fluorescence 

intensity of Fluor 488 phalloidin was measured in pixels using Image J (NIH). About 50 

cells were assessed in each experiment, and data are means + s.e.m. of triplicate 

experiments. (B) Arl4A induces membrane ruffling when cells are subject to integrin 

stimulation. HeLa cells were transfected with empty vector or ARL4AWT. Cells were 

plated on fibronectin for 50 min and fixed and stained with anti-ARL4A and Alexa 

Fluor 488 phalloidin. Cells expressing ARL4A show membrane ruffling, and sometimes, 

polarized morphology. Compared to mock cells, ARL4A expression also induces cell 

spreading. For quantification, the area of each cell was delineated and about 100 cells 

were estimated for each condition. Scale bar = 10 μm. (C) Co-expression of dominant-

negative Arf6 (Arf6T27N) with Arl4AWT or Arl4AQ79L does not hinder actin cytoskeletal 

reorganization. HeLa cells were co-transfected with Arf6T27N and either Arl4AWT or 

Arl4AQ79L. (D) Constitutively active Rac-induced membrane ruffling is suppressed by 

co-expression of dominant-negative Arl4A. GFP-Rac1WT and V12 were expressed 

alone in HeLa cells, or GFP-Rac1V12 was co-expressed with wild type, constitutively 

active and inactive mutants of Arl4A. Cells were fixed and stained with anti-Arl4A. 
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Arl4A-mediated actin cytoskeleton reorganization occurs through 

ELMO/DOCK180 and Rac 

To investigate whether Arl4A modulates the actin cytoskeleton via the 

ELMO/DOCK180/Rac signaling pathway, we first tested if Arl4A/ELMO can enter into 

a trimolecular complex with the atypical Rac GEF, DOCK180. We found that Arl4A, 

alongside ELMO1, can be specifically co-precipitated with DOCK180 (Figure 4.5A, pg. 

199). In order to test the role of Rac and ELMO1 in Arl4A-mediated cytoskeleton 

rearrangements, we developed an assay using HeLa cell-spreading on fibronectin 

(expressing either GFP alone or co-expressed with Arl4AWT, Arl4AQ79L, or Arl4AT34N). 

While Arl4AT34N did not affect HeLa cell morphology, two major phenotypes were 

identified in Arl4AWT and Arl4AQ79L spreading cells. We found that 50-55% of the cells 

expressing the active GTPases (WT or Q79L) displayed: 1-formation of neurite-like 

extension or 2- membrane ruffles (Figure 4.5B, pg. 199). For quantification purposes, 

these two phenotypes were pooled and termed “protrusive” (Figure 4.5B, pg. 199). In 

contrast, the dominant negative Arl4A expressing cells looked identical to GFP 

expressing controls (Figure 4.5B, pg. 199). We next tested whether Arl4A is mediating 

cytoskeletal changes via ELMO and Rac. Co-expression of either a dominant negative 

Rac1 or ELMO1 lacking Arl4A binding activity (ELMO1212-727 or ELMO1L43A) with 

Arl4AWT prevented cytoskeletal re-organization in HeLa cells (Figure 4.5C, pg. 199). 

Together, these results suggest that the ELMO/DOCK180/Rac pathway mediates 

Arl4A-induced remodeling of the actin cytoskeleton.  

Moreover, we used a stress fiber disassembly assay to examine the contribution 

of ELMO1 during Arl4A-induced cytoskeletal rearrangement. Exogenous expression of 

ELMO1 alone did not induce any cytoskeletal remodeling, while co-expression of 

ELMO1 and Arl4AWT led to a decrease in stress fiber formation (Figure 4.6A, pg. 200). 

Furthermore, ELMO1 mutants defective in Arl4A binding (ELMO1315-727 and 

ELMO1L43A) were unable to recapitulate results with wildtype conditions (Figure 4.6B, 

pg. 200). These results highlight the importance of Arl4A-binding via the ELMO RBD 
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for ELMO-induced re-structuring of the actin cytoskeleton, possibly via the 

DOCK180/Rac pathway.  
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Figure 4.5. Arl4A induces cellular protrusions through an ELMO/DOCK180/Rac 

signaling module. (A) ELMO is the common denominator for 

DOCK180/ELMO1/Arl4A trimeric complex formation. HEK293T cells transfected with 

the indicated plasmids were subject to a crosslinker, lysed and immunoprecipitated 

with H-70 (DOCK180). The co-precipitation of DOCK180, ELMO1 WT and mutants, and 

Arl4A was analyzed via immunoblotting with anti-H-70 (DOCK180), anti-Myc (ELMO) 

and anti-FLAG-HRP (Arl4A) antibodies, respectively. (B) Arl4A-induced membrane 

protrusions are dependent on ELMO1 and a Rac signaling pathway. Serum-starved 

HeLa cells transfected with the indicated plasmids were detached and plated on 

fibronectin–coated chambers for 2 h. Panels represent an overlay of GFP, rhodamine-

phalloidin and DAPI stains. Cells were photographed at 100X magnification. Scale bar = 

10 μm. (C) Quantification of the effect on cell morphology in response to 

overexpression of Arl4A and other proteins. Several independent fields of the 

experiments from (B) were photographed at a magnification of 40X, and cells were 

scored for two phenotypes: spread (clearly spread and flat cells) and spread with 

protrusions (subdivided into (i) protrusive and (ii) neurite-like elongated cells).  
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Figure 4.6. Hindrance of the Arl4A/ELMO1 complex reduces stress fiber 

disassembly. (A and B) HeLa cells transfected with Arl4AWT and Myc-ELMO1 or 

indicated mutants were fixed and stained with anti-Arl4A (red), anti-Myc antibody 

(ELMO) (blue), and fluo-phalloidin (green). Expression of full-length proteins and 

indicated mutants alone did not significantly affect actin organization. Co-expression of 

either Myc-ELMO1 full-length or ELMO11-315 and Arl4AWT reduced F-actin intensity, 

indicating stress fiber disassembly. Arl4A-binding defective mutants (ELMO1315-727 and 

ELMO1L43A) did not induce substantial stress fiber disassembly.  
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Discussion  

The role of ELMO during DOCK180 Rac GEF activity and cellular restructuring is 

not completely understood. Our recent work demonstrated that ELMO, via 

intramolecular interactions between its newly identified EID and EAD regions, exists as 

an autoinhibited molecule at basal level, requiring RBD engagement for autoinhibition 

relief and subsequent localized DOCK180-mediated Rac signaling 400. Here, we identify 

the RBD of ELMO as a polyvalent GTPase binding region capable of interacting with 

different Ras GTPase family members. While it was well-known that ELMO has the 

ability to bind RhoG-GTP through its extreme N-terminus, our recent work revealed 

that the minimal RhoG binding site was an evolutionarily conserved RBD 400. The work 

from the present study identifies Arl4A, a member of the Arf subfamily of Ras GTPases, 

as a novel ELMO RBD binding partner, and the evolutionarily conserved feature of the 

GTPase/ELMO interaction is demonstrated by critical point mutation of a conserved 

residue in the ELMO RBD.  This discovery opens up a gateway of possibilities where 

various Ras superfamily GTPases may converge to regulate ELMO membrane 

localization and/or relief of ELMO autoinhibition.  

Membrane targeting of the DOCK180/ELMO complex 

Targeting of the ELMO/DOCK180 complex to the membrane may be fine-tuned 

by various inputs. While initial studies pointed to a role for the PH domain of ELMO as 

being instrumental for the targeting of the ELMO/DOCK180 complex to the plasma 

membrane, we uncovered that the ELMO PH domain displays no such activity 388. 

Membrane targeting of this complex has also been attributed to the lipid-binding 

properties of the DHR-1 of DOCK180 274. As well, the localization of DOCK2 to the 

neutrophil pseudopod requires sequential binding of two signaling lipids: first a global 

recruitment to the membrane via the DHR-1 domain engaging phosphatidylinositol-

3,4,5-phosphates, followed by polybasic region binding to phosphatidic acid 276. 
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Further studies are required to expose whether localization of DOCK180 can be 

regulated in a similar manner. 

 We and others have highlighted the functional importance of the N-terminal of 

ELMO1 for ELMO/DOCK180 subcellular localization 152,293,400. Now, with the discovery 

of active Arl4A as a novel binding partner of the ELMO RBD, our study demonstrates 

for the first time a RBD that can bind both a Rho and Arf family GTPase. The Arl4 

proteins (Arl4A, Arl4C, and Arl4D) have recently emerged as important cytoskeletal 

regulators. In terms of structure, these three proteins are similar to other Arf family 

members, yet are unique by virtue of a short basic extension at the C-terminus 157. 

Interestingly, the N-terminal amphipathic helices of the Arl4 proteins are shorter and 

less hydrophobic than those of other Arf family members. Deletion of this basic 

extension in cells results in displacement of Arl4A from the plasma membrane, 

advocating that the C-terminal basic extension may function as a support system for 

the N-terminal amphipathic helices and aid in the localization of Arl4 proteins to 

membranes 405.  

Our findings demonstrate that ELMO1 alone is cytoplasmic, and co-expression 

specifically with active Arl4A leads to its membrane recruitment to sites of membrane 

ruffling, while expression with either Arl4C or Arl4D did not induce a protrusive 

phenotype (data not shown). We therefore propose ELMO proteins as bona fide 

effectors of Arl4A that can target the ELMO/DOCK180 module to the membrane for 

localized Rac activation and signaling. 

Structural features of the ELMO RBD: Insights from the FHOD1 RBD 

The ELMO RBD is structurally similar to the RBD of the Dia-family formin, 

FHOD1. FHOD1 is an outlier of this family in terms of its GBD structure and reveals an 

ubiquitin superfold very similar to that of the Ras-binding domains (RBDs) of c-Raf1 

and PI3 kinase, and has the characteristic of binding the Rac GTPase and not Rho nor 

Cdc42 GTPases 391. As demonstrated for other formin members, the GBD is viewed as a 
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key GTPase docking site that, when engaged, releases and activates the protein. The 

unusual nature of the FHOD1 RBD is illustrated by deletion experiments that 

demonstrate removal of the RBD does not activate the formin as in Dia 391.  Rather, the 

interaction with Rac seems to be a recruitment signal and is insufficient in activating 

the protein. Notably, phosphorylation events by ROCK at three specific sites within the 

DAD unlock the compressed autoinhibited state and induce F-actin stress fiber 

assembly 242,406. This data points to potential alternative roles of the formin RBD that 

have yet to be defined. As such, we speculate that the ELMO RBD may function in a 

manner reminiscent of the RBD of FHOD1. Specifically, we hypothesize that the spatio-

temporal positioning of various GTPases able to interact with the ELMO RBD will 

conduct selective regulation of autoinhibited ELMO and/or targeting of 

ELMO/DOCK180-induced Rac signaling.  

Arl4A induces cytoskeletal remodeling through ELMO/DOCK180 and Rac 

 Our findings support a role for Arl4A in actin cytoskeleton rearrangement 

through a pathway that stimulates DOCK180/ELMO-induced Rac signaling. Studies 

have already demonstrated that Arl4A and its close relatives Arl4C and Arl4D promote 

actin restructuring through recruitment of ARNO, an Arf6 GEF, to the plasma 

membrane 209,210. Interestingly, Arf6 is positioned upstream of Rac activation in 

various biological processes. One model advocates that Arf6 activation will recruit the 

DOCK180/ELMO complex to the leading edge of a cell 180-182. Here, however, our 

research demonstrates that Arl4A-induced cytoskeletal remodeling occurs via an Arf6-

independent pathway. Intriguingly, this may signify that Arl4A can act as a central 

signaling nodule for two divergent GTPase pathways. 

 In conclusion, we identify a novel RBD in ELMO displaying, for the first time, 

selectivity for both Arf and Rho GTPases. In contrast to the Dia formins, effector-

binding to the ELMO RBD is not proven to be a release mechanism for the 

autoinhibited ELMO molecule. Rather, similar to the FHOD1 protein, this signal seems 

to target ELMO to distinct areas of the plasma membrane. It will be interesting to 
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investigate if additional members of the Ras superfamily bind the ELMO RBD and 

whether they also act as membrane localization signals and/or relieve ELMO 

autoinhibition. It is possible that the ELMO RBD is strictly required for subcellular 

localization while binding of additional partners at distinct sites (ie. EID or EAD) act to 

release the closed conformation of ELMO. The unleashing of ELMO can result in the 

exposure of otherwise masked regions of ELMO, such as the ELM domain. The work 

from Bowzard and colleagues shows that the ELMOD family of proteins demonstrates 

GAP activity on selective Arf family members, and they attribute this enzymatic 

function to the ELM domain 169. To date, the ELM region of ELMO has been poorly 

investigated and has no ascribed function. Clearly, further studies are required to 

identify components that will open up the ELMO molecule and illuminate how its 

hidden regions contribute towards actin cytoskeleton remodeling.  
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MATERIAL AND METHODS 

Antibodies, cell culture and transfections. The following antibodies were obtained 

commercially: anti-DOCK180 (C-19, H-4, and H-70) and anti-Myc (9E10) were from Santa 

Cruz Biotechnologies, anti-Rac was from Millipore, and anti-FLAG M2 and anti-FLAG-

M2-HRP were from Sigma. The Arl4A antibody was described previously 
210

. HEK293T 

and HeLa cells were cultured in DMEM supplemented with 10% fetal bovine serum, 

penicillin and streptomycin (Gibco-BRL) and transfected by calcium phosphate or 

Lipofectamine 2000 (Invitrogen) using standard procedures. Biochemical and cell biological 

studies were performed 24-48 hours after transfection.  

Plasmid Constructs. pCNX2 Flag-DOCK180 was a gift from M. Matsuda. pcDNA3.1 

Myc-ELMO1 and was previously described 
363

. Plasmids coding for Myc-ELMO1 proteins 

(residues 1-113, 1-315, 315-727, 212-727) were generated by PCR using Myc-ELMO1 as a 

template and cloned into the BamHI/XhoI sites of pcDNA3Myc. The yeast constructs for 

ELMO1 (WT and residues 1-113, 1-212, 1-315, 1-495, 315-727, 212-727, 113-727, Δ114-

524,  Δ213-524, and Δ310-492) were generated via PCR using the Myc-ELMO1 as a 

template and cloned into the BamHI/XhoI sites of pEG202 (LexA tagged vector). Myc-

ELMO1
1-212 (L43A) 

has been described previously 
400

. FLAG-Arl4A (WT, T34N, and Q79L) 

were generated via PCR and cloned into the EcoRI/XhoI sites of the pcDNA-FLAG vector.  

Non-tagged ARL4A (WT, T34N, and Q79L) constructs have been described previously 
210

. 

Immunoprecipitation and GST-fusion protein pulldowns. Immunoprecipitation and 

pulldown experiment protocols have been described previously 
388

. Briefly, cells were lysed 

for 10 min in a buffer consisting of 50mM Tris-HCl pH 7.5, 150mM NaCl, 1% NP-40 and 

1X Complete protease inhibitor (Roche). For immunoprecipitation, clarified cell lysates 

were incubated with the appropriate antibody and immune complexes were allowed to form 

for 1 h at 4˚C. Protein A-sepharose was added for 30 min to isolate the immune complex. 

For cross-linking prior to immunoprecipitation, cells were treated with DSP (2uM) (Pierce) 

for 30 min according to the manufacturer’s instructions. For GST-fusion protein pulldowns, 

the GST-fusion proteins were expressed in bacteria and purified on Glutathione-Sepharose 
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4B according to manufacturer’s instruction (Amersham). Equal amounts of the various 

GST-fusion proteins bound to Glutathione Sepharose 4B were next incubated with cell 

extracts (500 μg of protein per condition). In both types of assays, the beads were washed 

three times with lysis buffer and the bound proteins were analyzed by SDS-PAGE and 

immunoblotting.  

Yeast Two-Hybrid Interaction Assay. The genotype of the yeast reporter strain EGY48 is 

MATα ura3 trp1 his3 6lexAop-LEU2, auxotrophic for tryptophan (Trp), uracil (Ura), 

histidine (His), with LEU2 as a reporter gene. Yeast were grown in rich medium (1% yeast, 

2% Bacto-peptone, 2% glucose) or in synthetic minimal medium with appropriate 

supplements. Yeasts were transformed by the lithium acetate method using standard 

protocol, with LexA-tagged ELMO1 constructs (HIS3) screening B42-tagged Arl4 

constructs (TRP1) for interaction. Double transformants were plated on non-selective        (-

Histidine, -Tryptophan) and selective (-Histidine, -Tryptophan, -Leucine) medium 

containing galactose. Plates were incubated at 30°C for 3-5 days. 

Cell morphology assay. For the cell-spreading assay on fibronectin, HeLa cells transfected 

with the indicated plasmids were subject to cell morphology as previously described 
364

. 

Briefly, cells were transfected with the indicated plasmids and serum starved (0.5% FBS) 

overnight. Cells were gently detached (0.01% trypsin and 5 mM EDTA in Hanks balanced 

solution), washed in DMEM supplemented with 0.5% BSA and 40 000 cells were then 

allowed to spread for the indicated time (50 min or 2h) before fixing with 4% 

paraformaldehyde. Cells were permeabilized with 0.2% Triton X-100 in PBS and blocked in 

PBS-1% BSA prior to staining with DAPI and phalloidin. The remainder of the cells was 

lysed to verify the expression levels of the exogenous proteins by western blotting. For 

integrin independent assays, experiments were performed as previously described 
210

. 

Stress fiber disassembly assay. Stress fiber disassembly assays were performed as 

previously described 
210

.  

PAK pulldowns. PAK-PBD pulldown assays were performed as previously described 
388

.  
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 Supplementary Figure 4S1. Knockdown of Arf6 does not hinder Arl4A
WT

-induced 

actin cytoskeleton rearrangement. HeLa cells expressing constitutively active Arl4A 

(Arl4A
Q79L

) or dominant-negative Arl4A (Arl4A
T34N

) were transfected with control 

scramble RNAi or Arf6 RNAi. Cells were then subject to stress fiber disassembly analysis. 

The bar chart indicates quantification results for each condition. The area of each cell was 

delineated and the mean fluorescence intensity of Fluor 488 phalloidin was measured in 

pixels using Image J (NIH). About 50 cells were assessed in each experiment, and data are 

means + s.e.m. of triplicate experiments. 
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Supplementary Figure 4S2. Knockdown of Arl4A decreases Rac activation levels in 

HeLa cells. (A) ARL4A expression was depleted by pSuper RNAi system. HeLa cells were 

transfected with pSUPER.neo+gfp, or pSUPER.neo+gfp containing sequences specific 

against ARL4A (shARL4A#1 and #2) or ARF6 (shARF6). After 72 h of transfection, the 

cells were harvested and the RNA was extracted for detection by RT-PCR. (B) HeLa cells 

were treated with shArl4A#1, #2,#1+2 (2X, two-fold DNA content) and shArf6. After 72 h, 

cell lysates were collected and the Rac-GTP level was detected by PAK-PBD pulldown 

assays. Rac1 protein levels were detected by immunoblot using anti-Rac1 antibody. The 

protein level of EGFP indicated the transfection efficiency of each group. 
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Directional cell migration is a fundamental attribute of various cell types during 

various biological processes. The control of a key player, the Rac GTPase, via the 

DOCK180/ELMO module has quickly become a pivotal factor that guides cell motility.  

To reiterate, the central hypothesis of this thesis is that DOCK180 functions as a Rac 

GEF, with ELMO binding to DOCK180 being required for integration of proper Rac 

signaling rather than Rac activation per se. We postulated that ELMO may act as a 

subcellular targeting signal for spatio-temporal restriction of DOCK180-mediated Rac 

signaling and/or act as a scaffold for Rac effectors to enforce directional cell migration.  

The ELMO/DOCK180 interface: Novel discovery of an atypical PH domain in ELMO 

and an evolutionarily conserved helical structure in DOCK180  

 Previous reports are marked with inconsistencies regarding the molecular 

mechanism of DOCK180/ELMO interaction 252,294,295. To properly investigate the 

importance of the DOCK180/ELMO connection during biological processes, we needed 

to clearly dissect the molecular mechanism of interaction between the two proteins. In 

Aim #1 (Chapter 2) of my thesis, through biochemical and structural work, we report a 

previously uncharacterized atypical PH domain of ELMO1 388.  

 The ELMO1 PH domain was originally annotated as residues 555-676 253. When 

compared to other PH domains on ProSite (protein families and domains database), 

ELMO1555-676 was cataloged as a false-positive. Our investigation into secondary 

structure prediction of this region and its immediate N- and C-termini uncovered 
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potential flanking helices at these extremities 388. Our collaborators attempted to 

crystallize this entire region (ELMO1532-707), but were only able to produce diffracting 

crystals with ELMO1532-675. Nevertheless, what we found was distinctively unique for 

the ELMO PH. First, similar to other well-known PH structures, the core of the ELMO1 

PH forms an anti-parallel β-sheet sandwich which is capped off at its C-terminus by an 

α-helix. Uniquely, the flanking N-terminal (ELMO1536-557) portion forms an α–helix, 

which has not been characterized in any other PH domain to date. The only other 

documented PH domain to display such a structure is that of 3-phosphoinositide-

dependent protein kinase 1 (PDK1), which also does not fall into the category of 

canonical PH domains due to its distinctive N-terminal ‘bud’ 380. However, although 

both ELMO and PDK1 display N-terminal α–helical extensions, these structures differ 

strongly. In the case of PDK1, the α–helical extension continues from its core β-sheet 

sandwich (β1-β4) followed by two additional β-sheets (β5-β6) (‘bud’). Through various 

hydrophobic interactions, the bud collapses against the β sheets (β1- β6) and creates a 

hydrophobic core 380. In ELMO1, an N-terminal α-helix leads straight from the β1-sheet 

and projects stably outward from the rest of the structure due to hydrophobic contacts 

with the C-terminal helix of the ELMO1 PH domain. To date, no function has been 

ascribed to this region of PDK1. 

 Our crystallization data revealed that the unique N-terminal extension of the 

ELMO1 PH domain is an amphipathic structure, with one side having hydrophilic 

properties, and the other lined with invariant hydrophobic residues that serve as the 
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primary interface for DOCK180 binding.  Duly noted is the fact that ELMO1 PH crystals 

form tight dimers due to packing of N-terminal α-helices against each other. Although 

this is probably an artifact of the crystallization process (in our hands, no such dimers 

or oligomers are found in solution or in cellulo), our data proposed that the N-terminal 

extension may play host to other protein-protein (helix/helix) interactions. We 

subsequently analyzed the primary sequence of DOCK proteins’ N-terminal region and 

exposed a putative evolutionarily conserved helical region (N-terminal α-helical region 

of DOCK180, herein referred to as DOCK18080-153). Invariant hydrophobic patches in 

this DOCK180 helical region were responsible for ELMO1 interaction 388, reinforcing 

the notion that the ELMO N-terminal α-helix extension serves as a protein-protein 

interface. 

 Previous studies have proposed that the ELMO C-terminus is required to bind to 

the DOCK180 N-terminus, with a classical SH3/PxxP interaction as the basis of 

complex formation 252,294,295. Regions adjacent to these domains have also been 

suggested to contribute to the binding, however, no clear interaction sites had been 

established. We found that the DOCK180 SH3/ELMO1 PxxP interaction biochemically 

offers a stabilizing effect to the primary contact site between DOCK18069-187/ELMO1 

PH domain 388. Functionally, this secondary binding interface is essential for cell 

elongation and migration in cellulo 388, supporting previous findings citing its 

importance in cells and in vivo in C. elegans during cell migration and phagocytosis 

252,253,295.  
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 Lu and colleagues proposed that the ELMO1 PH domain binds DOCK180 in trans 

through Rac, forming a trimeric complex that is essential for uncovering DOCK180 Rac 

GEF activity 294 (discussed further below). In contrast, our findings reveal a direct 

DOCK18069-187/ELMO1 PH domain interaction rather than an indirect coupling 388. It 

would be of interest to co-crystallize the ELMO1 PH/PxxP and DOCK180 SH3/helical 

region as analyses of this crystal would validate our published biological interaction 

sites and enlighten the structural aspect of how the SH3/PxxP contact sites contribute 

towards the primary DOCK180 helical region/ELMO PH interface. Furthermore, with 

these crystals, we could further corroborate whether our mutational analyses warrants 

a true complex abolishment between DOCK180 and ELMO or if these mutations simply 

lead to significant misfolding of proteins. 

 While our work cleanly breaks down the molecular interfaces and key residues 

arbitrating the ELMO1/DOCK180 interaction, many interesting questions remain. To 

date, studies advocate a scaffolding role for ELMO. It is quite possible ELMO acts as a 

bridge for DOCK180 to Rac effectors (enforced proximity) 407. Also, DOCK180 binding 

to ELMO may endorse a conformational change in either or both proteins that allows 

for uncovering additional modular domains important for Rac signaling. Undoubtedly, 

from a structural perspective, a crystallization of ELMO in complex with DOCK180 

would be of interest to answer some of these questions.  

The atypical PH domain in ELMO is not a lipid-binding module 
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Contrary to popular belief, only a minority of PH domains display lipid-binding 

characteristics 408-410. Structurally, this phosphoinositide binding is attributed mostly 

to the variable loop regions of the PH domain. In these cases, the variable loops (VL1, 

VL2 and VL3) create a positively charged surface that binds negatively charged 

phosphoinositides.  It is these loops that generate the electrostatic polarization shown 

and required by lipid-binding PH domains 79. While many reports suggest that the 

ELMO PH domain may also display this characteristic, no direct evidence supports this 

claim. We clearly demonstrated that the ELMO1 PH domain falls into the major 

category of PH domains, with no lipid affinity noted in vitro 388. Concluded from our 

crystallography data, this is most likely due to marked differences between the ELMO1 

PH domain variable loops and the same regions in PH domains known to bind strongly 

and specifically to phosphoinositides. In ELMO1, VL2 is longer than in conventional 

lipid binding PH domains, and demonstrates an overall negative charge, with the result 

of no electrostatic polarization in the variable loops region 388.  Thus, the ELMO1 PH 

domain variable loops do not create the required positively-charged pocket to 

accommodate phospholipid binding.  

Rather than lipid-binding PH domains, we found structural similarities between 

the ELMO1 PH domain and the F3 subdomain of FERM. This latter domain is well 

documented as a protein-protein interaction interface 383, which leads to the 

speculation that the core of the ELMO PH domain may also function in a similar 

manner. It would be interesting to see whether there are yet undiscovered partners 
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that bind to this region and hinder or support the DOCK180 interaction in such close 

proximity. (As we will discuss further below, we are highly interested in discovering if 

any novel interactions occur at the ELMO C-terminus that can relieve ELMO 

autoinhibition).  

ELMO is not required for DOCK180-mediated Rac activation, but rather for Rac 

signaling ensuing from this complex 

 We also attempted to resolve the mechanistics behind DOCK180-mediated Rac 

activation. Specifically, we wanted to clarify the much debated bipartite GEF model and 

the in trans requirement of ELMO for uncovering DOCK180 Rac GEF activity 294. Our 

results conclude that DOCK180 alone is necessary and sufficient for Rac activation 388, 

supporting previously published reports where the isolated catalytic unit of DOCK180 

(and other DOCK proteins), the DHR-2, demonstrates Rac GEF activity in vitro and 

shows comparable Rac activation to full-length DOCK180 in cells 265. A possible set-

back to our in cellulo Rac activation assays may be the contribution of endogenous 

proteins towards DOCK180 Rac GEF activity. Therefore, we tried an in vitro GEF assay 

using the fluorescent mant molecule linked to GDP. When mant-GDP is bound to Rac, 

the GTPase will emit fluorescence; when mant-GDP is released from Rac, it becomes 

quenched in the solution resulting in low fluorescence. Theoretically, in the presence of 

DOCK180 full-length, Rac should become GTP-loaded and we expected to see a 

concomitant decrease in fluorescence. We had opted for a baculovirus system so as to 

produce a high concentration of tag-purified full-length DOCK180. Unfortunately, we 
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were not able to produce sufficient functional purified DOCK180 protein to perform 

this assay. Thus, an in vitro GEF assay with purified DOCK180 (wild-type and the newly 

uncovered ELMO-binding defective mutants) would be desirable to concretely prove 

the independence of DOCK proteins for Rac activation. 

 While the ELMO component is not essential for Rac activation, we found that it 

is vital for Rac signaling ensuing from the DOCK180/ELMO1 complex during cell 

spreading and migration. How ELMO is factoring into DOCK180-mediated Rac 

signaling became the focus of Aim #2 (Chapter 3) of my project. The literature on 

ELMO regulation of DOCK proteins points towards a role for ELMO in subcellular 

targeting of the complex. Specifically, numerous ELMO binding partners of the N-

terminal region, such as active RhoG, the bacterial protein IpgB1, and the phagocytosis 

receptor BAI1 have all been implicated in coaxing and/or tethering ELMO and 

DOCK180 to the plasma membrane 152,250,293,402. Therefore, the N-terminal portion of 

ELMO proteins has been fitted as a membrane localizing signal, while the C-terminus 

bridges the DOCK proteins to Rac signaling pathways.  

 Our interests lie in ‘homing’ signals downstream of integrins that will direct the 

ELMO/DOCK180 module to discrete areas of a migrating cell to promote directional 

cell movement. While active RhoG has been endorsed as one of these key integrin-

dependent ‘homing’ signals, the group of Dr. Schwartz plainly negate these claims by 

demonstrating that RhoG is not activated via integrin stimulation nor is its expression 

required to promote cell migration 153. Rather, their results show that Rac activation 
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via integrin stimulation is important for this process, and DOCK180 is an important 

factor for integrin-mediated Rac activation and cell spreading 153. Our study and others 

have shown ELMO is critical for integrin-mediated DOCK180/Rac signaling, however, 

the exact role of ELMO here is still poorly understood. Clearly, greater attention is 

required in this field. Results from Aim #2 (Chapter 3) and #3 ( Chapter 4) of my thesis 

allow us to better understand the function(s) of ELMO and are discussed below.  

ELMO is an autoinhibited molecule via EID/EAD intramolecular interactions: 

Discovery of how three novel modules in ELMO regulate its activity 

 Aim #2 (Chapter 3) of my thesis led to the discovery of novel domains in ELMO 

and insights into the function of these proteins during cell migration. Thus far, ELMO 

was endowed with only a scaffolding role in Rac signaling. Our query into how ELMO 

plays into DOCK180-mediated Rac signaling led us to unearth domains in ELMO that 

are defined in the DRFs. In these formins, these modules collaborate for autoinhibition 

of the formins’ actin nucleation activity and specific release of this catalytic function in 

a space and time-dependent manner. We revealed an autoinhibitory node between the 

EID and EAD, homologous to the DRFs’ DID/DAD interaction 400. Release of the formin 

DID/DAD connection is proposed to come in the form of GTPase binding to the formin 

GBD, although in some cases this interaction only leads to partial release of 

autoinhibition (ie. RhoA-binding to the Dia1) 224,226 or not at all (ie. Rac1 binding to 

FHOD1 391. See below for further discussion). 
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 Although primary sequence analysis showed low sequence similarity, a 

structural superimposition model found that the ELMO GBD structurally resembles the 

GBD of the formin FHOD1. While all known DRFs contain a GBD, these domains can 

differ in terms of structure and effector binding. In comparison to the Dia1 GBD 

binding to Rho, the GBD of FHOD1 has only been shown to bind selectively to Rac, and 

is classed as a RBD due to its structural similarity to the RBD of c-Raf1391. Structurally, 

the FHOD1 RBD is distinguished from Dia proteins by virtue of a ubiquitin-like fold 391; 

rather than the fold, it is usually the amino acid sequence of the GBD that decides 

which GTPase(s) to bind 411. We found a similar superfold at the extreme N-terminus of 

mammalian ELMO and its orthologs in Drosophila and C. elegans 400, showing its 

evolutionarily conserved nature in these proteins.  

 While we demonstrate ‘opening’ of ELMO is integral for cell elongation and 

migration, and that RhoG binds the RBD and localizes ELMO to the membrane, it 

remains to be determined what signals lead to the unhinging of the closed ELMO 

conformation. It is quite possible that a repertoire of unidentified GTPases are waiting 

to be unmasked as novel ELMO RBD partners. Multiple effector binding is a feature of 

many GBDs. As yet, no signature has been revealed that will allow us to identify which 

GTPase(s) will bind a given GBD. Therefore, a screen of all known Ras family GTPases 

against the ELMO RBD may uncover vital partners involved in opening the 

intramolecular ELMO complex. Currently, we are examining the entire Ras superfamily 

of GTPases against the ELMO1 RBD and ELMO1 full-length proteins via yeast two-
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hybrid experiments to identify potential candidates. Studies with isolated RBD 

domains can produce misleading data since additional domains in the effector protein 

are sometimes required for RBD engagement via the GTPase. This point is exemplified 

by the RBD of Tiam1 which requires its DH/PH domain to bind Rap 412. In this way, 

other domains of ELMO may be required by binding partners in order to engage the 

RBD. 

 As mentioned, the ELMO RBD resembles the FHOD1 RBD; in this formin, RBD 

engagement does not structurally reform the DID/DAD interaction, and thus, does not 

result in the release of its catalytic function 242,391. This is also partly true for the formin 

Dia, where only a partial release of autoinhibition is seen with GTPase binding. It is 

suggested that additional factors are required to fully activate the formin. Therefore, it 

is possible that in ELMO, the RBD serves only to localize the protein to discrete areas of 

the cell and binding partners in the vicinity of the EID or EAD serve to release the 

autoinihibited molecule. An example of this form of regulation is portrayed by the 

formin DAAM1 which binds Dvl at its C-terminus 237. In this regard, we found 

exogenous expression of DOCK180 with ELMO2 results in a partial opening of the 

ELMO2 molecule (as visualized by a BRET2 biosensor) 400. We have found that 

endogenous ELMO and DOCK180 are always in a complex, both in non-stimulated and 

integrin-stimulated cells (data not shown). Therefore, we suggest that, endogenously 

in these complexes, ELMO is already ‘primed’ by DOCK180 for full autoinhibition relief. 

Additionally, it is possible that yet unidentified binders of the C-terminal region of 
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ELMO, perhaps via the ELMO PH domain, will serve as a release switch. Moreover, it 

would be interesting to test already identified partners whose binding sites overlap 

with the ELMO RBD and EID regions (ie: IpgB1, BAI1, and ERM proteins 293,402,403) for 

promotion of conformational changes in ELMO that induce or contribute towards 

ELMO autoinhibition relief. Finally, ELMO has been shown to be phosphorylated 

downstream of HCK signaling 306. It would be interesting to see whether ELMO 

phosphorylation could also lead to autoinhibition relief. The identification of novel 

ELMO partners, as well as, investigation into its post-translational modification(s) will 

increase our understanding of ELMO regulation.   

Autoinhibitory regulation of ELMO: insights into the function of ELMO proteins   

 ELMO proteins are conserved throughout evolution, with orthologs ranging 

from fungi to humans 413. The human network consists of 6 members divided into two 

groups based on primary sequence similarity and biological function(s). The one 

common feature between members is a region termed the ELMO domain (herein 

referred to as the ELM domain). While a subset of these proteins display DOCK180-

binding and a part in Rac signaling pathways (ELMO1-3), the other half demonstrates 

GAP activity towards Arf GTPases, specifically Arl2 (ELMOD1-3). Although not clearly 

demonstrated, this latter family’s Arf GAP activity is attributed to the ELM domain 169. 

This domain in the ELMO1-3 members shows no activity on Arf GTPases and has yet to 

demonstrate any GAP activity at all.  
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 Intriguingly, while mammalian, Drosophila and C. elegans ELMO orthologs have 

always been correlated with promoting migratory events, in Dictyostelium discoideum, 

the ELMO-like protein ElmoA is associated with a negative regulatory role during 

phagocytosis and cell migration 414. In terms of phylogeny, ElmoA is closer to the 

ELMOD orthologs than to mammalian, fly and worm ELMOs 413. The reason for this 

deviant physiological output may reside in the fact that ElmoA contains a yet 

undiscovered GAP activity that shuts off important GTPase(s) that stimulate cell 

polarization. In this way, autoinhibitory regulation of ELMO may be a means to mask 

regions host to untapped GAP activity (ie: ELM domain). It is also possible that these 

masked areas have a completely novel role, such as, binding of Rac effectors or other 

proteins important for cytoskeletal transformation. Probing for specific ELM domain 

binding partners in cells by mass spectrometry would answer some of the questions 

we have on the functions of ELMO.  

 We are particularly interested in the ELM region of ELMO because its primary 

sequence is highly conserved from worms to humans, and points to evolutionarily 

conserved functions. The fact that its binding surface is very likely masked at dormant 

states by autoregulation makes it even more intriguing. Clearly, the next big step will 

be to investigate the ELM domain with closer scrutiny; we postulate that discovering 

the function(s) of the ELMO ELM domain will be essential for understanding how the 

ELMO/DOCK180 complex regulates directed cell motility.  

 



226 

 

 

Identification of a polyvalent Ras-Binding Domain (RBD) in ELMO proteins 

 Almost since its discovery, ELMO proteins have been associated with a 

scaffolding role in DOCK180-mediated Rac signaling. The early discovery of RhoG 

binding to the N-terminus of ELMO found it acts as a membrane-localizing signal of the 

ELMO/DOCK180 module 152,250. Characterization of the RhoG-binding site is poor.  One 

study claimed this region of ELMO to contain conserved armadillo repeats (ARRs) 255. 

However, our analyses failed to identify any such region in the RhoG-binding site 

(ELMO11-79) (data not shown). 

 In Aim #3 (Chapter 4) of my thesis, our attempt to identify novel bona fide 

partners of ELMO with the potential to act as membrane localization signals identified 

Arl4A, an Arf family GTPase, as a novel interactor of the ELMO N-terminus. The fact 

that the Arl4A binding site coincided with that of RhoG led to the discovery of a 

polyvalent RBD in ELMO (Patel et al, in preparation). ELMO1 RBD binding of both RhoG 

(Rho family) and Arl4A (Arf family) demonstrates for the first time, as far as we know, 

a RBD with cross-selectivity for the Rho and Arf family GTPases.  

Complexing the ELMO RBD: a membrane localization signal? 

 RhoG binding to the N-terminus of ELMO was the first membrane targeting 

signal identified for ELMO 152. Since then, the bacterial release of IpgB1 into a host 

mammalian cell has been shown to act as a cytosolic signal recruiting the 

ELMO/DOCK180 complex to the plasma membrane via interaction with the RhoG-

binding interface on ELMO 402. As well, mammalian BAI1 has demonstrated ELMO N-
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terminal-binding and concomitant localization of ELMO to the periphery 293. Therefore, 

the ELMO N-terminus is associated with a variety of membrane localization signals. 

With our recent discovery of Arl4A as a novel ELMO partner, we identify that the ELMO 

RBD, via active GTPase binding, can act as a shuttling system for ELMO to the plasma 

membrane.   

 Our discovery of a polyvalent RBD in ELMO reveals a probable membrane 

localization signal for this protein. In Aim #2 (Chapter 3) of my thesis, a conserved 

residue in the ELMO RBD (Leucine 43) was found to be critical for GTPase binding and 

integrin-dependent membrane targeting 400. This key residue was also found to be 

important for Arl4A binding to the ELMO1 RBD. It would be interesting to see whether 

the ability of the aforementioned ELMO N-terminal partners to localize ELMO is in any 

way dependent on the RBD and the conserved L43 residue. 

 RBDs of many proteins have been branded with membrane-targeting 

properties. Examples include membrane targeting of phospholipase C (PLC)ε and PI3K 

through Ras 415,416. In the case of PI3K, it is still debated whether the sole function of 

this interaction is to direct PI3K to the periphery or if it is an activation signal for PI3K 

lipid-kinase activity 416. As in the case of PI3K RBD/Ras interaction, the ELMO 

RBD/GTPase interaction may serve not only as a membrane targeting signal, but as an 

autoinihibition relief cue. In support of this, our data from cell fractionation assays 

demonstrate that RhoG competes with the EAD for the RBD-EID module to coerce it to 

the membrane 400. However, our results also lead to the important conclusion that 
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RhoG does not fully activate ELMO, since its co-expression does not induce ‘active’ 

ELMO cellular phenotypes (ie. cell elongation). Clearly, other factors are required here 

to unleash the ELMO protein. It will be interesting to see whether other GTPases can 

fully activate the ELMO proteins via binding the RBD. 

Arl4A is an effector of the ELMO RBD that induces cytoskeletal modulation 

 The identification of Arl4A as an ELMO effector revealed three main concepts. 

As discussed, Arl4A binding to ELMO disclosed (i) a polyvalent RBD in ELMO, (ii) a 

novel membrane targeting signal for ELMO, and finally, (iii) a novel GTPase signaling 

cascade of Arl4A-Rac1 that controls actin cytoskeleton dynamics. Prior studies have 

uncovered that the Arl4 family are instrumental guiding signals for ARNO, an Arf6 GEF, 

and subsequent Arf6-dependent membrane reorganization and membrane ruffling 

209,210. In Aim #3 (Chapter 4) of my thesis, we demonstrate that Arl4A can stimulate 

actin modulation through ELMO/DOCK180/Rac, and this through an Arf6-independent 

pathway (Patel et al, in preparation). Other studies have linked Arf6 to Rac signaling 

and localization 180-183. However, while the mechanistic connection between Arf6 and 

Rac remains obscure, our study identifies the ELMO RBD as a direct partner for active 

Arl4A, and that Arl4A-dependent cytoskeletal remodeling relies on DOCK180-mediated 

Rac signaling. The transient nature of the Arl4A/ELMO interaction did not allow us to 

conclude whether Arl4A can open the dormant ELMO molecule. Further studies will be 

required to determine if Arl4A has a dual role as a targeting and activating signal for 

ELMO.  
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What role, if any, does ELMO play in vivo in mammals?  

 From the literature, we see that ELMO has diverse implications during cell 

migration in myoblast fusion, apoptosis, and phagocytosis. However, all these studies 

have focused in cellulo and in vivo in the fly and worm. One very recent paper reveals 

that ELMO1-deficient mice display defects in clearance of apoptotic germ cells, but are 

otherwise phenotypically normal and viable. There are three forms of ELMO in 

mammals: ELMO1-3. It is possible that loss of one form of ELMO can be compensated 

for by the other forms. As well, restrictive protein expression patterns of ELMO 

proteins may explain why ELMO1-deficient mice are phenotypically normal. In this 

respect, knockout mice of the other ELMO proteins and double knockouts would be 

interesting to analyze. 

 As we are interested in how ELMO influences DOCK180 during various 

biological processes, knock-in mice may be insightful. Specifically, a knock-in mouse of 

ELMO-defective in binding DOCK180 (ELMO PH/PxxP mutant) would help us 

understand the implications of the ELMO/DOCK180 interaction in vivo in mammals, 

and whether this complex formation is important during known biological functions of 

DOCK180, such as, myoblast fusion and phagocytosis. 

 We have demonstrated that ELMO is autoinhibited via intramolecular 

interactions, the tight regulation of which is important for cell spreading and 

migration. To dissect whether this form of regulation is important in vivo in a whole 

system, we propose that knock-in mice with mutations in the autoregulatory EID 
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region would be informative. Equally revealing would be an ELMO knock-in of the RBD 

(L43A in ELMO1). From our in cellulo results, we deduce that autoregulation of ELMO 

is critical to prevent promiscuous Rac signaling. Therefore, in vivo, we expect that the 

EID knock-in animals may reflect unregulated Rac activation events, with illicit cell 

migration and spreading during processes such as cancer metastasis and phagocytosis. 

Conversely, we expect RBD knock-in animals to have improper targeting of ELMO and 

misdirection of ELMO effects, and thus, a decrease of cellular spreading and migratory 

processes. 

Conclusions  

 In conclusion, I would like to remark that research into the DOCK180/ELMO 

interaction has revealed an intricate relationship between the two proteins. An 

interesting proposition involves the steric-inhibition model for DOCK180. Here, it is 

proposed that a DOCK180 SH3/DHR-2 interaction blocks its Rac GEF activity at basal 

levels, and cell stimulation and ELMO binding to DOCK180 relieves this autoinhibition 

295. In our model, we suggest that in unstimulated conditions, ELMO and DOCK180 are 

already in a complex through its primary interaction interface, ELMO PH/DOCK18080-

153 (Figure 5.1, pg.232). A stimuli will then lead to ELMO activation and induce 

conformational changes in this molecule that lead to a stabilizing of the 

DOCK180/ELMO complex through the DOCK180 SH3/ELMO PxxP (Figure 5.1, pg. 

232). 
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 We demonstrate that ELMO binding to DOCK180 is not required for Rac 

activation, but rather, for ensuing Rac signaling events. We propose that ELMO is 

autoinhibited at basal levels via intramolecular interactions between its newly 

discovered EID and EAD, relief of which occurs through cell stimulation. Cell 

stimulation will lead to ELMO RBD engagement (via a GTPase or other novel binding 

partner) that then anchors the ELMO/DOCK180 complex for localized Rac activation. It 

is also possible that cell stimulation leads to ELMO binding of yet unknown partners 

that relieve autoinhibition. Thus, the masked region of ELMO, the ELM domain, 

becomes exposed. Some probable roles of the ELM domain include: i) binding of Rac 

effectors and/or ii) GAP activity on yet unidentified GTPases that impede cell migration 

and/or directionality (Figure 5.1,  pg. 232). 
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Figure 5.1.  Proposed model for regulation of the ELMO/DOCK180 complex.
In this model, ELMO is autoinhibited at basal levels via intramolecular EID/EAD interactions, 
relief of which occurs through cell stimulation and ELMO RBD engagement (via a GTPase or 
other novel binding partner). The ELMO/DOCK180 complex is then anchored to the mem-
brane for localized Rac activation. It is also possible that cell stimulation leads to ELMO bind-
ing of yet unknown partners that bind the EID or EAD and relieve autoinhibition (yellow stars). 
Thus, masked regions of ELMO, the ELM domain, become exposed. A few probable roles of the 
ELM include: i) binding of Rac effectors or ii) GAP activity on yet unidentified GTPases that 
impede cell migration and/or directionality (green star).
  Also proposed here is that in unstimulated conditions, ELMO and DOCK180 are already in a 
complex through its primary interaction interface, ELMO PH/DOCK18080-153,  and DOCK180 
GEF activity is hindered through a DHR-2/SH3 interaction. Cell stimulation will then lead to 
ELMO activation and induce conformational changes in this molecule that lead to a stabiliz-
ing of the DOCK180/ELMO complex through DOCK180 SH3/ELMO PxxP.
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And with that, I have to go split my cells… 

 



 




