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Abstract 
 

 We study the assignment of indivisible objects with quotas (houses, jobs, or 

offices) to a set of agents (students, job applicants, or professors). Each agent receives 

at most one object and monetary compensations are not possible. We characterize 

efficient priority rules by efficiency, strategy-proofness, and reallocation-consistency. 

Such a rule respects an acyclical priority structure and the allocations can be 

determined using the deferred acceptance algorithm. 
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1 Introduction
We study a basic indivisible-objects model with a …nite number of object
types and a …nite quota of available objects of each type. Examples are the
determination of access to education, allocation of graduate housing, o¢ces,
or tasks. Agents have strict preferences over object types and remaining
unassigned. An assignment is an allocation of the objects to the agents such
that every agent receives at most one object and quotas are binding. A
rule associates an assignment to each preference pro…le. When the quota
of each object type is one, this problem is known as house allocation. A
number of recent papers studied the house allocation problem (for example,
Abdulkadiro¼glu and Sönmez (1999), Svensson (1999), Pápai (2000), Ergin
(2000), Bogomolnaia and Moulin (2001), Ehlers (2002), and Ehlers, Klaus,
and Pápai (2002)).1

In education usually a ranking of the students is obtained through an
objective test such as an entry exam at a university. Then students who
achieved higher test scores than others have higher priority in that university.
This situation can be recorded as a strict priority ranking of individuals for
each object type where i Âa j means “i has higher priority for object type
a than j.” A priority structure is a collection specifying for each object
type a strict priority ranking. A rule violates the priority of agent i for
object a if there is a preference pro…le under which i envies agent j who
obtains a even though i has a higher priority for a than j. A rule respects
a priority structure if it never violates the speci…ed priorities. Gale and
Shapley’s (1962) deferred acceptance algorithm is a so-called best (e¢cient)
rule respecting a given priority structure. This means that any assignment,
which does not violate any priority of any agent, is Pareto-dominated by
the assignment calculated by the deferred acceptance algorithm. Loosely
speaking, Ergin’s (2002, Theorem 1) main result demonstrates that for rules
that respect a …xed priority structure, e¢ciency, group strategy-proofness2,
consistency3, and the acyclicity4 of the priority structure are all equivalent.

In Ergin (2002) a priority structure is exogenously given. We drop this
assumption and allow for all rules. We say that a rule is a priority rule

1 This list is not exhaustive.
2 Group strategy-proofness means that no group of agents can pro…t by joint misrep-

resentation of their preferences such that all members of the group weakly gain and one
member of the group strictly gains.

3 We discuss consistency in Section 2. To be precise, in his characterization Ergin (2002,
Theorem 1) requires consistency to hold for the so-called extended best rule.

4 A formal de…nition of acyclicity is given in Section 3.
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if there exists an endogenously given priority structure such that this rule
chooses the same allocations that the deferred acceptance algorithm …nds
using that priority structure. Our main result is that a rule satis…es e¢-
ciency, strategy-proofness, and reallocation-consistency if and only if it is an
e¢cient priority rule. In other words, any rule satisfying our combination of
axioms is a best rule for an endogenously given acyclical priority structure.

Here the third property is a stability condition requiring that when a
set of agents leaves with their allotments, then their assignments should
remain unchanged when applying the same rule to the reallocation problem
that consists of these agents and their allotments. For instance, in Germany
medical students are assigned to universities through a centralized rule each
year. Some students may wonder if they can improve their assignments by
reallocation among themselves. However, if their positions are reallocated
among themselves using the same rule, then by reallocation-consistency the
assignments would not change.

The paper is organized as follows. In Section 2 we introduce the model
and our axioms. In Section 3 we de…ne priority rules and present the char-
acterization of e¢cient priority rules. Section 4 contains some concluding
remarks.

2 Object Allocation with Quotas
Let N denote the …nite set of agents. Let A denote the …nite set of indivisible
object types. Given object type a 2 A, let qa ¸ 1 denote the number of
available objects, or quota, of type a. Let q ´ (qa)a2A. Let 0 represent the
null object. Not receiving any object is called “receiving the null object.”
The null object does not belong to A and is available in any economy.

Each agent i 2 N is equipped with a strict preference relation Ri over
A [ f0g. In other words, Ri is a linear order5 over A [ f0g. Given x;y 2
A [ f0g, xPi y means that agent i strictly prefers x to y under Ri. Let R
denote the set of all linear orders over A [ f0g. Let RN denote the set of
all (preference) pro…les R = (Ri)i2N such that for all i 2 N, Ri 2 R. Given
R 2 RN and M µ N , let RM denote the restriction of R to M . We also
use the notation R¡i = RNnfig. For example, ( ¹Ri; R¡i) denotes the pro…le
obtained from R by replacing Ri by ¹Ri.

An economy consists of a set of agents N 0 µ N, their preferences R0 2
RN0, and a vector of quotas q0 = (q0

a)a2A such that for all a 2 A, qa ¸ q0
a ¸ 0.

We suppress the set of agents and denote this economy by (R0; q0).
5 A linear order is a complete, re‡exive, transitive, and antisymmetric binary relation.
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When allocating objects each agent either receives an object of type
a 2 A or the null object. The null object can be assigned to several agents
without any restriction, but for all other objects the associated quota is
binding. Formally, given an economy (R0; q0) an allocation for (R0; q0) is a
list ® = (®i)i2N0 such that for all i 2 N 0, ®i 2 A [ f0g, and for all a 2 A,
jfi 2 N 0 : ®i = agj · q0

a. Note that not all available objects need to
be assigned. Given i 2 N 0, we call ®i the allotment of agent i at ®. An
unrestricted (allocation) rule is a function ' that assigns to each economy
(R0; q0) an allocation '(R0; q0).

We are only interested in economies where all agents are present and all
objects are available with quotas q and all economies that result as realloca-
tion problems from those economies. Therefore, we restrict any unrestricted
rule to these economies. The set of admissible economies with agent set N
is EN = f(R;q) : R 2 RNg.

Given an unrestricted rule ', we consider situations where, departing
from an economy in EN , some agents may want to reallocate the objects
assigned to them under '. Given R 2 RN and N 0 ( N, let r'

N0(R;q)
denote the reallocation problem that the agents N 0 face after having left
the economy (R;q) with their allotments at '(R; q). Formally, r'

N0(R;q)
denotes the economy (RN0; q0) where q0

a = jfi 2 N 0 : 'i(R;q) = agj for
all a 2 A. Note that in a reallocation problem there are at most as many
objects available as agents are present. Given an unrestricted rule ', the set
of admissible economies (or reallocation problems) with agent set N 0 ( N
is EN0

' = fr'
N0(R; q) : R 2 RNg. Slightly abusing notation, we write EN

'
instead of EN .

Starting from an unrestricted rule ', we consider the restriction of ' to
all its admissible economies. Again slightly abusing notation, we use the
same symbols for the restricted and the unrestricted rule. An (allocation)
rule is a function ' that assigns to all N 0 µ N and all admissible economies
(R0; q0) 2 EN0

' an allocation '(R0; q0). Note that di¤erent unrestricted rules
could induce the same rule.

Next, we introduce our main properties for rules. First, a rule chooses
only (Pareto) e¢cient allocations.

E¢ciency: For all R 2 RN , there is no allocation ® = (®i)i2N for (R;q)
such that for all i 2 N , ®i Ri 'i(R; q), and for some j 2 N, ®j Pj 'j(R;q).

Second, no agent ever bene…ts from misrepresenting his preference
relation.
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Strategy-Proofness: For all R 2 RN, all i 2 N, and all R0
i 2 R,

'i(R;q) Ri 'i((R0
i;R¡i); q).

Note that as in Ergin (2002) we only require e¢ciency and strategy-
proofness when all agents belonging to N are present and all objects are
available with their maximal quotas in the economy.

Our last property is a stability condition for the allocations chosen
by the rule when all agents are present. Suppose after the objects have
been allocated, some agents decide to reallocate their allotments among
themselves. What if the same rule is applied to the “reallocation problem”?
The rule is “unstable” if its assignment to the agents in the reallocation
problem di¤ers from its original allotments to them. Here we are only
interested in reallocation problems that are derived from economies in
which all agents are present and all objects are available with quotas q.

Reallocation-Consistency: For all R 2 RN , all N 0 ( N, and all i 2 N 0,
'i(R;q) = 'i(r'

N0 (R; q)).

At …rst glance one may think that reallocation-consistency is equiva-
lent to the “generic” consistency property for this model de…ned as follows:
Suppose a group of agents leave with their allotments. Then the reduced
economy consists of the remaining agents and the remaining resources (the
allotments of the remaining agents and all unassigned objects). A rule is
consistent if the allotments to the remaining agents do not change when the
rule is applied to the reduced economy.6 In a reduced economy there may
be some unassigned objects in addition to the remaining agents’ allotment
– an incidence that cannot occur in a reallocation problem where agents
can only reallocate their allotments among themselves. Ergin (2000) stud-
ies consistency for the house allocation problem in various combinations
with e¢ciency, converse consistency, neutrality, and anonymity. Ehlers
and Klaus (2002) analyze consistency in combination with e¢ciency and
strategy-proofness. In models where always all resources are assigned, both
properties are indeed the same.

Note that when considering e¢ciency, strategy-proofness, and
reallocation-consistency in their present form, we can only derive conclu-
sions for economies with agent set N and full quotas q and for all reallocation

6 Consistency: For all R 2 RN , all N 0 ( N , and all i 2 N 0 , 'i(R; q) = 'i(RN 0; ¹q)
where ¹qa = qa ¡ jfj 2 NnN 0 : 'j(R;q) = agj for all a 2 A.
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problems that are induced from these economies by the unrestricted rule.
We do not require strategy-proofness for reallocation problems since agents
revealed their preferences before reallocation and it is not possible for them
to change them. For instance, our axioms do not impose any requirements
on any economy in which not all agents are present and more objects are
available than agents. This is why we restricted the domain of a rule to all
its admissible economies. As in Ergin (2002) we require that when all agents
are present, then all objects are available with quotas q. For example, for a
serial dictatorship where agent 1 is the …rst dictator, it is not meaningful to
consider (sub)economies as reallocation problems in which agent 1 is present
but the quota of his favorite object type is 0. Such economies simply do not
arise as reallocation problems for this rule (and our axioms do not impose
any requirements on them).

3 Priority Rules
Given a 2 A, let Âa denote a linear order over N . We call Âa a priority
ordering for object type a. A priority structure is a pro…le Â = (Âa)a2A
specifying for each object type a priority ordering. Given N 0 µ N, an
economy (R0; q0), i 2 N 0, a 2 A, and a priority structure Â, an allocation
® for (R0; q0) violates the priority of i for a if there exists j 2 N 0 such that
®j = a, i Âa j, and aPi ®i (i.e., i has higher priority for object type a than
j but j receives a and i envies j). A rule ' respects a priority structure Â if
for all N 0 µ N and all (R0; q0) 2 EN0

' , '(R0; q0) does not violate the priority
of any agent for any object type.7

Given a priority structure Â and R 2 RN , Balinski and Sönmez (1999,
Theorem 2) show that the deferred acceptance (DA) algorithm applied to
Â and (R; q) yields the best allocation among all allocations which do not
violate the priority of any agent for any object type. In other words, if an
allocation respects Â at the economy (R; q), then it is Pareto-dominated by
the allocation calculated by the DA-algorithm. Let fÂ denote the deferred
acceptance rule with priority structure Â. Note that under fÂ the agents
propose to object types and, using Âa, object type a rejects agents once the
quota is …lled. Formally, given N 0 µ N and an economy (R0; q0) with agent
set N 0, the allocation fÂ(R0; q0) is determined as follows:

² At the …rst step every agent in N 0 “proposes” to his favorite object
type in A [ f0g. For each object type a, the q0

a applicants who have
7 Ergin (2002) uses the expression “a rule adapts to a priority structure” instead of “a

rule respects a priority structure”.

5



the highest priority under Âa (all if there are fewer than q0
a) are placed

on the waiting list of a, and the others are rejected.

² At the lth step every newly rejected agent proposes to his next best
object type in A [ f0g. For each object type a, the q0

a applicants
who have the highest priority under Âa (all if there are fewer than q0

a)
among the new applicants and those on the waiting list are placed on
the new waiting list and the others are rejected.

² The algorithm terminates when every agent belongs to a waiting list.
Then object a 2 A is assigned to the agents on the waiting list of a.

Note that any agent who proposes to the null object is immediately ac-
cepted. Although the DA-algorithm calculates for each economy the best
allocation among the allocations that respect the priority structure, the
deferred acceptance rule may not be e¢cient.8 Ergin (2002) identi…es a nec-
essary and su¢cient condition on a priority structure such that the deferred
acceptance rule yields an e¢cient allocation for all economies with agent set
N.

Given a priority structure Â, a cycle is constituted of distinct a;b 2 A
and i; j; k 2 N such that the following are satis…ed

(C) Cycle condition: i Âa j Âa k and k Âb i and

(S) Scarcity condition: there exist (possibly empty) disjoint sets
Na; Nb µ Nnfi; j; kg such that Na µ fl 2 N : l Âa jg, Nb µ fl 2
N : l Âb ig, jNaj = qa ¡ 1, and jNbj = qb ¡ 1.

A priority structure is acyclical if no cycles exist.

If quotas are all equal to 1, then the scarcity condition is automatically
satis…ed. For other quotas, the scarcity condition limits the de…nition of a
cycle to cases where there indeed exist economies in EN such that agents
i, j, and k actually compete for objects a and b (in the absence of this
competition, e.g., because the quotas in fact do not limit the access of the
agents to objects a and b, a cycle will not lead to the violation of either
e¢ciency or the given priorities – see Ergin (2002) for further discussion).

Proposition 1 (Ergin, 2002, Theorem 1). Let Â be a priority structure.
Then fÂ is e¢cient if and only if Â is acyclical.

8 See Roth and Sotomayor (1990, Example 2.31).
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We say that a rule ' is a priority rule if there exists a priority structure
Â such that ' = fÂ. We call a rule ' an e¢cient priority rule if there exists
an acyclical priority structure Â such that ' = fÂ.

While Ergin (2002) focuses on the class of rules that respect an ex-
ogenously given priority structure, we consider all rules. Our main result
shows that if a rule satis…es e¢ciency, strategy-proofness, and reallocation-
consistency, then it is a best rule for an endogenously given acyclical priority
structure.

Theorem 1. E¢cient priority rules are the only rules satisfying e¢ciency,
strategy-proofness, and reallocation-consistency.

Before proving Theorem 1 we establish the independence of the axioms.
The rule that assigns the null object to all agents for all admissible economies
satis…es strategy-proofness and reallocation-consistency, but not e¢ciency.

Let Â denote the priority structure such that for all a 2 A, 1 Âa 2 Âa
¢ ¢ ¢ Âa jNj. Let Â0 denote the priority structure such that for all a 2
A, 2 Â0

a 3 Â0
a ¢ ¢ ¢ Â0

a jNj Â0
a 1. Given b 2 A, let 'b be the rule such

that for all N 0 µ N and all (R0; q0) 2 EN0
'b , (i) if 1 2 N 0 and b P 0

1 0, then
'b(R0; q0) ´ fÂ(R0; q0) and (ii) otherwise 'b(R0; q0) ´ fÂ0(R0; q0). Then 'b

satis…es e¢ciency and reallocation-consistency, but not strategy-proofness.
Given Â and Â0 as above, de…ne ' as follows: (i) for all R 2 RN ,

'(R; q) ´ fÂ(R; q) and (ii) for all N 0 ( N and all (R0; q0) 2 EN0
' ,

'(R0; q0) ´ fÂ0 (R0; q0). Then ' satis…es e¢ciency and strategy-proofness,
but not reallocation-consistency.

Proof of Theorem 1
Let ' be an e¢cient priority rule. Then there exists an acyclical prior-
ity structure Â such that ' = fÂ. Since any deferred acceptance rule is
strategy-proof it follows that ' is strategy-proof. To show reallocation-
consistency, let R 2 RN . Because Â is acyclical, fÂ is e¢cient. Thus, for
all a 2 A, if jfi 2 N : fÂ

i (R;q) = agj < qa, then for all i 2 N, 'i(R;q) Ri a.
For all a 2 A, let q0

a ´ jfi 2 N : 'i(R; q) = agj. When calculating fÂ(R;q)
the waiting list of any object type contains at any step at most q0

a applicants.
Thus, applying the DA-algorithm to (R; q0) yields fÂ(R;q). Hence,

fÂ(R; q0) = fÂ(R; q): (1)

By de…nition of q0, at fÂ(R;q0) all objects are assigned. Because Â is acycli-
cal, fÂ is consistent (Ergin (2002), Theorem 1). Now for all N 0 ( N and
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all i 2 N 0,

'i(R;q) = fÂ
i (R; q) = fÂ

i (R;q0) = fÂ
i (r'

N0 (R; q)) = 'i(r
'
N0(R;q));

where the …rst and the last equality follow from ' = fÂ, the second from
(1), and the third from the facts that at fÂ(R;q0) all objects are assigned
and fÂ is consistent.9 Hence, ' satis…es reallocation-consistency.

Conversely, let ' be a rule satisfying e¢ciency, strategy-proofness, and
reallocation-consistency. First we construct for each object type a priority
ordering. Second we show that the constructed priority structure is acyclical.
Third we prove that ' and the best rule respecting the constructed priority
structure coincide.

Given x 2 A [ f0g, …x Rx 2 RN such that for all i 2 N and all y 2
(A[f0g)nfxg, xRx

i 0Rx
i y. Given a 2 A, we de…ne Âa inductively as follows:

Step 1: For all i; j 2 N, (a) if 'i(Ra; q) = a = 'j(Ra; q), then i Âa j, and
(b) if 'i(Ra; q) = a = 'j(Ra; q) and i < j, then i Âa j.

If qa ¸ jN j ¡ 1, then for all distinct i; j 2 N we have i Âa j or j Âa i
and Âa is completely de…ned. If qa < jNj ¡ 1, then it is possible that for
distinct i; j 2 N , 'i(Ra; q) = 0 = 'j(Ra; q). To de…ne Âa in these cases, we
extend the de…nition inductively.
Step 2: Suppose qa < jN j¡1. Because qa ¸ 1, there exists l1 2 N such that
for all i 2 Nnfl1g, l1 Âa i. Then for all i; j 2 Nnfl1g, if 'i((R0

l1;R
a
¡l1); q) =

a = 'j((R0
l1; R

a
¡l1); q), then i Âa j. If qa ¸ jN j ¡ 2, then for all distinct

i; j 2 N we have i Âa j or j Âa i.
Step 3: Suppose qa < jNj ¡ 2. Because qa ¸ 1, there exists l2 2 Nnfl1g
such that for all i 2 Nnfl1; l2g, l2 Âa i. Then for all i; j 2 Nnfl1; l2g, if
'i((R0

fl1 ;l2g;Ra
Nnfl1 ;l2g); q) = a = 'j((R0

fl1 ;l2g; Ra
Nnfl1 ;l2g); q), then i Âa j; etc.

After at most n¡ 1 inductive steps (if qa = 1), Âa is completely de…ned,
i.e., for any distinct i; j 2 N we have i Âa j or j Âa i.

Lemma 1. Âa is a well-de…ned linear order.

Proof. First we show that Âa is well-de…ned. Suppose that for some
i; j 2 N we have both i Âa j and j Âa i. Obviously, i Âa j and j Âa i cannot
be de…ned in the same inductive step. Thus, in particular, qa < jNj ¡ 1.
Without loss of generality, let i Âa j be de…ned …rst.

9 By consistency, for all i 2 N 0, fÂ
i (R;q0) = f Â

i (RN 0; ¹q) where ¹qa = q0
a ¡ jfj 2 NnN 0 :

fÂ
j (R; q0) = agj for all a 2 A. Note that r'

N0 (R;q) = (RN0; q̂) where q̂a = jfi 2 N 0 :
fÂ

i (R; q) = agj for all a 2 A. So, by construction, for all a 2 A, ¹qa = q̂a. Thus,
(RN0 ; ¹q) = r'

N0 (R;q) and fÂ
i (R;q0) = fÂ

i (r'
N0(R;q)).
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Because j Âa i there is some t 2 f1; : : : ; jNj ¡ 1g such that for
Lt = fl1; : : : ; ltg we have i; j 2 NnLt and 'j((R0

Lt;R
a
NnLt

); q) = a =
'i((R0

Lt;Ra
N nLt

); q). By e¢ciency, 'i((R0
Lt; Ra

NnLt
); q) = 0. Let qa denote

the pro…le of quotas such that qa
a = 1 and for all b 2 Anfag, qa

b = 0. Then
r'
fi;jg((R0

Lt ;Ra
NnLt

); q) = (Ra
fi;jg; qa). By reallocation-consistency,

'j(Ra
fi;jg; q

a) = a: (2)

Because i Âa j is de…ned before j Âa i, either
(a) there exists L ( Lt such that i; j 2 NnL and 'i((R0

L;Ra
N nL); q) = a =

'j((R0
L;Ra

NnL); q) or
(b) 'i(Ra; q) = a = 'j(Ra; q) and i < j ((b) in Step 1).

If (a), then by e¢ciency, 'j((R0
L;Ra

NnL); q) = 0. Then
r'
fi;jg((R0

L; Ra
NnL); q) = (Ra

fi;jg; qa). By reallocation-consistency,

'i(Ra
fi;jg; qa) = a: (3)

By (2) and (3),

jfk 2 fi; jg : 'k(Ra
fi;jg; qa) = agj = jfi; jgj = 2 > 1 = qa

a;

which contradicts the fact that '(Ra
fi;jg; qa) is an allocation for (Ra

fi;jg; qa).
If (b), then by e¢ciency, there exists k 2 N such that 'k(Ra; q) = 0 and

'k((R0
Lt

; Ra
NnLt

); q) = a. Hence, by reallocation-consistency and by similar
arguments as for (a), 'i(Ra

fi;kg; qa) = a and 'k(Ra
fi;kg; qa) = a. Similarly as

in (a) this yields a contradiction.
Completeness and transitivity of Âa follow straightforwardly from the

inductive de…nition. ¤

Lemma 2. The priority structure Â ´ (Âa)a2A is acyclical.

Proof. Suppose that Â contains a cycle. Then there are a;b 2 A and
i; j; k 2 N such that (C) i Âa j Âa k and k Âb i and (S) there exist (possibly
empty) disjoint sets Na;Nb µ Nnfi; j; kg such that Na µ fl 2 N : l Âa jg,
Nb µ fl 2 N : l Âb ig, jNaj = qa ¡ 1, and jNbj = qb ¡ 1.

Let R 2 RN be such that

² for all l 2 Na, Rl = Ra
l ,

² for all l 2 Nb, Rl = Rb
l ,
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² for all l 2 Nn(Na [ Nb [ fi; j;kg), Rl = R0
l ,

² Rj = Ra
j and for all c 2 Anfa;bg, b Pi a Pi 0 Pi c and a Pk b Pk 0 Pk c.

We now calculate '(R;q). By e¢ciency, jfl 2 N : 'l(R; q) = agj = qa
and jfl 2 N : 'l(R; q) = bgj = qb. Because jNa [Nb [fi; j;kgj = qa +qb +1,
there exists l̂ 2 Na [ Nb [ fi; j; kg such that 'l̂(R;q) = 0.

If l̂ 2 Na [ fjg, then by e¢ciency, 'k(R;q) = a. Thus, by strategy-
proofness, 'k((Ra

k;R¡k); q) = a and for some ~l 2 Na[fjg, '~l((R
a
k;R¡k); q) =

0. By reallocation-consistency and r'
fk;~lg((R

a
k;R¡k); q) = ((Ra

k; Ra
~l ); q

a),

'k((Ra
k;Ra

~l ); q
a) = a and '~l((R

a
k;Ra

~l ); q
a) = 0: (4)

On the other hand, since by (C) j Âa k, Na [fjg µ fl 2 N : l Âa kg. Thus,
~l Âa k and by de…nition of Âa either
(a) there exists L µ N such that ~l; k 2 NnL, '~l((R

0
L; Ra

NnL); q) = a =
'k((R0

L;Ra
NnL); q) or

(b) '~l(Ra; q) = a = 'k(Ra; q) and ~l < k ((b) in Step 1).

If (a), then by reallocation-consistency and r'
fk;~lg((R

0
L; Ra

NnL); q) =
((Ra

k;Ra
~l ); q

a),

'k((Ra
k;Ra

~l ); q
a) = 0 and '~l((R

a
k; Ra

~l ); q
a) = a: (5)

Now (4) and (5) contradict the fact that qa
a = 1.

If (b), then, because jNa[fj;kgj = qa+1, there exists l0 2 (Na[fjg)nf~lg
such that 'l0(Ra; q) = 0. Thus, by the de…nition of Âa, k Âa l0. This
contradicts l0 2 Na [ fjg µ fl 2 N : l Âa kg.

Recall that so far we have assumed that 'l̂(R;q) = 0 for l̂ 2 Na [
fjg. If l̂ 2 Nb [ fkg, then by l̂ =2 Na [ fjg we have for all l 2 Na [ fjg,
'l(R; q) = a. Thus, by e¢ciency, 'i(R;q) = b. Then, by strategy-proofness,
'i((Rb

i ;R¡i); q) = b and for some ~l 2 Nnfig, '~l((Rb
i ; R¡i); q) = 0. We have

already shown that ~l 2 Na [fjg yields a contradiction. Hence, ~l 2 Nb [fkg.
By reallocation-consistency and r'

fi;~lg
((Rb

i; R¡i); q) = ((Rb
i; Rb

~l); q
b),

'i((Rb
i ;Rb

~l ); q
b) = b and '~l((Rb

i ;Rb
~l ); q

b) = 0: (6)

On the other hand, since by (C) k Âb i, Nb [ fkg µ fl 2 N : l Âb ig. Thus,
~l Âb i. Now, similarly as before, we derive a contradiction using (6) and the
de…nition of Âb.
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Finally, if l̂ = i, then for all l 2 Na [ fjg, 'l(R; q) = a. In particular,
'j(R;q) = a. By strategy-proofness and e¢ciency, 'i((Ra

i ;R¡i); q) = 0 and
'j((Ra

i ; R¡i); q) = a. By reallocation-consistency and r'
fi;jg((Ra

i ;R¡i); q) =
((Ra

i ;Ra
j ); qa),

'j((Ra
i ; Ra

j ); qa) = a and 'i((Ra
i ; Ra

j ); qa) = 0: (7)

On the other hand (C) i Âa j. Now, similarly as before, we derive a
contradiction using (7) and the de…nition of Âa. ¤

Lemma 3. ' = fÂ.

Proof. By Lemma 2, Â is acyclical. Thus, fÂ is reallocation-consistent.
Because ' is reallocation-consistent, in showing ' = fÂ it su¢ces to show
that for all R 2 RN , '(R;q) = fÂ(R;q). First we show the following claim.

Claim: If ' = fÂ, then there exists R 2 RN such that '(R; q) = fÂ(R;q)
and for all i 2 N , 'i(R; q) = fÂ

i (R;q) implies Ri 2 fRx
i : x 2 Ag.

Proof of Claim: Suppose ' = fÂ. Let R 2 RN be such that '(R; q) =
fÂ(R;q). Let i 2 N be such that 'i(R;q) = fÂ

i (R; q) and Ri =2 fRx
i :

x 2 Ag. Without loss of generality, suppose 'i(R; q) Pi fÂ
i (R; q). By ef-

…ciency, 'i(R; q) 2 A. Let 'i(R;q) = a. Because both ' and fÂ are
strategy-proof, we have 'i((Ra

i ;R¡i); q) = a and fÂ
i ((Ra

i ;R¡i); q) = 0.
Thus, '((Ra

i ;R¡i); q) = fÂ((Ra
i ; R¡i); q) and i’s preference relation belongs

to fRx
i : x 2 Ag. Continuing this procedure yields the desired pro…le speci-

…ed in the Claim.

Suppose ' = fÂ. Then by the Claim there exists R 2 RN such
that '(R;q) = fÂ(R;q) and for all i 2 N, 'i(R; q) = fÂ

i (R; q) implies
Ri 2 fRx

i : x 2 Ag. Because Â is acyclical, fÂ is e¢cient. Thus, by
'(R; q) = fÂ(R;q) and e¢ciency of ', there exists j 2 N such that
fÂ

j (R;q)Pj 'j(R;q). By e¢ciency, fÂ
j (R; q) 2 A. Let fÂ

j (R;q) = a. By our
choice of R and 'j(R;q) = fÂ

j (R; q), we have Rj = Ra
j . Hence, 'j(R; q) = 0

and by e¢ciency, jfi 2 N : 'i(R;q) = agj = qa. Thus, there exists k 2 N
such that 'k(R; q) = a = fÂ

k (R;q). But then again by our choice of R we
have Rk = Ra

k and fÂ
k (R;q) = 0. Thus, r'

fj;kg(R;q) = ((Ra
j ; Ra

k); qa). By
'k(R;q) = a and reallocation-consistency,

'k((Ra
j ; Ra

k); qa) = a: (8)

On the other hand fÂ respects Â. Thus, by fÂ
j (R; q) = a, fÂ

k (R;q) = 0,
and a Pk 0, we have j Âa k. Hence, by de…nition of Âa either

11



(a) there exists L µ N such that j;k 2 NnL, 'j((R0
L;Ra

NnL); q) = a =
'k((R0

L;Ra
NnL); q) or

(b) 'j(Ra; q) = a = 'k(Ra; q) and j < k ((b) in Step 1).
If (a), then by reallocation-consistency and r'

fj;kg((R
0
L;Ra

NnL); q) =
((Ra

j ;Ra
k); qa),

'j((Ra
j ;Ra

k); qa) = a: (9)
Now (8) and (9) contradict the fact that qa

a = 1.
If (b), then by e¢ciency, there must exist l 2 N such that 'l(Ra; q) = 0

and 'l(R;q) = a. Thus, j Âa k Âa l. If fÂ
l (R;q) = a, then by

fÂ
k (R;q) = 0, k Âa l, and Rk = Ra

k, fÂ(R;q) does not respect Â, a
contradiction. Hence, fÂ

l (R;q) = 'l(R; q) and by construction, Rl = Ra
l

and fÂ
l (R; q) = 0. Thus, by reallocation-consistency and r'

fj;lg(R; q) =
((Ra

j ;Ra
l ); qa), 'l((Ra

j ;Ra
l ); qa) = a. Since 'l(Ra; q) = 0 and 'j(Ra; q) =

a, r'
fj;lg(R

a; q) = ((Ra
j ;Ra

l ); qa). Thus, by reallocation-consistency for
r'
fj;lg(R

a; q), 'j((Ra
j ; Ra

l ); qa) = a. This and 'l((Ra
i ; Ra

l ); qa) = a contra-
dict the fact that qa

a = 1. This …nishes the proof. ¤

4 Concluding Remarks
We have shown that any rule satisfying e¢ciency, strategy-proofness, and
reallocation-consistency is an e¢cient priority rule. For a designer who
wishes to implement a rule satisfying these properties this means that he
must choose an acyclic priority structure, which he then can use to calculate
outcomes according to the deferred acceptance algorithm.

Our formulation of the axioms is identical with the one by Ergin (2002)—
e¢ciency and strategy-proofness are only required for all economies with
agent set N and quotas q and reallocation-consistency only needs to hold
for all reallocation problems arising from such economies. If we de…ned
our axioms for all economies, then the characterized (unrestricted) rules are
priority rules such that the associated priority structure does not satisfy
the cycle condition (C). In other words the scarcity condition (S) becomes
redundant. This is because when considering the full domain, economies
are admissible in which each object type is available with quota one or
zero. The same is true for Ergin’s (2002, Theorem 1) main result. If all
economies are considered, then for best rules, e¢ciency, group strategy-
proofness, consistency, and not satisfying (C) are all equivalent. When the
quota of each object is one, then the class of e¢cient priority rules and the
rules characterized by Ehlers, Klaus, and Pápai (2002) coincide.
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Finally we remark that our result does not remain true if we restrict the
domain of preferences to be the domain of preferences where any object type
is strictly preferred to the null object. The following example demonstrates
that then there are other rules satisfying our axioms.

Example 1. Let N = f1;2; 3g, A = fa; b; cg, and q = (1;1; 1). Let R0
denote the domain of all preference relations Ri 2 R such that for all x 2 A,
xPi0. The set of all admissible economies with agent set N is EN

0 = f(R;q) :
R 2 RN

0 g(= EN
' in this example). Let Â be the priority structure such that

for all x 2 A, 1 Âx 2 Âx 3. Let Â0 be the priority structure such that for all
x 2 A, 1 Â0

x 3 Â0
x 2. For all N 0 µ N and all (R0; q0) 2 EN0

' , (i) if (1 2 N 0

and fÂ
1 (R0; q0) = b) or (1 =2 N 0 and q0

b = 0), then '(R0; q0) ´ fÂ(R0; q0), and
(ii) otherwise '(R0; q0) ´ fÂ0(R0; q0). Then ' satis…es e¢ciency, strategy-
proofness, and reallocation-consistency, but ' is not an e¢cient priority
rule. ¤
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