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Résumé 

MicroARN (miARN) ont récemment émergé comme un acteur central du gène  

réseau de régulation impliqués dans la prise du destin cellulaire. L'apoptose, un 

actif  processus, par lequel des cellules déclenchent leur auto-destruction en réponse à 

un signal, peut être contrôlé par les miARN.  Il a également été impliqué dans une 

variété de maladies humaines, comme les maladies du cœur, et a été pensé comme une 

cible pour le traitement de la maladie. Tanshinone IIA (TIIA), un monomère de 

phenanthrenequinones utilisé pour traiter maladies cardiovasculaires, est connu pour 

exercer des effets cardioprotecteurs de l'infarctus du myocarde en ciblant l'apoptose 

par le renforcement de Bcl-2 expression. Pour explorer les liens potentiels entre le 

miARN et l'action anti-apoptotique de TIIA, nous étudié l'implication possible des 

miARN. Nous avons constaté que l'expression de tous les trois membres de la famille 

miR-34, miR-34a, miR-34b et miR-34c ont été fortement régulée à la hausse après 

l'exposition soit à la doxorubicine, un agent endommageant l'ADN ou de pro-

oxydant H2O2 pendant 24 heures. Cette régulation à la hausse causé significativement 

la mort cellulaire par apoptose, comme déterminé par fragmentation de l'ADN, et les 

effets ont été renversés par les ARNs antisens de ces miARN. Le prétraitement des 

cellules avec TIIA avant l'incubation avec la doxorubicine ou H2O2 a empêché 

surexpression de miR-34 et a réduit des apoptose. Nous avons ensuite établi BCL2L2, 

API5 et TCL1, en plus de BCL2, comme les gènes nouveaux cibles pour miR-34. Nous 

avons également élucidé que la répression des ces gènes par MiR-34 explique l'effet 

proapoptotique dans les cardiomyocytes. Ce que la régulation positive de ces gènes 

par TIIA realisée par la répression de l'expression de miR-34 est probable le 

mécanisme moléculaire de son effet bénéfique contre ischémique lésions cardiaques. 

Mots-clés : microARN; miR-34; tanshinone IIA; Apoptose; Bcl-2; Bcl-w; Api. 
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Abstract 

MiRNAs (miRNAs) have recently emerged as a central player of gene 

regulatory network involved in decision of cell fate. Apoptosis, an active process that 

leads to cell death, has been shown to be controlled by miRNAs. It has also been 

implicated in a variety of human disease, such as heart disease, and established as a 

target process for disease therapy. Tanshinone IIA (TIIA), a monomer of 

phenanthrenequinones used to treat cardiovascular diseases, is known to exert 

cardioprotective effects in myocardial infarction by targeting apoptosis through 

enhancing Bcl-2 expression. To explore the potential link between miRNAs and the 

anti-apoptotic action of TIIA, we studied the possible involvement of miRNAs. We 

found that expression of all three members of the miR-34 family, miR-34a, miR-34b 

and miR-34c that have been known to mediate the apoptotic effect of p53 in cancer 

cells, were robustly upregulated after exposure to either the DNA-damaging agent 

doxorubicin or pro-oxidant H2O2 for 24 hr in cultured neonatal rat ventricular 

myocytes. This upregulation caused significant apoptotic cell death, as determined by 

DNA fragmentation, and the effects were reversed by the antisense to these miRNAs. 

Pretreatment of cells with TIIA prior to incubation with doxorubicin or H2O2 

prevented upregulation of miR-34 and reduced apoptosis. We then established 

BCL2L2, API5 and TCL1, in addition to BCL2, as the novel target genes for miR-34. 

We further unraveled that repression of these genes by miR-34 accounts for its 

proapoptotic effect in cardiomyocytes whereas upregulation of these genes by TIIA 

through downregulating miR-34 is likely the molecular mechanism for its beneficial 

effect against ischemic myocardial injuries. 

Keywords : miRNA; miR-34; tanshinone IIA; apoptosis; Bcl-2; Bcl-w; Api. 
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1. INTRODUCTION 

 

1.1 Cell death 

Cell death was commonly regarded as an unregulated process until a challenging point of 

view brought by Horvitz HR’s group, saying that at least a subset of cell death is controlled 

by the cell itself.  Such mind exploding idea has brought intense studies on the underlying 

molecular and biochemical mechanisms of a process called apoptosis--the programmed cell 

death.  The parameters defining cell death are controversy. From observation perspective, 

cell dying presents characteristics including disruption of membrane integrity, 

fragmentation of cell and phagocytosis by neighboring cells. But not all of these 

characteristics will be present at the same time. One thing about cell death that is not 

controversial is its irreversibility. Active or passive, the ways of cells’ dying can be divided 

into apoptosis and necrosis.  
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Figure 1. Apoptosis Pathways (173). 

 

1.1.1 Apoptotic pathways 

Two major pathways are involved in apoptosis: extrinsic and intrinsic pathways. The 

extrinsic pathway requires the binding of extracellular stimulating factors such as tumor 

necrosis factor (TNF) to its corresponding receptors. On the contrary, the intrinsic pathway 

responds to the changes of cell status including inadequate nutrition or energy, hypoxia, 

DNA damage and oxidative stress. Thus, the intrinsic pathway accounts for most of the 
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apoptotic events. A model of the extrinsic pathway is the Fas-Fas ligand model. In this 

model, upon binding of Fas ligand, Fas undergoes conformational changes and associates 

with the Fas-associated death domain (FADD) with its intracellular death domain. 

Afterwards, FADD utilizes its death effector domains (DED) to recruit caspases to initiate 

the final steps in apoptosis. Unlike the extrinsic pathway, the intrinsic pathway requires 

participation of mitochondria and endoplasmic reticulum (ER) by translocating two types 

of protein Bax (Bcl-2-associated X protein) and BH3-only proteins into them (16). 

Constitutively inactive, Bax is activated via conformational changes upon apoptotic signals 

in the cell and translocated into mitochondrial and ER (17, 18). Precise details on Bax 

activation are unknown but many Bax proteins regulating Bax conformation state have 

been reported. The translocation of Bax and BH-3-only proteins changes mitochondrial 

outer membrane permeability, allowing release of apoptogens. Other than Bax, 

mitochondria outer membrane permeability relies on another protein on the membrane 

itself called Bcl-2 homologous antagonist/killer (Bak) (19). How Bax and Bak permeabilize 

the mitochondrial outer membrane is not known. But what is released from permeabilized 

mitochondria is well known as apoptogens. One well-recognized apoptogen is cytochrome 

c. Cytochrome c functions as a component of the electron transport chain in oxidative 

phosphorylation in mitochondria. Once released into the cytosol, cytochrome c binds to 

apoptotic protease activating factor-1 (Apaf-1), brings about polymerization of paf-1 and 

further recruits procaspase-9 to form apoptosomes. The apoptosome activates downstream 

caspase to execute apoptosis.  

 

1.1.2 Anti-apoptotic molecules 

There are endogenous molecules counteracting apoptosis. FLICE (FADDLike IL-1β-

converting enzyme)-inhibitory protein (c-FLIP) prohibits the extrinsic pathways with its 

two isoforms. One consists of two DED and the other is homologous to procaspase-8 with 

defects in enzymatic activity. The former binds to the DEDs on FADD and procaspase-8 

and prevents formation of death-inducing signaling complex (DISC) (20). With regard to 

the intrinsic pathway, antiapoptotic Bcl-2 proteins play an important role by inhibiting 

release of apoptogens. Bcl-2 protein was also reported to interact with inositol trisphophate 

receptor (InsP3R) Ca2+ release channels on the ER. This interaction significantly enhances 
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the Ca2+ release rate through InsP3R and lowered ER Ca2+ content. The anti-apoptotic 

effect of Bcl-2 thereby is partially ascribed to maintaining Ca2+ homeostasis. Anti-apoptotic 

protein mcl-1 mediated apoptosis protection also via associating with InsP3R.  Some other 

proteins such as x-linked inhibitor of apoptosis (XIAP) have multiple actions against 

apoptosis. IAP can bind to activated caspase-3 and caspase-7 to separate them from their 

substrates (21-23) and to procaspase-9 for prevention of activation (24). It can also use its 

E3 ubiquitin ligase activity to tag downstream caspases (25, 26). But IAP function can be 

undermined by its inhibitors Smac/DIABLO (second mitochondria-derived activator of 

caspase/direct IAP-binding protein with low PI) (27, 28) and Omi/HtrA2 (Omi/High 

temperature requirement protein A2) (29, 30). Xq28 region on the chromosome encodes a 

family of protooncogenes (anti-apoptotic) including TCL1, MTCP1 and TCL1b. In Laine et 

al’s report, TCL1 increased cell proliferation by augmenting the activity of Akt both in vivo 

and in vitro and stabilizing the mitochondrial transmembrane potential (114). TCL1 

associates with Akt kinase to aid transphosphorylation and is an anti-apoptotic regulator 

acting as Akt kinase coactivator. Protein apoptosis inhibitor 5 (API5) has activity against 

apoptosis. Api5/antiapoptosis clone-11 (Api5/Aac11) was upregulated in tumors. Genetic 

depletion of Api5 is lethal to cancer cells and API5 inhibition counteracts tumorigenesis 

(115).  

 

1.1.3 Apoptosis regulators 

Many endogenous factors do not directly lead to apoptosis but they play a role in apoptosis 

by regulating the activity or abundance of apoptotic factors. One typical example is 

miRNA. More detailed discussion about miRNA is presented the section <1.3 MiRNAs>. 

One study reported that in chronic lymphocytic leukemia downregulated miRNAs miR-29 

and miR-181 are expressed with inverse relation with the oncogene TCL1 and in fact TCL1 

is the target of both miR-29 and miR-181 (116). LMP1 is the crucial protein expressed by 

Epstein-Barr virus (EBV), responsible for transforming the normal cell into cancer cells. 

One of the growth inhibitory mechanisms of LMP1 was proposed to be LMP1-mediated 

upregulation of miR-29b and subsequent miRNA-mediated downregulation of TCL1. Data 

presented for this mechanism include upregulation of miR-29b in miRNA profilings of 

LMP1 transfectants and mutation of CTAR1 and CTAR2 domain of LMP1 abolishing both 
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miR-29b upregulation and TCL1 downregulation (120). The apoptotic role of miR-29 

through repressively targeting anti-apoptotic protein Bcl-2 and Mcl-1 was further illustrated 

in hepatocellular carcinoma (HCC). Reinforcing expression of miR-29 promoted apoptosis 

through the disruption of mitochondrial potential and the release of cytochrome c to the 

cytoplasm (117). MiR-29 apoptotic function via Mcl-1 repression was also examined in 

other cell types including human immortalized non-malignant H69 cholangiocyte and 

malignant KMCH cholangiocarcinoma cell lines. MiR-29 also sensitized the KMCH cell 

line to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) cytotoxicity (119).  

 

1.1.4 Specific apoptotic pathways in myocardial infarction 

Both extrinsic and intrinsic pathways play pivotal roles in cardiomyocyte apoptosis during 

myocardial infarction. Infarct size in mice without functional Fas is significantly reduced 

after I/R compared to control (31). However, the TNF pathway, expected to have the same 

effect as the Fas pathway, seems to limit infarct size because loss of both TNF receptor 1 

and 2 leads to infarct size augmentation (32). In terms of intrinsic pathways, cardiac 

overexpression of bcl-2 reduces infarction, cardiomyocyte apoptosis and cardiac 

dysfunction (33, 34).  Depletion of a p53-responsive BH-3 protein in isolated heart 

attenuates cardiac infarction (35). Calpain was reported to have increased activity during 

ischemia/reperfusion injury and over-activated calpain elevated cleaved fragments of BH3 

interacting domain death agonist (bid), which can lead to release of cytochrome c from 

mitochondria (36).  Transgenic mice with overexpression of IAP-2 showed less infarction 

compared to control (37). Moreover, cIAP-1 has been shown to protect cells from 

TNFalpha induced cell death via influencing NF-kappaB activation (38).  Omi/HtrA2, an 

inhibitor of IAP-1, was demonstrated to translocate from mitochondria to cytosol during 

myocardial infarction, promote apoptosis by cleaving IAP-1 and remove the inhibition of 

downstream caspase activities (39). Similarly, antagonizing Omi/HtrA2 with 

pharmacological compound UCF-101 reduces infarct size, recovers blood pressure and 

restores contractile function in rat model with I/R injury (40).  There are several reports of 

infarction attenuation by targeting caspases. But inhibiting some of the caspases failed to 

stop cell death in some experimental settings and this is probably because mitochondrial 

damage was irreversible. Another effective inhibitor of apoptosis, ARC (Apoptosis 
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Repressor with Caspase Recruitment Domain) was studied since it differs from common 

apoptosis inhibitor targeting intrinsic or extrinsic pathways. ARC is abundantly expressed 

in cardiac muscle cells (41). It restricts apoptosis via blocking DISC assembly, Bax 

activation/mitochondria translocation (42), translocation of p53 into cytoplasm (43) and 

cytochrome c release (44). Transgenic overexpression of ARC renders protection to 

transgenic mice suffering ischemia/hypoxia damages (45). Akt is critical in apoptosis since 

phosphorylation of apoptotic molecules such as Bax and Bad inactivates them. Therefore, 

overexpressing ARC in vivo significantly improves cell survival ability and ameliorates 

cardiac function after I/R injury (46, 47). The anti-apoptotic protein EAT/mcl-1, a bcl-2 

related early gene, was found expressed more abundantly in the non-ischemic region in the 

early stage of rat myocardial infarction (174).  

  

1.1.5 Cell death therapy for myocardial infarction 

Inhibiting cell death as therapy for myocardial infarction includes targeting apoptosis and 

necrosis. Although therapeutic suppression of cell death may increase the risk of cancer, it 

is still worthy of practising considering the high rate of mortality of patients with infarcted 

hearts. A number of compounds were shown to have beneficial effects on myocardial 

infarction via attenuation of apoptosis. UCF-101 is a small molecule that possesses cardiac 

function improving properties by inhibiting apoptosis.  Another compound vanadium elicits 

cardioprotection via upregulation of Akt expression (48-50).  

 

1.2 Role of Danshen in alleviating ischemic injuries 

Salvia miltiorrhiza is an annual sage plant that is mainly distributed in China, Mongolia, 

Korea and Japan. Growing in the west, southwest and southeast of China, it is used as a 

medicinal herb. Its dried root is called Danshen in Chinese. Since the first case of using 

Dansen in treating stroke in 1970 (1), Danshen is used to treat angina and heart attack (2). 

Danshen is one of the components of a popular herbal medicine fufang danshen tablet 

(Fufang means a composition of multiple herbs). Salvia miltiorrhiza’s relative, Salvia 

columbariae is seeded by Californian Indians in California, USA. It contains tanshinones 

and can be used to treat the strokes as well.  
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Commercial markets of Danshen are located in China, Vietnam, Russia, Cuba, the Korean 

Republic, and Saudi Arabia while China consumes the most. Danshen is packed into many 

different dosage forms in China, such as tablets, dripping pills, liquid drinks, capsules and 

injections. Among these, fufang danshen dripping pills and danshen tablets are most 

popular and they are the first Chinese traditional medicine that pass FDA phase II and 

phase III clinical trials (15). 

 

1.2.1 Components of Danshen 

According to the properties of solvent, components separated from Salvia miltiorrhiza can 

be categorized into two parts: water soluble and lipophilic diterpenoid quinines. Identified 

compounds are listed below. Aqueous compounds include protocatechuic aldehyde (PAl), 

protocatechuic acid (PA), caffeic acid (CA), and 3,4-dihydroxyphenyl lactic acid (DLA, or 

danshensu in Chinese pinyin), rosmarinic acid (RA), lithospermic acid (LA), salvianolic 

acid A (SalA), salvianolic acid B (SalB), and other salvianolic acids. Lipophilic diterpenoid 

quinines soluble compounds are composed of tanshinone I (TI), tanshinone IIA (TIIA), 

tanshinone IIB (TIIB), cryptotanshinone (CT), tanshindiol C (TC), 15,16-

dihydrotanshinone I (15,16-DTI), isotanshinone I (ITI), isotanshinone II and other 

tanshinones. Danshensu and Tanshinone IIA, two major components of Danshen, can be 

quickly uptaken by the gastro-intestinal system whereas the remaining major component, 

Salvianolic acid B, has poor absorption via oral administration (146). 
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Figure 2. Chemical Structure of both hydrophilic and lipophilic components from Danshen 

(172). 

 

1.2.2 Effects of Danshen on microcirculation 

Amelioration of microcirculation by Danshen has been reported in numerous studies. Most 

of the pharmacological studies on the components of Dansen are focused on danshensu, 

salvianolic acid B, and tanshinone IIA (102, 103, 104). Danshen decreases platelet 

aggregration by affecting the expression of adhesion molecules on the surface of platelets 

(8). 15,16-dihydrotanshinone I (15,16-DTI) inhibits mast cell degranulation, which is 

detrimental to vascular endothelial function (9,10). Danshensu was shown to dilate 

coronary arteries, protect the heart from ischemia/reperfusion injury, suppress platelet 

aggregation (131) and improve microcirculation in animals (132). These effects are 

achieved via preventing incidence of calcium overload (130), eliminating free radicals in 

vessel (133, 134) and protecting endothelial cells from homocysteinemia (135). It can 

induce production of NO in vessels (137), abrogate angiotensin II-mediated hyperplasmia, 

prevent LDL from oxidation and consequent uptake by microphages (138, 139). It can also 

inhibit DNA synthesis in noncardiocytes and relieve I/R injury by inhibiting the stress-

activated protein kinase (140). Zhang’s group examined the ACEI inhibitor in Salvia 

miltiorrhiza and found that salvianolic acids in the aqueous extract inhibited ACEI activity 

(4). Extract of Danshen root helps to lower cell adhesion to the vascular wall. Salvianolic 

acid B (Sal B), can protect the vascular endothelial cells from attack of oxidative species 

and suppress endothelial expression of ICAM (Inter-Cellular Adhesion Molecule)  and 

VCAM (vascular cell adhesion molecule), which are atherosclerotic risk factors (6). 

Protocatechuic aldehyde (PAl) prevents U937 human monocytic cells from adhering to 
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HUVECs (Human Umbilical Vein Endothelial Cells) (6). Similarly, Sal B prevents 

adhesion of U937 to TNF treated human aortic endothelial cells (7). Inflammatory factors 

such as IL-1β and TNF-α are inhibited by TIIA in RAW264.7 cells (11). Tanshinone IIA 

significantly reduces infarct size in in vivo studies via scavenging the free radical in the 

mitochondrial membranes (141). It is also able to keep LDL from oxidation (142), inhibit 

angiotensin system and abrogate incidence of hypertrophy (143). 

 

1.2.3 Effects of Danshen on the other systems 

In addition to its effects on the cardiovascular system, Danshen also has beneficial effects 

on other organs such as brain, lung, kidney and liver. It was reported by Lam’s group that 

the tanshinone IIA and IIb can penetrate the brain barrier and reduce the size of an infarct 

(12).  Salvia miltiorrhiza root extract protects the lung by prohibiting the production of 

oxidant, accumulation of peroxides and production of inflammatory factors (13).  Livers 

from the rats pretreated with Salvia miltiorrhiza root extract showed decreased bile duct 

ligation, reduced scission-induced rat hepatic injury and significantly decreased apoptosis 

due to decrease in Bax protein level and augmentation of Bcl-2 protein (14). Salvianolic 

acid B has cerebroprotection effect (136). 

 

1.2.4 Tanshinone IIA—the most studied active component of Danshen 

The major active component of Danshen is the tanshinone IIA (TIIA). Tanshinone IIA has 

cardioprotective effects, anticancer effects and neuroprotective effects. It has been shown 

that TIIA enhances hypoxia-inducible factor 1alpha (HIF-1alpha) mRNA abundance, 

promotes upregulation of vascular endothelial growth factor (VEGF) expression and 

increases the survival rate of MI rats (108). TIIA protects from cardiac injury induced by 

antineoplastic agent doxorubicin, which causes a toxic effect in the heart by inducing 

production of reactive oxygen species. TIIA increases H9C2 cell line viability and 

ameliorates electrocardiogram parameters such as ST interval and QRS interval in an 

animal model of chronic cardiomyopathy created by doxorubicin (109). Yang et al (110) 

tested the antioxidant property of TIIA sodium sulfonate on prevention of cardiac fibrosis. 

The study demonstrated that Ang II induced enhancement of collagen type I expression, 

collagen synthesis and reduction of matrix metalloproteinase-1 (MMP-1) expression and 
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activity. These changes were blocked by TIIA sodium sulfonate and the interruption was 

achieved via suppressing intracellular generation of reactive oxygen species, NADPH 

oxidase and subunit p47 expression (110). Analogous to the Ang II receptor antagonist 

Valsartan, TIIA sodium sulfonate abrogated cardiac hypertrophy induced by Ang II of 

neonatal rat cadiomyocytes and enhanced protein synthesis rate and proto-oncogene c-fos 

mRNA level (111). In another study, adriamycin significantly induced hypertrophy in 

primary cultured cells. TIIA sodium sulfonate was able to attenuate the hypertrophy via 

reduction of reactive oxygen species production. The elevated protein ratio of Bcl-2/Bax by 

TIIA sodium sulfonate was confirmed with western blot and apoptosis was reduced in a 

dosage dependent manner (112). Similarly, tanshinone IIA has an anti-hypertrophic effect 

on H2O2-induced hypertrophic myocytes and I/R rat model via elevating the ratio of Bcl-2 

to Bax protein and enhancing antioxidation of lipid, likely due to increased serum 

superoxide dismutase (SOD) activity and a downregulation of serum malondialdehyde 

(MDA) level (113). Another study also used adriamycin to induce damage in cellular and 

animal models. But their purpose was to investigate how TIIA protects against lipid 

peroxidation and their data showed that adriamycin-induced mitochondrial lipid 

peroxidation as well as swelling was abrogated by TIIA.  

 

1.3 miRNAs 

1.3.1 General information about miRNAs 

MiRNAs are 21-23nt long noncoding functional small RNAs that are ubiquitously 

expressed in cells. They mainly impose negative control on expression of protein by 

recognizing targets according to base pairing, repressing target gene translation efficiency 

and influencing mRNA stability. The first miRNAs lin-4 and let-7 are found in studies of 

Caenorhabditis elegans development in which these miRNAs can control C. elegans 

development steps.  Since then, thousands of miRNAs have been discovered in all kinds of 

cells with cloning and sequencing approaches. Till today, more than 700 human miRNAs 

are sequenced and sequences are stored in public databases facilitating the sharing of 

information. Bioinformatics are extremely important tools in the miRNA research, helping 

idenfication of potential miRNAs, predicting miRNAs biogenesis pathways and predicting 
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miRNAs targets. Some informative analysis even brings about the idea that more than 60% 

of human protein encoding genes are under miRNA regulation (51).  

 

1.3.2 MiRNA biogenesis 

MiRNAs can be generated from their own coding sequences or from the intron of protein 

coding gene. Transcripts containing mature miRNAs with a stem loop structure, as long as 

thousands of nucleotides, termed pri-miRNAs, are primarily generated by RNA polymerase 

II (52) while some of them are reported to be transcribed by RNA polymerase III (53). 

Such transcripts are subject to cleavage from Drosha-DGCR8/Pasha complex to generate 

approximate 100nt hairpin structured pre-miRNAs. In this Drosha-DGCR8/Pasha complex, 

DGCR8/Pasha functions as RNA binding protein while Drosha cleaves the RNA. 

Intriguingly, some pre-miRNAs dodge Drosha-mediated cleavage and mature in 

unconventional pathways (54). After formation of pre-miRNAs, pre-miRNAs are 

transported into the cytosol by nuclear export factor XPO-5 (Exportin 5) (55). In the 

cytoplasm, pre-miRNAs go through the final steps in maturation: it is cleaved by 

ribonuclease III Dicer associated with TRBP (TARRNA-binding protein) and turned into a 

22nt miRNA:miRNA* duplex (56). The duplex then fulfills its duty by incorporating into 

RISC (the RNA-Induced Silencing Complex) and guiding RISC (57) towards its target with 

the miRNA strand while the miRNA* strand is degraded (58).  

 

1.3.3 Mechanisms of actions of miRNAs  

Mechanisms of actions of miRNAs in different species are different. They silence target 

genes by two actions: translation repression or mRNA cleavage. Most metazoan miRNAs 

bind to their target in an imperfect complementarity and repress translation, leaving the 

mRNA intact. But in plant, miRNAs base pair with the 3’UTR almost in a perfect manner 

and lead to mRNA cleavage. The translation repression mechanism is complicated. In the 

initiation step of translation, it is essential for mRNA cap to be recognized by cap-binding 

protein eIF4E (eukaryotic translation initiation factor 4E). RISC may competitively bind to 

this critical cap and block translation initiation (59). Besides, RISC recruits eIF6, a notable 

ribosome assembly inhibitory protein, to prevent ribosome formation (60). Some also 

reported that RISC can move the mRNAs to P bodies where many mRNA catabolising 
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enzymes are concentrated and give mRNAs special treatment, resulting in translational 

repression (61). Since many exonucleases are contained in the P body, miRNA-targeted 

mRNAs are likely subject to degradation and quantitatively reduced.  With regard to 

cleavage mechanism, the miRNA strand guides the Argonaute component of RISC to 

‘scissor’ a phosphodiester bond within complementary RNA molecules. The cleavage 

fragments are then released, unleashing the RISC to attack another transcript. 

 

1.3.4 Determination of miRNA targets 

MiRNAs are involved in a wide range of biological functions including development, 

apoptosis, differentiation, metabolism, cell growth, and cell proliferation. Understanding 

the function of miRNAs relies on identification of their targets. But identification of their 

targets is proven to be difficult. Although we know that miRNAs regulate mRNAs 

containing their binding sites, we also know that the base pair formed by miRNA and 

targeted mRNA can be imperfect. To what degree the complementary should be and what 

crucial nucleotides in the binding sites are for miRNAs to take actual silencing actions on 

this target mRNA are not precisely understood. What we know is that the 2-7 nucleotides 

starting from the 5’ of miRNA strand are pivotal to their target selection, termed seed sites. 

Numerous computational algorithms are developed based on different standards, such as 

base pairing stability, duplex formation free energy level and the degree of conservation of 

seed sites. However, prediction results generated by these algorithms are not consistent and 

due to the existence of false positive or false negative results, experimental verification of 

these prediction results is inevitable (62). Most current miRNA targets studied contain 

miRNA binding sequence in their 3’UTR. Exceptional binding sequences are reported 

embedding in the mRNA encoding regions and even in the 5’UTR (63, 64, 65 66).  

 

1.3.5 Additional factors affecting miRNA actions 

Not only the binding site itself, but also the sequence in the vicinity of the binding site, 

could be involved in influencing miRNA-mRNA interaction.  Such sequence can attract 

corresponding functional proteins and prevent the approach of RISC or, by contrast, 

facilitate the binding of RISC. Kedde et al (168) demonstrated in human germline cells 

Dead End 1 (Dnd1) relieved repression of several mRNA from related miRNAs. Their 
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immunoprecipitation result showed that Dnd1 binds to the U-rich regions and these regions 

are in the vicinity of miRNA binding sites.  Conversely, Kim et al (105) presented another 

protein HuR (Human antigen R, also a RNA binding protein), through interaction with 

putative binding sites near let-7 binding sites, recruit RISC complexes to repress gene 

expression of c-myc. In this report, they also used immunoprecipitation and found that c-

myc mRNA is significantly higher in pull-downs with HuR protein compared with the 

relevant control. Knocking down HuR with siRNA led to significant increases in c-myc 

mRNA and protein abundance. Artificial elevation of let-7 made no change in HuR binding 

to c-myc mRNA and overexpression of HuR did not affect the abundance of let-7. These 

results suggest that let-7 and HuR do not interact with each other. Ago2 

coimmunoprecipitated with HuR. Moreover, degradation of RNA disrupts such association 

and low abundance of let-7 weakens this interaction. Taken together, HuR does affect 

action of let-7 on its target mRNA (105). 

 

1.3.6 Complexity about miRNAs 

One miRNA can affect multiple mRNAs and one mRNA can be regulated by multiple 

miRNAs. Such properties dramatically increase the complexity of the miRNA regulation 

network. One can imagine that in a single pathway, many different miRNAs can act in a 

synergetic manner to regulate different components in the pathway. However, similarly, 

one miRNA can counteract the effect of another miRNA. By targeting proteins that are not 

abundantly expressed, miRNAs can completely switch off gene expression. Meanwhile, 

miRNAs targeting abundant proteins serve as a fine-tuning mechanism. Like mRNAs, 

miRNAs have unique expression profiles in different cell types, in different stages of cell 

and in different cellular status. Thus, changes in the expression pattern of miRNAs in a 

certain cell type may indicate a dramatic alteration in physiological conditions. On the other 

hand, alterations in the pattern of miRNA expression suggests that miRNAs can respond to 

changes in environmental condition such as hypoxia and ischemia.   

 

1.3.7 Ischemic miRNAs 

In ischemic diseases of the heart, miRNAs participate in all aspects such as arrhythmia, 

fibrosis, neo-angiogenesis, and cell death.  MiR-1 upregulation was reported in acute 
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myocardial infarction (83, 84). Connexin 43 (GJA1), potassium channel subunit Kir2.1 

(KCNJ2) and the cardiac transcription factor Irx5 have been identified as direct targets of 

miR-1 (83). Given their important functions in maintaining normal membrane resting 

potential, impulse conduction and expression of ion channels, upregulation of miR-1 during 

myocardial infarction could increase the incidence of arrhythmia. Results from Yang B’s 

group (83) revealed that miR-1 upregulation during MI is stimulated by the beta-

adrenoceptor-cAMP-protein kinase A (PKA) signaling pathway. Blockade of this pathway 

with beta blocker propranolol prevent miR-1 upregulation, restored membrane 

depolarization and conduction slowing. This further confirmed miR-1 role in 

arrhythmogenesis during MI.  Another miRNA miR-21 is responsible for fibrosis during 

MI. Using In situ hybridization, miR-21 was found highly expressed in the infarct area (85). 

Upregulated miR-21 represses PTEN (86) and sequentially leads to increases in matrix 

metalloprotease-2, which promotes fibrosis. MiR-21 is also upregulated in fibroblast in the 

failing heart. MiR-21 targets Sprouty homologue 1 (Sprt1) and thus release ERK–

MAP kinase pathway from inhibition of Sprouty homologue 1. As a result, fibroblast 

survival increases significantly and induces fibroblast growth factor 2 (FGF2) secretion. 

The miR-29 family mainly regulates the expression of collagens, fibrillins, and elastin and 

manipulation of miR-29 in vivo and in vitro could influence collagens’ expression (86). 

MiRNAs correlated with angiogenesis are potential therapeutic targets for MI. Artificial 

overexpression of miR-92a in endothelial cells blocks angiogenesis in vivo and in vitro. 

Meanwhile, antagonizing miR-92a in an MI mouse model significantly increases vessel 

growth and reduces damage brought by infarction. Proangiogenic protein integrin subunit 

alpha5 was demonstrated as the target of miR-91a in angiogennesis (87).  

 

1.3.8 MiRNAs regulating cell death in myocardial infarction 

As previously stated, cell death is one of the crucial pathological aspects of MI.  MiRNAs 

are critical regulators of cell death during MI via interacting with survival factors. MiR-1 is 

involved in pathogenesis after MI as a pro-apoptotic mediator (89-91). MiR-1 was found 

significantly higher in rat model after ischemia/reperfusion injury (89) and regulates anti-

apoptotic factor Bcl-2 (90) and IGF-1 (91). Meanwhile, miR-320 downregulated 

significantly after I/R injury in vivo and in vitro and it seems to be the cardiac self-
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protection mechanism by downregulating miR-320 and releasing miR-320 suppression 

target Hsp20 (92). Consistent with these data, enforced expression of miR-320 in mice 

worsens myocardial infarction. Interestingly, miR-21 was downregulated in the infarct area 

but upregulated in the boarder zone of the infarct area. The cardioprotective effect of miR-

21 is mediated through inhibition of AP-1 and programmed cell death 4 (PDCD4) (93). As 

mentioned in the <apoptosis> section, miR-21 is known to mediate apoptosis. Consistent 

with this, downregulation of miR-21 in I/R was shown to be beneficial. In Ye’s study (118), 

antisense downregulation of miR-29 has the same protective effect in H9C2 cell line as a 

PPAR-gamma agonist pioglitazone (PIO) does. They also found that miR-29 expression is 

significantly lower in the rat heart after administration of PIO and dramatic downregulation 

of miR-29 in H9C2 cell line by PIO is abrogated with a selective PPAR-gamma inhibitor 

GW9662. All these data suggest that the beneficial effect of PIO to I/R is acting through 

changes in expression of apoptotic miR-29. Van Rooij et al (121) showed that miR-29 is 

significantly reduced in acute myocardial infarction and downregulation of miR-29 causes 

increased collagen expression. Thus miR-29 is established as a potential target of 

fibrogenesis during myocardial infarction (121).  

 

1.3.9 MiRNAs as potential therapeutic targets or medicine 

MiRNAs are implicated in various kinds of diseases and hence they are considered as 

therapeutic targets. Suppressing aberrantly expressed or pathogenic miRNAs and enforced 

expressing beneficial miRNAs are feasible by employing previously developed RNAi 

technologies for siRNAs.  SiRNAs and miRNAs are similar in gene silencing mechanisms. 

However, siRNAs are exogenous whereas miRNAs are endogenous. Endogenous miRNAs 

have properties superior to siRNAs in the following aspects: 1. siRNAs often trigger the 

interferon response. 2. siRNAs can have significant off-target effects. 3. Transfection of 

large amount of siRNAs can saturate endogenous small RNA processing machinery, 

disrupt global miRNAs expression and lead to eventual cytotoxicity (94). All of these 

drawbacks hamper siRNAs from becoming therapeutic agents. Conversely, miRNAs are 

naturally accepted by cells. Single molecule-multiple targets properties of miRNAs render 

the possibility of manipulation of the whole network simply via moving one single point. 
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However, one should be cautious with such property since undesirable effects could also be 

produced by miRNAs. 

 

1.3.9.1 Enhancement of miRNAs 

To restore or overexpress miRNAs inside the cell, transfection of miRNA duplex (termed 

mimics) directly or vector carrying precursor miRNA is applicable. In terms of miRNA 

mimics, because of the weak stability of RNAs, proper chemical modification of RNA to 

enhance half life within the cell is necessary. Chemical modifications should not hinder the 

incorporation of miRNAs in to RISC or the binding of miRNA to its target. LNA (locked 

nucleic acid) technology significantly increases miRNA intracellular half life and augments 

miRNAs binding affinity as well as cell uptake. Other chemical modification methods 

applicable include modification of the –2OH residue on the ribose with 2′-O-methyl (2′-

OMe), 2′-O-methoxyethyl (2′-MOE). 

 

1.3.9.2 Suppression of miRNAs 

Antisense inhibition of miRNAs with modified anti-miRNA oligonucleotides (AMOs) has 

been successfully demonstrated in vitro and in vivo. Since AMOs` action is analogous to 

pharmacological molecules to antagonize targets, AMOs are also called antagomirs. 

Modification methods for AMOs are the same as those for miRNA mimics. The exact 

mechanism for AMOs to inhibit miRNA remains unclear. Some reports suggest that AMOs 

bind to the guide strand of miRNA in the RISC complex and intervene miRNA binding to 

targets (95, 96, 97). There also exists evidence that AMOs cause miRNA degradation 

whereas the mechanism needs further clarification (98). 

 

1.3.9.3 Delivery of miRNAs into cells 

Even though effective inhibition methods and overexpression methods of miRNAs are well 

developed, the delivery of miRNA into cells or even into specific cell types is a main 

barrier in front of us. One strategy is to link miRNAs with delivery lipid and proteins and 

they are actively absorbed by target cells (101). Using viruses packing therapeutic 

miRNAs, receptor binding RNA aptamers and antibody-protamine are all also applicable 
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(99, 100). Alternatively, instead of direct application of double stranded miRNA mimics, 

miRNA carrying vectors are delivered into cells and miRNAs of interest are produced 

constantly and stably. This approach is achieved by placing polymerase II or polymerase III 

promoters upstream of a short hairpin RNA coding sequence. Transcribed short RNAs 

(shRNAs) are processed by Dicer into miRNAs. The miRNA expression vector renders 

persistent suppression of the target gene and easily expresses several miRNAs at the same 

time. However, it was reported that overexpressing shRNAs in mouse liver results in liver 

injury and consequential death, concomitant with a global downregulation of miRNAs.  

The author suggested that the shRNAs can occupy the small RNA processing machinery 

inside the cell and disrupt normal production of other miRNAs. To what level the shRNAs 

are expressed that can avoid toxicity is unclear. Seemingly associated with the 

compromised miRNA expression, toxic effect truly becomes a hurdle for this expression 

vector to become an applicable therapeutic approach. 

 

1.3.9.4 Avoidance of miRNAs side effects 

As stated above, one miRNA-multiple target feature of miRNAs is a double edged sword. It 

may also bring about undesirable side effects. Therefore, understanding the whole picture 

of targets of an miRNA becomes extremely crucial. Even after this target map is drawn, it 

is necessary to develop technologies to exempt undesirable targets from regulations. 

Recently, after development of direct RNA sequencing technology, Chi et al (106) 

sequenced RNA isolated by crosslinking the RNA with the Ago protein in mouse brain. 

Then they analyzed the result with bioinformatic tools and generate the map of miRNA-

mRNA target sites. Their data indicate that on average there are 2-3 miRNA binding sites 

on a single mRNA 3’UTR. The miRNA-masking antisense approach developed by Xiao et 

al (107) is an elegant way of controlling miRNA actions on particular targets. They 

employed antisense oligodeoxynucleotides (ODN) with locked 5’ and 3’ ends, covering 

miRNA target sites on 3`UTR of HCN2 and HCN4 and successfully restored expression of 

these two genes. The principle of this technology is that the ODN masks the miRNA target 

site and stops duplex formation between miRNA and mRNA.  
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1.4 Hypothesis 

We proposed that the miR-34 family induces cardiomyocyte apoptosis by post-

transcriptionally repressing BCL2L2, API5 and TCL1 and the TIIA can block oxidative 

stress-induced miR-34 upregulation, thereby increasing the cell survival. This work was 

aimed to test this hypothesis.  
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2. EXPERIMENTAL PROCEDURES 

 

2.1 Myocyte Isolation and Primary Cell Culture 

The enzymatic dispersion techniques used to isolate single ventricular myocytes from 

neonatal rats (NRVCs) have been previously described in detail (83). Briefly, 1-3 days old 

rats were decapitated and their hearts were aseptically removed. The atria were dissected, 

minced and trypsinized at 37°C for 10 min. Dissociated cells were plated in 24-well plates 

in Dulbecco’s Modified Eagle Medium (DMEM, Invitrogen) containing 10% FBS and 0.1 

mM bromodeoxyuridine (Sigma) to inhibit the growth of fibroblasts and the non-adherent 

cardiomyocytes were removed. The cells (1x105/well) were seeded in a 24-well plate for 

further experiments. This procedure yielded cultures with 90±5% myocytes, as assessed by 

microscopic observation of cell beating. The cardiomyocytes were also verified by positive 

staining with an anti--actin monoclonal antibody through immunocytochemistry. All 

procedures are in accordance with the guidelines set by the Animal Ethics Committee of the 

Montreal Heart Institute and of Harbin Medical University. 

 

2.2 Cell Culture  

Isolated NRVCs were stored in KB solution (in mM: glutamic acid 70, taurine 15, KCl 30, 

KH2PO4 10, HEPES 10, MgCl2•6H2O 0.5, glucose 10, and EGTA 0.5; pH 7.4 with KOH) 

at 4°C until use. Rat ventricular cell line H9c2 was purchased from American Type Culture 

Collection (ATCC, Manassas, VA) and cultured in Dulbecco’s Modified Eagle Medium 

(DMEM). 

 

2.3 Induction of Apoptosis in NRVCs  

NRVCs in culture were incubated with doxorubicin (0.5 µM) or H2O2 (200 μM) for 48 h to 

induce apoptotic cell death. 
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2.4 Treatment of Tanshinone IIA in NRVCs  

NRVCs were incubated with Tanshinone IIA (TIIA; 1 μM; Leawell International Limited) 

for 5 h before exposure to Dox or H2O2 to induce apoptosis. 

 

2.5 Synthesis of MiRNAs and Anti-miRNA Antisense Inhibitors and Their Mutant 

Constructs  

miR-34a, miR-34b and miR-34c, and the mutant miR-34b construct were synthesized by 

Integrated DNA Technologies, Inc. (IDT) (Fig. 8A). Because the mature miRNAs 

sequences are highly conserved (nearly identical) in sequence among members of the miR-

34 family and across human, rat and mouse, the miRNAs synthesized were only based on 

human sequences. And the mutation to miR-34 was made only to miR-34b to have seven 

nucleotide mismatches at the 5’-end, which disrupts its binding to the target sites (Fig. 8B) 

and thus turns the miRNA into a negative control. The sequences of anti-miRNA antisense 

inhibitor oligonucleotides (AMOs) are the exact antisense copies of the two strands of the 

mature hsa-miR-34b sequences (Fig. 8B). Five nucleotides at both ends were locked (the 

ribose ring is constrained by a methylene bridge between the 2’-O- and the 4’-C atoms) 

(128). 

 

2.6 Construction of Chimeric miRNA-Target Site–Luciferase Reporter Vectors  

To construct reporter vectors bearing miRNA-target sites, we synthesized (by Invitrogen) 

fragments containing the exact target sites for miR-34 or the mutated target sites and 

inserted these fragments into the multiple cloning sites downstream the luciferase gene 

(HindIII and SpeI sites) in the pMIR-REPORTTM luciferase miRNA expression reporter 

vector (Ambion, Inc.).  

 

2.7 Transfection and Luciferase Assay  

We plated the cell lines and rabbit cardiac myocytes in primary culture with density of 0.5-

2 x 105 cells in 500 μl of growth medium in 24 well or 12 well flat bottom plates. Before 

transfection, cells were starved to synchronize growth by incubating in serum- and 

antibiotics-free medium for 12 h. By the time of transfection, the cells had reached 
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approximately 90-95% confluency. Commercial transfection reagents lipofectamine 2000 

and the accompanying optimal medium Opti-MEM I Reduced Serum Medium were 

purchased from Invitrogen. Two complexes were prepared during transfection steps. A. A 

mixture of DNA with 50 μl of Opti-MEM I Reduced Serum Medium without serum. B. A 

mixture of Lipofectamine 2000 and Opti-MEM I Medium in 50 μl for 5 minutes 

incubation.  After 5 min of incubation, these two complexes were combined and left at 

room temperature for 20 min. This final mixture (100 μl) was added to the appropriate cell 

culture well and mixed gentlely with cell culture medium. The volume of transfection 

reagent as well as the transfection medium can vary to maximize transfection efficiency. 

After 18-48 hours incubation at 37 °C in a CO2 incubator, cells were harvested with 100 μl 

passive lysis buffer from dual luciferase kit purchased from Promega. Generally, 50 μl 

Luciferase Assay Reagent II and 30 μl lysate were added to the detection tube. 

Luminescence was read with luminometer and then 50 μl Stop & GloTM Reagent was 

added to the luminometer tube to simultaneously quench the firefly luciferase reaction and 

activate the Renilla luciferase reaction. The second luminescence was read immediately. 

The second luminescence was used as an internal DNA loading control.  

 

2.8 siRNA Transfection  

Cells were plated at 2x105 cells/well and BCL2L2 siRNA, API5 siRNA (Dharmacon, 

Lafayette, CO; ON-TARGETplus siRNA reagents), and control siRNA (Santa Cruz 

Biotechnology, Santa Cruz, CA) were each diluted to 100 nM. Transfection was performed 

according to Dharmacon's protocol using Lipofectamine 2000 (Invitrogen), whose details 

have been provided in section 2.7. Twenty-four hours after transfection, cells were treated 

with H2O2 for 48 hr. 

 

2.9 Quantification of mRNA and miRNA Levels 

The procedures for quantification of BCL2, BCL2L2 (Bcl-2-like protein 2), API5 

(apoptosis inhibitor 5), and TCL1 (T-cell leukemia/lymphoma 1) transcripts by 

conventional Taqman real-time RT-PCR were the same as previously described (83,169). 
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The mirVana™ qRT-PCR miRNA Detection Kit (Ambion), a quantitative reverse 

transcription-PCR (qRT-PCR) kit was used in conjunction with Taqman real-time PCR for 

quantification of miR-34 and miR-133 (for control) transcripts. The total RNA samples 

were isolated with Ambion’s mirVana miRNA Isolation Kit from cultured neonatal rat 

ventricular cells (NRVCs) and H9c2 cells. RNA concentrations are determinate with 

Nanodrop 2000. RNA quality is controlled by agarose gel electrophoresis. Fold variations 

in expression of miR-34a, miR-34b and miR-34c between RNA samples were calculated 

after normalization to U6. 

 

Details with the miRNA extraction procedure are as the following: 

(1) Aspirate the culture medium from the well and rinse the cell culture with PBS twice 

carefully. Remove the PBS solution and the culture plate is put on ice for next steps. 

(2) Add 300-600 ul Lysis/Binding Solution directly to the well according to the number 

of the cells or roughly to the size of the well. The cells are expected to lyse upon 

exposure to the Lysis/Binding Solution. Cell lysates in the culture plate are collected 

with a rubber spatula and move to a tube. 

(3) Vortex the tube to lyse the cells completely. 

(4) 1/10 volume of miRNA Homogenate Additive is added to the cell lysate and mix 

completely and incubate on ice for 10 min.  

(5) A volume of Acid-Phenol:Chloroform that is equal to the the lysate volume before 

addition of the miRNA Homogenate Additive is added and mix well by vortexing. 

(6) 5 min centrifuge (10,000g) at room temperature. Centrifuge for a longer time to 

obtain a compact interphase between the aqueous and organic phases. 

(7) Carefully move the aqueous phase to a new tube and mark down the volume. The 

organic phase is discarded. Make sure the organic phase is not disturbed.  

(8) 1.25 volumes of room temperature 100% ethanol is added to the aqueous phase and 

mix by inverting the tube.  

(9) Place the Filter Cartridge into the Collection Tubes provided. 

(10) Pipette the mixture from step 8 into the Filter Cartridge. 

(11) Centrifuge for 15s at 6000 rpm to allow the mixture pass through the filter. 
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(12) Discard the flow-through and repeat the steps from 10 until all the mixture goes 

through the filter. 

(13) Wash with 700 ul miRNA Wash Solution 1 (prepared with 100% ethanol) by 

centrifuging for 10s at 6000 rpm and the flow-through is discarded.   

(14) Wash with 500 ul Wash Solution 2/3 with similar methods to the previous step. 

Wash twice with Wash Solution 2/3.  

(15) Centrifuge the Filter Cartridge without any solutions for 1 min under 10,000 rpm 

to remove residual fluid from the filter.  

(16) Pre-heat the Elution Solution to 95°C. 

(17) Place the Filter Cartridge in a new tube and apply 100 ul pre-heated Elution 

Solution to the center of the filter. Close the cap and leave the tube to stand for 1 

min.  

(18) Centrifuge 1 min at 10,000 rpm to obtain the final eluate and place the tube on ice 

for further usage. 

 

2.10 Western Blot 

The procedures for semi-quantification of Bcl-2, Bcl-w Api5, and Tcl-1 protein levels were 

the same as described in detail elsewhere (83,169,170). Membrane protein samples were 

extracted from the left ventricular wall of rabbits and SKBr3 cells. The goat polyclonal 

antibodies against Bcl-2 and Bcl-w were both purchased from Cell Signaling, Tcl-1 from 

Abcam Inc (Cambridge, MA, USA) and Api5 from Santa Cruz Biotechnology, Inc. 

 

The protein extraction procedure: 

(1) Aspirate the culture medium from the cell culture plate and add proper volume of 

cold PBS to the cell culture. Leave the plate on ice for next steps.  

(2) Scrap the cell off the bottom with rubber spatula and transfert the suspension to a 

fresh tube. 

(3) Centrifuge at 500g for 5 min and remove the PBS. 

(4) Add 200 ul lysis buffer, mix well and break the cell by sonication. 

(5) Centrifuge at 1000g 4 °C to for 10 min.  
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(6) Take the supernatant, and centrifuge at 45 000 rpm for 1 h at 4 °C (Beckman TL-

100 Ultracentrifuge with rotor TLA-100.3). Save supernatant (cytosolic fraction), 

and the pellets (membrane fraction). 

(7) Re-suspend pellets in TE with 2% Triton X-100 1 h at RT. 

(8) Centrifuge 13,000g for 10 min at 4ºC. Keep the supernatant which is the membrane 

fraction.  

(9) Measure the protein concentration by Bradford with a Bio-Rad protein assay kit, 

make aliquots and store at –80 °C. 

 

Electrophonetic transfer is performed on Thermo Scientific Owl HEP-1 Semidry 

Electroblotting System. After transfer, the membrane with samples is incubated with 

primary antibodies over night and secondary antibodies for one hour. Final signal is 

detected with Western Lightning® Plus–ECL, Enhanced Chemiluminescence Substrate 

(680 ul) from PerkinElmer Inc. 

 

2.11 MTT Assay for Cell Viability  

Cell Proliferation Kit I (3- (4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide 

(MTT); Roche Molecular Biochemicals, Laval, PQ, Canada) was used to quantify the 

number of cells surviving from oxidative stress (170,128). The steps from the protocol is as 

the following: 

(1) Grow the cells in microplates (96 wells, flat bottom) with a final volume 100 ul of 

culture medium per well. The incubation period of the cell cultures is modified 

according to our experiment needs and cell line. 

(2) Add 10 ul of the MTT labeling reagent to each well to achieve final concentration 

0.5 mg/ml after incubation. 

(3) 4 h incubation in the cell culture incubator.  

(4) Add 100 ul solubilization solution to each well. 

(5) Incubate the plate overnight in cell culture incubator. 

(6) ELISA microplate reader is used to measure the absorbance of the samples. The 

wavelength is between 550 and 600 nm to measure formazan product and 

wavelength longer than 650 nm is employed as reference.  
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2.12 Enzyme-Linked Immunosorbent Assay (ELISA)  

The Cell Death Detection ELISA kit (Roche Molecular Biochemicals) was employed to 

quantify DNA fragmentation on the basis of antibody detection of free histone and 

fragmented DNA.  

The detailed procedure is as the following (21,128):  

(1) Treat cells with apoptosis-inducing agent in the well of a microplate (1–24 h, 37°C). 

 (2) Centrifuge microplate (200g) and remove supernatant (10 min, Room Temperature). 

 (3) Incubate treated cells with lysis buffer (30 min, Room Temperature). 

 (4) Repeat microplate centrifugation (200g) (10 min, Room Temperature). 

 (5) Transfer aliquot of supernatant (lysate) to streptavidin-coated microplate. 

 (6) Incubate supernatant with immunoreagent (containing anti-histone and anti-DNA) 

(2h, Room Temperature). 

 (7) Wash microplate wells three times with incubation buffer at Room Temperature. 

 (8) Add substrate solution to wells and incubate (approx. 15 min, Room Temperature). 

 (9) Measure absorbance at 405 nm. 

 

2.13 Computational Prediction of MiRNA Target  

We used seven miRNA databases and target-prediction websites for our initial analysis, as 

described in detail elsewhere (171). These algorithms include DIANA-microTv3.0, 

miRanda, MirTarget2, MicroCosm, PicTar, PITA, and TargetScan. The criterion for a gene 

to be considered a candidate target for a miRNA was set to have positive hits from at least 

four out of seven algorithms.    

 

2.14 Data Analysis 

Group data are expressed as mean +S.E. Statistical comparisons (performed using ANOVA 

followed by Dunnett’s method) were carried out using Microsoft Excel. A two-tailed 

p<0.05 was taken to indicate a statistically significant difference. 
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3. RESULTS 

3.1 Initial Analysis of Candidate miRNAs 

To pinpoint miRNAs that could possibly link TIIA to Bcl-2 for the anti-apoptotic efficacy, 

we performed an initial analysis on the miRNAs known to regulate apoptosis in cardiac 

cells. Among these miRNAs, miR-1, miR-29 and miR-320 are proapoptotic whereas miR-

133, miR-21 and miR-199a are antiapoptotic (178-181). There is a possibility that TIIA acts 

to downregulate the proapoptotic miRNAs so as to relieve the repression of Bcl-2. 

However, our analysis excluded major involvement of these miRNAs since none of these 

miRNAs have been shown by experimental studies, or are predicted by our computational 

analysis, to target Bcl-2. Instead, we identified the miR-34 family as a possible candidate 

based on the following points. First miR-34 has been shown to repress Bcl-2 in tumor cell 

lines so as to mediate the proapoptotic effect of p53 (144-146). The miR-34 family contains 

three members including miR-34a, miR-34b and miR-34c, and these miRNAs share the 

same seed motif and therefore have virtually the same, or nearly the same, set of target 

genes. Second, transcription of these miRNAs is directly activated by p53 in response to 

DNA damage and other cellular stress such as oxidative stress. Doxorubicin is known to 

activate p53 by inducing reactive oxygen species and DNA damage. Third, numerous 

studies have documented enhanced expression and activity of p53 and its deleterious effect 

in several cardiac pathological conditions associated with cellular stress (147-158). And 

coincidently, miR-34 has also been found to be upregulated in failing heart (159). Finally, 

our target prediction revealed that miR-34 has the potential to regulate other genes encoding 

anti-apoptotic proteins (BCL2L2 for Bcl-w, API5 for apoptosis inhibitor‒Api, and TCL1 

for T-cell leukemia/lymphoma 1‒Tcl-1) in addition to BCL2 encoding Bcl-2 protein (Fig. 

9). We therefore focused our subsequent study on the miR-34 family.    

 

3.2 Upregulation of miR-34 in Response to Cellular Stress in Cardiomyocytes  

All three members of the miR-34 family were found expressed at low levels, relative to the 

muscle-specific miRNA miR-133, under normal conditions in NRVCs (Fig. 3). However, 

their expression was robustly upregulated after exposure to either doxorubicin (0.5 µM) or 

H2O2 (200 μM) for 24 hr. In contrast, miR-133 level was reduced. Strikingly, pretreatment 
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of cells with TIIA (1 μM) prior to incubation with doxorubicin or H2O2 prevented 

upregulation of miR-34, but failed to alter the downregulation of miR-133.     

 

3.3 Role of miR-34 in Cardiomyocyte Apoptosis  

Cells treated with doxorubicin or H2O2 demonstrated significant apoptotic death, as 

indicated by the shrunken cell body, decreased cell survival, and DNA fragmentation (Fig. 

4A & 4B). The apoptosis, however, was largely mitigated in cells pretreated with TIIA for 

5 hr, consistent with previous finding by other groups (160-163). Noticeably, apoptosis was 

consistently observed in cells transfected with the miR-34 family miRNAs (Fig. 4C & 4D), 

which is in agreement with the proapoptotic action of these miRNAs in cancer cells (164-

167). This proapoptotic effect in cardiomyocytes was abrogated by co-transfection of the 

LNA antisense to miR-34b (AMO-34b). As expected, AMO-34b was able to antagonize the 

effects of all three members of the miR-34 family as they share high degrees of sequence 

homology and have an identical seed motif (Fig. 8). More importantly, transfection of 

AMO-34b alone was able to diminish the apoptotic cell death induced by doxorubicin or 

H2O2 (Fig. 4E & 4F).  

 

We reasoned that if downregulation of miR-34 accounts for the anti-apoptotic effect of 

TIIA, then supplying exogenous miR-34 should render TIIA a loss-of-effect. This was 

indeed supported by the following experiments. First, TIIA treatment failed to antagonize 

the ability of miR-34a to induce apoptosis in cells transfected with this miRNA (Fig. 5A & 

5B). Second, co-application of AMO-34b and TIIA produced the same magnitude of 

antiapoptotic effects as either of these two agents (Fig. 5C & 5D).  

 

As negative controls, the mutant miR-34b failed to cause apoptosis. And the mutant AMO-

34b failed to affect the apoptosis induced by any of the miR-34 family members either (Fig. 

4C & 4D). The efficacy of AMO-34b to knockdown all three members of the family miR-

34a, miR-34b and miR-34c-5p were confirmed (Fig. 10). 
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3.4 miR-34 Targets Multiple Anti-apoptotic Protein-Coding Genes 

BCL2 has been validated as a target gene for the miR-34 family miRNAs in cancer cells 

(144-146). Here we confirmed this result in cardiomyocytes (Fig. 6A). To further establish 

the other candidate genes BCL2L2, API5 and TCL1 as cognate targets for miR-34, we first 

performed luciferase reporter activity assays in H9c2 cells with the vectors engineered to 

carry the 3’UTR of these genes downstream of the luciferase gene. Transfection of miR-

34a, miR-34b, or miR-34c reduced luciferase reporter activity by >50% and co-transfection 

with AMO-34b reversed the inhibitory effects (Fig. 6A).  

 

The targeting was confirmed at the protein level by Western blot analysis in NRVCs (Fig. 

6B), in particular, transfection of AMO-34b alone increased the protein levels of Bcl-2, 

Bcl-2l2 and Api by 15~25% in the absence of H2O2 and by 50~65% in the presence of 

H2O2 (Fig. 6C). The mRNA levels of these genes were not significantly altered by miR-34 

and AMO-34b in NRVCs. Tcl-1 was not detectable at either protein or mRNA levels in 

NRVCs. In all these experiments, the negative control miRNA and AMO failed to affect 

significantly the expression of these genes. 

 

3.5 Role of Bcl-w and Api in Cardiomyocytes Survival  

While Bcl-2 has long been known to transduce survival signals in cardiac cells, the 

potential role of and Bcl-w and Api has not yet been studied. To clarify whether these two 

proteins actually produce antiapoptotic effect and could mediate cytoprotective effect of 

TIIA through miR-34 downregulation, we used the siRNAs with proven efficacy in 

silencing BCL2L2 and API5, respectively to knockdown these genes (201) (Fig. 11). 

Treatment of cells with either of these two siRNAs did not induced any significant cell 

death in the absence of H2O2; but these siRNAs exaggerated the apoptosis induced by H2O2 

(Fig. 7A & 7B). Moreover, these siRNAs mitigated, though did not abolish, the ability of 

AMO-34b to rescue cell death induced by H2O2 (Fig. 7C & 7D).    
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4. DISCUSSION 

miRNA-mediated gene regulation is now considered a fundamental layer of genetic 

programs that operates at the post-transcriptional level. Our current understanding of the 

functions of miRNAs primarily relies on their tissue-specific or developmental stage-

specific expression patterns as well as their evolutionary conservation, and is thus largely 

limited to biogenesis and oncogenesis. Target finding and function discovery are two major 

challenges to researchers in miRNA research. This study led us to several novel findings.  

 

4.1 Discovery of the Role of miR-34 in Cardiomyocyte Apoptosis  

The members of the miR-34 family are well known as apoptosis regulators in cancer. But 

their contribution to cardiomyocyte apoptosis is first reported by this work. These miRNAs 

can be activated by stress including DNA damage as well as reactive oxygen species. P53 

binding sites were found upstream of miR-34, and miR-34 expression is under the activation 

of p53 (123), a well-known tumor repressor gene inducing apoptosis in many types of 

cancer. The miR-34 family contains three members sharing nearly completely identical 

sequence. Similarity in their sequences suggests that these three miRNAs may share a 

similar set of targets. This view indeed is experimentally supported. Three miRNAs were 

transfected into cell line separately and the transciptome of these cell lines were 

determined. Data showed that the changes in the mRNA profiles were nearly identical 

(124). Not surprisingly, most of the changed mRNAs are cell cycle related. Expression 

profile of these three members is tissue specific. MiR-34a is ubiquitously expressed all over 

the brain while miR-34b/c are largely expressed in the lung. Intriguingly, all three members 

of the miR-34 family are constitutively expressed in low level in cardiac cells. Only upon 

exposure to extreme stress are all members of miR-34 significantly upregulated and able to 

exert their functions. Under pathological conditions such as ischemia/reperfusion injury and 

heart failure, reactive oxygen species are produced at levels far more than in the normal 

heart. In such a scenario, p53 protein content as well as its phosphorylation increase, 

inducing miR-34 family expression. Due to this specific miR-34 expression pattern, the 

miR-34 family can be detected for prognostic purpose. There exists evidence that during the 
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transition from hypertrophy to heart failure, p53 protein level is significantly increased 

(127). Although no data suggest that miR-34 upregulation is coincidence with this 

transition, from our data, we can predict that miR-34 is significantly upregulated in this 

transition and can be employed as prognostic index. There are also signs that the miR-34 

family may participate in the pathogenesis of heart failure because upregulation of both p53 

and miR-34 have been observed in separate studies of heart failure (125, 126).   

 

4.2 Identification of Novel Target Genes of miR-34 in Cardiomyocytes 

To reveal specific miRNA function, miRNA targets should be validated with experimental 

methods. But these experiments require large amounts of time and labor. Therefore, only a 

limited number of mRNAs have been experimentally confirmed as miRNAs targets. This 

work added a small piece to this complex puzzle but is valuable in understanding of 

miRNA function and their therapeutic potential in heart disease. We identified BCL2L2, 

API5 and TCL1 as new target genes, in addition to BCL2. Unfortunately, we were unable 

to detect TCL1 mRNA or protein in our cardiomyocytes. Whether TCL1 is constitutively 

expressed in cardiac tissue requires further investigation. The functions of BCL2L2 and 

API5 in the heart have never been mentioned before.  For the first time, our data established 

antiapoptotic roles for BCL2L2 and API5 in the heart during oxidative stress. There are far 

more targets than BCL2, BCL2L2, API5 for the miR-34 family. A long list of determined 

targets is described in Hermeking’s review (129). The author also mentioned that many 

target mRNA’s 3’UTRs carry multiple seed sequences for miR-34. In our case, all of these 

target mRNAs only contain one binding site for members in miR-34 family. Thus it seems 

that all three miR-34 members target the mRNAs at the identical binding site. We used one 

single miRNA inhibitor, AMO-34b, to knock down all members from miR-34 family. Tests 

were conducted to examine the efficacy of AMO-34b in knocking down all three members 

of miR-34 family (Fig. 10). It seems that miR-34a and miR-34c are more abundant than 

miR-34b under normal condition and miR-34a/c responded to oxidative stress more 

robustly than miR-34b. Difference in constitutive and induced expression might be ascribed 

to their different transcriptional control elements. Although they are all activated by p53, 

their different genome location and different upstream sequences indicate that they are 

possibly controlled by different sets of transcriptional regulators. We were not able to 
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dissect the relative contribution of these three miRNAs to apoptosis due to lack of member 

specific AMO. Whether these three members made unequal contribution to cardiac 

apoptosis needs further examination.  

 

4.3 Elucidation of miRNAs as A Molecular Mechanism for TIIA’s Anti-apoptotic 

Efficacy 

We demonstrated that TIIA was able to prevent the upregulation of apoptotic miR-34 and 

apoptosis induced by oxidative stress. The underlying mechanism is likely to be TIIA-

mediated blockade of oxidative stress-induced miR-34 upregulation, preservation of 

antiapoptotic protein such as Bcl-2, Bcl-w and Api and eventual increased cell survival. 

Numerous reports have proven TIIA is effective in ameliorating cardiac function after 

ischemic/infarction injuries in human subjects and in animal models. This work has 

provided a mechanistical model that TIIA, by altering miRNA expression inhibits 

apoptosis, supports more cardiac cells to survive the harsh environment imposed by 

ischemia and infarction, preserves the building material and functional material of the heart 

and achieves cardioprotection. This finding also provided evidence for the ability of a 

therapeutic drug to regulate a signaling pathway via influencing miRNA expression. But 

we did not go further to explore the details about TIIA influence on miR-34 expression. 

Some reports point out that TIIA has anti-oxidant properties and we can postulate that TIIA 

acts as an anti-oxidant and neutralizes the reactive oxidative species that will trigger 

upregulation of p53 and subsequent upregulation of miR-34. We knew that TIIA can 

directly affect p53 protein level within cancer cell line but whether it is also the case in 

cardiac cells needs further examination. TIIA kills cancer cells via upregulation of p53 and 

subsequent promotion of apoptosis. If somehow TIIA affects p53 expression in cardiac 

cells, the regulating direction is expected to be opposite to that in cancer cells, since TIIA is 

antiapoptotic to cardiac cells.  

 

4.4 Possible Limitations of the Study  

It should be noted that our study was conducted in in vitro conditions and whether the same 

results can be extrapolated to in vivo is yet to be determined; nonetheless, it lays the 
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groundwork for future investigations into the matter. The fact that the role of miR-34 in 

apoptosis is manifested in the presence of cellular stress suggests that miR-34 may 

participate in the pathological process of the heart. However, the present study failed to 

establish this link; further studies using animal models of cardiac disease are warranted for 

the purpose.  
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6.  FIGURES AND FIGURE LEGENDS 

                                  

Figure 3.  Upregulation of the miR-34 family members in response to cellular stress in 

cardiomyocytes. (A) Expression level of the miR-34 family miRNA in the 

mature form (miR-34a, miR-34b and miR-34c) after 24 h incubation with 

doxorubicin (Dox, 0.5 µM, an activator of p53 inducing DNA damage) in 

neonatal rat ventricular cells (NRVCs), as measured by quantitative real-time 

RT-PCR. miR-133 was used as a control *p<0.05 vs. Ctl; δp<0.05 vs. Dox alone; 

n=4 batches of cells for each group. (B) Expression level of mature miR-34a, 

miR-34b and miR-34c after 24 h incubation with H2O2 (200 µM) in NRVCs. 

*p<0.05 vs. Ctl; δp<0.05 vs. H2O2 alone; n=5 batches of cells for each group.  
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Figure 4. Role of miR-34 in cardiomyocyte apoptosis. (A) Protective effect of tanshinone 

IIA (TIIA, 1 µM) on cell survival in the presence of doxorubicin (0.5 µM) or 

H2O2 (200 µM) in NRVCs, as determined by MTT methods. *p<0.05 vs. Ctl; 

δp<0.05 vs. Dox or H2O2; n=5 batches of cells for each group. TIIA/Dox or 

TIIA/ H2O2: cells were pretreated with TIIA for 5 h followed by incubation with 

Dox or H2O2. (B) Rescuing effect of tanshinone IIA (TIIA) on apoptosis 

induced by doxorubicin (0.5 µM) or H2O2 (200 µM) in NRVCs, as determined 

by ELISA quantification of DNA fragmentation indicated by the OD (optical 

density) values. *p<0.05 vs. Ctl; δp<0.05 vs. Dox or H2O2; n=6 batches of cells 

for each group. (C) Damaging effects of the miR-34 family miRNAs (100 nM) 

on cell survival in the presence of doxorubicin (0.5 µM) or H2O2 (200 µM) in 

NRVCs. +AMO-34b: co-transfection of miR-34 (100 nM) and AMO-34b (30 

nM), anti-miRNA antisense oligonucleotide to miR-34; + MT AMO: co-

transfection of miR-34 and mutant AMO-34b; MT miR-34b: mutant miR-34b 

(Fig. 8). The constructs were transfected using lipofectamine 2000; Control cells 
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were mock-treated with lipofectamine 2000 (same below). *p<0.05 vs. 

Ctl; δp<0.05 vs. miR-34 alone; n=5 batches of cells for each group. (D) 

Proapoptotic effects of the miR-34 family miRNAs (100 nM) in the presence of 

doxorubicin (0.5 µM) or H2O2 (200 µM) in NRVCs. *p<0.05 vs. Ctl; δp<0.05 

vs. miR-34 alone; n=5 batches of cells for each group. (E) Protective effect of 

the anti-miRNA antisense oligonucleotide to miR-34 (AMO-34b, 30 nM) cell 

survival in the presence of Dox or H2O2 in NRVCs. *p<0.05 vs. Ctl; δp<0.05 vs. 

Dox or H2O2; n=5 batches of cells for each group. (F) Rescuing effect of AMO-

34b on apoptosis induced by Dox or H2O2 in NRVCs. *p<0.05 vs. Ctl; δp<0.05 

vs. Dox or H2O2; n=5 batches of cells for each group. 
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Figure 5. Relationship between tanshinone IIA (TIIA) and miR-34 in terms of their effects 

on cell death. (A) Loss of cardioprotective effect of TIIA (1 µM) on reduced cell 

survival caused by exogenous miR-34a (100 nM) in NRVCs. Cells were 

transfected with miR-34a for 12 h, followed by TIIA treatment for 5 h. *p<0.05 

vs. Ctl; n=6 batches of cells for each group. (B) Loss of rescuing effect of TIIA 

on apoptotic cell death induced by exogenous miR-34a in NRVCs. *p<0.05 vs. 

Ctl; n=5 batches of cells for each group. (C) Comparison of effects of TIIA (1 

µM) and AMO-34b (30 nM) on cell survival in the presence of H2O2 (200 µM). 

*p<0.05 vs. Ctl, δp<0.05 vs. H2O2; n=5 batches of cells for each group. (D) 

Comparison of effects of TIIA (1 µM) and AMO-34b (30 nM) on apoptosis 

induced by H2O2 (200 µM). *p<0.05 vs. Ctl, δp<0.05 vs. H2O2; n=5 batches of 

cells for each group. Note that application of TIIA and AMO-34b together 

produced the same magnitude of effects as application of TIIA or AMO-34b 

alone. 
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Figure 6. Establishment of multiple anti-apoptotic protein-coding genes as targets for the 

miR-34 family miRNAs. (A) Role of miR-34a (left), miR-34b (middle), and 

miR-34c (right) in repressing the candidate target genes BCL2, BCL2L2 (Bcl-2-

like protein 2), API5 (apoptosis inhibitor 5), and TCL1 (T-cell 
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leukemia/lymphoma 1) (Fig. 9 ), determined by luciferase activity assays with 

the pMIR-REPORTTM luciferase miRNA expression reporter vector carrying 

the 3’UTR of the candidate target genes in neonatal rat ventricular cells 

(NRVCs). +AMO-34b: co-transfection of miR-34 (100 nM) and AMO-34b (30 

nM), anti-miRNA antisense oligonucleotide to miR-34. *p<0.05 vs. Ctl; n=6 

batches of cells for each group. (B) Role of miR-34a, miR-34b, and miR-34c in 

repressing BCL2, BCL2L2 (Bcl-2-like protein 2), and API5 (apoptosis inhibitor 

5), determined by Western blot analysis. Upper panel: representative Western 

blot bands for Bcl-2, Bcl-w and Api proteins, respectively; lower panels: 

averaged data showing relative levels of protein levels. +AMO-34b: co-

transfection of miR-34 (100 nM) and AMO-34b (30 nM), anti-miRNA antisense 

oligonucleotide to miR-34. *p<0.05 vs. Ctl, δp<0.05 vs. miR-34 alone; n=3 

batches of cells for each group. (C) Role of AMO-34b to knockdown 

endogenous miR-34 to relieve the tonic repression of BCL2, BCL2L2 (Bcl-2-

like protein 2), and API5 (apoptosis inhibitor 5), determined by Western blot 

analysis. Upper panel: representative Western blot bands; lower panels: 

averaged data showing relative levels of protein levels. MT AMO-34b: mutant 

AMO-34b. *p<0.05 vs. Ctl; n=3 batches of cells for each group. 
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Figure 7. Role of Bcl-w and Api in cardiomyocytes survival and in mediating the effects 

of miR-34. (A) Effects of siRNAs to BCL2L2 and API5, respectively, on cell 

survival in the absence or presence of H2O2 (200 µM). siRNA-BCL: siRNA to 

BCL2L2; siRNA-API: siRNA to API5; NC siRNA: negative control scrambled 

siRNA. Note that the siRNAs exaggerate the reduction of cell survival in the 

presence of oxidative stress. *p<0.05 vs. Ctl, δp<0.05 vs. H2O2; n=5 batches of 

cells for each group. (B) Effects of siRNAs to BCL2L2 and API5, respectively, 

on apoptosis in the absence or presence of H2O2 (200 µM). Note that the 

siRNAs exaggerate apoptosis induced by oxidative stress. *p<0.05 vs. 

Ctl, δp<0.05 vs. H2O2; n=5 batches of cells for each group. (C) Effects of AMO-

34b and siRNAs to BCL2L2 and API5, respectively, on cell survival in the 

presence of H2O2 (200 µM). +siRNA-BCL: co-transfection of AMO-34b and 

siRNA-BCL2L2; +siRNA-API: co-transfection of AMO-34b and siRNA-API5. 

Note that the siRNAs abrogate the protective effect of AMO-34b on cell 

survival. *p<0.05 vs. Ctl, δp<0.05 vs. H2O2, ϕp<0.05 vs. AMO-34b; n=5 batches 

of cells for each group. (D) Effects of AMO-34b and siRNAs to BCL2L2 and 

API5, respectively, on apoptosis induced by H2O2 (200 µM). Note that the 

siRNAs abrogate the antiapoptotic effect of AMO-34b. *p<0.05 vs. Ctl, δp<0.05 

vs. H2O2, ϕp<0.05 vs. AMO-34b; n=5 batches of cells for each group. 
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A.  Sequence Conservation of the miR-34 Family 
hsa-miR-34a3333333333’-UUGUUGGUCGAUUCUGUGACGGU-5’ 
rno-miR-34a3333333333’-UUGUUGGUCGAUUCUGUGACGGU-5’ 
mmu-miR-34a3333333333’-UUGUUGGUCGAUUCUGUGACGGU-5’ 
hsa-miR-34b33333333333’-GUUAGUCGAUUACUGUGACGGAU-5’ 
rno-miR-34b33333333333’-GUUAGUCGAUUAAUGUGACGGAU-5’ 
mmu-miR-34b33333333333’-GUUAGUCGAUUAAUGUGACGGAU-5’ 
hsa-miR-34c3333333333’-CGUUAGUCGAUUGAUGUGACGGA-5’ 
rno-miR-34c3333333333’-CGUUAGUCGAUUGAUGUGACGGA-5’ 
mmu-miR-34c3333333333’-CGUUAGUCGAUUGAUGUGACGGA-5’ 
z 
 

B.  Sequences of Mutant miR-34b and AMO-34b 
hsa-miR-34b33333333333’-GUUAGUCGAUUACUGUGACGGAU-5’ 
Mutant hsa-miR-34b 333’-GUUAGUCGAUUACUGAUUAUUUU-5’ 
AMO-34b 333 3333333335'-CAAUCAGCUAAUGACACUGCCUA-3' 
Mutant AMO-34b   3 335'-CCCAAUUUUAAUUUCACUAAAUA-3' 

 

Figure 8.  Sequences of the miR-34 family miRNAs and the antisense oligonucleotide. (A) 

Alignment of the sequences of miR-34a, miR-34b and miR-34c from human, rat 

and mouse. The seed sites were highlighted in grey. Note that the seed motifs 

are identical among the three different members of the miR-34 family and 

among the three different species. (B) Sequences of the mutated miR-34b, the 

antisense oligonucleotide to miR-34b (AMO-34b), and the mutated AMO-34b. 

The mutated nucleotides are indicated by the underlined letters in italics. 
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BCL2 (3’UTR) 
hsa-miR-34a3333333333’-UUGUUGGUCGAUUCUGUGACGGU-5’ 
Human3333333333333333190-GAAUCAGCU-AUUUACUGCCAA-211 
Rat333333333333333333182-AAAUCAGCU-AUUUACUGCCAA-203 
Human33333333333333331098-AGCUCAGAAUUCCACUGUCA-1112 
Rat3333333333333335255-AGCAGCUAUGAAUUCCAUUGCCU-5281 

hsa-miR-34b33333333333’-GUUAGUCGAUUACUGUGACGGAU-5’ 
Human333333333333333190-GAAUCAGCUAUU--UACUGCCAA-211 
Rat33333333333333333182-AAAUCAGCUAUU--UACUGCCAA-203 
Human333333333333331098-AGCUCAGAAUU---CCACUGUCA-1112 
Rat3333333333333335255-AGCAGCUAUGAAUUCCAUUGCCU-5281 

hsa-miR-34c3333333333’-CGUUAGUCGAUUGAUGUGACGGA-5’ 
Human333333333333333190-GAAUCAGCUA--UUUACUGCCAA-211 
Rat33333333333333333182-AAAUCAGCUA--UUUACUGCCAA-203 
Human333333333333331098-AGCUCAG---AAUUCCACUGUCA-1112 
Rat3333333333333335255-AGCAGCUAUGAAUUCCAUUGCCU-5281 
 
 
 
 

                                BCL2L2 (3’UTR) 
hsa-miR-34a333333333’-UUGUUGGUCGAUUCUGUGACGGU-5’ 
Human333333333333 585-AAC-AAGGGCCAGUUCACUGCCC-607 
Rat333333333333333669-AGACUAGGGCUCUGGCACUGCUG-691 

hsa-miR-34b3333333333’-GUUAGUCGAUUACUGUGACGGAU-5’ 
Human3333333333333 586-ACAAGGGCCAGUU-CACUGCCCU-608 
Rat333333333333333669-AGACUAGGGCUCUGGCACUGCUG-691 

hsa-miR-34c3333333333’-CGUUAGUCGAUUGAUGUGACGGA-5’ 
Human3333333333333 585-AACAAGGGC-CAGUUCACUGCCC-607 
Rat333333333333333 670-GACUAGGGCU-CUGGCACUGCUG-691 

 
 

 
                                TCL1 (3’UTR) 

hsa-miR-34a3333333333’-UUGUUGGUCGAUUCUGUGACGGU-5’ 
Human333333333333333463-AACACGCCUGCAAACGCUGCCUG-486 
Rat333333333333333333462-CACCCAGCAACUCCACUGCCUG-483 

hsa-miR-34b33333333333’-GUUAGUCGAUUACUGUGACGGAU-5’ 
Human333333333333333463-AACACGCCUGCAAACGCUGCCUG-486 
Rat33333333333333333462-CACCCAGC-AACUCCACUGCCUG-483 

hsa-miR-34c3333333333’-CGUUAGUCGAUUGAUGUGACGGA-5’ 
Human333333333333333463-AACACGCCUGCAAACGCUGCCUG-486 
Rat33333333333333333462-CACCCAGC-AACUCCACUGCCUG-483 
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                                API5 (3’UTR) 

hsa-miR-34a3333333333’-UUGUUGGUCGAUUCUGUGACGGU-5’ 
Human333333333333331456-ACCAUUACCU-CUACACUGCAG-1477 
Rat33333333333333333607-AGAACUUGCUUU-GCAUUGCCC-628 

hsa-miR-34b3333333333’-GUUAGUCGAUUACUGUGACGGAU-5’ 
Human33333333333331457-CCAUUACCU--CUACACUGCAG-1477 
Rat3333333333333333608-GAACUUGCUUU--GCAUUGCCC-628 

hsa-miR-34c333333333’-CGUUAGUCGAUUGAUGUGACGGA-5’ 
Human33333333333331456-ACCAUUACCU--CUACACUGCAG-1477 
Human33333333333331456-ACCAUUACCU--CUACACUGCAG-1477 

 

Figure 9. Complementary motifs between the three members of the miR-34 family and the 

3’UTR of the predicted target genes BCL2, BCL2L2 (Bcl-2-like protein 2), 

API5 (apoptosis inhibitor 5), and TCL1 (T-cell leukemia/lymphoma 1). 

Matched nucleotides and wobble matches are highlighted in grey. 
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Figure 10. Verification of the efficacy of AMO-34b, and the inability of the mutant AMO-

34b, to knockdown all three members of the miR-34 family, as determined by 

quantitative real-time RT-PCR methods.  
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Figure 11. Verification of the efficacy of the siRNAs to BCL2L2 and API5, respectively, 

to silencing the genes at both mRNA and protein levels, measured by qPCR and 

Western blot analysis, respectively. The scrambled siRNA was used as a 

negative control. *p<0.05 vs. Ctl. 


