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Résumé 

Bien que les champignons soient régulièrement utilisés comme modèle d'étude des 

systèmes eucaryotes, leurs relations phylogénétiques soulèvent encore des questions 

controversées. Parmi celles-ci, la classification des zygomycètes reste inconsistante. Ils 

sont potentiellement paraphylétiques, i.e. regroupent de lignées fongiques non directement 

affiliées. La position phylogénétique du genre Schizosaccharomyces est aussi controversée: 

appartient-il aux Taphrinomycotina (précédemment connus comme archiascomycetes) 

comme prédit par l'analyse de gènes nucléaires, ou est-il plutôt relié aux Saccharomycotina 

(levures bourgeonnantes) tel que le suggère la phylogénie mitochondriale? Une autre 

question concerne la position  phylogénétique des nucléariides, un groupe d'eucaryotes 

amiboïdes que l'on suppose étroitement relié aux champignons. Des analyses multi-gènes 

réalisées antérieurement n'ont pu conclure, étant donné le choix d'un nombre réduit de 

taxons et l'utilisation de six gènes nucléaires seulement. 

 Nous avons abordé ces questions par le biais d'inférences phylogénétiques et tests 

statistiques appliqués à des assemblages de données phylogénomiques nucléaires et 

mitochondriales. D'après nos résultats, les zygomycètes sont paraphylétiques (Chapitre 2) 

bien que le signal phylogénétique issu du jeu de données mitochondriales disponibles est 

insuffisant pour résoudre l'ordre de cet embranchement avec une confiance statistique 

significative. Dans le Chapitre 3, nous montrons à l'aide d'un jeu de données nucléaires 

important (plus de cent protéines) et avec supports statistiques concluants, que le genre  

Schizosaccharomyces appartient aux Taphrinomycotina. De plus, nous démontrons que le 

regroupement conflictuel des Schizosaccharomyces  avec les Saccharomycotina, venant des 

données mitochondriales, est le résultat d'un type d'erreur phylogénétique connu: 
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l'attraction des longues branches (ALB), un artéfact menant au regroupement d'espèces 

dont le taux d'évolution rapide n'est pas représentatif de leur véritable position dans l'arbre 

phylogénétique. Dans le Chapitre 4, en utilisant encore un important jeu de données 

nucléaires, nous démontrons avec support statistique significatif que les nucleariides 

constituent le groupe lié de plus près aux champignons. Nous confirmons aussi la 

paraphylie des zygomycètes traditionnels tel que suggéré précédemment, avec support 

statistique significatif, bien que ne pouvant placer tous les membres du groupe avec 

confiance. Nos résultats remettent en cause des aspects d'une récente reclassification 

taxonomique des  zygomycètes et de leurs voisins, les chytridiomycètes. 

Contrer ou minimiser les artéfacts phylogénétiques telle l'attraction des longues 

branches (ALB) constitue une question récurrente majeure. Dans ce sens, nous avons 

développé une nouvelle méthode (Chapitre 5) qui identifie et élimine dans une séquence les 

sites présentant une grande variation du taux d'évolution (sites fortement hétérotaches - 

sites HH); ces sites sont connus comme contribuant significativement au phénomène 

d'ALB. Notre méthode est basée sur un test de rapport de vraisemblance (likelihood ratio 

test, LRT). Deux jeux de données publiés précédemment sont utilisés pour démontrer que 

le retrait graduel des sites HH chez les espèces à évolution accélérée (sensibles à l'ALB) 

augmente significativement le support pour la topologie « vraie » attendue, et ce, de façon 

plus efficace comparée à d'autres méthodes publiées de retrait de sites de séquences. 

Néanmoins, et de façon générale, la manipulation de données préalable à l'analyse est loin 
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d‟être idéale. Les développements futurs devront viser l'intégration de l'identification et la 

pondération des sites HH au processus d'inférence phylogénétique lui-même.  

 

Mots-clés : phylogénomique, Taphrinomycotina, zygomycètes, attraction des longues 

branches, mitochondrial, nucleariides, hétérotache, likelihood ratio test. 
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Abstract 

Despite the popularity of fungi as eukaryotic model systems, several questions on their 

phylogenetic relationships continue to be controversial. These include the classification of 

zygomycetes that are potentially paraphyletic, i.e. a combination of several not directly 

related fungal lineages. The phylogenetic position of Schizosaccharomyces species has also 

been controversial: do they belong to Taphrinomycotina (previously known as 

archiascomycetes) as predicted by analyses with nuclear genes, or are they instead related 

to Saccharomycotina (budding yeast) as in mitochondrial phylogenies? Another question 

concerns the precise phylogenetic position of nucleariids, a group of amoeboid eukaryotes 

that are believed to be close relatives of Fungi. Previously conducted multi-gene analyses 

have been inconclusive, because of limited taxon sampling and the use of only six nuclear 

genes.  

We have addressed these issues by assembling phylogenomic nuclear and 

mitochondrial datasets for phylogenetic inference and statistical testing. According to our 

results zygomycetes appear to be paraphyletic (Chapter 2), but the phylogenetic signal in 

the available mitochondrial dataset is insufficient for resolving their branching order with 

statistical confidence. In Chapter 3 we show with a large nuclear dataset (more than 100 

proteins) and conclusive supports that Schizosaccharomyces species are part of 

Taphrinomycotina. We further demonstrate that the conflicting grouping of 

Schizosaccharomyces with budding yeasts, obtained with mitochondrial sequences, results 

from a phylogenetic error known as long-branch attraction (LBA, a common artifact that 
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leads to the regrouping of species with high evolutionary rates irrespective of their true 

phylogenetic positions). In Chapter 4, using again a large nuclear dataset we demonstrate 

with significant statistical support that nucleariids are the closest known relatives of Fungi. 

We also confirm paraphyly of traditional zygomycetes as previously suggested, with 

significant support, but without placing all members of this group with confidence. Our 

results question aspects of a recent taxonomical reclassification of zygomycetes and their 

chytridiomycete neighbors (a group of zoospore-producing Fungi).  

Overcoming or minimizing phylogenetic artifacts such as LBA has been among our 

most recurring questions. We have therefore developed a new method (Chapter 5) that 

identifies and eliminates sequence sites with highly uneven evolutionary rates (highly 

heterotachous sites, or HH sites) that are known to contribute significantly to LBA. Our 

method is based on a likelihood ratio test (LRT). Two previously published datasets are 

used to demonstrate that gradual removal of HH sites in fast-evolving species (suspected 

for LBA) significantly increases the support for the expected „true‟ topology, in a more 

effective way than comparable, published methods of sequence site removal. Yet in 

general, data manipulation prior to analysis is far from ideal. Future development should 

aim at integration of HH site identification and weighting into the phylogenetic inference 

process itself. 

 

Keywords : phylogenomics, Taphrinomycotina, Zygomycota, long-branch attraction, 

mitochondrial, nucleariids, heterotachous, likelihood ratio test 
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Chapter 1 Introduction 

Fungi are widely used as model systems in molecular and cellular biology. In this context, 

it is crucial to understand and evaluate their respective evolutionary relationships and how 

their genes and genomes change over time. Yet, after decades of research, numerous 

questions related to fungal evolution remain unresolved. In this thesis, we will focus on 

three topics of general interest:  

 are the Taphrinomycotina (including Schizosaccharomyces species) monophyletic 

or paraphyletic (for a current view of fungal taxonomy see Table 1)? 

 what are the relationship among the major fungal groups, especially the less well 

known zygomycetes and chytrids?  

 what are the exact phylogenetic positions of protists that are believed to diverge 

close to the metazoan-fungal boundary, such as Nucleariida, Capsaspora, 

Amoebidium and Sphaeroforma (for taxonomic details see Table 2)?  

To do so, we analyzed nuclear and mitochondrial genomic datasets with various 

phylogenetic methods. We also developed a new method to improve the accuracy of 

phylogenetic inference. 

In the first chapter of this dissertation we will present an overview of current fungal 

taxonomy and the status of molecular phylogenetic inference. The models and methods 

used in phylogenetic analyses are also described in this chapter, along with a discussion of 

analytical challenges that are related to common phylogenetic artifacts. Chapters two to 

five present our results in the format of journal publications (three published and one 

manuscript). They aim essentially at resolving issues in fungal and opisthokont evolution. 
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The first publication (Chapter 2) presents comparative mitochondrial genomic analyses of 

zygomycetes and tests the monophyly of zygomycetes. We find that the mitochondrial 

dataset alone is insufficient to resolve with confidence whether Zygomycota is a 

monophyletic or paraphyletic group, and members of this group as well as Fungi in general 

evolve at a wide range of evolutionary rates. These rate differences may cause Long-

Branch Attraction artifact (LBA, causing grouping of fast-evolving lineages irrespective of 

their true evolutionary relationships, sometimes even with strong statistical support), a 

theme that is addressed in detail in the following publications. The second publication 

(Chapter 3) presents phylogenomic analyses that aim to the issue of Taphrinomycotina. Our 

results suggest that Taphrinomycotina is a monophyletic group, a sister group of 

Saccharomycotina plus Pezizomycotina, and that a LBA artifact plagues the analyses of 

mitochondrial data and leads to a paraphyletic Taphrinomycotina. In the third publication 

(Chapter 4), our analyses with both nuclear and mitochondrial genes confirm that 

nucleariids are the closest unicellular relatives of Fungi; that Capsaspora, Amoebidium plus 

Sphaeroforma form a monophyletic sister group of Metazoa plus Choanoflagellata; and 

that Zygomycota and Chytridiomycota as defined in traditional taxonomy are most likely 

paraphyletic.  
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Table 1: Fungal Systematics (according to Hibbett et al. 2007) 

Taxon Examples of member species 

Phylum  Ascomycota  

Subphylum  Taphrinomycotina Schizosaccharomyces pombe 

Subphylum  Saccharomycotina Saccharomyces cerevisiae 

Subphylum  Pezizomycotina Neurospora crassa 

Phylum  Basidiomycota  

Subphylum  Urediniomycotina Puccinia graminis 

Subphylum  Ustilaginomycotina Ustilago maydis 

Subphylum  Hymenomycotina Cryptococcus neoformans 

Phylum  Chytridiomycota
1
 Spizellomyces punctatus 

Phylum  Neocallimastigomycota
1
 Neocallimastix frontalis 

Phylum  Blastocladiomycota
1
 Allomyces macrogynus 

Phylum  Glomeromycota
2
 Glomus intraradices 

Subphylum*  Mucoromycotina
2
 Rhizopus oryzae 

Subphylum*  Kickxellomycotina
2
 Smittium culisetae 

Subphylum*  Zoopagomycotina
2
 Zoophagus insidians 

Subphylum*  Entomophthoromycotina
2 

Conidiobolus coronatus 

* currently not assigned to a phylum 

1
 Chytridiomycota in traditional taxonomy 

2
 Zygomycota in traditional taxonomy 
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Table 2: Unicellular protists that are believed to diverge close to Fungi/Metazoa 

Taxon Examples of member species Reference 

Choanoflagellida Monosiga brevicollis (King et al. 2008) 

Corallochytrium Corallochytrium limacisporum (Sumathi et al. 2006) 

Eccrinales Alacrinella limnoriae (Cafaro 2005) 

Ichthyosporea   

Capsaspora Capsaspora owczarzaki (Ruiz-Trillo et al. 2008) 

Dermocystida Dermocystidium salmonis (Marshall et al. 2008) 

Ichthyophonida   

Amoebidiaceae Amoebidium parasiticum (Ruiz-Trillo et al. 2008) 

Sphaeroforma Sphaeroforma arctica (Ruiz-Trillo et al. 2006) 

Microsporida Encephalitozoon cuniculi (Keeling 2009) 

Ministeria Ministeria vibrans (Shalchian-Tabrizi et al. 2008) 

Nucleariidae Nuclearia simplex (Steenkamp et al. 2006) 

Rozellida Rozella allomycis (Lara et al. 2009) 

 

 

The fifth chapter deals with method development, addressing limitations of current 

approaches in phylogenetic analysis due to model violations. Here we describe a new 

method that improves the information/background noise ratio in datasets by progressive 

elimination of positions that likely contribute to LBA. The method is based on a Likelihood 

Ratio Test (LRT; a comparison of likelihood values under two models), which is used to 

identify and eliminate sequence positions that contain little if any phylogenetic signal. 

Sequence elimination occurs specifically in fast evolving species (or groups) as they are 

most affected by LBA. Two previously published datasets are used to demonstrate the 
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potential of this method. The result shows that it can effectively overcome LBA. Finally, in 

the sixth chapter we summarize the most important findings of this dissertation, compare 

them with previous work, and comment on future orientations of our research. 

1. Fungal classification 

Based on morphology, ultra-structural characteristics, and lifestyle, Fungi include more 

than one million extremely diverse species, a major challenge for morphology-based fungal 

taxonomy (Hawksworth 2001). Today, sequence-based, molecular taxonomy clearly 

defines Fungi as a monophyletic group, further revealing their close relationship to animals 

(Metazoa) rather than to plants as previously believed. The following section will provide 

an overview of the current molecular taxonomy of Fungi.  

1.1 Relationship of Fungi with other eukaryotic groups. 

Eukaryotes include organisms with an almost inconceivable morphological diversity. Not 

surprisingly, their classification has changed dramatically over the decades, from four 

major groups or kingdoms (plants, animals, fungi, and protists) to the current system of six 

“super-groups”: Amoebozoa, Chromalveolata, Excavata, Opisthokonta, Plantae, Rhizaria 

(Parfrey et al. 2006; Rodriguez-Ezpeleta et al. 2007a; Baldauf 2008; Yoon et al. 2008). The 

supergroup “Plantae” contains three lineages with primary plastids: green algae (including 

land plants), rhodophytes, and glaucophytes (the term primary plastids refers to the original 

endosymbiotic event of a cyanobacterium with a eukaryote that gave rise to plastids; for 
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more details see (Rodriguez-Ezpeleta et al. 2005; Kim and Graham 2008)). Fungi have 

traditionally been considered a subgroup of plants, but phylogenetic analyses of both 

nuclear small subunit rRNA (SSU-rRNA) and protein-coding genes clearly reject this 

association. These analyses provide instead significant support for a sister group 

relationship of Fungi with Metazoa (Opistokonta), now also including a number protists 

(Baldauf et al. 2000; Moreira, Le Guyader, and Philippe 2000; Lang et al. 2002b; Cavalier-

Smith 2004; Parfrey et al. 2006; Yoon et al. 2008). In addition, some groups previously 

classified as Fungi (such as Myxomycota, Dictyosteliomycota, and Oomycota) are now 

excluded from the kingdom (Gunderson et al. 1987; Paquin et al. 1997).  

Protists are a taxonomically inconsistent group uniting diverse eukaryotic 

organisms that have not been associated with animals, fungi or plants. Based on 

morphologic markers, protists were traditionally subdivided into animal-like, plant-like, 

and fungus-like groups, a classification that does not reflect the protists‟ true evolutionary 

relationships (Cavalier-Smith and Chao 2003b; Adl et al. 2005). Molecular phylogenetic 

analyses have revealed that some protists are indeed Fungi (e.g., Pneumocystis carinii 

(Edman et al. 1988a)), and that others such as Microsporidia (Keeling 2003) and 

Nucleariida (Steenkamp, Wright, and Baldauf 2006) are related to them. Yet, the exact 

phylogenetic position of Microsporidia is uncertain due to their extremely fast evolutionary 

rate, (Hibbett et al. 2007) and that Nucleariida are likely a sister group of Fungi - awaiting 

confirmation by additional, statistically more compelling analyses (Steenkamp, Wright, and 

Baldauf 2006). The phylogenetic positions of other potential opisthokont relatives (e.g., 
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Apusozoa and potentially Malawimonadozoa) remains currently uncertain, even with 

phylogenomic datasets (Philippe 2000; Parfrey et al. 2006) (Lang and Philippe, 

unpublished results). 

1.2 Fungal subgroups. 

Based on their sexual reproductive structures, Fungi have been traditionally divided into 

Ascomycota, Basidiomycota, Zygomycota, and Chytridiomycota (Taylor et al. 2004; 

McLaughlin et al. 2009). However, the classification has changed dramatically in recent 

years (Seif et al. 2005; James et al. 2006a; Liu, Hodson, and Hall 2006; Spatafora et al. 

2006; Hibbett 2007), especially for the Zygomycota and Chytridiomycota. In the most 

recent classification, Chytridiomycota remains a phylum but in a restricted sense, now only 

including Chytridiomycetes and Monoblepharidomycetes. Other traditional members such 

as Blastocladiomycota and Neocallimastigales are elevated to separate phyla, and the 

phylum Zygomycota is completely abandoned. Its member are divided into the phylum 

Glomeromycota plus four subphyla incertae sedis (not assigned to any phylum): 

Mucoromycotina, Kickxellomycotina, Zoopagomycotina and Entomophthoromycotina. To 

some extent, this classification is consistent with phylogenetic analyses based on single 

rRNA and protein-coding genes, on combinations of few genes, and most reliably, on 

nuclear and mitochondrial multi-gene datasets (e.g., (Edman et al. 1988a; Lang et al. 

2002a; Bullerwell, Forget, and Lang 2003b; Leigh et al. 2003; Thomarat, Vivares, and 

Gouy 2004; Fitzpatrick et al. 2006; James et al. 2006a; Liu, Hodson, and Hall 2006; 
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Hibbett et al. 2007)). Yet, only Ascomycota and Basidiomycota are clearly monophyletic 

sister clades, and several higher-order relationships among other fungal lineages remain 

uncertain. The lack of phylogenetic comprehension renders naming of new and abandoning 

of previously established taxonomic groups challenging, if not controversial (e.g., 

Blastocladiomycota and Glomeromycota; Zygomycota; Hibbett et al. 2007).  

2. Unresolved issues in fungal phylogeny  

2.1 Monophyly of Taphrinomycotina and relationships among major fungal lineages 

Molecular taxonomies based on SSU-rRNA sequences divide Ascomycota into three major 

lineages: Saccharomycotina, Pezizomycotina and Taphrinomycotina (Archiascomycota) 

(Nishida and Sugiyama 1993). In this analysis, Taphrinomycotina is the sister group of 

Saccharomycotina plus Pezizomycotina. However, significant support for this topology is 

lacking, and results from several multi-protein phylogenies using mitochondrial and 

nuclear protein sequences are incongruent (e.g., (Bullerwell et al. 2003; Taylor et al. 

2004)). The reason for this incongruence appears to be a LBA attraction artifact. It is 

observed both, with certain nuclear (Baldauf et al. 2000) and mitochondrial datasets (Leigh 

et al. 2004). In both cited cases, LBA leads to an incorrect, yet statistically well-supported 

grouping of Saccharomycotina plus Schizosaccharomyces (a key member of 

Taphrinomycotina and widely used model system). Adding more Taphrinomycotina 

(Taphrina, Saitoella, Pneumocystis and Neolecta) and more sequences from this species 

has potential to overcome this phylogenetic artifact.  
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Besides unresolved issues within Ascomycota, other higher-order relationships 

among other fungal lineages also remain uncertain, such as zygomycetes (Keeling, Luker, 

and Palmer 2000; Schwarzott, Walker, and Schussler 2001; Forget et al. 2002; Tehler, 

Little, and Farris 2003; Leigh et al. 2004; Seif et al. 2005; Tanabe, Watanabe, and 

Sugiyama 2005b; James et al. 2006a; Liu, Hodson, and Hall 2006; Hibbett 2007). One 

reason for this uncertainty is missing sequence, in particular in the large phylogenomic 

datasets: complete genome sequences are available from only few lineages in zygomycetes 

and chytridiomycetes. Another reason is the presence of short internal branches that 

separate them and their sub-groups. More (and more complete) genomic data, and the 

development of increasingly sophisticated evolutionary models and phylogenetic 

algorithms that are better in extracting „phylogenetic signal‟ are hoped to resolve these 

issues. 

2.2 Unresolved phylogenetic relationship between protists and Fungi 

Some protists such as the choanoflagellates (Choanoflagellata), the ichthyosporeans 

(Ichthyosporea), the nucleariids (Nucleariidae) and the genera Capsaspora and Ministeria 

are believed to branch close to the fungal-animal divergence. In some instances, their exact 

phylogenetic positions are still debated (Cavalier-Smith and Chao 2003b; Adl et al. 2005; 

Steenkamp, Wright, and Baldauf 2006; Carr et al. 2008; King et al. 2008; Ruiz-Trillo et al. 

2008). Among them, nucleariids is of particular interest, the only group that appears to be 

closely related to Fungi. The few molecular phylogenies including nucleariids are based on 
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single gene sequences (except (Steenkamp, Wright, and Baldauf 2006), see below), and 

come with contradicting results and unconvincing statistical support. For instance, 

nucleariids are the sister of Fungi in an analysis of SSU plus LSU data, yet with limited 

species sampling (Medina et al. 2003). In contrast, in analyses with SSU data and rich taxa 

sampling, nucleariids are the sister of Metazoa/Choanoflagellata/Mesomycetozoa (Zettler 

et al. 2001). In a more recent multi-gene analysis (including EF-1α, actin, HSP70 and α- 

and β-tubulin) they are the sister group of Fungi, yet despite the use of multiple gene 

sequences, competing tree topologies cannot be rejected with confidence (Steenkamp, 

Wright, and Baldauf 2006). Evidently, much larger datasets are required to resolve this 

question. 

3. Evolutionary models for amino acid sequence change 

Nucleotide and amino acid sequences are two of the principle types of molecular data used 

in phylogenetic analyses. The third codon positions of nucleotide sequences of protein-

coding genes have higher evolutionary rates and a more pronounced compositional 

sequence bias (Li 1997), which may lead to incorrect phylogenetic inferences as described 

in the next sections. Thus, our phylogenomic datasets contain exclusively derived protein-

coding sequences. Models that describe evolutionary amino acids change are an essential 

component of phylogenetic inference. This section summarizes the statistical basis and 

properties of the evolutionary models for amino acid sequences. 

3.1 Markov process models 
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The aim of this section is to introduce the common assumptions made to model the process 

of molecular evolution. 

One of the primary assumptions is that future evolution (at time T = t+1) is only 

dependent on its current state (at time T = t) and not on previous states (T < t). The 

processes with this property are called Markov processes in statistics. This assumption is 

reasonable, as mutation and substitution can only act upon the present molecules in an 

organism.  

To reduce the complexity of evolutionary models and the computational burden, 

another common assumption is that sequence sites of molecules evolve independently, 

although this does not always hold in real sequence. Yet, studies show that models with this 

assumption perform reasonably well. Recently, models that relax this assumption have 

been developed (Galtier 2001; Penny et al. 2001), but due to their heavy computational cost 

they are not widely used and tested for performance. 

Based on these assumptions, various global amino acid substitutions models have 

been developed during the last four decades (Dayhoff 1978; Gonnet, Cohen, and Benner 

1992; Jones, Taylor, and Thornton 1992; Whelan and Goldman 2001; Le and Gascuel 

2008). In the following section, we will describe their common principles and also explain 

a more recently developed model that describes site-specific change: CAT.  

3.2 Instantaneous rate and probability matrices 

A continuous-time Markov process is used to model amino acid changes at a given site of a 

protein sequence. The Markov model asserts that one protein sequence is derived from its 
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ancestor by a series of independent substitutions. For protein sequences, the continuous-

time Markov process is defined by its instantaneous 20×20 rate matrix: 

Q = (qij), i,j=1,..20 

The matrix entry qij, j ≠ i, represents the instantaneous rate of change from amino acid i to 

amino acid j, independently at each site. The qii entry of the matrix is set to be the minus of 

the sum of all other entries in that row, representing the rate at which changes leave amino 

acid i and making the row sums being zero: 

 

However, protein sequence data consist of actual amino acid characters at a given 

time, not the rate at which they are evolving. The quantity needed for calculations is the 

probability of observing a given character after time t has elapsed. Let Pij(t) be the 

probability of a site in state j after time t, given that the process started in state i at that site 

at time 0. Since there are 20 amino acid states, the probability Pij(t) can be written as a 

20×20 matrix, which denoted as P(t). It is necessary to compute the probability matrix P(t) 

for any real evolutionary time t ≥ 0. This is achieved using the instantaneous rate matrix Q, 

which is related to P(t) via P(t) = e
tQ

. The exponential of a matrix is defined by the 

following power series, with I being the identity matrix: 

 

In practice, this power series can be calculated numerically using eigendecomposition and 

other methods.  
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A Markov process model has three important properties: homogeneity, stationarity, 

and reversibility. Homogeneity means that the rate matrix Q is independent on time T, 

which means that the patterns of amino acid substitution remain the same during 

evolutionary history. A homogeneous process has an equilibrium distribution that is the 

distribution when time approaches infinity. Stationarity means that the process is at that 

equilibrium, which implies amino acids frequencies have remained the same during the 

course of evolution. Reversibility means that πiPij(T) = πjPji(T) for all i, j, and T, where πi 

are the frequencies of occurrence for each amino acid. 

3.3 Rate heterogeneity among sites 

Due to the various functional constraints on sites, evolutionary rates vary at different sites 

along the sequence. In other words, it is less likely that substitutions occur at positions with 

strong functional constraints, and amino acids at positions with few constraints are more 

easily substituted. A common way of modeling evolutionary rates along a sequence is by 

applying a Gamma distribution (a density function),  

 

where  is the Gamma function, parameter a the shape parameter, and b the inverse scale 

parameter. The mean of a Gamma-distributed variable is a/b; the variance is a/b
2
. The 

Gamma distribution is sufficiently general to accommodate different levels of rate 

heterogeneity in various datasets, and usually, b = a is assumed. The shape parameter a 
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determines the extent of rate heterogeneity among sites, with a small a representing 

extreme rate variation (Yang 1996). However, as pointed out correctly, “there is nothing 

about the Gamma distribution that makes it biologically more realistic than any other 

distribution …  It is used because of its mathematical tractability” (Felsenstein 2004). 

In practice, most applications provide a discrete Gamma distribution (Yang 1996), 

because a continuous likelihood calculation is computationally too demanding. Studies 

have shown that a discrete gamma distribution with four to eight categories provides both a 

good approximation and reasonable computational efficiency (Yang 1996).  

3.4 CAT model 

Most of models assume that sites along a sequence are independent and identically 

distributed (i.i.d.). While this assumption is far from reality, it greatly simplifies 

calculations. This assumption is partially relaxed with the Gamma distribution that models 

the evolutionary rate heterogeneity among sites. However, other parameters, such as the 

transition probability matrix, are still assumed to be i.i.d. along a sequence. More recently, 

the CAT model was proposed in which sites along a sequence are divided into K distinct 

classes, whose evolutionary process is characterized by its own rate matrix (Lartillot and 

Philippe 2004; Lartillot, Brinkmann, and Philippe 2007; Lartillot and Philippe 2008). CAT 

is applied in a program called PhyloBayes and has shown its superior resolving power in 

recent phylogenetic studies (Lartillot and Philippe 2004; Lartillot, Brinkmann, and Philippe 

2007; Lartillot and Philippe 2008). 
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Based on the property of a reversible Markov process, the rate matrix (R) derived 

from the transition probability matrix (P) can be expressed as the product of two 

components: the rate parameters Q (also called the exchangeability parameters) and the 

equilibrium frequencies π (or stationary probabilities). The CAT model assumes that all 

classes share the same rate parameters Q, but that they have a different set of equilibrium 

frequencies π for each class. The rate parameters Q can be fixed to the traditional empirical 

Dayhoff, JTT or WAG matrices to keep computation tractable. The equilibrium frequencies 

π for each class are estimated from the dataset. 

Case studies have shown that the CAT model provides a significantly better fit with 

data, and that it is more robust against phylogenetic artifacts such as long branch attraction 

than other models (Lartillot, Brinkmann, and Philippe 2007; Lartillot and Philippe 2008). 

However, due to its complexity, it needs substantial sequence data to estimate its 

parameters, and is therefore best suited for use with large (phylogenomic) datasets. Its 

current implementation uses a Bayesian approach and employs a Markov Chain Monte 

Carlo (MCMC) technology. The high clade-supporting posterior probabilities provided by 

MCMC are somehow worrisome because they appear to overestimate the probability that 

the reconstructed topology represents true evolutionary relationships (Suzuki, Glazko, and 

Nei 2002; Douady et al. 2003). However, a combination of the Bayesian approach with 

bootstrapping or jackknifing provides a robust solution, although it is computational 

expensive - especially for large datasets. 

4. Likelihood-based methods for phylogenetic inference 
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Because phylogenetic inference can be treated as a statistical inference, standard statistical 

frameworks like least square and likelihood methods can be directly applied. Likelihood 

methods are most efficient in extracting information compared to least square and others, 

and the likelihood estimates have a variety of good properties. For example, the estimates 

convert to the correct value of the parameter (consistency), and have the smallest variance 

around the true parameter value (efficiency) if the dataset is large enough. Thus, in this 

study, we focus on likelihood methods for phylogenetic inference. In this section, 

likelihood function and likelihood-based method for phylogenetic inference are introduced. 

4.1 Likelihood function.  

The likelihood function (L = Prob(D|M), where D is the data, M is the model) plays a 

central role in all applications of likelihood-based methods. After an evolutionary model 

(the tree topology is considered as a parameter of the model) is selected, the likelihood 

function is used to calculate the probability of a given set of data D for a given tree T (the 

likelihood value for tree T):  L = Prob(D|T, θ), where θ is a vector of parameters for a 

specified model. Two assumptions are central to computing likelihood values (recent 

developments have relaxed these assumptions, e.g., (Felsenstein and Churchill 1996)): 1): 

Evolution at different sites (on the given tree) is independent; 2): Evolution in different 

lineages is independent. These assumptions significantly simplify the calculation, e.g., 

based on the first assumption, the likelihood values for a dataset are the product of the Li 
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for each sites. Felsenstein developed a practical method for their calculation (Felsenstein 

1981).  

4.2. Maximum likelihood (ML) method.  

The maximum likelihood method aims at identifying the tree with the highest likelihood 

value. It was first introduced for phylogeny reconstruction by Edwards and Cavalli-Sforza 

(Edwards and Cavalli-Sforza, 1964) and further developed by Felsenstein (Felsenstein 

1981). We can evaluate the likelihood of any given tree T for any given parameter θ; yet 

the difficulty consists in maximizing the likelihood over all T and all θ. Due to the rapid 

increase of the number of possible trees with the number of taxa, exhaustive tree search is 

virtually impossible for real-world datasets. Therefore, a number of heuristic algorithms 

have been developed, like those implemented in Tree-PUZZLE (Schmidt et al. 2002), 

PhyML (Guindon and Gascuel 2003b), Treefinder (Jobb, von Haeseler, and Strimmer 

2004), RAxML (Stamatakis 2006), etc. 

4.3 Bayesian inference (BI) method. 

 The principle of the BI method is Bayes‟s theorem: 

 

where P(T|D) is the posterior probability of a tree T given data D, P(T) is prior probability 

of the tree T, the P(D|T) is the likelihood of D given T, the denominator P(D) is the sum of 

numerators P(D,T) over all possible trees T, and is the quantity that is needed to normalize 
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them so that they add up to 1. The objective of the BI method is to find the tree with a 

maximum posterior probability that is chosen as the best estimate (Ronquist and 

Huelsenbeck 2003). However, the denominator (P(D)) in the expression of posterior 

probability is difficult to compute, as it involves summing over all possible trees. The 

recent developed Markov chain Monte Carlo (MCMC) methods (Larget and Simon, 1999; 

Li, Doss and Pearl, 2000) allow to bypass the calculation of P(D) by sampling from the 

posterior distribution directly.  

MCMC is a popular method used for evaluating integrals and solving optimization 

problems, especially when numerical or other methods cannot be easily applied, such as 

high dimensional problems. The most common form of MCMC is the Metropolis-Hasting 

algorithm (Metropolis et al , 1953; Hastings, 1970) (the Gibbs algorithm is a special case of 

the Metropolis-Hasting, (Geman and Geman, 1984)). The idea is to create a proposal 

distribution q on the parameter space. Instead of using q to generate a sequence of points 

sampled from parameter space, q is used to generate a candidate for the next sampled point 

that will be either accepted or rejected with some probability. If the candidate is rejected, 

the current point is sampled again. The random acceptance of proposals effectively changes 

the transition probabilities. Eventually, an appropriate choice of acceptance probabilities 

will result in a Markov transition matrix q‟, whose stationary distribution is proportional to 

the target distribution. 

In phylogenetics analyses, MCMC produces a posterior distribution of topologies, 

and methods are needed to summarize this distribution. Two popular approaches are the 
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maximum posterior probability topology (Rannala and Yang, 1996), and the majority-rule 

consensus topology (Huelsenbeck et al, 2002). The maximum posterior probability 

topology is the one with the highest marginal posterior probability.  In practice, there might 

be a large number of different trees in the sampled posterior. The majority-rule consensus 

topology is the topology with splits that have a marginal posterior probability greater than 

0.5. 

The BI method shares many fundamental components with ML, like the 

evolutionary model and the likelihood function. An advantage of the BI method is its 

capability to handle evolutionary model with high dimensional parameters (like the CAT 

model) using MCMC method, while ML often fails to do so (Huelsenbeck et al. 2001). 

5. Challenges in phylogenetic analysis. 

Comparative genomics reveals an enormous heterogeneity among sequences from different 

species, e.g., different substitution rates, sequence composition and gene content (Lang, 

Gary and Burger 1999; Burger, Gary and Lang, 2003; Dujon et al, 2004; Xie et al, 2005). 

This kind of heterogeneity will almost certainly lead to systematic error in phylogenetic 

analysis; at its extreme, the consequence may be inaccurate (sometimes significantly 

supported) tree topologies. For instance, in his seminal paper (Felsenstein, 1978), 

Felsenstein illustrates that when evolutionary rate variation across unrelated lineages is 

high, they may be incorrectly grouped together in phylogenetic analysis using parsimony 

method, a phenomenon termed long branch attraction (LBA). It is demonstrated that LBA 
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affects available inference methods without exception, although at varying degrees. With 

likelihood-based methods, systematic error, like LBA is often due to model violation, 

because of the model‟s unrealistic features (Sullivan and Swofford 2001). In this thesis, 

LBA is used as a general term to describe systematic error derived from model violations. 

Rapid radiation within a short time span represents another challenge (Whitefield 

and Kjer, 2008). Through incomplete lineage sorting, polymorphisms in an ancestral 

population can persist through species divergences, resulting in misleading similarities of 

DNA sequences that do not necessarily reflect population relationships (Pollard et al, 

2006). The consequence is the discordance between gene and species trees, and a 

phylogeny with short unsupported internal branches (Degnan and Rosenberg, 2009). These 

issues have come into focus because of the growing
 
capacity to generate data sets 

containing large number of genes for phylogenetic analyses (Delsuc, Brinkmann, and 

Philippe, 2005). 

The following section will describe methods to detect and avoid LBA artifact and 

rapid radiation. 

5.1 The LBA artifact and methods to detect and avoid it  

5.1.1 LBA is widespread.  

LBA is widespread in phylogenetic inference, at any level of taxonomy. A few examples 

taken from recent reviews (Philippe 2000; Bergsten 2005) are: the tree of life and the 

kingdom relationships of Eukaryotes; the class and phylum level of metazoans and plants; 
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the ordinal level of mammals and birds; and the genus and family level of fish and insects. 

LBA is also suggested for different data types (DNA, RNA, and amino acid sequences) and 

data sources alike, including nuclear, mitochondrial and chloroplast datasets.  

LBA was first theoretically demonstrated using a four-taxon dataset with the 

parsimony method. High frequency of parallel change in different species can cause 

sequence positions to arrive at the same state, undistinguishable from the true phylogenetic 

signal (Felsenstein 1978b). A number of following studies found that also distance methods 

suffer seriously from LBA; and that ML methods are least sensitive without eliminating it 

(Philippe et al. 2000b). 

5.1.2 Methods to detect and avoid LBA.  

LBA is notoriously difficult to detect and avoid. For example, a fast evolving species may 

not have a notably long branch in an incorrect phylogeny: when the out-group is distant 

from other species, fast-evolving species will be attracted to the base of the tree, and their 

branch length may not be notably long (Philippe 2000). Statistical support values cannot be 

used as indicator of LBA, as a strong artifact may lead to a well-supported yet incorrect 

tree topology. Therefore, evidence other than branch length and support values is required 

to trace LBA (Aguinaldo et al. 1997).  

The shape of a tree topology with branch length, in conjunction with the tendency 

of fast-evolving species to vary position with varying taxon sampling, is a useful indictor 

for diagnosing LBA. For instance, when a tree is rooted with a distant out-group, fast-
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evolving lineages are likely attracted to the base (Philippe et al. 2000b). If the relationship 

among lineages is very different based on different genes, those phylogenies may be due to 

LBA (to be distinguished from lack of signal and lateral gene transfer). Yet another method 

to detect LBA is to compare phylogenies and statistical support values with different 

inference methods. Parsimony and distance methods are more sensitive to LBA than 

likelihood-based methods. Therefore, if a well-supported grouping with parsimony 

becomes weakly supported with likelihood methods, this grouping is likely due to LBA.  

Another common approach to diagnose LBA uses systematic variation in data 

sampling (Philippe, Lartillot, and Brinkmann 2005), including either elimination or 

addition of taxa (i.e., elimination of the fast-evolving, and whenever they become available, 

addition of slowly evolving species that break up long internal branches), genes (preferably 

functionally unrelated genes), or sequence positions. The ultimate approach to avoid 

phylogenetic artifacts is the use of a more realistic (but more complex and computationally 

more demanding) evolutionary model. Two examples are the Gamma model that takes into 

account site rate variation, and the CAT model that accounts for account for site-specific 

features in the evolutionary processes. The application of these two models is known to 

suppress LBA in given examples (Lartillot, Brinkmann, and Philippe 2007).  

5.1.3 LBA caused by compositional heterogeneity.  

Most available evolutionary models make the assumption of compositional homogeneity. 

However, compositional heterogeneity and its effect on phylogenetic analysis has long 
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been recognized and described for both, nucleotide (Hasegawa and Hashimoto 1993) and 

protein sequences (Foster, Jermiin, and Hickey 1997; Foster and Hickey 1999). 

To overcome the artifact caused by compositional heterogeneity at the nucleotide 

sequence level, the simplest approach consists in RY coding (Phillips, Delsuc, and Penny 

2004). A serious drawback of RY coding is loss of phylogenetic information and decrease 

in phylogenetic resolution. The development of evolutionary models that take nucleotides 

compositional bias into account are a better alternative, for example, the models developed 

in (Galtier and Gouy 1998; Foster 2004). For protein coding genes, the common approach 

consists in analysis at the amino acid level, although proteins sequences are not completely 

free from compositional bias (Foster, Jermiin, and Hickey 1997; Foster and Hickey 1999).  

The new CAT-BP model accounts for variations along lineages by combination of 

CAT with the non-stationary break point (BP) model (Blanquart and Lartillot 2006; 

Blanquart and Lartillot 2008). In this combination, equilibrium frequencies change along 

lineages, with the potential to overcome the effects of compositional bias. It was shows that 

CAT-BP significantly outperforms the widely used WAG and CAT models in terms of 

both model fitness and accuracy of phylogenetic inference (Blanquart and Lartillot 2008), 

yet its application is limited because of its high computational requirements. 

5.2 Rapid radiation and incomplete lineage sorting 

Although large amounts of data, advanced evolutionary models and newly developed 

methodologies have become available, many phylogenetic relationships continue to be 
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unresolved. Some examples are relationship among most of metazoan phyla (Rokas, 

Krüger, and Carroll, 2005), major groups of insects (Whitfield and Kjer, 2008), and the 

rodent genus (Thomomys) (Belfiore, Liu, and Moritz, 2008). One of the proposed reasons 

for lacking resolution is rapid radiation. 

Detection of rapid radiation is difficult because it is not the only explanation for 

poorly resolved internal branch. Others include inadequate data, conflict within or among 

datasets, or loss of phylogenetic signal over time, and inappropriate phylogenetic methods 

and substitution models (Whitfield and Lockhart, 2007; Rokas and Carroll, 2006). Methods 

suggested for detecting real ancient radiations include comparison of results from different 

data types, to detect a potential conflict. The following sections briefly describe these 

methods.  

In the case of rapid radiation, the phylogenetic relationship will not receive 

significant support using any data type (DNA, RNA, protein, genomic or morphologic data 

(Mardulyn and Whitfield, 1999)). Applying the realistic and sophisticated evolutionary 

model will not improve the resolution, compared with the simple model. Thus, comparison 

of results from different data types and models can help to understand the true reason 

behind the poor resolution. 

The conflicting signals within a dataset may be detected by likelihood mapping 

(Strimmer and Haeseler, 1997), which analyzes all possible quartets of a dataset, and 

represents the result in an equilateral triangle. The vertices of the triangle represent three 

possible tree topologies of a quartet. The bootstrap support values for three trees will 
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determine one point inside the triangle. If there is enough phylogenetic information in the 

data, then most probability points will fall close to one of the vertices; conversely, datasets 

containing little phylogenetic information will mainly result in points falling into the center 

region of the triangle. Likelihood mapping can be obtained using the TreePuzzle package 

(Schmidt, et al., 2002).  

As the time between divergences is shorter due to rapid radiation, different ancestral 

alleles may be present in the distantly related lineages, this is called incomplete lineage 

sorting problems (Maddison and Knowles, 2006). Consequently, sequence similarity may 

not reflect the true evolutionary relationship. In these situations, different genes may 

suggest different relationships and the underlying species phylogeny will be difficult to 

resolve (Knowles and Carstens, 2007; Heled and Drummond, 2010). 

Incomplete lineage sorting is widespread in closely related speceis phylogenies than 

deep one, like Fungal phylogeny (Maddison and Knowles, 2006). Distantly related fungal 

taxa and extinction events decrease the chance that the polymorphisms of ancestral 

population appear in different lineages, then, reduce the likelihood of incomplete lineage 

sorting. Thus, incomplete lineage sorting is not a focus of this thesis.  

6. Objectives of this study. 

Our major objectives are to investigate unresolved phylogenetic issues by taking advantage 

of new data that were produced in our laboratory, and to develop new methods that increase 

the accuracy of phylogenetic inference. Phylogenetic questions include the postulated 
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monophyly of Taphrinomycotina, the exact phylogenetic position of Nucleariida, and the 

relationships among and within major fungal groups, such as zygomycetes and 

chytridiomycetes. 

To elucidate the phylogeny of Taphrinomycotina, we will address the following 

questions:  

 what is the relationship between Schizosaccharomyces and other Taphrinomy-

cotina? 

 why does the mitochondrial dataset support a different relationship than nuclear 

dataset? 

For the Nucleariida phylogeny, the following questions were asked: 

 where is the nucleariid‟s exact position in the eukaryotic tree? 

 is a mitochondrial dataset sufficient to resolve this issue? 

 how many sequence positions are required to resolve this question with confidence? 

We further attempted to resolve relationships for two less well-known major fungal groups, 

defined in traditional taxonomies as zygomycetes and chytridiomycetes:  

 are they monophyletic or paraphyletic?  

 if paraphyletic, can we resolve their branching order with confidence, with the 

currently available data?  

Previous analyses based on single or a small number of genes failed to provide 

phylogenetic resolution of these questions. In this study, we tackle them by comparing 
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results with large nuclear gene and mitochondrial gene datasets, and by employing 

likelihood-based methods that are most reliable and robust. 

As illustrated by many previous studies and the analysis of Taphrinomycotina using 

mitochondrial data (this study), phylogenetic artifacts are widespread and difficult to 

overcome. Recent studies show that heterotachous sites significantly contribute to LBA. 

We investigate if removal of highly heterotachous (HH) sites from a targeted group of 

species improves the prediction of correct phylogenetic relationships. For this, we have 

developed a statistical method that identifies and gradually removes HH sites. The 

effectiveness of our sequence removal procedure on phylogenetic inference is studied using 

two published datasets.  
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ABSTRACT 

To generate data for comparative analyses of zygomycete mitochondrial
 
gene expression, 

we sequenced mtDNAs of three distantly related
 

zygomycetes, Rhizopus oryzae, 

Mortierella verticillata and Smittium
 

culisetae. They all contain the standard fungal 

mitochondrial
 
gene set, plus rnpB, the gene encoding the RNA subunit of the

 
mitochondrial 

RNase P (mtP-RNA) and rps3, encoding ribosomal
 
protein S3 (the latter lacking in R. 

oryzae). The mtP-RNAs of
 
R. oryzae and of additional zygomycete relatives have the most

 

eubacteria-like RNA structures among fungi. Precise mapping
 
of the 5' and 3' termini of the 

R. oryzae and M. verticillata
 
mtP-RNAs confirms their expression and processing at the 

exact
 

sites predicted by secondary structure modeling. The 3' RNA
 

processing of 

zygomycete mitochondrial mRNAs, SSU-rRNA and mtP-RNA
 

occurs at the C-rich 

sequence motifs similar to those identified
 
in fission yeast and basidiomycete mtDNAs. The 

C-rich motifs
 

are included in the mature transcripts, and are likely generated
 

by 

exonucleolytic trimming of RNA 3' termini. Zygomycete mtDNAs
 
feature a variety of 

insertion elements: (i) mtDNAs of R. oryzae
 
and M. verticillata were subject to invasions 

by double hairpin
 
elements; (ii) genes of all three species contain numerous mobile

 
group I 

introns, including one that is closest to an intron
 
that invaded angiosperm mtDNAs; and 

(iii) at least one additional
 

case of a mobile element, characterized by a homing 

endonuclease
 

insertion between partially duplicated genes [Paquin,B., Laforest,M.J.,
 

Forget,L., Roewer,I., Wang,Z., Longcore,J. and Lang,B.F. (1997)
 
Curr. Genet., 31, 380–
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395]. The combined mtDNA-encoded
 
proteins contain insufficient phylogenetic signal to 

demonstrate
 
monophyly of zygomycetes. 

 

 

INTRODUCTION 

Fungi constitute a huge group of highly diverse organisms, including
 
some of the most-

studied and best-understood eukaryotic model
 
systems: „baker's yeast‟ (Saccharomyces 

cerevisiae),
 

fission yeast (Schizosaccharomyces pombe), and the filamentous
 

euascomycetes Neurospora crassa and Aspergillus nidulans. These
 
species all belong to the 

Ascomycota. Substantially fewer scientific
 
studies have been performed in members of the 

sister phylum
 

Basidiomycota and very little is known in the remaining two
 

phyla, 

Zygomycota and Chytridiomycota, often classified as „lower
 
fungi‟. This expression is a 

taxonomically vague concept
 
borrowed from Aristotle's philosophy, visioning directed 

evolution
 
from the simple (primitive, low) to the highly complex. The

 
misnomer is most 

evident in the „higher‟ ascomycetes
 
and basidiomycetes, which evolve toward microscopic, 

unicellular
 
and genetically simplified yeast-like organisms in some lineages,

 
and toward 

morphologically complex, gene-rich and biochemically
 
versatile multicellular organisms in 

others.
 
 

Although the availability of complete nuclear and mitochondrial
 
sequences of more 

than a dozen ascomycetes provides a strong
 
basis for biochemical investigations, only a few 
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complete mitochondrial
 
sequences are known from chytrids, and none from zygomycetes,

 
a 

situation that has motivated the work presented here. In fact,
 
the number of zygomycete 

nuclear gene sequences (mostly rRNA
 
sequences) is so limited that it is impossible to 

determine
 
with confidence whether or not Zygomycota is a monophyletic

 
taxon (1-3). The 

lack of resolution in these analyses
 
is consistent with estimates that even the combined 

LSU- and
 
SSU-rRNA would contain far too little information to resolve

 
many fungal 

phylogenetic relationships with confidence (4).
 
This dataset is at most sufficient for 

resolving fungal inferences
 
below the phylum level (5,6).

 
 

Sequencing complete mtDNAs from several zygomycetes might
 
be a first step in 

remediating this situation. Mitochondrial
 
phylogenies can be based on up to 13 protein 

sequences, and
 
have been shown to resolve deep divergences in the fungal and

 
animal 

lineages (7-9). For instance, Alexopolous et al.
 
(10)indicate that „additional study is needed 

to determine
 
whether the class (Trichomycetes) is a monophyletic group belonging

 
to 

Zygomycota, or merely a collection of orders grouped together
 
on the basis of a unique 

shared habitat‟. Molecular phylogenies
 
based on rRNA sequences were successful in 

moving the order
 
Amoebidiales away from zygomycetes, although they were then

 
placed 

with mesomycetozoan rotists, whose phylogenetic affiliation
 

was unresolved and 

controversial (11). Only subsequent analysis
 
with multiple mitochondrial proteins placed 

this group as the closest relative of animal, with high confidence (9). This
 
example clearly 

illustrates the requirement of multi-gene datasets
 
with at least several thousand amino acid 

positions, for resolution
 
of trees at the kingdom level.
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Furthermore, zygomycete mtDNAs are of considerable interest
 
for comparative 

gene expression studies: our preliminary data
 
indicated the presence of a mitochondrial 

rnpB gene, which encodes
 
the RNA subunit of RNase P, the enzymatically active part of

 
an 

endonuclease (ribonucleo-protein) responsible for tRNA maturation.
 
In mitochondria, the 

size and sequence of the RNA subunit varies
 

substantially, which has considerably 

complicated its identification.
 
The gene is apparently absent from all completely sequenced

 

basidiomycete and chytridiomycete mtDNAs, and presents
 
in some ascomycetes (12); to 

date, there are no published data on
 
zygomycete mitochondrial RNase P (mtP-RNA).

 
 

To help remediate the lack of data for phylogenetic inferences,
 
and to facilitate 

biochemical investigations and comparative
 
mitochondrial genome analyses, we have 

sequenced mtDNAs from
 
three distantly related zygomycetes, the Mucorales Rhizopus

 

oryzae, the Mortierellales Mortierella verticillata and the
 
Harpellales Smittium culisetae. In 

this article, we compare
 
their mitochondrial genomes (gene content, gene organization,

 

genetic code and widely conserved 3' RNA processing sites).
 
We will then present 

secondary structure models and expression
 
data for seven newly identified zygomycete 

mtP-RNAs. Finally,
 
we will test whether zygomycetes are monophyletic, and

 
provide 

evidence that the group I introns invasion of cox1 gene
 
in angiosperms originated in a 

zygomycete close to Rhizopus. 

MATERIALS AND METHODS 

Strains and culture conditions 
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The various zygomycete strains were obtained from Kerry O'Donnell
 
(National Center for 

Agricultural Utilization Research, Peoria,
 
IL; NRRL), R.W. Lichtwardt (Department of 

Botany, University
 
of Kansas, Laurence, KS; RWL) and Carolyn Babcock (Canadian

 

Collection of Fungal Cultures, Ottawa; DAOM). All strains, R. oryzae
 
(DAOM 148428, 

previously designated as Rhizopus stolonifer),
 
R.stolonifer (DAOM 194667), Rhizopus 

oligosporus (NRRL 2710),
 
M.verticillata (NRRL 6337), Radiomyces spectabilis (NRRL 

2753),
 
Mucor mucedo (NRRL 3635) and S. culisetae (strain 18-3; R.W.

 
Lichtwardt), were 

grown in YG medium consisting of 0.5% yeast
 
extract and 3% glycerol. Liquid cultures of 

500 ml in 2 L Erlenmeyer
 
flasks were grown at room temperature under gentle shaking (

100
 
r.p.m.). 

DNA and RNA extractions 

For mtDNA and RNA extractions, the cells were broken mechanically,
 
and a mitochondrial 

fraction was isolated by differential centrifugation (8). This fraction was lysed in the 

presence of 1% SDS and 100
 
µg/ml proteinase K at 50°C for 1 h, and after phenol–

chloroform
 

extraction, the nucleic acids were precipitated with ethanol.
 

For RNA 

purifications, the high molecular weight RNA fraction
 
was precipitated with 2 M LiCl, 

redissolved in RNase-free water
 
and ethanol-precipitated. MtDNAs from all zygomycete 

strains
 
were purified from total cellular nucleic acids by Cesium chloride/bisbenzimide

 

density gradient centrifugation.
 
 

Cloning and sequencing of complete mtDNAs 
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Library construction and DNA sequencing followed previously
 
published protocols (8). 

Briefly, mtDNAs were physically sheared
 
by nebulization (13), and a size fraction of 1300–

4000
 
bp was recovered after agarose gel electrophoresis. The DNA

 
was incubated with a 

mixture of T7 DNA polymerase and Escherichia
 
coli DNA polymerase I (the Klenow 

fragment) to generate blunt
 
ends, and then cloned into the EcoRV cloning site of the 

phagemid
 

pBFL6 (B. F. Lang, unpublished data). Recombinant plasmids containing
 

mtDNA inserts were identified by colony hybridization using
 
mtDNA as a probe. Clones 

contained in the random libraries were
 
sequenced to ~ 8-fold coverage, and remaining gaps 

were closed
 
by primer walking or sequencing of PCR-amplified DNA fragments.

 
The 

expected quality of the sequenced mtDNAs is <1 error
 
in 10 000 bp.

 
 

The mtDNA sequences of R. oryzae, M. verticillata and S. culisetae
 
have been 

deposited in GenBank (accession nos AY863212, AY863211 and AY8632133, 

respectively).
 
 

PCR amplification of rnpB genes 

Mitochondrial rnpB genes of R. stolonifer, M. mucedo, R. spectabilis
 
and R. oligosporus 

were PCR-amplified from ~100 ng of the respective
 
mtDNAs in a 50 µl reaction mixture 

[200 µM dNTP,
 
2.5 mM MgCl2, 2 nM of primers, 5 µl of 10x buffer and

 
3 U of DNA 

polymerases mixture from the Expand high fidelity
 
kit (Roche Catalog no. 1732650) and 

degenerate primers]. The
 
annealing temperature of the PCR amplification was 50°C.

 

Sequences of the degenerate primers are 5'-GTAATGGCAGCATACTAGACTCAT-3'
 
and 
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5'-TTGAACTCCCAAGTTTTATGTATG-3'. The amplification products
 
were cloned and 

sequenced. The rnpB sequences of R. stolonifer,
 
R. oligosporus, M. mucedo and R. 

spectabilis have been deposited
 

in GenBank (accession nos AY861429, AY861440, 

AY861441, and AY861442,
 
respectively).

 
 

RNA circularization by ligation and RT–PCR 

RNA ligation of mtP-RNAs, followed by RT–PCR amplification,
 
was performed to 

determine the precise 5' and 3' termini of
 
RNase P RNAs according to the previously 

published protocols
 
(12). The primers are 5'-CTCTTATAGGATAATACAAAGTTG-3' and 

5'-GGCCGAAGAATAAAGAGGGA-3'
 
for M.verticillata, and 5'-ACCCTAATTTTCATT-

AGATATTT-3' and 5'-AATCCTTAGTAAGGATAGCTT-3'
 
for R.oryzae.

 
 

RT–PCR of mtP-RNA from R.oryzae  

Mitochondrial RNA of R. oryzae was treated with DNase I and extracted
 

with 

phenol/chloroform, until no genomic DNA could be amplified
 
by PCR using the mtP-RNA-

specific primers 5'-TTCTTAGAGTTAAATAAGCC-3'
 
and 5'-TTGGAGGAAAGTCCG-

GG-3'. Following these treatments, we
 
amplified the mtP-RNA by RT–PCR as described 

above using
 

a sample without reverse transcription as negative control.
 

Following 

amplification and separation on a 0.8% agarose gel,
 
the resulting DNA fragment was 

cloned and sequenced.
 
 

S1 mapping 
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DNA oligonucleotides and a 10 bp DNA ladder (Invitrogen 10821-015)
 
were labeled at 

their 3' termini with ddATP-
32

P (Amersham PB10235)
 
and terminal deoxynucleotidyl 

transferase (MBI Fermentas EP0161)
 
according to the manufacturer's recommendations.

 
 

A total of 100 000 c.p.m. of gel-purified labeled oligonucleotides
 
were hybridized to 

10 µg of total RNA, as described in
 

the protocol by Hahn and Breeden 

(http://www.fhcrc.org/labs/hahn/methods/mol_bio_meth/s1_oligo_probe.html),
 

and S1 

nuclease digestions were carried out at 37°C for
 
30 min, after the addition of 20 U of S1 

nuclease and the buffer
 
provided by the manufacturer (MBI Fermentas EN0321). The 

product
 
was then ethanol-precipitated and dissolved in 4 µl of

 
RNase-free water. An aliquot 

of 2 µl of the product was
 
mixed with 2 µl of the dye solution provided with the

 
10 bp 

ladder (Invitrogen 10821-015), denatured at 75°C and
 
loaded on a 7% polyacrylamide 

denaturing sequencing gel. The
 
following oligonucleotides were used:  

SSU-rRNA, 5'-AAATAAAGGGTTTAATATATTGGGAGGGACTTATTGTCCC 

CCCGGTAATAACCATTCAGCCACTCGTTCCCGAACGGCT-3'
 
 

cox1 mRNA, 5'-CAGATTCTAAGGGGGTGTTATATTATTAATTTAATTAAGA 

TTGAACTGGTAATGAATTTACAGTATGGA-3'.
 
 

Phylogenetic inference 

Mitochondrial protein sequences from all completely sequenced
 

zygomycetes, 

chytridiomycetes and basidiomycetes were included
 
in phylogenetic inference (for species 

http://www.fhcrc.org/labs/hahn/methods/mol_bio_meth/s1_oligo_probe.html
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names and GenBank accession
 
nos, see legend of Figure 5). Protein sequences from 

apocytochrome
 

b (Cob), as well as 7 subunits of NADH dehydrogenase (Nad),
 

3 

cytochrome c oxidase (Cox) subunits and 2 ATP synthetase (Atp)
 
subunits were aligned 

with Muscle (14), concatenated and trimmed
 
with Gblocks [using default parameters (15)] 

to remove ambiguously
 
aligned regions. The resulting alignment contained 2890 aligned

 

positions. Maximum likelihood (ML) phylogenies were inferred
 
from this alignment using 

both PHYML (16) and IQPNNI (17); ML
 
bootstrap support was determined based on 100 

replicates, using
 
both programs. All phylogenies were inferred using the JTT amino

 
acid 

substitution model and gamma distribution correction
 
for variation of rates across sites. 

Phylogenetic inference based on concatenated datasets can lead
 

to tree 

reconstruction artefacts, such as long-branch attraction,
 

resulting from differences in 

relative evolutionary rates between
 
genes [sometimes referred to as the covarion-like 

behavior of
 
different genes (18)]. Ideally, during the ML tree search procedure,

 
nuisance 

parameters, such as branch lengths and the Γ distribution
 
shape parameter (α), could be 

optimized separately for each gene;
 
however, this method results in the estimation of many 

more
 
parameters, potentially more than can be statistically justified.

 
For this reason, we 

partitioned the dataset into four functional
 
categories: Atp (253 positions), Cob (361 

positions), Cox (876
 
positions) and Nad (1400 positions). The additional parameters

 

included in this partitioned dataset were justified using the
 
χ

2
 test (P < 0.0001). Using this 

partitioned dataset, a topology
 
was inferred from this alignment using MrBayes, with 

branch
 
lengths and α parameter unlinked across partitions (19). In addition,

 
a ML tree was 
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determined from this partitioned dataset using
 
an adaptation of the method of (18). All 

possible tree topologies
 
were generated, with constraints of groups that received at

 
least 

95% bootstrap support under ML, using both IQPNNI and
 
PHYML (Supplementary Figure 

1). Log-likelihoods were calculated
 
separately for each partition using PHYML, under each 

of the
 
topologies, and the sum over all partitions was calculated for

 
each tree. The tree 

found to maximize the sum log-likelihood
 
of the dataset was taken to be the ML tree (this 

method is referred
 
to henceforth as separate analysis). Bootstrap support was also

 
calculated 

using both of these methods, based on 100 replicates.
 
Likelihood ratio tests were performed 

using genewise optimized
 
site likelihoods, given the 99 tree topologies described in

 

Supplementary Figure 1, and using Tree-Puzzle to generate sitewise
 
likelihoods (20) along 

with CONSEL (21). 

Additionally, phylogenetic analysis of closely related fungal,
 
green algal and plant 

intronic open reading frames (ORFs) of
 
the same cox1 intron (for species names and 

GenBank accession
 
nos, see legend of Figure 5) were carried out. Sequences were

 
aligned 

using Muscle and trimmed with Gblocks, and the resulting
 
alignment was manually refined. 

A ML phylogeny was inferred
 
using IQPNNI, and ML bootstrap support was determined 

based
 
on 100 replicates. 

RESULTS AND DISCUSSION 

Genes in addition to the standard fungal set, rnpB and rps3  
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The mitochondrial genomes of the zygomycetes R. oryzae (previously
 
listed incorrectly as 

R. stolonifer), M. verticillata and S. culisetae
 
were completely sequenced. Like most other 

fungal mtDNAs, they
 
map as circular molecules (Figure 1), although they are most

 
likely 

organized as linear multimeric concatamers in vivo, as
 
in other fungi (22). mtDNAs of the 

three species carry the basic
 
fungal set of genes (Table 1), and encode a full set of tRNAs

 

[only trnI(cau) is absent in R. oryzae], the RNA component of
 
mitochondrial RNase P 

(rnpB) and a ribosomal protein (rps3;
 
lacking in R. oryzae). MtDNA-encoded rps3 has 

previously been
 
identified in several ascomycetes and in one chytridiomycete

 
(Allomyces 

macrogynus; Blastocladiales), but not in other chytridiomycete
 

orders, including 

Monoblepharidales, Spizellomycetales and Chytridiales.
 
It has been proposed that this gene 

has been lost independently
 
three times from opisthokont mitochondrial genomes: in the 

chytridiomycete
 
lineage, in the animal lineage (23) and now also in one of the

 
three 

zygomycetes presented here. We assume that, in all cases,
 
rps3 has been transferred to the 

nuclear genome, like other
 

ribosomal protein genes missing in fungal mitochondrial 

genomes (24). 

The sizes of zygomycete mtDNAs are within a close range of 54–58
 
kb (Figure 1). 

Genes are encoded on both strands, but are not
 
as tightly packed as in animals and some 

ascomycetes: only 40.6% of mtDNAs
 
in R. oryzae, 43.1% in M. verticillata and 35.3% in S. 

culisetae
 
are coding. Nonetheless, the coding regions of nad2/nad3 and

 
nad4L/nad5 of R. 

oryzae, respectively, overlap by 1 nt (i.e.
 
the last nucleotide position of the UAA stop 

codon of the upstream
 
gene is the first nucleotide of the AUG start codon of the 
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downstream
 
gene; Figure 1). No conservation of mitochondrial gene order

 
is observed 

between these species.
 
 

First steps toward a derived genetic code in zygomycetes 

Both R. oryzae and the fast-evolving S. culisetae have retained
 
the standard translation code 

for protein coding genes, a trait
 
inherited from the eubacterial ancestors of mitochondria. 

However,
 
M. verticillata reassigns two UGA „stop‟ codons as

 
tryptophan, once each in 

nad3 and nad4. UGA(Trp) codons are
 
also present in the S. culisetae intronic ORF283 and 

ORF248,
 
both encoding group I introns homing endonucleases of the LAGLI-DADG

 
type. 

UGA(Trp) at amino acid position 237 of ORF248 is part
 
of a distinctive, highly conserved 

sequence motif of this class
 

of endonuclease, strongly suggesting its translation as 

tryptophan.
 
It is possible that the presence of this UGA(Trp) is a vestige

 
of horizontal intron 

transfer from a fungus adapted to this
 

translation code. In fact, according to our 

phylogenetic analyses
 
of intron endonucleases (Figure 5B), S. culisetae ORF248 is closely

 

related to ORF313 of Podospora anserina, which makes preferential
 
use of UGA(Trp) in 

its genes and intronic ORFs. Like in the
 
fission yeast S. pombe and the basidiomycete 

Schizophyllum commune,
 
the mtDNAs of S. culisetae and M. verticillata do not encode 

trnW(uca),
 
which would efficiently recognize both UGA and UGG tryptophan

 
codons. We 

assume that in all these cases, UGA codons are (albeit
 
inefficiently) decoded by trnW(cca) 

(25, 26). However, it cannot
 
be excluded that, alternatively, the C in the wobble position

 
of 
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the anticodon is either modified or partially edited to allow
 
efficient recognition of 

UGA(Trp) codons.
 
 

The zygomycete mtDNAs described here encode complete sets of
 
tRNAs sufficient 

to recognize all encountered codons (for codon
 
usage, see Supplementary Table 1S). R. 

oryzae does not have trnI(cau);
 

however, ATA(Ile) codons are absent in standard 

mitochondrial
 
genes, although they occur in intronic ORFs. Incidentally, a

 
strikingly similar 

scenario exists in Schizosaccharomyces octosporus.
 
It has been suggested (27) that either 

(i) the tRNA required
 
for translation of ATA(Ile) is imported from the cytoplasm to

 

recognize these codons or (ii) the intronic ORFs are neither
 
translated nor required for 

intron splicing. A further explanation
 
is that these codon positions are recognized by other 

tRNAs
 
at low efficiency, resulting in amino acid misincorporation,

 
which might be 

permissible at poorly conserved amino acid positions
 
of proteins.

 
 

Whatever the mechanism of codon recognition, we suggest that
 
such unexpected 

codon usage in intronic ORFs reflects horizontal
 
intron transfer from species that are 

adapted to the use of
 
UGA(Trp) and/or ATA(Ile). This codon usage is common in fungi

 
and 

several other eukaryotic lineages.
 
 

Eubacteria-like mtP-RNAs in zygomycete mitochondria 

Mitochondrial rnpB genes (encoding the mitochondrial RNA subunit
 
of RNase P, mtP-

RNA) were identified by in silico analysis in
 
all three zygomycetes using the previously 
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described procedures (12), and their RNA secondary structures were modeled by 

phylogenetic
 
comparative analysis (Figure 2) (see also http://megasun.bch.umontreal.ca/ 

People/lang/rnpB/).
 
The presence of this gene in all three zygomycetes is striking,

 
because 

outside fungi, rnpB is only present in the green alga
 
Nephroselmis olivacea (28) and in 

various jakobids (B. F. Lang
 
and E. Seif, unpublished data), including Reclinomonas 

americana
 
(29). Within fungi, it is only present in some ascomycetes,

 
but absent in 

basidiomycetes and chytridiomycetes (12). 

The inferred size of the S. culisetae mtP-RNA is 145 nt, close
 
to the shortest known 

example (140 nt, in Saccharomycopsis fibuligera)
 
(30). Most remarkably, the highly 

reduced mtP-RNA structures
 
of S. culisetae and budding yeasts are almost identical (Figure 

2),
 
perfectly matching the minimum consensus secondary structure

 
of fungal mtP-RNAs 

(12). In contrast, rnpB from M. verticillata
 
and R. oryzae are the largest genes of this class 

ever identified
 
(980 and 830 bp, respectively), even larger than rnpB genes

 
studied in 

bacteria (31). In addition, the zygomycete mitochondrial
 
RNA secondary structures are the 

most bacteria-like among fungi.
 
 

To verify the expression of the R. oryzae and M. verticillata
 
genes, we determined 

their precise 5' and 3' ends by sequencing
 
RT–PCR products of circularized mtP-RNAs 

(Figure 2). The
 
3' end of M. verticillata is 9 nt longer than anticipated, elongated

 
by a 

cytidine-rich stretch of sequence. A similar extension
 
is located at the 3' terminus of 

Schizosaccharomyces octosporus
 
mtP-RNA (12) and downstream of protein coding genes 

http://megasun.bch.umontreal.ca/%20People/lang/rnpB/
http://megasun.bch.umontreal.ca/%20People/lang/rnpB/
http://megasun.bch.umontreal.ca/%20People/lang/rnpB/
http://nar.oxfordjournals.org/cgi/content/full/33/2/734#B12
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in a variety
 
of fungi (see below; Figure 3). The 5' end of M. verticillata,

 
and both the 5' and 

3' termini of R. oryzae mtP-RNAs, match the
 
proposed secondary structure model and 

reveal little heterogeneity
 
of mtP-RNA termini (Figure 2). 

In evolutionary terms, zygomycete mtP-RNA structures cover an
 
unprecedented 

wide range of intermediate stages in loss of RNA
 
structural elements. The mtP-RNAs from 

R. oryzae and closely
 
related species have the most bacteria-like secondary structures,

 

containing almost all structural elements of the bacterial minimum
 
secondary structure 

consensus (32). They are followed by M. verticillata,
 
whose structure closely resembles the 

more derived mtP-RNA of
 
the ascomycete Taphrina deformans (12). Finally, the tiny, 

yeast-like
 

mtP-RNA molecule of S. culisetae has no P2 helix, which is otherwise
 

omnipresent in mtP-RNAs. Note that this helix is also
 
absent in M. verticillata, potentially 

indicating its loss in
 
a common ancestor.

 
 

The most bacteria-like fungal mtP-RNA secondary structure is
 
that of R. oryzae, 

only lacking P13, P14 and P19, which are otherwise
 
only present in the protist mtP-RNAs 

of N. olivacea and R. americana.
 
The large size of the R. oryzae and M. verticillata mtP-

RNAs is
 
due to insertions at the J5-15 and J5-18 junctions, respectively,

 
and in the P12 

helix. In order to determine whether these regions
 
are conserved structural elements or 

more variable insertion
 
elements or introns, we amplified the cDNA sequence of the R. 

oryzae
 
mtP-RNA, and the genomic sequences from the closely related

 
Mucorales M. 

mucedo, R. spectabilis, R. oligosporus and R. stolonifer. Figure 2
 
shows that the insertion 
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sequences can be folded into
 
double hairpin structures [DHEs (33)]. Because the cDNA 

sequence
 
of the R. oryzae mtP-RNA is identical to the genomic sequence,

 
these variable 

regions are not introns. Furthermore, the insertion
 
points and sizes of these regions vary 

substantially, indicating
 
that they have been acquired recently and independently. Their

 

presence in mtP-RNAs pinpoints structural regions that are likely
 
not critical for RNase P 

activity. An analogous situation has
 
been described in some cyanobacteria, where P-RNAs 

contain short
 
tandem repeats that increase the length of helix P12. Site-directed

 
mutagenesis 

experiments have shown that this helix is not required
 
for catalytic activity in vitro, 

implying that it is also unlikely
 
to be crucial for the in vivo activity (34).

 
 

Conserved C-rich motifs in mRNAs and SSU-rRNA 

Small C-rich clusters are present downstream of mitochondrial
 
protein- and SSU-rRNA 

coding regions, in all three species (Figure 3).
 
The consensus sequence of this motif varies 

only slightly
 
among zygomycetes. It also exists in basidiomycetes and in fission

 
yeasts, 

pointing to a shared function. Mapping of the 3' end
 
of the M. verticillata mtP-RNA (which 

also terminates with this
 
motif as discussed above; Figure 2), of cox1 and the SSU-rRNA

 
of 

R. oryzae shows that these C-rich motifs are the site of 3'
 
RNA processing, and are retained 

in the mature RNA molecules.
 
The presence of ragged 3' ends (Figure 3) indicates that 

these
 
are generated by an exonuclease trimming mechanism. Similar

 
observations have 

been made in fission yeasts (12, 27). This
 
mechanism resembles that of nuclear and viral 

RNAs terminating
 
in polyuridine motifs that serve as a binding site for the La

 
protein 
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implicated in RNA protection against exonucleases [reviewed
 
in (35); homologs of La are 

known from a range of fungi and
 
animals].

 
 

More instances of mobile endonuclease elements? 

As reported earlier, the chytridiomycete fungus A. macrogynus
 
has a novel mtDNA 

insertion element whose sequence is absent
 
in the close relative, Allomyces arbusculus. 

This element consists
 
of a duplicate C-terminus of a foreign atp6 gene, plus an ORF

 

encoding an endonuclease that is responsible for its mobility
 
(36). The inserted atp6 portion 

is fused in phase with the resident
 
gene (Figure 4), reconstituting an obviously functional 

hybrid
 
gene of standard length and amino acid conservation. In fact,

 
it has been shown that 

homing endonucleases can be mobile even
 
independent of introns and genes (37), and that 

they are capable
 
of carrying genetic material from one site to another when they

 
migrate. 

Intriguingly, similar gene hybrids are present in the mtDNAs
 
of R. oryzae (atp9*-C) 

and M. verticillata (cox2*-C), including
 
ORF376 (R. oryzae) and ORF342 (M. verticillata) 

(Figure 3). ORF342
 
has no significant similarity to known endonucleases, but ORF376,

 
like 

the mobile element endonuclease of A. macrogynus (36), encodes
 
a protein related to 

homing endonucleases of the GIY-YIG type
 
(38, 39). The same structural organization is 

seen in the atp6-ORF360-atp6*-C
 
gene region in A. macrogynus, atp9-ORF376-atp9*-C in 

R. oryzae
 
and cox2-ORF342-cox2*-C in M. verticillata (Figure 3), indicating

 
the presence 

of similar mobile elements. However, contrary to
 
the A. macrogynus case, we currently do 

not have biochemical
 
evidence for the endonucleolytic activity. Both the cox2*-C

 
and 
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atp9*-C fragments of the two zygomycetes encode C-terminal
 
ends that are 100% identical 

at the amino acid level, suggesting
 
that the source of potential transfers are closely related 

zygomycete
 
species.

 
 

Lateral transfer of a group I intron from zygomycete to angiosperm mitochondria 

A significant portion of the genomes described here is occupied
 
by introns (R. oryzae 

15.8%; M. verticillata 8.6%; and S. culisetae
 
27.4%). With 14 introns, the mtDNA of S. 

culisetae contains the
 
largest number, 9 of which are located in the cox1 gene (Table 1).

 

Here, all the identified zygomycete introns are of group
 
I and 22 contain intronic ORFs: 

sixteen of the LAGLI-DADG type
 
and six of the GIY-YIG type. In R. oryzae, we identified 

one
 
intron [cox1-i1(ORF305)], which is most similar to introns inserted

 
at the same 

positions of angiosperm cox1 genes (highest BLAST
 

expect value of e
–114

 with 

Philodendron oxycardium, Lamium
 
sp. and Malpighia glabra). Because this is the only 

group I
 
intron in vascular plant mtDNAs, it has most likely been acquired

 
by lateral 

transfer. The hypothesis of recent horizontal transfer
 
of this intron from a fungal donor to 

flowering plants (40)
 

is further based on the incongruence between the intron and
 

organismal phylogenies, and its closer phylogenetic relationship
 
to a fungal intron than to 

those of Marchantia and Prototheca
 
(40-43). However, because of the high mobility of this

 

intron and the possibility of multiple lateral transfers, the
 
published phylogenetic inferences 

have to be interpreted with
 
caution.
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The presence of additional, highly similar introns in three
 
fungi, R. oryzae, S. 

culisetae (this paper) and Monoblepharella15
 
(8), allows us to more rigorously test the 

hypothesis of Vaughn
 
et al. by phylogenetic analysis  (Figure 5B). Our analysis reveals

 
that 

ORFs from R. oryzae, Monoblepharella15 and the three angiosperms
 
group together with 

high support (98%). ORF305 from R. oryzae
 
is the closest and most similar relative of the 

angiosperm ORFs,
 
suggesting that the fungal donor of the group I intron and its

 
resident 

ORF was a zygomycete. This scenario is biologically
 
meaningful, because symbiotic 

mycorrhizal zygomycetes live in
 
close association with most plants. However, note that 

ORF248
 
from S. culisetae branches with ORF313 from P. anserina. This

 
observation, along 

with the presence of a UGA codon specifying
 
tryptophan in ORF248 (see above), suggests 

a second case of
 
lateral transfer, this time from a euascomycete close to P. anserina,

 
into a 

zygomycete.
 
 

Phylogenetic analysis with standard mitochondrial proteins: are zygomycetes 

paraphyletic? 

The availability of complete mtDNAs from three distant zygomycetes
 

provides an 

opportunity for testing the monophyly of Zygomycota.
 
Tree topologies were inferred from 

a 2890 position concatenated
 
protein alignment using two standard ML-based methods, 

MrBayes
 
and separate ML analysis (45). The results of these analyses are

 
summarized in 

Figure 5A, which presents the tree produced by
 
IQPNNI, along with bootstrap values from 

all methods. All methods
 
produced similar results, except that separate analysis recovered
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monophyly of S. culisetae and M. verticillata (81% bootstrap support).
 
The latter topology 

was also found in the „credible set‟
 
in three independent runs of MrBayes (5.3, 44.7 and 

99.0% posterior
 
probability, respectively; MrBayes bootstrap support for this

 
grouping was 

45%). Although these data support both of these
 
topologies, it is interesting that the 

monophyly of S. culisetae
 
and M. verticillata is better supported under more sophisticated

 

(yet statistically valid) models.
 
 

Although this phylogeny is generally robust, bootstrap support
 
values indicate two 

major areas of uncertainty: the position
 
of A. macrogynus and the relative branching 

positions of the
 
zygomycetes. Indeed, also the approximately unbiased likelihood

 
ratio test 

suggests these same problems. When sitewise likelihoods
 
are calculated separately for each 

functional class, the confidence
 
set contained a total of 17 tree topologies that failed to 

reject
 
the data (P < 0.05). Among these topologies, A. macrogynus

 
branches immediately 

above, immediately below or monophyletic
 
with the chytridiomycetes, and R. oryzae and 

M. verticillata are
 
found to be either monophyletic or paraphyletic (with either

 
species 

branching more deeply than the other). Although S. culisetae
 
and M. verticillata are 

monophyletic in the best tree under this
 
model of separately optimized functional classes, 

all topologies
 
in which all three zygomycetes are monophyletic are rejected.

 
It is worth 

noting that several obvious wrong positions for
 
S. culisetae were also observed (e.g. as 

most ancestral among
 

fungi, or among the chytridiomycetes), suggesting that the 

accelerated
 
evolutionary rate in this species causes a long-branch attraction

 
artefact (44). 

Similar results are obtained when sitewise likelihoods
 
were calculated from the fully 
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concatenated alignment. Clearly,
 
these data are insufficient to resolve the phylogeny of the

 

zygomycetes, most likely because these three species diverge
 
deeply within fungi, and at 

relatively short distance from each
 
other. In such a situation, two strategies can be used to 

resolve
 
the dilemma, addition of more zygomycete and neighboring fungal

 
lineages or 

addition of more sequence per species. As our protein
 
dataset is already based on complete 

mtDNAs, this latter strategy
 
implies resorting to expressed sequence tag and/or nuclear 

genome
 
sequences, a currently ongoing project. 

SUPPLEMENTARY MATERIAL 

Supplementary Material is available at NAR Online. 
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Tables 

Table 1 Overview of gene, ORF and intron content in zygomycete mtDNAs 
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Figure legends 

 

Figure 1 Genomic maps of the mtDNAs of R. oryzae, M. verticillata and S. culisetae. The 

inner circle gives a scale in kilo base pair. The outer circle indicates the location of genes, 

exons (black) and introns plus intronic ORFs (gray). Names of ORFs, rps3 and rnpB are 

colored to distinguish them from standard fungal genes (black). 

 

Figure 2 Secondary structure models for mtP-RNAs from R. oryzae, R. stolonifer 194667, 

R. oligosporus, R. spectabilis, M. mucedo, S. culisetae and M. verticillata. Positions in red 

are invariant in the minimum bacterial consensus (32); uppercase letters in the mtP-RNAs 

indicate 100%, lowercase 90%, conservation of the minimum bacterial consensus 

sequence. The arrows pinpoint experimentally determined termini; arrow length is 

proportional to the percentage of molecules ending at a defined position. Double hairpin 

elements are named in green. The few nucleotides colored blue in the R. stolonifer mtP-

RNA model are different in its close relative R. oryzae. 

 

Figure 3 3' RNA processing motifs in zygomycetes, basidiomycetes and fission yeasts. The 

3' termini of the R.oryzae mitochondrial SSU rRNA and of cox1 mRNA were determined 

by nuclease S1 assays and run on a sequencing gel against a commercial 10 bp ladder 

(Invitrogen 10821-015) that was 3' labeled with ddATP (
32

P). For experimental details see 

Materials and Methods. The positions of 3' termini for both molecules are indicated in the 

derived consensus sequences by arrows. A small fraction of the undigested form of the 
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SSU rRNA probe is apparent on the gel. In the lower part of the figure, additional, similar 

motifs in fissions yeasts and basidiomycetes are presented. Uppercase letters indicate 100% 

conservation and lowercase letters correspond to at least 60% nucleotide conservation. 

Lowercase Cs between brackets indicate the C-clusters of variable length. 

 

Figure 4 Schematic view of atp6 regions of A. macrogynus and A. arbusculus (36), atp9 of 

R. oryzae and cox2 of M. verticillata. Coding sequences are enclosed in boxes and 

intergenic spacers are represented by a thick line. Black boxes indicate sequences present 

before the invasion by the corresponding ORF. Gray boxes represent ORFs and newly 

acquired sequences. 

 

Figure 5 (A) Fungal phylogeny based on multiple proteins. Mitochondrion-encoded 

protein sequences from Harpochytrium sp. 94, Crinipellis perniciosa, Cryptococcus 

neoformans, Hypocrea jecorina, Amoebidium parasiticum, Spizellomyces punctatus, 

Yarrowia lipolytica, Monosiga brevicolis, R.oryzae, Rhizophydium sp. JEL136, Penicillium 

marneffei, Pichia canadensis, Cantharellus cibarius, Sarcophyton glaucum, S. culisetae, 

Monoblepharella15, Metridium senile, A. macrogynus, Hyaloraphidium curvatum, 

Candida albicans, P. anserina, S. commune and M. verticillata were aligned, concatenated 

and trimmed. Phylogenies were inferred from the resulting 2890 character alignment using 

four different methods. Shown here is the ML tree inferred using IQPNNI, along with 

bootstrap support values from PHYML, IQPNNI, MrBayes and separate ML analysis, in 
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order from top to bottom, based on 100 replicates. Nodes with 100% bootstrap support 

using all methods are indicated by an „asterisk‟. Clearly, both the position of A. 

macrogynus and the branching order of the zygomycetes remain unclear, although the 

topology is robust overall. (B) Phylogeny of intronic ORFs. Sequences of intronic ORFs 

inserted in cox1 genes were obtained from the following species: ORF305 from R. oryzae, 

ORF248 from S. culisetae, ORF318 from Monoblepharella15 (NP_803527), ORF333 from 

Schizosaccharomyces japonicus (NP_705621), ORF317 from S. octosporus (NP_700369), 

ORF313 from P. anserina (NP_074934), ORF319 from Pichia canadensis (NP_038209), 

ia4 from S. cerevisiae (AAB21126, ORF251 Chlorella vulgaris (T07187), ORF234.2 

Prototheca wickerhamii (NP_042245), ORF280 from Peperomia obtusifolia (AAB86934, 

ORF279 from Veronica catenata (CAA11340 and ORF277 from Maranta leuconeura 

(CAA11350. Sequences were aligned as described in Materials and Methods, and a 

phylogeny was inferred by ML. Only bootstrap support values >50% are shown. This tree 

robustly supports the monophyly between sequences from Monoblepharella15, R. oryzae, 

and the angiosperms, strongly suggesting horizontal intron transfer between these two 

groups. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Supplementary Information: 

  

 

Figure 1S: 

Legend to Figure 1S: Strict consensus of tree topologies examined under separate 

analysis and likelihood ratio tests.  For these analyses, all possible topologies were 

generated, with certain constraints (representing groups that received a minimum of 95% 

bootstrap support under standard ML analysis).  Ascomycetes, basidiomycetes, 

ascomycetes + basidiomycetes, and chytridiomycetes (excluding A. macrogynus) were 

constrained as monophyletic groups, with the Holozoa as outgroup.  Additionally, only 

topologies in which A. macrogynus appeared as a monophyletic member of the chytrids, at 

the base of the fungal clade, or at the base of all fungi, excluding the chytrids were 

included. Likewise, only topologies in which R. oryzae or M. verticillata formed a 

monophyletic group with the ascomycetes plus basidiomycetes (to the exclusion of the 

chytrids) were considered.  Finally, the previous rules were relaxed for S. culisetae, which 
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was allowed to be positioned anywhere among the ingroup species, except within the 

ascomycetes, basidiomycetes, or chytridiomycetes (excluding A. macrogynus).  For this 

reason, all positions considered for S. culisetae are indicated with a dotted line.  These rules 

resulted in a set of 99 distinct topologies (available upon request). 
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Table 1S: Codon usage in the mtDNAs of R. oryzae, M. verticillata, S. culisetae 

================================================================================ 

F TTT 226,199,358   S TCT 150,135,150   Y TAT 141,162,254   C TGT  21, 23,36 

      130,117,252        81, 84,111         111,108,272        24, 23,41 

            

F TTC 119,184, 29   S TCC   3,  7,  1   Y TAC  35, 40,  4   C TGC  --, --,-- 

       25, 20, 14   9, 11,  9           24, 17, 6           5, --, 2   

 

L TTA 542,566,592   S TCA  90,132,108   * TAA  13, 10, 15   * TGA  --,  2,-- 

      200,211,424        54, 62, 60           7,  8, 14          --, --, 2 

           

L TTG   2, 13,  1   S TCG   6,  6,  2   * TAG   1,  3, --   W TGG  77, 62,57  

       29, 14, 22           9,  8,  5           3,  1,  2          31, 21,39 

=========================================================================== 

L CTT  62, 65, 41   P CCT  94, 87,121   H CAT  72, 74, 72   R CGT  --,  6, 7    

       56, 45, 26          45, 34, 60          32, 37, 60         8, 16,20 

  

L CTC  --,  1,  1   P CCC   2,  7,  3   H CAC  15, 10,  2   R CGC  --, --,--            

        3,  3,  5           4, --,  3           6,  3,  3           3, --,-- 

          

L CTA  60, 21, 12   P CCA  71, 87, 40   Q CAA  79, 88, 58   R CGA  46, 19, 1   

       36, 20, 24          24, 23, 23          81, 47,109          19, 10, 6 

          

L CTG   2,  3, --   P CCG  --,  7,  2   Q CAG   4,  2, --   R CGG  --,  3, 1 

        3,  5,  4           7,  3,  2           5,  6,  3           6,  2, 1  

=========================================================================== 

I ATT 342,249,259   T ACT 131,131, 97   N AAT 146,155,237   S AGT  89, 72,109 

      222,119,228          82, 68, 98         184,204,436          56, 45, 80 

            

I ATC  31, 91,  4   T ACC   1,  4,  6   N AAC  26, 55,  4   S AGC   4, 20,  1 

       32, 18, 21           7,  9,  5          31, 15, 10         4, 11,  2 

            

I ATA  --,173,433   T ACA  99,128,120   K AAA  97,137,170   R AGA  38, 66, 55   

       17,121,266          48, 50, 60         224,210,501          68, 42, 99 

 

M ATG 129,117, 91   T ACG   2,  6,  4   K AAG   3,  6, --   R AGG  --, --, -- 

      121, 32, 48           4,  3,  4          37, 25, 17           5,  3,  5 

=========================================================================== 
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V GTT 117, 86, 77   A GCT 167,177,113   D GAT  90,102, 92   G GGT 133,154,198 

       37, 41, 44          47, 62, 59         116, 82,156          54, 54,126 

 

V GTC  --,-- ,  1   A GCC   5, 17,  3   D GAC   4,  4,  1   G GGC  --, --, -- 

        6,  2,  3          10,  4,  1           9,  6,  6           6,  3,  2 

 

V GTA 217,194, 99   A GCA 116,103, 72   E GAA 103, 98, 97   G GGA 171,135,58 

       69, 41, 54          31, 30, 27         115, 97,166          51, 45,55 

 

V GTG   4, 12,  4   A GCG  14, 15,  2   E GAG  15, 18,  2   G GGG   6, 24, 5     

        7,  7,  1           5,  2,  2          16, 18,  7         7,  9, 6 

================================================================================= 

Cognate amino acids are specified in the one-letter code (asterisks = stop codon). The 

upper rows of numbers indicate the total number of codons for standard protein-coding 

genes of R. oryzae, M. verticillata, and S. culisetae. Lower numbers specify the total 

number of codons in intronic ORFs of the three species, respectively.  
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Summary 

Several morphologically dissimilar ascomycete fungi including Schizosaccharomyces, 

Taphrina, Saitoella, Pneumocystis and Neolecta have been grouped into the taxon 

Taphrinomycotina (Archiascomycota or Archiascomycotina), originally based on rRNA 

phylogeny. These analyses lack statistically significant support for the monophyly of this 

grouping, and although confirmed by more recent multi-gene analyses, this topology is 

contradicted by mitochondrial phylogenies. To resolve this inconsistency, we have 

assembled phylogenomic mitochondrial and nuclear datasets from four distantly related 

taphrinomycotina taxa: Schizosaccharomyces pombe, Pneumocystis carinii, Saitoella 

complicata and Taphrina deformans. Our phylogenomic analyses based on nuclear data 

(113 proteins) conclusively support the monophyly of Taphrinomycotina, diverging at the 

base of Ascomycota. However, despite the improved taxon sampling, Taphrinomycotina 

continue to be paraphyletic with the mitochondrial dataset (13 proteins): 

Schizosaccharomyces species associate with budding yeasts (Saccharomycotina), and the 

other Taphrinomycotina group at the base of Ascomycota. Yet, as Schizosaccharomyces 

and Saccharomycotina species are fast-evolving, the mitochondrial phylogeny may be 

influenced by a long-branch attraction (LBA) artifact. After removal of fast-evolving 

sequence positions from the mitochondrial dataset, we recover the monophyly of 

Taphrinomycotina. Our combined results suggest that Taphrinomycotina is a legitimate 

taxon, that this group of species diverges at the base of Ascomycota, and that phylogenetic 
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positioning of yeasts and fission yeasts with mitochondrial data is plagued by a strong LBA 

artifact.  

 

 

Introduction 

Ascomycota are currently subdivided into three major taxa (Hibbett et al. 2007): 

Saccharomycotina (Hemiascomycota; budding yeasts), Pezizomycotina (Euascomycota; for 

the most part filamentous fungi, e.g. Neurospora) and Taphrinomycotina 

(Archiascomycota). The taxon Taphrinomycotina was initially created based on rRNA 

phylogeny (Nishida and Sugiyama 1993), regrouping diverse fungal species of previously 

uncertain taxonomic affiliation: (i) Schizosaccharomyces species (fission yeasts; previously 

considered to be highly divergent yeast lineages), (ii) Taphrina (several fungal plant 

pathogens), (iii) the anamorphic yeast-like Saitoella, a suspected ascomycete or 

basidiomycete, and (iv) Neolecta irregularis, a fungus with filamentous cell growth that 

forms complex fruiting bodies (unique within this group of organisms). Yet, the statistical 

support for this grouping with rRNA data is well below standards (for details, see (Leigh et 

al. 2003)). Addition of potential taphrinomycotina taxa, for instance more 

Schizosaccharomyces species or Pneumocystis carinii (a unicellular lung pathogen (Edman 

et al. 1988b) that like Schizosaccharomyces divides by binary fission), has not improved 

the outcome. Evidently, resolving this question requires substantially more than just rRNA 

data.  
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Several multi-gene analyses have more recently been conducted to overcome the 

apparent problems with inferring fungal relationships. These analyses differ in their choice 

of genes. First, datasets with six or fewer nuclear genes also produce conflicting 

phylogenies. For instance in an early overview paper (Baldauf et al. 2000), 

Schizosaccharomyces, the only Taphrinomycotina included in this analysis, groups with 

Saccharomycotina, although without significant support. This topology is recovered by a 

more recent analysis (Diezmann et al. 2004), but contradicted by others (James et al. 

2006a; Liu, Hodson, and Hall 2006; Spatafora et al. 2006; Sugiyama, Hosaka, and Suh 

2006) that find high bootstrap support for Taphrinomycotina as a monophyletic grouping at 

the base of Ascomycota. Yet, rigorous statistical testing (e.g., by applying the AU test 

(Shimodaira 2002)) has not been performed in these cases, and because most sequence 

information was obtained by PCR, only limited genomic sequence information was 

available to exclude potentially misleading gene paralogs with confidence. Additional 

reasons why analyses  with small datasets are more likely misled by phylogenetic artifacts 

are discussed elsewhere (Delsuc, Brinkmann, and Philippe 2005). Finally, in two of these 

analyses (James et al. 2006a; Spatafora et al. 2006), both rRNA and protein sequences were 

used in the same dataset, which implies the use of potentially problematic mixed-model 

analyses that preclude rigorous statistical AU testing. The applied Bayesian analyses are 

known to largely overestimate confidence when using real data, as these evolve in much 

more complex ways than implemented in current models (Erixon et al. 2003; Taylor and 

Piel 2004; Mar, Harlow, and Ragan 2005). In turn, when applying the AU test to alternative 
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analyses that are restricted to the nucleotide level, the risk of error due to compositional 

bias (rRNA versus protein gene sequences) increases.  

In phylogenomic analyses that do not suffer from lack of sequence data, S. pombe 

consistently diverges at the base of Ascomycota with significant support (e.g., (Philippe et 

al. 2004; Fitzpatrick et al. 2006; Robbertse et al. 2006; Dutilh et al. 2007)). Yet, the 

question of Taphrinomycotina monophyly remains open, as genome-size datasets are not 

available for other taphrinomycotina lineages. Finally, mitochondrial datasets with 13 

proteins and three Schizosaccharomyces species consistently support a grouping of fission 

yeasts with Saccharomycotina (Bullerwell, Forget, and Lang 2003a; Leigh et al. 2003). 

Obviously, the use of multi-gene datasets is insufficient to tackle the given phylogenetic 

question without paying close attention to potential phylogenetic artifacts (Delsuc, 

Brinkmann, and Philippe 2005). In the analyses of mitochondrial data (Bullerwell, Forget, 

and Lang 2003a; Leigh et al. 2003), the authors suggest that the grouping of 

Saccharomycotina and Schizosaccharomyces may be due to an LBA artifact, which causes 

clustering of fast-evolving lineages irrespective of their true evolutionary relationships. A 

common strategy to overcome this artifact involves the complete elimination of fast-

evolving species; yet in the mitochondrial dataset, all Schizosaccharomyces and budding 

yeast species are fast-evolving. Other less radical options include the exclusion of fast-

evolving sequence positions (Brinkmann and Philippe 1999), or the use of more realistic 

evolutionary models, e.g. the CAT model (Lartillot, Brinkmann, and Philippe 2007). 

Evidently, such improvements at the analytical level should be combined with improved 
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taxon sampling, with particular emphasis on the addition of slowly-evolving species. 

Finally, congruence with analyses with alternative datasets (e.g., nuclear versus 

mitochondrial) is an indication that results are accurate. 

In the present study, we take advantage of new data provided by both nuclear and 

mitochondrial genome projects for all key taphrinomycotina species except Neolecta, 

which unfortunately has not yet been grown in culture. We compare two large datasets, one 

with 113 nuclear and another with 13 mitochondrial proteins, and conclude that 

Taphrinomycotina is indeed a monophyletic group diverging at the base of Ascomycota.   

 

Material and Methods 

Construction of cDNA libraries and EST sequencing  

Saitoella complicata (NRLL Y-17804) and Taphrina deformans (NRRL T-857) cDNA 

libraries were constructed from strains grown on glycerol medium, following recently 

published protocols (Rodriguez-Ezpeleta et al. in press). Plasmids were purified using the 

QIAprep 96 Turbo Miniprep Kit (Qiagen), sequencing reactions were performed with the 

ABI Prism BigDyeTM Terminators version 3.0/3.1 (Perkin-Elmer, Wellesley, MA, USA) 

and a total of 3840 S. complicata and 3919 T. deformans ESTs were sequenced on an MJ 

BaseStation. Trace files were imported into the TBestDB database 

(http://tbestdb.bcm.umontreal.ca/searches/login.php) (O'Brien et al. 2007) for automated 

processing, including assembly as well as automated gene annotation by AutoFact (Koski 

http://tbestdb.bcm.umontreal.ca/searches/login.php
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et al. 2005a). P. carinii sequences were obtained from the Pneumocystis Genome Project 

(http://pgp.cchmc.org).  

Mitochondrial sequencing  

S. complicata and T. deformans were grown with vigorous shaking in liquid medium (1% 

yeast extract, 3% glycerol). The harvested cells were disrupted by manual shaking with 

glass beads, and mitochondrial DNA was isolated following a whole cell lysate protocol 

(Lang and Burger 2007), and sequenced using a random procedure (Burger et al. 2007). 

Dataset construction 

The nuclear dataset was assembled by adding EST and genomic sequences from GenBank 

to a previously published alignment (Rodriguez-Ezpeleta et al. 2007a).  Paralogous proteins 

were identified and removed from the alignment as described (Roure, Rodriguez-Ezpeleta, 

and Philippe 2007). Gblocks (Castresana 2000) (default parameters) was used to extract 

unambiguously aligned regions. The inclusion of some missing data allowed us to add 

more genes and species. From originally 174 proteins, 113 were selected to minimize the 

degree of missing data in phylogenetic analysis. The final alignment has a total number of 

29 387 amino acid positions and 54 species. The average proportion of missing data is 25% 

per species. The proportion of missing data for each species is listed in Supplementary 

Material (Table S1). 

The mitochondrial protein alignment includes our new T. deformans and S. 

complicata sequences, as well as sequences retrieved from public data repositories 

(Genbank and the Pneumocystis Genome Project)http://pgp.cchmc.org/. Sequences of 13 

http://pgp.cchmc.org/
http://pgp.cchmc.org/
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mitochondrial proteins (cox1, 2, 3, cob, atp6, 9, and nad1, 2, 3, 4, 4L, 5, 6) were selected 

for phylogenetic analysis. An application developed in-house (mams) was used for 

automatic protein alignment with Muscle (Edgar 2004), removal of ambiguous regions with 

Gblocks (Castresana 2000), and concatenation. The final dataset contains 2 596 amino acid 

positions with missing data only in Schizosaccharomyces species and in Saccharomyces 

cerevisiae (46.2% missing positions for those species), which both lost all nad genes, 

coding for subunits of complex I of the respiratory chain. 

Phylogenetic analysis of the nuclear dataset  

Phylogenetic analyses were performed at the amino acid level. The concatenated nuclear 

protein datasets were analyzed either by maximum likelihood (ML) or Bayesian inference 

(BI) methods. Three ML programs, Treefinder (Jobb, von Haeseler, and Strimmer 2004), 

PhyML (Guindon and Gascuel 2003a), and RAxML (Stamatakis 2006) were used with the 

WAG+gamma model with four categories. In case of BI methods, we used either MrBayes 

((Ronquist and Huelsenbeck 2003); WAG+gamma model, 500,000 generations, first 

100,000 generations removed as burn-in, analysis repeated three times with identical 

results), or PhyloBayes (version 2) ((Lartillot and Philippe 2004); CAT model, 3000 cycles, 

first 1000 cycles removed as burn-in, analysis repeated three times with identical results)). 

The reliability of internal branches was either evaluated based on 100 (ML) bootstrap 

replicates, or on posterior probabilities.  
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Likelihood tests of competing tree topologies were also performed. 945 topologies 

were generated by constraining trusted internal branches (monophyly of Saccharomycotina, 

Pezizomycotina, Ascomycota, Basidiomycota, and the grouping of Zygomycota and 

Chytridiomycota), leaving the four Taphrinomycotina unconstrained within Ascomycota. 

The site-wise likelihood values for each topology were estimated using Tree-Puzzle 

(Schmidt et al. 2002), and p-values for each topology were calculated with CONSEL 

(Shimodaira and Hasegawa 2001). 

Phylogenetic analysis of the mitochondrial dataset with the SF method 

LBA artifacts may possibly be overcome by elimination of fast-evolving sequence 

positions with the slow-fast (SF) method (Brinkmann and Philippe 1999). Briefly, the 

dataset is split into monophyletic groups, and the number of substitutions for each position 

in each group is estimated using a parsimony criterion with PAUP* (Swofford 2000). 

These numbers are summed over all groups of the dataset, providing an estimate of the 

variability for each position. A number of data sets (in the current analysis, 14) are then 

constructed with an increasing fraction of fast-evolving sequence positions.  

Trees and bootstrap support (100 replicates) for the sub-datasets were estimated 

with RAxML, as Treefinder and PhyML were often trapped in local optima with these 

relatively small datasets. 

 

Results  

Phylogenetic analysis of the nuclear dataset 
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Our nuclear dataset contains 113 orthologous proteins (29 387 amino acid positions) from 

54 fungal species, including 33 Ascomycota and representatives of the three other major 

fungal groups (Basidiomycota, Zygomycota and Chytridiomycota). In the phylogenetic tree 

shown in Fig. 1, the monophyly of Ascomycota, Saccharomycotina, Pezizomycotinaand 

Basidiomycota are recovered with significant support by both ML and BI methods. In 

addition, Taphrinomycotina form a significantly supported monophyletic group (> 99% 

bootstrap proportion (BP) and 1.0 posterior probability (PP)). The grouping of S. pombe 

with P. carinii receives 95% support using Treefinder, 86% with RAxML and 98% with 

PhyML; the branching order of S. complicata and T. deformans remains unresolved. 

Datasets including ESTs usually contain a fraction of missing data, amounting for S. 

complicata and T. deformans to 66.8% and 56.8%, respectively. The data set contains 113 

proteins, but only one single protein contains sequences from all 54 species (rpl4B). To test 

the potential influence of missing data, we reduced the dataset to the most complete 76 

proteins, thereby decreasing missing positions for these two species to 43.0% and 39.9%, 

respectively. The inferred tree topologies remain the same, and support values for the 

monophyly of Taphrinomycotina are only slightly reduced (ML inferences, BP > 95%; 

MrBayes, PP 1.0; PhyloBayes PP 0.99, Supplementary Fig. S1). 

Likelihood test of competing topologies  

Using the original complete nuclear dataset, both ML and BI approaches yield identical, 

well-supported tree topologies. To assess the level of confidence with a strict, alternative 

approach, we performed likelihood-based tests of competing tree topologies with CONSEL 
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(Shimodaira and Hasegawa 2001), with the complete dataset (113 proteins). The 

corresponding 10 top-ranking topologies according to AU test p-values are shown in Table 

1. All scenarios in which Taphrinomycotina are paraphyletic are rejected with confidence 

(p < 0.01), thus confirming the monophyly of Taphrinomycotina as well as their position at 

the base of Ascomycota. 

Phylogenetic analysis of mitochondrial datasets 

The mitochondrial dataset contains 2 596 amino acid positions from 13 well-conserved 

mitochondrial proteins, including 29 species from the four major fungal lineages. In ML 

analyses, the newly added Taphrinomycotina (T. deformans, P. carinii, and S. complicata) 

group at the base of Ascomycota (Fig. 2), and as in previously published analyses 

(Bullerwell, Forget, and Lang 2003a; Leigh et al. 2003; Pramateftaki et al. 2006), S. pombe, 

S. japonicus, and S. octosporus group with Saccharomycotina. Yet, due to the addition of 

the new Taphrinomycotina species, the support for the grouping of fission yeasts with 

budding yeasts is noticeably lower (Fig. 2; 92% with Treefinder, 76% with RAxML and 

87% with PhyML). In our experience, the heuristic search of RAxML is most effective in 

avoiding local minima; thus, the 76% confidence level of RaxML in this analysis is the 

most reliable. BI analyses (using MrBayes and PhyloBayes) inferred the same topology as 

ML approaches, with more than 0.99 PP for all internal branches except the one leading to 

Chytridiomycota (0.64 PP).  

As Schizosaccharomyces and Saccharomycotina species have relatively long 

branches, they are suspected to group due to a LBA artifact. If this interpretation is correct, 
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removing Saccharomycotina is expected to relocate the Schizosaccharomyces to its correct 

position. Indeed, instead of grouping with Pezizomycotina, three Schizosaccharomyces 

group with other Taphrinomycotina after Saccharomycotina are removed. The monophyly 

of Taphrinomycotina receives varying support (Treefinder, BP 95%, RAxML, 66%, 

PhyML, 97%; MrBayes, PP 1.0, Fig. 3). 

We further explored the use of a fast-evolving fungal outgroup, which was expected 

to draw Schizosaccharomyces away from Saccharomycotina, to a more basal position. To 

test this prediction, we reduced the original mitochondrial dataset to 19 species, including 

all 15 Ascomycota plus four (fast-evolving) Chytridiomycota. Indeed, analyses of this 

dataset with ML and BI methods position Schizosaccharomyces at the base of Fungi 

(Supplementary Fig. S2), although with marginal support (Treefinder, BP 71%, RAxML, 

57%, PhyML, 86% MrBayes, PP 0.95).  

Finally, we analyzed the mitochondrial dataset with the SF method, which is 

designed to reduce the effect of LBA by selecting slowly-evolving positions, thus 

increasing the ratio of phylogenetic signal to noise (Delsuc et al. 2005). A series of data 

matrices containing increasing fractions of fast-evolving positions were analyzed with both 

ML and BI methods (Fig. 4). In the datasets with the most slowly evolving sites and most 

reliable phylogenetic information (S2-S5; only results from S3 and S5 are shown in Fig. 

4A, for more details see Fig S3 in supplementary information), the Schizosaccharomyces 

lineage grouped together with other Taphrinomycotina, at the base of Ascomycota. Yet, 

although there was good support (BP of 96 or 88%) to reject a grouping of 
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Saccharomycotina plus Taphrinomycotina, there was not significant BP support to the 

monophyly of Taphrinomycotina. This result is most likely due to the small size of the 

remaining datasets (S2 contains only 1,023 amino acid positions, S3: 1,223, S4: 1,436 and 

S5: 1,638), and a relatively weak phylogenetic signal. In fact, addition of further fast-

evolving positions to S5 resulted in decrease of support, as expected in a classical case of 

LBA. Finally, as more fast-evolving positions were included (the S6 - S14 datasets), 

Schizosaccharomyces grouped with Saccharomycotina, and the BP for this incorrect 

topology increased (the result from S7 and S9 are shown in Fig. 4B). The evolution of BP 

supports for all S datasets is shown in Supplementary Fig. S3. 

 

Discussion 

The nuclear dataset significantly supports the monophyly of Taphrinomycotina 

Our phylogenetic analysis is first in using a large number of nucleus-encoded proteins from 

most key taphrinomycotina species, and concludes with high confidence that 

Taphrinomycotina is monophyletic, branching at the base of Ascomycota. Some authors 

have claimed that missing data (in our case, due to partial EST sequencing) may result in 

unstable tree topologies (Anderson 2001; Sanderson et al. 2003). Yet, consistent with other 

work (Wiens 2003; Philippe et al. 2004), our ML analysis did not confirm this claim. Our 

explanation is that the effect of missing data is negligible when using large datasets with a 

strong phylogenetic signal. The comparison of alternative topologies with the AU test 

confirmed the monophyly of Taphrinomycotina with high confidence (p < 0.01), although 
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the relationships among Taphrinomycotina remain to be resolved. Additional data from the 

ongoing S. octosporus and S. japonicus genome projects are expected to improve tree 

resolution, and complete genome sequences from Taphrina and Saitoella (slowly-evolving 

taphrinomycotina genomes that we expect to be more gene-rich and more typical for 

Taphrinomycotina than those of Schizosaccharomyces) are required for confident inference 

of their phylogenetic position. Finally, EST or genome sequencing will be required to 

confirm that Neolecta irregularis belongs in Taphrinomycotina. 

The mitochondrial tree topology is sensitive to phylogenetic artifacts 

Mitochondrion-encoded protein data have been successfully used to resolve a large variety 

of phylogenetic questions, in some cases predicting for the first time deep relationships 

with high confidence (e.g., (Lang et al. 2002a)). Yet, mitochondrial genes tend to have a 

high A+T sequence bias which contributes to phylogenetic artifacts, particularly in lineages 

with elevated evolutionary rates. For instance, in a previous analysis that includes three 

Schizosaccharomyces species, Schizosaccharomyces plus Saccharomycotina group with 

strong support (BP 95%), although an alternative (likely correct) position of 

Schizosaccharomyces at the base of the Ascomycota was not rejected by an AU test 

(Bullerwell, Forget, and Lang 2003a). In this study, amino acid instead of nucleotide 

sequences have been used to decrease the effect of A+T bias, and we find no significant 

amino acid compositional bias in this data (result not shown). Yet, after inclusion of further 

complete mitochondrial data from three slowly-evolving Taphrinomycotina (S. complicata, 

T. deformans, and P. carinii), the position of Schizosaccharomyces does not change, 
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although the bootstrap support for this topology decreases to 76% (Fig 2). This result is 

consistent with the suggestion that adding more sequences (particularly from slowly-

evolving species) usually helps to reduce the effect of LBA (for a review, see (Delsuc, 

Brinkmann, and Philippe 2005)). 

We have further tested whether Schizosaccharomyces mitochondrial sequences 

contain little phylogenetic signal and a strong tendency for LBA by inferring a phylogeny 

with a distant fungal outgroup composed of four fast-evolving Chytridiomycota.  In this 

case, Schizosaccharomyces changes its position, away from Saccharomycotina towards the 

base of Fungi, apparently due to LBA with the distantly related Chytridiomycota. When 

Saccharomycotina are removed from the original dataset, Taphrinomycotina become 

grouped together, though without significant support. Finally, positional sorting with the 

SF method confirms our interpretation. Only the slowest-evolving positions (S2-S5 data 

matrix) are able to recover the tree topology inferred with the nuclear dataset, although 

only with marginal statistical support. Our analyses strongly suggest that the grouping of 

Schizosaccharomyces with Saccharomycotina in trees based on mitochondrial data is due to 

a LBA artifact. 

Limitations of mitochondrial sequence data in phylogenetic analysis 

A limitation of mitochondrial genome data is their small data size compared to nuclear 

genomes. The most popular mitochondrial data set contains only 13 proteins, including 

some that are rather small (atp9, nad4L) and others that are fast-evolving (nad2, nad6) and 

are therefore of limited value for the inference of deep phylogenies. To expand these 
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datasets, mitochondrial genes that were transferred to the nucleus might be added. Yet, 

because the A+T content and other evolutionary constraints are different in mitochondrial 

and nuclear genomes, evolutionary models and inference methods might have to be 

adapted.  

Conclusion 

The current analysis ends a long-standing controversy on the phylogenetic position of 

Schizosaccharomyces species: we conclude that they are part of Taphrinomycotina, 

branching at the base of Ascomycota. Yet, the phylogenetic identity of Neolecta, another 

putative representative of this group, remains to be assessed by phylogenomic analysis.  

 

Supplementary Material 

Figures S1-S3 and Table S1 are available at Molecular Biology and Evolution online  
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Tables 

Table 1: Likelihood tests of alternative tree topologies 

945 topologies were generated by constraining well-supported internal branches 

(monophyly of Saccharomycotina, Pezizomycotina, Ascomycota, Basidiomycota, and 

Zygomycota plus Chytridiomycota as outgroup), leaving the four Taphrinomycotina 

unconstrained within Ascomycota. Table 1 lists the p-values of the 10 top-ranking 

topologies based on the AU test (data model as in Fig 1). The following abbreviations are 

used: P.c: Pneumocystis carinii; S.c: Saitoella complicata; S.p: Schizosaccharomyces 

pombe; T.d: Taphrina deformans; Sacch: Saccharomycotina; Pezi: Pezizomycotina. In the 

five best topologies, Taphrinomycotina are monophyletic. All other topologies in which 

they are paraphyletic are rejected at a significance level less than 0.01. 
 

 

 Rank   Tree topology Taphrinomycotina ΔlnL
a
 AU

b
 

1 best tree (Figure 1) Monophyletic -14.4 0.869 

2 ((T.d, S.c), (S.p, P.c)) at base of Ascomycota Monophyletic 14.4 0.297 

3 (S.c, (P.c, (T.d, S.p))) at base of Ascomycota Monophyletic 27.6 0.131 

4 ((T.d, S.p), (P.c, S.c)) at base of Ascomycota Monophyletic 45.1 0.032 

5 (P.c, (S.c, (S.p, T.d))) at base of Ascomycota Monophyletic 50.2 0.011 

6 (T.d, (S.c, (S.p, P.c)),(Sacch,Pezi))  Paraphyletic 163.1 0.007 

7 ((S.p, (T.d, P.c)), ((S.c, Sacch), Pezi)) Paraphyletic 525.6 0.007 

8 ((T.d, S.c), (P.c, (S.p, (Sacch, Pezi)))) Paraphyletic 243.0 0.005 

9 (S.p, ((S.c, T.d), (P.c, (Sacch, Pezi)))) Paraphyletic 265.6 0.004 

10 ((S.p, P.c), ((S.c, T.d), (Sacch, Pezi))) Paraphyletic 99.2 0.004 
a
 Log likelihood difference 

b
 Approximate Unbiased (AU) test 
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Figure legends 

Figure 1: Phylogeny based on nucleus-encoded protein sequences 

This tree was inferred from 113 nucleus-encoded proteins (29 387 amino acid positions), 

with three ML (Treefinder, PhyML and RAxML) and two BI (MrBayes and PhyloBayes) 

methods, either using the WAG+Gamma (four categories) model, or the CAT model 

(PhyloBayes). The PP using MrBayes and PhyloBayes are 1.0 for all branches, except for 

the one that groups Taphrina and Saitoella (PP 0.6). Numbers at internal branches 

represent support values obtained with 100 bootstrap replicates on the concatenated dataset 

with Treefinder/RAxML/PhyML. When all support values are identical, only one is 

indicated.  

 

Figure 2: Phylogeny based on concatenated proteins encoded by mtDNA 

The sequences of 13 proteins (cox1, cox2, cox3, cob, atp6, atp9, and nad1, nad2, nad3, 

nad4, nad4L, nad5, nad6) were concatenated (2 596 amino acid positions). See Figure 1 for 

details on inference methods. The BI with MrBayes has posterior probabilities of at least 

0.99, except for the internal branch which groups Allomyces and other chytrids (PP 0.64).  

 

Figure 3: Phylogenetic analysis of mitochondrial dataset after removing 

Saccharomycotina 

All Saccharomycotina were removed from the complete mitochondrial dataset. The 

analyses were performed as in Figure 1. The Schizosaccharomyces group with other 
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Taphrinomycotina with various BPs among three ML methods (TreeFinder: 95%, RAxML: 

66%, PhyML: 97%), the PP of BI using MrBayes is 1.0. 

 

Figure 4: Impact of fast-evolving positions on the inferred phylogeny from proteins 

encoded by mtDNA. 

The SF method was used to generate a series of 14 datasets (S0, S1, S2, …, S14) with an 

increasing fraction of fast-evolving sequence positions. The phylogenies were inferred 

using RAxML on these datasets (WAG+Gamma with four categories).  Results with S3 

and S5 are shown in Fig. 5A, and with S7 and S9 in Fig. 5B. Numbers at internal branches 

represent BP obtained with 100 bootstrap replicates, which are in the order S3, S5 (Fig. 5A) 

and S7, S9 (Fig. 5B) from top. When all bootstrap values are > 95%, only one value is 

presented. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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SUPPLEMENTAL MATERIAL 

 

Table S1: Proportion of missing positions in nuclear data set 

The inclusion of an amount of missing positions allowed us to use more gene and species. 

The proportion of missing positions for each species is listed in Table S1. 
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Species 
  Missing  

  position(%) 
Species 

Missing 

position(%) 

Allomyces macrogynus 0.504 Mycosphaerella graminicola 0.503 

Antrodia cinnamomea 0.296 Naumovia castellii 0.117 

Aspergillus fumigatus 0.049 Neocallimastix patriciarum 0.611 

Aspergillus nidulans: 0.018 Neurospora crassa 0 

Aspergillus oryzae: 0.003 Paracoccidioides brasiliensis 0.307 

Batrachochytrium dendrobatidis 0.048 Phaeosphaeria nodorum 0.081 

Blastocladiella emersonii 0.207 Phakopsora pachyrhizi 0.279 

Botryotinia fuckeliana 0.348 Phanerochaete chrysosporium 0.105 

Candida albicans 0.009 Phycomyces blakesleeanus 0.029 

Candida glabrata 0.017 Pichia angusta 0.619 

Chaetomium globosum 0.095 Pichia farinose 0.760 

Coccidioides immitis 0.012 Pneumocystis carinii 0.380 

Conidiobolus coronatus 0.810 Puccinia graminis 0.013 

Coprinopsis cinerea 0.008 Rhizopus oryzae 0.006 

Cryphonectria parasitica 0.517 Saccharomyces cerevisiae 0.003 

Cryptococcus neoformans 0.016 Saccharomyces kluyveri 0.177 

Cunninghamella elegans 0.346 Saitoella complicata 0.667 

Debaryomyces hansenii 0.036 Schizosaccharomyces pombe 0.014 

Eremothecium gossypii 0.014 Spizellomyces punctatus 0.434 

Gibberella zeae 0.011 Taphrina deformans 0.568 

Gloeophyllum trabeum 0.392 Thermomyces lanuginosus 0.412 

Glomus intraradices 0.694 Trichoderma reesei 0.311 

Hebeloma cylindrosporum 0.491 Ustilago maydis 0.023 

Kluyveromyces lactis 0.039 Verticillium dahliae 0.614 

Kluyveromyces waltii 0 Yarrowia lipolytica 0.015 

Leucosporidium scottii 0.373 Zygosaccharomyces rouxii 0.709 

Magnaporthe grisea 0.027 Mortierella verticillata 0.562 
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Figure S1: Phylogeny based on nucleus-encoded proteins with less missing data 

The analysis is based on 76 nucleus-encoded proteins, with a reduced proportion of missing 

positions for S. complicata (43.0%) and T. deformans (39.9%). This tree was inferred with 

ML (Treefinder, RAxML and PhyML) and BI (MrBayes and PhyloBayes) methods either 

using the WAG+Gamma (four categories) model or the CAT model (PhyloBayes). The PP 

of BI analyses are 1.0 for all branches, except for the internal branch that groups Taphrina, 

Schizosaccharomyces and Pneumocystis (PP: 0.73) and the branch that groups Mortierella 

and Conidiobollus (PP: 0.75). Numbers around the internal nodes represent support values 

obtained with 100 bootstrap replicates of the concatenated dataset with 

Treefinder/RAxML/PhyML (WAG+Gamma model). When all support values were 

identical, only one is indicated. 

 

Figure S2: Phylogenetic analysis of mitochondrial dataset containing only Ascomycota 

and four fast-evolving Chytridiomycota 

The mitochondrial dataset was reduced to 19 species, including all 15 Ascomycota plus 

four (fast-evolving) Chytridiomycota. See Figure 1 for the details of inference methods and 

legend. Note that instead of grouping with Saccharomycotina, the Schizosaccharomyces 

were attracted to the base of Fungi by fast-evolving Chytridiomycota. The BI with 

MrBayes has posterior probabilities of 1.0, except for the internal branch that groups 

Pneumocystis, Saitoella, Taphrina, Saccharomycotina and Pezizomycotina(PP: 0.5) and the 

branch that groups Schizosaccharomyces with all other Ascomycota (PP: 0.95).  
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Figure S3: Bootstrap supports for two alternative positions of Schizosaccharomyces 

(one is grouping with other Taphrinomycotina, the other grouping with Saccharomy-

cotina) using SF method 

Different subsets of the mitochondrial dataset (S2, S3, …, S14) were constructed (see 

Methods and Material for detail). ML analyses were performed using RAxML. The most 

slowly evolving subsets (S2-S5) did not significantly support either topology, although the 

topology with Schizosaccharomyces grouping with other Taphrinomycotina (the topology 

supported by nuclear data) has better likelihood value. As more fast-evolving positions 

were included (the S6 - S14 datasets), the other topology with Schizosaccharomyces 

grouping with Saccharomycotina (the incorrect one) was recovered with a higher BV. 
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Figure S1 
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Figure S2 
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SUMMARY 

Background: Resolving the evolutionary relationships among Fungi remains challenging 

because of their highly variable evolutionary rates, and lack of a close phylogenetic 

outgroup. Nucleariida, an enigmatic group of amoeboids, have been proposed to emerge 

close to the fungal-metazoan divergence and might fulfill this role. Yet, published 

phylogenies with up to five genes are without compelling statistical support, and genome-

level data should be used to resolve this question with confidence.  

Results: Our analyses with nuclear (118 proteins) and mitochondrial (13 proteins) data 

now robustly associate Nucleariida and Fungi as neighbors, an assemblage that we term 

„Holomycota‟. With Nucleariida as an outgroup, we revisit unresolved deep fungal 

relationships.  

Conclusions: Our phylogenomic analysis provides significant support for the paraphyly of 

the traditional taxon Zygomycota, and contradicts a recent proposal to include Mortierella 

in a phylum Mucoromycotina. We further question the introduction of separate phyla for 

Glomeromycota and Blastocladiomycota, whose phylogenetic positions relative to other 

phyla remain unresolved even with genome-level datasets. Our results motivate broad 

sampling of additional genome sequences from these phyla. 
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BACKGROUND 

The investigation of previously little known eukaryotic lineages within and close to the 

opisthokonts will be key to understanding the origins of Fungi, the evolution of 

developmental traits in Fungi and Metazoa, and ultimately the origin(s) of multicellularity 

(Kaiser 2001; Keeling et al. 2005; Ruiz-Trillo et al. 2007). In particular, it will help to 

establish which and how many developmental genes are either shared or specific to these 

two major eukaryotic groups. In this context, it is essential to determine the precise 

phylogenetic position of candidate protists that are close to Fungi, Metazoa, or opisthokonts 

as a whole.  

The candidate organisms choanoflagellates, ichthyosporeans and Ministeria have 

been convincingly shown to be relatives of Metazoa (combined in a taxon termed Holozoa; 

(Lang et al. 2002b)) by using molecular phylogenetics with genomic datasets (e.g., (Lang et 

al. 2002b; Ruiz-Trillo et al. 2006; Jimenez-Guri et al. 2007; Ruiz-Trillo et al. 2008; 

Shalchian-Tabrizi et al. 2008). Yet, there are remaining questions about the exact 

phylogenetic positions of Capsaspora (Jimenez-Guri et al. 2007; Ruiz-Trillo et al. 2008) 

and Ministeria (Shalchian-Tabrizi et al. 2008) within Holozoa. Another, less well studied 

group of protists are Nucleariida, a group of heterotrophic amoeboids with radiating 

filopodia. Nucleariids lack distinctive morphological features that might allow associating 

them with either animals or fungi. Their mitochondrial cristae are either discoidal-shaped 

or flattened (Patterson 1984; Patterson 1999; Amaral-Zettler et al. 2001). Indeed, initial 

phylogenetic analyses based on single genes have been inconsistent in placing them even 
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within opisthokonts. There has been also confusion due to the inclusion within Nucleariida 

of Capsaspora owczarzaki, a species that is now excluded from this group and shown to be 

clearly associated with Holozoa (Amaral-Zettler et al. 2001; Hertel, Bayne, and Loker 

2002; Cavalier-Smith and Chao 2003a; Dykova, Fiala, and Peckov 2003; Medina 2003; 

Dykova and Lom 2004; Nikolaev et al. 2004; Ruiz-Trillo et al. 2008).  

Overall, the phylogenetic position of the „true‟ nucleariids remains controversial. In 

a more recent phylogenetic investigation with four nuclear gene sequences (EF-1α, HSP70, 

actin and β-tubulin), nucleariids associate confidently with Fungi, but only when selecting 

two slow-evolving chytridiomycetes (Steenkamp, Wright, and Baldauf 2006). When 

improving the taxon sampling to 18 fungal species, the bootstrap support (BS) value for 

fungal monophyly drops to 85 %, and alternative nucleariid positions are not rejected with 

the approximately unbiased (AU) test (Shimodaira 2002; Steenkamp, Wright, and Baldauf 

2006). In this context, it seems noteworthy that Nuclearia and fungi other than chytrids are 

fast-evolving, and that the rate of tubulin evolution varies strongly among species of the 

latter dataset (correlating to some degree with the independent loss of the flagellar 

apparatus in non-chytrid fungi and in Nuclearia). Together, these rate differences at the 

gene and species levels may increase long-branch-attraction (LBA between the two fast-

evolving groups) thus causing weaker support for fungal monophyly and the nucleariid-

fungal sister relationship, or predicting altogether incorrect phylogenetic relationships. 

These unresolved questions served as motivation for the current phylogenetic 

analyses that are based on broad taxon sampling, substantially more nuclear genes 
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(available through expressed sequence tag (EST) or complete genome projects), and 

comparative analyses of nuclear and mitochondrial gene datasets. To this end, we 

sequenced several thousand ESTs each from two Nuclearia simplex strains (representing 

most distant members of this group rather than the same species, based on the high level of 

sequence divergence between them), and added them to a previous dataset (Rodriguez-

Ezpeleta et al. 2007a) along with new genome data available from Holozoa (C. owczarzaki, 

Amoebidium parasiticum, Sphaeroforma arctica; (Ruiz-Trillo et al. 2008)) and Fungi 

(Allomyces macrogynus, Batrachochytrium dendrobatidis,  and Mortierella verticillata). 

We then sequenced the mitochondrial genome of one of the two N. simplex strains. Similar 

to the nuclear genomes of fungi, their mitochondrial genomes also evolve at varying rates 

thereby introducing a considerable potential for phylogenetic artifacts. However, 

phylogenetic comparisons between mitochondrial and nuclear data provide valuable, cross-

wise indicators of phylogenetic artifacts as the respective evolutionary rates differ between 

the two genomes. For instance, such comparisons have revealed inconsistencies for the 

positioning of Schizosaccharomyces species within Taphrinomycotina (Liu et al. 2009a), 

and of Capsaspora within Holozoa (Jimenez-Guri et al. 2007; Ruiz-Trillo et al. 2008; 

Shalchian-Tabrizi et al. 2008).  

If the nucleariids are indeed the closest known relatives of Fungi as claimed 

(Steenkamp, Wright, and Baldauf 2006), this protist group will provide an excellent fungal 

outgroup that would ultimately facilitate the settling of controversial phylogenetic 

placement of taxa within Fungi and/or in close neighboring groups. Among the debated 
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issues are the monophyly and appropriate classification of the traditional fungal taxa 

Chytridiomycota and Zygomycota. Previous analyses based on single or a few genes have 

been inconsistent in answering these questions, and often lack significant support (James et 

al. 2000; Tehler, Little, and Farris 2003; Taylor et al. 2004; Seif et al. 2005; Tanabe, 

Watanabe, and Sugiyama 2005b; James et al. 2006a; James et al. 2006b; Liu, Hodson, and 

Hall 2006; Spatafora et al. 2006; Hibbett et al. 2007). For example, the analyses of 

ribosomal RNA data supports the sister relationship between Glomeromycota and Dikarya 

(Ascomycota plus Basidiomycota) (Tehler, Little, and Farris 2003), while analysis of genes 

encoding the largest and second-largest subunits of the nuclear RNA polymerase II 

supports the monophyly of Zygomycota in its traditional definition (Liu, Hodson, and Hall 

2006).  

Phylogenetic positioning of the extremely fast-evolving Microsporidia (causing 

strong LBA attraction artifacts in phylogenetic analyses) is another controversial issue of 

great interest. In some of the more recent analyses, Microsporidia have been placed either 

close to zygomycetes/Mucorales (Keeling 2003; Lee et al. 2008), or together with Rozella 

allomycis (James et al. 2006a). Together with environmental sequences, Rozella species 

form part of a large, diverse and relatively slowly evolving lineage (designated 

"Rozellida"). They branch as a sister clade to Fungi (James et al. 2006a; Lara, Moreira, and 

Lopez-Garcia 2009b), which raises the additional question whether they should be 

considered to be true fungi as originally proposed (Adl et al. 2005). Testing the above 

alternative hypotheses on microsporidian affinities by phylogenomic analysis will require 
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much more data from Rozellida (a few genes are known from Rozella allomycis, but 

largely insufficient for inclusion in our analyses), and from a much wider range of the 

paraphyletic zygomycetes. Generation of genome-size data will be further critical for 

applying methods that reduce LBA artifacts such as removal of fast-evolving genes or 

sequence sites (e.g.,  and refeences therein (Rodriguez-Ezpeleta et al. 2007b)).  

Despite these and various other unresolved phylogenetic issues, fungal taxonomy 

has been substantially redefined in a recent proposal (Hibbett et al. 2007). Chytridiomycota 

is still treated as a phylum, but now include only Chytridiomycetes and 

Monoblepharidomycetes. Other traditional chytrid lineages such as Blastocladiomycota and 

Neocallimastigales have been elevated to phyla based on the analyses of LSU and SSU 

rRNA (James et al. 2006b), although support with these and other molecular markers is 

inconclusive. In turn, the traditional phylum Zygomycota has been altogether removed 

from this taxonomy (Hibbett et al. 2007), because evolutionary relationships among its 

members are currently unresolved and suspected to be paraphyletic. Zygomycota are now 

reassigned into a phylum Glomeromycota plus four subphyla incertae sedis (i.e., 

uncertain): Mucoromycotina, Kickxellomycotina, Zoopagomycotina and 

Entomophthoromycotina. To revisit these somewhat contentious issues, we compared 

results with mitochondrial and nuclear phylogenomic datasets, and further analyzed the 

effect of extending fungal species sampling, with the two N. simplex strains as the 

outgroup. 
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RESULTS AND DISCUSSION  

Phylogenomic analysis with the eukaryotic dataset supports Nucleariida as sister to 

Fungi. 

Phylogenomic analysis of the eukaryotic dataset with one of the currently most realistic 

phylogenetic models (category mixture model (CAT); (Lartillot and Philippe 2004)) 

confirms the monophyly of major eukaryotic groups including Holozoa, Fungi, 

Amoebozoa, and Viridiplantae. Further, Amoebidium, Sphaeroforma plus Capsaspora form 

a monophyletic group, and Nuclearia is without a doubt the closest known sister-group to 

Fungi (100% BS; Fig. 1). Also some higher-order relationships are recovered with 

significant support, such as opisthokonts and the two recently proposed supergroups JEH 

(jakobids, Euglenozoa plus Heterolobosea (Rodriguez-Ezpeleta et al. 2007a)) and CAS 

(Cercozoa, Alveolata plus Stramenopila (Hackett et al. 2007; Rodriguez-Ezpeleta et al. 

2007a; Burki, Shalchian-Tabrizi, and Pawlowski 2008)), whereas monophyly of Plantae, 

Excavata and Chromalveolata is not found. Evidently, the taxon sampling of protists in our 

dataset is insufficient for (and not aimed at) resolving the phylogenetic relationships among 

these latter lineages, as it was meant to constitute only a strong and well sampled outgroup 

to opisthokonts.  

Analysis of the eukaryotic dataset with maximum likelihood (ML) using RAxML 

(Stamatakis 2006) and the commonly used WAG+ model generated a similar tree 

topology (Fig. 1 and Fig. S1). Deep opisthokont divergences are predicted consistently and 

with significant support (BS > 98%), with Nuclearia clearly sister to Fungi (100% BS) and 
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choanoflagellates the closest neighbor of animals. Amoebidium, Sphaeroforma plus 

Capsaspora form a monophyletic sister group to animals plus choanoflagellates, consistent 

with a previous analysis (Ruiz-Trillo et al. 2008) but contradicting others (Jimenez-Guri et 

al. 2007; Shalchian-Tabrizi et al. 2008). The reasons for this incongruence may be related 

to differences in data and taxon sampling. Our dataset contains 50 eukaryotic species with a 

close outgroup to Holozoa (i.e., including nucleariids together with fungal representatives), 

compared with a total of only 30 species in a more extensive previous analysis (Shalchian-

Tabrizi et al. 2008). In contrast to our Bayesian analysis (BI), ML associates 

Malawimonadozoa with JEH (77% BS), a tendency noted and discussed previously 

(Rodriguez-Ezpeleta et al. 2007a; Hampl et al. 2009), and an issue to be addressed by better 

taxon sampling in this group (currently, data are available from only two species). Other 

minor differences between WAG versus CAT model analyses (yet without statistical 

support in favor of alternatives) are in relationships within Plantae and the placement of 

Haptophyceae.  

We further investigated if the position of Nuclearia next to Fungi might be affected 

by potential phylogenetic artifacts, such as compositional sequence bias and/or LBA 

(Felsenstein 1978a; Rodriguez-Ezpeleta et al. 2007b). This is suspected because of the 

highly varying evolutionary rates both within Fungi and in protist outgroups, and the 

unusual result that better taxon sampling in Fungi reduces phylogenetic support for the 

Nuclearia position ((Steenkamp, Wright, and Baldauf 2006); see introduction). To do so, 

we first eliminated fast-evolving species from the dataset: S. cerevisiae, Blastocystis 
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hominis, Cryptosporidium parvum, Sterkiella histriomuscorum, Diplonema papillatum and 

Leishmania major. The results from analyses using RAxML were essentially unchanged, 

both with respect to tree topology and BS values (Supplementary Material, Fig. S2). To 

counteract sequence bias, we recoded the 20 amino acids into six groups as previously 

proposed (Hrdy et al. 2004). Again, phylogenetic analysis of this dataset using P4 (Foster 

2004) generated essentially the same tree topology, with some BS values slightly decreased 

due to the loss of information by recoding. (Supplementary Material, Fig. S3).  

Finally, we evaluated the positioning of Nuclearia next to Fungi with the AU and 

weighted Shimodeira Hasegawa (wSH) likelihood tests (Shimodaira and Hasegawa 2001). 

For this, we compared the topology presented in Fig. 1 with competing tree topologies in 

which the two Nuclearia strains were moved as sistergroup to all major eukaryotic 

lineages, and all possible positions within Opisthokonta. The results of both tests confirm 

Nuclearia as the closest neighbor group of Fungi, with all alternative topologies rejected at 

a significance level of p=0.002 (Table 1).  Given the unequivocal support for Nuclearia as 

the fungal sistergroup, we propose the term „Holomycota‟ to refer to the assemblage of 

Nucleariida plus Fungi.   

Mitochondrial phylogeny and genomic features support monophyly of the 

Holomycota. 

Phylogenetic analyses of nuclear versus mitochondrial datasets are expected to come to 

similar conclusions, thus providing independent evidence for the given phylogenetic 

relationships. To this end, we sequenced and analyzed the complete mitochondrial DNA 
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(mtDNA) of one of the N. simplex strains (a circular mapping DNA of 74 120 bp; see 

Supplementary Material, Fig. S4). Note that growth of Nuclearia is complicated (the 

standard method calls for growth on Petri dishes with a bacterial lawn as food source), and 

that it is difficult to obtain sufficient cell material for mtDNA purification, explaining why 

we succeeded for only one of the two Nuclearia species.  

The Nuclearia mtDNA contains a high number of introns (21 group I, and one 

group II), and mitochondrial protein genes appear to be translated with the standard 

translation code. These features are also widespread in Fungi. In contrast, Holozoa all use a 

mitochondrial UGA (tryptophan) codon reassignment, and contain no or only a few introns 

(with the notable exception of Placozoa, an enigmatic group of Metazoa (Dellaporta et al. 

2006)).  

Phylogenetic analysis of a dataset with 56 species and 13 of the ubiquitous, most 

conserved mtDNA-encoded proteins predicts the monophyly of Opisthokonta, 

Stramenopila, Holozoa and Fungi with confidence, and also recovers Nuclearia as the 

sister-group of Fungi, albeit with a moderate BS value of 85% (Fig. 2). To verify if the 

limited support for Holomycota is expected (i.e., correlating with the number of available 

sequence positions in the respective datasets), we performed a variable length bootstrap 

(VLB) analysis. It compares the development of BS values with the number of sequence 

positions, for the nucleariid/fungal sister relationship. For this, we chose the 29 species 

shared between the two datasets (for the tree topology of the respective nuclear dataset see 

Supplementary Material, Fig. S5). The results show that the development of BS values is 



 

 

 

128 

128 

similar for nuclear and mitochondrial data (Fig. 3), and that the available mitochondrial 

dataset (as well as the above-cited nuclear phylogenies with five genes) is too small to 

resolve the phylogenetic position of nucleariids with high confidence. A better taxon 

sampling primarily in nucleariids will be imperative for improved phylogenetic resolution, 

motivating sequencing projects with new technologies, which are likely to provide 

mitochondrial and nuclear genome sequences - even with the limited amount of cellular 

material that is available for some taxa (e.g., (Lee and Young 2009)). 

Fungal phylogeny with Nucleariida as outgroup. 

Analyses of both the nuclear and mitochondrial datasets have been insufficient to assess 

with confidence, neither zygomycete mono/paraphyly, nor the phylogenetic position of 

Blastocladiomycota (Blastocladiales) (Fig. 1,2). For instance, a recent mitochondrial multi-

gene phylogeny with the first complete Glomus mtDNA sequence groups Glomus and 

Mortierella, yet lacks significant statistical support (Lee and Young 2009). To re-address 

these questions, we have assembled a large dataset of nuclear-encoded genes from an 

extended, representative selection of fungal species, plus the two Nuclearia species as 

outgroup (i.e., the fungal dataset). The analyses show overall strong BS for the paraphyly 

of zygomycetes (Fig. 4), i.e. the Entomophthoromycotina represent a significantly 

supported and completely independent fungal lineage. However, monophyletic 

Mucoromycotina including Mortierella as recently redefined (Hibbett et al. 2007) is not 

recovered (rendering the taxon Mucoromycotina paraphyletic), neither is the taxon 

Symbiomycota (Glomeromycota plus Dikarya; (Tehler, Little, and Farris 2003)). Instead, 
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there is moderate support to group Mucorales plus Dikarya (92% BS in BI) and Glomus as 

their next neighbor (85% BS in BI).  Although the placement of Glomus relative to 

Mortierella differs between our BI and ML analyses (Fig. 4), we assume that the result of 

the BI analysis with its superior evolutionary model is more reliable. In light of these 

results, taxonomic reordering based on stable phylogenetic resolution of the traditional 

zygomycetes will require phylogenomic analyses with a much improved taxon sampling. 

Currently, nuclear and mitochondrial genome data are available only for single species in 

the latter two taxa; i.e. Glomus intraradices and Mortierella verticillata.  

Rooting of the fungal tree with nucleariids confirms that the traditional 

chytridiomycetes are also paraphyletic, again assuming that the result of the BI analysis is 

correct (Fig. 4).  Confirmation of this result (justifying an elevation of Blastocladiomycota 

as a separate phylum; (Hibbett et al. 2007)) is highly desirable, as genome-size datasets in 

Blastocladiomycota are limited to the two moderately distant species Blastocladiella 

emersonii and Allomyces macrogynus. Similarly, in light of the significant support for a 

monophyletic Chytridiomycota plus Neocallimastigomycota (100% BS with BI; Fig. 4), 

their division into separate taxonomic higher ranks should be reconsidered, but only after 

phylogenomic analysis with improved taxon sampling in both groups. Finally, our results 

motivate genome sequencing in Rosella species (Rozellida), potential relatives of 

Microsporidia and close neighbors of Fungi. The availability of a largely improved taxon 

sampling in zygomycetes, chytrids and Rozellida will provide a solid basis for evaluating 
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the proposed placements of Microsporidia - either within or as a sistergroup to Fungi - 

based on phylogenomic analyses.  

The results presented here are consistent with previous notions on how Fungi came 

into being.  For example it is thought that the first Fungi probably had branched chytrid-

like rhizoids, which developed by enclosure of nucleariid-like filopodia (sometimes 

branched) into cell walls, during a nutritional shift from phagotrophy to saprotrophy, thus 

giving rise to fungal hyphae and rhizoids (Shalchian-Tabrizi et al. 2008). However, the 

picture is more complicated as it is widely thought that the ancestral opisthokont also had a 

single posterior flagellum (Cavalier-Smith 1987a). This structure was lost during evolution 

of most but not all fungal lineages (e.g., (Patterson 1999; Berbee and Taylor 2000; 

Redecker 2002; Liu, Hodson, and Hall 2006), with a separate loss in the nucleariid 

sistergroup. In this sense, nucleariids are unlikely to represent a primitive developmental 

stage, but rather a secondary reduction resulting in a unicellular, amoeboid life style. 

Obviously, the clarification of the chain of events leading to the emergence of 

multicellularity in Fungi is by no means complete. These issues will only become clear 

with a much broader sampling of genomes from taxa near the animal-fungal divergence 

and the discovery of additional protist groups that are closely related to Fungi. 

 

Conclusions 

Here we demonstrate that phylogenomic analysis with improved evolutionary models and 

algorithms has a potential for resolving long-standing issues in fungal evolution, by 
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increasing phylogenetic resolution. Yet, while our results support certain aspects of the new 

taxonomic classification of Fungi they contradict others, suggesting that the introduction of 

certain higher-level taxa is only preliminary. In particular, the elevation of 

Neocallimastigales, Blastocladiomycota and Glomeromycota to separate phyla is 

questionable from a molecular phylogenetics standpoint, and potentially confusing to the 

larger scientific community. At present, genome analyses continue to suffer from poor 

sampling in chytrids, zygomycetes and close fungal relatives such as nucleariids. This issue 

will be resolved by the employment of new, increasingly inexpensive genome sequencing 

technologies. Phylogenomic projects like the current one will help focusing on genome 

analyses of poorly known phyla and taxa that are key to understanding fungal origins and 

evolution.   

 

Materials and Methods 

Construction of cDNA libraries and EST sequencing 

Two N. simplex (CCAP 1552/2 and 1552/4) cDNA libraries were constructed following 

recently published protocols (Rodriguez-Ezpeleta et al. 2009). Cells were grown in liquid 

standing cultures in WCL medium (http://megasun.bch.umontreal.ca/People/lang/FMGP/ 

methods/wcl.html) supplemented with 0.5 x Cerophyll, with E. coli cells as food, which 

were pre-grown on LB medium in Petri-dishes as food.  Plasmids were purified using the 

QIAprep 96 Turbo Miniprep Kit (Qiagen), sequencing reactions were performed with the 

ABI Prism BigDye
TM

 terminator version 3.0/3.1 (Perkin-Elmer, Wellesley, MA, USA) and 
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sequenced on an MJ BaseStation (MJ Research, USA). Trace files were imported into the 

TBestDB database (http://tbestdb.bcm.umontreal.ca/searches/login.php) (O'Brien et al. 

2007) for automated processing, including assembly as well as automated gene annotation 

by AutoFact (Koski et al. 2005b; Shen et al. 2009).  

 

Mitochondrial sequencing and genome annotation 

N. simplex (CCAP 1552/2) was grown as described above. The harvested cells were 

disrupted by addition of SDS plus proteinase K, and mitochondrial DNA was purified 

following a whole cell lysate protocol (Lang and Burger 2007) and sequenced from a 

random clone library (Burger et al. 2007).  For mitochondrial genome assembly we used 

Phred, Phrap and Consed (Gordon 2003; de la Bastide and McCombie 2007);
 

(http://www.phrap.org/). Mitochondrial genes and introns were identified using automated 

procedures (MFannot, N. Beck and BFL unpublished; RNAweasel, (Lang, Laforest, and 

Burger 2007)), followed by manual curation of the results.  

Dataset construction 

A previously published alignment of nuclear-encoded proteins (Rodriguez-Ezpeleta et al. 

2007a) was used for adding the new Nuclearia cDNA sequences generated in our lab, plus 

extra sequences available from GenBank (a taxonomic broad dataset containing 50 

eukaryotes will be referred to as the „eukaryotic dataset‟; another one containing 26 fungal 

species plus the two Nuclearia species as „fungal dataset‟) using MUST (Philippe 1993) 

and FORTY (Denis Baurain and HP, unpublished). The number of species has been limited 

http://tbestdb.bcm.umontreal.ca/searches/%20login.php
http://www.phrap.org/
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(to allow phylogenomic analyses within reasonable time frames), but only in well-sampled 

phylogenetic groups of undisputed phylogenetic affinity. Species that were not included are 

either fast-evolving and/or are incompletely sequenced. Other procedures for dataset 

construction, in particular the elimination of paralogous proteins, have been described 

previously (Roure, Rodriguez-Ezpeleta, and Philippe 2007). Within opisthokonts, major 

lineages had to be represented by at least two distant species, and the extremely fast-

evolving Microsporidia were excluded, as these are known to introduce phylogenetic 

artifacts and an overall reduction of phylogenetic resolution (at an extreme leading to 

misplacement of species; e.g., (Hirt et al. 1999; Brinkmann et al. 2005)). Sampling within 

the protist outgroup of the eukaryotic dataset is also not comprehensive (Stramenopila, 

Alveolata, and Euglenozoa) and limited to slow-evolving representatives of major 

eukaryotic lineages. The final eukaryotic dataset contains 118 proteins (24 439 amino acid 

positions) and the fungal dataset 150 proteins (40 925 amino acid positions). Proteins 

included in the nuclear datasets are listed in supplemental Tables S1 and S2. 

For a dataset of mitochondrial proteins, 13 ubiquitous genes (cox1, 2, 3, cob, atp6, 

9, and nad1, 2, 3, 4, 4L, 5, 6) were selected. Muscle ((Edgar 2004)), Gblocks ((Talavera 

and Castresana 2007)) and an application developed in-house (mams) were used for 

automatic protein alignment, removal of ambiguous regions and concatenation. The final 

dataset contains 56 taxa and 2 655 amino acid positions. 

Phylogenetic analysis  

Phylogenetic analyses were performed at the amino acid (aa) level using methods that are 
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known to be least sensitive to LBA artifacts ((Lartillot and Philippe 2004; Rodriguez-

Ezpeleta et al. 2007b; Lartillot and Philippe 2008), and references therein). The 

concatenated protein datasets were analyzed either by Bayesian inference (BI, PhyloBayes 

(Lartillot and Philippe 2004)) with the CAT+ model and four discrete gamma categories, 

or by maximum likelihood (ML, RAxML (Stamatakis 2006) with the WAG+ model and 

four discrete categories. BI analyses using the CAT model have been shown to be more 

reliable than ML, due to the application of a more realistic evolutionary model. ML 

analyses were essentially performed to identify differences in topology, pinpointing 

problematic parts of the tree for which addition of new data would be in order (i.e., 

preferentially genome sequences from slowly-evolving species, and those that are expected 

to break long internal branches at questionable tree topologies).  

In case of BI and the eukaryotic dataset (values for the fungal dataset in brackets), 

chains were run for 3000 (1000) cycles, and the first 1500 (500) cycles were removed as 

burn-in corresponding to approximately 1,200,000 (400,000) generations. Convergence 

was controlled by running three independent chains, resulting in identical topologies. The 

reliability of internal branches for both, ML and BI analyses was evaluated based on 100 

bootstrap replicates. For BI, we inferred a consensus tree from the posterior tree topologies 

of replicates. 

Likelihood tests of competing tree topologies were also performed. The site-wise 

likelihood values were estimated using Tree-Puzzle (Schmidt et al. 2002) with the 

WAG+ model, and p-values for each topology were calculated with CONSEL 
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(Shimodaira and Hasegawa 2001).  

Variable Length Bootstrap analysis 

We compared the performance of nuclear and mitochondrial datasets in phylogenetic 

inference by Variable Length Bootstrap (VLB) analysis (Springer et al. 2001). Sequences 

of 29 common species were taken from the eukaryotic (24,439 aa positions) and 

mitochondrial (2,710 aa positions) datasets. From these, two respective series of sub-

datasets were constructed by randomly choosing 400, 600, 800, 1 000 … sequence 

positions. Phylogenetic inferences were then performed using RAxML with the 

WAG+model and four discrete categories, after which the BS values for the grouping of 

nucleariids and Fungi were recorded. 
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Table 1. Comparison of alternative tree topologies with AU and wSH tests.  

Log likelihood differences and AU and wSH p values of top-ranking trees are listed. 

Rank Tree topology lnL AU wSH 

1 Best tree (see Figure 1) 0 1.000 1.000 

2 Nuclearia sister of Holozoa 187.9 0 0 

3 Nuclearia sister of Opisthokonta 237.4 0 0 

4 Nuclearia sister of Asco- + Basidio- + Zygomycetes 418.2 0 0 

5 Nuclearia sister of Capsaspora + Amoebidium + 

Sphaeroforma 

478.2 0 0 

6 Nuclearia sister of Metazoa + Monosiga 495.3 0 0 

7 Nuclearia sister of Allomyces 511.1 0 0 

8 Nuclearia sister of Spizellomyces 513.7 0 0 

9 Nuclearia sister of Capsaspora 534.3 0 0 

10 Nuclearia sister of Amoebidium + Sphaeroforma 561.2 0 0 

11 Nuclearia sister of Amoebozoa 621.2 0.002 0 

12 Nuclearia sister of Opisthokonta + Amoebozoa 626.8 0.002 0 

13 Nuclearia sister of Asco- + Basidiomycetes 704.5 0 0 

14 Nuclearia sister of Monosiga 727.5 0 0 

15 Nuclearia sister of Metazoa 738.9 0 0 
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Figure 1: Tree of eukaryotes based on eukaryotic dataset. Trees were inferred with 

PhyloBayes and rooted following a previous suggestion (Philippe et al. 2000a; Stechmann 

and Cavalier-Smith 2002). The values at branches indicate bootstrap support (BS) values 

(upper value, BI/CAT model; lower value ML/WAG model). Values below 60% are 

indicated by a hyphen; when BS values are equal only one is indicated. The posterior 

probability values using PhyloBayes are 1.0 for all except two branches (0.98 for the 

branch uniting Viridiplantae and Haptophyceae; 0.90 for the clade indicted by *). The 

analyses using ML (RAxML, WAG+Gamma; four categories, Supplementary Material, 

Figure S1) support the alternative grouping of Malawimonadozoa and JEH with a BS of 

77%. Other minor differences include Plantae relationships and the placement of 

Haptophyceae, which receive no solid support in both BI and ML analyses.  

 

Figure 2: Phylogeny inferred from the mitochondrial dataset. For details on figure 

description, evolutionary models and phylogenetic methods, see legend of Fig. 1. Note that 

as already noted in a previous publication (Ruiz-Trillo et al. 2008), the phylogenetic 

position of Capsaspora with mitochondrial data differs from that with nuclear data (Fig. 1). 

We attribute this inconsistency to the limited availability of mtDNA sequences from 

Capsaspora relatives, and a strong LBA artifact introduced by the fast-evolving Bilateria in 

concert with Trichoplax. Further, the placements of Cryptococcus and Ustilago differ 

(although without significant support) from those with nuclear data (see Fig. 4), although 

results with the much larger nuclear dataset are more likely to be correct.   



 

 

 

139 

139 

 

Figure 3: VLB analysis. Relationship between the number of sequence positions and 

bootstrap support for Fungi+Nucleariida, with nuclear and mitochondrial datasets. 

 

Figure 4: Fungal phylogeny with nuclear data, using Nucleariida as the outgroup. For 

details on figure description, evolutionary models and phylogenetic methods, see legend of 

Figure 1. Note that the phylogenetic position of Blastocladiomycota is unstable, differing 

between ML versus BI analyses (we consider the latter to be more reliable). 
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Table S1: Proteins in the Eukaryotic Dataset 

 

arp23 cct-A cct-B cct-D cct-E cct-G cct-N cct-T 

cct-Z cpn60mt ef1-EF1 ef1-RF3 ef2-EF2 fibri grc5 if1a 

if2b if2g if6 ino1 l12e-A l12e-C l12e-D nsf1-C 

nsf1-G nsf1-I nsf1-J nsf1-K nsf1-L nsf1-M nsf2-A psma-A 

psma-B psma-C psma-D psma-E psma-F psma-G psmb-H psmb-I 

psmb-J psmb-K psmb-L psmb-M psmb-N rad51-A rf1 rpl1 

rpl11b rpl12b rpl13 rpl14a rpl15a rpl16b rpl17 rpl18 

rpl19a rpl2 rpl20 rpl21 rpl22 rpl23a rpl24-A rpl25 

rpl26 rpl27 rpl3 rpl30 rpl31 rpl32 rpl33a rpl34 

rpl35 rpl37a rpl38 rpl39 rpl42 rpl43b rpl4B rpl5 

rpl6 rpl7-A rpl9 rpp0 rps1 rps10 rps11 rps13a 

rps14 rps15 rps16 rps17 rps18 rps19 rps2 rps20 

rps22a rps23 rps25 rps26 rps27 rps28a rps29 rps3 

rps4 rps5 rps6 rps8 sap40 srp54 srs suca 

vata vatb vatc Vate w09c    
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Table S2: Proteins in the Fungal Dataset 

 

arc20 arp23 cct-A cct-B cct-D cct-E cct-G cct-N 

cct-T cct-Z cpn60mt crfg ef1-EF1 ef1-RF3 ef2-EF2 ef2-U5 

eif5a er1 fibri fpps grc5 hsp70-E hsp70mt hsp90-C 

if1a if2b if2g if2p if4a-a if4a-b if6 ino1 

l12e-A l12e-B l12e-C l12e-D mcm-B mcm-C mcm-E mcm-F 

nsf1-G nsf1-J nsf1-K nsf1-L nsf1-M nsf2-A pace2-A pace2-C 

psma-A psma-B psma-C psma-D psma-E psma-F psma-G psmb-H 

psmb-J psmb-K psmb-L psmbM psmb-N rad23 rad51-A rf1 

rpl1 rpl11b rpl12b rpl13 rpl14a rpl15a rpl16b rpl17 

rpl18 rpl19a rpl2 rpl20 rpl21 rpl22 rpl23a rpl24-A 

rpl25 rpl26 rpl27 rpl3 rpl30 rpl31 rpl32 rpl33a 

rpl34 rpl35 rpl36 rpl37a rpl38 rpl39 rpl42 rpl43b 

rpl4B rpl5 rpl6 rpl7-A rpl9 rpo-A rpo-B rpo-C 

rpp0 rps1 rps10 rps11 rps13a rps14 rps15 rps16 

rps17 rps18 rps19 rps2 rps20 rps22a rps23 rps24 

rps25 rps26 rps27 rps27a rps28a rps29 rps3 rps4 

rps5 rps6 rps7 rps8 rps9 sap40 srp54 srs 

suca tfiid tif2a vata vatb vate xpb vatpased 

ATP synthase-mt dihydrolatransacylase-b ornamtrans-a  

pyrdehydroe1b-mt sadhchydrolase-E1 vacaatpasepl21-a  
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Figure S1: Tree of eukaryotes with the eukaryotic dataset and ML inference. The 

analyses using RAxML (WAG+Gamma; four categories) (Stamatakis 2006) support the 

grouping of Malawimonadozoa and JEH with a BS of 77%. Other differences with the tree 

using BI method (Figure 1) include Plantae relationships, and the placement of 

Haptophyceae, which receive no support for both BI and ML analyses with this dataset. For 

more details see legend of Fig. 1. 
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Figure S2: Phylogeny with Eukaryotic Dataset after removing fast-evolving species. 

The tree was inferred with ML (RAxML) using the WAG+Gamma model with four 

categories. Numbers at branches represent support values obtained with 100 bootstrap 

replicates. 
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Figure S3: Phylogeny with Eukaryotic Dataset after recoding amino acids into six 

groups. The amino acids of the Eukaryotic Dataset were recoded into six groups as 

follows: (1) ASTGP, (2) DNEQ, (3) RKH, (4) MVIL, (5) FYW and, (6) C. This allowed 

the use of a 6  6 general time-reversible rate matrix with free parameters rather than a 

fixed empirical matrix. Sequence composition and among-site rate variation parameters 

were also free in the BI analysis, as implemented in P4 (Foster 2004); 50 000 generations, 

first 10 000 removed as burn-in). Numbers at branches represent PP values. 
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Figure S4: Complete mitochondrial DNA (mtDNA) of Nuclearia simplex strain 1552/2. 

The circular-mapping mtDNA (74,120 bp) is displayed starting with the rnl gene (coding 

for the large subunit rRNA), clockwise in direction of transcription. Black bars, genes or 

exons; grey bars, introns and intronic ORFs; tRNA genes are named by the one-letter 

amino acid code. 
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Figure S5: Phylogenetic relationship of the 29 species used for VLB analyses. 

The phylogeny was inferred using nuclear data and RAxML with the WAG + Gamma 

model. In order to minimize missing data in the mitochondrial dataset, we exchanged 

Saccharomyces and Schizosaccharomyces that both lost the six mitochondrion-encoded 

nad genes with Candida albicans and Taphrina.   
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Abstract  

Long Branch Attraction (LBA) is a common phylogenetic artifact that leads to the 

grouping of species with elevated evolutionary rates - irrespective of their true phylogenetic 

position. In these species, a large fraction of fast evolving sequence sites is virtually 

randomized (over-saturated) without phylogenetically tractable information. Recent studies 

demonstrate that heterotachy (within-site rate variation) is prevalent in phylogenetic 

datasets, predominating in fast evolving species. If not accounted for by the evolutionary 

model, heterotachy may escalate the effect of LBA. Yet, current implementations of 

heterotachous models are computationally too demanding to be used with large datasets. 

Until these methods are more developed, removal of highly heterotachous (HH, identified 

as significant by statistical method) sites in groups of fast-evolving species may provide the 

most effective alternative to counteract LBA. Here I present a method based on a 

Likelihood Ratio Test (LRT) that permits progressive elimination of HH sites. In contrast 

to other methods, I identify and eliminate sequence positions only in the fast-evolving taxa, 

i.e., data loss due to sequence site removal is limited. Two previously published datasets 

with known, strong LBA effects are used to demonstrate the potential of our method. When 

using maximum likelihood (ML) as inference method, removal of HH sites in fast evolving 

taxa overcomes LBA in both instances, with bootstrap support values for the expected 

(true) topologies at 97% in one instance, and 90% in the other.  
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Introduction 

LBA, the grouping of species with elevated evolutionary rates irrespective of their true 

phylogenetic position, is the most-cited and probably most prevalent artifact in 

phylogenetic analysis. It affects available inference methods without exception, although at 

varying degrees (Felsenstein 1978a; Hartmann and Golding 1998; Dean and Golding 2000; 

Lopez, Casane, and Philippe 2002; Susko et al. 2002; Gribaldo et al. 2003; Philippe et al. 

2003; Bevan, Lang, and Bryant 2005; Phillips et al. 2006; Bevan, Bryant, and Lang 2007). 

Understanding causes and consequences of LBA is crucial for overcoming phylogenetic 

artifacts in the analysis of real sequence datasets. 

In his seminal paper, Felsenstein illustrates that phylogenetic methods will be 

misled by LBA, when evolutionary rate variation across lineages is high enough to 

effectively randomize sequence character states with respect to their phylogenetic history 

(Felsenstein 1978a). More recently it was suggested that another rate heterogeneity, 

heterotachy (Lopez, Casane, and Philippe 2002), significantly strengthens the effect of 

LBA (Kolaczkowski and Thornton 2004; Philippe et al. 2005b). According to the authors‟ 

interpretation, maximum parsimony (MP) would perform better than maximum likelihood 

(ML) in recovering the correct topology for datasets with high degrees of heterotachous 

sites. This study prompted several other studies (Gadagkar and Kumar 2005; Gaucher and 

Miyamoto 2005; Philippe et al. 2005b; Spencer, Susko, and Roger 2005), confirming that 

heterotachy is indeed much more prevalent than previously thought. Yet, they all disagree 

that MP outperforms ML in resolving the correct tree topology. More recently, models and 
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methods have been developed to overcome phylogenetic artifacts caused by heterotachy: 

mixture models have been developed to improve phylogenetic accuracy, where traditional 

homotachous models fail (Kolaczkowski and Thornton 2008). Yet a major drawback of 

these methods is computational load, limiting its application to small datasets. In one of the 

studies, the proportion of heterotachous sites in real datasets varies between 5% and 60% 

(< 25% in four datasets, 60% in an extreme case (Pagel and Meade 2008)). This implies 

that homotachous models typically describe a large fraction of sites correctly, i.e. that 

removal of heterotachous sites would usually leave sufficient information to resolve 

phylogenetic questions with homotachous models. 

Particularly in case of large datasets, data filtering has long been used to avoid 

artifacts caused by rate heterogeneity (e.g., (Brinkmann and Philippe 1999; Lopez, Forterre, 

and Philippe 1999; Susko et al. 2002; Pisani 2004; Brinkmann et al. 2005; Roger and Hug 

2006; Rodríguez-Ezpeleta N et al. 2007)). These methods eliminate data columns that are 

not correctly handled by current evolutionary models, indiscriminately across all species. 

Therefore, a gradual increase of phylogenetic versus non-phylogenetic signal comes at a 

steep cost, ultimately reducing the dataset to a point where insufficient data is left to resolve 

the tree. For example, the S-F method (Brinkmann and Philippe 1999) removes fast-

evolving positions with least reliable evolutionary information, and the H-P method (Lopez, 

Forterre, and Philippe 1999) eliminates heterotachous sites from alignments. Although both 

methods work well for given examples, in order to calculate site-wise evolutionary rates, 

they require a priori grouping of monophyletic taxa (at least three species per monophyletic 
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group) for all species presented in the dataset. When less than three species are available for 

a given group, these methods are not applicable. An alternative method to detecting 

heterotachous sites is modeling among-site rate variation through a bivariate discrete rate 

distribution, with a matrix of 25 by 25 categories (Susko et al. 2002). The major limitation 

of this method is computationally impracticability for large datasets. In this study, I present 

a method that is suitable for larger datasets and effectively detects heterotachous sites in a 

well-defined lineage without a requirement for excluding lineages from the dataset that are 

represented by less than three taxa. 

In addition, instead of indiscriminately removing sites column-wise, I do so only 

for the group of taxa that is likely affected by LBA. Data of other species are untouched so 

that the overall phylogenetic resolution remains strong. Our method is based on a 

Likelihood Ratio Test (LRT) of unrooted tree topologies. LRT has been previously applied 

to detecting heterotachous sites in paralogous proteins (Knudsen and Miyamoto 2001), but 

this implementation (without evident motive) requires rooted trees to calculate likelihood 

values. In many cases, a reliable, close outgroup is unavailable for rooting, and a forced 

introduction of a (distant) outgroup will predictably increase the level of phylogenetic 

uncertainty and strengthen LBA artifacts rather than reducing them. 

Although H0 and H1 is not adequately defined in the original paper (Knudsen and 

Miyamoto 2001), the procedure for simulating LRT statistics is appropriate, closely 

matching chi-square distribution (see Fig. 2 in (Knudsen and Miyamoto 2001)). Therefore, 

this LRT approach may be used for identification of evolutionary rate shift among proteins. 
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Another concern is that the application of LRT site by site will cause a multiple comparison 

problem (the more hypotheses are tested simultaneously, the higher the probability of 

obtaining false positive), increasing the probability of a type 1 error (or false positive). The 

order of LRT statistics is less sensitive to the multiple comparison problems than the P-

value. There are procedures that use it to correct the multiple comparisons (Simes 1986). 

Although the LRT is used site-by site in our method, the relative order of LRT statistics is 

used to decide the rank of sites that largely contribute to LBA (i.e., the HH sites). This will 

cause that our procedure is relative robust to the multiple comparison problem. 

Two previously published datasets (Brinkmann et al. 2005; Philippe et al. 2005b) 

are used to demonstrate the potential of our procedure in phylogenetic analysis, using ML 

as the basic inference method. The analyses of the original datasets are strongly affected by 

LBA. Our results demonstrate that the LRT method efficiently detects heterotachous sites, 

and removing them in specified groups effectively overcomes LBA. 

 

Materials and Methods 

Datasets 

Two previously published datasets are analyzed in this study. The first one (Philippe, 

Lartillot, and Brinkmann 2005) includes 146 genes from 49 species. Five of these genes 

were removed, as these are missing in the fast-evolving platyhelminths. This modified 

dataset has 33,452 amino acid positions (referred to hereafter as the Animal Dataset). The 

second dataset with 133 genes ((Brinkmann et al. 2005); referred to hereafter as the 
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Eukaryotic Dataset) comprises 44 species (six Archaea, 33 slowly evolving eukaryotes, and 

Encephalitozoon cuniculi, a member of the fast evolving Microsporidia). 

 

Phylogenetic analysis of Animal Dataset 

Because heuristic approaches might miss the correct solution, two different models 

(methods) for the phylogenetic inference were compared: (i) a separate model (Bapteste et 

al. 2002); for details see (Philippe, Lartillot, and Brinkmann 2005); and (ii) a conventional 

model with concatenated data using RAxML and the WAG amino acid replacement matrix 

and gamma-distributed rates across sites. Bootstrapping (100 replicates) is used to evaluate 

the support for internal branches.  

 

Phylogenetic analysis of Eukaryotic Dataset 

In the original analysis of the Eukaryotic Dataset (Brinkmann et al. 2005), both separate 

and concatenated models were applied. The ML tree is presented in Figure 4A. In this 

study, I exclude the concatenated model due to the concern of trapping in a local maximum 

and apply the separate analysis with a different approach to constrain the tree space 

(Brinkmann et al. 2005). I define two different sets of constraints: in one set the monophyly 

of the five main eukaryotic lineages (animal, plant, stramenopiles, alveolates and Fungi; in 

the case of Fungi, the four main fungal lineages are left unconstrained) and Archaea are 

constrained respectively, Microsporidia is free to group with any of them. In the second set, 

Microsporidia is constrained within the fungal lineage, leaving unconstrained its position in 
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Fungi; other groups are as in the first set of constraints. In total, these two sets of 

constraints define 76,545 topologies. Then, the procedure of separate model is applied as in 

(Bapteste et al. 2002). 

 

Procedure for HH site filtering 

The goal of this filtering procedure is the identification and elimination of sequence 

positions that cannot be properly handled by current inference methods, i.e., HH sites. Data 

elimination is restricted to a predefined subgroup that is known or suspected to be prone to 

phylogenetic artifacts (e.g., fast evolving groups). The procedure may also be applied to 

more than one subgroup, but then the identification of HH sites has to be done separately. 

The procedure contains the following steps:  

1) The dataset is divided into two parts: the targeted subgroup (subgroup 1 in Figure 1) 

and the rest (subgroup 2 in Figure 1); 

2) Positions whose evolutionary rates are significantly different between subgroup 1 

and 2 are detected by applying LRT on each sequence position (see next section); 

3) Positions detected from last step can be divided into two classes: one includes 

positions whose rate is higher in subgroup1 than subgroup2; other positions. 

Comparison of the rates with maximum likelihood values for the two subgroups 

(evolutionary rate can be estimated using ML method, this is done at the same time 

with the calculation of topology likelihood) identifies the site in the first class, 

which are HH sites in subgroup 1; 
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4) HH sites are ranked by their LRT P values, and filtered progressively. 

Details for LRT and HH site removal are described in the following. 

 

Likelihood ratio test 

LRT is a commonly used statistical test of the goodness-of-fit between two nested models; 

it provides an objective criterion for selecting among possible models. A complex model is 

compared to a simpler model, to see if it fits a dataset significantly better. LRT is only valid 

for comparing hierarchically nested models: the complex model must differ from the 

simple model only by the addition of one or more parameters. 

In this study, it is used to detect sites with significant evolutionary rate differences 

between a target group (subgroup 1; for details on the procedure see Fig. 1) and all other 

species. Starting with a given phylogenetic tree, the dataset is split into two subsets, 

subgroup 1 and 2. Subgroup 1 is the assumed fast-evolving group. The null model (H0) of 

LRT states that a given position i has the same evolutionary rate in both sub-datasets 

(subgroup 1 and 2), and the alternative model (H1) that this position has different rates. For 

each site i, the maximum likelihood values L0(i) and L1(i) are calculated under both models, 

using a pruning algorithm with PAML (Felsenstein 1981; Yang 1997). The significance of 

differences between the two models is assessed using the following test statistics: P(i) = -

2log(L0(i)/L1(i)). The test statistics P(i) is asymptotically chi-square-distributed with one 

degree freedom, and the critical value (c.v.) under this condition is 3.841, at a 5% 
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significance level. I denote S as the set of sites with significantly different rates of 

evolution, at the 5% significance level.  

 

Removal of HH sites  

The identification and ranking of HH sites is illustrated in Fig. 2; the aim is their specific 

identification in subgroup 1. Sites with significant rate differences between subgroup 1 and 

2 (a set defined as S) are identified by LRT, without determining whether sites of subgroup 

1 evolve faster or slower than in subgroup 2. In order to distinguish these two cases, for 

each site in S, the evolutionary rates are estimated separately for subgroup 1 and 2, by using 

PAML (Yang 1997): let λ1(i) and λ2(i) be the evolutionary rates that maximize the 

likelihood of the phylogeny for position i of subgroup 1 and subgroup 2 respectively. I then 

divide the set S into two subsets (S1 and S2) based on λ1(i) and λ2(i): S1 contains sites with 

λ1(i) > λ2(i), S2 the remainder. S1 is the set of HH sites, and the degree of heterotachy can be 

ranked according to test statistics P(i) of LRT. HH sites may then be progressively 

eliminated. Perl scripts implementing these procedures are available upon request.  

  

Results and Discussion 

Animal phylogeny and LBA 

Resolving deep animal phylogeny remains challenging due to LBA artifacts, resulting from 

strong rate heterogeneity among distant animal lineages. Various methods have been used 

to detect and overcome LBA, and to improve our knowledge of animal evolution. For 

example, in order to test if with a given dataset nematodes and platyhelminths group due to 
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LBA (Fig 3A), Philippe et al. (Philippe, Lartillot, and Brinkmann 2005) apply two 

approaches. They either exclude fast-evolving nematodes and platyhelminths from the 

analysis, or progressively filter out fast-evolving genes. Under both conditions, nematodes 

and platyhelminths are no longer attracted; nematodes group with arthropods and 

platyhelminths with annelids plus mollusks. Clearly, the grouping of nematodes and 

platyhelminths result from LBA, and removing biased data (faster evolving species or 

genes) allows recovering the true phylogenetic relationships.  

In this study, I address this problem by using an alternative method, removal of HH 

sites from the fast evolving nematodes and platyhelminths.  

 

Heterotachous sites in nematodes and platyhelminths 

Using LRT, I find that 74.7% of sequence sites in nematodes have significant rate 

differences compared to other species (at a 5% significance level), i.e., they are 

heterotachous. Further comparisons of evolutionary rates indicate that a large fraction of 

heterotachous sites evolve significantly faster in nematodes (49.3% of total sequence sites; 

defined as HH sites). In the case of platyhelminths, 69.2% of sites have significant rate 

differences with the rest and 51.4% evolve significantly faster. A comparison of HH sites in 

nematodes and platyhelminths shows that about half (8,231) are common, and half (8,495) 

are specifically accelerated in either nematodes or platyhelminths. The fraction of common 

HH sites is expected to contribute most to LBA, in this example. 
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HH site removal effectively overcomes LBA artifacts 

HH sites are progressively removed in steps of 10% of total sites, and resulting datasets are 

evaluated by phylogenetic analysis (see summaries in Tables 1 and 2). Table 1 shows the 

resulting best ML trees. Table 2 lists bootstrap values for a branch that is most affected by 

LBA (marked with an asterisk in Tree B of Figure 3). After removal of 20% or more HH 

sites from nematodes, the ML tree changes from the incorrect Tree A to the expected Tree 

B (Fig. 3). HH site removal from platyhelminths leads to similar results. The most efficient 

way is removal from both groups simultaneously: at only 10%, nematodes group correctly 

with arthropods, and the bootstrap support in separate analysis increases to 97% (85% with 

RAxML) when all HH sites are removed. In contrast, the fraction of HH sites that are 

common to species other than nematodes and platyhelminths is only 20%, and their 

removal does not change the tree topology (result not shown). 

The two methods applied in a previous publication (Philippe, Lartillot, and 

Brinkmann 2005), complete removal of fast-evolving genes or sequence sites, are expected 

to result in a decrease of overall phylogenetic resolution. In fact, after removing 75 fast-

evolving genes (out of 146), the support for deuterostome monophyly drops from 94% to 

75% (Figs. 2 and 4 in (Philippe, Lartillot, and Brinkmann 2005)). Because deuterostome 

sequences remain untouched and the improvement of the ratio of signal and noise by our 

procedure, the respective support value increases to significant (100%) from 94% (Fig. 

3B). 
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Position of Microsporidia in the eukaryotic tree 

Deep level phylogenies are of fundamental importance for understanding the relationship 

among eukaryotic supergroups and the origin of eukaryotes. Yet, the presence of several 

fast evolving supergroups (e.g. Fungi, Alveolata) makes the occurrence of LBA very likely, 

with the consequence that extremely-fast-evolving taxa such as Microsporidia are difficult 

to place (Philippe et al. 2000a). Although it is widely accepted that Microsporidia are 

related to Fungi (Baldauf et al. 2000; Keeling, Luker, and Palmer 2000; Philippe et al. 

2000a), special measures have to be taken to overcome LBA, and statistical support for this 

topology remains limited. The precise positioning of Microsporidia within Fungi by 

phylogenetic analysis remains unresolved. 

In the analysis of Eukaryotic groups, a close outgroup is very useful to avoid LBA 

(Philippe and Laurent 1998). In most cases, it is unavailable, the addition of a distant 

outgroup (Archaea) is inevitable, which further increases the potential of LBA. In the ML 

tree from analysis of the Eukaryotic Dataset (Figure 4A), Archaea and Microsporidia form 

a monophyly that groups with Fungi. This grouping is very likely due to LBA artifact 

(Cavalier-Smith 1987b; Baldauf and Palmer 1993; Baldauf et al. 2000). In this study, I 

apply the LRT to identify the HH sites in the distant outgroup, Archaea, and investigate 

their effects on phylogenetic analyses.  
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HH sites in Archaea contribute to LBA artifacts  

LRT analysis identifies ~ 30% of the archaeal sequence positions as HH sites (at a 5% 

significant level), and their removal leads to a change of tree topology in which 

Microsporidia group with Fungi. The bootstrap support for this topology is weak even after 

removal of 30% of HH sites (45% for the grouping of Microsporidia with Fungi, Figure 

4B). The support increases up to 91% when 40% sites are removed, but decreases to 78 % 

when 50% sites removed, likely because an increasing number of sites with phylogenetic 

signal are removed from the dataset. 

In the original analysis of the Eukaryotic Dataset, fast-evolving Microsporidia 

proteins are identified and removed progressively from dataset (Brinkmann et al. 2005). 

Using a properly constraint tree space, I repeat the analysis using their approach, and find 

that the support for the grouping of Microsporidia with Fungi increases up to only 63% 

support after the removal of 90% Microsporidia proteins. Due to the difference of two 

methods, it is impossible to compare the performance of our method with (Brinkmann et al. 

2005). 

In summary, the application of LRT on Eukaryotic Dataset confirms that 

Microsporidia has a close relation with Fungi, although with moderate support. More data 

from other Microsporidia species are needed to resolve its placement with confidence. This 

example also demonstrates that removal of data which contain no or few phylogenetic 

signal from distant outgroup can overcome LBA and improve the accuracy of phylogenetic 

inference. 
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Table 1: Correlation of tree topology and the degree of HH site removal in nematoda and/or 

platyhelminths (Animal Dataset).  

 10% 20% 30% 40% 50% 

Nematoda Tree A* Tree B* Tree B Tree B Tree B 

Platyhelminths Tree A Tree B Tree B Tree B Tree B 

Both Tree B Tree B Tree B Tree B Tree B 

* Tree A is the incorrect LBA topology in which nematodas and platyhelminths group 

together; 

* Tree B reflects the expected relationships among animal lineages (for tree topologies see 

Fig. 3). 

 

 

 

Table 2: Variation of bootstrap support for the gorup of Nematoda + Arthropoda with HH 

site removal in Nematoda and/or Platyhelminths. 

 10% 20% 30% 40% 50% 

 Sep.* Con.* Sep. Con. Sep. Con. Sep. Con. Sep. Con. 

Nematoda 32.2 14 46.2 25 64.0 42 69.1 59 83.0 66 

Platyhelminths 41.4 17 52 31 61.0 26 74.4 46 87.7 67 

Both 57.5 21 75.1 37 86.1 44 89.6 55 97.0 85 

* Sep, Separate analysis  

* Concatenated model using RAxML.   

 

 

  



 

 

FIGURE LEGENDS 

 

Figure 1: Illustration of LRT to identify heterotachous sites. 

For each site, the two models of LRT are: H0: the two subgroups share the same rate λ; H1: 

subgroups have different rates λ1, λ2. The likelihood values under the two models are: L0 = 

max(Lsub1(λ)Lsub2(λ); L1 = max(Lsub1(λ1))max(Lsub2(λ2)). The test statistics is calculated as: 

P(i) = -2(logL0-logL1). The dataset is divided into two parts: one that fits H0, and another 

H1 that belongs to set S (see Materials and Methods section for further details). 

 

Figure 2: Procedure to identify heterotachous sites of a target group, and to rank them by 

LRT. For each site of set S from Fig 1, the site-wise rates are estimated and compared 

between the target group and the rest. The HH sites are those that evolve significantly faster 

in the target group. They are ranked based on the test statistics of LRT. 

 

Figure 3: Trees of Animal Dataset. The same topology was obtained using either a separate 

or concatenated WAG+F+G model (RAxML). The values close to internal branches 

indicate bootstrap support values of the separate (upper) or concatenated (lower) models. 

When both are 100, only one is indicated; when one is below 75 it is indicated by -.  Tree 

A: ML tree from complete dataset; Tree B: 20% of HH positions are removed from 

Nematoda. The best tree and bootstrap values for the node with * in cases of other 

percentages of site removal in Nematoda and/or Platyhelminths are listed in Table 1 and 2. 

 

Figure 4: Analysis of the Eukaryotic Dataset. The tree was inferred with WAG+F+G using 

separate analysis. Bootstrapping support for internal branches is indicated above branches. 

The asterisk indicates groups that are constrained in the analysis. Tree A: ML tree from the 

analysis of original complete dataset; Tree B: ML tree and bootstrap support after removal 

of HH sites from Archaea. The values at nodes are bootstrapping supports after 50%, 40% 

and 30% (top to bottom) removal of archaeal sites. 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Chapter 6 Discussion 

 

This thesis contains two different scientific aspects, phylogenomic analyses of real 

sequence datasets and method development for improved phylogenetic analysis. In the first 

part, I address several unresolved issues in fungal evolution (for details, see Chapter 1, and 

(Taylor et al. 2004; James et al. 2006a; Hibbett et al. 2007)) using phylogenomic 

approaches. These include the construction and comparative analysis of sequence datasets 

that contain a large number of species and genes, which are derived from both 

mitochondrial and nuclear genomes (Philippe et al. 2005a). Our results demonstrate that 

this approach is quite powerful, allowing us to resolve deep divergences within Fungi that 

have been either controversial and/or without compelling statistical support. The 

comparisons between mitochondrial and nuclear phylogenies add an additional layer of 

confidence to our conclusions - in cases where the resulting tree topologies are consistent 

(Liu et al. 2009b). If different, the results indicate potential phylogenetic artifacts (Ruiz-

Trillo et al. 2008; Liu et al. 2009a), which may be analyzed and resolved by applying 

adequate procedures (e.g., comparison of inferences with methods that differ in their 

sensitivity towards artifacts (Kolaczkowski and Thornton 2004); removal of fast-evolving 

or biased sequence sites or genes (Philippe et al. 2000a; Brinkmann et al. 2005)).  

In the second part of this thesis, I present a novel method that helps overcoming 

LBA artifacts (Felsenstein 1978b). It identifies and gradually removes sequence positions 

that are highly heterotachous (Delsuc, Brinkmann, and Philippe 2005), that contain no or 
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little phylogenetic information, and that are not correctly handled by current phylogenetic 

inference methods (Zhou et al. 2007). Our proposed method is unique in removing 

sequences only in fast-evolving species, and I show that it leads to significant improvement 

of phylogenetic inferences (Chapter 5). In other published procedures, sequence sites are 

removed column-wise for all species (Philippe et al. 2000a), or complete proteins are 

eliminated from fast evolving species (Brinkmann et al. 2005). Both leads to significant 

loss of phylogenetic signal, and less resolution.  

In the following chapter I will discuss the major findings and conclusions of this 

thesis, compare with previously published works, and give an outlook on future directions 

in this research domain. 

Are Zygomycota and Chytridiomycota monophyletic? 

Our phylogenomic analyses conclude beyond reasonable doubt that the classic taxon 

Zygomycota is paraphyletic - as previously suspected (e.g., (Leigh et al. 2003; Taylor et al. 

2004; Seif et al. 2005)), and that subdividing this taxon is in order. However, as pointed out 

in our manuscript (Liu et al. 2009b), dividing and renaming a traditionally as well known 

taxon as Zygomycota should be based on solid phylogenetic evidence to avoid further 

renaming, and confusion of the scientific community.  

In the given case, I show with high statistical support that two of the new taxonomic 

definitions (according to (Hibbett et al. 2007)) are either incorrect or not well justified; i.e., 

the inclusion of Mortierella in a phylum Mucoromycotina, and the introduction of a 
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separate phylum for a small group of mycorrhizal fungi known as Glomeromycota, whose 

phylogenetic position relative to other zygomycete phyla remains unresolved with any of 

the currently available sequence datasets. The genetics of mycorrhizal fungi is indeed most 

unusual, with cells containing populations of hundreds of genetically different nuclei per 

cell (e.g. (Hijri and Sanders 2005; Lee et al. 2008; Liu et al. 2009a)), and a reduced 

capacity for recombination and accelerated sequence and genome evolution. Not 

surprisingly, the ongoing Glomus genome project has failed at the genome assembly step 

(Martin et al. 2008). Genome sequencing is unlikely to ever finish unless by processing 

single, separate nuclei, whose DNA is multiplied by whole-genome amplification – an 

approach currently under development. Taken together, linking this group of Fungi to its 

free-living relatives includes genome sequencing of more than just one glomeromycotan 

species, in the context of untangling the classic phylum Zygomycota into phylogenetically 

well defined sub-groups.  

Similarly, also the classic taxon Chytridiomycota (chytrids) may be paraphyletic. 

One of its subgroups, the Blastocladiales, associates in phylogenetic analyses either with 

chytrids (e.g., (Seif et al. 2005) or with zygomycetes ((Van der Auwera and De Wachter 

1996; Tanabe, Watanabe, and Sugiyama 2005a; Hoffman et al. 2008; Tambor, Ribichich, 

and Gomes 2008). Only few genera are known within this group (James et al. 2006a), and 

genome-size data sets are available for two of its close members, Allomyces and 

Blastocladiella (Ribichich, Georg, and Gomes 2006; Liu et al. 2009b). Yet, in the above-

mentioned new taxonomy (Hibbett et al. 2007), Blastocladiales are separated from chytrids 
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into a new phylum Blastocladiomycota, despite the unresolved controversy on their 

phylogenetic position. In our most recent phylogenomic analysis with nuclear sequences 

(Liu et al. 2009b) Blastocladiales group with chytrids in ML analyses, but not when using 

the CAT model. With the most recent collection of mitochondrial data, the favored 

topology appears to be with chytrids, whatever the phylogenetic model used (our 

unpublished results). Accordingly, a decisive answer to this question still remains to be 

found. To resolve the questions on chytrid monophyly and the identity of 

Blastocladiomycota, genome sequencing of distant representatives within this clade (e.g., 

Physoderma maydis; (James et al. 2006a)) and within a broad spectrum of zygomycetes 

will be important.  

Taphrinomycotina are monophyletic 

Our phylogenetic analyses with 113 nucleus-encoded proteins conclude with high 

confidence that Taphrinomycotina are monophyletic, and that they are a sister group of 

Saccharomycotina plus Pezizomycotina. Application of the AU likelihood test (an 

alternative to bootstrap analysis; to pass the AU test at the recommended p value of 0.05, 

an equivalent of about 95% bootstrap support is required for the majority of branches) also 

confirms the monophyly of Taphrinomycotina, rejecting paraphyletic scenarios with high 

confidence (p < 0.01). Yet, there is currently insufficient data to resolve the relationships 

within Taphrinomycotina, in part because of missing sequences in some species (due to 

limited amounts of EST data). In addition, genome-size nuclear or mitochondrial data are 
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not available for Neolecta irregularis, a putative member of Taphrinomycotina based only 

on the analysis of rRNA sequences (Nishida and Sugiyama 1993).  

Phylogenetic position of protists related to Fungi 

Based on our comprehensive analyses with nuclear and mitochondrial genomic data I show 

that Nucleariida are the closest sister of Fungi (Liu et al. 2009b). A similarly interesting 

group of protists are Rozellida. SSU rRNA phylogenies indicate that these intracellular 

pathogens of chytrids might be even closer to Fungi than Nucleariida (Lara, Moreira, and 

Lopez-Garcia 2009a). Genome sequences from Rozellida plus Nucleariida will be useful 

for defining traits of the fungal ancestors, and will be most important in establishing a 

strong outgroup in phylogenetic analysis of the Fungi. The effect of a close outgroup is 

both strengthening of resolution and reduction of phylogenetic artifacts, ultimately 

allowing to settle even the dispute over the relatedness between Microsporidia and Fungi.   

The phylogenetic placement of Microsporidia has long been debated, but any of the 

proposed topologies is without compelling significant support (Thomarat, Vivares, and 

Gouy 2004; Gill and Fast 2006; Lee et al. 2008; Keeling 2009), which is due to their most 

elevated evolutionary rates (Katinka et al. 2001). It is indeed possible that the phylogenetic 

information contained in currently available genome sequences remains insufficient, and 

that at least one slowly evolving member of Microsporidia has to be found to resolve this 

question (Akiyoshi et al. 2009; Cornman et al. 2009; Corradi et al. 2009). The combination 

of primary sequence with other genomic information, like gene order and content, is 
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another strategy to overcome current limitations (Larget et al. 2005; Lavrov and Lang 

2005). A recent analysis of gene order conservation in the sex locus and its surroundings 

suggests that Microsporidia might be related to Mucorales (Lee et al. 2008). Yet, this 

analysis is based on only few character states, and without the use of statistics. Thus, the 

development of a statistically valid evolutionary model for these gene order data will be 

urgently required, to allow their future integration with sequence data.     

Advantages and limitations of mitochondrial phylogeny 

Due to its functional significance, mitochondrial genes are well conserved across 

eukaryotes, and are widely used to resolve (sometimes even deep) phylogenies (e.g., (Lang, 

Gray, and Burger 1999; Lang et al. 2002a; Ballard and Rand 2005)). Furthermore, the 

comparisons between phylogenies from mitochondrial and nuclear data provide either a 

confirmation (when both agree), or a valuable indicator of phylogenetic artifacts (when 

inconsistencies occur). For example, in the case of Nuclearia, our analyses of 

mitochondrion-encoded genes is consistent with those of nuclear data, even if the statistical 

support of the mitochondrial phylogeny is moderate due to the small size of dataset ((Liu et 

al. 2009b),  and see below). On the other hand, in the case of Taphrinomycotina, analyses 

with concatenated mitochondrion-encoded proteins support grouping of 

Schizosaccharomyces and Saccharomycotina, with moderate to strong support (depending 

on species sampling and on the inference method and phylogenetic model; (Bullerwell et 

al. 2003; Leigh et al. 2003)). Comparison of topologies with varying taxon sampling, and 

analysis of datasets from which fast-evolving sites were gradually removed, indicate that 
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the mitochondrial topology is due to an LBA artifact ((Liu et al. 2009a)). Only the slowest-

evolving sequence positions in the mitochondrion-encoded proteins recover the tree 

topology that agrees with the analysis of nuclear data, and then only with marginal 

statistical support (due to the small amount of data that remains after site removal). To 

address this issue, either Schizosaccharomyces and/or Saccharomycotina species would 

have to found, which have not undergone such dramatic evolutionary rate acceleration. At 

present, promising candidate species are unknown. 

Another strategy for resolving phylogenies with mitochondrial data is the addition 

of nucleus-encoded proteins of clearly mitochondrial origin (Cotter et al. 2004; Williams 

and Keeling 2005; Catalano et al. 2006). For this, nuclear genome sequencing would be 

required, thus opening the possibility of comparing the consistence of large nuclear versus 

mitochondrial phylogenomic analyses. The difficulty with analyzing a mixed dataset of 

mtDNA- plus nucleus-encoded mitochondrial genes is in differences of their evolutionary 

models (evolutionary rate and compositional heterogeneity between genomes), which could 

be addressed by partitioning of the dataset and the use of separate models (Bapteste et al. 

2002; Nylander et al. 2004).  

Removing HH sites improves the accuracy of phylogenetic inference 

Data removal is universally (implicitly) applied in phylogenetic analyses, by elimination of 

sequence positions from multiple alignments that are not aligned reliably and contain little 

if any phylogenetic signal (e.g., either manual removal or by using Gblocks; (Castresana 
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2000)). This practice is justified because current algorithms for multiple sequence 

alignment tend to introduce errors, by optimizing alignments in little conserved regions 

based on sequence bias. The problem is aggravated in very fast evolving species (e.g., 

Microsporidia), whose sequences are mutationally saturated thus phylogenetically less 

tractable. In this case, including such species in the dataset may even result in a decrease of 

quality for the overall alignment. In other words, current technology and models are not 

well suited to deal with fast evolving sequence sites; inclusion of such sites will introduce 

potential phylogenetic artifacts. Thus, identification and removal of such positions is 

expected to improve phylogenetic inference. Previous methods either remove complete 

fast-evolving proteins of fast-evolving species (Brinkmann et al. 2005), or fast-evolving 

sequence positions across all species (Philippe et al. 2000a). In both instances, a significant 

amount of valuable sequence information is discarded, reducing the overall phylogenetic 

signal to a level that compelling statistical support of the results may no longer be attained. 

Our approach is different in filtering out accelerated sequence positions only in fast-

evolving species that are likely affected by LBA, thus keeping as much (confidently 

aligned) sequence information as possible. Our studies confirm that this method is superior 

in improving the accuracy of inferences, but in cases such as the Schizosaccharomyces/ 

Saccharomycotina mitochondrial phylogeny discussed above, insufficient sequence data is 

left even with our sequence filtering approach.  
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Chapter 7 Conclusions and future directions 

 

This study has addressed three unresolved phylogenetic questions related to the evolution 

of fungi and their close relatives, and proposes a new method for overcoming LBA 

artifacts. The following briefly summarizes the results, and provides an outlook on future 

directions in these areas of research. 

By employing methods that are able to reduce the effect of model violations, (e.g., 

S-F), I conclude for the first time that the analysis of the mitochondrial dataset is plagued 

by a strong LBA artifact, leading to the paraphyly of Taphrinomycotina (a clearly 

monophyletic group with most nuclear sequence datasets). My study resolves this long-

standing controversy (Liu et al, 2009a). On the contrary, using nucleariids as outgroup, 

with a similar nuclear phylogenomic dataset, the traditional Zygomycota become 

paraphyletic, with significant support (Liu et al, 2009b). This finding is compatible with 

previous studies that have proposed zygomycete paraphyly (Leigh et al. 2004; Liu, Hodson, 

and Hall 2006; James et al. 2006), although never at such a high confidence level. Finally, 

from a more methodological standpoint, inferences of any given dataset may be incorrect 

due to phylogenetic artifacts, in particular due to different evolutionary rates. My new 

method that filters HH sites from targeted species will help to identify and reduce potential 

artifacts (Chapter 5). The proposed procedure makes few assumptions, has a strong 

statistical basis, and may efficiently overcome LBA as demonstrated.  
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My studies on zygomycetes not only confirm their paraphyly, but open a discussion 

on the number of paraphyletic zygomycete lineages, and the proper association of species 

to them. Other phylogenetic questions, like the branching order of chytrid subgroups 

remains unresolved (Hibbett et al., 2007), as is the positioning of the very fast evolving 

Microsporidia either within Fungi (close to zygomycetes (Keeling 2003; Lee et al. 2008)) 

or as a fungal sistergroup (James et al. 2006a; Liu, Hodson, and Hall 2006). For addressing 

any of these questions, missing genome data and insufficient taxon sampling have been 

major obstacles (Philippe et al., 2005). Complete (or almost complete) genome data would 

have been preferable over EST data. With the rapid increase of fast, high volume genome 

sequencing, investment into software development that aims at improving automated 

genome assembly and gene annotation will become imperative. Therefore, although the 

issue of missing data will be resolved with new sequencing technologies, challenges with 

mastering the data flood will increase, further amplified by a lower accuracy of genome 

assemblies and gene annotations in some instances (due to inferior length and quality of the 

underlying sequence readings).  

Another concern is at the level of phylogenetic inference methodology itself. The 

increase of sequence information leads to both, opportunity to better resolve phylogenies 

but also a stronger impact of phylogenetic artifacts. Previously unresolved phylogenies 

might appear to be resolved and statistically well supported, but are incorrect. I and others 

show that data filtering from the target groups may identify and potentially overcome 

artifacts (see Chapter 5, page 161; (Inagaki et al. 2004; Brinkmann et al. 2005)). In 
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combination with new inference algorithms, the use of improved evolutionary models (e.g., 

PhyloBayes, CAT model; (Lartillot and Philippe 2004; Lartillot and Philippe 2008)), the 

reduction of missing data, and a much improved species sampling, even questions as 

difficult as the microsporidian phylogenetic position may then be resolved.  
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Appendix Contribution to Chapter 2-5 

 

Chapter two: 

Constructed the sequence alignment containing 13 mitochondrial proteins, filtered sections 

that cannot be aligned reliably, and conducted phylogenetic analyses. 

Chapter three and four: 

For the nuclear dataset, added sequences from fungal species to a previous alignment, 

identified and removed paralogs, conducted phylogenetic analyses; 

For the mitochondrial dataset, constructed the alignment, conducted phylogenetic analyses 

and designed the methods to detect LBA for mitochondrial dataset. 

Chapter five: 

Take full responsibility for the whole work: design, implementation of the method, and 

data analyses. 
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