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Résumé 

Chez l’humain, les maladies congénitales cardiaques (MCC) sont présentes 

chez 3-4% des nouveaux nés et sont une cause importante de mortalité infantile et de 

morbidité dans le monde.  La majorité des MCCs implique les valves et les septums, 

qui proviennent des cellules endocardiques.  Les valves aortiques bicuspides (VAB) 

sont la MCC la plus fréquente chez l’humain, avec un taux estimé de 1-2% dans la 

population.  Cependant, les gènes et les mécanismes moléculaires qui causent cette 

malformation demeurent obscures.  Le facteur de transcription GATA5 est exprimé 

dans les cellules et les coussins endocardiques de façon transitoire durant la septation 

et la formation des compartiments cardiaques. Chez le poisson zèbre, des mutations 

dans le gène Gata5 causent des malformations cardiaques sévères incluant l’absence 

de cellules endocardiques.  In vitro, l’inhibition de Gata5 bloque la différentiation 

endocardique. Ces études suggéraient donc un rôle important de GATA5 dans la 

formation du cœur.  

Dans le cadre de ce projet de doctorat, nous avons analysé le rôle de GATA5 

dans le développement du cœur en produisant des lignées de souris chez lesquelles le 

gène Gata5 était inactif soit dans toutes les cellules ou uniquement dans les cellules 

endocardiques.  Les souris possédant 2 allèles mutées du gène Gata5 étaient viables 

mais plus de 26% des souris Gata5-/- ont développé des VABs.  Par ailleurs, une 

incidence similaire de VABs a été obtenue chez les souris ayant une délétion spécifique 

de Gata5  des cellules endocardiques, obtenue en croisant les souris Gata5WT/Flox avec 

les souris transgéniques Tie2-Cre.  Sur le plan mécanistique, une réduction significative 

de JAG1, un corécepteur pour Notch1, ainsi qu’une augmentation marquée de Rbj un 

répresseur de cette voie, ont été détectés chez les souris Gata5-/- et Tie2- 

cre+;Gata5Flox/Flox, suggérant qu’une dérégulation de la voie Notch dans les cellules 

endocardiques puisse être la cause des VABs.  Ces résultats démontrent l’importance 

de GATA5 pour le développement endocardique et la formation de la valve aortique. De 

plus, ils identifient GATA5 comme gène candidat de MCCs chez l’humain. 

Environ 12-14% des MCCs sont causés par le développement anormal de la 

voie de chasse, menant aux malformations telles que la transposition des grandes 

artères, la tétralogie de Fallot ou le syndrome du ventricule droit à double issue. Des 

mutations dans Gata4 et Gata6 sont associés à des défauts de la voie de chasse, dans 
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plusieurs espèces incluant l’humain. Nous avons examiné si GATA5 interagit avec 

GATA4 ou GATA6 dans le développement de la voie de chasse.  Alors que les souris 

hétérozygotes pour Gata5, Gata4 ou Gata6 ont des défauts cardiaques subtiles et sont 

viables, les embryons Gata4+/-Gata5+/- et Gata5+/-Gata6+/- démontrent une  létalité 

embryonnaire et périnatale due à des défauts cardiaques, tel qu’un ventricule droit à 

double issue et des défauts de septation ventriculaire.  Ces résultats indiquent 

l'importance des interactions génétiques entre GATA5 et les autres facteurs GATA pour 

la rotation et l’alignement de la voie de chasse au cours du développement cardiaque 

et soulèvent la possibilité que des changements subtiles de l'activité de 2 facteurs 

GATA puissent mener à des MCCs chez l'humain. 

 

Mots-clés : maladie congénitale cardiaque, valve aortique bicuspide, voir de chasse, 

GATA, développement cardiaque, septation, ventricule droit à double issue, coussin 

endocardique, facteur de transcription. 
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Abstract 

Congenital heart defect (CHD) in humans occur in 3-4% of live birth and is a 

major cause of infant mortality and morbidity in the world.  The majority of CHD involves 

the valves and septa, which originate from endocardial cells.  Bicuspid aortic valve 

(BAV) is the most common CHD in humans with an estimated rate of 1-2% in the 

population.  However, very few genes have been linked to this defect and the 

mechanisms underlying BAV formation remain undefined.  GATA5, a member of the 

GATA family of transcription factors, is expressed in a spatial and temporal manner in 

the developing heart where it is predominantly found in endocardial cells and 

endocardial cushions (ECs) of the outflow tract (OFT) and atrioventricular canal 

between E9.5-E12.5 in the mouse.  Mutations in the Gata5 gene in zebrafish (faust 

mutants) cause cardia bifida and lead to endocardial cell depletion.  In vitro studies 

using antisense mRNA against Gata5 revealed a critical role for this gene in 

differentiation of endocardial cells.   

In the context of the present doctoral research project, we investigated the role 

of GATA5 in mammalian heart development by generating a mouse line with a null 

Gata5 allele. Gata5 null mice are viable but over 26% of them developed BAVs. 

Endocardial specific deletion of Gata5 obtained by crossing mice with floxed (Flox) 

Gata5 alleles with Tie2-cre transgenic mice resulted in a similar incidence of BAVs.  

RNA profiling revealed that Jag-1, a co-receptor for Notch1, is significantly 

downregulated in both Gata5 null and Tie2-cre+;Gata5Flox/Flox mice, suggesting that 

disruption of Notch signaling in endocardial cells may be the underlying mechanism of 

disease.  These findings reveal an important function for GATA5 in endocardial cell 

development and aortic valve formation and identify GATA5 as an important candidate 

CHD causing gene. 

Abnormal development of the OFT accounts for about 12-14% of all CHDs, 

leading to malformations such as persistent truncus arteriosus (PTA), tetralogy of Fallot 

(TOF), double outlet right ventricle (DORV) and transposition of the great arteries (TGA). 

Both GATA4 and GATA6 play important role in OFT development. We tested whether 

GATA5 might interact genetically with GATA4 and GATA6 for proper heart 

morphogenesis.  We found that, whereas mice lacking a single copy of Gata5, Gata4 or 

Gata6 have subtle cardiac defects, the Gata4+/-Gata5+/- and Gata5+/-Gata6+/- mutant 
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embryos show embryonic and perinatal lethality due to severe heart defects, including 

double outlet right ventricle and ventricular septal defects.  These findings reveal the 

importance of genetic interactions between GATA5 and the other cardiac GATA factors 

in the normal rotation and patterning of the OFT during heart development in vivo. The 

results raise the possibility that subtle alterations in the level or activity of 2 cardiac 

GATA factors might  lead to congenital heart disease in human. 

 

Keywords : Congenital heart disease, bicuspid aortic valve, GATA, cardiac 

development, double outlet right ventricle, outflow tract, septation, endocardial cushion, 

transcription factor 
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Introduction 

1.1. Heart development 

In humans, congenital heart disease (CHD) is estimated to occur at an incidence 

of 4-5% of live births and represent 25% of all congenital malformations.  Eventhough 

important advances have been made in the diagnosis, surgical repair and therapeutic 

interventions, CHD still leads to significant mortality and morbidity in the human 

population.  CHD is a heritable trait but, the genetic basis underlying the majority of 

cardiac malformations remains poorly understood.  In the past decade, thanks to the 

use of animal models as well as genetic and biochemical approaches, a large numbers 

of genes have been discovered to play important roles in diverse aspects of cardiac 

development.  This, in turn, has greatly increased our understanding of the different 

steps of cardiac morphogenesis and identify CHD causing genes in human. 

1.1.1. Cardiac induction 

The heart is the first organ that forms in vertebrates.  Its development begins with 

the specification of the cardiogenic mesoderm, followed by determination and 

patterning of the bilateral heart fields as well as cardiomyocyte differentiation and 

formation of the heart tube (Figure 1.1).  This section focuses on the specification of the 

cardiogenic mesoderm as well as the inductive signals that regulate this process. 

1.1.1.1. Formation of the pre-cardiac mesoderm 

The mesodermal tissue that gives rise to the heart first becomes evident when 

the embryo is undergoing the process known as gastrulation, which occurs between 

embryonic day (E) 6.5 and E7.5 in the mouse and between stages Hamburger-Hamilton 

(HH)3 and HH5 in the chick (1;2).  At the time of implantation in the mouse (E3.5-E4.5), 

the inner cell mass, composed of the epiblast and primitive endoderm, and the polar 

trophectoderm grow into the blastocyst cavity to form a cylinder that adopts an 

asymmetrical curvature on its anterior and posterior side (future anterior-posterior axis).  

Soon after the primitive endoderm (in the mouse) layer or the hypoblast (in the chick) is 

completed, posterior epiblast cells move into the midline where they undergo an 

epithelial-mesenchymal transition, resulting in the formation of the primitive streak (PS) 

in the mouse and chick.  During gastrulation, the main germ layers will be established: 

(1) the ectoderm, which gives rise to the skin and nervous system, (2) the mesoderm,  
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Figure 1. 1.  Stages of cardiac development 

Heart development in the mouse. AV: atrioventricular; LV: left ventricle; PA: pulmonary
artery; OFT: outflow tract; RV: right ventricle.  Adapted from High F and Epstein J,
Nature Review Genetics, 2008; 9 (49-61). 
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which is required for the formation of muscles, and (3) the endoderm, which gives rise 

to the gut and associated organs.  It is during gastrulation that cardiac progenitor cells 

will ingress into the cranial portion of the PS and start to migrate anterolaterally to form 

separated but paired left and right heart-forming region in the anterior lateral plate 

mesoderm (2;3).  Epiblast explants studies or heterotypic transplantation of the PS 

have revealed that cells are specified but not determined to a myocardial fate until after 

their ingression into the PS and during their migration (4). 

Previous fate-mapping studies have identified the epiblast as the major source 

of embryonic cardiac mesoderm, which is located just lateral to the primitive streak and 

caudal to the node (5;6).  In the mouse, the earliest heart precursors can be traced to 

about 50 founder cells located on both sides of the midline in the epiblast (1).  This 

localization of cardiac progenitors is supported by explantation studies where the 

posterior epiblast has cardiogenic potential and will differentiate into cardiomyocytes in 

a defined culture medium (7).  Similar results were obtained after transplantation of 

epiblast-derived cells to the cardiogenic field of the late primitive streak stage, 

suggesting that ingression is not required for myocardial fate (1;8).  Location of the 

heart precursors in the cardiac mesoderm at E7.0-7.5 coincides with expression of 

Gata4, Flt-1 and Nkx2.5 genes (9;10).   

1.1.1.2. Signalling pathways involved in induction of precardiac mesoderm 

Signals emanating from the endoderm have been shown to be essential for 

cardiac differentiation in vertebrate species.  For example, in the mouse, isolated 

mesodermal cells at E7.25 fail to differentiate into beating cardiomyocytes but when 

these explants were isolated with primitive streak and visceral endoderm, differentiation 

of cardiomyocytes occurred, thus suggesting that the visceral endoderm is required for 

proper differentiation of cardiac cells (11).  Candidates that promote specification of the 

precardiac mesoderm include members of the transforming growth factor beta (TGFβ) 

superfamily and fibroblast growth factors (FGFs) whereas members of the canonical 

Wnt/β-catenin pathway inhibit myocardial induction (2;12).  

Evidence for a direct involvement of BMP signalling in induction of the 

cardiogenic mesoderm was initially obtained through studies of Decapentalplegic (Dpp) 

in Drosophila.  Studies of Dpp mutant embryos revealed that Dpp is involved in the 

formation of dorsal vessels and induction of tinman expression in the dorsal mesoderm 
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(13).  Dpp is a member of the TGFβ superfamily and is closely related to BMP2 and 

BMP4 in vertebrates.  Bmp2 and Bmp4, which are secreted by the endodermal cells 

underlying the mesoderm, seem to be the only BMP isoforms able of inducing the 

formation of cardiogenic cells in non-precardiac mesoderm (14).  Consistent with this, 

application of BMP2-soaked beads to regions of non-cardiogenic mesoderm in vivo 

results in ectopic expression of key cardiac transcription factors like Nkx2.5, GATA4 

and Tbx2 and Tbx3 (15).  However, addition of noggin, which antagonizes BMP 

signalling, completed inhibited differentiation of the precardiac mesoderm (14;16).  In 

addition, forced expression of dominant-negative BMP receptor in the developing 

Xenopus embryo resulted in reduction or absence of heart formation (17).  Together, 

these experiments led to the conclusion that BMP signalling plays an important role in 

the early steps of cardiogenic induction, inducing mesodermal cells into the cardiogenic 

lineage and maintaining their cardiogenic potential until later signals complete their 

differentiation into cardiomyocytes. 

Several studies have shown that members of the fibroblast growth factor (FGF) 

family, including Fgf2, Fgf4 and Fgf8 cooperate with Bmp2 in early cardiogenesis.  For 

example, expression of Fgf8 in the endoderm of mouse embryos is required to induce 

expression of Nkx2.5 and Mef2c in the precardiac mesoderm and ectopic Fgf8 

expression leads to ectopic expression of these cardiac markers (18;19).  These 

studies revealed that maximal induction of cardiogenic cells requires continuous 

expression of BMP whereas FGF is only required transiently.  Overall, it has been 

suggested that full cardiogenic potential in the heart forming fields requires BMPs to 

induce mesodermal cells and FGFs for the subsequent proliferation and survival of the 

differentiated cardiomyocytes.     

Studies of cardiac development in Xenopus and chicken revealed that some 

canonical Wnt ligands that activate the Wnt/β-catenin pathway can repress 

cardiogenesis.  Specifically, injection of Wnt3A and Wnt8 into the cardiogenic dorsal 

zone explants in Xenopus blocks expression of Nkx2.5 and Tbx5, thereby inhibiting 

cardiac induction (16).  Similarly, ectopic expression of Wnt3A or Wnt1 in chick 

embryos blocked cardiac gene expression in the precardiac mesoderm (20).  

Conversely, when the canonical Wnt pathway was inhibited by injection of GSK3β, 

induction of cardiac mesodermal progenitors occurred (16).  Thus, induction of cardiac 

morphogenesis requires inhibition of the Wnt pathway and antagonist Wnt candidate 
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molecules have been identified in both chick and frog.  Indeed, it has been shown that 

Dickkopf (Dkk-1), Crescent and XDbf4 play important roles in establishing the 

precardiac mesoderm through inhibition of specific Wnt ligands (16;20;21).  More recent 

studies suggest substantial overlap between the noncanonical and canonical Wnt/β-

catenin pathway (22;23).  A role for Wnt11 in cardiac development was inferred based 

on its expression in the embryonic mouse myocardium and in differentiating embryoid 

bodies, at the same time as Nkx2.5 (24;25).  Both gain and loss of function studies in 

chick and Xenopus confirmed that Wnt11 is a potent inducer of the early heart field 

(26;27).  Similarly, ectopic administration of Wnt11 in mouse ES cells or P19 cells is 

able to induce expression of early cardiac markers such as Nkx2.5 and Gata4 (25;27).  

Lastly, it has been proposed that activation of protein kinase C or CamkII by the 

Wnt/Ca2+ pathway inhibits the canonical Wnt signalling either upstream or downstream 

of β-catenin, providing a means to regulate cardiac induction (28).  

1.1.2. Linear heart tube formation 

As described in the previous section, cardiac progenitors arise in the 

mesodermal layer, which forms by ingression of cells into the primitive streak.  At 

around E7.0-7.5 in the mouse and stage 3 in the chick, the cardiac progenitors will 

leave the PS and migrate both laterally and anteriorly to reach the head fold on either 

side of the ventral midline, forming the cardiac crescent.  At that stage, two different 

heart fields can be distinguished.  Labelling analysis of heart progenitor cells in chick 

have revealed that these cells intermingle during their migration from the PS; this is in 

contrast to early studies, which suggested that these cells behave as a coherent sheet 

(29).  Similarly, in the mouse embryo, retrospective clonal analysis of myocardial cells 

demonstrated that their precursors follow a proliferative mode of growth, with an initial 

dispersive phase, followed by coherent cell growth (30).  Starting at E7.5 in the mouse 

embryo, a second wave of migration will bring the cardiac progenitors to the ventral 

midline, where they will fuse to form a beating linear heart tube by E8.0 (Figure 1.1).  

This linear heart tube is composed of an outer myocardial layer and an inner 

endocardial layer, both separated by the extracellular matrix.     

Proper migration of the mesodermal cells from the PS to their final position at 

the ventral midline as well as correct embryonic endoderm differentiation is critical for 

heart fusion, and mutations of many genes affecting these processes lead to various 
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degrees of cardia bifida, a failure of heart fusion, which results in the formation of two 

bilateral heart primordia.  In zebrafish, the Casanova/Sox32, bonnie-and-clyde mutants, 

which fail to form endoderm, display cardia bifida (31;32).  Similarly, faust/Gata5 

mutants in zebrafish also display cardia bifida, but in this case, it results from defective 

differentiation of the endoderm, which inhibits ventral migration and prevents 

concomitant movement of myocardial cells (33).  In Casanova mutants, the heart 

primordia show correct patterning of atrial and ventricular myocytes whereas this is not 

the case in faust mutants.  In mouse, defective ventral morphogenesis and foregut 

formation, which is observed in Gata4 and Foxp4 null embryos, has also been linked to 

the formation of two heart primordial (34-36).  In the Foxp4 mutants, in contrast to 

Gata4 null embryos, each heart-forming field was able to develop into a differentiated 

four chambered heart.  The bHLH transcription factor Msp1 is an early cardiac 

progenitor marker and is required for their migration to the midline.  In the absence of 

Mesp1 in mouse embryos, cardiac progenitors migration is delayed, resulting in partial 

or complete cardia bifida (37). 

1.1.2.1. The heart fields  

Pharyngeal mesoderm derived cells contribute to the myocardium at the arterial 

pole of the heart tube (38-40).  The origin of these cells was termed the anterior heart-

forming or secondary heart field (SHF).  Waldo et al used cell labelling and quail-chick 

chimeras to determine the origin of the outflow tract (OFT) myocardial progenitors.  

After observing that the heart field markers Nkx2.5 and Gata4 were located in the 

pharyngeal mesoderm at HH14 in chick, they labelled this region, which was 

subsequently found in the developing OFT at HH22.  Mjaatvedt et al, also using chick 

as model system, labelled myocardial progenitors to locate the origin of cells 

incorporated in the OFT (39).  These fate mapping experiments showed that cells 

labelled in the mesoderm surrounding the aortic sac and anterior to the primitive right 

ventricle are incorporated into the OFT.  Moreover, when the bilateral heart fields were 

ablated, the embryos only formed a rudimentary heart tube, which suggested that the 

OFT progenitors derived from a separate population of cells than the bilateral fields.  

Finally, studies in mice also lead to the identification of the secondary heart field (38).  

Kelly et al created an enhancer trap transgene that initially showed expression in part of 

the pharyngeal mesoderm.  Cells that had expressed the transgene were subsequently 

shown to contribute to the myocardium of the arterial pole of the heart.  Using DiI 
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labelling, the authors showed a progressive ventral movement of pharyngeal mesoderm 

cells into the lengthening heart tube.  A contribution of this anterior heart field to the 

right ventricle as well as the OFT myocardium was demonstrated using DiI labelling and 

explants experiments (41).  Waldo et al extended these observations by showing that 

cells of the SHF also contribute to the formation of smooth muscle cells that form the 

proximal walls of the aortic and pulmonary trunk (42).   

Thus, once formed, the linear heart tube elongates by addition of cells at the 

venous and arterial poles.  The cells that make up the primitive heart tube are derived 

from the primary heart field, which contributes to the left ventricle and ventricular 

septum of the adult heart (Figure 1.2) (41;43).  The cells that are added at the venous 

pole will give rise to the myocardium of the AV canal, atria and inflow tract.  Cells of the 

SHF, on the other hand, will be added at the arterial pole of the heart and will contribute 

to the ventricular septum, right ventricle and outflow tract (Figure 1.2).  The discovery of 

the SHF has considerably advanced our understanding of cardiac development, 

especially concerning early heart morphogenesis.  Cells located in the pharyngeal 

mesoderm are distinguished by the expression of Islet1 (Isl1), Fgf8 and Fgf10 

(38;44;45).   

 

Figure 1. 2.  Contribution of the heart fields to the developing heart 

Relative position and contribution of the SHF progenitors (green) relative to the FHF
(red) from the cardiac crescent at E7.5 to the looping stages of the mouse heart at
E8.5. PhA: pharyngeal arches; PS: primitive streak.  Adapted from Meilhac S and
Buckingham M, the behaviour of cells that form the myocardial compartment of the
vertebrate heart, in Cardiac development and regeneration, 2010: 195-217. 
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1.1.2.2. Molecular patterning of the secondary heart field  

As the SHF cells contribute to the heart, they are exposed to signals and 

patterned by signalling pathways and transcriptional regulators.  This signalling network 

plays important roles in anterior/posterior and left/right patterning of the SHF, in 

maintenance of proliferation, differentiation and in interaction with other cardiac cell 

lineages. 

1.1.2.2.1. Retinoic acid signalling in A/P patterning 

Retinoic acid (RA) signalling in the posterior region of the heart is required for 

SHF development.  The effects of excess or reduction of RA on cardiac morphogenesis 

has been demonstrated in diverse animal models (46).   Generation of a hypomorphic 

allele for the RA-synthesizing enzyme retinaldehyde dehydrogenase 2 (Raldh2) leads 

to perinatal death and exhibit features of the DiGeorge syndrome, in which Tbx1 is 

implicated (47).  Analysis of Tbx1/Raldh2 compound mutants demonstrated that 

decreases in the levels of RA accelerates the recovery from arterial growth delay seen 

in Tbx1-null embryos (47;48).  Raldh2 null mouse embryos display severe RA 

deficiency and cardiac defects characterized by absence of heart looping, impaired 

sinoatrial growth and defective ventricular trabeculation (49;50).  Furthermore, loss of 

Raldh2 is also associated with abnormal posterior expansion of SHF markers including 

Tbx1, Fgf8 and Fgf10, suggesting that RA signalling limits the extent of SHF (51;52).  

These observations indicate that RA signalling is required to delimit the domain of 

mesoderm that is competent to become the SHF.  Similarly, vitamin A deficiency in 

avian embryos or addition of RA soaked beads locally downregulates Tbx1 expression 

(53).  This suggest the existence of a feedback loop between the RA signalling and 

Tbx1.  This is further confirmed in Tbx1 mutant embryos, where the Raldh2 expression 

domain is shifted anteriorly and RA catabolising enzymes like Cyp26 are downregulated 

(54;55). 

1.1.2.2.2. FGF signaling  in maintenance of SHF cell proliferation 

Several signalling pathways have been shown to regulate proliferation of cells in 

the SFH, including the FGF, BMP, hedgehog and Wnt pathways.  Fgf8 and FGF10 

have been extensively studied for their impact on SHF development.  Fgf10 null mice 

exhibit perinatal lethality due to the complete absence of lungs (56;57).  Further 

analysis of Fgf10-/- mice revealed a role for this secreted molecule to correctly position 
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the heart in the thoracic cavity, however OFT elongation and right ventricle formation 

appeared normal, suggesting that Fgf10 mutants do not show an SHF phenotype (58).  

In contrast to Fgf10, Fgf8 has now been recognized as a major player in SHF 

development.  Mice carrying a hypomorphic allele of Fgf8 survive to term with abnormal 

cardiovascular patterning, including OFT misalignement defects, VSDs as well as 

defective aortic arch artery and pharyngeal arch development, which phenocopies the 

Tbx1 null phenotype (59;60).  Inactivation of Fgf8 by Nkx2.5, Mesp1, Isl1 and Mef2c 

Cre lines have helped clarify its role in pharyngeal arch artery and OFT development 

(18;61).  Deletion of Fgf8 in cardiac mesoderm progenitors resulted in severe right 

ventricular and OFT hypoplasia as well as OFT alignment and septation defects.  When 

Fgf8 was ablated in the pharyngeal mesoderm at later stages, mutant embryos showed 

OFT misalignement defects and decreased expression of Isl1, Bmp4 and Wnt11 in the 

pharyngeal mesoderm and OFT myocardium (61).  These observations demonstrate 

the importance of Fg8 in the survival and proliferation of the SHF.  Generation of 

Fgf8/Fgf10 compound mutants further revealed severe OFT and pharyngeal artery 

defects, demonstrating that the maintenance of proliferation in the SHF is sensitive to 

FGF dosage (62).   

1.1.2.2.3. BMP signaling in recruitment of SHF cells to heart tube 

As described in section 1.1.1.2, Bmp signalling is important in the endoderm to 

specify cardiac mesoderm cells.  In 2001, when the SHF was identified, Waldo et al 

demonstrated that blocking Bmp signalling inhibits SHF differentiation and they 

identified Bmp2 as a candidate molecule in recruiting SHF cells to the arterial pole of 

the heart (40).  Consistent with this hypothesis, overexpression of Bmp2 in the Nkx2.5 

mutant embryos leads to progenitor over-specification, with subsequent failure in SHF 

proliferation and OFT truncation defects (63).  Thus, Nkx2.5 regulates SHF proliferation 

through repression of Bmp2/Smad1 signalling.  Furthermore, conditional inactivation of 

the Bmp receptor Bmpr1 by Isl1Cre resulted in RV hypoplasia, defective OFT septation, 

underdeveloped valves as well as VSDs and ASDs (64).  These observations reveal 

that Bmp signalling is required for right ventricular and OFT morphology   

In the mouse, Bmp4 is expressed in the OFT myocardium as well as the 

splanchnic and branchial arch mesoderm and deleting Bmp4 in the cardiac mesoderm 

results in defective OFT septation and abnormal morphogenesis of the branchial arch 
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arteries (65).  Furthermore, mouse embryos lacking both Bmp4 and Bmp7 display 

abnormal OFT elongation, suggesting that ligand redundancy may mask an essential 

role for Bmp signalling in recruitment of SHF cells.  More recently, Bmp4 inactivation in 

the SHF revealed a role for Bmp4 in OFT endocardial cushion remodelling and mutant 

embryos displayed abnormal morphology of semilunar valves, VSDs, PTAs and 

defective cushion remodelling (66).  Moreover, Bmp2 and Bmp4 were shown to interact 

in multiple aspects of cardiac development, including OFT elongation, proper 

positioning of the outflow vessels and in septation of the atria (67;68).  Altogether, these 

observations reveal that Bmp2 and Bmp4, expressed by the OFT myocardium, are 

important for inducing differentiation of SHF progenitors at the arterial pole. 

1.1.2.2.4. Hedgehog signaling in survival of SHF 

In addition to the FGF and BMP pathways, Hedgehog (Hh) signalling has been 

implicated in the SHF survival and deployment.  Mouse embryos with a null mutation in 

Shh have defective arch artery and OFT patterning defects, as well as abnormal 

development of neural crest (NC) cells, leading to the formation of a single outflow 

vessel (69).  Recently, conditional deletion of Shh by Nkx2.5Cre revealed that Hh 

signaling is required for the survival of the pharyngeal endoderm, which impacts on 

both the SHF and neural crest cells (70).  Shh signalling is required in NC cells for their 

survival, in the SHF for OFT septation and finally, in the pharyngeal endoderm for 

survival and also to provide signals to the SHF for OFT lengthening.  Embryos lacking 

the Hh receptor smoothened (smo) have a very severe cardiac phenotype and fail to 

develop beyond the heart tube stage; Shh;Ihh compound mutants display an identical 

phenotype, revealing functional redundancy between Shh and Indian (Ihh) signalling  

(71).  Recently, deletion of smo in the Isl1 domain resulted in OFT shortening and PTAs, 

phenocopying the Shh-/- phenotype.  Furthermore, the conditional mutant embryos 

displayed elevated cell death, downregulation of Tbx1 in the pharyngeal mesoderm and 

neuropilin2 in the OFT. Thus, a spatial requirement for Hh signalling within Isl1 

expression domains is needed for aortic arch and OFT formation.       

1.1.3. Cardiac looping 

The early embryonic heart is a single, relatively straight tube.  During the early 

phases of vertebrate cardiac development, the primitive heart tube bends and twists 

(loops) to the right, a process referred to as cardiac looping (Figure 1.1).  This process 
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not only establishes the right-left asymmetry of the ventricular chambers but is also 

important to bring the segments of the heart tube and vessels into the correct 

conformation for chamber specification and septation to create two parallel circulations.  

Cardiac looping is therefore regarded as a key step in cardiac morphogenesis and 

slight perturbations in the looping process can result in congenital cardiac 

malformations.  Cardiac looping involves four different processes: formation of a C-

shaped loop, elongation to form the S-shaped loop, convergence of the inflow and 

outflow poles, and rotation and wedging of the aorta between the atrioventricular valves 

(72).  However, the mechanisms that control C-looping and S-looping morphogenesis 

remain poorly understood. 

1.1.3.1. C-shaped loop 

Formation of the C-shaped loop involves two independent steps: ventral bending 

and rotation to the right side (73;74).  During dextral looping (or C-looping), the primitive 

straight heart tube bends ventrally to form a C-shaped tube.  There is a coordinated 

rightward rotation that displaces the ventral surface of the heart tube on the outer 

surface of the C-shaped loop, resulting in positioning of the heart to the right of the 

midline.  At the end of dextral-looping, the embryonic ventricles are still in a primitive 

position cranial to the venous pole of the heart (75).   

Twisting or rotational movements of the heart tube during looping are influenced 

by morphogenetic forces that arise within the heart tube or that are extrinsic to the heart 

(73;76-78).  In fact, destabilization of the actin cytoskeleton, by using agents that inhibit 

actin polymerization, disrupts ventral bending (73).  Moreover, when the 

splanchnopleure is removed from the embryonic chick heart, torsion of the heart tube is 

suppressed (79). 

1.1.3.2. S-shaped loop and convergence 

After bending and rightward looping have been initiated, morphological changes 

occur, which are characterized by: 1) reduction in the distance between the foregut and 

the outflow and inflow attachments points and 2) caudal displacement of the ventral 

bend, which was initially cranial to the inflow attachment and atrium (74).  During early 

S-looping, the embryonic ventricles are displaced caudally to the future atrial chambers, 

thus adopting their final position (75).  At the end of early S-looping, the proximal part of 

the OFT is located to the right of the common atrium and atrioventricular (AV) canal 
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whereas the AV canal lies to the left of the body midline.  In the late phase of S-looping, 

the heart loop untwists, causing a ventral shift in the right ventricle whereas the 

proximal part of the OFT undergoes a ventral and leftward shift and the AV canal a 

rightward shift.   

During this final stage of looping, the outflow and inflow poles converge as the 

last segment of the OFT and chamber identity becomes established (74;80).  A major 

factor in formation of the S-shaped loop and convergence appears to be the addition of 

cells from the SHF to the arterial pole.  Failure of addition of these cells to the arterial 

pole disrupts the morphology of the S-shaped loop, creating a shortened heart tube and 

preventing caudal displacement of the OFT, resulting in failure of convergence.  The 

consequence is abnormal cardiac development, which ranges from the absence of the 

right ventricle and conus to conotruncal defects such as Tetralogy of Fallot or double 

outlet right ventricle.    

1.1.3.3. Wedging 

Wedging corresponds to the movement of the aorta behind (or caudal) the 

pulmonary trunk and occurs during septation of the cardiac chambers.  Wedging is 

dependent on retraction and rotation of the truncal myocardium by about 45° (81).  One 

mechanism that has been proposed for the elimination of myocytes in the outflow 

myocardium is apoptosis.  This is supported by the fact that treatment of chick embryos 

with caspase inhibitors prevents normal cell death and leads to a failure in OFT 

shortening and double outlet right ventricle (82;83).  When wedging of the aorta fails to 

happen, the aorta gets either shifted over the ventricular septum and right ventricle, a 

configuration known as overriding aorta, or settles to the right of normal position (84;85).  

These defects are observed in conotruncal defects such as Tetralogy of Fallot or double 

outlet right ventricle. 

1.1.4. Establishment of left-right asymmetry 

Left-right (L-R) patterning plays an essential role in creating asymmetry in the 

cardiovascular system.  The heart tube is initially linear and symmetric along the left-

right axis but becomes divided into distinct regions along the anterioposterior axis, 

which will give rise to the atria and ventricles.  This bilateral symmetry is broken down 

by rightward looping of the heart, which is the earliest macroscopic sign of L-R 

patterning.  The first indication of cardiac L-R asymmetry is observed right after 



14 

 

 

gastrulation, once the cardiac cells are residents of the primary heart fields (86).  This is 

consistent with the observation that L-R determination in the Xenopus heart occurs 

when the primordial is a simple sheet of mesoderm (87).  A major breakthrough in the 

understanding of L-R patterning occurred in 1995 when Levin et al discovered that 

sonic hedgehog, nodal and activin can function as L-R asymmetry genes in the chick 

(88).  Since then, the field of L-R asymmetry has grown rapidly and several genes have 

been identified that act in concert to establish L-R patterning. 

So far, the left-sided expression of Nodal has been shown to be essential for 

left-right development and is well conserved among vertebrates (88-90).  In Xenopus 

and chick, ectopic nodal expression alters cardiac laterality (91;92).  The definitive role 

of nodal in mouse embryos has been lacking because null mutation blocks gastrulation.  

However, heterozygous nodal mice show an absence of pitx2 expression and left-right 

organ defects (93).  Furthermore, when nodal expression was reduced specifically in 

the node, loss of asymmetric nodal and pitx2 expression in the lateral plate mesoderm 

was observed as well as defects in organ left-right orientation (94;95).  Similarly, 

knocking down nodal expression in zebrafish using antisense morpholino 

oligonucleotides prevents asymmetric pitx2 expression and alters L-R asymmetry in the 

heart (96).  Overall, these studies indicate a requirement for nodal in normal cardiac 

left-right morphogenesis, through activation of the target gene pitx2.  

In addition to nodal, lefty-1 and lefty-2, which belong to the TGFβ family, are 

involved in the relay of L-R patterning.  In the mouse, lefty-1 is predominantly 

expressed in the left prospective floor plate whereas lefty-2 is more expressed in the left 

lateral plate mesoderm (97;98).  Although lefty and nodal share the property of being 

expressed on the left side of the embryo, they seem to have different functions 

regarding L-R development.  Whereas nodal promotes leftness, lefty appears to inhibit 

this process.  Of note, targeted deletion of lefty-1 in mouse embryos causes bilateral 

expression of nodal, pitx2 and lefty-2 in the lateral plate mesoderm and perturbed organ 

left-right orientation (97).  Moreover, chick, zebrafish, mouse and Xenopus lefty 

homologs are able to antagonize nodal signaling (98).  Thus, this suggests that lefty-1 

in the midline is presumed to provide a barrier required to prevent the spread of left-side 

nodal to the other side of the embryo.   
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A major downstream effector of the nodal pathway in cardiac development is the 

Pitx2 homeobox gene (99;100).  Nodal expression is transient whereas Pitx2 

expression is maintained during formation of handed organs such as the heart and gut 

(99;101).  Thus, it seems like Pitx2 is the molecular transducer of embryonic L-R 

signalling.  Three Pitx2 isoforms (Pitx2a, Pitx2b and Pitx2c) are expressed throughout 

development and only Pitx2c is expressed asymmetrically within the LPM and 

developing heart (102).  Initial studies revealed that right sided overexpression of Pitx2c 

in chick and Xenopus causes reversed cardiac looping (99).  These findings, coupled 

with the observations that Pitx2c is expressed by other organs undergoing looping, 

suggested that Pitx2c is involved in cardiac looping morphogenesis (99).  However, 

Pitx2abc triple mutants and Pitx2c null mice do not exhibit reversed cardiac looping, 

indicating that Pitx2c is dispensable for this aspect of the looping process in mice 

(103;104).  Nonetheless, in the Pitx2c null embryos displayed numerous cardiovascular 

defects including complete AV canal defects, DORVs, transposition of the great arteries 

and right ventricular hypoplasia, suggesting important functions in cardiac and vascular 

morphogenesis (104;105).  Moreover, Pitx2c loss of function in Xenopus causes 

abnormal shifting/rotation of the OFT, which are causatively linked with DORV, TGA 

and VSD.  Thus, the abnormal OFT looping that is associated with impaired Pitx2c 

function could account for these defects.   

On the right side of the node, several signalling pathways are required to 

repress right-sided nodal expression and for the induction of cSnr, a transcription factor 

that is normally restricted to the right LPM (106).  In response to Activin, BMP4 is 

induced on the right side of the LPM and in turn induces the expression of FGF8 and 

PCL2, the latter functioning to repress right-sided expression of sonic hedgehog 

(107;108).  A role for BMP4 in mouse L-R patterning came from the observation that in 

the BMP4 null embryos, nodal expression is severely reduced in the node and absent 

from the LPM (109).  In addition, tetraploid rescued BMP4 mutant embryos show no 

evidence of heart looping and have reduced expression of nodal in the node and LPM, 

suggesting that BMP4 signalling is essential to establish left sideness (109).  Lack of 

bilateral expression of nodal, lefty2 and pitx2c in smad5 null embryos further support 

the notion that upstream BMP signalling is required for repression of nodal activity in 

the right LPM (110). 
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1.1.5. Chamber formation and maturation 

As the heart tube loops, the cardiac chambers form by expansion of portions of 

the linear tube.  The myocytes of the linear heart tube are in a low proliferative state.  

Then, at specific regions in the tube, myocytes will increase in size and will reinitiate cell 

division (111).  Under the control of the chamber-specific gene program, these cells will 

acquire the properties of chamber myocardium (112).  Other portions of the linear tube, 

including the OFT, AV canal and inflow tract, will retain their primary myocardial 

phenotype and are interconnected to one another at the inner curvature.  At the caudal 

portion of the tube, the primary myocardium differentiates into chamber myocardium of 

the left and right atrial appendages.  Concomitant with chamber formation, typical 

trabeculations develop, which are more pronounced in the ventricles than in the atria.  

All of these processes, growth, proliferation and differentiation, cause the apical parts of 

the ventricles and the atrial appendages to expand locally.  This configuration now 

allows the systemic and pulmonary circulations to be properly arranged in parallel.   

1.1.5.1. Transcriptional regulation of chamber development 

Chamber specification occurs through distinct transcriptional networks that 

govern the identity of the myocardium.  Ventricular chamber specification occurs at 

distinct zones at the outer curvature of the looping heart tube, which is marked by 

expression of Hand1, Cited1, Irx1/2/3, Cx40 and Cx43, Nppa and the cytoskeletal 

protein Chisel (72;113). 

The basic helix-loop-helix transcription factors Hand2 and Hand1 are 

coexpressed in the developing heart tube but become restricted to the right (Hand2) 

and left (Hand1) ventricles respectively.  Hand1-/- embryos die between E8.5-E9.5 due 

to yolk sac abnormalities and heart development does not progress beyond the looping 

stage (114).  However, conditional deletion of Hand1 in the heart resulted in left 

ventricular hypoplasia as well as hyperplastic AV valves (115).  In the Hand2-null 

embryos, the right ventricle progenitor cells undergo massive apoptosis, impairing 

expansion of this segment, thus resulting in the absence of the right ventricle (116).  

Furthermore, generation of Hand1/Hand2 compound mutants revealed that ventricle 

morphogenesis is sensitive to the dosage of the Hand genes (115). 

The transcription factors Nkx2.5, Gata4 and Tbx5 have been implicated in 

induction of cardiac chamber development based on their expression pattern early in 
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cardiac development and on the complete/conditional knockout phenotypes (117).  To 

summarize, Nkx2.5 null mouse embryos form a beating heart tube but looping does not 

occur and subsequently, the cardiac chambers fail to form (118).  Moreover, expression 

of several genes involved in myocardial differentiation, including Nppa, Nppb, MLC2V, 

N-myc, MEF2C, Hand1 and Msx2, was disturbed in the mutants, suggesting a 

requirement for Nkx2.5 in chamber specification.  A null mutation in Tbx5 leads to 

embryonic death by E10.5, cardiac looping does not take place and chamber specific 

genes Cx40 and Nppa are absent or strongly reduced (119).  Moreover, misexpression 

of Tbx5 in the heart tube inhibits IVS formation and expression of Hand1 and Hand2 

was changed concomitant with the cardiac anomalies (120;121).  Thus, chamber 

development seems to be sensitive to Tbx5 dosage.  Lastly, Gata4 null mice die early in 

embryogenesis due to defects in extraembryonic endoderm (34;35).  A number of 

conditional knockout strategies have shown that loss of Gata4 leads to ventricular 

hypoplasia and myocardial thinning, suggesting a function in cardiomyocyte 

proliferation  as well as ventricular morphogenesis (122;123). 

Tbx5 has been shown to cooperate with Nkx2.5 to activate expression of several 

genes including Nppa and Cx40 (119;124).  On the other hand, Tbx2 is able to form 

repressive complexes on the Nppa promoter and competes with Tbx5 for binding to the 

T-box binding sites.  Thus, the formation of positive and negative complexes can 

provide a potential mechanism to generate chamber-specific gene expression (125).  

Nppa is initially expressed throughout the chamber myocardium but becomes restricted 

to the atrial myocardium as development proceeds.  Restriction of Nppa gene 

expression to the atrial myocardium is regulated by combinatorial interactions between 

Nkx2.5, Gata4, Tbx5 and SRF.  Efficient expression of Nppa does not necessarily 

require the GATA and NKE binding sites but combinatorial interaction between these 

two factors is essential in restricting Nppa expression to the atrium (126).  When the 

NKE site and the proximal GATA binding element were mutated, ectopic Nppa 

expression was observed in the ventricles and OFT, in addition to tissues outside the 

heart (126).   The importance of genetic interactions between these factors is 

underscored by the presence of mutations that lead to congenital heart malformations.  

Interestingly, the mutation G295S in Gata4 was demonstrated to abolish physical 

interactions with Tbx5, thus leading to ASDs (127).  Similarly, two Tbx5 missense 
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mutants, which have lost the ability to bind DNA and to interact with Nkx2.5, lead to 

ASDs (128-130).   

In addition, formation of chamber myocardium needs to be prevented at the AV 

canal, inflow tract, OFT and inner curvature, which is accomplished by the transcription 

factors Tbx2 and Tbx3.  Tbx2 and Tbx3 are expressed in the inflow tract, AV canal and 

OFT during early cardiac development (125;131).  Tbx2 null embryos show ectopic 

expression of chamber genes including Nppa, Cx40 and Cx43 in the AV canal whereas 

overexpression of Tbx2 early in development leads to absence of Nppa and Cx40 

expression and prevents chamber formation (43;125;132).  These observations clearly 

show that Tbx2 is required to suppress chamber formation in the AV canal.  Bmp2 

induces expression of Tbx2 in the AV canal and Tbx2 expression is abolished in the AV 

canal of Bmp2-/- mice, leading to up-regulation of Cx40, Nppa and Chisel (133;134).  

Moreover, application of Bmp2 soaked beads to the mesoderm of chick embryos leads 

to induction of Tbx2 (135).  Bmp2 is also able to induce expression of Nkx2.5 and Msx2, 

which can physically interact and cooperate with Tbx2 and Tbx3 in regulation of 

chamber gene expression (131;136).  Eventhough Msx2-/- mice do not display AV canal 

defects, Msx1/Msx2 compound mutants show endocardial cushion defects associated 

with aberrant expression of Nppa, Tbx2, Hand1 and Hand2 (137).  Recent studies have 

shown that mice lacking Tbx3 display ectopic expression of Cx40 and Cx43 in the sinus 

node, whereas the bundle branches fail to develop (138;139). 

In order to allow proper chamber formation, expression of Tbx2 and Tbx3 must 

be tightly regulated and confined within the AV canal and this is done by another 

member of the T-box family of transcription factors, Tbx20.  In the heart of Tbx20-/- 

embryos, chamber formation does not occur, as evidenced by the loss of Nppa and 

Cx40 expression in mutant heart tube (140-142).  Furthermore, expression of Tbx2 was 

observed in the cardiac crescent and throughout the linear heart tube in Tbx20 null 

embryos, showing that Tbx20 is a repressor of Tbx2.  Recently, Singh et al 

demonstrated that Tbx20 is able to repress smad1/smad5 activity, between E7.5-8.5, in 

order to delay and restrict activation of Tbx2 in the AV canal (143).  Thus, restricted 

induction of Tbx2 by Bmp signalling in the OFT and AV canal may underlie the inhibition 

of chamber myocardial genes and maintenance of the primary phenotype in these 

regions.   
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1.1.5.2. Formation and patterning of the trabeculated myocardium 

In both mouse and human, trabeculations start to form after looping of the linear 

heart tube, concomitant with expansion of the ventricular chambers (Figure 1.1).  The 

trabeculae can comprise up to 80% of the cardiac mass and generate much of the 

contractile force of the heart, from E9.5 to E14.5, as well as rapidly propagate the 

electrical impulse throughout the ventricles.  Prior to septation, the trabeculae help in 

maintaining separate blood flow through the embryonic ventricular chambers and also 

contribute extensively to the development of the ventricular conduction system (section 

1.1.6).  Several genes including Hand1, Cited1, Irx5, Nppa, Cx43 and Chisel, are 

expressed in the trabecular zone (144). 

Signalling from the endocardium is essential for trabecular growth.  Neuregulin-1 

is secreted by the endocardium and signals to its tyrosine kinase receptors ErbB2 and 

ErbB4, which are expressed in the myocardium.  Targeted deletion of neuregulin-1 

(NRG1) in mice leads to embryonic death at E10.5 due to aberrant cardiac 

development.  The trabeculea fail to form properly, resulting in an enlarged common 

ventricle, reduced blood flow and arrhythmias (145).  erbB2 and erbB4 deficient 

embryos display a very similar phenotype, with fetal death at E10.5 due to lack of 

trabeculation (146;147).  This suggests that NRG1 provides an essential paracrine 

signal to myocardial cells, through the ErbB2/ErbB4 heterodimer, for trabecular 

formation.  Another key molecule involved in formation of trabecules is Bmp10.  In 

mouse embryos, Bmp10 is expressed transiently but specifically in the trabeculae 

between E9.0 and E13.5 after which it becomes restricted to the atria.  Targeted 

inactivation of Bmp10 results in embryonic death at E10.5 and mutant embryos have 

hypoplastic ventricular walls and form primitive trabeculae (148).  These observations 

suggest that Bmp10 is not required for initial formation of the trabeculae but is rather 

essential for further trabecular growth by maintaining appropriate proliferation, mainly 

by repressing the cell cycle regulator p57kip2.  Recent studies have revealed that Bmp10 

possibly acts downstream of the Notch pathway.  Consistent with this, Notch1 or RBP-

Jκ mutant embryos showed impaired trabeculation as well as reduced proliferation and 

expression of EphrinB2, NRG1 and Bmp10, which are all involved in trabeculae 

formation (149). 
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1.1.6. The cardiac conduction system 

The cardiac conduction system initiates and coordinates electrical signals that 

cause the rhythmic and synchronized contractions of the atria and ventricles.  In higher 

vertebrates, this system is composed of the nodes and the ventricular Purkinje fiber 

network, with the sinoatrial (SA) node being the primary pacemaking component that 

generates the electrical impulse (150).  In a mature heart, the SA node is located at the 

junction of the superior canal vein and right atrium.  Following initiation of a cardiac 

action potential within the SA node, the electrical impulse propagates rapidly through 

the fast-conducting atrial muscle to initiate contraction of the atria.  The impulse then 

spreads slowly through the atrioventricular node (AV node), which is located at the base 

of the atrial septum adjacent to the tricuspid valve.  This slow conducting node forms 

the only route from the atria to the ventricles.  The main function of the AV node is to 

separate, and to some extent insulate, the activation of the atrial chambers from that of 

the ventricles.  After this slight delay, the electrical impulse travels through a fast 

conducting His bundle (AV bundle) and its bundle branches that are located on both 

sides of the ventricular septum.  The bundle branches divide on either side of the 

ventricular septum into a highly ramified network of Purkinje fibers, which rapidly 

transmits the impulse to the ventricular working myocardium from the apex to the base. 

Higher vertebrates will develop a SA node in the sinus venosus, an AV node 

within the AV canal and a fast ventricular conduction network to activate both ventricles 

efficiently and co-ordinately.  These different components originate from myocardial 

cells as evidenced by lineage tracing studies of the early avian (151;152).  Furthermore, 

these studies also demonstrated that labelled neural crest or proepicardial cells do not 

contribute to the conduction system components.  The cardiac conduction system is 

innervated by cardiac ganglia that are derived mostly from neural crest cells (153).  In 

addition, a large number of non-cardiac cells such as fibroblasts can be detected in the 

mature conduction system and these are derived from the epicardium, endocardium 

and neural crest (153-155).  Eventhough the nerves and fibrous tissues are required for 

the formation and function of the conduction system, the cardiomyocytes are essential 

for the generation and propagation of the action potential.   
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1.1.6.1. Sinus node development 

The mature SA node consists of an elongated structure with a head that is 

wrapped around the superior canal vein, including the border of the right atrium, and a 

tail along the terminal crest (156;157).  In the early embryonic heart, all cardiomyocytes 

display pacemaker activity but the cells at the venous pole have the highest intrinsic 

rate and thus function as the predominant pacemaker (155;158). 

Tremendous progress has been made over the years to increase our 

understanding of the molecular pathways involved in SA node formation.  In higher 

vertebrates, it is thought that the SA node develops from primitive myocardium located 

in the venous pole (inflow region) of the embryonic heart (155;158).  Until E9.0-9.5, 

Nkx2.5 is expressed in all primitive myocardial cells derived from the primary and 

secondary heart fields whereas mesenchymal cells at the caudal-ventral side of the 

inflow tract express the T-box transcription factor Tbx18 (156;159).  Concomitant with 

heart tube elongation and formation of the four chambered heart, Tbx18 expressing 

mesenchymal cells are added to the tube to form the sinus horns, which will eventually 

differentiate into the SA node around E10-11 (156;159).  Interestingly, the myocardium 

of the sinus venosus and SA node expresses Tbx18 but not Nkx2.5, suggesting these 

components of the conduction system differentiate from a Tbx18+/Nkx2.5-negative 

mesenchymal precursor population.  Consistent with this, Tbx18+ non-cardiac precursor 

cells were able to differentiate into an Hcn4+/Nkx2.5- pacemaker myocardium in culture 

(156).  Moreover, Tbx18 null mice fail to form the sinus horns, demonstrating that Tbx18 

is required for the recruitment of these mesenchymal progenitors to the cardiac lineage 

at the venous pole (156;159).   

The hyperpolarization-gated cyclic nucleotide cation-activated channel Hcn4, 

which is essential for pacemaker activity of the SA node, is expressed at E8.0 in the 

venous pole of the linear heart tube and later becomes confined to the sinus horns and 

eventually to the SA node region by E12 (157;160;161).  Interestingly, Hcn4 null mice 

die at E11.5 due to strong reduction in If current resulting in lack of formation of a 

mature pacemaker while its overexpression mimics pacemaker properties in cell culture 

(157;160;162;163).  Heterozygous mutations in the Hcn4 gene were found in human 

with brachycardia (164).  Expression of Hcn4 initially overlaps with that of Nkx2.5 in the 

linear heart tube but subsequently becomes downregulated in this domain and 
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activated in Tbx18+/Nkx2.5-negative myocardial cells of the sinus horns.  Thus, 

expression of Hcn4 gets shifted into the newly added cardiac cells at the venous pole 

(sinus venosus).  This highly suggests that Hnc4 is repressed in the Nkx2.5-positive 

myocardium that is fated to form the atria and atrial layer of the semilunar valves (159).  

Consistent with this, Nkx2.5 deficient embryos show ectopic expression of Hcn4 and 

Tbx3 in the heart tube and fail to induce Cx40 in the atria, suggesting that Nkx2.5 

negatively regulate Hcn4 and Tbx3 (165).  These observations also indicate that Nkx2.5 

is required to establish a boundary between the atria and SA node in order to prevent 

the SA node phenotype from invading the atria and vice-versa.  Tbx3 has emerged as a 

critical regulator of the cardiac conduction system, especially in regulating the function 

of the SA node (138;166).  Tbx3 is expressed in the SA node, the AV node, the AV 

bundles and proximal bundle branches during cardiac development (166).  Importantly, 

Tbx3 null embryos show expansion of working atrial gene expression including Cx40, 

Cx43, ANF and Scn5a into the SA node domain (138).  Moreover, ectopic expression of 

Tbx3 within the atria is sufficient to activate ectopic expression of pacemaker genes 

including Hcn4, Cx30.2 and Cav3.1 while repressing the atrial phenotype (138).  Thus, 

Tbx3 is required for the induction and maintenance of the SA node gene program while 

preventing the expansion of atrial gene expression. 

1.1.6.2. AV canal specification and AV node formation  

The second major site in the heart with pacemaker potential activity is the AV 

node.  The linear heart tube consists of primitive myocardium that displays poor 

contraction and slow conduction of the electrical impulse (155).  During early cardiac 

development, the linear heart will elongate by addition of cells at both poles and 

differentiate into atrial and ventricular chambers as the tube loops.  Chamber 

myocardium goes on to acquire high conductance gap junctions, including Cx40 and 

Cx43, as well as fast conduction and rapid contraction and finally pronounced 

trabeculae in the ventricular chambers.  In contrast, the myocardium of the sinus horns, 

the AV canal, the inner curvature and OFT preserve their original embryonic phenotype.  

It is generally thought that the AV node as well as the AV bundles, AV valves and lower 

rim of the atrium originate from the AV canal (167).  The molecular mechanism 

underlying AV canal formation and differentiation has been extensively studied, which is 

nicely reviewed in section 1.1.5.1.   
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The transcription factors Nkx2.5 and Tbx5 are also expressed in the AV canal, 

where they play important roles.  Of note, Nkx2.5 haploinsufficiency leads to atrial 

septal defects and AV conduction abnormalities during postnatal life (168;169).  In 

addition, Nkx2.5+/- mice display strongly hypoplastic AV node (170).  Lastly, neonatal 

mice with ventricular specific deletion of Nkx2.5 display first-degree AV block which 

progresses to high grade AV block later in life (171).  Similarly, haploinsufficiency of 

Tbx5, which is a model of Holt-Oram syndrome, is characterized by failure of AV canal 

maturation, patterning defects of the left and right bundle branches and right bundle 

branch block (172).  Adult Tbx5+/- mice exhibit various degrees of conduction defects 

including AV block and SA node dysfunction and 50% of these animals have second 

degree AV block (119). 

During embryonic development, the AV canal retains the slow conduction 

property of the primitive myocardium, thus functioning as an AV node equivalent.  The 

action potential can be propagated from the atria to the ventricles and back through the 

ring of AV myocardium that connects these chambers (173;174).  Soon after septation 

is completed, connective tissue from the AV cushion and epicardial mesenchyme will 

invade the myocardium to form the annulus fibrosus, which acts to physically separate 

and insulate the atria and ventricles.  The only connection that remains is the AV bundle, 

which connects the AV node at the atrial side with the ventricles.  However, the 

mechanism that underlies formation and morphogenesis of the AV node from the 

embryonic AV canal is not well understood.  

1.1.6.3. The ventricular conduction system 

In the mature heart, the ventricular conduction system consists of the AV bundle 

(His bundle), the bundle branches and the Purkinje fiber network.  This system acts to 

transmit the electrical impulse rapidly from the AV bundle and proximal bundle 

branches to the ventricular working myocardium starting at the apex.  In the mouse, the 

gap junction Cx40 is essential for the propagation of the fast electrical impulse through 

the AV bundle and bundle branches (175;176).  It also serves as a specific marker able 

to distinguish the fast-conducting components (bundle branches and Purkinje fibers) 

from the working myocardium of the ventricles (177-179).  A number of hypotheses 

have been made about the origin of the AV bundle but it is now believed to originate 

from the crest of the ventricular septum (180;181).  In the mouse, AV bundle cells can 
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be first observed around E10-11 at the top of the forming ventricular septum.  With 

further development of the ventricular septum, left and right bundle branches develop 

from the subendocardial myocytes and bifurcate from the His bundle.  AV bundle 

development is sensitive to haploinsufficiency of Tbx5, Nkx2.5 and Id2 or combinations 

of them as well as loss of Tbx3 (139;182).  Thus, these findings suggest that an Nkx2.5-

Tbx5-Id2 dependent pathway is necessary for the formation of the AV bundles.  

The embryonic heart of higher vertebrates display fast conduction well before 

septation is completed, at the time when trabecules have just emerged (183;184).  

These observations prompted researchers to suggest that the trabecules are the 

structural and functional precursors of the Purkinje fibers.  In the chicken and mouse, 

Cx40 is initially expressed in the atria and ventricle primordia but as development 

proceeds, becomes more dynamic in the ventricles with expression confined to the 

trabecular network and subsequently to the ventricular conduction system, concomitant 

with the formation of the compact layer at the epicardial side (177).  Soon after birth, a 

further maturation step that is dependent on Nkx2.5 and epicardial cells takes place, 

remodelling the trabecular zone into the Purkinje fibers that are only one to a few cells 

thick (185;186).   

1.1.7. Formation of the cardiac valves 

The complexity of the vertebrate heart increased by the progressive colonization of 

land by vertebrates and allowed adaptation to a new environment.  The main 

consequence of this dramatic change was a division of the bloodstream into two 

separate circuits, pulmonary and systemic.  This physiological change led to a spatial 

reorganization of the ancestral fish heart into a four chambered organ that is composed 

of two atria and two ventricles.  In order to allow coordination and efficient blood supply 

to the lungs and the rest of the body, the heart of higher vertebrates developed a very 

sophisticated valve system.  The cardiac valves are fibrous structures that originate 

mainly from the endocardium; they are not completely functional until late gestation and 

are fully mature only after birth. 

The cardiac valves of higher vertebrates can be classified as atrioventricular (AV) 

and semilunar (OFT) valves (Figure 1.3).  The AV valves originate from the AV 

cushions and separate the atria from the ventricles.  The mitral valve controls blood flow 

between the left ventricle and left atrium whereas the tricuspid valve regulates blood 
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blow between the right atrium and right ventricle.  The leaflets of the AV valves (two in 

the mitral and three in the tricuspid) are flattened laminar structures that are attached to 

the annulus fibrosus at their base.  The tip of the valve is attached to tendinous chords 

that provide support to the leaflet.  The tendinous chords are in turn supported by 

papillary muscles, which are thick expansions of the myocardium and together, they 

constitute the tension apparatus.  The semilunar valves are made of three leaflets and 

originate from endocardial-derived and neural-crest derived mesenchyme.  The aortic 

valve controls blood flow between the left ventricle and aorta whereas the pulmonary 

valve regulates blood flow between the right ventricle and the pulmonary artery. 

 

1.1.7.1. The extracellular matrix 

The first evidence of endocardial cushion formation is the appearance of 

swelling in the AVC and OFT regions of the looping heart around E9.5 in the mouse, E3 

in chick and E31-35 in human (Figure 1.1).  Cushion formation is induced by signals 

emanating from the myocardium lining the cushion regions, where expression of 

chamber specific genes in the AVC and OFT is inhibited and synthesis of ECM 

components increased.  This increased ECM or ‘’cardiac jelly’’ deposition between the 

myocardium and endocardium causes the tissue to protrude or swell into the interior 

lumen of the heart forming the endocardial cushions (187).  Even at this early stage, the 

endocardial cushions are able to act as a barrier to prevent the backflow of blood 

Figure 1. 3.  Development of the semilunar and atrioventricular valves

EMT: epithelial-mesenchymal-transition.  Adapted from Camenisch T et al.,
Cardiac development and regeneration, 2010: 363-387. 
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through the heart tube.  Signals emanating from both the myocardium and endocardium 

of the AVC and OFT are necessary for proper endocardial cushion formation and 

epithelial-to-mesenchymal transformation (EMT). 

 The ECM of the cardiac cushions is a unique and dynamic mixture of proteins, 

proteoglycans and glycosaminoglycans and is devoid of cells prior to EMT.  Major 

components of the ECM include hyaluronan (HA), the proteoglycans aggregan and 

versican, and glycoproteins like laminin, collagens, fibronectin, fibulins, fibrillins and 

periostin (188-191).  Importantly, the formation and expansion of the cardiac jelly 

precedes the epithelial-to-mesenchymal transformation and production and migration of 

mesenchymal cells.  The importance of the cardiac jelly in endocardial cushion 

development is highlighted in the Trisomy 16 (Ts16) mouse model.  In Ts16 embryonic 

hearts, which is an accepted model for human Trisomy 21, the cushion volume is 

greatly elevated due to increased cardiac jelly content but attenuated mesenchyme 

production.  These embryos have a very high incidence of AV septal defects as a result 

of abnormal cushion formation, suggesting that the proper formation of the ECM within 

the cushions is important both for valve and septal development.  The regulatory 

mechanisms that govern the production of the cushion ECM are not well understood but 

some insights have been acquired from mouse genetics.  Targeted inactivation of either 

hyaluronan synthase 2 (Has2) or versican in mouse embryos results in embryonic 

lethality from heart defects including disrupted cushion morphogenesis (192-194).  

Moreover, the zebrafish Jekyll mutants exhibit hypoplastic cushions similar to mice 

lacking Has2 (195).  Jekyll mutants lack a functional uridine 5’-diphosphate(UDP)-

glucose dehydrogenase gene that is required for the biosynthesis of HA, likely 

suggesting that the defects of the Jekyll mutants are related to deficits in HA production 

and activity.  Further studies with the Has2-null embryos showed that the epithelial-

mesenchymal transition was inhibited in Has2-deficient AV explants (192).  This defect 

was however rescued with exogenous HA, or by expressing Has2 cDNA, to Has2-/- 

cushion explants cultures. 

1.1.7.2. Epithelial-to-mesenchymal transformation 

Cardiac cushions are the primordial of the valves and septa of the adult heart and 

play a crucial role in maintaining anterograde blood flow in the embryonic heart.   

Beginning at E9.5, the cardiac cushions of the AV and OFT regions begin to be 
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populated by mesenchymal cells by a process known as epithelial-to-mesenchymal 

transformation (EMT).  EMT is a finely regulated mechanism that describes a series of 

events during which epithelial cells lose many of their epithelial characteristics through 

complex changes in cell architecture and behaviour, and take on properties that are 

typical of mesenchymal cells (196).  Most of the early insights into the process of 

endocardial EMT came from studies of a three-dimensional collagen gel culture system 

(197).  In this system, the AV and OFT regions are dissected and isolated before the 

onset of EMT and are explanted onto the surface of the collagen gel, after which a 

subset of endocardial cells will transform into mesenchymal cells and invade the 

collagen matrix.  This technique allows for the quantification of EMT by determining the 

subsequent invasion of the collagen gel by endocardially derived cells and has been 

instrumental in defining the molecular regulation and major steps involved in EMT.  The 

steps in EMT are (1) activation of endocardial cells by the adjacent myocardium, (2) 

transformation of the endocardial cell, which lose their cell-to-cell contacts and acquire 

the ability to move within the endocardial layer and form filopodia and lamellipodia and 

(3) invasion, where the transforming endocardium migrates from the endocardial cell 

layer into the cardiac jelly.  As development progresses, the mesenchymal cells 

undergo exhaustive proliferation, resulting in the fusion of the cardiac cushions.  Further 

remodelling of the endocardial cushions results in the formation of thin protruding 

leaflets comprised of endocardial cells and ECM that go on to form the heart valves.  In 

the AV canal, EMT-derived mesenchymal cells are the sole contributor to the mitral and 

tricuspid valves, whereas in the OFT, endocardial and neural crest-derived EMT 

contribute to the formation of the aortic and pulmonary valves.  A large number of 

molecules, transcription factors and signaling pathways have been implicated in EMT 

and cushion morphogenesis, including TGFβ/BMP, VEGF, ErbB, NF1/Ras, NFATc1, 

Notch, Wnt/β-catenin, Twist1, Sox9, Tbx20, Msx1/2 and GATA4 (198-200).  A brief 

description of some of the major players is reviewed in section 1.1.7.4. 

1.1.7.3. Heart valve maturation and remodelling 

Mature AV valves are derived almost entirely from the endocardial cushions with 

contribution from the AV myocardium (201;202).  Adult human AV valves are composed 

of three layers of specific ECM proteins: the fibrosa, the spongiosa and the atrialis.  The 

fibrosa, located at the ventricular side, is composed of densely packed collagen fibers 

and provides strength; the spongiosa, located centrally, consist of glycosaminoglycans, 
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which provide cushioning; and the atrialis, continuous with the atrial endocardium, is 

composed of elastic fibers.  The most striking difference between the AV and semilunar 

valves is the presence of a supporting chordea tendineae on the ventricular side of the 

tricuspid and mitral valves.   

Remodelling of the cardiac valves into a fibrous leaflet correctly attached to its 

supporting apparatus requires coordinated events including proliferation and apoptosis 

of mesenchymal cells, fusion of the cardiac cushions and tissue maturation.  The 

number of mesenchymal cells in the endocardial cushions increases progressively after 

the onset of EMT such that the size of the cushion is appropriate to the region in which 

they are found (AV canal or OFT) (203).  After E11.5, mesenchymal cells lining the 

myocardial protrusion will proliferate to form the lateral AV cushion, which will 

eventually form the fibrous component of the mural leaflet.  Proliferation continues until 

the endocardial surfaces of the inferior and superior cushions make contact, initiating 

fusion between the two cushions.  In mice, remodelling of the AV cushion results in the 

formation of mesenchymal leaflets at E14.5 (201;204).  After E14.5, the myocardium of 

the leaflet will disappear by programmed cell death, freeing the fibrous leaflets.  

However, little is known about the maturation of these immature leaflets into adult 

stress-resistant valves due to the lack of mouse models with valve defects that are 

viable past the stage of EMT.  A recent study by Kruithof B et al led to a model whereby 

condensation of mesenchymal cells starts at E15.5 at the atrial side of the leaflet and 

continues up to E18.5 (205).  Cellular proliferation contributes to the leaflet elongation 

until postnatal day 4.5.  Rapid growth of the heart by hypertrophy might then elongate 

the leaflets by physically pulling at the papillary muscle insertion point.  The AV valves 

then loose cell density and ECM remodelling along the AV axis is achieved 1 week after 

birth, where two different structural regions can be observed, glycosaminoglycans and 

versican located on the atrial side and densely packed collagen fibers on the ventricular 

side.  

EGFR signalling is involved at later stages of valve formation, more particularly 

in the valve remodelling process (206).  HB-EGF null mice have cardiac valve defects, 

which is consistent with the restricted expression of this molecule in endocardial cells 

(207;208).  Histological analysis of the mutant mice revealed enlarged semilunar valves 

and abnormal morphology of the AV valves, which likely results from an increase in the 

number of mesenchymal cells.  This led to the hypothesis that HB-EGF might regulate 
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the extent of mesenchymal cell proliferation during the remodelling phase.  This is 

supported by the fact that EMT occurred normally in these mice, that the rate of 

apoptosis was unchanged and that excessive proliferation of the mesenchymal cells 

was observed (208).  Interestingly, increased activation of smads, which are 

intracellular mediators of BMP signalling, was observed in the hyperplastic valves, 

suggesting that HB-EGF regulates proliferation of the valves through regulation of 

smads.  Another candidate for the HB-EGF signalling is the fibroblast growth factor 

(FGF) 4 (209).  In chick embryos, FGF-4 is expressed in both mesenchymal cells and 

myocardial cells, while the FGF receptor (FGFR) 2 is located exclusively in the cushion 

mesenchymal cells.  Furthermore, the authors demonstrated that FGF4 is able to 

induce proliferation of mesenchymal cells during chick early valve leaflet formation both 

in vitro and in vivo. 

1.1.7.4. Molecular regulation of cardiac cushion and valve development 

The development of the heart valves require complex interactions between 

signalling molecules, transcription factors and structural proteins that regulate cushion 

formation, proliferation, expansion, differentiation, lineage diversification and leaflet 

remodelling.  The major signalling pathways involved in endocardial cushion formation 

and proliferation are reviewed below (Table 1.1). 

1.1.7.4.1. TGFβ family as mediator of EMT 

Members of the transforming growth factor beta (TGFβ) superfamily are key 

components in endocardial EMT (210;211).  TGFβ binding to the type I and II TGFβ 

receptors initiates a cascade of events that leads to the activation of the smad 

transcription factors in the nucleus.  In the mouse, TGFβ1 is expressed in the 

endocardium, TGFβ2 in the myocardium and endocardium of the AV and OFT regions 

and TGFβ3 is localized in the endocardium and mesenchymal cells after the onset of 

EMT (212;213).  The first line of evidence for a role of the TGFβ family in EMT came 

from studies where chick AV cushions cultured in vitro with exogenous TGFβ1 and 

TGFβ2 induced endocardial EMT (214).  In addition, inhibition of chick TGFβ signalling 

prevented endocardial EMT, indicating that TGFβ is a specific AV EMT inducer.  

Further studies then showed that TGFβ2 is required for endocardial cell activation 

whereas TGFβ3 is important for mesenchyme cell invasion (215;216).  Although in vitro 

studies support the notion that TGFβ is essential for EMT during endocardial cushion  
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Table 1. 1.  Loss of function phenotypes of genes involved in valve development
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formation, neither TGFβ1- nor TGFβ3-null mice show an apparent cardiac phenotype 

(217-219).  Only TGFβ2-null mice have specific cardiac defects in the valves and septa 

(220;221).  Thus, it appears that there is greater potential for functional redundancy of 

the TGFβ isoforms in mice.  Consistent with this, mice null for both TGFβ2 and TGFβ3 

have a more severe cardiac cushion phenotype than that observed in TGFβ2-mutant 

embryos alone (222). 

EMT of endocardial cushions also correlates both spatially and temporally with 

the expression of bone morphogenetic proteins (BMP).  During murine cardiogenesis, 

BMP2 and BMP4 are expressed in the AV and OFT myocardium, BMP6 transcripts are 

localized in the myocardium of the OFT region and endothelial/mesenchymal cells of 

the AV canal whereas BMP7 is only expressed in the myocardium of the AV and OFT 

regions (223-225).  BMP2- and BMP4-null mice die before cushion tissue formation, 

which complicates analysis of the role of BMPs in EMT (226;227).  Subsequent studies 

using in vitro collagen gel assay and conditional deletion of BMP2 in the myocardium 

indicated that BMP2 is essential for AV canal transition into cushion mesenchyme 

(133;134).  Of note, BMP2-deficient embryos had less cardiac jelly and insufficient AV 

cushion formation and had reduced TGFβ and Has2 expression in the heart, suggesting 

that BMP may be upstream of these EMT regulators.  As no OFT defects were 

observed in BMP2-deficient mice, other BMPs, such as BMP4 and BMP7, may be 

involved in the formation of the OFT cushion tissue.  Analysis of mice with cardiac-

specific deletion of BMP4 suggested that BMP4 functions in the proliferation and 

migration of neural crest cells as OFT septation was impaired in these embryos (65).  

Consistent with a role in septation, myocardial specific inactivation of BMP4 with TnTCre 

mice resulted in proper initiation of cushion formation but improper AV cushion 

septation (228).  Conventional inactivation of either BMP5, BMP6 or BMP7 alone does 

not produce cardiac defects, again suggesting functional redundancy between family 

members (229-232).  However, BMP5/BMP7 double mutant mice fail to form cardiac 

cushions whereas BMP6/BMP7 double mutant embryos have a marked delay in the 

formation of the OFT cushions, AV canal and chamber morphogenesis (233;234). 

Studies investigating the TGFβ receptors provide even more evidence that the 

TGFβ signalling is a major EMT inductive stimulus in cardiac cushions.  Using a 

blocking peptide against chick TβRII, Brown et al demonstrated that this receptor was 

required for EMT in chick AV canal cushion explants (235).  Targeted inactivation of 
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TβRII from the endothelium in mice resulted in defective remodelling of the cushion 

after the onset of EMT (236).  Further, endocardial explants from TβRII-mutant embryos 

resulted in defective EMT, similar to the phenotypes obtained with loss of TGFβ2 both 

in vitro and in vivo.  Similarly, blocking TβRIII signaling prevents EMT while forced 

expression of TβRIII in the ventricle endothelium results in EMT in regions where it 

does not normally take place (237).  Mouse embryos deficient for ALK2 or ALK3 die 

before cardiac development (238-240).  Myocardial-specific inactivation of ALK3 in mice 

results in embryonic lethality due to a defect in septation of the AV region (241).  

Interestingly, initial steps of endocardial cushion development are normal in both the AV 

canal and OFT, but cushions fail to fuse after EMT, suggesting that ALK3 is 

dispensable for EMT.  Further insight into the role of ALK3 in valve morphogenesis was 

obtained from mice with targeted deletion of ALK3 in the myocardium of the AV canal, 

which showed defective tricuspid and mitral valve morphogenesis and ventricular pre-

excitation similar to Ebstein’s anomaly in humans (242).  Studies of AV explants in 

chicks have shown that ALK2 is required and sufficient for EMT (243;244).  Similarly, 

endothelial-specific inactivation of ALK2 resulted in AV valve and septal defects as a 

result of failure of endocardial cells to transdifferentiate into mesenchyme in the AV 

canal (245). 

1.1.7.4.2. Notch in specification of EMT 

The Notch signalling pathway plays critical roles during mammalian cardiac 

development.  In mammals, the Notch family consists of 4 type I transmembrane 

receptors (Notch1 to 4) and 5 type I transmembrane ligands, Jagged1, Jagged2, Delta-

like (Dll)1, Dll3 and Dll4 (246;247).  Upon ligand binding, a protease complex containing 

gamma secretase cleaves the intracellular domain of Notch, which enters the nucleus 

and regulates gene expression through binding to the transcription factor RBPJκ.  

Murine Notch1, Notch2, Notch4, Jagged1 and Dll4 and the Notch downstream targets 

Hey1, Hey2 and HeyL are all expressed in the AV canal endocardium at the time of 

EMT (248-250).  In RBPJκ-null embryos, Notch1 activity is greatly reduced and valve 

development is severely compromised (251;252).  In addition, RBPJκ- and Notch1-

mutant embryos have a collapsed endocardium and lack mesenchymal cells, 

suggesting defective EMT.  Further analysis revealed that the endocardial cells 
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remained in close association and did not invade the cardiac jelly, as confirmed in the 

AV canal explants assay with RBPJκ- and Notch1-mutant embryos. 

The Hey transcription factors have also been linked to cardiac development.  

Hey2-null mice have several cardiac abnormalities including VSDs, pulmonary and 

tricuspid stenosis, mitral regurgitation AV canal defects and cardiac hypertrophy (253-

256).  Moreover, Hey1/2 double mutants die at E9.5 due to severe vascular defects 

similar to those seen in Jagged1-null and Notch1-null mice (257).  In addition, analysis 

of Hey2-deficient and Hey1/L-deficient embryos revealed a defect in AV canal EMT 

(248).  Although the EMT process was initiated normally, the migrating cells failed to 

successfully undergo complete mesenchymal transformation.  In Notch1-, Hey2- and 

Hey1/L-mutant embryos, the EMT defect was accompanied by decreased expression of 

matrix metalloproteinase 2, which is required for the migration and invasion of 

mesenchymal cells into the cardiac cushions (248;258). 

Further analysis of the RBPJκ and Notch1 mutant embryos indicated that Notch 

signalling mediates EMT via TGFβ2 signalling.  This is supported by the observation 

that TGFβ2, which is normally expressed in the AV and OFT myocardium, is 

downregulated in Notch1-null embryos (251).  Reduced expression of TGFβ2 in turn 

results in the absence of Slug, a close Snail gene family member that acts as a 

transcriptional repressor in the OFT and AV canal endocardium during the onset of 

EMT (259;260).  In the Notch1 null embryos, little or no Snail expression is observed, 

resulting in a failure of the endocardial cells to delaminate and cellularize the cardiac 

cushion (251).  Consistent with this, loss of Notch signalling in endothelial cells was 

associated with loss of Snail expression and inappropriate VE cadherin expression.  In 

endocardial cushions, Snail induces EMT through negative regulation of vascular 

endothelial (VE), resulting in decreased adhesion between endocardial cells and their 

delamination from the endocardial layer.  Similarly, Slug is able to repress VE-cadherin 

and other endothelial markers such as CD31 and Tie2 in endothelial cells (261).  

Overall, these studies led to the model in which high levels of Notch induce high levels 

of Dll4 in endocardial cells.  This in turn leads to activation of endocardial cells and the 

production of an endocardial cell-derived signal that induces the production of TGFβ2 in 

the myocardium lining the cushions.  TGFβ2 then signals back to the endocardium to 

activate Slug/Snail, which ultimately results in the reduction of VE-cadherin expression 



34 

 

 

and cell adhesiveness.  This allows the cells to delaminate from the endocardial layer 

and migrate into the cardiac jelly. 

1.1.7.4.3. Calcium/NFAT/VEGF in cushion formation 

Numerous reports have implicated the vascular endothelial growth factor (VEGF) 

in the activation, proliferation and eventual remodelling of the cushions cells into the 

valve leaflet.  VEGF was initially recognized as a vascular permeability factor and has 

been implicated in a wider array of processes including vasculogenesis and 

angiogenesis.  Vertebrates have six VEGF genes, with the most abundant and 

biologically active isoform being VEGF165.  VEGF ligands signal through two tyrosine 

kinase receptors, Flt1/VEGFR1 and Flk1/VEGFR2, which are expressed in the 

endocardium (262;263).  VEGF binding to Flk1 starts a series of events that leads to 

the activation of different intracellular signalling pathways, allowing VEGF to participate 

in many biological processes (262;264). 

Many studies have linked VEGF to endocardial cushion formation based on its 

expression pattern in the heart.  Early in cardiac development, VEGF protein is found in 

most endocardial cells of the primitive heart tube but at E9.5-10.5, its expression 

becomes more restricted to the AV canal and OFT and also to the myocardial cells 

underlying the cardiac cushions (265;266).  What is most striking about VEGF it that 

while it is necessary for the initiation of endocardial EMT, it subsequently terminates 

this process.  This dual activity seems to be strictly dose dependent and dynamically 

controlled in a narrowly defined temporal window.  Loss of a single allele of VEGF, or 

the VEGF164 isoform, results in early embryonic lethality due to underdeveloped 

endocardial cushions, chamber malformations and impaired vascular 

development(267;268).  Similarly, lowering VEGF levels at E9.5 by hyperglycemia or 

with a soluble Flt1 chimeric protein inhibits cushion formation and EMT (269).  These 

studies suggest that VEGF expression is required for the endocardial cells to undergo 

EMT.  However, when EMT reaches completion by E10.5, high levels of VEGF 

expression can be observed in the myocardium of the AV canal (266;270;271).  Several 

lines of evidence suggest that these high levels of VEGF prematurely terminate EMT in 

endocardial cushions.  Of note, a 2-3 fold increase in VEGF production results in mid-

gestation lethality, due to heart defects including overdeveloped trabeculae, thin 

compact myocardium, defective septation and abnormalities in coronary vessels and 
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OFT remodelling (271).  Selective myocardial overexpression of VEGF a day earlier 

(E9.5 versus E10.5) leads to septal and valve defects due to abnormal expansion of the 

endocardial cushions (266).  These studies were further confirmed by the authors by 

using the ex vivo explants assay where addition of VEGF to E9.5 AV explants almost 

completely inhibited EMT and collagen gel invasion.  Together, these studies show that 

VEGF signaling plays a critical role throughout endocardial cushion formation, in 

determining where the cushions will form to initiate EMT and in maintaining EMT to 

provide enough mesenchymal cells for the remodelling of the valves. 

NFATc1 (nuclear factor of activated T cells) is expressed in the endocardium of 

the heart tube but by E11.5, it becomes restricted to the regions of the future heart 

valves (272;273).  NFATc1 belongs to a family of calcium sensitive transcription factors 

whose transcriptional activity is dependent on dephosphorylation by calcineurin (274).  

NFATc1-null mice die at E14.5 from congestive heart failure due to lack of endocardial 

cushion growth and remodelling (272;273).  However, EMT occurred normally in 

NFATc1-null embryos, suggesting that NFATc1 is not required for EMT.  This 

observation is supported by the fact that NFATc1 became exported to the cytoplasm as 

the endocardial cells delaminated from the surface during EMT.  Further studies, using 

chick AV cushion explants, revealed that NFATc1 is required for endocardial cell 

proliferation and Cathepsin k gene expression, which localizes to the valve primordial 

during later remodelling stages (275).  Targeted inactivation of NFATc2, NFATc3 or 

NFATc4, which are expressed in the myocardium, does not impair valve development 

(276-279).  However, NFATc2;c3;c4 triple mutants have significant reduction in the 

number of mesenchymal cells in the AV canal and OFT at E10.5 and have a strong 

upregulation of VEGF expression (280).  The working model suggests that at E9.0, 

calcineurin/NFAT signalling in the AV canal myocardium inhibits VEGF production, 

thereby allowing initiation of EMT in response to TGFβ inductive signals.  At E10.5, the 

presence of high levels of VEGF in the AV myocardium leads to EMT termination, 

endocardial cell proliferation and NFATc1 activation in the endocardium, which will 

direct valve elongation and refinement.    

1.1.7.4.4. ErbB signalling and cardiac jelly 

The neuregulins (NGR) are a group of secreted glycoproteins that belong to the 

EGF family and signal through ErbB receptors, which are a family of tyrosine kinase 
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transmembrane receptors of the EGFR family.  The EGF ligands bind and activate the 

ErbB receptors, resulting in the formation of homodimers and heterodimers, subsequent 

autophosphorylation of the cytoplasmic domain and activation of downstream signalling 

pathways (206).  Several lines of evidence suggest that the ErbB signalling is required 

for heart development including endocardial cushion development.  NRG1 expression is 

restricted to the endocardium, erbB1 has a global expression pattern in embryonic 

valve tissue, erbB2 is expressed in embryonic hearts, erbB3 is restricted to endocardial 

and mesenchymal cells of the AV canal and erbB4 is located to the myocardium 

(145;147;208;281;282).  These distinct patterns of expression during cardiac 

morphogenesis suggest that these molecules may have different functions.  Gene 

targeting studies have revealed that mice lacking ErbB3 have severe defects in 

endocardial cushion formation resulting in blood reflux, likely contributing to the lethality 

observed at E13.5 (281).  In contrast, erbB4-null embryos die embryonically due to lack 

of trabeculation and do not have valve defects, suggesting that this molecule is not 

essential for valvulogenesis (147).  ErbB2 and NRG1 null embryos die at E10.5 due to 

lack of trabeculation and they also exhibit underdeveloped cushion and valve tissue, 

although not as severe as erbB3-null embryos (281).  These studies suggest that 

erbB2/erbB3 receptor heterodimers function in the early stages of valve development. 

Insight into the mechanism of erbB signalling in cushion development came from 

studies of the role of hyaluronan synthase 2 (Has2) in AV canal formation.  Has2-null 

mice die at E9.5 due to defects in vessel growth, pericardial edema and complete lack 

of cardiac jelly (192).  The authors showed that NRG was able to rescue the phenotype 

in AV ex vivo explants assays (282).  Has2 null embryos also showed reduced 

phosphorylation of erbB2 and erbB3 in the endocardial cushions, which was restored 

upon addition of HA to Has2-null explants tissues.  These studies suggest that HA in 

the cardiac jelly regulates erbB2/erbB3 signalling.  

1.1.8. Cardiac septation 

As discussed in the previous section (1.1.7), endocardial cushion formation is 

essential for valve development and it also plays major roles in septation of the four 

chambered heart.  The AV canal endocardial cushion is required for the septation of the 

atria in order to prevent flow of blood from one atrium to the other and failure to do so 

results in atrial septal defects or patent foramen ovale.  Similarly, the inferior AV 



37 

 

 

cushion is important for the septation of the ventricles and ventricular septal defects 

arise when this process is disturbed, resulting in mixing of blood between the left and 

right ventricular chambers.  Finally, the OFT cushions are required to divide the 

systemic and pulmonary blood streams.  Thus, defective OFT septation will result in 

conotruncal defects. 

1.1.8.1. Atrial septation 

The formation of the atrial septum occurs in the mouse between E10 and E13 

(283-285).  The first sign of atrial septation is the growth of the primary atrial septum 

(PAS) from the roof of the atrial compartment, which originates from myocardium near 

the venous pole (Figure 1.4).  As the PAS grows from the atrial roof, mesenchyme from 

the rim of the pulmonary pit and from the endocardium following EMT will coat the 

leading edge of the septum and is called the mesenchymal cap (283;286).  At this stage, 

communication between the left and right atria is still visible and is called the ostium 

primum or atrial foramen.  This small communication allows blood to flow through from 

the right atrium to the left atrium.  With further growth of the PAS towards the superior 

endocardial cushion of the AV canal, the atrial foramen gets smaller and then closes as 

the mesenchymal cap fuses with cushion tissue of the AV canal after E11.5.  

Concomitant with this, the AV endocardial cushions start to fuse, thus creating separate 

left and right AC connections (285;287).  Soon after closure, the mesenchymal cap 

becomes myocardialized by ingrowth of myocardial cells (283).  

Before the primary atrial foramen closes, the upper margin of the PAS breaks 

down or perforates, through programmed cell death, to maintain communication 

between the atria, which results in the formation of the secondary atrial foramen, or the 

ostium secundum (Figure 1.4) (283;285;288).  The secondary atrial septum, or septum 

secundum, then develops as an infolding of the dorsal atrial wall on the right side of the 

PAS.  However, it never closes and the opening left below its outer margin is known as 

the foramen ovale.  The remnant of the PAS remains as a flap valve leaflet over the 

foramen ovale.  Prior to birth, well oxygenated venous blood crosses from the right 

atrium into the left atrium via the foramen ovale for delivery to the systemic circulation.  

After birth, lung pressure drops and the pressure in the left atrium exceeds that of the 

right atrium.  This change in pressure leads to apposition of this valve leaflet and the 

secondary septum, followed by fusion and complete sealing of the foramen ovale (283).  
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Failure to complete this final step results in the formation of a patent foramen ovale 

(PFO). 

 

Nkx2.5 was one of the first genes identified in patients with non-syndromic 

human ASD type II.  Interestingly, the role of Nkx2.5 in atrial septal development was 

highlighted in animal models by the study of Biben and colleagues, where the 

morphogenesis of the atrial septum in mice heterozygous for Nkx2.5-null alleles was 

analyzed (289).  In contrast to humans, it was observed that only a small subset of 

Nkx2.5+/- mice displayed ASD type II.  However, other anomalies of the atrial septum 

such as PFO and atrial septal aneurysm were observed with high frequencies in these 

mice.  Mutations in Gata4 and Tbx5 have also been associated with ASDs in human 

and mouse models and both genes are expressed in the atria during atrial septation 

(35;290).  Of note, Tbx5del/+ mutant embryos displayed large atrial septal defects, which 

arises from an absence or reduction of the anterior portion of the septum (119).  

Moreover, recent studies from our lab demonstrated the importance of the endocardial 

pathway involving Tbx5, Gata4 and NOS3 in proper atrial septation (291).  Interestingly, 

mice lacking Tbx5 in endocardial cells developed ASD type II while Tbx5+/- mice 

displayed PFO.  It was previously demonstrated that GATA4 functionally interacts with 

Tbx5 and that disruption of this interaction leads to AVSDs (292).  Moreover, a mutation 

Figure 1. 4.  Atrial and ventricular septation 

Atrial septation starts with the migration of the septum primum (red) and formation of
the ostium primum (A), followed by apoptosis of the septum primum to created the
ostium secundum (C) and migration of the septum secundum (blue) (C, D).  In the final
step, both septum fuse, leaving a foramen ovale (D).  At around the same time,
ventricular septation begins with the growth of the muscular IVS towards the ECs (A-C).
Fusion of the IVS with the ECs closes the interventricular foramen and leads to the
formation of the membranous IVS.  EC: endocardial cushion; IVS: interventricular
septum. 
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in Gata4 that abolishes in vitro interactions with Tbx5 has been associated with human 

ASD.  To further test the hypothesis that GATA4 and Tbx5 genetically interact for 

proper development of the atrial septum,  the authors generated compound Gata4/Tbx5 

embryos where Tbx5 was only deleted in the endocardium (eTbx5).  As expected, 

haploinsufficiency of Gata4 and eTbx5 resulted in the presence of large ASDs.  

1.1.8.2. Ventricular septation 

Following cardiac looping and ventricular chamber expansion, there is a 

requirement for septation of the chambers to ensure unidirectional blood flow and to 

maintain different systemic (left) and pulmonary (right) circulations.  Septation of the left 

and right ventricular chambers occurs between E10.5 and E14.5 in mice.  The first 

evidence of septation of the left and right ventricles is the formation of the primary 

muscular interventricular septum, concomitant with differentiation of the cardiac 

chambers (Figure 1.4) (284;285).  Further septation of the ventricular chambers is 

dependent on the formation of endocardial cushions in the AV canal and OFT (293). 

Different hypothesis have been postulated for the cellular origin of the IVS and a 

certain degree of uncertainty still remains.  Retrospective clonal analyses suggest that 

the IVS has a dual origin with left and right contributions rather that arising from the left 

ventricular myocardium only (294;295).  Genetic fate mapping indicates that the IVS is 

derived from cells of the anterior heart field (45).  More recent studies have shown that 

the muscular portion of the IVS originates from the trabecular myocardium (296).  

These authors showed that the trabeculations of the right and left ventricular walls 

appose, adhere and fuse just above the interventricular groove.  This region becomes 

more compact as the superior boundary of all trabeculations has fused and results in 

the initial appearance of the primitive IVS.  The IVS has two principal components: an 

inlet portion that is located near the AV septum and valves and an outlet portion that is 

derived from the structures nearest the ventricular outflow.  Further development and 

growth of the IVS depends on the expansion of the ventricular cavities as well as 

trabecular branching (297).  As the IVS grows, an apical opening persists between the 

two ventricles, known as the interventricular foramen.  This opening allows mixing of 

oxygenated and poorly-oxygenated blood in the embryo and must be shut down for 

proper cardiac function.  Closure of the interventricular foramen is brought by fusion of 

the proximal part of the OFT and the AV endocardial cushions.  The last portion of the 
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septum to be formed is the membranous IVS, which forms from cushion tissue that fills 

the opening between the AV septum and the muscular septum. 

Insight of some of the factors that contribute to the IVS has arisen from studies 

of human patients that have VSDs.  Of note, Tbx5 has been implicated in the formation 

of the IVS in humans via studies on HOS patients, with the majority having VSDs and 

ASDs.  It has been proposed that the boundary of Tbx5 expression may contribute to 

the correct positioning of the IVS as evidenced by misexpression of Tbx5 in the 

ventricular region, which leads in a lack of septum formation resulting in a single 

ventricle (121).  In these embryos, the expression of Hand1/2 was dramatically changed.  

Interestingly, it was then demonstrated that in Hand1 knock-in mice, the outer curvature 

of the right and left ventricle was expanded and formation of the ventricular septum 

failed (298).  This suggest that Hand1 expression at the boundary region between the 

right and left ventricles may be required for the formation of the interventricular groove 

and septum.  More recently, it was shown that patterning of the IVS is regulated by 

Tbx5 and Sall4 (299).  Sall4 is a member of the Spalt-family of transcription factors and 

mutations in human Sall4 lead to Okihiro syndrome, which is characterized by VSDs 

(300).  In this study, Sall4 was shown to counteract the activation of the Nppa promoter 

by Tbx5.  Due to its predominant expression in the IVS and pronounced repressor 

effect in the IVS compared to the working myocardium, this suggest that a boundary of 

gene expression between the IVS and left ventricle is established.  As Tbx5 is able to 

positively regulate Sall4 expression in the heart, this in turn leads to increased 

expression of a co-repressor at the boundary region.   In addition, many of the genes 

involved in ventricular compaction also affect muscular IVS development.  This is the 

case for the RXRα knockout embryos, which exhibit a failure to undergo compaction 

and have a poorly formed ventricular septum leading to defects in ventricular septation 

(301).  Ventricular septation defects also arise in the erythropoietin knockout, which is 

also involved in ventricular compaction (302).  Similarly, mice lacking endothelin-1 have 

a high prevalence of VSDs (303).  In conclusion, ventricular septal defects are seen 

frequently in complete and/or conditional knockout models, possibly due to the action of 

transcription factors in chamber formation or endocardial cushion formation as well as 

combinatorial interactions between these genes in these processes.  
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1.1.8.3. Outflow tract septation 

Initially, the outflow tract (OFT) connects to the embryonic right ventricle with the 

aortic sac around E8 in the mouse.  Concomitant with the formation of the ventricular 

chambers during looping morphogenesis (E9-9.5), the OFT rapidly increases in length 

by addition of myocardial cells originating from the secondary heart field (38-40;42).  

Several signalling pathways, including Wnt, Shh, TGFβ and FGF have been 

shown to be important regulators of SHF cell behaviour.  Their roles in SHF proliferation, 

differentiation and recruitment to the heart tube are reviewed in section 1.1.1.  In 

addition, several studies have revealed the importance of a transcriptional network in 

SHF development.  A possible start point for this network is Islet1 (Isl1), which is  

present in the anterior lateral and pharyngeal mesoderm (44).  Lineage tracing studies 

have shown that  Isl1 descendants contribute the right ventricle and OFT as well as the 

atria and the left ventricle.  Isl1-/- embryos lack the OFT and right ventricle and the atrial 

posterior region is reduced, thus suggesting an important role of Isl1 in OFT 

development (44).  Moreover, mutant embryos displayed reduced expression of BMP 

and FGF, which could possibly explain the reduced proliferation observed as these 

growth factors are involved in cell proliferation and survival of cardiac progenitors.  A 

number of studies have established that other transcription factors, including Mef2c, 

Tbx20, Tbx1 and Hand2, are required in the transcriptional program controlling SHF 

development.  For instance, Mef2c-/- embryos have impaired OFT and right ventricle 

development, suggesting that Mef2C is required in SHF development (304).  

Furthermore, it has been shown that Mef2c is regulated by multiple enhancers that 

govern a subset of its endogenous expression.  One of these enhancers directs 

expression exclusively to the SHF and derivatives in the OFT and right ventricle (305).  

Interestingly, the function and activity of this enhancer is dependent on conserved Isl1 

and Gata4 binding sites, suggesting that Isl1 and GATA factors may cooperate to 

activate a transcriptional program in the SHF.  In addition, FoxH1 and Nkx2.5 can also 

regulate expression of the Mef2c gene in the SHF, although on a different enhancer 

(306).  This same study also demonstrated that FoxH1-mutant embryos form a primitive 

heart tube but fail to form the OFT and right ventricle, indicating that FoxH1 is essential 

for OFT development.  Thus, it appears that these pairs, Isl1/Gata4 and Foxh1/Nkx2.5, 

may be at the top of the hierarchical order controlling SHF development.   
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In addition to Mef2c, Isl1 is also able to activate an Nkx2.5 enhancer, together 

with Tbx20 and Gata4 (307).  A role for Tbx20 in OFT development has also been 

inferred based on the observation that partial knockdown of Tbx20, using RNA 

interference, results in impaired OFT and right ventricle development, leading to DORV, 

PTA and right ventricle hypoplasia (307).  Moreover, mutations in Tbx20 results in a 

hypoplastic, unlooped heart that has an hourglass appearance (140;142;307).  The 

interpretation of this phenotype varies but it seems that Tbx20 does not primarily 

function in the SHF; rather, it is thought that the observed hypoplasia is due to collapse 

of SHF function.  Tbx1, another member of the T-box family, also plays critical roles in 

OFT development in humans and mice.  Indeed, Tbx1 mesodermal ablation 

recapitulates the OFT abnormalities characteristic of the Tbx1 haploinsufficiency 

phenotype, suggesting that mesodermal Tbx1 is necessary and sufficient to support 

normal septation, growth and alignment of the OFT (308).  Recently, Srivastava and 

colleagues identified and enhancer from the Tbx1 gene that is sufficient to direct 

expression to the SHF; this enhancer is activated by Fox2A, FoxC1 and Fox2C through 

consensus Forkhead-binding sites in the enhancer (309).  Moreover, Tbx1 is implicated 

in the regulation of Fgf8 and Fgf10, which play important roles in proliferation of the 

SHF (61;310).  Of note, Fgf8-/- embryos lack and OFT and right ventricle and have 

reduced expression of Isl1 in the pharyngeal mesoderm, suggesting that FGF8 plays a 

key role in the induction of cardiac progenitors in the SHF (61).  Thus, FGF8 is 

implicated in the hierarchy for SHF development, possibly upstream of Isl1.  Taken 

together, these observations suggest that a very specific genetic network regulates 

OFT development.  

During lengthening of the OFT, two different regions can be discerned, a 

proximal (conus) and a distal portion, which are separated by a distinct bend (311;312).  

Endocardial cushion formation is essential, not only for aortic and pulmonary valve 

development, but also for the septation of the OFT into a systemic and pulmonary 

circulation, which ensure adequate oxygenated blood circulation from the aorta to the 

rest of the body and return of non-oxygenated blood to the lungs through the pulmonary 

artery.  The endocardial cushions are bulges of cardiac jelly populated by a mixture of 

mesenchymal cells that migrate into the OFT from the pharyngeal area and by 

mesenchymal cells generated by EMT of endocardial cells.  Furthermore, these 

endocardial cushions, which can be distinguished into a septal and parietal cushion, are 
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continuous throughout the OFT, spiralling around one another.  At around the same 

time, neural-crest derived mesenchymal cells descend from the 3rd, 4th and 6th branchial 

arches to the distal endocardial cushions and collect as condensed rods of 

mesenchyme in the distal OFT cushions but do not extend into the conus although a 

cluster of neural crest cells populate the conal cushions (Figure 1.5) (313;314).  These 

prongs of condensed mesenchyme are connected to the aortic sac by the 4th and 6th 

arch arteries.  Together with tissue in the aortic sac, they form the aorticopulmonary 

septation complex, which has been suggested to play key roles during initial separation 

of the single outflow vessel to form the ascending aorta and pulmonary trunk (311).  

The next important step in development is fusion of the septal and parietal cushions, 

which divides the distal OFT into the intrapericardial components of the aorta and 

pulmonary trunk (312;315). In this way, the aortic blood flow within the OFT exits via the 

arteries of the 4th aortic arches while the pulmonary flow exits via the 6th arch arteries. 

 

After the rods of condensed mesenchyme have triggered the onset of fusion in 

the distal portion of the OFT, the proximal outflow septum closes in a zipper-like fashion 

Figure 1. 5.  Schematic representation of neural crest during septation of
the OFT   

(A) Representation of the condensed  neural crest mesenchyme (purple) of the
aorticopulmonary septation complex.  (B)  Septation of the distal and middle
portions of the OFT by the aorticopulmonary septation complex.  (C)  Septation
of the proximal part of the OFT, which leaves a seam of cardiac neural crest
cells.  OFT: outflow tract.  Adapted from Hutson M and Kirby M, Heart
development and regeneration, 2010: 441-462. 
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from distal to proximal towards the ventricles.  In addition to the cushions that have 

fused to separate the distal portion of the proximal OFT into prospective aortic and 

pulmonary components, two further intercalated cushions have grown in the common 

OFT (284;312).  One of the intercalated cushions, positioned anteriorly, forms a leaflet 

and sinus of the aortic valve whereas the posterior intercalated cushion forms the 

comparable components of the pulmonary valve.  The other two leaflets of the 

semilunar valves are derived from the cushions that have fused to separate this distal 

part of the proximal OFT.  The proximal cushions within the proximal OFT eventually 

close concurrently with invasion of the cushions by myocardium (316;317).  This 

process is referred to as myocardilization and is the result of invasion of the endocardial 

cushion by cardiac myocytes existing within the walls of the proximal OFT; this causes 

the cushions to bulge and meet into the lumen.  When these bulging cushions touch, 

the endocardium covering the proximal cushions breaks down, allowing mixing of the 

underlying mesenchyme and myocardium, which brings about fusion of the opposing 

cushions to form a septum within the ventricular OFT.  After this process is complete, 

the mesenchyme that formed the endocardial cushions is remodelled into the aortic and 

pulmonary valves. 

Cardiac neural crest (CNC) cells are essential for proper septation of the OFT.  

Much of what we know today about the role of CNC cells in heart development has 

been learned from the chick ablation model (85;314;315;318).  Ablation of the CNC 

cells leads to a number of cardiovascular phenotypes including defective development 

of the OFT, abnormal patterning of the great arteries and abnormal myocardial function.  

The morphological defects associated with defective OFT development are overriding 

aorta and complete absence of septation leading to persistent truncus arteriosus (PTA).  

One of the earliest defects observed in the CNC cell ablation is abnormal heart looping.  

This occurs before arrival of CNC cells into the OFT and thus, may explain conotruncal 

defects such as DORV and transposition of the great arteries TGA, which result from 

defective rotation of the OFT.  Recent studies have revealed that neural crest cells are 

able to modulate the SHF.  Interestingly, Waldo et al demonstrated that cells of the SHF 

failed to join the proximal OFT following ablation of neural crest cells leading to a 

shorter OFT, thus confirming the previous hypothesis made by the same group 

(42;85;319).  Thus, CNC cells seem to exert an important influence on septation of the 

OFT and on its rotation as well, through modulation of the SHF. 
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Targeted and/or conditional deletion of several genes in mice is able to 

recapitulate all or portions of the neural crest ablation phenotype in chick.  Some of 

these genes are directly expressed in CNC cells whereas others are expressed in the 

SHF and can regulate NC cells migration, proliferation or survival (Table 1.2) (320-328).  

For example, Splotch mutation encoded by the Pax3 gene, which is highly expressed in 

the neural tube and migrating NC cells mimics NC ablation.  Splotch mutants die by 

E14.5 because of myocardial dysfunction and have conotruncal defects including PTA, 

DORV and abnormal patterning of aortic arch arteries (329;330).  Moreover, inactivation 

of GATA6 in vascular smooth muscle (VSM) cells or neural crest cells leads to 

interrupted aortic arch and PTA, again recapitulating portions of the NC cell deficiency 

(331).  Interestingly, GATA6 was shown to regulate Sema3C in the OFT and VSM cells 

and a similar cardiac phenotype is observed in Sema3C null mouse embryos (331;332).  

On the other hand, neural crest involvement is well established in DiGeorge syndrome 

characterized by PTA, interrupted aortic arch, absent or hypoplastic thymus and 

craniofacial dysmorphology (333;334).  The gene responsible for this syndrome maps 

to chromosome 22, in a region that encodes Tbx1.  However, Tbx1 is expressed in the 

pharyngeal endoderm and SHF mesenchyme but not in the CNC cells (335).  It has 

been suggested that Tbx1 may be able to regulate Fgf8 in the SHF, which affects some 

aspects of neural crest development; and this in turn, may explain the OFT defects 

observed in Tbx1 deficient mice. 

1.2. Origin and fate of cardiac lineages 

The myocardial, endocardial, epicardial and cardiac neural crest cells perform 

specialized functions that are required for proper functioning and integrity of the heart.  

Eventhough the hypothesis of a common ancestral origin for these cells is still debated, 

studies have demonstrated that they originate from the cardiac mesoderm, 

proepicardial  organ and neural crest cells (Figure 1.6).  In this section, I shall discuss 

the origin and function of the cell types that make up a heart. 

1.2.1. Myocardial lineage 

The cardiac progenitors are among the first lineages to be established in the 

embryo.  Tremendous efforts have been directed towards identifying the origin and 

location of the cardiac progenitors.  Fate mapping as well as lineage tracing studies 

have revealed that the cardiomyocyte progenitors are located in the precardiac  
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Table 1. 2.  Genes involved in outflow tract septation 
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Figure 1. 6.  Origin of cardiac lineages 

The figure shows that cardiac cell types arise through the linage diversification of the 
embryonic three precursor pools in the mouse heart: the cardiac mesoderm, neural 
crest or proepicardium.  Ao: aorta; AS: atrial septum; HF: heart fields; LA: left atrium; LV: 
left ventricle; ML: midline; OFT: outflow tract; PhA: pharyngeal arches; PT: pulmonary 
trunk RA: right atrium; RV: right ventricle; SAN: sinoatrial node; VS: ventricular septum.  
Adapted from Laugwitz KL et al., Development.  2008, 135: 193-205. 
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mesoderm (336).  In addition, several studies have provided evidence that the 

endocardial, myocardial and epicardial lineages are derived from a multipotent 

progenitor cell, which is covered more in details in section 1.2.2.2 and 1.2.3.1 (337-340). 

The cardiomyocytes are striated muscle cells that are composed of numerous 

myofilaments that run parallel along the axis of the cells and provide the basis of the 

cell’s ability to contract.  In the mouse, cardiac actins and myosins are first visible at 

E7.5-8.0, right before the first contractions of the heart tube (341;342).  

Transplantation experiments in both chick and mouse embryos have revealed 

that the cardiogenic region contains inductive signals that promote myocardial 

differentiation (1;343).  With the use of mouse models and culture system, including 

embryonic stem cells, P19 cells and rat cardiomyocytes, several growth factors like 

BMPs and FGFs, have been found to be required for cardiac differentiation.  Thus, 

different signalling pathways will transmit inductive signals to the cardiac mesoderm, 

leading to the induction of numerous transcription factors including the transcription 

factors Nkx2.5, Gata4, the T-box factors, SRF, Mef2c, Hand1 and Hand2 (12;72).  

Interestingly, BMPs have been implicated in cardiomyocyte differentiation.  This is due, 

in part, to the observation that in zebrafish, Bmp2b mutants have reduced or absent 

expression of Nkx2.5, which is present in the cardiac mesoderm (344).  Moreover, in 

Xenopus, blocking Bmp signalling with a dominant negative ALK3, a truncated BMP 

receptor or an inhibitory smad6, prevents progression to a state of terminal 

differentiation rather than blocking expression of cardiac markers (17;345).  It was also 

demonstrated that activation of Bmp signalling in mouse ES cells as well as P19 cells is 

able to promote cardiac differentiation and expression of cardiac transcription factors 

(346;347).  There is also accumulating evidence that FGF signalling plays a role in 

differentiation of cardiac lineages.  For example, mouse ES cells lacking FGFR1 have 

downregulation of mesodermal genes, leading to defective cardiomyocyte differentiation 

(348).  It was also shown, in differentiating mouse EC cells, that the concomitant 

addition of Bmp2 and FGF2 to the culture media enhances the expression of several 

cardiac marker genes including Nkx2.5, Mef2C, Gata4 and αMHC (349).   

1.2.2. Endocardial lineage 

The endocardium is the endothelial, innermost cell layer of the linear heart tube.  

The endocardium develops from endothelial cells that form bilaterally paired tubes by 
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the process of vasculogenesis.  Early in development, these bilateral tubes fuse in the 

midline to form a single tubular cardiac compartment, which lies beneath the foregut 

endoderm and is covered ventrally by splanchnic mesoderm.  The endocardium plays 

essential functions during heart development.  As discusses earlier, endocardium-

myocardium interactions are important for the formation of trabecular myocardium and 

for differentiation of myocytes into the Purkinje fibers of the CCS (350;351).  

Furthermore, endocardial cells lining specific regions will undergo EMT to form 

endocardial cushions at the AV canal and OFT (216;352).  These cushions will then 

give rise to the atrioventricular and semilunar valves, the membranous portion of the 

IVS, to the atrial septum and to the division of the OFT into separate aortic and 

pulmonary trunks (216;353).  Despite all of these essential functions, much remains to 

be learned about the origin and the development of the endocardium. 

1.2.2.1. Origin of the endocardium 

Whether endocardium and myocardium share a common progenitor in the 

cardiac mesoderm remains controversial; so far, two models have been proposed.  In 

the first model it is believed that the cardiogenic precursors are prespecified prior to 

their migration through the primitive streak.  Consistent with this, retroviral single cell 

tagging and tracing experiments have demonstrated that individual labelled cells give 

rise to a clone consisting of myocardium or endocardium but never both (354-357).  

Similarly, lineage tracing experiments in zebrafish demonstrated that the individual 

labelled cells in the heart field never contribute to both myocardium and endocardium 

(358).  Moreover, myocardial precursors are spread throughout the heart field whereas 

the endocardial progenitors are restricted to the ventral marginal region.  These studies 

suggest that the separation of these two lineages occurs at the blastula stage, prior to 

formation of the mesoderm.  

In contrast, there is growing evidence that endocardium and myocardium are 

derived from a common multipotent mesodermal progenitor.  Consistent with this, fate-

mapping studies in mice indicate that cells expressing Mesp1 and Flk1 contribute to 

both endocardium and myocardium (359;360).  Furthermore, Cre-mediated lineage 

tracing of Isl1+ and Nkx2.5+ cardiac populations, which are first apparent in the cardiac 

crescent, suggest that they contribute to both myocardial and endocardial cells as well 

as aortic endothelium (44;361).  Similarly, when the Cre is expressed under the control 
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of the SHF-specific regulatory elements from the Mef2c gene, both endocardial and 

myocardial lineages are labelled (45).  Using an NFATc1-nuc-lacZ reporter mouse, 

Misfeldt et al showed that the endocardium is specified as a cardiac cell lineage 

independent from other vascular populations.  They also established that endocardial 

cells are derived from an Flk1+ multipotent cardiovascular progenitor, providing further 

evidence that endocardium and myocardium are derived from a common precursor 

(362).  Interestingly, it was shown that the QCE-6 cell line, which is derived from  

gastrulating explants of quail embryos, can differentiate into both endocardial and 

myocardial cells, suggesting that a common endocardial/myocardial precursor also 

exists in chicks (363). 

1.2.2.2. Endocardial differentiation 

The initial step in endocardial formation is the delamination of the endothelial 

precursor cells from the precardiac mesoderm.  Initiation of endocardial precursor cell 

formation from the mesoderm  was shown to be mediated by TGFβ, but not VEFG 

(364).  TGFβ1/2/3 were able to stimulate endocardial cell formation as evidenced by the 

increased invasiveness of mesenchymal cells from mesodermal explants.  However, 

VEGF did not induce mesenchymal cell formation but rather stimulated a monolayer of 

endothelial cells to grow out from the precardiac mesoderm (364). 

Zebrafish GATA5 plays a major role in endocardial differentiation as evidenced 

in faust mutants, which maps to the Gata5 locus producing a truncated protein that acts 

as a dominant negative transcriptional regulator (33;365).  In the mouse, Gata5 is 

largely restricted to endocardial cells, which suggests that it may be required for specific 

aspects of endocardial development (366).  Further studies from our lab indicate that 

Gata5 is induced concomitant with endocardial differentiation and that blocking Gata5 

with antisense RNA blocked the ability to form endocardial cells (367).  These studies 

were done using a mesodermal cell line derived from the hearts of polyomavirus large 

T-antigen transgenic mice that can differentiate into endothelial cells upon retinoic acid 

treatment (368).  Using this model system, our group was able to show that 

differentiation of these cells leads to downregulation of early myocardial markers 

including Gata4, Twist and Tbx20 (367).  Concomitant with this, the endocardial 

phenotype appeared and expression of Gata5, Flt1 and NFATc1 was induced.  

Furthermore, it was demonstrated that Gata5 is induced prior to other differentiation 
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markers including Tie2, ErbB3 and connexin 37.  NFATc1 is essential for  endocardial 

development and is expressed specifically in the endocardium, starting at the time of 

initiation of differentiation at E7.5 (272).  The Tie2 receptor is also important for 

endocardial development as evidenced by the endocardial defects in Tie2-/- embryos 

(369).  As the endocardial cells become terminally differentiated, other markers 

including endothelin-1, tenascin X, epicardin and Epas1 are upregulated (367).  

However, our understanding of endocardial development from the precardiac 

mesoderm still remains obscure and further studies will be required to shed light on this 

process. 

1.2.3. Epicardial lineage 

Prior to E9.5, the heart is composed of two layers, an outer myocardial and an 

inner endocardial layer.  At E10.5, the third layer, the epicardium, migrates towards the 

developing heart and envelops the myocardium.  The epicardium consists of a single 

layer of flat mesothelium connected to the myocardium by subepicardial connective 

tissue.  Lineage tracing studies in avians have demonstrated that the epicardium 

originates from an extracardiac mesodermal cell population, called the proepicardium 

(370).  The proepicardium protrudes from the pericardial mesothelium covering the 

sinus venosus in the direction of the tubular, looped heart.  In avians, the proepicardial 

organ develops multiple finger-like protrusions, or vili, into the pericardial coelomic 

cavity whereas studies in fish and mouse suggest that the proepicardium generates 

short protrusions or blebs that transform into proepicardium cysts (371;372). 

1.2.3.1. Common progenitor with myocardium 

The epicardium contributes the majority of nonmyocardial cells in the heart.  In 

the last decade, it has been reported that proepicardial cells are derived from Nkx2.5-

expressing progenitors and contribute to the formation of cardiomyocytes (373-375).  

Consistent with this, explanted proepicardial cells can spontaneously differentiate into 

beating cardiomyocytes in the presence of BMPs and FGFs (376;377).  These 

observations suggested that the porepicardium is derived from the cardiac mesoderm 

rather than the septum transversum.  More recently, it was demonstrated that the SHF 

can contribute to both the myocardium and the proepicardium (378;379).  In this study, 

a small group of cells expressing Tbx18 in the splanchnic mesoderm were labelled 1 

day before induction of proepicardium formation.  Twenty four hours later, expression 
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was observed both in the inflow tract and in the proepicardial organ.  FGF signalling via 

Mek1/2 was required to separate the epicardial lineage from the precardiac mesoderm 

whereas Bmp signalling was important for myocardial differentiation. 

1.2.3.2. Development of epicardial cells 

The proepicardial organ become morphogenetically identifiable by E8.5.  

Between E9.5 and E10.5, the majority of proepicardium vesicular cells aggregate and 

are released into the epicardial cavity (380;381).  These vesicles then migrate and 

attach to the myocardial surface, where they contribute to the formation of the primitive 

epicardium.  During proepicardium extension, a subpopulation of proepicardium and 

epicardial cells undergo an epithelial-to-mesenchymal transformation and subsequently 

migrate into the subepicardial space (381).  Epicardial EMT, which occurs between 

E11.5 and E12.5 in the mouse, is observed at the AV junction, in the ventricular 

epicardium, and at the junction between the ventricles and OFT but not in the atrial 

epicardium (382-384).  These transformed cells, termed epicardium-derived cells 

(EPDCs), then migrate into the myocardium and differentiate into a variety of 

myocardial cell types, including subepicardial mesenchyme, interstitial fibroblasts, 

coronary endothelium, coronary smooth muscles and hemangioblast.  In chick embryos, 

EPDCs will invade the myocardium in a spatio-temporal fashion, starting at the inner 

curvature at HH19, followed by the AV canal, atria, ventricles HH23/24 and finally will 

invade the OFT at HH30 (381;385).  Once within the myocardium, the EPDCs will 

migrate to their destination.   

Factors that have been shown to be involved in regulation of epicardial EMT are 

transcription factors and growth factors Slug and Snail, Ets-1 and Ets-2, the Wilms 

tumor gene WT-1, the adhesion molecules E-cadherin, α4 integrin, FGF, TGFβ, PDGF 

and VEGF (386-395).  For example, inhibition of Ets-1 and Ets-2 by using antisense 

oligonucleotides was shown to result in loss of subepicardial mesenchyme formation 

and to prevent formation of coronary vessels (391).  In addition, Fgf2 and VEGF but not 

PDGF-AA, PDGF-AB or Fgf1 were shown to induce EMT of a rat proepicardial cell line 

(396).  These observations are consistent with the idea that epicardial EMT is regulated 

by paracrine signals emanating from the myocardium. 
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1.2.3.3. Epicardium and myocardial patterning 

The epicardium secretes mitogenic factors that are required for normal  compact 

zone myocardial growth and architecture (397).  In avians embryos, in which ablation or 

delayed formation of the epicardium was observed, the ventricles had persistent thin 

walls (389;398;399).  Moreover, removal of the epicardium in chick hearts resulted in 

decreased cardiomyocyte proliferation (400).  A number of mouse gene mutations have 

been shown to result in poorly-formed and thin walled ventricles, which eventually 

leading to embryonic lethality by E14 (Table 1.3) (401-405).  This highly suggests that 

formation of the compact zone is critical for embryo survival.  

It should be noted that the thin walled ventricle phenotype does not necessarily 

imply that the gene mutated in that study functions in the epicardium or myocardium.  

However, there are some clear examples where genes play a primary role in 

epicardium-myocardium interactions.  Interestingly, WT1 is expressed in the epicardium, 

in the subepicardial mesenchyme and in migratory epicardium-derived cells but is lost 

in differentiated EDPCs (389;390).  In mouse embryos lacking WT1, the proepicardium 

does not form properly, resulting in lack of subepicardial mesenchymal cells and 

formation of a thin wall ventricle.  Embryos die from heart failure possibly due to 

accumulation of blood in the pericardial cavity (406).  Several WT1 target genes have 

been identified, including E-cadherin, α-integrin 4, erythropoietin and the neutrophin 

receptor TrkB (407-410).  These genes have all been associated with epicardium 

formation, epicardial cell differentiation or epicardium-myocardium interactions, which 

establishes WT1 as an important regulator of epicardium formation. 

In addition, it has been demonstrated that RA signalling is required within the 

epicardium for proliferation of the myocardium.  Ablation of the RA receptor gene RXRα 

or epicardial-specific deletion of RXRα leads to severe hypoplasia of the compact zone 

(301;411).  Similarly, loss of Raldh2 in mice leads to profound myocardial hypoplasia 

(412).  RA signalling has been shown to induce expression of the FGFs in the 

epicardium (400;413).  Fgf9 is expressed in the epicardium and endocardium at E10.5 

in mice but by E12.5, its expression becomes restricted to the endocardium (414).  

Similar expression patterns are seen with Fgf16 and Fgf20 (414).  The FGF signal is 

received by the FGF receptors (FGFR) 1 and 2, which are expressed in the 

myocardium.  FGF signalling, through FGFR1 and FGFR2, was shown to induce  
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Table 1. 3.  Phenotypes of genes associated with thin ventricular walls 
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cardiomyocyte proliferation (399;414).  Furthermore, in the absence of RA and FGF 

signalling, the myocardial cells undergo premature differentiation and fail to proliferate 

(414).  Thus, these observations indicate that reciprocal FGF signalling between the 

epicardium-myocardium is important for formation of the compact zone. 

1.2.3.4. Development of the vasculature 

The formation of functional coronary vessels over the heart is essential for 

normal cardiac development.  Development of the coronary vasculature has been well-

described in avians (415-417).  These studies demonstrated that coronary vessel 

development occurs in a wave-like pattern, originating from the atrial-ventricular groove 

and going towards the ventricular apex.  Coronary vessel development starts as a 

subset of epicardial cells undergo EMT at stage 26 in chick and E11.5 in mouse (384).  

This process leads to the formation of mesenchymal cells in the subepicardial space 

between the epicardium and myocardium.  These endothelial-derived cells self-

assemble to form vascular channels that are later ensheathed by smooth muscle cells 

and perivascular fibroblasts.  The vascular plexus then grows by angiogenesis to 

provide circulation on a one-to-one basis by covering the heart.  Gene targeting studies 

have demonstrated that the FGF and Hedgehog signalling pathways are required for 

the formation of the coronary vasculature, mainly by regulating expression of VEGF and 

angiopoietins (418).  Lavine et al showed that FGF signaling triggers a wave of 

hedgehog activation that progresses from the atrial-ventricular groove (E12.5) to the 

apex of the ventricles (E13.5) (418).  Hedgehog signals from the epicardium, in turn, 

signal to cardiomyocytes and perivascular mesenchymal cells to induce expression of 

Vegf-A, Vegf-B, Vegf-C and Ang2, resulting in the formation of the coronary plexus.  

The last step in coronary vessel development is ingrowth of small vascular channels 

into the base of the aorta, which coalesce to form a single coronary stems in the left 

and right coronary sinuses (419;420). 

1.2.4. Cardiac neural crest linage 

The neural crest cells are multipotent cells that originate from the neuroepithelium 

(384).  Crest cells are divided into cranial and trunk, based on axial origin.  They 

migrate widely throughout the embryo during development.  A sub-region of the cranial 

neural crest has been called the cardiac neural crest (CNC) due to their importance 

during heart development (314;421;422).  These cells originate from the neural plate 
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between the axial boundaries of the otic placode and somite 3 and migrate into the 3rd, 

4th and 6th branchial arteries.  As mentioned earlier, CNC cells invade the heart through 

the arterial and venous poles, where they give rise to the parasympathetic innervations 

to the heart, the smooth muscle layer of the great arteries, the endocardial cushions of 

the OFT and the aorticopulmonary septum that divides the OFT into a systemic and 

pulmonary circulation (see section 1.1.8.3) (423;424).   

In addition to contributing to the septation of the OFT, CNC cells are required for 

patterning and remodelling of the great vessels.  This is evidenced by the lack of 

variable combination of the arch arteries derived from the branchial arches in 

consequence to the ablation of NCC in chick embryos (318).  Neural crest-specific 

deletion of PDGFRα leads to normal induction and migration of CNC cells, however, the 

3rd, 4th and 6th are arteries were dilated or reduced in diameter compared to controls 

(425).  Conditional ablation of both PDGFRα/β in the neural crest gave similar results 

with complete penetrance in addition to reduced migration of the NC cells into the OFT 

(426), suggesting cooperative interactions between these two isoforms in recruitment of 

NC cells to the OFT. 

1.3. Congenital Heart disease 

Congenital heart disease (CHD) refers to any malformation of the cardiovascular 

system that is present near or at the time of birth (Figure 1.7) (427-438).  In human, 

CHD is the most common developmental defect, representing an estimated 25% of all 

congenital malformations.  CHD is estimated to occur at a prevalence of 4-50 per 1000 

live births and is believed to be the leading cause of death in the first year of life (439).  

Several epidemiologic studies have established that CHD is a heritable trait.  Even 

though tremendous advances have been made in the diagnosis and treatment of CHD 

over the years, it still carried significant mortality and morbidity.  Isolated cases of CHD 

are not uncommon but most CHDs are associated with genetic syndromes such as 

DiGeorge, Williams-Beuren, Alagille, Noonan and Holt-Oram syndromes (439).  CHD 

has an increased risk of recurrence within families; among affected relatives, the 

cardiac phenotypes are usually different and occur with variable penetrance and 

expressivity, likely indicating that modifying factors including genetic and environmental, 

influence the phenotype (440).   
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Figure 1. 7.  Cardiac anomalies associated with transcription factor mutations in
human  

ASD: atrial septal defect; AV: atrioventricular; AVSD: atrioventricular septal defect;
PDA: patent ductus arteriosus; PS: pulmonary stenosis; PTA: persistent truncus
arteriosus; TGA: transposition of the great arteries; TOF: tetralogy of Fallot. 
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Despite the significant efforts of the past decade to elucidate the genetic basis of 

heart defects, the causative genes for the majority of CHD remain unidentified.  Several 

modifying factors, including both genetic, environmental factors and teratogens, have 

been shown to influence the phenotype (440).  Why is there so little information 

regarding the genetic basis?  Cardiac development is a complex integration of various 

pathways, structures, cell types, gene networks and regulatory components.  However, 

in the past decade, tremendous progress has been made in understanding and 

elucidating the molecular events that govern cardiac morphogenesis.  With the help of 

several model system such as frogs, zebrafish, mice and chick, it has been possible to 

identify a plethora of genes required for normal heart development and dissect the 

hierarchy of these genetic programs. 

The majority of cardiac malformations affect the valves and septa, which originate 

from endocardial cells.  These include valvar abnormalities, abnormal communications 

between the chambers (atrial septal and ventricular septal defects) and endocardial 

cushion defects.  Other types of CHDs include conduction defects, hypoplastic 

ventricles and defects of the myocardium.   

1.3.1. Bicuspid aortic valve 

Bicuspid aortic valve (BAV) is the most common CHD, affecting 1-2% of the 

population, with a 2:1 ratio of males to females (441;442).  It may be silent during life, 

however, at least one third of individuals with BAV will develop serious complications, 

including valvular stenosis, regurgitation, infective endocarditis and dilation, dissection 

or rupture of the aorta (442;443).  It is estimated that 54% of all valve replacement 

surgeries on people over the age of 50 years can be attributed to BAV disease (444).  

Eventhough these statistics are astounding, BAV may still be grossly underestimated as 

it may remain asymptomatic in childhood and even into adulthood and thus, no imaging 

studies are ordered.  Furthermore, populations studies have suggested that BAV may 

be responsible for more mortality and morbidity than any other CHD combined (445).  

BAVs may appear as an isolated defect or it can be associated with other cardiac 

congenital malformations, in particular coarctation of the aorta, interruption of the aortic 

arch and ventricular septal defects (446).  Genetic studies have established that BAV is 

a heritable trait with autosomal dominance and incomplete penetrance (447).  However, 

the mechanisms underlying the formation of BAV remain poorly understood.   
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The leaflets of the aortic valve develop from the endocardial cushion tissue of 

the OFT.  In a normal individual, the aortic valve possesses three leaflets whereas 

patients with BAVs have only two leaflets (Figure 1.8).  In human, the anatomy of the 

BAV usually includes leaflets (cusps) of unequal size due to the fusion of two cusps 

leading to one larger cusp, the presence of a central raphe (usually present in the 

middle of the greater cusp) and smooth cusp margins (441).  The raphe actually 

represents the location where the two cusps fused during valvuloseptal development.  

Furthermore, leaflet orientation varies widely among patients, with fusion of the right 

and left (R-L) coronary leaflet being more common, occurring in 59% of cases whereas 

union of the right and noncoronary (R-N) leaflet occurs in 37% of BAV cases (448).  

Interestingly, a more recent study carried by Fernandes S et al showed that the R-N 

BAV is associated with a greater risk and more rapid progression of having moderate to 

severe aortic stenosis and aortic regurgitation and a shorter time to valve intervention 

(449). 

In animal models, the morphology of the BAV has been unraveled using Syrian 

hamster, which have a natural incidence of BAV when inbred.  It was discovered that 

Figure 1. 8.  Bicuspid aortic valve 

Schematic representation of a normal aortic valve and a bicuspid aortic valve
(BAV).  The aortic valve allows oxygen-rich blood to flow from the left
ventricle of the heart to the rest of the body.  The BAV develops during the
early weeks of pregnancy from abnormal valvular development. 
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fusion of the left and right valve cushions at the beginning of valvulogenesis is the key 

factor in the formation of BAV, suggesting that the morphology is predetermined prior to 

the end of valve development (450).  To gain more insight into the etiology of BAV, 

Fernandez B et al studied the eNOS null mice and Syrian hamsters (451).  In the 

eNOS-/- mice, the BAV occurred from the fusion of the right and noncoronary leaflet (R-

N) and is thought to be the result of defective development of the OFT endocardial 

cushions prior to OFT septation.  In Syrian hamsters, the fusions occurred from the right 

and left coronary leaflet (R-L), which is thought to results from anomalous septation of 

the proximal portion of the OFT, possibly caused by wrong behavior of neural crest cells.  

Thus, at least in animal models, the R-L and R-N BAVs seems to have different 

etiological entities.  

Based on numerous studies performed on BAV patients and their first-degree 

relative, it has been demonstrated that this disease follows an autosomal dominant 

inheritance with reduced penetrance (452).  Although some cases of BAV are sporadic, 

familial clusters have been identified with an incidence of 10-17% in first-degree relative, 

which suggests that a genetic component is involved.  This is further supported by 

comparing the incidence of BAV in first-degree relatives with the general population (1-

2%).  As the aortic valve originates from the endocardial cushions of the OFT, it is 

strongly accepted that a mutation in a gene involved in one or more aspects of 

endocardial cushion formation may be responsible for this disease.  So far, only 

mutations in the Notch1 gene in human have been found patients with BAV (453-455).  

In these patients, nonsense mutations as well as frameshift mutations were identified, 

suggesting haploinsufficiency.  In addition, mutations in KCNJ2 (potassium inwardly-

rectifying channel, subfamily J, member 2) which belongs to a large family of protein 

that produce potassium channels, have been linked to the Andersen syndrome and 

were also found in association with BAV and BAV with coarctation of the aorta (456).  In 

search for potential candidate genes that could lead to BAVs, Mohamed S et al 

reviewed the morphogenesis of the semilunar valves and came across the UFD1L gene, 

which encodes a component of a multienzyme complex involved in the degradation of 

ubiquitin fusion proteins (457).  UFD1L is highly expressed in the cardiac OFT during 

embryogenesis and is located on chromosome 22q11.2, which is commonly associated 

with CHDs that involve the development of neural crest cells.  Consistent with this, 

attenuation of UFD1L transcripts in chick CNC cells resulted in OFT septation defects, 
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suggesting that it plays a role in CNCs cells during conotruncal septation (458).  

Mohamed S et al demonstrated, by doing fluorescent in situ hybridization, that the 

UFD1L gene product was significantly reduced in BAVs that were obtained from patient 

surgery.  Thus, this supports the hypothesis that BAV is a genetic disorder, with UFD1L 

being a good potential candidate gene.  Therefore, it is possible that impaired behavior 

of CNC cells may lead to reduced degradation activities, which subsequently results in 

impaired aortic valve formation causing fusion of the valve cushions. 

   Animal studies have also been very helpful to find potential candidate genes 

that could underlie BAV formation.  Of note, a null mutation in NOS3 and Gata5 in mice 

was revealed to result in the formation of BAVs, with a penetrance of 32% and 25% 

respectively (451;459;460).  Moreover both of these studies demonstrated the formation 

of the BAV occurred from fusion of the right and noncoronary leaflet, leading to a R-N 

BAV.  Interestingly, this suggests that the R-N BAV is the result of a morphogenetic 

defect that arise before OFT septation, potentially involving a defect in endocardial cell 

differentiation, defective EMT or reduced migration of mesenchymal cells into the 

endocardial cushions.  The mechanism that underlie the formation of BAV is still 

unknown.  These two mouse models represent an important step in understanding the 

potential mechanism that leads to BAV formation during valvuloseptal development and 

also represent a powerful tool to investigate the mechanism.  

In conclusion, BAV is heritable and is associated with serious complications later 

in life.  Although valve surgery can replace the BAV, relatively little is known regarding 

the mechanism that leads to BAV formation.  Valve development is a complex process 

and remodeling of the ECM during patterning of the aortic valve is a critical part of the 

development of the OFT.  Clarification of the genetic cascade underscoring normal 

valve development may provide crucial information regarding the pathogenesis of BAV.  

Moreover, very few genes have been associated with BAV in humans.  The studies 

provided here show that we are moving in the appropriate direction but there is still 

much to be done.  

1.3.2. Communication between the chambers 
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Abnormal communication between the chambers may result from defective atrial 

ventricular or atrioventricular septation.  In the case of atrial septal (ASD) and 

ventricular septal (VSD) defects, there is shunting of blood from one chamber to the 

other, with direction of flow being determined by the pressure gradient (Figure 1.9).  A 

more complex cardiac malformation may also arise from defective septation of all three 

regions, creating a common mixing chamber and will be discussed in section 1.3.3. 

 

1.3.2.1. Atrial septal defects 

Atrial septal defects (ASDs) account for about 10% of all CHDs and are 

characterized according to their location: an ostium secundum type, which results from 

non-closure of the foramen ovale; an ostium primum defect, an ostium secundum 

defect and a sinus venosus defect (461).  The primum ASD occurs when the septum 

primum does not fuse with the AV endocardial cushion leaving the ostium primum open.  

This defect may be associated with defective formation of the mesenchymal cap or with 

the AV cushions.  If the AV cushions are defective, the primum type will be considered 

as an endocardial cushion defect, which is discussed in section 1.3.3.  Secundum ASD 

is the most common type of ASD in children and results from defective closure of the 

ostium secundum.  This occurs when the septum secundum fails to grow properly or 

when the ostium secundum is too large, which prevent the septum secundum from 

Figure 1. 9.  Atrial and Ventricular septal defects 

 Defective septation of the atria leaves a hole, known as atrial septal defect while
defective septation of the ventricles leads to ventricular septal defects, allowing blood to
flow from one cavity to the other.  ASD: atrial septal defect; LA: left atrium; LV: left
ventricle; PA: pulmonary artery; RA: right atrium; RV: right ventricle; VSD: ventricular
septal defect. 
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completely covering the opening.  In addition, ASD type II is often associated with right 

atrium and right ventricle dilatation.  The sinus venosus defect results from failure of the 

sinus venosus to be incorporated into the right atrium. 

ASDs can be found in isolation and also in some patients with certain 

syndromes, including Holt-Oram, Ellis-van Creveld and Noonan syndromes (462).  

Mutations in several genes involved in cardiac development have been associated with 

familial and sporadic types of ASDs (463).  Mutations in several transcription factors 

required for normal heart development have been linked to human ASDs.  Mutations in 

Tbx5 have been associated with Holt-Oram syndrome, an autosomal dominant disorder 

characterized by skeletal abnormalities affecting the thumbs or entire arm (464-466).  

Tbx5 mutations have also been identified in humans with non-HOS malformed hearts 

(467).  Similarly, mutations in Nkx2.5 have been identified in patients with sporadic ASD 

or ASD associated with progressive AV blocks or complex CHDs such as tetralogy of 

Fallot (168;169;468;469).  Furthermore, Gata4 mutations have been found in both 

familial and sporadic cases of ASDs (127;470-472).  More recently, mutations in Gata6 

have been found in patients with ASDs as well as tetralogy of Fallot (473).  Finally, 

mutations in Tbx20 were identified in patients with ostium secundum ASD (474). 

1.3.2.2. Ventricular septal defects 

VSDs are basically openings or holes in the ventricular septum (475).  VSDs can 

be seen in isolation (20%) but are frequently present in children with Holt-Oram 

syndrome as well as other syndromes, including DiGeorge, Alagille and Noonan 

syndromes, accounting for 50% of cases (439;476).  VSDs can be classified according 

to their location, including the following: perimembranous, muscular, inlet and 

subpulmonary subtypes.  The most common form of VSD is the perimembranous type, 

which involves the membranous septum and some of the adjacent muscular septum.  

This subtype is located just beneath the septal leaflet of the tricuspid valve and is 

subtended by the aortic valve.  When the VSD is small, there is little or no 

hemodynamic disturbance of the left ventricle, which results in a small left-to-right shunt 

with no pulmonary hypertension.  However, when the VSD is large, an equal pressure 

is observed in the two ventricles and the direction of the shunt will be dictated by the 

relative resistance of the systemic and pulmonary circulations.   



64 

 

 

Several human syndromes or sporadic cases of VSDs have been found with 

mutations in the same genes as they are associated with ASDs, notably Nkx2.5, Tbx5 

and Gata4 (169;469;477-479).  In animal models, mutations in a large number of genes 

involved in heart development have been associated with VSDs in animal models, 

usually in association with other cardiac abnormalities.  These include conditional 

and/or complete knockout models of Nkx2.5, Tbx5, Gata4, Hey2 and FOG2 

(247;315;480-483).   

1.3.2.3. Endocardial cushion defects 

Atrioventricular canal defect, also known as atrioventricular septal defect, covers a 

spectrum of congenital heart malformations characterized by failure of proper 

development of the endocardial cushions in the embryonic heart (484).  Such 

malformations involve one or all of the following: atrial, ventricular and/or atrioventricular 

septal defect as well as the adjacent leaflets of the two AV valves.  In complete 

atrioventricular canal (CAVC) defect,  all four chambers communicate due to the 

presence of an ostium ASD, a VSD and a common AV valve (Figure 1.10) (287).  This 

results in interatrial and interventricular systemic-to-pulmonary shunt, thus increasing 

the ventricular pressure, volume overload and pulmonary hypertension.  

 

 

Figure 1. 10.  Different types of shunting associated with AVSD  

The potential for shunting in AVSD (bracket) depends on the relationship between
the bridging leaflets and the ventricular and atrial septum.  Adapted from Anderson
R et al., Cardiac development and regeneration, 2010: 255-277. 
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The common AV valve is basically built up of four to five leaflets (superior, inferior, 

mural in the right and left ventricle and antero-superior), embryonically derived from the 

endocardial cushions.  CAVC occurs in 2 out of every 10,000 live births and account for 

3% of all cardiac malformations.  CAVC defect is commonly associated with other 

cardiac anomalies and 80% of children born with CAVC will die within the first two years 

of life due to congestive heart failure. 

CAVC defects are most commonly seen in patients with Down syndrome (Trisomy 

21) (485).  The genetic basis of CAVC still remains elusive but genes involved in 

endocardial cushion formation are likely candidates.  The Down syndrome critical 

region 1 (DSCR1) gene is present on the human chromosome 21 and the syntenic 

region of mouse chromosome 16 and has been linked to the Trisomy 21 phenotype.  

During valvuloseptal development in the heart, DSCR1 is expressed in the developing 

AV and semilunar valves as well as the IVS and ventricular myocardium (275).  

Moreover, its expression co-localizes with NFATc1 in the developing valve 

endocardium and NFAT-rich calcineurin response elements have been found adjacent 

to exon 4 of the DSCR1 gene.  Expression of DSCR1 is absent in NFATc1-/- embryos 

and its expression in Ts16 mice co-localizes with abnormal valvuloseptal development.  

This suggests that NFATc1 signalling is required for DSCR1 expression in the 

developing endocardium.  Other mouse models such as the Cx40-/-Cx43+/- and Cx40-/-

Cx45+/- mice, have been observed with common AV valves (486;487).  These 

connexins are expressed in the conduction myocardium and since this region is derived 

from the AV canal, it is possible that development of this specialized myocardium is 

impaired.  The presence of common AV valves is also observed in Fog2-/- and Gata4ki/ki 

mice, which are both required for expression of myocardial genes (488;489).  Similar 

defects were observed in Gata4/Tbx5 and Gata4/Gata5 compound mutants, indicating 

that genetic interactions between transcription factors is important for cardiac 

development (292;490).  

1.3.3. Conduction defects 

The cardiac conduction system relays the electrical impulses through the heart 

to achieve a coordinated and fast contraction.  As detailed in section 1.1.6, a complex 

genetic network is required for the development of the CCS.  Thus, loss of transcription 
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factor regulation during cardiac development can have detrimental consequences on 

the contraction of the heart, leading to conduction defects.   

1.3.3.1. Atrioventricular conduction disease 

The AV conduction system is comprised of specialized cells that allow 

synchronized cardiac excitation, which results in contraction of the atria and ventricles.  

In the adult heart, the AV conduction system is made up of the AV node, the His bundle, 

the right and left bundle branches and the Purkinje fibers.  AV conduction disease, or 

AV block, therefore occurs when conduction is slowed or blocked along one of the 

components of the AV conduction system such that the electrical continuity between the 

atria and ventricles is impaired (491).  Classification of the AV conduction disease 

depends on the extent of the block (first, second or third degree) as well as the site of 

the block (above or below the His bundle).  Moreover, the extent is based on 

characteristics of the PR interval, which is measured from the onset of P-wave to the 

onset of QRS complex.  First-degree AV block is a mild form of conduction delay, 

resulting from prolongation of the PR interval.  In presence of a second-degree AV 

block, some atrial impulses are conducted to the ventricle while other are not.  Second 

AV block can be further subdivided into type 1 or type 2.  In type 1 block, the PR 

interval becomes progressively prolonged before the appearance of the AV block while 

in type 2 AV block, the block occurs without any prolongation of the PR interval (491).  

In the most severe form, referred as third-degree AV block, no atrial impulses conduct 

to the heart and thus, the QRS complex occurs independent of the P-wave on an 

electrocardiogram. 

Familial clustering of AV blocks has established that it shows an autosomal 

dominant mode of inheritance (492).  Moreover, AV conduction disease has been 

associated with CHDs.  Of note, mutations in human Nkx2.5 gene were identified in 

patients with AV conduction disease as well as other forms of CHDs, including ASDs, 

VSDs, tetralogy of Fallot and tricuspid valve abnormalities (168;169).  In humans, 

Nkx2.5 mutations cause AV node conduction delays that progressively worsen during 

postnatal life such that advanced second-degree and third-degree blocks are observed 

in the third decade of life (169).  In addition, ventricular restricted inactivation of Nkx2.5 

in mice leads to progressive AV blocks due to a hypoplastic AV node (171).  A similar 

phenotype was also observed when Nkx2.5 was deleted beginning at two weeks of life, 
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suggesting that Nkx2.5 is necessary for proper cardiac conduction and contraction 

(493).   

1.3.3.2. Long QT syndrome 

Long QT syndrome is a genetic conduction disease characterized by a 

prolonged QT interval on the electrocardiogram, syncope, T-wave anomalies, 

ventricular tachycardia and torsades de pointes (irregular heart beat), all of which can 

lead to sudden death (494).  As for many CHDs, Long QT syndrome occurs with 

variable expressivity and incomplete penetrance and can be subdivided into two 

primary clinical categories: acquired and inherited.  The acquired form generally results 

from pharmacological therapeutic intervention, often to treat disorders unrelated to 

cardiac dysfunction (495).  Moreover, acquired forms may also result from other rhythm 

disorders, cardiac ischemia and some cardiomyopathies.  The inherited form of long QT 

syndrome is predominantly autosomal dominant, although some recessive forms exist 

but are associated with more severe phenotypes.    

Changes in the QT interval is caused by an altered action potential, which 

consists of a depolarisation, plateau and repolarisation phases that reflect the electrical 

activity across the cardiomyocyte during one contraction.  To date, about 12 genes 

have been associated with the inherited, or congenital, form of the long QT syndrome.  

These include the sodium, calcium and potassium channels as well as accessory 

subunits and associated modulatory proteins, which are all required for the generation 

of the action potential (494;495).  Sodium channel dysfunction in long QT syndrome are 

mostly due to mutations in the SCN5A gene.  SCN5A encodes the protein Nav1.5, 

which conducts the sodium inward current and is responsible for the initial 

depolarisation of cardiomyocytes (496).  About 65% of mutations identified in SCN5A 

are located in exons 20-28 and produce a persistent sodium current, which delays 

repolarisation (497).  Following identification of LQT causing mutation in SCN5A, 

several other genetic disorders were associated with SCN5A mutations, such as the 

sick sinus node syndrome, conduction disease, Brugada syndrome, atrial fibrillation and 

cardiomyopathies (496). 

1.3.4. Disease of the myocardium 

Hypertrophic cardiomyopathy (HCM) is a common inherited cardiac disease of the 

myocardium characterized by a marked thickening of the left ventricular wall.  The 
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prevalence of HCM is 1/500 individuals and is the most prevalent genetic 

cardiovascular disease transmitted as an autosomal dominant trait (498;499).  In most 

cases, the diagnosis relies on electrocardiographic and echocardiographic 

demonstration of left ventricular hypertrophy.  HCM is a major cause of premature 

sudden cardiac death among the young individuals and healthy athletes.  Furthermore, 

some individuals with HCM remain asymptomatic throughout life while others exhibit 

progressive exercise intolerance and heart failure or sudden cardiac death.  It may also 

be associated with left ventricular outflow tract obstruction, diastolic dysfunction, 

myocardial ischemia and atrial fibrillation (498). 

Anatomically, HCM can manifest with negligible to extreme ventricular hypertrophy, 

minimal to extensive fibrosis and myocyte disarray.  HCM is the first myocardial disease 

in which the genetic basis was identified.  To date, more than 450 different mutations 

have been identified, most of which are missense mutations, within 24 genes encoding 

sarcomeric, calcium-handling and mitochondrial proteins (499;500).  Most mutations 

were observed to occur in two genes, Myh7 that encodes β-myosin heavy chain and 

Mybpc3 which encode myosin binding protein C. Over the years, researchers have 

begun to identify pathways that link sarcomere pathology to myocyte growth and 

cardiac hypertrophy.  The functional consequences of gene mutations have been well 

studied both in vitro and in vivo.  For example, the Arg403Glu mutation in βMHC was 

shown to disrupt sarcomere assembly when transfected into adult feline 

cardiomyocytes (501).  Moreover, functional studies using muscle biopsy specimens 

from patients carrying this mutation have demonstrated that the muscle fibers have 

depressed velocity of shortening, reduced force to stiffness ratio and reduced power 

output (502).  In conclusion, dissecting out the components of intracellular signalling 

cascades triggered by a gene mutation that subsequently results in cardiac hypertrophy 

is of great interest and may lead to the identification of new targets for therapeutic 

intervention. 

1.4. Transcription factors involved in heart development 

During the past decade, an emerging body of evidence has accumulated that 

transcription factors control specific aspects of cardiac development and play critical 

roles in transcriptional regulation during cardiogenesis and during the adaptive process 
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in the human heart.  This section will describe some of the most important players in 

cardiac morphogenesis. 

1.4.1. NK-2 class homeodomain proteins 

A novel paradigm in cardiac development originated from the discovery of the 

tinman gene in Drosophila, which is the founding member of the NK-2 class of 

homeobox genes.  Flies lacking the tin gene lack all dorsal mesodermal derivatives, 

including the dorsal vessel, visceral muscle and a subset of body wall muscles 

(503;504).  The most striking phenotype of tin mutants was the complete lack of cardiac 

tissue.  Since the discovery of tinman in Drosophila, many vertebrate homologues have 

been discovered.  To date, ten tinman homologues have been found in diverse 

vertebrate species: Nkx2.1 to Nkx2.10.  The defining feature of the NK-2 family is the 

presence of a homeodomain, which consists of a 60 amino acid DNA binding motif.  In 

addition, Nk-2 family members can be grouped into three classes based on the 

presence of two conserved domains, the tin/Nkx2.5-domain (TN domain) that mediates 

protein interactions and the NK-2 specific domain (NK2-SD) that functions as a 

repressor (505).   

The developmental role of Nkx2.5 in the heart has been extensively studied in 

Xenopus, zebrafish and mice.  In Xenopus or zebrafish embryos, overexpression of 

Nkx2.5 leads to the formation of hyperplastic hearts, characterized by thickening of the 

myocardium due to an increase in the number of myocytes (506;506).  Furthermore, 

transplanted cells expressing higher levels of Nkx2.5 started to express cardiac 

markers, although these cells did not beat, suggesting and important role for this gene 

in cardiac cell fate decision and for proper patterning within the heart field.  Targeted 

deletion of the Nkx2.5 gene in mice leads to embryonic lethality by E9-10 from cardiac 

insufficiency (118;507).  The heart tube formed normally but failed to undergo correct 

looping, a single ventricular chamber was present and the OFT was truncated.  In 

contrast to tinman-mutant flies, Nkx2.5 is not essential for initial cardiomyocyte 

specification as beating cardiomyocytes were present in the linear heart tube.  

Possibilities for functional redundancy could account for this less severe phenotype, but 

this is unlikely as no other mammalian NK-2 gene has been identified with an 

expression pattern overlapping that of Nkx2.5 in early heart development.  Consistent 

with this, murine Nkx2.6 is transiently expressed in the posterior myocardium, sinus 
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venosa and dorsal pericardium at E8.5 and in the OFT myocardium at E9.5 but no 

cardiac abnormalities were observed in Nkx2.6-null mice (508;509).     

Recent lines of evidence suggest that Nkx2.5 is also important in perinatal 

hearts, as demonstrated by the rapid conduction and contraction defects observed 

within 4 days using tamoxifen-inducible Nkx2.5 knockout mice, leading to premature 

death (510).  Deletion of Nkx2.5 starting at two weeks of age resulted in first degree AV 

block and heart enlargement similar to perinataly loss of Nkx2.5, suggesting that Nkx2.5 

is important for proper conduction and contraction (493).  In addition, mice lacking 

ventricular Nkx2.5 develop progressive and advanced conduction defects as well as 

left-ventricular hypertrophy postnatally, with 50% of mutant animals progressing to 

complete heart block by 12 months (171).  This is similar to what is observed in human 

where heterozygous mutations of Nkx2.5 cause various cardiac anomalies and 

progressive conduction defects as well as occasional left ventricular dysfunction 

(168;169;511;512). 

In search for direct downstream target genes of Nkx2.5, the promoter activities 

of potential candidate genes were explored.  Among those examined, Nkx.25 was 

found to regulate the Nppa promoter as well as other genes including cardiac α-actin, 

Mef2c, connexin 40, myocardin, sodium-calcium exchanger 1, endothelin-converting 

enzyme-1 and CARP (513).  These genes encode structural proteins and transcriptional 

regulators that play important roles in cardiomyocytes.  Connexin 40, for example, is a 

major constituent of the gap junctions and loss of Cx40 leads to conduction defects 

(514;515).  Interestingly, transgenic mice overexpressing human Nkx2.5 harbouring the 

Ile183Pro mutation (in the homeodomain) develop AV conduction defects, which are 

accompanied by reduced expression of the gap junction proteins Cx40 and Cx43 (516).  

In addition, Nkx2.5 is able to transactivate the Cx40 promoter, together with Tbx5 (119).  

These observations likely suggest that Nkx2.5 plays an important role in the cardiac 

conduction system, in part, through the regulation of gap junction proteins.  However, 

further investigations are required to elucidate the molecular and cellular mechanism of 

how Nkx2.5 regulates the development of the cardiac conduction system as well as 

other aspects of cardiac development. 

To date, a total of 38 heterozygous Nkx2.5 mutations have been reported, which 

are associated with a wide range of CHDs including VSD, TOF, DORV, tricuspid valve 
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anomalies and progressive conduction defects (168;469;511;517;518).  The importance 

of Nkx2.5 in atrial septation and the conduction system is illustrated by the observation 

that ASDs are associated with 68.4% (26/38) mutations while 65.7% (25/38) of 

mutations identified result in AV block.  Further studies have also indicated that 4% of 

CHDs are due to heterozygous Nkx2.5 mutations.  Among the heterozygous mutations 

found in humans, 12 are within the homeodomain and are believed to impair the 

transcriptional activities of Nkx2.5 due to reduced DNA-binding affinities.  

Haploinsufficiency is postulated to be the underlying mechanism of disease. 

 

1.4.2. T-box transcription factors 

The vertebrate T-box (Tbx) gene family includes around 20 different members.  

Tbx proteins are characterized by the presence of a highly conserved 180 amino acid 

DNA binding domain termed the T-box.  The T-box domain is relatively large, generally 

comprising about a third of the entire protein, and individual members of the family 

show varying degrees of homology across this region.  Brachyury (T) is the founding 

member of the T-box gene family and was identified in 1990 based on a short tail 

phenotype in mice (519).  Since then, additional members of the T-box gene family 

have been identified in vertebrate and invertebrate organisms from hydra to humans.  

Among the different members of the family, Tbx1, Tbx2, Tbx3, Tbx5, Tbx18 and Tbx20 

Figure 1. 11.  Localization of human Nkx2.5 mutations associated with
CHD  

Mutations are represented on the Nkx2.5 protein, showing the conserved and
functional domains.  HD: homeodomain; NK: NK2 specific domain; TN:
tinman/Nkx2.5 domain; YRD: tyrosine rich domain.  From Elliot D et al., Cardiac
development and regeneration, 2010: 569-597. 
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have been shown to be expressed in the cardiovascular system, where they play 

important roles in formation of the OFT, valve and conduction system development, 

chamber formation and maturation and epicardial development (Figure 1.12A).  The 

specific roles of these T-box factors is discussed in the following section.  

1.4.2.1. Tbx1 

The Tbx1 gene was originally cloned from a E12.5 mouse cDNA library using 

the DNA-binding domain of brachyury as probe.  Evidence for a role for Tbx1 in heart 

development came from the finding that the region of the human chromosome 22q11.2, 

where Tbx1 maps, is often deleted in patients with DiGeorge syndrome.  DiGeorge 

syndrome is characterized by a variety of abnormalities, including absence or 

hypoplasia of the thymus, cleft palate, facial dysmorphism and cardiac anomalies 

mostly of the outflow tract, including interruption of the aortic arch, VSD, pulmonary 

atresia and persistent truncus arteriosus (520;521).  Targeted disruption of Tbx1 in mice 

phenocopies important aspects of DiGeorge syndrome, including OFT defects (522-

524).  Therefore, it was suggested that Tbx1 plays an important role in OFT 

morphogenesis.  Tbx1 expression can be detected in the pharyngeal endoderm, the 

mesodermal core of the pharyngeal arches and the SHF.  Consistent with a role in SHF, 

mesodermal-specific deletion of Tbx1 recapitulates the OFT defects seen in Tbx1-null 

embryos (335;525).  The phenotype also includes reduced cell proliferation, which may 

underlie the reduced contributions of the SHF to the OFT of Tbx1-deficient mice.  Time 

course deletion experiments further demonstrated that Tbx1 is required for OFT 

development between E8.5-9 and E9.5, coinciding with the contribution of SHF cells to 

the OFT (335).   

In recent years, mutations in human Tbx1 have been associated with DiGeorge 

syndrome.  Almost all of the mutations identified in Tbx1 map to the C-terminal 

transactivation-repression domain and an additional mutation results in deletion of the 

nuclear localization signal (526;527).  To date, the implications of these mutations on 

heart or cranofacial development has not been reported.  In conclusion, Tbx1 is the only 

gene for which mutations have been found in some patients without the chromosomal 

deletion.  As many birth defects, including many CHDs, are derived from problems of 

the pharyngeal system, Tbx1 is an excellent tool to probe the genetic network that 

govern embryonic pharyngeal development. 
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Figure 1. 12.  Role of T-box factors in heart development 

A) Schematic representation of an E9.5 heart showing expression of the different
T-box factors in the heart.  Tbx1 is expressed in OFT, Tbx18 in the sinus horns
and Tbx2/Tbx3 exert their function in the non-chamber myocardium.  The yellow
bars represent the expression of Tbx5 and Tbx20.  Modified from Hoogaars WMH
et al., Cell. Mol. Life, 2007.  64:646-660.  B) Model of T-box factor regulation of
cardiac chamber development.  From Stennard F and Harvey R, Development,
2005.  132: 4897-4910.  C)  Mutations in human Tbx5 associated with Holt-Oram
syndrome.  NLS: nuclear localization sequence; TA: transactivation domain.  From
Conlon F and Yutzey K, Cardiac development and regeneration, 2010: 651-671. 
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1.4.2.2. Tbx2 and Tbx3 

In the same homology-based screen that identified Tbx1, two additional T-box 

members were identified, namely Tbx2 and Tbx3.  In the mouse, Tbx3 is expressed in 

the inner cell mass and extraembryonic tissues early in development, and in the limbs, 

mammary buds, spleen, pituitary gland, lung, kidney and heart (528).  Shortly after the 

identification of Tbx3, it was reported that mutations in this gene are associated with the 

ulnar mammary syndrome (UMS), a human disorder characterized by malformation of 

the upper limb and hypoplasia of apocrine and/or mammary glands (529;530).  In the 

heart, Tbx2 is broadly expressed, including in the myocardium of the AV canal, 

endocardial cushions, SHF and neural crest cells (125;131;528).   

Within the T-box family, Tbx2 and Tbx3 share extensive regions of homology 

across the entire protein and function as transcriptional repressors .  Indeed, they were 

shown to act as powerful repressors of the Nppa and Cx40 promoters in vitro, which are 

normally activated by Tbx5 and Nkx2.5 (Figure 1.12B) (131;166).  Furthermore, these 

studies demonstrated that Tbx2 competes with Tbx5 for the TBE element on the Nppa 

promoter in non-chamber myocardium, forming a repressive complex with Nkx2.5.  

Several studies have shown that Tbx2 is able to repress the expression of chamber 

specific genes including ANF, Cx40 and Cx43 in tissue culture and transgenic mouse 

models, suggesting that Tbx2 functions in cardiac development to repress the gene 

programs associated with chamber formation and differentiation (125;531).  Consistent 

with this, null deletion of Tbx2 results in abnormal development of the AV canal and 

defects in OFT alignment (132).  Furthermore, ectopic expression of ANF was found in 

the AVC of Tbx2-null embryos. 

Tbx2 expression overlaps with that of Tbx3 in the heart primordia, posterior 

primitive heart tube, AV canal and conduction system, with a stronger and broader 

expression for Tbx2.  This suggests possible functional redundancy as well as distinct 

functions for Tbx2 and Tbx3.  Consistent with this, Tbx2 and Tbx3 are able to repress 

the same target genes, including Nppa and Cx40.  Tbx3-null embryos die at 

midgestation over a range of several days due to yolk sac anomalies in addition to 

hindlimb defects and mammary gland aplasia, which are similar to those seen in 

patients with UMS.  However, more detailed analysis of Tbx3-mutant embryos revealed 

cardiac anomalies including incomplete looping, OFT defects and malformation of the 
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AV canal due to altered proliferation rates (532;533).  Within the heart, Tbx3 expression 

is also required for normal size and function of the sinoatrial (SA) node.  Consistent with 

this, ectopic expression of Tbx3 is sufficient to induce the pacemaker gene program 

and function in atrial myocardium (534).  A recent analysis of Tbx3-null embryos 

revealed an important role for Tbx3 in the specification of the AV conduction system 

(139).  Bakker M et al reported that Tbx3-deficient mice have ectopic expression of 

Cx40, Cx43, Nppa, Tbx18 and Tbx20 genes in the AV bundle and proximal bundle 

branches, which failed to exit the cell cycle.  In conclusion, Tbx2 and Tbx3 play 

important roles in the primary myocardium, where Tbx2 act as a key regulator of the 

chamber/non-chamber lineage separation upon which all subsequent cardiac 

morphogenesis depends. 

1.4.2.3. Tbx5 

 The Tbx5 gene was identified in a screen of an E8.5 mouse cDNA library using 

the T-box region of Tbx2 (535).  The mouse Tbx5 gene is expressed in the heart, eye 

and limb.  In the heart, Tbx5 is expressed in a posterior-to-anterior gradient with 

relatively high expression in the inflow tract, atrium and left ventricle and low to 

undetectable levels in the right ventricle.  Similarly to Nkx2.5, Tbx5 is expressed 

throughout the heart fields early in development.  The first line of evidence for a role of 

Tbx5 in heart development came from its association with Holt-Oram syndrome, a rare 

highly penetrant dominant condition associated with forelimb and cardiac anomalies 

(464;465).  The role of Tbx5 in heart development was supported by gene targeting 

experiments in mouse that demonstrated that loss of one Tbx5 allele recapitulates 

some of the defects seen in patients with Holt-Oran syndrome.  More specifically, 

Tbx5+/- mutant mice have ASD, defects in ventricular relaxation and conduction system 

abnormalities (119;172;536).  Moreover, Tbx5-null embryos die at E10.5 and display 

numerous cardiac anomalies including hypoplastic sinus venosus, failure to initiate 

atrial septation and dramatic reduction in the expression of chamber specific genes as 

well as decreased expression of Nkx2.5 and Gata4.  Altogether, these studies indicate 

that Tbx5 plays an important role in chamber specification. 

In contrast to Tbx2 and Tbx3, Tbx5 acts as a transcriptional activator.  As 

discussed in the previous section, a model has been proposed whereby Tbx5 functions 

to activate a chamber differentiation program whereas Tbx2 and Tbx3 limit the 



76 

 

 

expression of this program to the ventricle and atrium while repressing it in the 

conductive tissue (Figure 1.12B).  This functions through regulation of the same target 

genes, which include Nppa and Cx40.  Although Tbx5 is implicated in several 

processes during development, only a few target genes were found.  However, a few 

years ago, a microarray analysis of Tbx5-induced genes expressed in the heart was 

reported (537).  Among these, in situ hybridization of photoreceptor cadherin, Hey2, 

brain creatine kinase and gelsolin indicated overlapping expression with Tbx5 in the 

embryonic mouse heart.  In addition, Tbx5 can directly associates with Nkx2.5, Gata4 

as well as the transcriptional co-activators Tip60 and Baf60c (119;127;538;539).  Acting 

in synergy with Nkx2.5 and Gata4, Tbx5 can stimulate the expression of chamber 

specific genes including Nppa and Cx40. 

Tbx5 is also required for the proper development of the cardiac conduction 

system.  Expression of Tbx5 can be observed in the atrioventricular bundle and the left 

and right bundle branches in newborn mice.  In the Tbx5+/- mice, Tbx5 expression is 

initiated at the right time in the conduction system but as the mice mature, Tbx5-mutant 

mice develop a prolonged PQ interval, indicative of a first degree AV block (119).  

Further studies indicated failure of AV node maturation as well as left and right bundle 

branches defects, including severe reduction in the right ventricular bundle (172).  

Deficiencies in the downstream target Cx40 did not account for these defects, 

suggesting  that Tbx5 is required in a Cx40-independent pathway in the cardiac 

conduction system.  Moreover, haploinsufficiency of Tbx5 was shown to cause defects 

in ventricular relaxation by direct modulation of SERCA2 (536).  

To date, about 37 different Tbx5 mutations have been associated with Holt-

Oram syndrome (Figure 1.12C)  (481;540).  These mutations are clustered near or in 

the T-box region and may result in truncated or non-functional proteins. Most of these 

mutations have been suggested to cause haploinsufficiency (541). 

1.4.2.4. Tbx20 

The Tbx20 gene was independently identified by several groups in human, 

mouse and zebrafish models (542-544).  Shortly thereafter, orthologs of Tbx20 were 

identified in Xenopus and chick, where they were also shown to be enriched in the 

developing heart tissue (545;546).  In the mouse, Tbx20 is initially expressed in the 

primary heart field and a subset of SHF progenitor cells (307;547).  In the heart tube, 
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Tbx20 is detected in the myocardium and also strongly in endocardial cushions of the 

AVC and OFT (142;307;548).  As development proceeds, expression is turned down in 

the myocardium and remains high in endocardial cushions.  A recent series of papers 

reported that mice lacking Tbx20 die embryonically at midgestation due to severe 

cardiac defects including a severely underdeveloped, short heart tube that fails to loop 

as well as malformation of the ventricular chambers (140-142;307;549).  Consistent 

with a role in the SHF, RNAi mediated knock-down of Tbx20 in mice was shown to 

cause hypoplasia of the OFT and right ventricle (307).  A key finding in these mutants 

was that Tbx2 expression is severely upregulated in Tbx20-null embryos.  The cardiac 

anomalies in the Tbx20 mutants embryos appear to be a requirement for Tbx20 in the 

proliferation and maturation of the cardiomyocytes.  This seems to be mediated by 

regulation of Tbx2 and Tbx20 was found to repress Tbx2 by binding to a pair of T-box 

binding elements in the Tbx2 promoter (141).  Therefore, it has been suggested that 

one role of Tbx20, maybe to keep Tbx2 off in the developing chamber myocardium.  A 

working model of T-box regulatory network in chamber formation has emerged from all 

these studies.  In the primary myocardium, Tbx2 and Tbx3 compete with Tbx5 to 

repress chamber differentiation while BMP signalling activates Tbx2, Tbx3 and Tbx20 

expression.  In the chamber myocardium, Tbx20 represses Tbx2 expression and thus 

regulates proliferation.  This allows Tbx5 to act as a positive regulator of chamber 

proliferation and differentiation.  

Tbx20 is the T-box family member that has the highest expression in 

endocardial cushions of the AVC and OFT as well as in the remodelling mitral and 

tricuspid valves.  Recent studies provide evidence that Tbx20 promotes proliferation as 

well as inhibit maturation of valve progenitor cells (550;551).  Of note, Tbx20 gain of 

function in cultured endocardial cushion cells of chicken embryos results in increased 

proliferation whereas loss of Tbx20 leads to a decrease in cell proliferation, with a 

corresponding effect on N-myc gene expression (550).  Moreover, increased Tbx20 

expression was associated with an upregulation of matrix metalloproteinases and 

decreased expression of chondroitin sulphate proteoglycans, which is consistent with 

the unremodeled state of endocardial cushions.   

The role of Tbx20 in the heart appears to be evolutionary conserved, with 

Drosophila having two Tbx20 orthologs, neuromancer 1 (nmr1) and neuromancer 2 

(nmr2).  This pair of genes is expressed in the cardiac lineages, with nmr1 being the 
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earliest marker (552;553).  Embryos lacking nmr1 and/or nmr2 have a weak dorsal 

vessel phenotype.  However, expression of tinman (Nkx2.5 ortholog) in the double 

mutants is very strongly downregulated while expression of the Tbx2 homologue 

Dorsocross is expanded.  More recent studies have demonstrated that adult flies 

lacking nmr1 or with reduced nmr2 expression have compromised cardiac performance 

(554).  Taken together, these results suggest that nmr1 and nmr2 are involved in the 

specification and maturation of the Drosophila cardioblasts. 

Recently, mutations in human Tbx20 have been associated with a spectrum of 

valvuloseptal anomalies; increased cardiac expression of Tbx20 has also been reported 

in patients with TOF (474;555;556).  To date, 12 mutations have been found and 8 of 

them are within the T-box region, which disrupts the structure and function of the T-box. 

In conclusion, Tbx20 acts in the hierarchy of chamber/non-chamber lineage 

separation to limit the activity of Tbx2.  Moreover,  the role of Tbx20 in endocardial cells 

is beginning to emerge and there is much more to be learned in the next couple of 

years.    

1.4.3. MADS transcription factors 

The MADS box genes encode a eukaryotic family of transcriptional regulators 

involved in important biological processes.  These proteins share a highly conserved 

motif called the MADS (MCMI, agamous, Deficiens and serum response factor family) 

box that mediates homodimerization and DNA-binding to a dyad symmetrical A + T-rich 

DNA consensus sequences. 

1.4.3.1. Serum response factor 

Serum response factor (SRF) was first discovered as a factor that bound the 

serum response element in the c-fos promoter and is the founding member of the 

MADS family (557).  SRF target genes are characterized by the presence of single or 

multiple copies of the SRF-binding consensus element CC(A/T)2A(A/T)3GG, known as 

the CArG box, which are found primarily in genes involved with cell contractility, cell 

movement and cell growth.  SRF expression is largely restricted to the cardiac and 

skeletal muscle tissues in both chick and mouse development.  As cardiac development 

proceeds, SRF transcripts become restricted to the cardiac crescent, the heart tube and 

the mesenchyme in the tail and somites (538;558).  The function of SRF in cardiac 
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development in vivo could not be elucidated due to the early lethality of SRF-null mice, 

which have severe gastrulation defects and die before the onset of cardiogenesis (559).  

To evaluate the role of SRF in cardiac development, a series of conditional knockout 

strategy using the SM22cre, MHCαcre or MHCβcre transgenic mice were performed (560-

562).  In all studies, cardiac-specific deletion of SRF resulted in embryonic lethality and 

was associated with cardiac defects including poor trabeculation, disorganization of the 

cardiac sarcomeres and z-disks, dilated cardiac chambers and thickening of the 

compact myocardium.  In addition, significant reduction of the ANF and cardiac skeletal 

and smooth muscle α-actin transcripts was observed in SRF-mutants embryos.  Early 

inactivation of SRF using Nkx2.5Cre transgenic mice results in death by E8-E.5 due to 

inability of the cardiac cells to start beating (563).  Similarly, expression of Myl2 and 

Myom1, which are expressed in thick filaments and M-band of sarcomeres, Hand1 and 

cardiac skeletal and smooth muscle α-actin transcripts was blocked in SRF-mutant 

embryos.  All of these observations indicate that SRF regulates sarcomerogenesis in 

higher vertebrates. 

Although SRF is not considered as an inhibitory transfactor, there is a great 

likelihood that SRF can exert gene silencing through regulation of miRNAs.  Consistent 

with this, at least 20 miRNAs were found to be downregulated in E9.5 SRFCko mutants.   

Among these, Srivastava and colleagues showed that SRF is able to regulate the 

expression of miR-1, through its CArG boxes (564).  Furthermore, mice lacking miR-1-2 

display a spectrum of cardiovascular abnormalities, including VSDs, cardiac rhythm 

disturbances and hyperplasia of the heart (565).  Consistent with a role for miR-1 in 

muscle differentiation, overexpression of miR-1 resulted in decreased myocyte 

proliferation and reduced ventricular myocyte expansion, which was explained by the 

presence of a miR-1 target site in the 3’-UTR of the Hand2 gene (564).  A few years 

ago, it was reported that transgenic mice overexpressing SRF develop dilated 

cardiomyopathy, with early mortality, which suggested that SRF is required in the 

maintenance of sarcomeric organization and contractility in the adult (566).  In addition, 

it was recently shown that miR-133 can repress myoblast differentiation through 

repression of SRF (567).  Moreover, Olson and colleagues demonstrated that miR-

133a1/miR133a2 compound heterozygotes survive to adulthood and display signs of 

dilated cardiomyopathy (568).  These abnormalities were shown to be attributed, in part, 

to the increased expression of SRF and Cyclin D2.  Thus, a negative feedback loop 
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exists between SRF and miR-133, where miR-133 is controlled by SRF, which can in 

turn inhibit SRF translation. 

In addition to cardiac sarcomerogenesis, SRF plays an important role in blood 

vessel development.  Of note, specific inactivation of SRF using Tie2Cre transgenic mice 

leads to disruption of the embryonic and yolk sac blood vessels (569).  By contrast, the 

Tie1-mediated loss of SRF resulted in vascular aneurysms and haemorrhaging of the 

forebrain but no defects were observed in the blood vessels of the yolk sac and 

vasculature (570).  Despite the differences with both strategies, both knockouts resulted 

in embryonic lethality.  Another phenotype that was associated with loss of SRF in 

endothelial cells was disruption of the actin cytoskeleton in the tip cells, which give rise 

to sprouting endothelial cells during angiogenesis.  Another major type of cell in the 

vessel wall is the vascular smooth muscle cell (SMC) and expression of SRF in these 

cells is already evident by E10.5, which coincides with the expression of several SMC 

contractile genes (538).  Specific inactivation of SRF in vascular SMCs results in a 

significant reduction in the number of peri-vascular progenitor cells as well as a defect 

in the cyto-architecture of the embryo at E10.5 (560). This cytoskeleton phenotype is 

similar to that seen in human adult coronary artery SMCs where SRF is knocked down 

(571).  Whether the loss of SRF in vascular SMCs during embryonic development and 

in the adult has a consequence for normal vascular function still remains to be 

demonstrated.  However, tamoxifen-inducible, smooth muscle MYHCre lines will be 

useful to inactivate SRF at any time during embryonic development and postnatally in 

order to have a better understanding of its function in these cells. 

1.4.3.2. MEF2 

MEF2 proteins belong to the evolutionary conserved MADS family of transcription 

factors (572).  Vertebrates have at least four MEF2-encoding genes whereas simpler 

animals such as Drosophila, Saccharomyces cerevisiae and Caenorhabditis elegans 

possess only one Mef2 gene (573).  The N-terminal domain of each MEF2 isoform 

(Mef2a, Mef2b, Mef2c and Mef2d) contains a highly conserved MADS box and an 

adjacent motif termed the MEF2 domain, which together mediate DNA binding, 

dimerization and cofactor interactions (574;575).  The C-terminal region functions as a 

transcriptional activation domain; it is highly divergent among members of the family 

and also highly variable within a single gene as a result of alternative splicing 
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(574;576;577).  MEF2 proteins bind to the consensus sequence YTA(A/T)4TAR as 

homo or heterodimers (578;579). 

The Mef2 genes display distinct as well as overlapping patterns of expression in 

multiple lineages during development including lymphocytes, striated muscles, brain, 

neural crest, smooth muscle, endothelium and bones (580;581).  In the mouse embryo, 

expression of Mef2b and Mef2c coincides with the onset of cardiogenesis while 

expression of Mef2a and Mef2d starts only a day later (580;582).  Inactivation of the 

Mef2 gene in Drosophila results in failure of differentiation of cardiac, skeletal and 

visceral mesoderm as well as downregulation of muscle specific gene expression and 

thus provided the first evidence for the important role of MEF2 proteins in heart 

development (583-585).  Mouse embryos lacking Mef2c die at E9.5 due to failure of 

cardiac looping and inability to form a well developed right ventricle (304).  However, 

cardiomyocytes were still able to differentiate in the absence of Mef2c eventhough a 

number of cardiac muscle genes were downregulated (304;586).  In order to bypass the 

early lethality of Mef2c null embryos, Mef2cloxP/loxP mice were generated to examine the 

specific role of this protein at later stages of development (587).  Inactivation of Mef2c 

using EIIACre phenocopied the original Mef2c null (587).  However, conditional deletion 

of Mef2c with αMHCCre or MLC2VCre resulted in viable offsprings with no overt cardiac 

phenotype, possibly due to functional redundancy with other family members such as 

Mef2a, which is required for maintenance of cardiac physiology after birth.  Inactivation 

of Mef2a in mice leads to perinatal lethality due to cardiac defects including severe right 

ventricular dilatation as well as activation of genes involved in hypertrophy and cardiac 

failure (588).  Mef2a-null mice that survived to adulthood showed significant dilated 

cardiomyopathy, associated with cardiac hypertrophy.  In addition, overexpression of 

either Mef2a or Mef2c in the adult myocardium leads to dilated cardiomyopathy 

(589;590).  More recently, Mef2d emerged as a regulator of stress-dependent cardiac 

growth and reprogramming of gene expression in the heart (591).  Finally, depletion of 

Mef2c in adult myocardium using siRNA attenuates the hypertrophic growth of the left 

ventricle in response to pressure overload (592).   

1.4.4. The GATA transcription factors 

The GATA proteins belong to the evolutionary conserved family of zinc finger 

transcription factors (593;594).  Members of the GATA family have been identified in 
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diverse model organisms ranging from cellular slime moulds to vertebrates including 

plants, fungi, nematodes, insects and echinoderms (593;595).  For example, 29 GATA 

proteins can be found in Arabidopsis thaliana, 11 in s. cerevisia, 10 in the nematode C. 

elegans, 8 in Drosophila melanogaster and only 6 in humans (594;596).  GATA factors 

are associated with several important processes, including the development of the 

hematopoietic system as well as cardiovascular development.    

1.4.4.1. The GATA factors in invertebrates 

GATA transcription factors influence many developmental processes and in 

addition to vertebrates, a number of GATA proteins have also been identified in non-

vertebrates.  Fungal GATA factors possess one zinc finger and have been found to play 

major roles in nitrogen metabolism, light induction, siderophore biosynthesis and 

mating-type switching (597).  For example, in S. Cerevisiae, the Gnl3p gene binds to 

GATA elements within the promoters of nitrogen-regulated genes to activate synthesis 

of glutamine synthase and amino acid permease (598;599). 

The C. elegans genome has 11 GATA factor genes, and four of these, end-1, 

end-3, elt-2 and elt-7, are involved in endoderm development (600;601).  End-1 and 

end-3 are the earliest genes expressed in the endoderm lineage and act redundantly in 

endoderm formation (600;602).  Moreover, the Elt-1 gene is required for epidermal cell 

fate, elt-2 is the predominant GATA factor involved in the formation of the intestine and 

elt-5 and elt-6 play a role in epidermal seam cell development (603-605).  The med-1 

and med-2 GATA genes were originally thought to be important for specification of the 

endoderm but recent studies revealed that this was not the case (606;607).  As for elt-3, 

it was suggested to act downstream of elt-1 in a redundant pathway that controls 

epidermal cell fate (608).  

In Drosophila, five GATA genes have been identified and all of them, except for 

a splicing isoform of serpent that lacks the N-terminal zinc finger, have two zing fingers.  

Interestingly, Pannier (pnr) was found to be required for embryonic dorsal closure, 

dorsoventral patterning of the eye disc and specification of the cardiac lineage (609-

612).  Serpent, on the other hand, plays a role in specification of the hematopoietic 

lineage, development of fat body and differentiation of the endodermal gut whereas 

Grain is essential for cell rearrangement during organ morphogenesis (613-616).  

Together, these studies indicate that the function of the GATA factors in endoderm 
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development between Drosophila and C. elegans is well conserved.  As will be 

discussed below, some of these functions are also well conserved with vertebrates. 

1.4.4.2. The GATA factors in vertebrates 

In vertebrates, six members of the GATA family have been identified (GATA1 to 

-6) and they share two highly conserved zinc fingers, each with a Cys-X2-Cys-X17-20-

Cys-X2-Cys consensus sequence (Figure 1.13) (617;618).  Vertebrate GATA proteins 

possess two zinc fingers that are encoded by two different exons while only one zinc 

finger is found in plants and fungi, which is more similar to the C-terminal vertebrate 

finger.  The sequence immediately following the two zinc fingers, known as the nuclear 

localization domain, is also well conserved in the GATA family.  In addition to both zinc 

fingers, the GATA factors are composed of an N- and C-terminal transactivation domain, 

which are more divergent (Figure 1.13C).  Overall, GATA proteins have a relatively 

conserved domain structure and yet, are able to achieve diverse roles in a number of 

cell types.  In the following section, a brief description of the structure and role of the 

zinc fingers will be discussed. 

1.4.4.2.1. The structure and role of the C-terminal zinc finger 

Several studies have shown that the C-terminal finger and adjacent basic domain 

of the GATA proteins are required and sufficient for DNA binding (619-621).  High 

resolution nuclear magnetic resonance (NMR) allowed researchers to solve the 

structure of the binding domain of the chicken GATA1 (cGATA1) C-terminal finger 

(Figure 1.13B) (622).  Omichinski et al were able to show that the overall structure of 

the C-terminal finger domain is composed of two antiparallel β sheets followed by an α 

helix.  The side chains of the zinc finger make specific contacts in the major groove and 

these interactions are mainly hydrophobic in nature.  In addition, the carboxy-terminal 

basic tail, which is essential for DNA binding specificity, contacts the phosphate 

backbone in the minor groove.  The overall appearance of the complex is analogous to 

that of a right hand holding a rope, with the palm and fingers representing the protein 

core, the thumb the carboxyl-terminal tail and the rope the DNA. 

The zinc finger regions of the GATA factors are highly conserved, suggesting that 

they could bind to similar if not identical binding sites (623).  The DNA binding affinities 

and specificities of GATA1, -2, -3 and -6 have been determined using polymerase chain 

reaction site selection (624-626).  GATA1, -2 and -3 can bind to the consensus site  
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Figure 1. 13.  GATA factors in vertebrates 

A) Ancestral sequence of the N-terminal finger and C-terminal finger and conservation
between the GATA factors (Lowry J et al., Journal of Mol Evol, 2002). B) Schematic
representation of the C-finger of chicken GATA1 bound to DNA (Newton A et al., JBC,
2001). C) Protein structure of the cardiac GATA factors and conservation within each
domain.  TAD: transactivation domain; ZF: zinc finger.  D-E) Tables representing the
expression profiles of the GATA factors in vertebrates. 
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derived from regulatory elements in the erythroid cell-specific genes, (A/T)GATA(A/G), 

with a preference for A/GATA/A.  In addition, an alternative consensus DNA sequence, 

A/GATC/T, is also recognized by GATA2 and -3 but not GATA1 (627).  Similarly, Sakai 

et al have showed that the consensus sequence for GATA6 binding is 

(A/T/C)GAT(A/T)(A).  GATA6 also favored adenines on both sides of the core 

GAT(A/T/C) for strong binding, with a preferential order for GATA>GATT>GATC, with 

no binding to GATG (626).  A novel finding that has emerged from this is the subtle 

differences in binding specificities that exist among the family members.  This raises 

interesting possibilities on how specific target gene regulation is accomplished in cells 

expressing more than one GATA protein.  

1.4.4.2.2. The role of the N-terminal finger 

The two zinc fingers are encoded by two different exons in vertebrate GATA 

proteins and eventhough the backbone of the N-terminal finger is similar to that of the 

C-terminal finger, early experiments indicated that it was not essential for DNA binding 

(628;629).  However, more recent experiments have revealed that one of the roles of 

the N-terminal finger is to enhance DNA-binding specificity and stability of GATA factors 

(621;628;630;631).  According to this, Merika M et al showed that several motifs like 

(C/T/G)GATG(C/G) and (G/C)GATT(C/T) bind with various affinities to intact GATA1 

but fail to bind to the C-terminal finger (625).  Moreover, Trainor C et al found that the 

N-terminal finger of GATA1 is required to bind with high affinity the sequence 

ATC(A/T)GATA(A/G), increasing the affinity for this binding site.  This palindromic 

GATA element consist of the consensus sequence (A/T)GATA(A/G) fused to an 

inverted GAT motif, where the C-terminal finger binds the (A/T)GATA(A/G) sequence 

whereas the N-terminal finger is involved in binding the partially inverted sequence.  In 

addition to GATA1, other studies have shown that the N-terminal finger of GATA2 and -

3 can bind DNA independently, with a slight sequence preference for GATC (632;633). 

Another role of the N-terminal finger, and also the C-terminal finger, is the 

possibility to engage in protein-protein interactions, leading to self-association and 

binding to other transcription factors.  Accordingly, it has been shown that the N-

terminal finger of GATA1 can make intermolecular contacts with the C-terminal finger, 

suggesting that GATA dimers are maintained by direct N-finger-C-finger contacts (634).  

Importantly, Mackay JP et al showed that self-association of GATA1 was disrupted in 
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the presence of mutations in the N-terminal finger (residues 245-247) and C-terminal 

finger (residues 315-317) and this also interfered with its ability to activate transcription.  

The GATA zinc fingers are also able to mediate complexes with FOG, Sp1/EKLF, 

p300/CBP, c-fos, NFAT-c, SRF, Nkx2.5 and PU.1 (124;367;635-640).  FOG-1 (Friend 

of GATA1) is a 998 amino acid multitype zinc finger protein that was identified in a 

yeast two-hybrid screen using the N-terminal finger of GATA1 as bait (635).  It binds 

specifically to the N-terminal finger of GATA1 and specific residues located in the 

amino-finger were eventually identified as essential for this interaction (641).  

Interestingly, these residues are conserved in the N-terminal finger of all GATA factors 

known to bind FOG-1.  FOG-1 is co-expressed with GATA1 during development and 

FOG-1-/- mice die around E10.5-11.5 due to severe anemia with arrest in erythroid 

maturation (642).  This phenotype is similar to the one that was obtained when the 

Gata1 gene was knocked down, providing strong evidence that the two proteins act in a 

common pathway.  A second member of the FOG family, U-shaped, was subsequently 

identified as a partner for Pannier, a drosophila GATA factor (643;644).  However, it has 

been suggested that U-shaped counters the action of Pannier in contract to the 

cooperative interactions between GATA1 and FOG-1.  Soon after the identification of 

FOG-1, an EST database revealed the existence of a second FOG related gene, known 

as FOG-2.  The expression of FOG-2 mirrors that of Gata4/5/6, suggesting that FOG-2 

serves as a cofactor for the cardiac GATA factors.  Interestingly, Fog2-/- embryos die 

between E12.5-E15.5 due to complex CHD defects, including overriding aorta, 

subpulmonic stenosis and subaortic VSDs, as well as impaired coronary vessel 

formation and gonadal development (645).  Similarly to FOG-1, FOG-2 was shown to 

interact with the N-finger of all GATA factors (646;647).  The importance of the physical 

interaction between GATA4 and FOG-2 was shown by Crispino J and colleagues.  A 

single amino acid replacement in the N-finger of GATA4, which abrogates its interaction 

with FOG-2, was shown to result in embryonic lethality (489).  Mutant embryos 

displayed defects similar to the Fog2-/- embryos as well as additional semilunar valve 

defects and a DORV.  Thus, this study clearly indicated the importance of GATA4/FOG-

2 interactions for proper heart development. 

1.4.4.2.3. Tissue distribution and function of GATA factors 

The six members of the GATA family of transcription factors can be subdivided 

into two subgroups based on sequence homology and tissue distribution (Figure 1.13D 
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and E).  GATA1, -2 and -3 are highly expressed in the hematopoietic system where 

they play important roles in lineage specification and differentiation (648;649).  GATA1, 

-2 and -3 are expressed in overlapping subsets of hematopoietic cells as well as in 

several other tissues.  On the other hand, GATA4, -5 and -6, which constitute the 

second subfamily, are predominantly expressed in the heart and endoderm derivatives 

such as the gut and lung (650-653).  A detailed description of their tissue distribution, 

function and regulation will be discussed in the following section, with an emphasis on 

the cardiac GATA factors. 

1.4.4.2.3.1. GATA1 

1.4.4.2.3.1.1. Tissue distribution and in vivo role of GATA1 

GATA1 is the founding member of the GATA transcription family and was originally 

identified for its ability to bind functionally important DNA regulatory elements found in 

globin genes (654;655).  Expression of GATA1 is restricted to erythrocytes, 

megakaryocytes, eosinophils, mast cells and multipotential precursor cells within the 

hematopoietic system (628;655-657).  Inactivation of the mouse Gata1 gene causes 

embryonic death by E10.5-11.5 due to severe anemia (658;659).  Primitive erythroid 

precursors were not produced in Gata1-/- mice and differentiation of erythrocytes and 

megakaryocytes did not occur (658-660).  Likewise, in vitro differentiated GATA1 null 

ES cells failed to maturate past the proerythroblast stage and undergo rapid apoptosis 

(618).  The murine Gata1 gene is located on the X chromosome.  Takahashi S et al 

demonstrated that male chimeras, which had deletion of the Gata1 erythroid promoter, 

die at E12.5 due to an arrest in primitive erythropoiesis, a phenotype that was identical 

to that observed with Gata1 null mice (661).  Subsequent analysis of hemizygous 

female embryos revealed that GATA1 is also vital for terminal megakaryocyte 

differentiation (662).  These studies demonstrate an absolute requirement for GATA1 in 

differentiation of primitive hematopoietic cells. 

Outside of the hematopoietic system, the sole site of GATA1 expression is in the 

Sertoli cells of the testis, starting at postnatal day 7 in mice and lasting during adulthood 

(663;664).  Several studies have shown that gene promoters that are potentially 

important for Sertoli cell function can be activated by GATA1 (665;666).  However, the 

specific role of GATA1 in Sertoli cells remains elusive. 

1.4.4.2.3.1.2. GATA1 in haematological diseases 
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Since GATA1 has been shown to be essential for hematopoiesis, it is easily 

acceptable that mutations in the Gata1 gene could cause haematological diseases.  

Interestingly, missense mutations in the N-finger of GATA1 have been identified in 

several families with inherited anemia or thrombocytopenia (667-669).  One of these 

mutations (R216Q) affected DNA binding whereas the other amino acid substitution 

abolished interactions between GATA1 and FOG-1 (670).  Moreover, mutations in the 

exon 2 (N-terminus) of GATA1 have also been found in neonates with Down syndrome-

related acute leukemia (671;672).  In this case, an alternative short form of the GATA1 

protein, which lacks the first 83 amino acids, is translated from a downstream ATG 

(Met84) sequence. 

1.4.4.2.3.1.3. Regulation of GATA1 

GATA1 displays the most restricted pattern of expression compared to GATA2 

and GATA3.  The Gata1 gene is transcribed from two different promoters; the most 

proximal enhancer is responsible for expression of Gata1 in the hematopoietic cells 

whereas the most distal promoter directs it expression in the Sertoli cells of the testis 

(673-675).   

In addition, GATA1 can also be modified at the protein level by acetylation, 

phosphorylation, self-association and interaction with other transcription factors.  Six 

different phosphorylation sites have been mapped to the N-terminal domain of GATA1 

and a seventh in the C-terminal zinc finger (676).  It was first reported that 

phosphorylation of GATA1 did not affect its DNA binding affinity but more recent data 

have suggested otherwise (676;677).  The level of GATA1 phosphorylation was shown 

to increase following induction of erythroid K562 cells, a cell line derived from a patient 

with myelogenous leukemia, and this increased its affinity for GATA binding elements.  

An important way by which GATA1 is regulated is acetylation, which stimulates its DNA 

binding capacity and enhances transcription of target genes (678).  Mutation of the 

main sites of acetylation, which correspond to lysines 246 and 252 in the N-motif and 

lysine 312 in the C-motif, eliminated the ability of GATA1 to promote erythroid 

differentiation, suggesting that this modification is essential for its function during 

hematopoiesis (679).  Consistent with this, similar mutations prevented differentiation of 

416B myeloid cells to megakaryocytes (620).  Recently it was also shown that 

acetylation and phosphorylation cooperate to trigger degradation of the GATA1 protein 



89 

 

 

(680).  This suggest that the acetylated protein can remain at target promoters until its 

degradation is activated in response to phosphorylation-mediated signalling.  Thus, this 

is a novel mechanism by which the transcriptionally active GATA1 protein is 

continuously and carefully regulated during hematopoiesis. 

Several studies have demonstrated a role for the N-terminal zinc finger in 

stabilization of the GATA1/DNA complex as well as influence the specificity of binding.  

In an attempt to understand the mechanisms that regulate GATA1, Crossley M et al 

found that GATA1 could self-associate through the two zinc finger domains and form 

protein complexes that synergistically stimulate transcription (681).  More detailed 

studies demonstrated that the two zinc fingers do not homodimerize but rather make 

intermolecular contacts and that these contacts were greatly reduced when both zinc 

finger subdomains were mutated (634).  Transgenic mice with mutations in the three 

lysine residues contributing to self-association of GATA1 recapitulated the Gata1-null 

mouse phenotype, providing the first line of evidence that self-association of GATA1 is 

important for mammalian erythroid development in vivo (682).  Lastly, protein-protein 

interactions play significant roles in developmental processes and GATA1, as well as 

GATA2 and GATA3, have been shown to interact with a number of proteins, including 

members of the FOG, S1, EKLF and PU.1 families (683). 

1.4.4.2.3.2. GATA2 

1.4.4.2.3.2.1. Tissue distribution and role of GATA2 

In the hematopoietic system, GATA2 is expressed in megakaryocytes, mast 

cells and hematopoietic progenitor cells, where it overlaps with GATA1 expression, as 

well as early erythrocytes.  Disruption of the Gata2 locus results in embryonic lethality 

by E10-11 due to anemia (684).  Severe defects in both primitive and definitive 

erythropoiesis were observed as well as abnormal myelopoiesis and lymphopoiesis, 

suggesting that GATA2 plays a critical role in the differentiation of early hematopoietic 

progenitor cells.  Further experiments using chimeras generated from Gata2-/- ES cells 

and in vitro differentiation of Gata2 null ES cells revealed a drastic reduction in all 

hematopoietic compartments, including blood, bone marrow, spleen and thymus.  

Consistent with this, an in vitro differentiation assay using Gata2 deficient ES cells 

showed that GATA2 is required more specifically for the proliferation of multipotent 

hematopoietic progenitors and mast cells, but is dispensable for terminal differentiation 
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of erythrocytes and macrophages (685).  Moreover, enforced expression of GATA2 in 

primitive hematopoietic cells blocks erythrocyte differentiation (686).  These studies all 

point to an essential role for GATA2 in the proliferation of hematopoietic stem cells and 

suggest that a decrease in its expression levels is required to induce differentiation.  In 

addition, GATA2 plays a second role during the ontogeny of HSCs, being required for 

expansion of the HSC population.  This was demonstrated by examining the effects of 

Gata2 gene dosage on the generation of HSCs throughout mouse development.  Ling 

KW et al observed reduced production and expansion of the HSCs in the aorta-gonad-

mesonephros region in presence of a haploid dose of GATA2 (687).  In contrast, 

minimal changes were seen in the yolk sac, fetal liver and adult bone marrow. 

In addition to the hematopoietic system, GATA2 is expressed in endothelial cells, 

the inner ear, the brain and adipocyte precursor cells (688-692).  GATA2 and GATA3 

are both expressed in overlapping regions in the otic epithelium at E10.5 but become 

more distinct as development progresses (692).  Although it was demonstrated that 

Gata2 null embryos do not show any defects in the inner ear before death at E10.5, a 

drastic reduction in Gata2 transcripts were detected in Gata3-/- otic epithelium.  These 

results highly suggested that GATA3 may compensate for the lack of GATA2 in early 

ear morphogenesis and that both GATA factors act in the same pathway, placing 

GATA2 downstream of GATA3.  More experiments are needed to better understand the 

function of these proteins in ear development. 

A role for GATA2 in fat cell formation has also been proposed.  GATA2 and -3 

are expressed in murine adipocyte precursors but not in mature adipocytes (691).  

Continuous expression of these two GATA factors in preadipocytes suppresses 

terminal differentiation into mature adipocytes.  Consistent with this, Gata3-/- ES cells 

were shown to exhibit enhanced capacity to form adipocytes (691).  The inhibitory 

effects of GATA factors on adipogenesis may be mediated, in part, through suppression 

of the peroxisome proliferator activated receptor gamma (691). 

1.4.4.2.3.2.2. GATA2 in haematological disorders 

Based on its pattern of expression, the Gata2 gene is likely to be associated 

with haematological disorders.  However, based on the results of in vitro and in vivo 

experiments, it has been hypothesized that reduced expression of GATA2 could lead to 

aplastic anemia (AA), a bone marrow syndrome characterized by decreased number of 
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hematopoietic stem cells (693).  Consistent with this, different groups found a 

remarkable reduction of Gata2 transcripts in patients with AA (694-696).  Overall, 

decreased expression of GATA2 might be responsible for the development of clinical 

features of the disease. 

More recently, mutations in human Gata2 have been discovered in chronic 

myeloid leukemia (CML).  Of note, in a screen of 85 CML cases, Zhang S et al 

observed a L359V substitution within the second zinc finger of GATA2 as well as an in-

frame deletion of 6 amino acids spanning the C-terminal border of the first zinc finger 

(697).  The L359V substitution was associated with increased transactivation activities 

of GATA2 as well as enhanced downregulation of PU.1 activity, which is required for 

myeloid cell differentiation.  Moreover, when this mutant was introduced into the HL-60 

leukemic cell line, it disrupted myleomonocytic proliferation and differentiation in vitro, 

suggesting that GATA2 may play a role in acute myeloid transformation. 

1.4.4.2.3.3. GATA3 

1.4.4.2.3.3.1. Tissue distribution and function in the hematopoietic system 

GATA3 was first described as a transcription factor that binds the TCR-α gene 

enhancer (698).  In the hematopoietic system, expression of GATA3 is confined to T 

lymphocytes and natural killer cells.  Targeted inactivation of Gata3 in mice leads to 

embryonic lethality by E11-12 and mutant embryos display severe anomalies including 

massive internal bleeding, growth retardation, severe deformities of the brain and spinal 

cord, and defects in fetal liver haematopoiesis (699).  Gata3 null mice also have 

reduced accumulation of tyrosine hydroxylase (Th) and dopamine beta-hydroxylase 

(Dbh) mRNA, leading to a reduction in the synthesis of noradrenaline in the sympathetic 

nervous system (700).  Feeding pregnant mice with catechol intermediates partially 

rescued the embryonic lethality thus indicating that noradrenaline deficiency was the 

cause of death.  The lethal effect of Gata3 inactivation could be bypassed by using 

antisense oligonucleotides for GATA3 in fetal thymic cultures (701).  In addition, RAG2-/- 

complementation experiments in vivo demonstrated that the differentiation of GATA3 

null T cells was blocked at or before the CD4-CD8- DN stage of thymocyte development 

(702).  Thus, GATA3 is required for the development of the T cell lineage.   

In addition, GATA3 plays a central role in regulating CD4+ T helper 2 (Th2) cell 

differentiation.  Initially, GATA3 was proposed to regulate IFN-γ gene expression in Th1 
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cells but subsequently, its expression was found to be restricted to Th2 cells (703).  

Using representational difference analysis, Zheng W and Flavell RA found that GATA3 

was upregulated during Th2 cell differentiation.  Furthermore, they observed that 

reducing GATA3 levels in Th2 cells, by using antisense oligonucleotides, prevented the 

expression of all Th2 cytokine genes.  In addition, forced expression of GATA3 was 

able to repress Th1 development in such a way as to induce Th2 cytokines, namely IL-4, 

IL-5, IL-13, IL-10 and IL-6 (704). In conclusion, GATA3 is best known to function as a 

master regulator of Th2-cell differentiation. 

1.4.4.2.3.3.2. Functions of GATA3 in organs outside the hematopoietic lineage 

In addition to the hematopoietic system, GATA3 is expressed in a variety of 

tissues including cells of the central and peripheral nervous system, kidney, liver, heart, 

mammary glands, endothelial cells, ES cells, in the inner ear and adipocyte precursors 

(692;705-708).  A role for GATA3 in mammary glands was also proposed in recent 

years (709;710).  Interestingly, Asselin-Labat ML et al showed that lack of Gata3 in 

mammary progenitor cells results in expansion of luminal progenitors and concomitant 

block in differentiation.  GATA3 expression was also found to be a marker for well-

differentiated tumours in microarray studies of breast cancer (711).  In addition, 

mutations in the Gata3 gene in humans have also been found in a subset of patients 

with breast tumours, indicating a potential tumour suppressor role (712).   

Recently, a role for GATA3 in heart development was proposed (706).  Gata3 

null mice that were treated with sympathomimetic β-adrenergic receptor agonist, which 

lengthens survival up to E18, developed cardiac anomalies including ventricular septal 

defects, double outlet right ventricle, persistent truncus arteriosus and aortic arch 

defects.  Interestingly, these defects are similar to those obtained in mice lacking Gata4 

or Gata6 and in compound Gata4/Gata6, Gata4/Gata5 and Gata5/Gata6 embryos.  A 

detailed review of the cardiac GATA factors will be given in the following sections and 

the phenotype of mice haploinsufficient for Gata4/Gata5 and Gata5/Gata6 will be 

discussed extensively in chapter 3 (490).  These preliminary results support a role for 

GATA3 in cardiac development.   

1.4.4.2.3.4. GATA4 

1.4.4.2.3.4.1. Tissue distribution and in vivo role in embryonic cardiac 

development 
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Analysis of regulatory elements in cardiac specific promoters led to the cloning of 

an additional member of the GATA family, GATA4 (713).  GATA4 exhibits a tissue-

specific pattern of expression in mice, where it is detected in the heart, gut, gonads, 

ovaries, liver, visceral endoderm and parietal endoderm (366;652).  GATA4 is one of 

the earliest transcription factors to be expressed in cardiac precursor cells.  In the 

mouse, Gata4 transcripts can be detected in the precardiac mesoderm at E7.0-7.5 and 

its expression continues during formation of the heart tube at E8.0, in the endocardium 

and myocardium (9;366;652;714).  As the heart tube elongates and loops (E9.0), 

GATA4 expression can be found in the sinus venosus, throughout the atrial and 

ventricular chambers and in the conus (or outflow tract).  Between E9.5 and E12.5, 

abundant GATA4 mRNA can be detected throughout the myocardium, epicardium, 

endocardial cells and endocardial cushions of the AVC and OFT.  This specific 

expression persists at all other stages of heart development and in the adult. 

The first evidence for a role of GATA4 in the heart came from studies in pluripotent 

P19 embryonic carcinoma cells.  Overexpression of GATA4 in these cells increased 

differentiation of beating cardiomyocytes while its inhibition using antisense RNA 

prevented cardiomyocyte differentiation and induced massive apoptosis of pre-cardiac 

cells (715;716).  Inactivation of the mouse Gata4 gene leads to embryonic lethality by 

E8.0-9.0 due to a failure of ventral morphogenesis and heart tube formation (34;35).  

Tetraploid complementation was able to rescue the cardia bifida phenotype, suggesting 

that this was due to impaired function of GATA4 in extraembryonic visceral endoderm 

(717).  However, Gata4-/- embryos died around E9.5 and displayed cardiac anomalies 

including disrupted heart looping, absence of endocardial cushion formation, lack of a 

proepicardial organ and hypoplastic ventricular myocardium.  This early lethality 

precluded the analysis of the role of GATA4 in later stages of cardiac development, 

namely during valve formation and maturation of the cardiac chambers.   

A series of elegant conditional deletions of the Gata4 gene have been performed 

in the last decade to circumvent the early embryonic lethality of Gata4 null embryos; 

this tremendously helped to better define the role of this protein during cardiovascular 

development (Table 1.4).  Embryos homozygous for a GATA4 point mutation, which 

abolishes its interaction with FOG-2, die at E12.5 (489).  Gata4Ki embryos had 

myocardial thinning, common atrioventricular canal, semilunar cardiac valve anomalies 

and DORV.  GATA4 haploinsufficiency in mice causes similar defects, indicating that  
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Table 1. 4.  Cardiac phenotypes associated with loss of function of the GATA factors
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cardiac development is sensitive to small changes in GATA4 expression levels.  Early 

deletion of Gata4 by Nkx2.5cre resulted in embryonic lethality by E11.5 with major 

defects including endocardial cushion defects, right ventricular hypoplasia and 

myocardial thinning (123).  In the same study, the authors reported that late deletion of 

Gata4 by αMHCcre caused myocardial thinning associated with reduced myocytes 

proliferation as well as DORV.  Specific deletion of Gata4 in the SHF using Mef2CCre 

transgenic mice results in lethality by E13.5 with cardiac defects including right 

ventricular hypoplasia, myocardial thinning, decreased myocytes proliferation and 

ventricular septal defects (718).  Outflow tract defects were not observed using this 

strategy and previous work has shown that GATA4 is not broadly expressed in the 

pharyngeal mesoderm (123).  Alternatively, the authors suggested that GATA5 and 

GATA6 could compensate for GATA4 in the SHF since all three cardiac GATA factors 

are co-expressed in this region.  To further investigate the role of GATA4 in endocardial 

cell development, the Gata4 locus was mutated by crossing with Tie2-Cre mice, which 

deletes in the endothelial cells (719).  By E12.5, 80% of Gata4T2del embryos had 

hypocellular cushions and mutant endothelium failed to undergo EMT, resulting in 

embryonic death.  These results revealed that GATA4 acts to promote cushion 

mesenchyme growth and remodelling, which is consistent with its expression pattern in 

endocardial cushions.  Overall, these studies clearly demonstrate that GATA4 is 

required for multiple aspects of cardiac morphogenesis during embryonic development. 

1.4.4.2.3.4.2. Role of GATA4 in postnatal heart development 

Given the importance of GATA4 in embryonic cardiovascular development and its 

expression in the adult heart, it is not surprising that this protein also plays a critical 

function in tissue-specific and inducible gene expression in the adult heart.  Indeed, 

necessary GATA binding elements have been identified within the promoters of most 

cardiac expressed genes, including atrial natriuretic factor (ANF), b-type natriuretic 

factor (BNP), α-myosin heavy chain (α-MHC), β-myosin heavy chain (β-MHC), cardiac 

troponin C and angiotensin type 1 receptor (AT1R) (720-722) (650).  Adenoviral 

mediated transfer of antisense GATA4 into cultured postnatal cardiac myocytes 

attenuated the expression of several target genes (723).  In addition, GATA4 has also 

been implicated as a critical regulator of inducible gene expression.  GATA4 has been 

shown to respond to hypertrophic stimuli like pressure overload, phenylephrine, 

endothelin-1 as well as mechanical stretch (721;722;724-727).  Other studies revealed 
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that GATA binding sites were required for the activation of the β-MHC and AT1R 

following aortic constriction (721;722).  GATA sites are also required for in vivo 

response of BNP to angiotensin II (728).  A direct role for GATA4 in regulating the 

hypertrophic response was first described when overexpression of GATA4 in cultured 

neonatal myocytes or in the heart of transgenic mice induced cardiomyocyte 

hypertrophy (726).  Furthermore, expression of a dominant negative GATA4 engrailed 

repressor fusion protein or depletion of GATA4 using antisense strategy blocked 

cystoskeletal organization and features of myocytes hypertrophy in response to PE and 

ET-1 (726;729).  Overall, these studies implicate GATA4 as a necessary and sufficient 

effector of the hypertrophic response. 

Several studies support a role for GATA4 as a critical regulator of cardiomyocyte 

survival.  Inhibition of GATA4 expression in P19 embryonal carcinoma cells blocks 

expression of downstream target genes as well as triggers massive apoptosis (716).  

Both in vitro and in vivo experiments have shown that GATA4 is susceptible to 

doxorubicin cardiotoxicity, resulting in decreased transcription of target genes in 

postnatal cardiomyocytes and increased cell death, suggesting that GATA4 is required 

for myocyte survival (730).  Furthermore, deletion of Gata4 from postnatal and adult 

cardiomyocytes was shown to promote cardiomyopathy as well as functional 

decompensation and rapid heart failure following aortic constriction, confirming this 

hypothesis (731).  Lastly, partial Gata4 deficiency also enhanced cardiac hypertrophy 

and heart failure associated with cardiomyocyte cells death and increased fibrosis (732).  

Overall, these studies demonstrate that GATA4 does not only play an important role 

during cardiac development but is also required in the adult to protect against 

hypertrophy and for cardiomyocyte survival. 

1.4.4.2.3.4.3. Role of GATA4 in other organs 

In vivo studies evaluating the role of GATA4 in the developing gonad was not 

possible until recently because of the early embryonic lethality observed in Gata4-/- 

embryos.  Evaluation of gonadal differentiation during embryonic development was 

made possible by studying Gata4ki and Fog2-/- animals.  Gata4ki and Fog2-/- male 

embryos had an absence of testicular cords and failure to express genes required for 

the onset of testosterone synthesis, Sox9 and MIS (645).  These studies showed that in 

males, interaction between GATA4 and its cofactor FOG-2 are essential for normal 
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determination and differentiation of the gonads.  Moreover, GATA4 was found to 

differentially activate the expression of steroidogenic enzymes, hormones and 

transcription factors known to be essential for gonadal development (733).  

GATA4 as well as the other two cardiac GATA proteins are expressed in the 

small intestine in a spatio-temporal manner.  Several groups have detected GATA4 

protein throughout the small intestine except the distal ileum, where it functions in 

maintaining jejuna-ileal specific identity (734;735).   A key role for GATA4 in the 

regulation of intestinal gene expression was provided by the observation that 

expression of the differentiation marker liver fatty acid binding protein is attenuated in 

Gata4-null cells isolated from the small intestine of chimeric mice (736).  Consistent 

with this, specific deletion of Gata4 in the small intestine, by using two different 

targeting strategies, resulted in attenuation of enterocyte gene expression from the 

jejunum but not ileum (737).  

In addition, GATA transcription factors are increasingly recognized as playing a 

role in human cancers.  For example, promoter hypermethylation of GATA4 has been 

reported in human lung, ovarian, gastric, colorectal and esophageal cancer (738-742).  

Moreover, in colon and gastric cancers, GATA4 target genes, such as disabled-2 and 

inhibinα, have been found to be epigenetically silenced.  The GATA factors have also 

been associated with pancreatic cancer.  Of note, it was observed that GATA4 was 

upregulated in pancreatic intraepithelial neoplasia, along with other markers such as 

GATA5, GATA6, Villin1, Villin2, Sox2 and HoxA5 (743).  Finally, allelic imbalances in 

the chromosome locus of GATA4, 8p23.1-p22, is a frequent area of chromosomal 

imbalance in neoplasms (744).  In conclusion, these observations suggest that GATA4 

is able to regulate a number of antitumor genes.   

1.4.4.2.3.4.4. Regulation of GATA4 

GATA4 activity is regulated by numerous posttranslational modifications including 

phosphorylation, acetylation and sumoylation.  Phosphorylation on Ser105 by ERK and 

p38 MAPK enhances both the DNA-binding and transcriptional activities of GATA4 as 

well as plays a pivotal role in the hypertrophic response (729;745).  A role for ERK1/2 

signalling through GATA4 in regulating the hypertrophic response was suggested by 

the observation that dominant negative GATA4-engrailed expressing adenovirus 

attenuated MEK1-induced cardiac hypertrophy (745).  While both ERK and p38MAPK 
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increase the potency of GATA4, glycogen synthase kinase 3β (GSK3β) negatively 

regulate its activity.  Phosphorylation of the N-terminal transactivation domain of GATA4 

by GSK3β was shown to increase the nuclear export of GATA4 and this effect was 

reversed when the cells were treated with leptomycin B (746).  In addition, in vitro 

phosphorylation via protein kinase A on serine 261 leads to the recruitment of CBP 

(747).  More recent studies have demonstrated that GATA4 is a direct target of protein 

kinase C in cardiomyocytes, which phosphorylates GATA4 within its C-terminal domain 

(748).  This results in enhanced DNA binding and transcriptional activity where GATA4 

physically interacts with STAT1 to activate angiotensin II and other growth factor 

inducible promoters.   

Besides phosphorylation, GATA4 activity can also be influenced by acetylation.  

Several studies have suggested that GATA4 may be acetylated in cardiomyocytes 

during the hypertrophic growth response, and event that seems to be mediated by p300.  

Of note, a dominant-negative form of p300 was shown to inhibit agonist-induced 

hypertrophy as well as GATA4 dependent transcriptional activity in cardiomyocytes 

(749).  The authors also observed that transgenic mice with cardiac specific 

overexpression of p300 were able to promote myocardial hypertrophy, which was 

associated with increased GATA4 acetylation and DNA binding activity.   

Finally, the transcriptional activity of GATA4 is also affected by sumoylation from 

small ubiquitin-like modifiers (SUMO).  Interestingly, GATA4 was shown to be 

sumoylated by SUMO1 on lysine 366, which resulted in enhanced transcriptional 

activity (750).  When this lysine was mutated, there was less GATA4 protein in the 

nucleus, suggesting that SUMO modification also modulates GATA4 nuclear 

localization.   

Overall, these modifications are important as they affect the DNA binding activity 

as well as transcriptional activity of GATA4, which plays critical roles during embryonic 

development.  Thus, mutation of one residue that abrogates either acetylation, 

phosphorylation or sumoylation can have devastating consequences during cardiac 

development as it will prevent interactions of GATA4 with cardiac cofactors and reduce 

target gene activation. 

1.4.4.2.3.4.5. GATA4 in congenital heart disease 



99 

 

 

The human Gata4 gene maps to chromosome 8p22-23.  The first evidence of a 

role for GATA4 in CHD was suggested when deletion of the distal arm of the 

chromosome 8p was found in heterozygous individuals with septal and valve defects 

(751).  Subsequently, missense and nonsense Gata4 mutations, G296S and E359del, 

were identified in familial cases of ASDs (127).  The G296S mutation decreased 

GATA4 DNA-binding affinity and transcriptional activity whereas the frameshift mutation 

impaired transcriptional activity.  Additional heterozygous GATA4 mutations have since 

been identified in patients with different forms of CHDs (470;752;753).  Of note, Nemer 

G et al reported the presence of a missense mutation, E216D, in patients with tetralogy 

of Fallot that resulted in decreased transcriptional activity of GATA4 (754).  To date, 

these studies have suggested that the underlying mechanism of pathogenesis is 

haploinsufficiency.  

1.4.4.2.3.5. GATA5 

1.4.4.2.3.5.1. Tissue distribution and in vivo role in cardiac development 

GATA5 was first identified in Xenopus and chicken by low stringency 

hybridization to the GATA1 DNA binding domain and was later found to be expressed in 

the heart and gut (652;755).  Expression of GATA5 is restricted both spatially and 

temporally in embryonic and postnatal development.  The GATA5 protein is expressed 

in the heart, the lung bud, the allantois, urogenital ridge, bladder and gut epithelium 

during embryonic development and in the bladder, lung, stomach and small intestine in 

the adult (366;652;756).  In the heart, GATA5 transcripts are initially detected in the 

precardiac mesoderm at E7-7.5 and subsequently in the primary heart tube at E8.0.  

However, between E9.5 and E12.5, its expression becomes more restricted to the 

endocardial cells and endocardial cushions of the AVC and OFT.  Shortly thereafter 

(E16.5), GATA5 transcripts can be no longer detected within the heart.  In addition, 

GATA5 mRNA and protein can also be detected in the epicardium, which is thought to 

contribute to interstitial cardiac fibroblasts, coronary smooth muscle cells and 

endothelial cells (383). 

The dynamic expression of GATA5 in endocardial cells suggests a specialized 

role for this transcription factor in endocardial development.  Consistent with this, 

mutation of the Gata5 gene, encoded in the faust locus, in zebrafish causes embryonic 

lethality and results in cardia bifida, similar to the phenotype observed in Gata4 null 
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mice.  faust mutants had a significant loss of myocardium and showed a loss in the 

expression of several myocardial genes including Nkx2.5 and Gata4 (33).  In addition, 

loss of function studies in an in vitro model of endocardial differentiation abolishes 

expression of terminal differentiation markers and inhibit endocardial cell differentiation, 

suggesting an important role for GATA5 in endocardial differentiation (367).  However, 

targeted inactivation of Gata5 in mice did not produce a detectable cardiac phenotype; 

null mice were viable and fertile but female Gata5-/- mice displayed genitourinary tract 

abnormalities (Table 1.4) (757;758).  Given the prominent roles of GATA5 in the heart 

in the zebrafish and other model systems, this was a surprising result and it raised the 

possibility that GATA4 could compensate for GATA5 function in the heart.  Alternatively, 

the strategy used, which targeted the first exon may have produced a null allele.  

Indeed, it was demonstrated that two different Gata5 transcripts could be produced, one 

that corresponded to the full length GATA5 protein and one that lacked the entire exon 

2 but contained the DNA binding zinc finger and the C-terminal activation domain 

(759;760).  Further evidence from our lab demonstrated that this N-terminal truncated 

protein, which lacks the N-terminal finger, retains its ability to bind DNA and activate 

target genes (365).  So, the presence of a possible truncated protein cannot be ruled 

out. 

As describe in this thesis, we have produced a Gata5 null mouse line and we 

show that loss of function of Gata5 in mice leads to bicuspid aortic valve formation, 

which is consistent with the expression of GATA5 in endocardial cells and endocardial 

cushions of the OFT (Table 1.4).  Our strategy targeted exons 3 to 6, which codes for 

the C-terminal zinc finger and the whole C-terminal region, therefore ensuring that both 

isoforms would be knocked down.   

1.4.4.2.3.5.2. Role of GATA5 in other organs 

A key role for GATA5 in endoderm development has been described in Xenopus, 

where ectopic expression of GATA5 re-specifies ectodermal and mesodermal cells 

towards an endodermal fate (761).  This function in endoderm development seems to 

be conserved in zebrafish.  Defective formation of endodermal derived organs, 

including the liver, pancreas, thymus and thyroid, was observed in the faust mutants in 

addition to the cardia bifida phenotype (33;762).  GATA5 expression is also observed in 

the endoderm in avians and mammals but, in contrast, deletion of the Gata5 locus in 
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the mouse had no consequence on endoderm development, suggesting that this 

function is not conserved in mammals (384;756;763).   

Consistent with the expression of GATA5 in the urogenital ridge during 

development, it was shown that female Gata5 null mice exhibit pronounced anomalies 

of the genitourinary tract including vaginal and uterine defects and hypospadias (757).  

However, a direct role in bladder, intestine, stomach or lung development has not been 

reported yet.   

There is growing evidence to link the loss of Gata5 gene function, and also the 

other cardiac GATA factors, with malignancy of various organs.  In this regard, 

diminished GATA4/-5 expression has been reported in ovarian, gastric, colorectal and 

lung cancers (738;739;741;764).  In addition, the chromosome regions of GATA4 and 

GATA5 are frequent targets of deletion in neoplasms (765).  Epigenetic silencing of 

GATA5 by aberrant methylation has also been reported in primary gastrointestinal and 

lung cancers (738;739).  Together, these observations suggest a role for GATA5 in cell 

differentiation.   

1.4.4.2.3.5.3. Regulation of GATA5 

Enhancers that govern Gata5 gene expression have only been reported in 

chicken so far.  Two promoters differentially regulate GATA5: the proximal promoter 

directs Gata5 gene expression within a subset of mesodermal cardiac cells early in 

heart development whereas the more distal enhancer is responsible for expression in 

the endoderm (759;766;767).  Although the proximal enhancer is initially expressed in 

the cardiac crescent, heart expression becomes confined to a subset of myocardial 

cells in the common atrial chambers by E8.5 and in the epicardium and endocardial 

cushions of the AVC by E9.5. 

 In addition to promoter regulatory elements located in the Gata5 locus, the use 

of an alternative first codon can also regulate GATA5 activity.  Of note, the gene 

encoding chicken and mouse GATA5 possesses two alternative non-coding exons that 

produce two different proteins by differential splicing of the respective transcripts (759) 

(760).  Interestingly, the truncated GATA5 protein is composed of the C-terminal zinc 

finger and C-terminal transactivation domain and retains the ability to transactivate 

target promoters albeit with less efficiency than full length GATA5.  These findings 
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suggest that the expression and function of GATA5 might be more complex than 

previously appreciated.  

1.4.4.2.3.6. GATA6 

1.4.4.2.3.6.1. Tissue distribution and specific role in cardiac development 

The GATA6 protein can be detected in the heart, lungs, urogenital ridge, bladder 

and epithelium of the gut during embryonic development and in the gastrointestinal tract, 

bladder, lungs and the heart in the adult (366;756).  In the heart, Gata6 transcripts are 

first detected in the precardiac mesoderm at E7.0-7.5, where they co-localize with 

GATA4 and GATA5.  Up to E9.5, the expression of GATA6 is almost identical to that of 

GATA4 within the developing heart, with the highest levels detected in the posterior 

regions.  By E11.5, Gata6 mRNA can be detected in the myocardium of the developing 

atria and ventricles, the endocardium and in the outflow tract, albeit at lower levels than 

GATA4.  In contrast to GATA4, Gata6 transcripts are observed in the caval veins and 

dorsal aorta between E12.5 and E13.5, with expression confined to vascular smooth 

muscles (768-770).  Cardiac expression of GATA6 persists in later stages of cardiac 

development and in the adult. 

In Xenopus, expression of GATA6 can first be detected at the beginning of 

gastrulation in the mesoderm and cardiac progenitors (771).  GATA6 expression 

decreases in heart precursors as the cardiac gene transcription machinery commences.  

Elevating GATA6 expression beyond this time in cardiac cells delays the onset of 

cardiomyocyte differentiation, suggesting that GATA6 maintains the heart cells in a 

precursor state, needing to be downregulated for heart cells to mature.  Loss of function 

in Xenopus and zebrafish, using antisense morpholino oligonucleotides, results in 

heartless embryos with a concomitant drastic reduction in Bmp-4 and Nkx2.5 gene 

expression (772).  This supports a role for GATA6 in the maturation of the cardiac 

progenitors rather than their initial induction.  These studies provided the first evidence 

for a potential role of GATA6 in heart development.  Targeted inactivation of Gata6 in 

mice leads to embryonic lethality shortly after implantation (E6.5) owing to defects in 

extraembryonic endoderm differentiation, precluding assessment of the function of 

GATA6 in cardiovascular development (Table 1.4) (773).  Analysis of rescued Gata6-/- 

embryos revealed no major heart phenotype, suggesting that this GATA factor was 

dispensable for early heart formation in mice (774).  However, it was recently shown 
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that specific deletion of Gata6 in the myocardium, using the Nkx2.5Cre transgenic mice, 

leads to embryonic lethality between E15.5-E20.5 due to irregular septal thickness and 

ventricular septal defects (775). 

GATA6 is abundantly expressed in vascular smooth muscle cells (VSMC) during 

mouse embryonic and postnatal development (768).  To better determine the role of 

GATA6 in VSMCs, conditional inactivation of GATA6 was achieved using the SM22α 

promoter, which is expressed in neural crest derived SMC, mesoderm-derived SMC 

and in cardiac myocytes.  Mutant embryos died perinataly from cardiac anomalies 

including a spectrum of aortic arch patterning and cardiac OFT septation defects.  An 

identical phenotype was observed when GATA6 was specifically inactivated with Wnt1-

Cre reporter mice in neural crest cells.  The phenotype of interrupted aortic arch and 

PTA, a defect in which the truncus arteriosus fails to separate into an aorta and 

pulmonary artery before birth, is recapitulated in semaphorin 3C null mice, a signalling 

molecule critical for vascular patterning (332;776).  Interestingly, Gata6 mutant embryos 

showed reduced expression of semaphoring 3C.  These results support a role for 

GATA6 in the regulation of aortic arch patterning and cardiac outflow tract septation, at 

least in part through activation of semaphoring 3C gene expression. 

Mice lacking one copy of each Gata4 and Gata6 are embryonic lethal and show 

myocardial thinning and outflow tract defects (777).  This suggests that the two GATA 

factors can partially compensate for each other, and that a threshold of GATA4 and 

GATA6 is required for normal heart development.  These results may also reflect 

interactions of these two GATA factors, for activation of common target genes.  

Consistent with this, mice lacking both GATA factors do not develop hearts but have 

normal expression of cardiac progenitor cell markers in the cardiac crescent, 

suggesting that GATA4 and -6 have essential roles in ensuring that the progenitors 

follow a cardiac myocytes fate during heart development (778). 

Recently, mutations in GATA6 have been associated with CHDs, including 

tetralogy of Fallot, PTA and ASDs (473;779;780).  Three different mutations were 

located around the same cluster in the N-terminal domain of the GATA6 protein, 

another one in the second zinc finger and the fifth one in the NLS.  One of these 

mutations, A178V, was associated with increased transcriptional activity of mutant 

GATA6 (780).  The GATA6-E486 del mutant created a truncated protein that lacked the 
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C-terminal transactivation domain (779).  Moreover, this mutation abrogated the 

transcriptional activity of GATA6 on downstream target genes SEMA3C and plexin2A, 

which are required in the development of the OFT.  

1.4.4.2.3.6.2. Role of GATA6 in the liver and lungs 

In addition to the heart, the GATA6 protein is highly expressed in the liver, where it 

was shown to regulate the Hnf4 gene (781).  Moreover, development of the Gata6 null 

embryos arrest during gastrulation with a phenotype that is very similar to that of the 

Hnf4-/- embryos (773;781;782).  A role for GATA6 in liver formation was demonstrated 

by rescuing the Gata6 null embryos with wildtype extraembryonic visceral endoderm 

(774).  Rescued Gata6-/- embryos survived up to E10.5 and analysis of the phenotype 

revealed that hepatic cells failed to differentiate and the liver bud did not expand.  The 

authors suggested that the Gata6 phenotype might result from functional redundancy of 

GATA4 and GATA6 at the early stages of hepatic specification.   Consistent with this 

hypothesis, injection of morpholinos that inhibit both GATA4 and GATA6 completely 

eliminates the liver bud and prevents liver-specific gene expression (783). 

In addition to the liver, Gata6 mRNA is expressed in the fetal pulmonary epithelium 

(784).  Loss of function experiments, using antisense oligonucleotides and Gata6-/- 

chimeric lungs, results in branching morphogenesis and epithelial cell differentiation 

defects.  In addition, overexpression of GATA6 in transgenic mice using a pulmonary 

epithelium specific promoter causes a very similar phenotype, likely suggesting that 

proper levels of GATA6 are required for terminal differentiation of the pulmonary 

epithelium (785). 

1.4.4.2.3.6.3. Regulation of GATA6 

Original description of the cardiac GATA proteins suggested high similarity of their 

overall structure.  However, it has been established that in mouse, human, Xenopus 

and zebrafish GATA6 can exist as a longer polypeptide through usage of an alternative 

translation initiation codon (769;772;786).  This new GATA6 isoform contains an 

additional 146 amino acids in the N-terminal domain, is abundant in several tissues 

including the heart and has greater transcriptional activation potential. 

In avians and mammals, three distinct enhancer regions that affect cardiac 

expression have been identified in the Gata6 locus (787-789). In both species, the 



105 

 

 

GATA6 cardiac enhancer contained a binding site for Nkx2.5 that was essential for 

expression in cardiogenic cells.  A second enhancer was found to direct Gata6 gene 

expression to the atrioventricular conduction system; a more distal enhancer region can 

affect some expression in the gut (167;790;791). 

Overall, the available evidence support and essential role for all three cardiac 

GATA factors in heart development.  Moreover, these GATA factors interact together 

for some aspects of morphological events during heart development in diverse model 

organisms.  Combinatorial interactions between these factors and with other cardiac 

transcription factors is of critical importance as a mutation that impairs interaction 

between cofactors can have devastating consequences during embryonic cardiac 

development, which may subsequently result in CHDs.  
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Hypothesis 

GATA5, a member of the GATA family of transcription factors, is expressed in a 

spatial and temporal manner in the developing heart where it is predominantly found in 

endocardial cells and ECs of the OFT and atrioventricular canal between E9.5-E12.5 in 

the mouse.  Previous studies have established that Gata5 plays a critical role in 

differentiation of endocardial cells.  However, targeted deletion of Gata5 in mice did not 

produce a detectable phenotype, which could be attributed to the production of a 

shorter GATA5 isoform, which lacked the N-terminal.  Based on these observations, we 

generated a new Gata5 null allele, deleting the exons encoding the second zinc finger 

and whole C-terminus, to evaluate its role during cardiac morphogenesis.  I have shown 

that Gata5 null mice develop bicuspid aortic valves, with a penetrance of 26%.  As the 

aortic valve is formed from the endocardial cushions, we were also interested to find 

what cell type was responsible for this defect.  To that end, we generated a Gata5 

specific deletion in endothelial cells and again, this resulted in formation of BAVs, with a 

ratio of 21%. 

During heart development, the expression of the three cardiac GATA factors 

partially overlaps and it has also been shown that they can bind similar DNA regulatory 

elements and activate common target promoters.  Moreover, it was previously 

demonstrated that GATA4 and GATA6 genetically interact together during heart 

development in mice, Xenopus and zebrafish.  Based on these observations, we were 

interested to find out if GATA5 could genetically interact with GATA4 and GATA6 in 

cardiac morphogenesis.  To test this possibility, we decided to generate mice double 

heterozygous for Gata5 and/or Gata4 and Gata6.  I have showed that both sets of 

compound heterozygotes die perinataly and exhibit cardiac defects including double 

outlet right ventricle and VSDs.  These results, coupled with those of the Gata5 null 

mice, highly suggest that human GATA5 may be a potential candidate congenital heart 

disease causing gene.  Finally, this raises the possibility that subtle alterations in the 

level or activity of 2 cardiac GATA factors might  lead to congenital heart disease in 

human. 
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2.1. Abstract 

Bicuspid Aortic valve (BAV) is the leading congenital heart disease and occurs 

in 1-2% of the population. Genetic studies suggest that BAV is an autosomal dominant 

disease with reduced penetrance. So far only one gene, Notch1 has been linked to 

some BAV. Here, we show that targeted deletion of Gata5 in mice leads to hypoplastic 

hearts as well as partially penetrant BAV formation. Similar to Gata5 null mice, 

endocardial specific inactivation of Gata5 leads to BAV. In all cases, the observed 

BAVs resulted from fusion of the right-coronary and non-coronary leaflets, the subtype 

associated with the more severe valve dysfunction in human. Neither endocardial cell 

proliferation nor cushion formation was altered in the absence of GATA5. Rather, 

defective endocardial cell differentiation resulting from deregulation of several 

components of the Notch pathway as well as other important endocardial cell regulators 

may be the underlying mechanism of disease. The results unravel a critical cell 

autonomous role for endocardial GATA5 in aortic valve formation and identify GATA5 

as a potential congenital heart disease causing gene in human. Mice with mutated 

Gata5 alleles represent unique models to dissect the mechanisms underlying 

degenerative aortic valve disease and to develop much needed preventive and 

therapeutic interventions. 
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2.2. Introduction 

Proper formation and function of the heart valves is critical for unidirectional 

blood flow within the four chambered mammalian heart and valve dysfunction leads to 

serious cardiovascular complications. Valve disease, whether congenital or acquired, is 

a major clinical problem worldwide and valve replacement is the second leading cardiac 

surgery in North America. 

Bicuspid aortic valve (BAV) is the most common congenital cardiac 

malformation and occurs in 1-2% of the population (1). It is generally diagnosed in 

adulthood when deterioration of the abnormal leaflets becomes clinically evident with 

affected individuals developing valve disease 10 years earlier than those with normal 

aortic valve leaflets. Patients with BAV are at increased risks of developing serious 

complications, including aortic stenosis, aortic regurgitation and endocarditis; one third 

of these patients will in fact develop significant cardiovascular complications and many 

will require surgical interventions. Population studies have suggested that BAV may be 

responsible for more mortality and morbidity than all other congenital heart defects 

(CHD) combined (2). Despite this, our understanding of the mechanisms underlying 

BAV formation remains limited. BAV occur either in isolation or in association with other 

malformations such as coarctation of the aorta, ventricular septal defects and 

hypoplastic left ventricle (3-5). Genetic studies have established that BAV is a highly 

heritable trait with an autosomal dominant transmission and incomplete penetrance 

(6;7). So far, only one gene, Notch1, has been linked to BAV in human with mutations 

found in some but not all BAVs (8;9). Genome-wide scans have suggested linkages to 

several human chromosomal regions but no other disease causing genes have yet 

been identified (10). In animal models, BAVs have been found in a subset of mice 

lacking endocardial nitric oxide synthase (NOS3) or the cardiac transcription factor 

Nkx2.5 but neither gene has been associated yet with human BAV (11;12). Better 

knowledge of the molecular pathways governing valve development may help identify 

BAV causing genes. 

Over the past years, molecular and genetic analysis of heart development have 

started to identify genes and pathways involved at various stages of valvulogenesis (13). 

Valve development is a complex process that involves expansion and differentiation of 

endocardial cells, their migration following en endocardial-mesenchymal transformation 
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(EMT) to form endocardial cushions at the atrioventricular (AVC) canal and within the 

outflow tract (OFT). The AV cushions then give rise to the mitral and tricuspid valves 

whereas the aortic and pulmonary valves arise from the OFT. In addition to endocardial 

cells, other cell types participate in valve development, notably neural crest and 

secondary heart field derived cells, which play important roles in the formation of the 

OFT. Bone morphogenetic proteins BMP2 and 4 are critical myocardial derived signals 

that modulate the EMT. BMP and BMP-regulated transcription factors can promote both 

proliferation and differentiation of EC cells and are part of a complex regulatory network 

that must tightly regulate cell-cell interactions and cell fate throughout valvulogenesis. 

Mice lacking components of the BMP pathway or transcription factors that control the 

proliferation and differentiation of endocardial cells, such as Twist1, Msx, or the Notch 

target Slug1, have defective EMT. Similarly, proper levels of vascular endothelial 

growth factor (VEGF) are needed to promote proliferation and survival of endocardial 

cells prior to EMT (14;15). 

Another critical pathway for valve development is Notch, which plays multiple 

roles throughout valvulogenesis. Notch1, 2 and 4 and the Notch ligands DLL4 and 

JAG1 are expressed in endocardial cells where they regulate endocardial differentiation 

and EMT. The importance of this pathway is underscored by the finding that mutations 

of Notch1 are linked with human BAV and that mutations in JAG1 and Notch2 cause 

Alagille syndrome, an autosomal dominant disease that affects the cardiac OFT (16-18). 

JAG1 mutations have also been identified in other forms of CHD with EC involvement 

(19;20). Notch proteins are cell surface receptors that are cleaved by γ-secretase 

complex upon ligand binding, releasing the Notch intracellular domain, which then 

translocates to the nucleus, associates with RBP-Jκ to switch it from a transcriptional 

repressor to an activator. Notch target genes include transcription factors as well as 

signaling molecules such as neuregulin, VE-cadherin and the bHLH proteins Hey/Hrt, 

which regulate BMP signaling. Consistent with a critical role for the Notch pathway in 

endocardial cushion development, inactivation of several pathway components in mice 

produce cardiac defects (21). Endocardial Notch signaling is also required for 

endocardial-myocardial interactions, specifically in ventricular trabeculation, and may 

potentially explain the link between BAV and hypoplastic left ventricles (22). 

Other families of transcription factors are present in endocardial cells and 

regulate endocardial differentiation and valve formation. They include the forkhead 
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proteins FoxP1 and Foxc2 as well as the SOX proteins Sox4 and 9 (23-25). Tbox 

proteins have also emerged as important regulators of valvulogenesis; Tbx2 and Tbx3 

are required for establishing the AV boundary while Tbx20 promotes endocardial cell 

expansion and differentiation (26-28). Lastly, genetic and biochemical studies have 

suggested important roles for members of the GATA family of zinc finger proteins in 

endocardial cell expansion and differentiation. Tissue specific deletion of Gata4 in 

endothelial cells causes embryonic lethality by E12.5 because of defects in epithelial-

mesenchymal transformation, resulting in the formation of hypocellular endocardial 

cushion (29). In humans, mutations in GATA4 have been found in association with 

septal defects (30-32). More recently, mutations in another GATA gene, GATA6, which 

in the heart is expressed predominantly in myocytes as well as neural crest derived 

cells, have been reported in human CHD (33). In contrast to GATA4, which is 

expressed in both myocardial and endocardial cells, GATA5 expression in the heart is 

largely restricted to endocardial cells where it is transiently expressed during embryonic 

development (34;35). In vitro studies revealed a requirement for GATA5 for 

differentiation of committed cardiogenic precursors into endothelial endocardial cells 

(36). In zebrafish, faust (which encodes Gata5) mutants lack endocardial cells and have 

a reduced number of myocytes (37). 

In this study, we show that targeted inactivation of the Gata5 gene in mice 

affects heart development and leads to bicuspid aortic valve. Deletion of GATA5 

specifically from endocardial cells is sufficient to recapitulate the cardiac phenotype of 

Gata5 null mice, suggesting a cell autonomous function of GATA5 in regulating 

endocardial cushion differentiation. Mechanistically, we found that GATA5 regulates 

several pathways associated with endocardial cell differentiation, including BMP4, 

Tbx20, NOS3 and Notch. Together, the data reveal an important function for GATA5 in 

aortic valve development and identify GATA5 as an important regulator of mammalian 

heart development and a candidate CHD causing gene. 
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2.3. Results 

Gata5 null mice have mild left ventricular hypertrophy 

The mouse Gata5 gene contains 6 exons and spans 10 Kbp of DNA. We 

generated the targeted allele by introducing LoxP sites flanking exon 3 and exon 6 

through homologous recombination in ES cells (Figure 1A). These exons encode the 

second zinc finger essential for DNA binding, the nuclear localization sequence and the 

complete C-terminus. The presence of the targeted allele in ES cells was confirmed by 

southern blot (Figure 1B). PCR analysis confirmed the presence of the WT (448 bp) or 

Floxed (285 bp) alleles (Figure 1C). Mice heterozygous for Gata5neo-LoxP were bred to 

CMV-cre females, which deletes in the germline, resulting in Gata5+/- mice. Gata5+/- 

mice were intercrossed to generate Gata5-/- mice on a 129/C57BL/6 mixed genetic 

background. Homozygous Gata5 mice were viable and obtained at the expected 

Mendelian ratios. Q-PCR analysis at E12.5 confirmed that exons 3-6 had been deleted 

in Gata5 null mice (Figure 1D). Due to the presence of the first coding exon in the 

Gata5 targeted allele, a truncated protein containing the N-terminal portion of GATA5 

could still be produced. However, Q-PCR analysis indicated a 90% reduction in 

transcripts from the first two coding exons in Gata5-/- mice, suggesting that no GATA5 

protein is likely to be produced as a consequence of nonsense mediated mRNA decay 

(Figure 1D).  

Anatomical examination of Gata5-/- mice revealed a cardiac phenotype; at first 

sight, right atrial enlargement was visible and heart size appeared mildly increased 

(Figure 2A-D). Echocardiography as well as measurement of heart weight and 

ventricular mass confirmed that Gata5-/- hearts were larger than control littermates. 

Echocardiography performed on sex matched Gata5-/- and wild-type controls at 70 days 

(n = 11-14 per group) revealed increased thickness of the interventricular septum (IVS) 

(0.643 mm ±0.028 vs 0.814 mm ±0.030, p=0.002), left ventricular posterior wall (LVPW) 

(0.658 mm ±0.021 vs 0.772 mm ±0.014, p<0.001) and increased left ventricular mass 

(3.840 mg/g ±0.168 vs 4.524 mg/g ±0.183, p<0.05) in Gata5-/- hearts (Figure 2G-I). 

Identical results were also obtained at 180 days (data not shown). The ejection fraction, 

a measure of left ventricle performance, was slightly, but consistently higher in Gata5-/- 

hearts (57.752 % ±2.061 vs 66.570 % ±2.271, p=0.019), suggesting a hypercontractile 

state (Figure 2J). Histological analysis and myocyte counts indicated that the increased 
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mass is due to myocyte enlargement not hyperplasia (Figure 2E, F). In fact, Gata5 null 

ventricles had fewer myocytes per field than control littermates (19±2.5 vs 28±0.88; 

p=0.03). Increased ANF, BNP and skeletal actin mRNA levels were observed as early 

as 30 days in the LV and IVS of Gata5-/- mice (n = 6-8 per group) consistent with the 

presence of left ventricular hypertrophy (Figure 2K, L and data not shown).  

Dysregulated cardiac morphogenesis and bicuspid aortic valve in Gata5 null 

mice 

Since GATA5 is highly expressed in endocardial cushions of both the outflow 

tract and atrioventricular canal we checked whether its deletion disrupts valve formation 

or function. Hemodynamic evaluation of Gata5-/- mice at 70 days showed increased 

velocity and pressure gradients at the level of the mitral, aortic and pulmonary valves, 

suggestive of valve disease, which could contribute to development of ventricular 

hypertrophy (Figure 3A, B; data not shown). Analysis of the aortic root area revealed a 

significant decrease in Gata5 null mice relative to WT littermates (n=11-13 per group) 

indicative of mild aortic stenosis; this was evident as early as 70d (1.26 mm2 ±0.05 vs 

1.13 mm2 ±0.05, p<0.05) and was further accentuated in older 180d old mice (1.51 mm2 

±0.05 vs 1.34 mm2 ±0.04, p<0.05). Furthermore, a subgroup (22%) of Gata5 null mice 

had a much higher velocity (1061.757 mm/s ±35.480 vs 1906 mm/s ±110.620, p<0.01) 

and mean gradient (4.569 mmHg ±0.313 vs 14.653 mmHg ±1.704, p=0.015) through 

the aortic valve (3/14) (Figure 3A, B). Morphologic examination of the valves revealed 

the presence of bicuspid aortic valves (BAVs) in 25% (7/28) of Gata5 homozygous mice 

as compared to 3% (1/29) in the control group (Figure 3C-G). No other structural 

abnormalities were evident at the level of the other valves or the septa. Thus, GATA5 

seems to be essential for normal aortic valve development. 

To determine whether the postnatal hypertrophy of Gata5 null mice is present in 

embryonic hearts or whether it reflects a compensatory mechanism, the cardiac 

phenotype of Gata5-/- embryos was carefully analyzed. At E11.5, both the LV and RV 

walls were thinner in Gata5-/- embryos compared to control littermates (Figure 4A-F). 

Moreover Gata5-/- hearts were hypotrabeculated as compared to their controls. To 

determine if these changes were due to reduced number of myocytes and/or 

endocardial cells, we counted both cell types using the Image J software. Significant 

decrease in the number of myocytes (328.497 ±18.565 vs 244.667 ±20.701, p=0.011) 
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but not endocardial cells was evident in the LV of Gata5 null embryos (Figure 4G, H). 

Thus, during development, lack of GATA5 results in hypoplastic hearts, which likely 

undergo compensatory hypertrophy postnatally. 

The valve leaflets of the heart and interventricular septum (IVS) originate from 

the endocardial cushions (ECs), where GATA5 expression is enriched. Cushion 

formation is localized in the outflow tract (OFT), where the pulmonary and aortic valve 

will form, and in the atrioventricular canal (AVC), which is responsible for mitral and 

tricuspid valve formation. We found that the number of mesenchymal cells was reduced 

in both the AVC (345.867 ±20.066 vs 272.667 ±15.059, p=0.021) and OFT (338.333 

±15.542 vs 258.000 ±17.387, p=0.032), raising the possibility of reduced survival, 

proliferation or migration of mesenchymal cells within the endocardial cushions (Figure 

4I, J). TUNEL assays and phosphohistone H3 immunostaining were carried out on 

E11.5 tissue sections to measure cell apoptosis and proliferation. No significant 

changes, in either the AVC or OFT, were detected between Gata5 null and control 

embryos. Therefore, morphogenesis of the OFT cushions was analyzed in more details. 

The OFT cushions were formed properly in Gata5 null embryos with reduced number of 

mesenchymal cells (Figure 4K, L). The septal ridge was abnormally fused with the 

posterior intercalated cushion, leading to the fusion of the right and non-coronary valve 

leaflets (R-N BAV), which in humans is associated with a greater degree of 

complications compared to other BAV subform (38). Next, we verified whether 

formation of the cardiac jelly, which is critical for EC development, is altered in Gata5 

null mice. The cardiac jelly results from transformation of a subset of endothelial cells in 

the endocardium into mesenchymal cells that will migrate and invade the extracellular 

matrix through a process known as endothelial-mesenchymal transformation (EMT). 

Sections of WT and Gata5-/- embryos at E11.5 were stained with alcian blue, which 

stains acid glycosaminoglycans that marks the EMT (Figure 4M, N). Alcian blue staining 

was detected in both controls and Gata5 null mice and there were no major differences 

between the two genotypes, suggesting that GATA5 is not required for cardiac jelly 

formation. This hypothesis was further supported by the finding that transcripts for Has-

2, the major component of the cardiac jelly, remained unaltered in Gata5 null hearts at 

E12.5 (data not shown). Together, these results suggest that GATA5 may regulate 

genes involved in endocardial cell migration and/or differentiation. 
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GATA5 regulates the Notch pathway 

Gene expression patterns in embryonic and postnatal hearts of Gata5 null and 

control mice were analyzed using Q-PCR. As shown on Figure 6, expression of the two 

other cardiac GATA factors, GATA4 and 6, were unchanged in Gata5-/- embryonic or 

adult hearts (Figure 5A, B and data not shown). This was confirmed by 

immunohistochemistry where intact levels of GATA4 were observed in control and 

Gata5 null embryos (Figure 5T, U). However, a significant reduction in the mRNA levels 

of other transcription factors including Tbx20 (47%), Mef2c (34%) and Bmp4 (25%) was 

observed in Gata5 null hearts (Figure 5C, D, E). Reduction of Tbx20 was confirmed in 

endocardial cells by immunohistochemistry (Figure 5V, W). 

As mentioned earlier, Notch signaling is critical for proper cardiovascular 

development and mutations in Notch1, Notch2 or Jag1 (a Notch ligand) have been 

associated with OFT defects in humans (8;18;39). Moreover, Jag1 mutations have also 

been associated with Tetralogy of Fallot and pulmonary stenosis (19;40;41). We 

analyzed expression of various Notch components; at E12.5, the mRNA levels of 

Notch1, Notch2, Notch4 and Dll4 were similar in Gata5 null and control embryos (Figure 

5 and data not shown). However, a 35% decrease in Jag-1 transcripts was observed in 

Gata5 null embryos (Figure 5H). Moreover, a 2-fold increase in the mRNA of the Notch 

transcriptional effector RBP-Jκ was observed (Figure 5G). Given that in the absence of 

Notch activation, RBP-Jκ acts as a transcriptional repressor, the finding that Jag1 

expression is decreased while that of RBP-Jκ is increased suggests dysregulation of 

the Notch pathway in Gata5 null hearts. Consistent with this, we observed decreased 

immunostaining for the Notch1 intracellular domain (NICD) and Jag1 as early as E10.5, 

confirming that the Notch pathway is downregulated in Gata5 null mice (Figure 5P-S). 

Accordingly, a significant decrease in the Notch targets Neuregulin-1 (30%) and Hey-1 

(20%) was found (Figure 5I, N). Other endothelial and endocardial cell markers like VE-

cadherin (20%), Tie-2 (20%) and EphB4 (25%) were also downregulated (Figure 5K-M). 

Endothelial nitric oxide synthase (NOS3) plays an important role in aortic valve 

formation as shown by the presence of partially penetrant R-N BAVs in NOS3 null mice, 

the subform of defects seen in Gata5 null mice (12;38). NOS3 expression was 

downregulated as early as E10.5 in the left ventricle and the outflow tract of Gata5-/- 

embryos compared to their wild-type controls (Figure 6 A-D). Bioinformatic analysis of 
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the murine NOS3 promoter revealed three evolutionary conserved GATA binding sites 

(Figure 6E). GATA5 was able to bind to these three GATA elements with high affinity 

(Figure 6F).  Additionally, in cotransfection experiments, GATA5 enhanced NOS3 

promoter activity to a greater extent than GATA4 (18 vs 5-fold activation) (Figure 6G). 

The results identify that NOS3 as a GATA5 target; reduction in NOS3 may be a 

contributing mechanism to BAVs. 

Endocardial GATA5 is required for aortic valve formation 

Formation of the OFT cushion is accompanied by migration of mesenchymal 

cells from the neural crest, the pharyngeal mesenchyme and endocardium derived 

mesenchyme. To determine which cell type is responsible for the formation of BAVs in 

Gata5 null mice, we mutated the Gata5 gene specifically in endothelial cells by crossing 

with Tie2-cre transgenic mice to obtain Tie2-cre;Gata5Flox/Flox mice. This approach was 

selected because GATA5 is enriched in endocardial cells but absent from vascular 

endothelial and neural crest cells (35;36). In mice carrying the Tie2-cre transgene, 

recombination occurs as early as E9.5 in ECs of both the OFT and AVC that will 

eventually give rise to the semilunar (pulmonary and aortic) and atrioventricular (mitral 

and tricuspid) valves (42). Tie2-cre;Gata5Flox/Flox mice were obtained at the expected 

mendelian ratios and were viable. As in Gata5 null mice, we found BAVs in 21% (3/14) 

of Tie2-cre;Gata5Flox/Flox mice compared to 1% (1/31) in control Tie2-cre;Gata5+/+ mice 

littermates (Figure 7C-E). Close examination of the morphology of the OFT cushions of 

Tie2-cre;Gata5Flox/Flox embryos at E11.5 revealed identical results to those of Gata5 null 

embryos, namely abnormal fusion between the posterior intercalated cushion and the 

septal ridge, creating an R-N BAV (Figure 7F, G).  

Q-PCR analysis for exons 4-6 in E12.5 Tie2-cre;Gata5Flox/Flox embryos confirmed 

strong downregulation of Gata5 transcripts with low residual expression (Figure 8A). At 

the cell level, immunostaining with the anti-Gata5 antibody indicated that Gata5 

expression was significantly reduced in most endocardial cells as early as E10.5 

(Figure 8G-J). No significant change in Gata4 and Gata6 transcript levels was noted in 

Tie2-cre;Gata5Flox/Flox embryos (Figure 8B, C). However, a strong downregulation of 

Tbx20 (50%) and Jag-1 (50%) transcripts and a significant decrease in erbB2 (30%) 

mRNA was detected in these hearts (Figure 8D-F). Immunostaining confirmed that 

Jag1 expression was downregulated in Tie2-Cre+;Gata5Flox/Flox embryos at E10.5 
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(Figure 8M-N). In addition, reduced expression of NICD was noted in these embryos 

indicative of defective Notch pathway.  

Altogether, these results indicate that GATA5 is an important regulator of genes 

involved in endocardial cell differentiation and that expression of GATA5 in endocardial 

cells is required for proper development of the endocardial cushions. Moreover, the 

data reveal that absence of GATA5 results in defective valve morphogenesis and BAV 

formation. 
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2.4. Discussion 

In this study, we used mouse genetics to determine the function of GATA5 in 

mammalian embryogenesis. The results reveal an essential role for GATA5 in heart 

morphogenesis and a critical cell-autonomous role in endocardial cushion formation 

and aortic valve development. In particular, we show that deletion of the Gata5 gene 

results in BAV formation. 

BAV is the most common congenital heart malformation and occurs at a rate of 

1-2% of the population. Although BAVs can function normally, the valve leaflets are 

subject to increased haemodynamic stress, which can lead to serious complications 

including aortic stenosis, aortic regurgitation, incompetence and calcification. It is also 

estimated that over half of valve replacements and incidence of patients with 

coarctation of the aorta can be attributed to BAV disease. In fact, BAVs have been 

associated with greater morbidity and mortality than all the other CHDs combined. In 

humans, most BAVs result from fusion of either the right and left leaflets (R-L) or the 

right and non-coronary leaflet (R-N). The R-N BAV is associated with greater degree of 

valve dysfunction and it has also become clear over the years that BAV morphology is 

of prognostic relevance in the management of patients with BAVs (43-45). Work in 

animal models suggests that the 2 subtypes may be distinct etiological entities; the R-N 

BAVs would result from defective development of the cardiac OFT endocardial 

cushions while R-L BAVs result from an extra fusion of the septal and parietal ridges 

(38). The BAVs in Gata5 null mice are in all cases the result of a fusion between the 

posterior intercalated cushion and the septal ridge, giving rise to the R-N subtype. The 

differential formation of R-N type BAVs supports the hypothesis that the different BAV 

subtypes have distinct genetic etiologies. As a corollary, differential outcomes in 

humans with R-N and R-L BAVs may be due to distinct underlying genetic pathways. 

Cardiac valves are derived from the endocardial cushions, which are rich in 

extracellular matrix components. Defective development of the heart valves occurs in 

20-30% of all CHDs (46;47). There is increasing evidence that loss of extracellular 

matrix (ECM) organization is associated with changes in mechanical properties, leading 

to dysfunction in adult valve disease. A number of studies have shown that periostin is 

required for normal cardiac valve development and maturation (48;49). Valve leaflets of 

periostin-/- mice are hypertrophied and shortened by 3-months of age and the tendinous 
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cords of the AV valves are either truncated or missing. The phenotype of periostin-/- 

mice is similar to the degenerative changes seen in prolapsed human mitral valves or 

BAVs. Periostin levels are also pathologically overexpressed in infiltrated inflammatory 

cells and myofibroblasts in areas of angiogenesis in human atherosclerosis and 

rheumatic valve disease (50). Versican, another EMC component, plays important roles 

during cardiac development and in adult cardiovascular diseases (51;52). Versican 

cleavage occurs throughout cardiac development by members of the ADAMTS family 

such as, Adamts9 which is expressed in mesenchymal cells of the valves. Adamst9 

haploinsufficiency leads to abnormal thickening of the semilunar valve leaflets as well 

as increased proteoglycan content in the aortic valve (53). Proper elastic fiber assembly 

and function are critical for aortic valve and aortic wall integrity. Mutations in elastins, 

fibulin family members and other components of elastic fiber assembly result in 

progressive adult disease in animal models and in human including supravalvar 

stenosis (54;55). No significant changes in mRNA levels for periostin, elastin and 

several other ECM relevant genes were found in Gata5-/- embryonic hearts. Whether 

changes develop in aging Gata5 null mice deserves to be assessed. 

Valve development requires complex interactions between transcription factors 

that regulate proliferation, differentiation and leaflet remodeling. GATA5 appears to 

regulate at least two pathways involved in differentiation of endocardial cells, namely 

Tbx20 and Notch. Tbx20 is a member of the T-box gene family that is expressed in 

myocardial as well as endocardial cells during avian and mammalian development. 

Deletion of Tbx20 in mice results in embryonic lethality, reduced myocardial 

differentiation and defective chamber maturation (56). Knockdown of Tbx20 with 

siRNAs provided the first evidence for Tbx20 involvement in valve development (57). 

More recently, two studies showed that Tbx20 was required for proliferation and 

migration of mesenchymal cells within the cushions (28;58). Importantly, mutations in 

the Tbx20 gene have been linked with valve and septal defects in humans (59;60). Our 

results show a 45% reduction of Tbx20 transcripts in Gata5 null and Tie2-

cre+;Gata5Flox/Flox embryos along with reduced number of mesenchymal cells in both the 

AVC and OFT cushions at E12.5. Thus, Tbx20 may be a downstream target of GATA5 

in endocardial cell. Another critical regulator of valvulogenesis is the Notch pathway. 

Mutations in the Notch1 gene have been associated with BAV in humans and mutations 

in JAG1 and Notch2 have been associated with Alagille syndrome, which is 
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characterized by multiple outflow tract defects (8;18;39). GATA5 and JAG1 are both 

expressed in endothelial and endocardial cushion cells of the OFT and AVC at E12.5 

and our study reveals a significant downregulation of Jag-1 transcripts in Gata5 null and 

Tie2-cre+;Gata5Flox/Flox embryos with concomitant upregulation of the transcriptional 

repressor RBP-Jκ (36;61). Decreased ligand level together with upregulation of the 

transcriptional repressor would be expected to result in significant attenuation of 

functional Notch pathway in endocardial cells. In this respect, it is noteworthy that loss 

of Notch1 or RBP-Jκ from endocardial and endothelial cells was shown to result in 

hypotrabeculated, hypoplastic hearts (22). Our results are in line with this study and 

support a regulatory function for endocardial Notch signaling in myocardial 

morphogenesis. 

Lastly, the data presented in this manuscript confirm a role for GATA5 in 

endocardial cell differentiation in vivo, which is consistent with our previous in vitro work 

and with the phenotype of the zebrafish faust mutant, which encodes GATA5 (36;37). 

However, the phenotype of our Gata5 null mice differ from that of a previously 

described Gata5-/- line that displayed no overt cardiac phenotype (62). The Gata5 locus 

produces two protein isoforms through alternative translation initiation; in addition to the 

translation start site in exon 1, use of a second ATG upstream of exon 2 generates a 

truncated GATA5 protein comprising aa 225-404, which retains one zinc finger, DNA 

binding and transcriptional activation properties (63;64). In contrast to the targeting 

strategy used by Molkentin et al., which only deletes one isoform, our strategy was 

designed to delete exons 3-6, which contain the DNA binding, nuclear localization and 

C-terminal transactivation domains therefore ensuring that both isoforms are eliminated. 

While this work was in progress, another group reported the production of mice carrying 

a Gata5tm2Eem mutated allele that deletes both zinc fingers coding exons (65). The 

Gata5tm2Eem mice did not display an apparent cardiac phenotype but showed a 2-fold 

overexpression of both GATA4 and GATA6 mRNA. Crossing these into a Gata4+/- 

background produced hypoplastic ventricles and severe endocardial cushion defects a 

phenotype that resembles that observed in our Gata5 null mice. This raises the 

possibility that upregulation of the other cardiac GATA factor may have compensated 

for lack of GATA5. In our Gata5 null hearts, we did not detect any changes in GATA4 or 

GATA6 levels in embryonic or postnatal hearts. Moreover, female Gata5-/- mice did not 

show a reduction in the distance between the vagina and anus as observed in the other 
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Gata5 mutated alleles. At present, the reasons for the differential phenotype remain 

unclear but genetic background contribution to the manifestation of congenital heart 

disease is well documented (31). Be it as it may, the results of the present study 

suggest that GATA5 activity within the proximal and distal OFT is important for the 

development of the aortic valve and document for the first time the role of endocardial 

cells in the pathogenesis of BAVs. 

GATA5 is broadly but transiently expressed in endocardial and endocardial 

cushion cells of the AVC and OFT (35;36). The Gata5 null mice did not display 

detectable defects in other endocardially derived structures such as the atrial septum or 

other valves. Our results suggest that the number of endocardial cells and endothelial-

mesenchymal transformation was not altered in the absence of GATA5; rather it 

appears that differentiation and possibly migration or cell-cell interactions are disrupted. 

It is possible that GATA4 may be able to partially compensate for GATA5 in earlier 

stages of endocardial cell expansion and differentiation; alternatively GATA5 window of 

expression during development may affect only a subgroup of genes and processes 

involved in OFT development such as interactions with the secondary heart field or 

neural crest derived cells. Either way, the finding that loss of GATA5 from endocardial 

cells differentially affects aortic valve leaflets will help in furthering our limited 

understanding of how common endocardial cushions contribute to specific valve leaflets. 

In conclusion, the data presented here are consistent with a crucial role for 

GATA5 in aortic valve formation and suggest that GATA5 may be a disease causing 

gene. Future studies aimed at elucidating the upstream regulators and downstream 

targets of GATA5 in endocardial cells will contribute to mechanistic understanding of 

endocardial cushion development as well as gene pathways involved in BAV and other 

valve disease. 
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2.5. Methods 

Animals 

Mice handling and experimentation were performed in accordance with 

institutional guidelines. All protocols were approved by the institutional Animal Care 

Committee. 

Histology 

Adult tissues or staged mouse embryos at E10.5 and E11.5 were fixed in 4% 

paraformaldehyde, paraffin embeded, sectioned at 4-um intervals and processed as 

previously described. Anti-Gata4, Gata5 and anti-Tbx20 antibodies were previously 

described (35;57;66). Polyclonal anti-eNOS, Notch1 NICD and Jag1 were purchased 

from Abcam (catalog numbers, respectively, ab66127, ab8925 and ab7771). The 

biotinylated anti-rabbit IgG antibody was purchased from Vector Laboratories (BA1000). 

Cell count 

Image J software was used to count the number of myocytes, endocardial cells and 

cushions cells in three different sections of 3-4 different heart samples for each 

genotype. 

Gel shift assay 

Nuclear extracts of NIH 3T3 overexpressing GATA5 were obtained as previously 

described (35). The probe used for GATA binding corresponded to the -265 GATA 

element (5’- GTTCCCACTTATCAGCTCTAGCCC-3’). 

Generation of GATA5 mutant mice   

The 5′-arm, KO arm (exons 3-6) and 3’-arm of the Gata5 genomic locus were 

isolated from the bMQ221g13 BAC clone (67). A 5.9-Kb genomic DNA fragment (5’-arm) 

that included exons 1 and 2 with flanking introns was digested with Avr2 restriction 

enzyme and subcloned upstream of the LoxP site of the targeting vector. A 3.8-Kb 

fragment (the deleted region) that encoded exons 3-6 was digested with Pac1 and 

Nhe1 restriction enzymes and inserted in between the LoxP sites. A 4-Kb fragment (3′-

arm) was digested with Sal1 and Kpn1 restriction enzymes and subcloned downstream 

of the LoxP site in the targeting vector. 
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The targeting vector was digested with Not1 and Kpn1 and electroporated into 

129Sv embryonic stem (ES) cells. Following negative selection with G-418, 400 

individual ES cell clones were isolated and analyzed for homologous recombination by 

southern blotting. Two clones with a properly targeted Gata5 allele were microinjected 

into 3.5-d C57BL/6 blastocysts, which were implanted into CD1 pseudopregnant 

females. The resulting chimeras were bred to C57BL/6 mice to achieve germline 

transmission. To obtain mice with a Gata5-null allele, Gata5WT/neo-loxP mice were crossed 

with CMV-Cre mice to generate Gata5+/- mice, which were then intercrossed together to 

obtain Gata5-/- mice. The Gata5 null mice were maintained in a mixed 129SV/C57BL/6 

background and analyzed between generations F3 to F5. 

A similar breeding strategy was used to generate mutant mice lacking Gata5 in 

the endocardium. Of note, Gata5WT/neo-loxP mice were crossed with ACTB1-Flpe mice to 

generate Gata5+/loxP mice, which were then crossed with Tie2-cre transgenic mice to 

obtain Tie2-cre;Gata5+/Flox mice. Tie2-cre;Gata5+/Flox mice were then intercrossed 

together to obtain Tie2-cre;Gata5+/+, Tie2-cre;Gata5+/Flox and Tie2-cre;Gata5Flox/Flox mice. 

Tie2-cre;Gata5Flox/Flox mice were kept in a mixed 129SV/C57BL/6 background and 

analyzed between generations F2 to F5. 

Tail genomic DNA was digested with Sca1 or Drd1 and analyzed using a standard 

Southern blot protocol with the probes indicated in Figure 1. 

Bicuspid and tricuspid aortic valve analysis 

Hearts were perfused with 4% paraformaldehyde in PBS and then fixed 

overnight at 4ºC. Atria were removed under the microscope and the aortic arch and 

pulmonary artery were cut at an angle to reveal the aortic valve. 

Echocardiography 

Transthoracic echocardiography was performed using a visual sonics Vevo 770 

ultrasound system with a RMV 707 30 MHz transducer as previously described (66). 

Doppler and M-mode imaging was obtained from 70 days and 225 days old mice. 

Statistical analysis was done using Student’s two-tailed t-test. Groups of 11-14 mice 

from different litters were used for the M-mode measurements and Doppler readings at 

70 days while groups of 5-6 mice were used at 225 days. 
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Quantitative polymerase chain reaction (Q-PCR) 

Total RNA was isolated from hearts of E12.5 embryos or from left ventricular 

and interventricular septum at 30 days postnatal with TRIZOL reagent (Invitrogen); 

cDNAs were generated using the Omniscript RT kit (Qiagen) and QPCR was performed 

as previously described (68). Primers sequence is available on request. 

Statistical analysis 

Values are presented as mean ±S.E.M. and n refers to the number of mice per 

group. P values were generated using the Student’s two-tailed t-test, and statistical 

significance was considered as P<0.05. 
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2.8. Figure legends 

Figure 2.1.  Generation of a Gata5 null allele.  (A) Schematic representation of the 

Gata5 locus and targeting strategy.  Positions of the 5′-probe and 3′-probe used for 

Southern blots are shown.  Cre-mediated excision removes exons 3-6, leaving one 

LoxP site.  Coding exons are in pink and non-coding exons are in light-grey.  TAD, 

transactivation domain; ZF, zinc finger.  (B)  Southern blot analysis of targeted ES cells.  

Genomic DNA was digested with Sca1 and hybridized to the 5′-probe on the left panel.  

On the right panel, genomic DNA was digested with Drd1 and hybridized to a 3′-probe.  

(C) Genotyping of wild-type (+/+), heterozygous (+/-) and homozygous (-/-) targeted 

allele.  PCR using primers a-b and a-c identifies product corresponding to wild-type 

(448bp) and knockout (285bp) alleles.  (D) Q-PCR analysis of Gata5 transcripts in 

hearts of wild-type, Gata5+/- and Gata5-/- embryos at E12.5.  Results show complete 

reduction of Gata5 exons 4-6 (dark grey) and exons 1-2 (light grey) expression in 

Gata5-/- mice.  GAPDH was used as an internal control (** P<0.01).   

Figure 2.2.  Mild left ventricular hypertrophy of Gata5-/- mice.  (A-D)  Anatomical 

analysis of wild-type (A, C) and Gata5-/- (B, D) mice.  Frontal view orientation (A, B) of 

the hearts showing mild increase in heart size of Gata5-/- (B) mice.  Trichrome staining 

of Gata5+/+ (C) and Gata5-/- (D) hearts.  Note the increased heart size, right atrial 

enlargement and increased left ventricular internal dimension of Gata5-/- mice.  Bars = 

1500 µm.  (E, F)  High magnification of cardiomyocytes showing increased cell size in 

Gata5-/- mice.  Bars = 20 μm.  (G-I) Echocardiography of control (Gata5+/+) and Gata5-/- 

mice of 70 days (* P<0.5, ** P<0.01, *** P<0.001, n = 11-13 per group).  Note the 

increased thickness of the interventricular septum (IVS), left ventricular posterior wall 

(LVPW) and left ventricular mass (LV mass), suggesting the presence of left ventricular 

hypertrophy in Gata5-/- mice.  (J)  Echocardiography of wild-type and Gata5-/- mice at 70 

days showing an increase in the ejection fraction of Gata5-/- mice (* P<0.5, n = 11-13 

per group).  (K, L) Enhanced atrial natriuretic factor (ANF) and brain natriuretic peptide 

(BNP) expression in Gata5-/- left ventricle (LV) and interventricular septum (IVS) as 

revealed by Q-PCR analysis of wild-type and Gata5-/- mice at 30 days (* P<0,05, ** 

P<0.01, n = 6-8 per group).   

Figure 2.3.  Valvular dysfunction of Gata5-/- mice.  (A-B) Echocardiography of wild-type 

and Gata5-/- mice at 70 days showing increased mean velocity and pressure gradients 
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through the aortic valve (AV) (* P<0.05, ** P<0.01, n = 11-13 per group).  (C, D) 

Anatomical analysis of Gata5-/- mice revealing the presence of bicuspid aortic valve and 

tricuspid aortic valve.  Arrows indicate the point of attachment of the valve cups to the 

aortic wall.  Bars = 500µm.  (E, F) Trichrome staining of the aortic valve of Gata5-/- mice 

showing the presence of two or three leaflets.  Stars indicate the number of leaflets.  

Bars = 500µm.  (G) Summary of the number of Gata5+/+ and Gata5-/- mice with BAVs.  

The table shows that 25% of Gata5-/- mice have BAVs compared to control littermates.  

Figure 2.4.  Reduced trabeculation and R-N type of BAV in Gata5 null embryos.  (A-F) 

Trichrome staining of transverse sections of Gata5+/+ and Gata5-/- hearts at E11.5.  

Gata5-/- embryos have a thinner left ventricle and right ventricle and are less 

trabeculated than the controls.  Bars = 300µm (A, D) and 50µm (B, C, E, F).  (G-J) 

Quantitation of the number of cells in Gata5-/- embryos compared to control littermates 

at E11.5 (* P<0.05, n = 3-5 per group).  Note the reduction of the number of myocytes 

within the left ventricle (LV) while the number of endocardial cells remains unchanged.  

The numbers of mesenchymal cells in the AVC and OFT of Gata5-/- embryos is also 

significantly decreased by 20%.  AVC, atrioventricular canal; EC, endocardial cell; LV, 

left ventricle; OFT, outflow tract; RV, right ventricle.  (K, L)  Trichrome staining of 

transverse sections of OFT of Gata5 null embryos at E11.5.  The arrow points to the 

abnormal fusion of the posterior intercalated cushion with the septal ridge, creating a 

bicuspid aortic valve of the R-N subtype.  AVC, atrioventricular canal; SR, septal ridge; 

P, posterior intercalated cushion; PR, parietal ridge.  Bars = 75 µm.   (M, N)  Alcian blue 

staining was used to visualize acid glycosaminoglycans, such as hyularonic acid, within 

the endocardial cushions of the OFT.  Gata5 null embryos had a similar amount of 

alcian blue staining in the OFT endocardial cushions at E11.5.  Bars = 75 µm.  

Figure 2.5.  Modulation of gene expression in Gata5-/- embryos.  (A, B) Q-PCR analysis 

showing normal levels of Gata4 and Gata6 in the hearts of Gata5-/- embryos at E12.5 (n 

= 6-8 per group).  (C-E)  Q-PCR analysis showing altered expression of Tbx20, Bmp4 

and Mef2c in hearts of Gata5-/- embryos at E12.5 (* P<0.05, n = 6-8 per group).  (F-J) 

Q-PCR analysis of members of the Notch pathway.  Expression of Notch1 and Hey-2 

remains stable in Gata5-/- embryos at E12.5 (n = 6-8 per group).  A significant 

upregulation of Rbp-jκ transcripts is observed.  Also note the downregulation of Jag-1 

and Hey-1 transcripts in Gata5-/- embryos at E12.5 (* P<0.05, n = 6-8 per group).  (K-O) 

Q-PCR analysis showing altered expression of several endothelial markers in Gata5-/- 
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embryos at E12.5 (* P<0.05, n = 6-8 per group).  (P-W)  Transverse sections of E10.5 

control and Gata5-/- embryos stained for NICD (P, Q), Jag1 (R, S), Gata4 (T, U) and 

Tbx20 (V, W).  Note the decreased NICD,Jag1 and Tbx20 expression in the Gata5-/- 

embryos (Q, S, W).  Bars = 40 μm. 

Figure 2.6.  GATA5 regulates NOS3 expression.  (A, B)  Transverse section of E10.5 

Gata5+/+ and Gata5-/- embryos showing reduced NOS3 expression in endocardial cells 

of the left ventricle of Gata5-/-  embryos.  Bars = 30 μm.  (C, D) Transverse outflow tract 

section of E11.5 Gata5+/+ and Gata5-/- embryos showing reduced NOS3 expression in 

Gata5-/- embryos.  Bars = 75 μm.  (E)  Schematic representation of the murine NOS3 

promoter with the conserved GATA binding sites (top).  (F) DNA binding of GATA5 

expressing NIH 3T3 cells on the proximal GATA binding element of the NOS3 promoter.  

Note how binding is displaced by a GATA5 specific antibody (Ab) or by addition of 

excess cold probe (self, G2, G3).  (G)  Fold activation of the -1.6Kbp and -265bp NOS3 

promoter by increasing amounts of GATA4 and GATA5 in NIH 3T3 cells.  The data is 

the average of a duplicate experiment repeated three times. 

Figure 2.7.  Gata5 is required in endocardial cells for aortic valve formation.  (A, B)  

Trichrome staining of Tie2-cre+;Gata5+/+ and Tie2-cre+;Gata5Flox/Flox frontal sections.  

There are no major differences in heart size or wall thickness between the two groups.  

(C, D)  Anatomical analysis of Tie2-cre;Gata5Flox/Flox mice revealing the presence of 

bicuspid aortic valve.  Arrows indicate the point of attachment of the valve cups to the 

aortic wall.  Bars = 400 µm.  (E) Summary of the number of Tie2-cre;Gata5+/+ and Tie2-

cre;Gata5Flox/Flox mice with BAVs.  The table shows that 21% of Tie2-cre;Gata5Flox/Flox 

mice have BAVs compared to control littermates.  BAV, bicuspid aortic valve. (F, G) 

Trichrome staining of transverse sections of OFT of Tie2-cre;Gata5+/+ and Tie2-

cre+;Gata5Flox/Flox embryos at E11.5.   The arrow points to the abnormal fusion of the 

posterior intercalated cushion with the septal ridge, creating a bicuspid aortic valve of 

the R-N subtype.  SR, septal ridge; P, posterior intercalated cushion; PR, parietal ridge.  

Bars = 75 µm.  

Figure 2.8.  Modulation of gene expression in Tie2-cre;Gata5Flox/Flox embryos.  (A-C) Q-

PCR analysis showing strong reduction of Gata5 transcripts in Tie2-cre+;Gata5+/+ 

andTie2-cre+;Gata5Flox/Flox embryos at E12.5 (* P<0.001, n = 6-7 per group).  Also note 

that the expression of Gata-4 and Gata-6 mRNAs remains normal in Tie2-
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cre;Gata5Flox/Flox embryos.  (D-F) Q-PCR analysis showing strong reduction of Tbx20 

and Jag-1 transcripts in Tie2-cre+;Gata5Flox/Flox embryos at E12.5.  Also note the 

significant downregulation of erbB2 transcripts (* P<0.05, n = 6-7 per group).  (G-J) 

GATA5 immunostaining of E11.5 transverse sections.  Note the reduction of GATA5 

inTie2-cre;Gata5Flox/Flox embryos and its absence in Gata5 null andTie2-cre;Gata5Flox/Flox 

embryos.  (K-N)  Immunostaining of E11.5 transverse sections of control and Tie2-

cre;Gata5Flox/Flox embryos for NICD and Jag1.  Note the reduced expression of both 

antibodies in the Tie2-cre;Gata5Flox/Flox embryos.  Bars = 20μm.  
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Figure 2. 1.  Generation of a Gata5 null allele 
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Figure 2. 2.  Mild left ventricular hypertrophy of Gata5-/- mice 
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Figure 2. 3.  Valvular dysfunction of Gata5-/- mice 
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Figure 2. 4.  Reduced trabeculation and R-N type of BAV in 
Gata5 null embryos 
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Figure 2. 5.  Modulation of gene expression in Gata5-/- embryos 
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Figure 2. 6.  GATA5 regulates NOS3 expression 
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Figure 2. 7.  Gata5 is required in endocardial cells for aortic valve formation
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Figure 2. 8.  Modulation of gene expression in Tie2-
cre;Gata5Flox/Flox embryos 
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3.1. Abstract 

Congenital heart disease (CHD) is the largest class of birth defects in human with a 4-

5% prevalence. Human genetic studies have established that CHD is heritable with 

complex transmission and expressivity indicative of gene-gene and gene-environment 

interactions.  Members of the GATA family of transcription factors are critical regulators 

of heart development and mutations in 2 of them, hgata4 and hgata6 are associated 

with outflow tract and septal defects in human.  The heart expresses 3 GATA factors, 

GATA4, 5 and 6 in a partially overlapping pattern.  Here, we report that whereas mice 

lacking a single copy of Gata5, Gata4 or Gata6 have either no detectable or subtle 

cardiac defects, compound Gata4/Gata5 and Gata5/Gata6 mutants die embryonically 

or perinataly due to severe CHDs.  Almost all Gata4+/-Gata5+/- mutant embryos have 

double outlet right ventricles (DORV), large ventricular septal defects (VSD) as well as 

hypertrophied mitral and tricuspid valves.  Only 25% of double compound Gata4/Gata5 

heterozygotes survive to adulthood and these mice have aortic stenosis.  Compound 

loss of a Gata5 and a Gata6 allele also leads to DORVs associated with subaortic 

VSDs. Expression of several transcription factors important for endocardial and 

myocardial cell differentiation, such as Tbx20, Nkx2.5 and Hand2, was reduced in 

compound heterozygote embryos. These findings suggest the existence of important 

genetic interactions between GATA5 and the 2 other cardiac GATA factors in 

endocardial cushion formation and outflow tract morphogenesis. The data identify 

GATA5 as a potential genetic modifier of CHD and provide insight for elucidating the 

genetic basis of an important class of human birth defects.   

 

Keywords: congenital heart disease, transcription factors, heart development, double 

outlet right ventricle, endocardial cushion, septal defects 
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3.2. Introduction 

Congenital heart disease (CHD) is estimated to occur at a prevalence of 4-5 % 

of live births and is the leading cause of death in the first year of life (Pierpont et al., 

2007).  Abnormal development of the outflow tract (OFT) accounts for about 12-14% of 

all CHDs, leading to malformations such as persistent truncus arteriosus (PTA), 

Tetralogy of Fallot (TOF), double outlet right ventricle (DORV) and transposition of the 

great arteries (TGA) (Hoffman et al., 2002)  Significant efforts have been deployed over 

the last decade to elucidate the cell and molecular mechanisms involved in CHD.  

Several lines of evidence suggest that CHD is heritable (Insley, 1987), but to date, only 

a few human genes have been linked to CHDs.  Many of those are developmental 

regulatory genes.  For example, mutations in Nkx2.5 are associated with cases of TOF 

and atrial septal defects (ASD) while mutations in the Tbx5 gene cause the Holt-Oram 

syndrome, an autosomal dominant disease with varying cardiac defects (Basson et al., 

1997;Goldmuntz et al., 2001;Li et al., 1997;Schott et al., 1998).    Moreover, mutations in 

Gata4 have been associated with atrial and/or ventricular septal defects, TOF and PTA. 

(Garg et al., 2003;Nemer et al., 2006;Rajagopal et al., 2007).  Interestingly, 

heterozygous mutations of Gata4, Nkx2.5 and Tbx5 in mice recapitulate the human 

phenotype (Biben et al., 2000;Bruneau et al., 2001;Rajagopal et al., 2007;Winston et al., 

2010).  Recently, mutations in the human Gata6 gene have been associated with PTA 

and TOF (Kodo et al., 2009;Lin et al., 2010b;Maitra et al., 2010).  What has emerged 

from combined human and mouse genetic studies is that mutations in different genes 

can lead to similar cardiac defects while mutations in the same gene can lead to varying 

defects.  So far it has not been possible to establish genotype-phenotype correlation, 

and the exact mechanisms by which specific mutations lead to CHD remain to be 

defined, although it is widely assumed that haploinsufficiency is often the underlying 

cause of disease.  Despite mechanistic uncertainty, these observations are consistent 

with a role for the various transcription factors at various stages of cardiac development 

and their cooperative interactions in regulating heart formation. 

The complexity of CHD is evident at both genetic and cellular levels, as multiple 

lineages contribute to proper heart development.  The cardiogenic fields initially give 

rise to a linear heart tube that undergoes rightward looping to produce a four 

chambered heart.  The first heart field contributes to the formation of the left ventricle, 
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the atrioventricular canal and both atrial chambers (Buckingham et al., 2005).  The 

secondary heart field (SHF), a progenitor cell population of splanchnic and pharyngeal 

mesoderm that lies medial to the cardiac crescent, contribute to the formation of the 

right ventricle and the OFT (Kelly et al., 2001;Mjaatvedt et al., 2001;Waldo et al., 2001).  

Remodeling of the OFT into the distinct vessels of the aorta and pulmonary trunk 

requires complex interactions between the myocardium, the endocardium and cardiac 

neural crest cells (NCC).  In response to diverse signals from the myocardium, a subset 

of endocardial cells in the proximal OFT will proliferate and undergo an epithelial-to-

mesenchymal transformation (EMT) to invade and migrate into the cushion jelly where 

they will activate the mesenchymal program.  Cardiac neural crest cells, originating in 

the dorsal part of the neural tube, will migrate ventrally through the pharyngeal arches 

into the distal OFT cushions, where they are required for cushion formation, septation 

and proper alignment of the OFT (Hutson et al., 2007).  Consequently, impaired 

development of the OFT results in conotruncal defects.   

Members of the GATA family of transcription factors play important roles in 

differentiation, proliferation and survival of different cell types. In the heart, 3 GATA 

factors are present in a partially overlapping pattern (Molkentin, 2000;Nemer et al., 

2003;Patient et al., 2002).  GATA4 is highly expressed in myocytes, endocardial cells 

and epicardial cells of the heart.  Embryos lacking Gata4 die by E8.5 because of 

defects in ventral migration causing cardia bifida (Kuo et al., 1997;Molkentin et al., 

1997).  Analysis of rescued Gata4-/- embryos revealed cardiac defects including 

disrupted heart looping, absence of endocardial cushion formation, lack of a 

proepicardial organ and hypoplastic ventricular myocardium (Watt et al., 2004).  Several 

studies were preformed to further investigate the role of GATA4 in endocardial or 

myocardial cell development.  Inactivation of Gata4 in endothelial cells causes 

embryonic lethality by E12.5 due to failure to promote endocardial cushion formation 

and remodeling (Rivera-Feliciano et al., 2006).  Early myocardial specific deletion of 

Gata4 results in myocardial thinning and hypoplastic endocardial cushions (Zeisberg et 

al., 2005).  Moreover, haploinsufficiency of Gata4 has been associated with cardiac 

defects including common atrioventricular canal, DORV and hypoplastic ventricular 

myocardium (Pu et al., 2004).  GATA6 is expressed in myocytes but also in neural crest 

as well as endocardial and vascular smooth muscle cells (VSMC) (Nemer et al., 2003). 

Inactivation of Gata6 specifically in neural crest is sufficient to cause PTAs and lethality 
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by E18.5-P2, revealing a role for GATA6 in the patterning of the OFT and aortic arch 

(Lepore et al., 2005). Myocardial specific loss of both Gata4 and Gata6 in mice leads to 

acardia, suggesting that genetic interactions between these factors is essential for the 

onset and/or maintenance of cardiogenesis (Zhao et al., 2008).  Interestingly, mice with 

compound heterozygous mutation in gata4 and gata6 die embryonically around e13.5 

due to vascular defects; in addition, these mice display persistent truncus arteriosus, 

evidence of septation failure of the outflow tract as well as myocardial thinning. These 

results are indicative of interaction between GATA4 and 6 in cardiac and vascular 

development (Xin et al., 2006). In contrast to GATA4 and -6, GATA5 expression is more 

restricted to endocardial cells and endocardial cushions of the OFT and atrioventricular 

canal during heart development.  The dynamic expression of GATA5 in endocardial 

cells suggests a specific function for this transcription factor in endocardial development.  

Consistent with this, faust (which encode GATA5) mutants in zebrafish have cardia 

bifida and lack endocardial cells (Reiter et al., 1999).  In addition, downregulation of 

Gata5 in an in vitro model of endocardial differentiation inhibits terminal differentiation 

and expression of endocardial differentiation markers (Nemer et al., 2002). An 

important role for GATA-5 in endocardial differentiation is further supported by recent 

findings showing that lack of Gata 5 in mice leads to bicuspid aortic valve formation 

(Laforest et al., 2010).   Thus, all three cardiac GATA factors appear to play important 

functions in endocardial cushion development and/or outflow tract morphogenesis.  

Because expression of the three cardiac GATA factors partially overlaps and 

since they can bind similar DNA regulatory elements and activate common target 

promoters through heterotypic interactions (Charron et al., 1999;Nemer et al., 2003), we 

tested whether GATA5 might genetically interact with GATA4 and GATA6 in OFT 

development.  Here we show that whereas mice lacking a single copy of Gata4, Gata5 

or Gata6 have subtle or no cardiac malformations, Gata4+/-Gata5+/- and Gata5+/-Gata6+/- 

double heterozygote mice die embryonically or perinataly due in large part to profound 

defects of OFT development.  The Gata4/Gata5 compound heterozygotes had an array 

of cardiac defects including DORVs, large membranous VSDs, hypertrophied 

atrioventricular valves and complete atrioventricular canal defects.  On the other hand, 

the Gata5+/-Gata6+/- double heterozygote embryos had DORVs associated with 

subaortic VSDs.  Gene expression analysis revealed altered mRNA levels of several 

cardiac regulators and markers of differentiation including Nppb, Myh6, Nkx2.5 and 
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Tbx20.  These findings reveal the existence of important genetic interactions between 

GATA5 and the other cardiac GATA factors in the formation of the septum intermedium 

which contribute to the membranous ventricular septum and to the tricuspid and mitral 

valves; they also underscore the critical role of GATA4,-5 and -6 OFT development. 

The results raise the possibility that subtle alterations in the level or activity of any 2 

cardiac GATA factors might lead to human CHD. 
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3.3. Materials and methods 

Animals 

Mice handling and experimentation were performed in accordance with institutional 

guidelines.  All protocols were approved by the institutional animal care committees.  

Mice heterozygous for Gata4, Gata5 and Gata6 were generated and genotyped as 

previously described (Aries et al., 2004;Koutsourakis et al., 1999;Laforest et al., 2010).  

All lines were maintained in the C57/BL6 background.  To generate double 

heterozygotes, mice heterozygous for Gata4 or Gata6 were mated to Gata5 

heterozygote mice and pregnant mothers or newborn litters were sacrificed at various 

embryonic timepoints and postnatal timepoints.  The morning a vaginal plug was 

observed was defined as embryonic day (E) 0.5.     

For histology, whole embryos were fixed in 4% paraformaldehyde at 4°C overnight, 

dehydrated through graded ethanol series, embedded in paraffin and sectioned at 4-µm 

intervals.  Masson’s trichrome staining was carried out on heart sections using standard 

procedures to visualize defects.   

Quantitative polymerase chain reaction (Q-PCR) 

Total RNA was isolated from whole hearts at E12.5 with TRIZOL reagent (Invitrogen) 

according to the manufacturer’s instruction.  cDNAs were generated from 2 ug of total 

RNA using the Omniscript RT kit (Qiagen).  QPCR was performed with cDNA diluted 

1/100 using the Quiagen QPCR kit.  Briefly, DNA template and 400 nM oligonucleotides 

were used at an annealing temperature of 58°C using the Quantitect SYBR green PCR 

kit (QIAGEN) in an MX3500 real-time PCR machine (Stratagene, La Jolla, CA).  Mean 

gene expression was corrected by GAPDH and calculated from wildtype and double 

heterozygotes embryos (n = 4-7 per group).  Primers sequence is available on request.  

Statistical analysis 

Values are presented as mean ±S.E.M. and n refers to the number of mice per group.  

P values were generated using the Student’s two-tailed t-test, and statistical 

significance was considered as P<0.05. 
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3.4. Results 

Reduced viability of Gata5+/-Gata4+/- embryos 

Both GATA4 and GATA5 are expressed in the endocardial cushions at the same 

embryonic stages (between E9-E12). We investigated possible in vivo interactions 

between them in heart development by crossing mice heterozygous for either a Gata5 

or a Gata4 allele.  According to Mendelian transmission, equal ratios of wildtypes, 

Gata4 heterozygotes, Gata5 heterozygotes and Gata4/Gata5 double heterozygotes 

were expected. However, at weaning, Gata4+/-Gata5+/- double heterozygotes (G4/G5 

hets) were obtained at far lower frequency than expected (6% vs 25%) (Figure 1A).  

Analysis of embryos from timed matings suggested high perinatal lethality of G4/G5 

hets, although decreased viability was evident starting at E14.5 (Figure 1A).  Moreover, 

growth retardation was observed in all Gata4+/-Gata5+/- embryos as early as E11.5 

eventhough mice with this genotype were present at the expected Mendelian ratios 

(Figure 1B-F).  By E15.5, growth retardation was more evident and reduced 

vascularization was often observed in Gata4+/-Gata5+/- heterozygotes (Figure 1G-K).  

Moreover, 25% of Gata4+/-Gata5+/- embryos were dead at E15.5 (Figure 1K).   

Gata4+/-Gata5+/- double heterozygotes display DORVs and VSDs 

In order to determine the cause of lethality, histological analyses were 

performed on E15.5 Gata4+/-Gata5+/- double heterozygotes.  They revealed profound 

structural cardiac defects.  A double outlet right ventricle (i.e. the aortic valve opens in 

the right ventricle instead of the left ventricle) as well as large ventricular septal defects 

were evident in 86% of embryos (Figure 2D, H, L).  This was not observed in wildtype 

or Gata5+/- heterozygote littermates and only 29% of Gata4+/- had a DORV (Table 1).  

Moreover, some Gata4+/-Gata5+/- embryos (2/7 embryos) had a complete 

atrioventricular canal defect, meaning a single atrioventricular valve associated with 

atrial and ventricular septal defects (Table 1).  Wildtype and Gata5+/- heterozygote 

littermates did not demonstrate this defect and had two separate atrioventricular valves 

while 1/7 Gata4+/- embryo (only 14%) had a common atrioventricular valve.  As both 

GATA4 and GATA5 are expressed in the atrioventricular (AV) cushion, we were 

interested to know if the valve morphology was normal.  We found that the tricuspid and 

mitral valves of Gata4+/-Gata5+/- double heterozygotes were hypertrophied compared to 

control littermates, a situation that could cause stenosis (Table 1).  As these defects are 
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all thought to arise from abnormal development of endocardial cushions, the results 

suggest that GATA4 and GATA5 genetically interact for proper EC development.  

G4/G5 heterozygotes display myocardial thinning and smaller AV endocardial 

cushions 

Growth retardation was already visible in Gata4+/-Gata5+/- heterozygotes at 

E11.5.  Histological analysis of tissue sections at this stage revealed smaller 

hypotrabeculated hearts in Gata4+/-Gata5+/- compared to single heterozygous or 

wildtype littermates (Figure 3A-D).  Higher magnification of the left ventricle also 

revealed a reduction in the ventricular compact zone thickness (Figure 3E-H).  Cell 

counting indicated significant decreases in the number of myocytes and endocardial 

cells in the left ventricle of G4/G5 hets at E11.5 (Figure 3M).  By E15.5, 71% (5/7) 

Gata4+/-Gata5+/- embryos had myocardial thinning of the left and right ventricles (data 

not shown).  However, because similar ventricular hypoplasia was also observed in the 

Gata4+/- embryos at E11.5 and E15.5, GATA5 does not appear to worsen the 

myocardial defects of GATA4 haploinsufficient hearts (Figure 3F).   

At E15.5 Gata4+/-Gata5+/- embryos show AV canal defects, VSDs and 

hypertrophied AV valves. These structures arise from endocardial cushion and GATA4 

and GATA5 are co-expressed in the AV and OFT cushions between E9.5 and E12.5.  

Consistent with a role for both factors therein, endocardial cushions of Gata4/Gata5 

compound embryos were smaller but properly formed (Figure 3I-L).  Gata4+/-Gata5+/- 

mutant embryos showed a larger reduction in the total number of cushion cells within 

the atrioventricular endocardial cushion compared to Gata4+/-, Gata5+/- and wildtype 

littermates.  These results indicate that GATA4 and GATA5 cooperate in endocardial 

cushion formation in the AV canal.   

QPCR analysis on RNA isolated from hearts of WT and Gata4/Gata5 compound 

mutants at E12.5 revealed that Gata4 and Gata5 expression was reduced by 30% and 

60% compared to WT littermates with no change in Gata6 levels (Figure 4).  

Interestingly, we noticed an upregulation of BNP transcripts, possibly indicative of early 

cardiac stress.  The level of other cardiac genes was also altered.  Myh6 but not Myh7 

transcripts were downregulated in the hearts of compound mutants compared to 

wildtype controls.  Mef2c and Nkx2.5 transcripts were also significantly decreased.  

Moreover, we observed decreased mRNA expression of Tbx20 and erbB2, two genes 
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involved in endocardial cushion formation.  No significant alteration in the level of other 

genes implicated in endocardial cushion formation like Tgfβ1, Tgfβ2, Bmp2, Bmp4, 

erbB3, Notch1, Jag-1, Hey-1 and Hey-2 was evident (data not shown). 

Adult Gata4/Gata5 compound mutants have aortic stenosis 

Only 25% of Gata4+/-Gata5+/- double heterozygotes survive to adulthood; we 

were interested in assessing cardiac structure and function in this subgroup.  

Echocardiographic measurements on 70 days old mice revealed increased left 

ventricular mass and significantly decreased ejection fraction in adult G4/G5 hets 

compared to wildtype littermates (Figure 5A, B).  Hemodynamic evaluation revealed 

increased mean pressure gradient through the aortic valve of Gata4+/-Gata5+/- double 

heterozygotes (Figure 5C).  As shown on the graph, 66% (2/3) of G4/G5 hets mice had 

a very high pressure gradient compared to wildtype, Gata4+/- and Gata5+/- littermates.  

These observations suggested the presence of aortic valve constriction.  Histological 

analysis of these hearts confirmed the presence of left ventricular hypertrophy 

compared to wildtype and Gata4+/- and Gata5+/- littermates and revealed massively 

hypertrophied aortic valve in adult Gata4+/-Gata5+/- double heterozygotes (Figure 5G).  

Together, the results are consistent with defective valve development leading to aortic 

stenosis.   

Disrupted valvulogenesis in Gata5+/-Gata6+/- embryos 

GATA5 also overlaps with GATA6 in outflow tract cushions.  To determine if 

GATA6 and GATA5 genetically interact, we generated Gata5+/-Gata6+/- mice.  Only 1% 

of the expected Gata5+/-Gata6+/- double heterozygotes (G5/G6 hets) were present at 

weaning (postnatal day 30), suggesting that the combined mutations result in 

embryonic or perinatal lethality (Figure 6A).  Analysis of 13 post-natal litters revealed 

that 47 % (10/21 embryos) of mice heterozygous for both Gata5 and Gata6 were dead 

at birth.  Analysis of E11.5, E15.5 and E18.5 embryos indicated reduced Mendelian 

ratios and slight growth retardation starting at E14.5-E15.5 (Figure 6A, F-J). 

To determine the etiology of the embryonic and perinatal lethality of Gata5+/-

Gata6+/- embryos, we sectioned embryos at E15.5, when both ventricles are completely 

septated and the four valves of the heart have formed.  Histological analysis at this 

stage demonstrated the presence of a DORV in 86% of Gata5+/-Gata6+/- embryos 

(Figure 7D, H).  Similarly to the Gata4/Gata5 compound embryos, we also found the 
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presence of VSDs but only at the level of the aortic valve (Figure 7L).  The VSD was 

present over 30-50 µm.  We also noticed that a subset of Gata5+/-Gata6+/- embryos had 

increased thickness of the left ventricular compact zone compared to WT, Gata5+/- and 

Gata6+/- littermates (Figure 7M).  The AV and semilunar valves were formed properly 

and did not show signs of hypertrophy. No other cardiac defects were noted.  A 

summary of the phenotypes is given in table 2.  Together, the data reveal important 

genetic interactions between GATA5 and GATA6 in outflow tract development. 

Gene expression studies were performed on RNA isolated from hearts of 

wildtype and Gata5+/-Gata6+/- mutants at E12.5.  Expression of GATA5 and GATA6 

transcripts was reduced by 40-50% in compound mutants while the expression of 

GATA4 was not significantly altered (Figure 8).  In contrast to what was observed in the 

G4/G5 hets, BNP mRNA was downregulated.  Similarly, a strong reduction in Myh6 but 

not Myh7 transcript abundance was observed in double het embryos.  A 50% reduction 

in Nkx2.5 and Tbx20 mRNA expression, identical to that found in the Gata4+/-Gata5+/- 

embryos was noted.  Lastly, we observed a 2-fold increase in Raldh2 mRNA expression, 

which could potentially explain the presence of DORV as excess retinoic acid signalling 

leads to conotruncal malformations such as TGA, DORV and TOF (Nakajima et al., 

1996).  A significant 30% decrease of Hand2 transcripts was also observed in 

Gata5/Gata6 compound embryos. 
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3.5. Discussion 

Transcription factors GATA4, GATA5 and GATA6 are expressed at various 

stages of heart development and are important cardiac regulators(Nemer et al., 2010).  

In the present study, we show that compound haploinsufficiency of Gata5 and either 

Gata4 or Gata6 is incompatible with embryonic development and perinatal survival due 

to defective heart formation.  The cardiac phenotype of Gata4+/-Gata5+/- heterozygotes 

include DORV, very large VSDs, complete AV canal defects and mitral and tricuspid 

stenosis.  The Gata4/Gata5 compound heterozygotes who survive to adulthood show 

signs of aortic stenosis.  Similarly, compound haploinsufficiency of Gata5 and Gata6 

leads to cardiac anomalies that include DORVs and VSDs.  The defects observed in the 

double heterozygote embryos are distinct from those found in their single heterozygote 

parents, indicative of a cooperative function for GATA factors during cardiac 

morphogenesis. The phenotype of the Gata4+/-Gata5+/- heterozygotes reported here 

differs from the one recently published by Singh K et al (Singh et al., 2010).  In their 

study, Singh K et al showed that Gata4+/-Gata5+/- embryos had myocardial thinning by 

E14.5 but were viable.  It was only when they generated Gata4+/-Gata5-/- embryos that 

they obtained a more severe phenotype that included AV canal defects and myocardial 

thinning similar to our G4/G5 hets.  This indicates increased severity of the phenotype 

in our crosses, consistent with the heightened phenotype of our Gata5 null mice as 

compared to theirs (Laforest et al., 2010).  Previously, haploinsufficiency of both GATA4 

and GATA6 revealed an important role for these 2 GATA factors in cardiomyocyte 

proliferation and OFT septation (Xin et al., 2006;Zhao et al., 2008).   While we had no 

evidence for genetic interaction between GATA5 and either of the other 2 cardiac GATA 

proteins in myocardial proliferation there was clear evidence of genetic interaction in 

cushion formation and OFT septation. Together with these studies, our present work 

underscores the exquisite sensitivity of the OFT to GATA protein dosage and reveals 

the importance of cooperative interactions between any 2 cardiac GATA factors in 

regulating various events of cardiovascular development.   

Cooperative roles of GATA4, 5 and 6 in cardiac development 

The majority of Gata4/Gata5 and Gata5/Gata6 double heterozygote embryos 

developed DORVs, which is thought to occur from abnormal rotation of the OFT.  

Results of previous work have suggested that the myocardium of the OFT and the right 
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ventricle are derived from a population of cells located within the secondary heart field 

(Kelly et al., 2001;Mjaatvedt et al., 2001;Waldo et al., 2001).  According to Bajolle F et 

al, the myocardium at the base of the OFT is required for normal positioning of the great 

vessels (Bajolle et al., 2008).  Germline Gata4 and Gata6 mutant mice die too early 

embryonically to be able to evaluate their function in OFT morphogenesis (Koutsourakis 

et al., 1999;Kuo et al., 1997;Molkentin et al., 1997).  Gata4 hypomorphs have DORVs, 

clearly indicating that GATA4 is required in rotation of the OFT embryonically (Crispino 

et al., 2001;Pu et al., 2004).  However, this phenotype was not produced when Gata4 

was disrupted in the SHF leading the authors to suggest that GATA5 and GATA6 might 

compensate for GATA4 in the SHF as they were robustly expressed in the pharyngeal 

mesoderm (Rojas et al., 2008).  Similarly, deletion of Gata6 in cardiac crest cells using 

SM22-Cre or Wnt1-Cre reporter mice resulted in the formation of PTAs and DORVs.  

Moreover, Gata4/Gata6 compound heterozygosity results in the formation of a single 

OFT vessel.  These observations, coupled with our results, clearly indicate that OFT 

defects seem to be a common consequence of loss of two GATA alleles, suggesting 

that a threshold of GATA factors is essential in the rotation and patterning of the OFT.  

Whether or not this reflects action of GATA factors in the same cell type (SHF or 

endocardial derived) or complementation of a defective pathway arising from 2 distinct 

lineages remain to be defined.    

Endocardial cushion defects of Gata5+/-Gata4+/- embryos 

Our work demonstrates that concomitant loss of one allele of Gata4 with one 

allele of Gata5 leads to VSDs, AV canal defects and AV valve hypertrophy with variable 

penetrance. These anomalies are thought to arise from abnormal endocardial cushion 

formation and are consistent with the presence and role of GATA4 and GATA5 in 

endocardial cell expansion and differentiation (Nemer et al., 2002;Rivera-Feliciano et al., 

2006).  The process of endocardial cushion formation starts at E9.5 in the mouse and 

requires complex interactions between the endocardium and myocardium.  In response 

to diverse signals, endocardial cells go through an epithelial-to-mesenchymal 

transformation (EMT) and migrate into the cushion jelly; later in development these 

cushions will be remodeled to form the interventricular septum, atrial septum and the 

valves of the hearts (Person et al., 2005).  In the compound Gata4/Gata5 heterozygotes, 

AV cushion formation appears relatively normal at E11.5.  However, we noticed 

reduced number of cushion cells within the endocardial cushion, similar to the 
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decreased number of mesenchymal cells in the AV cushion of Gata5 null mice, 

suggestive of a role for GATA5 in cushion formation (Laforest et al., 2010).  By E15.5, a 

subset of Gata5+/-Gata4+/- embryos had AV canal defects, indicating that later 

remodelling of the cushion did not occur.  Complete AV canal defects were found in 

only one Gata4+/- embryo but the penetrance was higher in the double heterozygotes, 

likely indicating that GATA4 and GATA5 interact together in cushion formation.  

Whether these interactions involve myocardial-endocardial crosstalk or reflect cell 

autonomous function in the endocardium where both factors are expressed will need to 

be clarified.  Generation of Gata4/Gata5 double heterozygotes in which GATA4 and 

GATA5 are deleted only in endocardial cells will help address this question. 

GATA downstream targets 

The cardiac GATA factors have been shown to regulate a large number of 

cardiac genes including ANF, BNP, Mef2c, Nkx2.5, Bmp4, Myh6 and Myh7 (Charron et 

al., 1999;Dodou et al., 2004;Grepin et al., 1994;Nemer et al., 2003).  Moreover, GATA4 

and GATA6 are able to heterodimerize and synergistically activate several of these 

promoters (Charron et al., 1999).   Myh6 null mice die between E11.0-E12.0 due to 

cardiac defects including hypoplasia of the right ventricle coupled with 

hypotrabeculation, indicating that Myh6 plays an important role in vertebrate heart 

development (Jones et al., 1996).  Here, we show that Myh6 gene expression is 

dramatically downregulated in the hearts of compound Gata4/Gata5 and Gata5/Gata6 

heterozygotes. In addition, haploinsufficiency of Gata5 combined with loss of either a 

Gata4 or Gata6 allele resulted in reduced expression of Nkx2.5, Tbx20, Mef2c, Hand2 

and erbB2, indicating that these genes may be more sensitive to combined loss of 2 

GATA factors.  Loss of Hand2 results in embryonic lethality and absence of right 

ventricle formation (Srivastava et al., 1997).  Hand2 is expressed in myocardial, 

endocardial and neural crest lineages.  Interestingly, deletion of Hand2 from neural 

crest cells is sufficient to produce an identical phenotype as the one reported here (i.e. 

DORVs and VSDs) possibly through regulation of proliferation and differentiation of 

SHF derived cells (Holler et al., 2010;Morikawa et al., 2008).  Moreover, Hand2 

transcription was shown to be GATA dependent (McFadden et al., 2000).  Similarly, 

loss of Tbx20 revealed a critical role in OFT development (Takeuchi et al., 2005).  

Tbx20 is expressed in both myocardial and endocardial cells where it is required for 

proliferation and differentiation (Shelton et al., 2008).  A role for GATA factors in 
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regulating Tbx20 has not yet been reported in the mammalian heart but in Drosophila, 

the Tbx20 ortholog, neuromancer was shown to be a downstream mediator of the 

GATA factor pannier in the heart (Qian et al., 2009).  On the other hand, Nkx2.5 

transcription is GATA dependent and loss of Nkx2.5 causes septal, valvular and 

myocardial dysmorphogenesis (Biben et al., 2000;Grepin et al., 1997;Lien et al., 1999).  

Interestingly, mutations in Nkx2.5 are among the most common monogenic loci 

associated with DORV in human (Obler et al., 2008).  Lastly, excess retinoic acid 

signaling specifically inhibit OFT cushion remodeling while Raldh2 null mice have 

cardiac abnormalities due to defective SHF cell differentiation (Lin et al., 

2010a;Nakajima et al., 1996).  Thus, dysregulation of these genes could explain several 

of the cardiac phenotypes observed in the double GATA heterozygote embryos.  

GATA4, GATA5 and GATA6 in human CHD 

 Heterozygous mutations in Gata4 and Gata6 have been linked to congenital 

heart defects in humans (Garg et al., 2003;Kodo et al., 2009;Nemer et al., 

2006;Pehlivan et al., 1999;Zhang et al., 2008).  The CHDs associated with mutations in 

Gata4 are predominantly ASDs, VSDs but DORV, TOF and pulmonary stenosis have 

also been reported.  Recently, mutations in Gata6 in humans have been associated 

with PTA.  To date, no GATA5 mutations have been reported in human CHD.   

Despite the significant efforts of the past decade to elucidate the molecular 

mechanisms and the genetic basis of congenital heart defects, the fundamental causes 

for the majority of CHD remain unidentified.  CHD has an increased risk of recurrence 

within families; among affected relatives, the cardiac phenotypes are usually different 

and occur with variable penetrance and expressivity, likely indicating that modifying 

factors including genetic and environmental influence the phenotype (Gill et al., 2003).  

Consistent with this, influences of the genetic background on the phenotype is now well 

documented in experimental animal models and humans (Bruneau et al., 

2001;Rajagopal et al., 2007;Winston et al., 2010).  The results of the present study 

suggest that Gata5 may be an important genetic modifier that could potentially 

contribute to human CHD and more specifically to defects of the OFT. 
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3.7. Figure legends 

Figure 3.1.  Reduced viability of Gata4+/-Gata5+/- heterozygotes.  (A) Frequency of 

genotypes obtained from intercrossing Gata4+/- and Gata5+/- mice.  Note the reduced 

viability of compound Gata4+/-Gata5+/- heterozygotes at weaning and the reduced 

frequency of genotypes (by 25%) in Gata4+/-Gata5+/- starting at E14.5; another 50% is 

lost perinatally.  (B-K) Growth retardation starting at E11.5 (E, F) and aberrant 

vascularization at E15.5 (J, K) in Gata4+/-Gata5+/- heterozygotes as compared to their 

littermates.  Embryonic lethality of 30% of Gata4+/-Gata5+/- is noted as shown in a 

representative embryo (K).  Bars = 1000 µm (B-F) and 2000 µm (G-K).   

Figure 3.2.  Cardiac defects in Gata4+/-Gata5+/- heterozygotes.  Trichrome staining of 

transverse sections of E15.5 embryos.  Note how in wildtype and single hets (A-C, E-G), 

the aortic valve opens in the left ventricle whereas in Gata4+/-Gata5+/- embryos, the 

aortic valve opens in the right ventricle (D, H), a phenotype known as double outlet right 

ventricle (DORV).  (I-L) Transverse section through the heart showing an intact 

ventricular septum in wildtype, Gata4+/- and Gata5+/- embryos and a membranous 

ventricular septal defect (VSD) in Gata4+/-Gata5+/- embryos (arrow in L).  Bars = 300µm 

(A-D and I-L) and 100µm (E-H).  AV, aortic valve; LV, left ventricle; RV, right ventricle.   

Figure 3.3.  Ventricular wall and endocardial cushion defects in Gata4+/-Gata5+/- 

embryos.  Trichrome staining of transverse sections of wildtype, Gata4+/-, Gata5+/- and 

Gata4+/-Gata5+/- E11.5 embryos.  (A-D)  Note ventricular wall thinning and 

hypotrabeculation in double hets as well as in Gata4 het.  Bars = 200 µm.  (E-H)  

Higher magnification of the left ventricular wall.  Bars = 75 µm.  (I-L)  Transverse 

section through the AV endocardial cushions of WT, Gata4+/-, Gata5+/- and Gata5+/-

Gata5+/- embryos at E11.5.  Endocardial cushions of Gata4+/-Gata5+/- embryos are 

properly formed although a bit smaller.   Bars = 100 µm. (M)  Quantification of the 

number of cells in the left ventricle or AV canal (* P<0.05, ** P<0.001, *** P<0.0001).  

Statistical significance is compared to WT controls.  AVC, atrioventricular canal; LV, left 

ventricle. 

Figure 3.4.  Modulation of gene expression in Gata4+/-Gata5+/- embryos.  QPCR 

analysis performed on whole hearts of E12.5 embryos.  Transcript levels are 

normalized to GAPDH in each sample.  Note the downregulation of Myh6, Mef2c, 
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Nkx2.5, Tbx20 and erbB2 transcripts and the upregulation of BNP transcripts in Gata4+/-

Gata5+/- embryos compared to wildtype littermates (* P<0.05; n = 5-6 per group). 

Figure 3.5.  Aortic stenosis in adult Gata4+/-Gata5+/- heterozygotes.  (A)  

Echocardiography of wildtype, Gata4+/-, Gata5+/- and Gata4+/-Gata5+/- mice at 70 days (* 

P<0.5, n = 3-6 per group).  Note the increase in LV mass over body weight for Gata4+/-

Gata5+/- mice, suggesting left ventricular hypertrophy.  (B) Echocardiography of wild-

type, Gata4+/-, Gata5+/- and Gata4+/-Gata5+/- mice at 70 showing increased pressure 

gradients through the aortic valve (AV) (n = 5 for WT, Gata4+/- and Gata5+/- littermates).  

Two out of three Gata4/Gata5 compound heterozygotes have very high mean pressure 

gradient through the aortic valve.  (C-F)  Trichrome staining of a frontal section from 90 

days old mice.  Note the increased ventricular hypertrophy of Gata4/Gata5 compound 

heterozygotes.  Bar = 1000 µm.   LA, left atrium; LV, left ventricle; RA, right atrium; RV, 

right ventricle.  (G-J)  Trichrome staining of a frontal section of the aortic valve in these 

same mice.  Note the hypertrophied aortic valve in Gata4+/-Gata5+/- heterozygotes 

compared to wildtype, Gata4+/- and Gata5+/- littermates.  Bar = 300 µm. 

Figure 3.6.  Reduced viability of Gata5+/-Gata6+/- heterozygotes.  (A) Frequency of 

genotypes obtained from intercrossing Gata5+/- and Gata6+/- mice.  Embryonic and 

perinatal lethality of Gata5+/-Gata6+/- heterozygotes is demonstrated by the reduced 

frequencies of Gata5+/-Gata6+/- embryos at various developmental stages.  (B-J) 

Dissection and visual inspection of Gata5+/-Gata6+/- heterozygotes.  Mild growth 

retardation is visible at E15.5 (F-J).  Bars = 1000 µm (B-E), 2000 µm (F-J). 

Figure 3.7.  Cardiac defects of Gata5+/-Gata6+/- heterozygotes.  Trichrome staining of 

transverse sections of E15.5 wildtype (A, E, I), Gata5+/- (B, F, J), Gata6+/- (C, G, K) and 

Gata5+/-Gata6+/- (D, H, L) embryos.  In wildtype, Gata5+/- and Gata6+/- embryos (A-C, E-

G), the aortic valve opens in the left ventricle.  In Gata5+/-Gata6+/- embryos, the aortic 

valve opens in the right ventricle (D, H), leading to double outlet right ventricle (DORV).  

(I-K) Transverse section through the heart showing an intact ventricular septum in 

wildtype, Gata5+/- and Gata6+/- embryos.  In Gata5+/-Gata6+/- embryos (L), a 

membranous ventricular septal defect (VSD) is observed, which is associated with the 

DORV (arrow).  Bars = 300µm (A-D and I-P) and 100µm (E-H). AV, aortic valve; LV, left 

ventricle; RV, right ventricle.   
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Figure 3.8.  Modulation of gene expression in Gata5+/-Gata6+/- embryos.  Q-PCR 

analysis performed on hearts of E12.5 embryos.  Transcript levels are normalized to 

GAPDH used as internal control in WT and Gata5+/-Gata6+/- embryos.  Expression of 

Gata5 and Gata6 is reduced by 40-50% and there are no significant changes in the 

levels of Gata4 mRNA.  Note the downregulation of BNP, Myh6, Nkx2.5 and Tbx20 

transcripts and the increased expression of Raldh2 mRNA (* P<0.05, n = 6 for WT and 

n = 4 for Gata5+/-Gata6+/- embryos). 

Table 3.1. Summary of the cardiac phenotypes of the Gata4/Gata5 double 

heterozygotes at E15.5.  MV, mitral valve; TV, tricuspid valve, VSD, ventricular septal 

defect. 

Table 3.2. Summary of the cardiac phenotypes of the Gata5/Gata6 double 

heterozygotes at E15.5.  VSD, ventricular septal defect. 
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Figure 3. 1.  Reduced viability of Gata4+/-Gata5+/- heterozygotes 
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Figure 3. 2.  Cardiac defects in Gata4+/-Gata5+/- heterozygotes 

 

 

 

 

 

 

 



169 

 

 

Figure 3. 3.  Ventricular wall and endocardial cushion defects in 
Gata4+/-Gata5+/- embryos 
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Figure 3. 4.  Modulation of gene expression in Gata4+/-Gata5+/- embryos 
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Figure 3. 5.  Aortic stenosis in adult Gata4+/-Gata5+/- heteroztgotes 
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Figure 3. 6.  Reduced viability of Gata5+/-Gata6+/- heterozygotes 
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Figure 3. 7.  Cardia defects of Gata5+/-Gata6+/- heterozygotes 
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Figure 3. 8.  Modulation of gene expression in Gata5+/-Gata6+/- embryos 
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Table 3. 1.  Summary of the cardiac phenotypes of the 
Gata4/Gata5 double heterozygotes at E15.5 
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Table 3. 2.  Summary of the cardiac phenotypes of the 
Gata5/Gata6 double heterozygotes at E15.5 
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Discussion 

GATA5, a member of the GATA family of zinc finger proteins is expressed in a 

highly specific and evolutionary conserved manner in vertebrate hearts.  The spatio-

temporal pattern of GATA5 in endocardial cells and endocardial cushion of the AV 

canal and OFT suggest a specialized function in cardiac morphogenesis.  The in vivo 

experiments performed during this thesis, and presented here, clearly demonstrate the 

requirement of GATA5 during heart development since loss of Gata5 leads to bicuspid 

aortic valve (BAV), the most common CHD in humans.  Despite its importance, our 

understanding of the mechanisms underlying BAV formation is still ambiguous and the 

Gata5 null mice provide an interesting model to study the development of this CHD.  Of 

note, this is the first study that reports the requirement of endocardial cells in this 

process as evidenced by the presence of BAVs in mice lacking endocardial Gata5.    

Moreover, this work shows that genetic interactions between the cardiac GATA factors 

are essential for proper heart development.  We found that GATA5 interacts with 

GATA4 and GATA6 for proper OFT rotation and for valve development.  In what follows, 

the role of GATA5 in heart development will be discussed and a more global discussion 

on valvular diseases will be presented; lastly, the potential role of GATA5 in 

transcriptional control of endocardial development will be reviewed.   

4.1. GATA5 and development of an experimental model of BAV 

4.1.1 Clinical importance of BAVs  

BAV disease has been grossly underestimated over the years as it remains 

mostly asymptomatic during childhood and early in even adulthood.  However, 

clinicians are increasingly aware of the frequency of BAV and its importance as a risk 

factor as well as its role in cardiac and aortic complications.  In fact, BAV is said to 

account for more morbidity and mortality that all other CHDs combined (445).  This high 

morbidity and mortality can be attributed to a multitude of complications associated with 

BAV, including aortic stenosis, regurgitation, infective endocarditis and aortic 

complications such as dilatation, dissection and rupture. 

Aortic stenosis is the most common complication, occurring in about 50% of 

individuals.  The progression of stenosis parallels the development and progression of 

the sclerotic changes in the aortic valve.  Indeed, severely stenosed BAV are very rigid 
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because of fibrosis and calcification, which occurs in a similar fashion to that seen in 

patients with tricuspid aortic valve calcification.  Beppu S et al demonstrated that 

stenosis progresses more rapidly if the cusps are asymmetrical in size and in the 

anterioposterior position (792).  Similarly, in children, aortic valve disease has a more 

rapid progression in patients with fusion of the right and non-coronary leaflet (449).  

Studies also revealed that patients with stenosis secondary to BAV require valve 

replacement one decade younger than those with tricuspid aortic stenosis.   

BAV is also associated with dilatation of the aortic root and ascending aorta, 

which is observed in 50-60% of patients.  Aortic root dilation is further presumed to be a 

precursor of aortic rupture and dissection, which are fatal events.  Dilatation of the aorta 

has been characterized by degeneration and fragmentation of the elastic fibers, loss of 

smooth muscle cells, increase in collagenous fibers and replacement of the 

degenerated tissue with interstitial basophilic cells (793;794).  It has been shown that 

the ascending aorta can be dilated whether the valve is stenotic, incompetent or normal 

(795).  Moreover, even after replacement of the aortic valve, patients with BAVs show 

progressive dilatation of the proximal ascending aorta (796).  These finding suggest that 

a structural weakness of the aortic wall is already present and several potential 

mechanisms have been proposed, including deficient fibrilin-1 content and increased 

matrix metalloproteinases (793;797).   

Although BAV may remain undetected for a long period of time, the majority of 

patients will require surgery at some point in their life.  At present, there is no generally 

accepted pharmacological treatment for aortic stenosis.  However, a large number of 

patients with BAV develop calcification and statins have been shown to inhibit 

calcification in cultured porcine aortic valve myofibroblasts by inhibiting the cholesterol 

biosynthetic pathway (798).  Moreover, recent studies demonstrate that statin treatment 

in patients with calcific aortic valve may slow the rate of progression of stenosis, 

decrease calcium accumulation and delay the degeneration of the bioprosthetic valve 

(799;800).  In patients with Marfan syndrome, characterized by skeletal anomalies (long 

thin extremities and loose joints), dislocation of the lens and aortic dilatation, β-blocker 

therapy has proven beneficial for slowing the rate of aortic root dilatation, thus reducing 

the development of aortic complications (801).  There is evidence that beta-blockade 

might reduce shear stress and limit matrix remodelling, thus decreasing elasticity of the 

aortic wall (802).  Whether this treatment is useful in retarding aortic dilation and 
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decreasing the risk of aortic dissection is unknown; however β-blockers are prescribed 

to BAV patients with moderate aortic dilatation.   

4.1.2 Genetic network involved in BAV formation 

Deciphering the molecular events involved in normal valve development or BAV 

formation is critical for elucidating the molecular basis of BAV, which remains poorly 

understood.  Identification of GATA5 as critical for formation of a normal aortic tricuspid 

valve and the finding that its loss causes BAV will help in molecular valve dissection of 

valve development  To date, only a few genes have been associated with BAV in 

humans or in mouse models.  One of the first mouse models of BAV was reported with 

targeted deletion of the NOS3 gene where 40% of NOS3 null mice have BAVs (459).  

This suggested that this signalling pathway was critical for valvulogenesis.  More 

recently, it has been reported that the BAVs in eNOS-/- mice result from the fusion of the 

right and non-coronary leaflet (R-N) (451).  It was hypothesized that this was due to a 

defect in the formation of the OFT endocardial cushions, providing one of the first clues 

into the potential mechanism leading to BAV formation.  NOS3 expression is restricted 

to endocardial cells in the heart and is shear-stress dependent (803).  The formation of 

the endocardial cushions depends on the EMT process, which is also shear stress 

dependent.  This led to the hypothesis that NOS3 deficiency might alter endocardial cell 

migration during EMT, causing anomalous development of the valve cushion.  Similarly, 

the Gata5 null mice have a prevalence of 26% of BAVs and show the same type of 

fusion of the aortic valve leaflets as in the eNOS-/- mice.  Since both of these genes are 

expressed in endocardial cells and in the OFT, it would be interesting to cross mice 

heterozygous for NOS3 and Gata5 and investigate the possible genetic interactions in 

aortic valve development.  In addition, scanning of the NOS3 locus revealed the 

presence of GATA binding sites and my studies have demonstrated that GATA5 is able 

to activate the NOS3 promoter, suggesting that it could be a downstream effector.  

Thus, there is a possibility that both genes act in the same pathway.  To get more 

insight into this hypothesis, QPCRs or whole-mount ISH on embryonic Gata5 null 

hearts could be performed to determine if the NOS3 transcripts levels are altered. 

BAVs were also observed in a small proportion of mice haploinsufficient for 

Nkx2.5, which has been associated with CHDs in humans (289).  Nkx2.5 is a key 

regulator of cardiac development and inactivation of Nkx2.5 is lethal, which has 
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prevented the analysis of its role in aortic valve development.  In human BAV, no 

mutations have been reported for Nkx2.5.  In the last decade, Nkx2.5 has been shown 

to modulate the ECM of the aorta during cardiovascular development through regulation 

of collagen type I (804).  During endocardial cushion formation and EMT, the ECM 

supports proliferation and migration of newly transformed mesenchymal cells into the 

cardiac jelly.  At this stage, there is a low abundance of collagen, which reflect the 

architecture required for the matrix function (805).  However, as valvulogenesis 

progresses, there is an increase in collagen deposition in the ECM, which is required to 

provide stiffness and strength to the mature valve leaflet (806).  Moreover, mutations in 

collagen type 1 have been linked with the Ehlers-Danlos syndrome, which is 

characterized by skin and bone abnormalities as well as mitral and aortic valve 

dysfunction (807).  In the study reported by Ponticos et al., a GATA-like binding site 

was mapped near the NKX binding site.  They proposed a model whereby GATA6 and 

Nkx2.5 synergize leading to transcriptional activation of Col1a2 in response to 

activation of VSMCs.  Moreover, studies from our lab have demonstrated that Nkx2.5 

and GATA5 are able to synergistically activate the ANF promoter, suggesting that they 

may physically interact (124).  All of the observations suggest that Nkx2.5 and GATA5 

could interact together to regulate Col1a2 expression in the heart and that Col1a2 is a 

possible downstream target of GATA5.  Similarly to NOS3, it would be of interest to see 

if the GATA5 and Nkx2.5 transcriptional cascades converge together, resulting in an 

increased severity of BAVs when mice heterozygous for each gene are crossed 

together. 

To date, only mutations in human Notch1 have been associated with BAVs 

(453;455).  Garg V et al identified a nonsense and a frameshift mutation in two families 

with BAV and valve calcification, which provided compelling evidence that Notch1 

haploinsufficiency was a cause of aortic valve disease.  Notch1 is expressed in the 

endocardium and OFT cushion mesenchyme consistent with the aortic valve phenotype 

in these patients.  In the same study, it was demonstrated that Notch1 as well as the 

downstream target genes Hey1 and Hey2 were able to inhibit Runx2 activity, 

suggesting that the Notch signalling prevents calcium deposition.  The Notch pathway 

plays major role in multiple developmental processes, including cardiovascular 

development (808).  Moreover, it has been shown to be critical for EMT that contribute 

to the heart valves and is highly expressed in the valve mesenchyme and endocardium.  
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In mammals, the Notch pathway is composed of four type I transmembrane receptors 

(Notch1-4) and 5 type I transmembrane ligands, including JAG1.  Mice lacking JAG1 

die at E10.5-E11.5 with defects in yolk sac and embryonic vasculature (809).  More 

recently, conditional deletion of JAG1 in the SHF has demonstrated its requirement in 

aortic arch remodelling and septal development (810).  As these mice die perinataly, it 

has not been possible to analyse the morphology of the aortic valve.  I have 

demonstrated that JAG1, which is expressed in the endocardial cells in the same 

temporal window as GATA5, is strongly downregulated in Gata5 null and eGata5-/- mice, 

suggesting that endocardial GATA5 is upstream of JAG1 and regulates its expression.  

Mutations in human JAG1 have been associated with Alagille syndrome, which is an 

autosomal dominant disorder characterized by skeletal, ocular, renal, heart and hepatic 

defects (811).  One of the principle findings in Alagille syndrome is CHD, characterized 

by right-sided OFT defects, pulmonary stenosis and TOF.  In addition, JAG1 mutations 

have also been associated with TOF and pulmonary stenosis (812;813).  This 

phenotype is consistent with the expression pattern of JAG1 in the endothelium, neural 

crest cells and smooth muscle cells of the pulmonary arteries (814;815).  It is interesting 

to note that decreased JAG1 expression could lead to reduced Notch1 activation and 

subsequent Notch signalling in the OFT, which could contribute to abnormal 

endocardial cushion formation and fusion of the aortic valve leaflets.  

Immunohistochemical staining of embryonic hearts with an antibody against Notch1 

NCID could answer the question regarding downregulation of the Notch1 intracellular 

domain in Gata5 null mice.  Scanning of the JAG1 locus reveals a number of potential 

GATA binding sites, conserved across species, 3 Kbp upstream of the ATG as well as 

about 20Kbp upstream, suggesting that a distal GATA dependent enhancer might exist, 

regulating expression of JAG1.  Today, the regulatory region of JAG1 has not been 

determined but we could perform transfection experiments on these potential regulatory 

regions to answer this hypothesis. 

4.1.3 Endocardial GATA5 expression is necessary for normal aortic valve 

development 

The goal of this thesis was to evaluate the role of GATA5 in cardiac 

morphogenesis in mammals.  Eventhough GATA5 was shown to play a major role in 

cardiac development in zebrafish, the first report on the inactivation of this gene in mice 

revealed no major cardiac defects (33;757).  However, the strategy used by targeted 
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the first exon only, resulting in deletion of the first 157 aa with the possibility to form a 

truncated protein containing both zinc fingers and C-terminal activation domain.  

Characterization of the Gata5 locus revealed the presence of two distinct isoforms of 

GATA5 in chicken and mammals, with one lacking the entire exon two (first zinc finger) 

(759).  This N-terminal truncated protein retains the ability to bind DNA and activate 

target genes (365;760).  Based on these observations, the role of GATA5 in heart 

development cannot be definitely determined based on this mouse model. 

 We therefore decided to generate a new Gata5 null allele by deleting the 

second zinc finger and C-terminal activation domain, thus ensuring deletion of both 

isoforms.  Analysis of the aortic valve in these mice revealed the presence of BAVs with 

a prevalence of 26%.  In the endocardial cushions of the OFT, there is a contribution of 

endocardial-derived, SHF-derived and neural crest-derived mesenchyme.  To gain 

more insight into the role of GATA5 in endocardial development and which cell type 

contributed to these defects, we generated a conditional mouse model lacking GATA5 

in endothelial cells (eGata5-/-).  In the eGata5 mutant mice, a 70% reduction in GATA5 

transcripts was observed and attributed to its reduction in endocardial cells as GATA5 

is more abundantly expressed in endocardial cells.  We noticed a prevalence of 21% of 

BAVs in eGata5-/- mice, which is similar to Gata5 null mice.  Interestingly, this reflects a 

cell autonomous function for GATA5 in regulating endocardial cushion development.   

In both mouse models, the BAV resulted from the fusion of the right and non-

coronary leaflet (R-N).  This is the same type of fusion as was observed in NOS3-/- mice 

(451).  Previous studies have demonstrated that fusion of the leaflets is an early event 

during valvulogenesis and is the key factor in formation of a BAV (450).  This suggests 

that each leaflet of the aortic valve acquires its configuration before the end of 

valvulogenesis.  Based on the study performed by Fernandez et al, it has been 

suggested that defective migration of mesenchymal cells could be responsible for 

fusion of the leaflets.  Collagen explants cultures have been useful to determine some 

of the genes involved in EMT.  In this case, it would be complicated by the fact that 

most mesenchymal cells have migrated into the cushions and thus, the experiment 

could not be conclusive.  However, it would be possible to look at the OFT endocardial 

cushions at E9.5 when the neural crest mesenchyme has not reached the proximal part 

of the OFT.  We calculated the number of cells within the OFT cushion and noticed a 

reduction in Gata5 null compared to control embryos.  Immunohistochemical studies 
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using proliferation and migration markers could be performed at E9.5-E10.5 to assess if 

this is due to a migration or proliferation defect. 

As substantial complications are associated with BAV, both mouse models 

represent a powerful tool to study the evolution of the disease.  We have not observed 

aortic root dilation or calcification of the aortic valve by 200 days but as mice got older, 

some started to die prematurely.  Autopsy of a dead female Gata5 null mouse revealed 

massive hypertrophy as well as the presence of a thrombus in the left atrium, which is 

often linked with valve disease.  In addition, one out of six (17%) old Gata5 null mice 

with BAV, which had a peak aortic valve gradient of 96 mmHg (8 mmHg in controls) 

showed signs of aortic regurgitation.  This is similar to complications that arise in 

humans with BAV, where aortic regurgitation accounts for 1.5-3% of cases (442).     

4.2. Identification of novel genetic interactions between the GATA factors 

Genetic predisposition to CHD has been clearly established but in most CHDs 

complex inheritance and partial expressivity has complicated human genetic studies 

aimed at identifying disease causing genes.  They have also suggested the presence of 

genetic modifiers but few have been identified.  A number of transcription factors, 

whose mutations are linked with CHDs, including NKX2.5, GATA4, and TBX5, have 

been shown to act cooperatively to regulate normal heart development.  Genetic 

interactions between Tbx5 and GATA4 were found important in atrial septum 

development (127;291).  Moreover, Olson and colleagues have shown that cooperative 

interactions between GATA4 and GATA6 are important for proper septation of the OFT 

as well as formation of the compact myocardium (777)  Overall, these observations 

suggest that combinatorial interactions between transcription factors play a critical role 

during embryonic cardiac development.  This is consistent with the phenotype that was 

observed in the Gata4/Gata5 and Gata5/Gata6 double heterozygotes generated during 

my studies.  Compound heterozygosity of Gata4 and Gata5 resulted in perinatal 

lethality and mutants embryos displayed cardiac defects including DORV, VSD, CAVC 

and hypertrophied AV valves.  Only 6% of Gata4/Gata5 double heterozygote embryos 

survived to adulthood and these had aortic stenosis.  Compound heterozygosity of 

Gata5 and Gata6 also resulted in DORVs, which was associated with a subaortic VSD.  

These results strongly suggest that GATA5 interacts with the other cardiac GATA 

factors for proper formation and rotation of the OFT. 
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Members of the GATA family are highly related within their DNA binding domain 

but display more divergence outside this region.  The overlapping expression patterns 

of GATA1, GATA2 and GATA3 in some hematopoietic cells suggest that these factors 

may have redundant functions.  However, there is increasing evidence suggesting that 

a given GATA protein does not compensate for the absence of the other and that they 

interact together for normal hematopoietic development.  Of note, in vitro hematopoietic 

differentiation of Gata1-/- ES cells leads to a 50-fold increase in Gata2 mRNA in 

erythroid cells, however, these cells are arrested in differentiation and die by apoptosis 

(816).  The blood islands of double Gata1-/-Gata2-/- embryos are devoid of primitive 

erythroid cells in contrast to Gata1-/- or Gata2-/- embryos, suggesting that they 

cooperatively interact in hematopoiesis (817).  The knockin of Gata3 into the Gata1 

locus partially rescues the Gata1 null phenotype with increased survival of erythroid 

precursor cells and increased survival up to E13.5 (818).  This observation also 

suggests that each GATA factor has a distinct function in development.  In addition, 

when the Gata2 and Gata3 transgene are under the control of Gata1 regulatory 

elements, rescue of the embryonic lethal phenotype of the Gata1 mutation is observed, 

suggesting that the hematopoietic GATA factors are not functionally equivalent (819).  

The similar expression of GATA2 and GATA3 in the central nervous system (CNS) 

again indicates possible genetic interactions.  No expression of GATA3 could be 

detected in the CNS of Gata2-/- embryos, suggesting that expression of GATA3 is 

dependent on GATA2 (689).  

The ability to interact with each other is also well conserved among the cardiac 

GATA factors.  Experiments from our lab demonstrated that GATA4 and GATA6 

heterodimerize and synergistically activate the Nppa and Nppb promoters in 

cardiomyocytes, providing the first evidence of physical and functional interactions 

(723).  Xin et al demonstrated that GATA4 and GATA6 interact in outflow tract 

development (777).  The Gata4/Gata6 compound mutants displayed VSDs, PTAs and 

myocardial hypoplasia.  These defects were distinct from the Gata4 and Gata6 

heterozygote mice, clearly showing that both genes cooperate together in 

cardiovascular development.  Another study reported that both GATA4 and GATA6 are 

required for heart development as their inactivation results in acardia in mice (778).  

These authors noticed that cardiac myocyte differentiation was altered in these 

embryos while formation of the SHF progenitor cells was normal.  It is worth noting that 
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in zebrafish, Holtzinger et al demonstrated that zebrafish depleted of both Gata5 and 

Gata6 (gata5+6 morphants) are completely heartless, which is distinct from depletion of 

Gata5 or Gata6 alone, indicating that both proteins are essential for cardiomyocyte 

development (820).  In addition, zebrafish depleted of both Gata4 and Gata6 were 

shown to display an early block in liver development and lack liver buds, indicating that 

they interact together for liver growth and not only in heart development (783).  

Interactions among the GATA factors are important for heart and liver development in 

Xenopus.  This was shown by co-injection of Gata4 and Gata6 morpholinos, which 

resulted in a reduction of heart and liver precursors and to cardia bifida (821).  Overall, 

the function of GATA factors seems to be conserved across species and the genetic 

interactions are important to allow normal development of the heart, liver and possibly 

other organs where they are co-expressed. 

4.2.1. Interaction of GATA factors in outflow tract development 

The studies performed during this project demonstrated the requirement of two 

GATA factors in OFT development.  In both cases, the compound heterozygotes had 

abnormal development of the OFT, leading to a DORV.  DORVs arise when there is an 

arrest in the rotation of the OFT, resulting in the presence of both great vessels leaving 

the right ventricle.  Previous studies have revealed that all three cardiac GATA factors 

are expressed in the SHF while GATA6 is also expressed in neural crest cells.  In light 

of the results obtained in chapter 2.2, it is not possible to say which cell type is 

responsible for the DORV.  Thus, it would be interesting to generate compound 

heterozygotes in which GATA4 and GATA5 expression is deleted only in the SHF, by 

using the Mef2Cre transgenic mouse.  In the case of GATA6, two compound mutants 

could be generated, one in which GATA6 is deleted in the neural crest and one where 

GATA6 is inactivated in SHF cells.  This could also give us some insight into their role 

in the SHF as well the molecular pathways affected by their loss.  Recently, Rojas et al 

reported that deletion of Gata4 in the SHF resulted in VSDs, ventricular hypoplasia and 

myocardial thinning (718).  However, the authors did not observe OFT defects as were 

shown in other mouse models of GATA4.  Their hypothesis was that GATA5 and 

GATA6 might compensate for GATA4 in the SHF.  Generating double heterozygotes in 

the SHF would certainly answer this question.  Presently, it is still unclear if the 

presence of GATA6 in the neural crest was able to influence the number of SHF cells in 

these mutants. 
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The cardiac OFT is formed and subsequently remodelled by complex 

interactions between the endocardium, myocardium and CNC cells.  Endocardial cells 

will undergo EMT, which contributes to the formation of the OFT cushions.  The SHF 

cells populate the OFT cushions and the CNC cells migrate into the distal OFT 

cushions, where they are required for septation and proper alignment of the OFT.  

Based on the expression pattern of GATA4 and GATA5 in the heart, it is possible that 

reduced expression of these two GATA factors in the endocardium may influence 

rotation and alignment of the OFT, which could explain the DORV phenotype observed 

in Gata4/Gata5 mutant embryos.  To verify this hypothesis, we have crossed our 

Tie2cre+;Gata5WT/Flox mice with Gata4WT/Flox mice to delete both genes in endocardial 

cells.  In addition, reciprocal interactions between the SHF and neural crest have been 

shown to be important for proper addition of SHF cells to the OFT (319).  Since the OFT 

cushions are composed of three cell types, it is highly possible that reciprocal 

interactions between SHF and neural crest with endocardial cells occur within the 

cushions.  As mentioned before, GATA6 is also expressed in the neural crest and there 

is a possibility that it could influence the number of endocardial cells in the cushion, 

their proliferation or survival.  This could be tested by crossing heterozygous mice 

which lack Gata6 in neural crest cells with mice heterozygote for Gata5 and scoring for 

the DORV phenotype.  To get better insight into the mechanism leading to DORV, 

TUNEL staining should be performed to assess if cell death is present in the OFT.  

Moreover, proliferation as well as migration markers should be used to stain the OFT 

cushions and determine if misalignment of the OFT is due to defective migration or 

proliferation of endocardial, neural crest or myocardial cells.  In addition, candidate 

QPCR analysis of dissected outflow tracts at E9.5-E10.5, when the endocardial 

cushions form and the OFT aligns, could be performed to find downstream targets of 

the GATA factors in the OFT.  Downregulation of these potential target genes in the 

OFT could possibly contribute the defective alignment of the OFT. 

4.2.2. Interaction of GATA factors in valve development 

Previous studies have suggested a role for GATA4 in endocardial cells.  Of note, 

deletion of Gata4 in the endocardium using the Tie2cre transgenic mice resulted in 

embryonic lethality with hypoplastic cushions, suggesting that GATA4 is required for 

growth of the cushions and EMT (719).  As discussed in the introduction, VEGF plays 

an important role in valve development, where it is required for the proliferation of 
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endocardial cells.  Based on the observation that a number of GATA binding sites are 

present on the human VEGF promoter, we hypothesized that GATA4 could regulate its 

activity.  Interestingly, I have shown that GATA4 is able to transactivate the VEGF 

promoter as well as cooperatively regulate its activity in presence of Tbx5 or Tbx20.  A 

point mutation in GATA4 (G295S) strongly reduced its DNA binding activity as well as 

cooperative interactions with the T-box factors.  This is consistent with the related 

G296S mutation in mice, which was shown to reduce GATA4 DNA binding activity as 

well as physical interactions with Tbx5 (127).  In addition, GATA4 stable clones were 

generated in TC13 cells, which is a mesodermal cell line that can be differentiated into 

endothelial cells upon treatment with RA (368).  Proliferation assays indicated that the 

GATA4 stable clones were proliferating more rapidly compared to controls, thus 

bringing more evidence for a proliferative role for GATA4 in endocardial cells. 

The generation of Gata4/Gata5 double heterozygotes allowed to test the 

interactions between these two proteins in endocardial development.  We noticed that 

the 70% of AV valves were hypertrophied and 15% of embryos had a common AV 

valve, which results from abnormal remodelling of the cushion.  The number of cushion 

cells was also reduced compared to control, which could highly contribute to these 

defects.  These cardiac abnormalities could be the results of defective expression of 

these proteins in endocardial cells or in the myocardium as myocardial-endocardial 

signalling is important for endocardial cushion formation.  To answer this question, we 

have crossed our Tie2cre+;Gata5WT/Flox mice with Gata4WT/Flox mice to delete both genes 

in endocardial cells. 

Two thirds of surviving Gata4/Gata5 double heterozygotes presented high aortic 

mean pressure gradient as well as left ventricular and aortic valve hypertrophy, similar 

to humans with aortic stenosis.  It would be interesting to follow up these mice to see 

the evolution of the disease with aging, particularly regarding the rigidity or calcification 

of the aortic valve, which is often associated with aortic valve disease.  The phenotype 

in these mice is more severe than in the Gata5 null mice, strongly indicating that both 

genes interact together in normal endocardial development.  As deletion of Gata4 in the 

endocardium is lethal embryonically, it has not been possible to analyse the 

morphology of the aortic valve.  The increased aortic mean pressure gradient in these 

mice is similar to that of Gata5 null mice that have BAVs, which suggest that the double 
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heterozygotes could have congenital BAVs.  We are currently looking at this possibility 

by examining the morphology of the aortic valve in newborn pups.  

As discussed in the introduction, multiple signaling pathways are required for 

proper development of the cardiac valves.  In this study, we demonstrated a strong 

downregulation of Tbx20.  Tbx20 is expressed in both myocardial and endocardial cells 

where it is required for proliferation and differentiation (550;551).  Moreover, 

neuromancer, the Tbx20 ortholog in Drosophila, has been shown to be a potential 

downstream target of pannier in the heart (822).  This function appears to be conserved 

with mice and we observed multiple GATA binding sites on the putative murine Tbx20 

promoter, further suggesting that the GATA factors may cooperatively regulate Tbx20.  

It would be worthwhile to test this hypothesis in transfection and chromatin 

immunoprecipitation assays.  Moreover, co-immunoprecipitation studies could be 

undertaken to test for physical interactions between GATA4 and GATA5.  Based on the 

physical interactions that were demonstrated between GATA4 and GATA6 from our lab 

and the fact that this requires the zinc finger domain which it is highly similar among 

GATA factors, it seems reasonable to hypothesize that GATA4 and GATA5 as well as 

GATA5 and GATA6 may physically interact.  

CHD is the leading cause of infant morbidity and mortality in the world.  

Significant advances towards understanding the molecular mechanisms involved in 

CHD have been made in the last decade.  Eventhough family studies led to the 

discovery of mutations of cardiovascular developmental genes such as Tbx5, Nkx2.5 

and GATA4, the majority of cases of CHD have no identified cause or association.  

CHD has an increased risk of recurrence within families and among the affected 

relatives, the cardiovascular phenotype usually differs, occurs with incomplete 

penetrance and variable expressivity, thus suggesting that modifying factors, including 

genetic and environmental influences, are at play (440).  Based on these observations, 

understanding the molecular and genetic mechanisms involved in cardiac 

morphogenesis and CHD would offer valuable insight that would lead to a better 

diagnosis and prevention of serious cardiac complications with age.  The results 

obtained during this study strongly suggest that GATA5 may be a good candidate CHD 

causing gene.  Future studies aimed at elucidating downstream effectors of GATA5 in 

endocardial cushion development will provide a better understanding of the molecular 

mechanism involved in BAV as well as other valve diseases.  Moreover, 
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characterization of the genetic interactions between cardiac GATA factors as well as 

the genetic pathways involved in OFT development will also contribute to a better 

understanding of the interactions between the different cells types in the OFT 

endocardial cushions and formation of DORVs. 

4.3. Valve diseases progressively lead to degenerative phenotypes 

In addition to BAVs, other valve disease also tend to degenerate over time, 

leading to similar complications.  Valvular heart disease (VHD) is a common condition 

that increases with age, with a prevalence of 13% in individuals 75 years of age or older 

(823).  Defective development of the heart valves occurs in 20-30% of all CHDs, with an 

incidence of congenital valve defect estimated to be as high as 5% of live births 

(439;475).  The extracellular matrix plays a mechanical role during valvulogenesis and 

is rich in hyaluronan, versican and fibronectin, which facilitate cell migration, growth and 

dynamic morphological changes that give rise to the heart.  The mature valve structure 

is composed of ECM, valvular interstitial cells (VIC) and overlying endothelial cells.  In 

addition, the ECM is composed of three highly organized layers that are primarily 

composed of collagens, proteoglycans and elastin.  There is increasing evidence that 

loss of ECM organization is associated with changes in mechanical properties, leading 

to dysfunction in adult valve disease.  Consistent with this, studies of diseased valves in 

adult patients have shown thickening of the valve leaflets, collagen fiber disorganization, 

increased VIC density and calcification (824-826).    

Periostin is a secreted protein that promotes adhesion and migration and is 

expressed in the embryonic cardiac valves in addition to cancer cells, vascular smooth 

muscles cells, fibroblasts and wound-site blood vessels (827;828).  A number of studies 

have demonstrated a requirement of periostin for normal cardiac valve development 

and its critical role in cardiac valve maturation (828-830).  Of note, the valve leaflets of 

periostin-/- mice are hypertrophied and shortened by 3-months of age and the tendinous 

cords of the AV valves are either truncated or missing.  The phenotype of periostin-/- 

mice is similar to the degenerative changes seen in prolapsed human mitral valves or 

BAVs (828;830).  More recently, it was reported that infants with congenital BAV 

stenosis have reduced valve periostin expression, suggesting that reduced expression 

of periostin during development may result in congenital valve malformations (830).  

Whether periostin played any pathophysiologic role in adult valve disease remains 
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unclear.  In human atherosclerosis and rheumatic valve disease periostin levels were 

pathologically overexpressed in infiltrated inflammatory cells and myofibroblasts in 

areas of angiogenesis (831).  In addition, periostin was able to form tubes and mobilize 

endothelial cells in the mid-region of the valve, especially where the normal structure of 

the valve endocardium is disrupted.  Based on these observations, it is possible that 

periostin enhances the recruitment of circulating endothelial progenitor cells or the 

penetration of microvessels from the annulus region into the leaflet of the valve. 

Elastin, a component of elastic fibers, is and EMC protein required for tissue 

integrity and mobility (832).  Mutations in elastin have been identified in patients with 

supravalvar aortic stenosis (833).  Moreover, elastin haploinsufficiency results in 

cardiovascular abnormalities in 10-45% of patients with valve problems (834).  Based 

on these observations, it was hypothesized that elastin haploinsufficiency in mice would 

result in viable aortic valve disease and hence the function of elastin during progressive 

degeneration of valve disease could be assessed.  Hinton R et al showed that the Eln+/- 

mouse model leads to a progressive aortic valve malformation (835).  Interestingly, by 

the adult stage, the Eln+/- aortic valve became elongated, thinned, stiff, elastic fibers 

were decreased and fragmented and collagen bundles were disoriented.  Moreover, the 

authors noted a decrease in TGFβ signaling and echocardiographies revealed the 

presence of regurgitation and aortic stenosis, suggesting that the incidence of disease 

increased over time.  Thus, the elastin haploinsufficient mice proved to be a useful 

model for improving our understanding of valve disease pathogenesis. 

Versican, another EMC component, plays important roles during cardiac 

development and also in adult cardiovascular diseases (193;836).  Increasing evidence 

has revealed that versican cleavage occurs throughout cardiac development by 

members of the ADAMTS family (837).  Among them, Adamts9 is expressed in 

derivatives of the SHF, vascular smooth muscle cells, the arterial wall, mesenchymal 

cells of the valves and non-myocardial cells of the ventricles, suggesting it may play an 

important function during cardiac development and in the adult heart as well (838).  

Adamst9 haploinsufficiency leads to abnormal thickening of the semilunar valve leaflets 

as well as increased proteoglycan content in the aortic valve.  In addition, the mitral 

valves show disorganized fibrous components of connective tissue as well as increased 

versican accumulation.  These observations suggest that gradual accumulation of 

uncleaved versican may be the underlying cause of the anomalies. 
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Previous studies have suggested that the mechanism of aortic valve 

degeneration is similar to that underlying atherosclerosis.  The process includes the 

destruction of the endothelial layer of the valve, invasion of inflammatory cells into the 

valve, accumulation of low density lipoprotein, proliferation of valvular interstitial cells, 

ECM remodelling and eventually calcification of the valve (826).  Interestingly, MMPs 

and tissue inhibitor of matrix metalloproteinases, including MMP-3, MMP-9 and TIMP-1, 

have been found to be increased in calcified human aortic valves.  In addition, Fibulin-4, 

another component of the ECM, has been shown to play an important function in 

maintaining TGFβ signal and ECM integrity.  Loss of fibulin-4 leads to aortic valve 

stenosis as well as ascending aortic aneurysm and attenuated TGFβ signaling (839).   

Other molecules such as BMP2, Sox9 and Notch signalling are involved in aortic valve 

calcification.  Reduced Sox9 function was shown to lead to increased expression of 

bone-related genes and activation of inflammation and ECM remodelling, leading to 

calcification of the valves (840).  Notch1 signaling in aortic valve cells represses 

activation of osteoblast genes like runx2 through mediation of Bmp2 (453;841).   

Based on these observations, it would be important to assess potential aortic 

valve and aortic wall degeneration in Gata5 null old mice and determine which of these 

molecules are involved in valve pathogenesis resulting from loss of Gata5 function. 

4.4. Genetic networks underlying outflow tract defects 

The incidence of conotruncal defects, which include PTA, DORV, TGA and TOF, 

is 12-14% of all CHDs (475).  Significant advances in our understanding of how the 

cardiac OFT normally forms was provided by Kirby M and colleagues when they 

demonstrated that neural crest cells contribute to the septation of the OFT.  Ablation of 

the neural crest results in a spectrum of cardiovascular defects including PTAs, outflow 

misalignments and defective remodelling of the great arteries (423).  Based on previous 

studies in chick and human, it is well accepted that the OFT undergoes rotation during 

its remodelling (81;842).  Moreover, it was discovered in the last couple of years that 

rotation of the myocardial wall of the OFT is required for normal positioning of the great 

arteries (843).  Thus, complex and highly regulated cellular and morphogenetic events 

are required for proper septation and development of the OFT. 

Persistent truncus arteriosus occurs when the conotruncal area does not divide 

properly during embryonic cardiac development into a separate aorta and pulmonary 
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artery, resulting in a common trunk.  Mutations in Tbx1 have been associated with 

PTAs in mice and humans (844).  Loss of function of Tbx1 in the mesoderm results in 

reduced cell proliferation in the pharyngeal mesoderm, which contributes to the 

septation, growth and alignment defects (845).  Loss of genes that are normally 

expressed in the neural crest also leads to PTAs, including Gata6, Sema3C, Pax3 and 

Pitx2 (315).  Transposition of the great arteries normally occur in 10-11% of children 

who have CHDs (461).  In TGA, the pulmonary artery is supplied by the left ventricle 

and the aorta by the right ventricle instead of the opposite.  This results in mixing of 

unoxygenated blood and cannot occur without the presence of a VSD, an ASD or a 

patent ductus arteriosus.  In humans, mutations in Zic3, Nkx2.5, Nodal and FoxH1 have 

been associated with TGA (429).  These genes have all been involved in establishing 

left-right patterning during embryonic development, suggesting that mutations in 

laterality genes could result in this defect.  Consistent with this, it has been shown that 

Pitx2c null mice display TGA, in addition to DORV (846).  Double outlet right ventricle 

represent a continuum of CHDs where the aorta originates from the right ventricle 

instead of the left and is always associated with a VSD.  The VSD can be subaortic, 

subpulmonary, not committed to any vessel or doubly committed (underlying both 

vessels).  DORVs have been reported in association with chromosome 22q11 deletion 

and attributed to loss of Tbx1 function (847).  This phenotype is also observed in mouse 

knockouts for TGFβ2, Gata4, Pitx2, Sox4, Dvl 2, Pax3, Cx40 and in mice defective in 

the retinoic acid signalling pathway (847). 

A genetic network, involving the SHF and neural crest, has been revealed to be 

crucial for OFT formation.  Mice lacking Isl1 die embryonically and display absence of 

right ventricle and OFT, which are derived from the SHF (44).  Importantly, Isl1 is not 

expressed in the OFT and right ventricle but is detected in the SHF and is considered 

as one of the earliest markers of the SHF (44).  Other genetically engineered mice 

show similar cardiac phenotypes.  Inactivation of Mef2c results in failed looping with a 

single ventricular chamber and defective OFT (304).  More recently, it was 

demonstrated that Mef2C is a direct transcription target of Isl1 and GATA4 in the 

anterior heart field, suggesting that the GATA factors and Isl1 are among the earliest 

transcription factors controlling OFT development (305).  Foxh1 also plays an important 

role in the formation of the RV and OFT as mice lacking FoxH1 lack a RV and have 

reduced expression of early cardiac markers including Mef2c, Hand2, Fgf8 and Tbx5 
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(306).  When Hand2 was deleted in neural crest cells, VSDs, DORV and aortic arch 

arteries defects were observed (848).  More recently, it was suggested that Hand2 

influences OFT development by regulating genes related to cell migration, 

proliferation/cell cycle and intracellular signalling, including Cx40, Hey1, Foxc1, 

ADAM19, Col11a1 and NFATc2.  Thus, expression of Hand2 in neural crest cells may 

be required for proper patterning of the OFT, generation of an appropriate number of 

neural crest-derived cells for elongation of the OFT and cardiac cushion formation (849).   

The role of GATA factors in the SHF has not been studied in detail to date.  

However, there is a reinforcing circuit in the SHF between GATA factors and Nkx2.5.  

Interestingly, Molkentin et al described the analysis of a Gata6 enhancer that is 

restricted to the pharyngeal mesoderm, OFT and right ventricle at E9.5 in the mouse 

(788).  This enhancer was directly activated by Nkx2.5 and thus, it appears that GATA 

factors and Nkx2.5 can cross-regulate one another’s expression.  Here, we showed that 

Nkx2.5 was strongly downregulated in the embryonic hearts of the compound 

heterozygotes, consistent with the ability of GATA factors to regulate Nkx2.5 expression.  

Interestingly, mutations in Nkx2.5 were found to be among the most common 

monogenic loci associated with DORV in humans (847).  Therefore, reduction of Nkx2.5 

expression could contribute to the DORV phenotype observed in the double GATA het 

mice.  Moreover, a strong reduction in Mef2c expression was also observed in the 

double heterozygotes and as GATA4 is able to regulate a Mef2c enhancer, this could 

also contribute to the defects observed in these mice.  Similarly, Mef2c was shown to 

be downregulated in the Gata4/Gata6 compound heterozygotes, which also contributed 

to the defects observed in these mice (777).  The Gata4/Gata6 double heterozygote 

embryos displayed PTAs as well as ventricular hypoplasia.  As discussed in this section, 

PTAs and DORVs result from defective septation or misalignement of the OFT.  Thus, 

alteration in the levels of any 2 cardiac GATA factors leads to OFT defect, suggesting 

that a threshold of GATA factors is required for proper OFT development.  Based on the 

pattern of expression of GATA6 in the heart, it is likely that defective Gata6 expression 

in the neural crest may underlie the PTA phenotype as neural crest are essential for 

septation of the OFT.  A recent study reported that the myocardium at the base of the 

OFT is involved positioning of the great arteries (843).  In both the Pax3-/- and Pitx2c-/- 

embryos, the authors showed that abnormal expression of the y96-Myf5-nlacZ-16 (96-

16) transgene, which marks the myocardium at the base of the OFT, resulted in 
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arrested rotation of the OFT.  As GATA4 and GATA6 are both detected in the 

myocardium of the OFT, there is a possibility that abnormal expression of these genes 

at the base of the pulmonary trunk may lead to arrested rotation of the OFT in the 

Gata4/Gata6 or in our double heterozygote embryos.  Moreover,  as GATA4 and 

GATA5 are highly expressed in the endocardium, it is likely that this cell type may also 

underlie the OFT defects.  We showed that the endocardial cushions of the 

Gata4/Gata5 double heterozygotes are smaller and have a reduced number of 

mesenchymal cells.  As the endocardial-myocardial signaling is important for heart 

development, it is possible that a reduction in the number of OFT cushion cells may 

affect the number of myocardial cells at the base of the OFT trunk, thus leading to 

arrested rotation of the OFT.  In order test these hypotheses, future studies aimed at 

verifying the expression of neural crest, endocardial, myocardial and SHF markers 

should be undertaken by whole mount ISH in Gata4/Gata5 and Gata5/Gata6 embryos.  

We could also cross mice heterozygous for Gata4, Gata5 or Gata6 with other mouse 

models that lead to DORVs in order to determine if they converge or act in the same 

pathway in OFT development. 

4.5. GATA5 in transcriptional control of endocardial development 

Endocardial cells are required for multiple aspects of cardiac morphogenesis, 

including valve and septal development.  They are also required, through cross-talk via 

secreted factors, in the division of the truncus arteriosus into the aortic and pulmonary 

trunks and formation of the trabecular myocardium.  Given the high number of CHDs 

that are represented by valvular abnormalities, septal defects, cardiac conduction 

defects and ventricular noncompaction, understanding endocardial development is very 

important clinically. However, numerous questions regarding the origin and 

development of endocardial cells have still not been answered although recent studies 

have hinted at the existence of a common progenitor with myocardial cells.  Thus, a 

more detailed understanding of the molecular mechanisms that regulate endocardial 

development is necessary in order to have a better insight into human CHDs and in the 

hope of developing preventive and therapeutic strategies. 

In the last decade, attention has been directed towards the myocardial-

endocardial signaling and its importance in cardiac morphogenesis.  Formation of the 

trabecular myocardium is essential to heart development and adult cardiac function.  
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However, the molecular regulation of this process is still poorly understood.  

Endocardial cells play an important role in modulating cell proliferation and 

morphogenesis of trabecules.  Few pathways, including Neuregulin/ErbB, 

EphrinB2/EphB4 and Bmp10, have been shown to be involved in this process.  The 

NRG1-/-, ErbB2-/- and ErbB4-/- embryos die embryonically with failure of cardiac 

development due to lack of trabeculation (145-147).  NRG1 is expressed in the 

endocardium whereas the ErbB receptors are expressed in the myocardium.  Bmp10 is 

expressed in the trabecular myocardium and loss of Bmp10 leads to embryonic lethality, 

which is associated with decreased ventricular trabecular proliferation (148).  Lastly, 

ephrinB2 and ephrin receptor B4 are both expressed in the ventricular endocardium 

and deficiency in either of them leads to failure of myocardial trabeculae formation (850).  

The Notch signaling pathway has emerged, in the last couple of years, as an important 

player in formation of the ventricular trabecular network.  Of note, Notch activity can be 

detected in trabeculae in the earliest developmental stages with expression in the 

endocardium (851).  The trabeculation defective phenotype of Notch1 and RBPJκ 

mutants strongly supports a role in the development of the ventricular myocardium 

(149;851).  Moreover, Notch mutant embryos show defective expression of Bmp10, 

ephrinB2 and NRG1, which are essential for trabeculation.  Based on these studies, the 

authors have proposed a model where Notch1 acts directly on the ephrinB2/ephB4 

pathway, which is required for NRG1 production and subsequent activation of 

ErbB2/ErbB4 receptors in the myocardium.  Notch1 is also able to activate Bmp10 in 

the myocardium in a non-cell autonomous manner in order to maintain proliferation of 

the trabecular cardiomyocyte population. 

GATA5 is expressed in the endocardial cells around the trabecules from E9.5-

E12.5, suggesting that it may play a role in trabeculae formation.  In the Gata5 null 

embryos, we observed reduced ventricular trabeculation and upon QPCR analysis, we 

noticed reduced expression of NRG1, erbB2 and ephB4 transcripts, which are involved 

in trabeculation.  This highly suggest that GATA5 acts upstream of these genes to 

regulate proper formation of ventricular trabecules.  Based on the Notch model, we can 

hypothesize that GATA5 directly regulates the ephrinB2/ephB4 pathway, which then 

activates the NRG1/ErbB pathway or that GATA5 directly activates all of these genes 

independent of one another.  As of yet, the specific interaction between Gata5 and 

these genes is still unknown.  Whole mount ISHs or immunohistochemical studies will 
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be required to pinpoint the exact location and confirm that these genes are 

downregulated in the endocardium of the Gata5 null mice.  It will be interesting to verify 

the expression of Notch1 and Bmp10 in these embryos to see if GATA5 regulates.  At 

the same time, it would be important to get a hold of the NRG1, ErbB2, Notch1, Bmp10 

and ephB4 deficient mouse models or collaborate with these groups to test the 

expression of GATA5 in these embryos and get a better understanding of the 

relationship between these genes and where exactly GATA5 comes to play in this 

hierarchy. 

Endocardial cells play a critical role in valvulogenesis and a subtle alteration in 

the formation of the endocardial cushions may lead to valve defects.  As discussed in 

section 1.1.7.4 of the introduction, a number of signalling pathways are required for 

valve development.  In addition, a number of transcription factors, including NFATc1, 

Twist1, Tbx20 and Sox9, have also been shown to play important functions during 

valvulogenesis.  NFATc1 belong to the NFAT family of transcription factors.  NFATc1 

null mice die at E14.5 due to lack of cushion growth and remodelling (272;273).  EMT 

occurred normally in these embryos, suggesting that NFATc1 was required at later 

stages of valve development.  The heart defects were rescued upon endothelial-specific 

expression of NFATc1, demonstrating that the requirement of NFATc1 expression in 

endocardial cells for proper valvulogenesis (280).  Further studies on the NFATc1-/- 

embryos as well as avian endocardial cushions demonstrated that NFATc1 is required 

for endocardial cell proliferation and induction of Cathepsin K, which is expressed in the 

remodelling valve leaflet (852).  Earlier this year, it was reported that NFATc1 is 

expressed in human calcific aortic valves, providing evidence that dysregulation of 

NFATc signaling leads to progressive valve disease (853).  These studies suggest that 

NFATc1 is required for remodelling during valve development.     

Sox9 is a SRY-related transcription factor that has been shown to be important 

for sex determination and cartilage formation.  In the mouse, Sox9 is expressed in the 

precursor cells of the endocardial cushions and its expression is maintained in the adult 

valve leaflets (854).  Loss of Sox9 leads to embryonic lethality with hypoplastic 

endocardial cushions that fail to complete EMT, suggesting a role in the early stages of 

valve development (855).  In addition, NFATc1 was found to be mis-expressed in the 

mutant embryos, which suggest that the endothelial delamination process during EMT 

did not occur properly.  Moreover, endocardial specific deletion of Sox9 leads to 



205 

 

 

embryonic lethality by E14.5 and mutants embryos displays hypoplastic cushions, 

reduced cell proliferation and altered ECM deposition, indicating a role in expansion of 

the valve progenitor pool (854).  Recently, heterozygous loss of Sox9 in the Col2a1Cre 

lineage was show to result in thickened valve leaflets that progressively develop calcific 

lesions, thus identifying Sox9 as a potential candidate for calcific valve disease (840). 

Twist1, which belong to the class II basic helix-loop-helix transcription factor, 

promotes cell proliferation and migration of embryonic progenitor cells and transformed 

tumour cells (856).  In humans, Twist1 haploinsufficiency has been associated with the 

Saethre-Chotzen syndrome, characterized by craniofacial defects as well as CHD (857).  

In the mouse, Twist1 is expressed in the endocardial cushions of the AVC and OFT 

during valve development while its expression is downregulated in the remodelling 

valve leaflet.  Loss of Twist1 in mice leads to embryonic lethality by E11.5 and embryos 

display abnormal migration of neural crest cells, hypoplastic limb buds and vascular 

defects (858).  However, initial stages of valve development seemed normal but 

analysis of the remodelling valves was precluded due to the early lethality.  In the last 

couple of years, Yutzey and colleagues have shown that Twist1 is required in 

endocardial cushions to promote cell proliferation and migration by increasing 

expression of Cadherin 11, periostin and Mmp2 while repressing the differentiation 

marker aggrecan (551).  In the same study, it was also reported that Twist1 can induce 

Tbx20 expression, which was also shown to promote proliferation of endocardial 

cushion cells.  Moreover, persistent expression of Twist1 in the remodelling valves led 

to increased valve cell proliferation, increased Tbx20 and EMC gene expression, 

consistent with their previous study (859).  In human diseased aortic valves, expression 

of Twist1 was increased and cell proliferation was observed near nodules of 

calcification, suggesting that Twist1 may be involved in the progression of valve 

diseases (859). 

Tbx20, a member of the T-box family, is expressed in the endocardial cushion 

mesenchyme during embryonic development.  Mutations in Tbx20 have been linked to 

ASDs as well as valve defects, suggesting that it may play an important role during 

valvulogenesis (555).  Mice lacking Tbx20 die at E10.5, which precluded analysis of 

valve development in these mice.  To elucidate the role of Tbx20 in valve development, 

gain and loss of functions were performed in avian endocardial cells.  Like Twist1, 

Tbx20 promotes cell proliferation and migration as well as expression of Mmp9 and 
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Mmp13 while repressing aggrecan and versican (550).  Furthermore, Bmp2 treatment 

of avian endocardial cells resulted in increased Tbx20 expression while loss of Tbx20 

led to increased Tbx2 gene expression.  Thus, Tbx20 seems to promote cell 

proliferation of the mesenchymal valve precursor cells and repress ECM remodelling. 

All of these transcription factors are expressed in endocardial cells or 

endocardial cushions at the same time as GATA5, suggesting that they could act in the 

same pathway or genetically interact in valve formation.  As I have described in chapter 

2, we found a strong downregulation of Tbx20 in the Gata5 null embryos, suggesting 

that it may be a downstream effector of GATA5 in the endocardium.  It would be 

interesting to verify the expression of these transcription factors in Gata5 null embryos 

to see if they could act as downstream effectors of GATA5 in valve development.  

Moreover, it is highly possible that we may find GATA binding elements in the promoter 

of these genes as GATA binding sites are found in practically all promoters.  

Transfection as well as chromatin immunoprecipitation experiments could be 

undertaken to determine if these genes are direct targets of GATA5 in endocardial cells.   

It has been hypothesized that the embryonic AV canal contains the precursors 

of the AV node of the CCS.  This suggest that formation of the endocardial cushions is 

critical to AV node development.  The first hint for a role for GATA5 in the CCS came 

from electrocardiographic analysis of old Gata5-/- (450 days) mice.  We observed a 

prolongation in the PR interval, which is associated with AV node (first degree AV block) 

dysfunction.  Our hypothesis is that GATA5 may regulate the expression of genes in 

endocardial cushions that become confined to the CCS.  In general, markers expressed 

in the embryonic AVC become restricted to the AV node, AV valves encircling 

myocardium of the AV junction and anterior node.  For example, Tbx3 is expressed in 

the AV canal during embryonic development where it act as a repressor and its 

expression becomes further restricted to the AV node and small parts of the right AV 

junction (166).  Consistent a role for GATA5 in the CCS, we noticed a significant 

downregulation of Cx40 (25%), Cx43 (25%) and HCN4 (34%) transcripts already in 

embryonic Gata5 null hearts.  It will be important to perform whole mount ISH or 

immunohistos between E9.5 and E11.5, during growth and formation of the AV canal 

endocardial cushions, to pinpoint the exact location where these genes are 

downregulated.  Moreover, immunohistochemistry staining of embryos at later stages of 

AV node development will be required to verify the expression of these markers in the 
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CCS.  To get better insights into the downstream effectors of GATA5 in the CCS, 

QPCR analysis, using dissected AV canals from E9.5-E12.5 Gata5 null mice, should be 

performed.  Candidate genes, including Cav1.3, Tbx2, Tbx3, Bmp2, Msx2, which have 

been shown to play important roles in the AVC, should be tested.  Lastly, further 

electrophysiology studies should be performed to detect at what age the conduction 

defects appear.   

4.6. Conclusion and perspectives 

The studies presented in this thesis helped define and the role of GATA5 during 

endocardial development and cardiac morphogenesis.  They clearly showed that 

GATA5 is required for proper formation of the aortic valve and that loss of Gata5 

increases the risk of developing BAVs, which are the most common CHD in humans.  

Additionally, the discovery that BAVs developed due to defective endocardial GATA5 

expression reflects a cell autonomous role for GATA5 in the endocardium for valve 

formation.  This is the first time that a direct connection between BAV and the cell type 

involved in this malformation is made.  In addition, my studies revealed cooperative 

interactions between GATA5 and the other GATA factors in OFT and valve 

development.  The documented function of GATA5 in cardiac morphogenesis opens the 

door for further molecular studies of endocardial development and valve formation.  

They also provide rational genetic analysis that explore the link between GATA5 and 

CHD in cardiac development. 

Because it was initially thought that GATA5 was not playing a critical role in the 

heart and hence, few studies addressed the GATA5 pathway in the mammalian heart.  

What are the downstream targets of GATA5 in the heart?  A microarray performed with 

Gata5 null and control heart would give us some insight into this question.  Even more 

interesting would be to dissect AV canals and the OFT at E9.5-E10 to find specific 

target genes in endocardial cushions when EMT is happening.  This would also help 

elucidate the genes and subsequently the molecular basis underlying BAV formation.  

How is GATA5 regulated?  Are there any enhancers governing its expression 

specifically in the endocardium versus myocardium and epicardium?  This notion is 

consistent with previous studies in chicken where an enhancer was found directing 

expression of GATA5 in the endocardium.  To get some insight on how GATA5 may be 

regulated in the mouse, a thorough look at the Gata5 locus should be undertaken to 
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find regions where clusters of transcription factors could be located.  Transfection as 

well as chromatin immunoprecipitation assays would be performed to assess the 

activity of these regulatory regions and if GATA5 directly binds these regulatory 

elements.   

We noticed that Gata5 null embryos had hypoplastic hearts while adult mice had 

mild left ventricular hypertrophy.  This phenotype was not observed with endothelial 

specific inactivation of Gata5, suggesting that another cell type contributed to these 

defects.  As GATA5 is expressed in a subset of myocardial cells, it is possible that the 

phenotype observed is due to lack of GATA5 in the myocardium.  To test this 

hypothesis, Gata5 could be inactivated in the Nkx2.5Cre lineage.  NKX2.5 is expressed 

in the myocardium at the earliest stages of cardiac development and it is possible that 

these cells could contribute to the CMVcre phenotype.  The role of GATA5 could be 

assessed in these mice by echocardiographic and electrocardiographic analysis as well 

as pressure overload experiments.  Embryos would be dissected, similar to Gata5 null 

mice, to assess if the hearts are hypoplastic during embryonic development and if 

hypertrophy develops in the adult.  In addition, we could not assess conduction defects 

in old Tie2Cre+;Gata5F/F mice as they did not reach that age yet.  The question that 

arises is: are the conduction defects due to expression of GATA5 in endocardial cells or 

another cell type?  If we find that old Tie2Cre+;Gata5F/F mice have first degree AV block, 

this would confirm that expression of GATA5 in the endocardial cells is required for 

proper CCS function.  If it turns out that these mice don’t have conduction defects, then 

another cell type must contribute to the phenotype.  It has been hypothesized that the 

AVC endocardial cushions are the precursors of the AV node. Interestingly, epicardial 

cells also produce mesenchymal cells that migrate to the AVC endocardial cushions, 

which suggest that the first degree AV block could be due to absence of GATA5 in 

these cells.  Generation of mice with targeted deletion of Gata5 in the epicardium, by 

using WT1Cre transgenic mice, would answer this hypothesis. 

The results obtained during this PhD strongly suggest that human GATA5 may 

be a candidate CHD causing gene.  Mutations in hGATA4 have been described for a 

long time in the literature.  Eventhough GATA6 has been linked to PTAs in mouse 

models, it was only this year that three papers reported mutations in hGATA6 in 

individuals with PTAs, tetralogy of Fallot and ASDs.  No mutations in hGATA5 have 

been reported yet in the literature but hopefully, some will be found in the near future.  
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Thus, screening for mutations in patients with BAV will help to make a direct association 

between GATA5 and BAV.  Moreover, it would be interesting to screen for mutations in 

individuals with VSDs, common AV valves and DORV as these were the major cardiac 

abnormalities found in compound heterozygotes.   

Overall, the studies described in this thesis support the presence of genetic 

modifiers in CHD, which likely explain the incomplete penetrance and variable 

expressivity of phenotypes associated with a specific mutation.  Knowledge resulting 

from the characterization and identification of such modifier genes in the mouse will 

definitely be relevant to human disease as signaling pathways involved in cardiac 

morphogenesis are strongly conserved between species. 
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