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A Theory of Random Consumer Demand

William J. McCausland*
May 11, 2004

Abstract

This paper presents a new theory of random consumer demand.
The primitive is a collection of probability distributions, rather than a
binary preference. Various assumptions constrain these distributions,
including analogues of common assumptions about preferences such
as transitivity, monotonicity and convexity. Two results establish a
complete representation of theoretically consistent random demand.

The purpose of this theory of random consumer demand is ap-
plication to empirical consumer demand problems. To this end, the
theory has several desirable properties. It is intrinsically stochastic, so
the econometrician can apply it directly without adding extrinsic ran-
domness in the form of residuals. Random demand is parsimoniously
represented by a single function on the consumption set. Finally, we
have a practical method for statistical inference based on the theory,
described in McCausland (2004), a companion paper.

1 Introduction

This paper describes a new theory of random consumer demand. There are
n consumer goods, and a consumption set X whose elements are bundles
of these goods. A consumer faces various budgets of consumption bundles,
and chooses a single bundle from each budget. The primitive concept is that
of a random demand function, which assigns to each budget a probability

*I appreciate comments on earlier versions of this paper by John Geweke, Narayana
Kocherlakota, Marcel Richter and John Stevens. I alone am responsible for any errors.



distribution on that budget. The distribution characterizes a random choice
of a bundle from the budget.

According to the theory, a random demand function satisfies certain as-
sumptions. We prove two theorems on the representation of theoretically
consistent random demand functions by regular L-utility' functions on X.
Regular L-utility functions are functions satisfying certain monotonicity and
concavity restrictions. The first theorem is a representation theorem. It
states that for any random demand function p satisfying the assumptions,
there is a regular L-utility function v on X, unique up to the addition of a
real constant, which represents (can be used to reconstruct) p. The second
theorem is a completeness theorem, and states that every regular u is the rep-
resentation of exactly one theoretically consistent random demand function
.

The purpose of this theory of random consumer demand is application to
empirical consumer demand problems. To this end, the theory has several
desirable features.

1. The representation facilitates inference. The representation theorems
identify a theoretically consistent random demand function with a reg-
ular L-utility function,? and wice versa, so the econometrician can work
with regular L-utility functions instead of random demand functions.
McCausland (2004) demonstrates that inference based on the theory is
practical.

2. The representation is parsimonious: it is a single function on the con-
sumption set.

3. The theory is intrinsically stochastic, and so the econometrician can
apply the theory directly without recourse to error terms or random
preferences. In usual practice, distributions of errors and preferences
are given without theoretical justification.

4. The “fit” of an observed choice is measured by the relative desirability
of the choice and its feasible alternatives, rather than the Euclidean

!The term L-utility is meant to invite intuitive comparison with utility while distin-
guishing it from the usual representation of binary preferences. The L stands for Luce,
whose representation in Luce (1959) is similar to the one described in this paper.

2We can always make the L-utility function unique by insisting that it take on a par-
ticular value at a particular point.



distance of the choice to the theoretically optimal choice. Varian (1990),
in a paper on goodness-of-fit measures, argues for preferring the former
to the latter.

5. Unlike standard consumer theory, the new theory does not rule out
violations of the usual axioms of revealed preference. In practice, such
violations are often observed. The new theory is more forgiving, with-
out being undisciplined.

The theory of consumer demand described here draws on the literature
on theories of stochastic choice, and the literature on theories of consumer
demand. The two literatures find common ground in the following choice
environment. There is a fixed set X of potential objects of choice, which we
will call a universe. A decision maker faces various subsets of the universe,
called budgets, and chooses a single element from each. There is a set B of
allowable budgets, and we will call (X, B) the budget space.

1.1 Random Preference and Random Choice

In mathematical psychology, theories of choice are usually stochastic rather
than deterministic. An important reason is that individuals in experimen-
tal situations do not always behave invariably, even in well controlled bi-
nary choice situations. Many attribute randomness of choice to “conflict in
choice”, which arises when one choice is more desirable than another along
one dimension, but less desirable along another.

Fishburn (1999) surveys stochastic theories of choice, emphasizing two
classes that are “by far the most common”. In random choice theories, the
primitive is a collection probability measures. For each budget B € B, there
is a probability measure pg on B, describing an agent’s random choice of an
element from B. In random preference theories, the primitive is a probability
distribution over a set of preferences. The realized preference governs the
ultimate choice as in deterministic theories of choice.

In economics, stochastic theories of choice are less common than deter-
ministic theories, although they are prevalent in the literature on discrete
choice, surveyed by McFadden (1976) and Amemiya (1981). In another con-
trast to mathematical psychology, stochastic theories of choice in economics
are almost always random preference theories, not random choice theories.

Specification of a random preference model involves providing a set of al-
lowable preferences and a probability distribution over this set. While there



is much theoretical guidance for the first choice, there is little for the sec-
ond. In practice, the distribution is selected for analytical or computational
convenience.

Random choice models feature a probability distribution for every bud-
get. For all but the simplest budget spaces, this is a large amount of infor-
mation, offering an excessive number of degrees of freedom. There are at
least three approaches to add discipline to random choice models. One is to
insist that they be rationalizable by random preference models. Falmagne
(1978), Cohen (1980) and McFadden and Richter (1990) show that this is
restrictive, and give conditions for rationalizability. A second approach is the
elaboration of the choice process, as in the “Elimination by Aspects” the-
ory of Tversky (1972a,1972b), which features a process of budget set reduc-
tion by the sequential elimination of elements. A third approach is to make
assumptions about the various probability distributions. Some of these as-
sumptions apply to binary choice probabilities (probability distributions on
doubleton budgets), including several stochastic analogues of transitivity of
binary preferences. Other assumptions relate distributions on sets to dis-
tributions on their subsets, such as the regularity assumption of Block and
Marschak (1960), the multiplicative inequality of Sattath and Tversky (1976),
and Luce’s (1959) choice axiom.

The present paper features a random choice model, and uses Luce’s choice
axiom to constrain choice distributions.

1.2 Consumer Demand

In applications of stochastic theories of choice, budgets are usually small
finite sets (often doubletons) with no special structure. Theories of consumer
demand, in contrast, feature a budget space (X, B) with a special structure.
The universe X is the classical consumption set’ R}, supporting the relation
> and the operations of addition and scalar multiplication and thus allowing
special assumptions on preferences such as monotonicity and convexity.
The present work contributes to the sparse literature on theories of ran-
dom consumer demand. Georgescu-Roegen (1958) provides several axioms
on binary choice probabilities for doubleton budgets from the classical con-
sumption set. Many of these axioms are analogous to familiar axioms on

3The set Ry is the set of non-negative real numbers and the set R is the set of
positive real numbers.



binary preference relations. He derives some interesting properties of bi-
nary choice probabilities from the axioms. He recognizes the problem that
the relationship between binary choice and multiple choice is not obvious
and straightforward. He offers two reasonable axioms relating binary choice
probabilities and multiple finite choice probabilities, and finds that these ax-
ioms are insufficient to derive the latter from the former. At the end of the
paper he identifies two questions as “primordial problems [standing] before
the the econometricians and the behavioral scientists”. One of these ques-
tions is “What axioms are logically necessary and experimentally justified,
to relate the multiple choice probability to that of the binary choice?”

Halldin (1974), in an explicit attempt to address this question uses “a
simplified variant of Luce’s probabilistic theory ...as an aid to construct
... a generalization of the classical theory of [consumer| demand.” His start-
ing point is Luce’s (1959) Choice Axiom, whose statement appears in Section
2.3.2 of the present paper. His key assumption relating binary choice proba-
bilities and multiple choice probabilities is a weaker variant of an implication
of Luce’s Choice Axiom. To this assumption, he adds stochastic analogues of
the monotonicity and convexity assumptions in deterministic theories of con-
sumer demand. He also implictly introduces an assumption relating choice
densities on classical budgets to binary choice probabilities.

The result is a collection of choice densities, one for every budget. He
shows certain properties of these densities, and compares the random demand
they describe with the demand functions of deterministic consumers. Halldin
does not intend his model to be used for the statistical estimation of the
demand behavior of real consumers, and it is not suitable for the task. The
econometrician is unable to estimate the choice densities of Halldin’s model
without multiple observations on each budget. There are certain restrictions
on the choice densities from different budgets, but they are insufficient to
allow estimation of the functions when only one choice is observed from each
budget.

Bandyopadhyay et al. (1999) offer a stochastic analogue of the Weak
Axiom of Revealed Preference (WARP). They show that it implies stochastic
versions of two familiar implications of the WARP: that own sustitution
effects are non-positive, and that demand curves of normal goods have a
non-positive slope.



1.3 Random Preference and Random Choice Revisited

A natural question is whether theoretically consistent random demand can be
rationalized by a random preference model. A similar, but simpler question
is answered by McFadden (1973), who showed that a random choice model
with non-zero binary choice probabilities and satisfying Luce’s choice axiom
(see Assumption 2.7) can be rationalized by a random utility model where
utilities are the sum of a fixed level and a i.i.d. type I extreme value random
variable.

Two complications stand in the way of answering this question in a sat-
isfactory way. First, there are binary choice probabilities equal to zero, and
so part 2 of Luce’s Choice Axiom applies, not just part 1.

A second complication lies in the structure of the present problem. In the
discrete choice models addressed by McFadden, the theoretical justification
for random utility models is simply the transitivity and completeness of all
preferences in the support of the primitive distribution over preferences. In
a consumer demand context, additional assumptions about preferences, such
as convexity and monotonicity, usually apply. The question of whether a
distribution over the set of transitive complete preferences can rationalize
theoretically consistent random demand is much less interesting than the
question of whether a distribution over the set of monotone convex transi-
tive complete preferences can do so, and the latter is a much more difficult
question.

We leave the question answered, but point out that the new theory rests
on assumptions about choice distributions, not distributions over preferences,
and we appeal directly to the reasonableness of these assumptions, in the
context of the intended empirical applications of the theory. While a suitable
random preference rationalization would be somewhat interesting, we would
not be embarrassed by a result that none exists.

1.4 Cardinal Utility and Random Choice

Debreu (1958) discusses a problem posed by Davidson and Marschak (1959).
An agent faces doubleton budgets from a universe X and must choose a single
object from each budget. For every pair of items (z,y) in X, p(x,y) denotes
the probability of choosing item x from the budget {x,y}. Debreu suggests
that the relation p(a,b) > p(c,d) might be read “a is preferred to b more
than c¢ is preferred to d”. Debreu gives three axioms and shows that they



imply the existence of a function u : X — R such that for all w, z,y,z € X,
p(w,z) > ply,z) <= u(w) —u(z) > u(y) — u(z). The function u, which
Debreu calls a “cardinal utility function”, is unique up to positive affine
transformations.

Assumption 2.6 in the present paper, analogous to the assumption in
standard consumer theory that preferences are convex, is an inequality re-
striction on certain pairs of binary choice probabilities, and may therefore
be interpreted as statements about degrees of preference. It is this assump-
tion that imposes concavity restrictions, which are cardinal in nature, on
the L-utility function rather than ordinal quasi-concavity imposed on utility
functions in standard theories of consumer demand.

1.5 Multiple Choice and Luce’s Choice Axiom

One can think of a binary preference as describing choice on doubleton bud-
gets. We are also interested in choices from larger budgets, however, and we
usually assume that a choice x from a larger budget B satisfies © = y for
all y € B. This assumption is often implicit. For example, we may assume
that a choice (or demand) correspondance (or function) is rational, in the
following sense.

Definition 1.1 Let h : B — X be a choice correspondence. The binary
preference = rationalizes the choice correspondence h if

hB)={reB:x»y Yye B} VBebkB.

A choice correspondence is rational with respect to a class of binary prefer-
ences if the class contains a binary preference which rationalizes it.

We have already mentioned that the problem of relating binary choice
and multiple choice in the context of stochastic choice does not have a single
obvious solution like it does in the context of deterministic choice. In this
paper, we relate binary and multiple choice using Luce’s choice axiom, which
has two important advantages. It is simple, and it is behind the parsimonious
representation of random demand by a single function on the consumption
set.

However, the axiom is also quite strong. Starting with Debreu (1960),
many have criticised Luce’s Choice Axiom for its implausible implications in
certain choice contexts. We give the gist of these criticisms using an example
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where a consumer chooses bundles (z,y) of two goods. Let A = (1,2),
B=(2,1),B =2+¢€1+¢)and B = (2 —¢,1+¢), where € is small. We
suppose that the bundles A and B are similar enough in desirability that
the consumer chooses A with probability 1/2 when offered a choice between
the two. We suppose that B’, containing more of both goods than B, is
easily recognized as more desirable, even if the difference is tiny. Finally,
we suppose that the probabilities of choosing A from {A, B}, {4, B’} and
{A, B"} are similar, due to the proximity of B’ and B” to B.

If all pairwise choice probabilities are positive, then only part 1 of Luce’s
choice axiom applies, and choice probabilities satisfy Independance of Irrel-
evant Alternatives (ITA). This implies that the the probability of choosing
A from {A, B, B’} is close to 1/3, rather than close to the probability of
choosing A from {A, B'}, close to 1/2. It also implies that the probability of
choosing B’ from {B, B’} is close to 1/2, rather than close to one.

If, however, pairwise choice probabilities can be zero, then we can have
the probability of choosing B’ from { B, B’} equal to one, and the probability
of choosing A from {A, B, B’} equal to the probability of choosing A from
{A, B'}. In fact, the monotonicity assumption (Assumption 2.5) will insist
that the probability of choosing B’ from { B, B’} be one, and the theory makes
reasonable predictions for choice probabilities on { A, B, B’} and its doubleton
subsets. However, if we replace B’ with B” in the previous discussion, then
the situation is problematic. We either have the probability of choosing B”
from {B, B"} equal to zero or one, or we have the probability of choosing A
from {A, B, B"} close to 1/3. Neither is plausible.

However, the suitability of the axiom should be considered in the context
of the empirical purpose the theory is meant to serve. In the intended ap-
plication, budgets are finite lattices of evenly spaced points in the classical
budgets defined by prices and income.

1.6 Outline

In Section 2 we describe the new theory of random consumer demand. We
begin with the formal definition of a random choice model and then specialize
the choice environment to a consumer context. In this context, we will call
the function mapping budgets to probability distributions a random demand
function.

We then list assumptions about the random demand function. Three of
these assumptions are restrictions on the binary choice probabilities, and are



analogous to standard assumptions on binary preferences in general deter-
ministic theories of choice (e.g. transitivity), or in theories of consumer de-
mand (e.g. monotonicity). One remaining assumption, Luce’s (1959) choice
axiom, establishes a relationship between binary choice and multiple choice.
It jointly constrains the choice probability distribution on a budget and the
choice probability distributions on its subsets.

Section 3 presents the statements and proofs of two theorems about the
representation of random demand functions satisfying the assumptions of
Section 2 by regular L-utility functions on the classical consumption set.
The first theorem states that if a random demand function satisfies the as-
sumptions, then there exists a regular L-utility function, unique up to the
addition of a constant, that “represents” it. The second theorem states that
any regular L-utility function is the representation of exactly one random
demand function satisfying the assumptions of Section 2.

We conclude in Section 4.

2 A Theory of Random Consumer Demand

In this section we describe our new theory of random consumer demand. We
first define a random choice model. We then introduce assumptions restrict-
ing attention to environments where agents are consumers facing budgets of
commodity bundles. Finally, we introduce various assumptions about choice
probabilities. The assumptions are analogous to assumptions in general de-
terministic theories of choice, and in consumer demand theory in particular.

2.1 Definition of a Random Choice Model

Fishburn (1999) is a good survey of random choice models in mathematical
psychology, economics and other disciplines. Terminology, notation, and the
precise definition are not universally consistent, and we follow the conventions
of McFadden and Richter (1990) most closely.

A random choice model characterizes a decision maker who at various
times faces a budget of choice objects and must select a single object from it.
The decision is intrinsically random, meaning that probability distributions
characterizing choices from budgets are primitive.

Part of a random choice model is the choice environment, which includes
the set of potential objects of choice, the set of budgets that the agent may



face, and the set of choice events to which we assign probabilities. A random
choice model is completed by specifying a random choice function, which
assigns probabilities to all possible choice events.

Definition 2.1 The ordered 4-tuple (X, B,C,p) is a random choice model if
the following hold:

e X is a non-empty set. We will call X the universe and its elements
objects.

e 3 is a set of non-empty subsets of X. We will call (X,B) the budget
space and the elements of B budgets. A budget is interpreted as a set
of objects from which an decision maker must choose a single element.

e C is a function on B assigning to each budget B an algebra Cg of subsets
of B. For every budget B € B, a budget subset C' € Cp is an event
of the measurable space (B,Cp), and is interpreted as the choice by the
economic agent of some element of C' when faced with budget B.

e p is a function on B assigning to each budget B a finitely additive
probability measure pg on measurable space (B,Cg). We will call p the
random choice function. In the special case of consumer choice, we will
use the term random demand function. For every budget B € B and
every budget subset C' € Cp, pp(C) is the probability that the decision
maker chooses some element of C' when faced with budget B.

2.2 Assumptions on X, B, and C

The following assumptions specialize the choice environment to a consumer
setting. The first assumption establishes the universe X as the classical
consumption set for n goods.

Assumption 2.1 For some integer n > 2, X = R.

The second assumption states that the consumer may face, as a budget,
any non-empty finite subset of the consumption set. While widespread in the
mathematical psychology literature, the finiteness of budgets goes against
the grain of consumer theory, where the consumer faces budgets of the form
{r € X : w-x < m}, where w is a vector of positive prices of the n goods
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and m is the consumer’s non-negative income. These classical budgets are
not finite, and therefore not in our budget space.

However, we may consider finite lattices of points in classical budgets of
whatever density we like, so this is not a serious restriction. Real consumers
and econometricians only have a finite set of numbers available to express
the quantities of goods they demand or observe. Furthermore, the currency
used in transactions is not infinitely divisible.

Assumption 2.2 The set B of budgets is the set of all non-empty finite
subsets of X.

The third assumption states allows us to assign probabilities to all indi-
vidual objects in all budgets. This is a natural and common assumption in
cases where all budgets in B are finite.

Assumption 2.3 For every budget B € B, the algebra Cg is the power set
of B.

2.3 Assumptions on p

We move on to assumptions about the random demand function p. Through-
out this section, we suppose (X, B,C,p) is a random choice model satisfying
assumptions 2.1, 2.2 and 2.3. We classify assumptions on p as assumptions
on binary choice or assumptions relating binary and multiple choice.

2.3.1 Binary Choice Probabilities

The assumptions on binary choice probabilities are analogous to assumptions
about binary preferences in deterministic theories. The following notation is
a common and useful shorthand for binary choice probabilities.

Definition 2.2 For every xz,y € X such that x # vy, define p(z,y) =

In deterministic theories of choice binary preferences are usually complete
and transitive. A probability distribution on a singleton set must assign
probability 1 to that set, and for all distinct x,y € X, p(x,y) + p(y,z) =
1. The probabilistic framework thus builds in assumptions analogous to
completeness.

In a survey of stochastic utility, Fishburn (1999) describes nine stochastic
analogues of the transitivity assumption, including the following.

11



Assumption 2.4 (Moderate Stochastic Transitivity) Foreveryx,y,z €
X such that # #y, y # 2, and @ # z, min(p(e.y),p(y,2) = 1 = pla,2) 2
min(p(z,y), p(y, 2)).

We will see in Section 3.2.1 that Luce’s choice axiom, the key assumption
relating binary and multiple choice probabilities, introduces further restric-
tions on binary choice. It implies a stronger condition on p(x,y), p(y, z) and
p(z, z) whenever these probabilities are all in (0, 1).

We now turn to analogues of assumptions on preferences in consumer
demand theory in particular. The next assumption is analogous to mono-
tonicity, expressing the idea that more is better than less. The stochastic
nature of human choice is often attributed to conflict in choice. When dis-
tinct objects x and y satisfy > y*, there is no conflict in choice: one object
is unambiguously better in at least one dimension, and no worse in any di-
mension. We will say that x vector-dominates y. The assumption states
that x will invariably be chosen from the budget {z,y}. The assumption
also states that if neither x > y nor y > z, then each is chosen with positive
probability from {z,y}.

Assumption 2.5 (Monotonicity) For every xz,y € X such that x # vy,
x>y <= p(x,y) =1

The next assumption is analogous to the classical convexity assumption,
which expresses the idea that to obtain more and more of one good, the con-
sumer is less and less willing to forgo other goods. The following assumption
expresses the similar idea that as one moves through the consumption set in
any direction, the strength of the propensity to choose a farther element over
a nearer does not increase.

Assumption 2.6 For every x,y € X, p(iz + 3y,2) > p(y, 32 + 3y).

2.3.2 Multiple Choice Probabilities

The assumption relating binary choice probabilities and multiple choice prob-
abilities is analogous to the assumption that binary preferences rationalize
demand correspondences.

The following assumption, due to Luce (1959), constrains choice distri-
butions across budgets. In particular, it relates binary choice probabilities to

4For vectors x,y € R™, x > y means x; > y; for i =1,...,n.

12



multiple choice probabilities. It is the key assumption allowing the represen-
tation of random consumer demand by a single function on the consumption
set.

The first part of the axiom concerns budget sets for which all choices
on binary subsets have non-zero probability. For such budgets and their
subsets, the axiom states that relative choice probabilites are independent
of the presence of other alternatives in the budget: for every budget B and
non-empty C' C B, the distribution pc(-) coincides with the conditional
distribution pp(-|C) on C. Luce calls this part of the axiom “a probabilistic
version of ... [Arrow’s| independence-from-irrelevant-alteratives idea.”

The second part of the axiom concerns budget sets for which some choices
on binary subsets have zero probability. It says that in a budget B with
elements x and y satisfying p(x,y) = 0,  may be ignored: the probability of
choosing x from B is zero, and the probability of choosing another element
from B is the same as the probability of choosing it from B\{x}.

Assumption 2.7 (Luce’s Choice Axiom) For every B € B, and every
S C B,

1. If p(z,y) € (0,1) for every z,y € B such that x # y, then for every
RCS,

pB(R) = PS(R) 'pB(S)‘

2. If p(x,y) =0 for some x,y € B such that x # y, then

p5(S) = pu\(2} (S\{z}).

3 Representation Theorems

The two theorems of this section concern the representation of random de-
mand models by regular functions on the consumption set. The following
definition of regularity is specific to this paper.

Definition 3.1 A function u : X\{0} — R is regular if
1. u is non-decreasing, and

2. for every w € R, and every m € Ry, u is concave on classical
budget frontier {x € X : w-x =m}.

13



The first theorem is a representation thereom, asserting the existence of
the representation and its uniqueness up to the addition of a real constant.
The second theorem asserts the completeness of the representation.

3.1 A Theorem on the Existence and Uniqueness of
the Representation

Let X, B and C satisfy Assumptions 2.1, 2.2 and 2.3.

Theorem 3.1 (Existence and Uniqueness of Representation) If(X,B,C,p)
s a random choice model satisfying Assumptions 2.4, 2.5, 2.6, and 2.7, then

there exists a regular function u : X\{0} — Ry, unique up to the addition

of a real constant, such that for every budget B € B, and every event C' € Cg,
pe(C) is given by

ps(C) = Z @) Zeu(y)7 (1)

zeCNB yeB
where B is the budget frontier (definition 3.2) of B.

The following definitions establish some convenient notation. The first
definition identifies, for each budget B, the subset B of objects not vector-
dominated by other elements of B. We will see that B is the set of objects
chosen with non-zero probability from B.

Definition 3.2 For any budget B € B, define ]3’, the frontier of B, by
B={z € B: thereis noy € B\{z} such thaty > x}.

The next definition establishes the relational symbols % and < as short-
hand notation denoting whether or not a pair of objects in X features one
object vector-dominating the other. The importance of this notation lies in
the consequence of Assumption 2.5 (Monotonicity) that for all x,y € X, the
choice from {x, y} is non-degenerate (i.e. p(z,y) € (0,1)) if and only if z =< y.

Definition 3.3 Define the binary relation < on X by x <Xy <= x 2
y andy 2 x, and let the binary relation % on X denote its complement.

14



3.2 Proof of Theorem 3.1

Let (X,B,C,p) be a random choice model satisfying Assumptions 2.1, 2.2,
2.3,24, 2.5, 2.6, and 2.7.

The proof proceeds as follows. First we prove a useful triplet result. Then
we construct a function v on X\{0}. We next show that for all z,y € X
such that z < y (i.e. neither z > y nor y > x), we can use u to reconstruct
the binary choice probability p(z,y). We then use this result to show that
for all budgets B, we can use u to reconstruct the choice distribution pg.
Next, we show that u is regular. Finally, we show that u is unique up to the
addition of a real constant.

3.2.1 A Triplet Result

The following triplet result is a useful intermediate result.
Claim 3.1 For all objects x,y,z € X satisfingx < z, y <z and z X z,

p(:c,y)p(y,z)p(z,x) :p(y,x)p(z,y)p(:c,z). (2)

Proof. Let z,y,z € X satisfy x < 2, y < z and z < x. Let budget B =
{z,y,2}. Assumptions 2.5 (Monotonicity) and 2.7 (Luce’s Choice Axiom)
(part 1) give us the following six equations,

pe({z, 2}) - p(z, 2) = pr({z}) = ps({z,9}) - p(2,9)

pe({z,y}) - p(y,2) = pe({y}) = pe({y, 2}) - p(y, 2)

pe({y,2}) - p(z,9) = pe({z}) = pr({x, 2}) - p(z, 7)
and guarantee that all binary probabilities in the six equations are non-
zero. Since {z,y} U{z,z} = B, pg({z,y}) + pe{z,2}) = 1, ps({z,y})
and pp({z, z}) cannot both be zero, and therefore pg({z}) > 0. Therefore
pe({z,y}) > 0 and pp({z,z}) > 0. Similarly, all the probabilities in the
second and third lines must also be non-zero.

We thus obtain

L peUzd) pe(y}) pe(z)) _ pley) ply.2) pz2)

sy pe({z}) pe({z})  ply,2) p(zy) p(z,z)

and equation (2) immediately follows. [J
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3.2.2 Construction of u

We now construct our representation. Our representation resembles the rep-
resentation of Theorem 4 in Luce (1959). Furthermore, the technique we use
to construct our representation is similar to that of Luce. However, the two
additional assumptions that Luce makes to guarantee the uniformity of his
representation across budgets are different from the key assumption that we
use to guarantee this uniformity, namely the <= part of the Monotonicity
assumption. This assumption neither implies nor is implied by Luce’s two
additional assumptions.

We first construct a function v on X'\{0}, and then define u as logwv.

Choose an object a € X such that a > 0, and a real constant £ > 0.
Define v(a) = k. Now consider any object b € X\{0,a}. If b < a, then
p(a,b) > 0 and p(b,a) > 0 by Assumption 2.5 (Monotonicity). We define

and note that it must be positive.
If b % a, then let X, = {z € X : # < a and =z < b}, and define
Uap : Xap — R by

L P2 plea)
p(z,b) pla,x)
We will show that X, # () and that v, is well-defined, positive and constant.
We will then define v(b) to be this constant value.
We can express X, as the following union of rectangles.

Vap(z) = Vo € X,

Xy = U Xi;’j}E U {r € X :2; <z, and z; > 7,},

i,7€{1,..., n} i,jE{.l,..“,n}

Since a > 0 and b # 0, at least one of the rectangles X iéj Vs non-empty,
and so Xy # (. Assumption 2.5 (Monotonicity) guarantees that for all

5Since b # a, it must be the case that either a > b or b > a.
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x € Xa, p(x,a), pa,x), p(x,b), and p(b, x) are all positive. Therefore vq,(x)
is well-defined and positive for all x € X.

We now show that v, is constant on X,,. We take arbitrary elements
z,y € X, and show that v(z) = v(y). We consider the cases x < y and
x % y separately. First, suppose x,y € X, and x < y. We apply the triplet
result twice to obtain

p(z,a) pla,y)  plz,y)  ple,b) plby)
pla,r) p(y,a) ply,z) plb,x) ply,b)
o p2) plaa) o pby) ply,a)
p(z,b) pla,) p(y.b) pla,y)

Vab(T) = Vap(y)

Now sup%)ose x,y € Xy and x % y. Objects x and y must be in the same

rectangle X 7, since otherwise x < y. We now construct a z € X, such
that = < z and y < z, and thus that v, (z) is equal to both v, () and v (y).
Define z = (21, ..., 2,) € X as follows.
%L‘ + %max(xia yi) k=
2= Lo+ Loin(ey, ) b=
0 ked{l,....n}\{ij}.

Since v <X z and y < 2, Vap(2) = Vap(2) = Vap(y)-

The cases < y and x ¥ y are exhaustive, so we have shown that v, is
constant and positive on the non-empty set X,,. We now define v(b) to be
this constant value.

Since b was an arbitrary element of X\{a,0}, we have constructed a
function v on the entire set X\{0}.

Now define u : X\{0} — R by u(x) = logv(z) for all x € X\{0}.

3.2.3 Non-Degenerate Choices on Binary Budgets

We now show that for all z,y € X such that x < y (i.e. neither x > y nor
y > x), we can use v to reconstruct the binary choice probability p(z,y).

Claim 3.2 For every x,y € X such that x <y,

play) o)
P o) ®)
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Proof. Let a € X be the object used in Section 3.2.2 to construct v. Let
x,y € X\{0} be such that z < y. Choose 7,5 € {1,...,n} such that y; > 0
and j # 1.

First we show that if x; > 0, then (3) holds. Then we use this result to
show that (3) holds even if z; = 0.

Suppose x; > 0, and define z = (21,...,2,) by

L max(z;,y;,a;) +1 k=7
k= .
0 ked{l,....,n}\{j}.

Then z < z, z < y, and z < a. Using the triplet result (Claim 3.1) and the
definition of v from Section 3.2.2, we obtain

plxy) _ plz,z) plzy) o(z) pla, z) [U(y) pla, 2)]_ _ v(x)

ply,z)  plzz) py,=2) p(z,a) u(y)

Now suppose x; = 0. Let w = %x + %y Then w; > 0, w <z, and w < y,
and so by the result just proved,

plz,w) _vz) o plyw)  v(y)

plw,z)  v(w) plw,y)  v(w)

By the triplet result (Claim 3.1),

p(zy) _ pla,w) plwy) vlz)/vw) _vlz) o

ply.2)  plw.x) ply,w)  o(y)/v(w)  v(y)

3.2.4 Choices on Finite Budgets

We now use the previous result to show that for every budget B, we can use
u to reconstruct the choice distribution pg.

Claim 3.3 For every budget B € B, and every event C' € Cp,

ps(C) = Z et Zeu(y),

zeCUB yeB

where B is the budget frontier (definition 3.2) of B.
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Proof. Let B € B. Repeated application of Assumption 2.7 (Luce’s
Choice Axiom), part 2, gives pp(x) = pg(x) for all x € B, and since pp is a
probability measure, pg(x) = 0 for all z € B\B.

Using the result on binary budgets (Claim 3.2) and Assumption 2.7
(Luce’s Choice Axiom), part 1, we have for every = € B,

1 ZyeBpB pBy 1 Y pB ({z, y})p(y, ©)

pp(T) (z) s({z, y})p(z,y)

yeB\{z }

yEB\{x}

Therefore for every z € B,
pe(z) = v(@) /ZyeBU<?J) = 6“(”/23@ W) 1 e B
’ x € B\B.

Since pp is a probability measure, the claim follows. [

3.2.5 Regularity of u
The following results establish the regularity of .

Claim 3.4 The function u is non-decreasing.

Proof. Let x,y € X\{0} satisfy = > y. Note that p(x,y) = 1 by Assump-
tion 2.5 (Monotonicity). Let z € X\{0} satisfy z < z and z < y.
We first show that p(z,y) > p(z,x).

Case p(z,z) > %: Apply Assumption 2.4 (Moderate Stochastic Transitivity)
to obtain p(z,y) > min(p(z,2), p(z,9)) > p(z, 7).

Case p(z,x) < i: Suppose to the contrary that p(z,y) < p(z,z). Then
p(y,z) > p(x,z) > 5. By Assumption 2.4 (Moderate Stochastic Transi-
tivity), we obtain p(x, z) > min(p(z,y), p(y, 2)) > p(y, z), and therefore
p(z,x) < p(z,y), which contradicts p(z,y) < p(z, x).

Since p(z,y) > plz,2), 0o(z) > v(y). So we have > y = v(z) > v(y)
for all x,y € X\{0}. That is, v is non-decreasing. Therefore u is also non-
decreasing. [
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Claim 3.5 For every w € R} and every m € R4, u is concave on classi-
cal budget frontier {z € X :w -z =m}.

Proof. Let w € R, and m € Ryy. Let z,y € {z€ X :w-2z=m}. By
Assumption 2.6,

p(37 + 39,%) > py, 37 + 39) (4)
and
p3z + 3u,9) > p(x, 52+ ). (5)
It must be the case that x =< %x + %y = y, since otherwise, w'zx # w'y.
Therefore the probabilities in equations 4 and 5 are all non-zero, and so

pGE+5y.7) _ Py 37 +5Y)
plz, 52+ 5y) — p(5x+ 54, 9)
v(y)
v(iz + 3y)
2
[v(32 + 39)]” > v(@)v(y)
u(3z + 1y) > tu(z) + su(y).

v

Since this is true for all distinct x,y on the classical budget frontier, u
must be concave there. [

3.2.6 Uniqueness of u

Claim 3.6 The representation u is unique up to the addition of a real con-
stant.

Proof. We want to show that if v and u' are both regular, and both
represent (X, B,C, p), then there exists a constant ¢ € R such that v’ = u+c.
Suppose u and ' are both regular, and both represent (X,B,C,p). Let
z € X\{0} satisfy z > 0. Let ¢ = u/(z) — u(2).

Now choose any = € X\{0}. If z = z, then «/(z) = u(z) + ¢ immediately.
If z # z, then choose a y € X,,. Then

eu(:r)fu(y) _ U(I) _ p(xﬂy) _ UI(.T) _ eu/(:p)fu’(y)
- - Ty
o(y)  ply,x)  V(y)
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and

() = u(z) + [u'(y) —u(y)] = u(@) + [u'(2) —u(z)] = u(z) + . O

3.3 A Theorem on the Completeness of the Represen-
tation
Theorem 3.2 (Completeness of Representation) Let X, B and C sat-

isfy Assumptions 2.1, 2.2 and 2.3. If u : X\{0} — Ry, is regular, then
there exists a unique p such that

1. (X,B,C,p) is a random choice model satisfying Assumptions 2.4, 2.5,
2.6, and 2.7; and

2. for every budget B € B, and every event C' € Cg, pp(C) is given by

(1).

3.4 Proof of Theorem 3.2

Let X, B, and C satisfy Assumptions 2.1, 2.2 and 2.3. Let function u :
X\{0} — R4+ be any regular function. We first use u to construct a p, and
note that u represents p. We then show that (X, B,C, p) satisfies Assumptions
2.4, 2.5, 2.6 and 2.7.

Construct p so that for every B € B and every C € Cp,

pp(C)= 3 @ )37 et

zeCNB yeB

Clearly, p is uniquely specified, and u represents it.

Claim 3.7 (X,B,C,p) satisfies Assumption 2.4 (Moderate Stochastic Tran-
sitivity ).

Proof. Let x,y,z € X satisfy x # y, y # 2z and = # z and suppose
p(z,y) > L and p(y, z) > 1. If z > y, then v(z) > v(y) by monotonicity of v.
If x <y, then p(z,y) = v(z)/[v(x) + v(y)] and so v(z) > v(y). We can rule
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out y > x since it contradicts v(z,y) > 1. Therefore v(z) > v(y). Similarly,

v(y) = v(2).
We show the result that p(z,z) > min(p(x,y), p(y, z)) for three cases:

Case = > z: Then p(z,2) =1 > min(p(z,y),p(y, 2)) and we are done.
Case z > z: Since v(z) > v(y) > v(z), monotonicity of v rules out this case.

Case z < z: Then p(z,z)/p(z,2) = v(z)/v(z). Since z > y and y > =z
imply x > z, at least one of < y and y < z must hold. If x < y, then
p(z,y)/p(y, ©) = v(z)/v(y) and therefore

pl.2) _ o) (@) _pley) oo <p(w,y),p(y, z)) |
p(z,z)  v(z) ~wuly)  py. ) p(y,z) p(z,y)
If y < 2, then p(y, 2)/p(z,y) = v(y)/v(z) and therefore
pl.2) _vl@) vly) _p:2) (p(fv,y)’p(y,z)) ‘
p(z.x)  v(z) ~u(z)  plzy) p(y.x) p(z,9)
Either way, since the transformation f(p) = p/(1 — p) is monotonically
increasing, p(z,2) > win(p(r. ). p(y. 2)- O

Claim 3.8 (X, B,C,p) satisfies Assumption 2.5 (Monotonicity).

Proof. Let x,y € X satisfy x # y. If > y, then p(x,y) = psy({2}) = 1.
If y > x, then p(x,y) =0 # 1. If © < y, then p(z,y) = expu(x)/[expu(z) +
expu(y)] < 1. O

Claim 3.9 (X, B,C,p) satisfies Assumption 2.6.

Proof. Let z,y € X satisfy v <y. Let z = %JI + %y Since z, y, and z lie
on a budget frontier, condition 2 of Theorem 3.1 gives

u(z) = gu(z) + ju(y)

u(z) = zu(2)

Ju(z) — uly) >
u(z) —u(y) =
Now since r < z and y < z,
p(z7gj) = eu(z)/[eu(x) + eu(z)] — 1/[1 + eu(m)fu(z)]
p(y, Z) — eu(y)/[eu(y) + eu(z)] — 1/[1 + eu(z)—u(y)]
and therefore p(z,z) > p(y, z). O

1
2
U
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Claim 3.10 (X, B,C,p) satisfies Assumption 2.7 (Luce’s Choice Axiom).

Proof. Let B € B, and let S C B.
First take the case that p(z,y) € (0,1) for every x,y € B such that x # y.
Then B=Band S=S5. Let RCS. Then

pu(R) = Z et Z e,

z€ER yeEB
ps(R) =Y '@ [ e,
zER yes
pu(S) =Y e [ e,
zeS yeB

and clearly, ps(R) = ps(R) - ps(S).
Now take the case that there exists 2,y € B such that z # y and p(x,y) =

0. ThenasgéBandB:B/\\{x}and

pB(S> — Z eu(ﬂf) Zeu(y) — Z 6u(m) Z eu(y)

z€SNB yeB zeS\{z}NB\{z} yeB\{z}

pe\y (S\{z}). O

4 Conclusions

We have drawn from stochastic theories of choice in mathematical psychol-
ogy, and deterministic theories of choice and consumer demand in economics
to develop a new theory of random consumer demand. The theory has sev-
eral desirable properties that motivate its application to empirical consumer
demand problems.

The representation theorems establish an identification of any theoreti-
cally consistent random demand function with a regular L-utility function
and vice versa. An econometrician can thus work with regular L-utility
functions rather than with random demand functions directly. This is more
convenient.
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The theory is intrinsically stochastic, which allows the econometrician
to apply the theory without adding extrinsic randomness in the form of
residuals.

The theory does not stand or fall on a sharp testable implication such as
the Strong Axiom of Revealed Preference. There are degrees of fit, and the
theory can be evaluated on this basis. The theory measures the “fit” of an
observed choice to a regular utility function by the relative L-utilities of the
choice and its feasible alternatives. This is an intrinsic measure of fit, and
stands in contrast to extrinsic measures of fit, such as the Euclidean distance
of a choice to the object which maximizes the utility function.

In a related paper, we describe a practical method for Bayesian inference
using the theory. We follow Geweke and Petrella (2004) in using polynomials
on a transformed consumption set to approximate L-utility functions, giving
us flexibility and regularity on a large subset of the consumption set. We
apply the theory and inferential methods to analyse data from a consumer
experiment.
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