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SOMMAIRE

La méthode de projetion et l'approhe variationnelle de Sasaki sont deux

tehniques permettant d'obtenir un hamp vetoriel à divergene nulle à partir

d'un hamp initial quelonque. Pour une vitesse d'un vent en haute altitude, un

hamp de vitesse sur une grille déalée est généré au-dessus d'une topographie

donnée par une fontion analytique. L'approhe artésienne nommée Embedded

Boundary Method est utilisée pour résoudre une équation de Poisson déoulant

de la projetion sur un domaine irrégulier ave des onditions aux limites mixtes.

La solution obtenue permet de orriger le hamp initial a�n d'obtenir un hamp

respetant la loi de onservation de la masse et prenant également en ompte les

e�ets dûs à la géométrie du terrain. Le hamp de vitesse ainsi généré permettra

de propager un feu de forêt sur la topographie à l'aide de la méthode iso-niveaux.

L'algorithme est dérit pour le as en deux et trois dimensions et des tests de

onvergene sont e�etués.

Mots lés : Approhe artésienne, feux de forêt, propagation, méthode de pro-

jetion, onservation de la masse.
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SUMMARY

The Projetion method and Sasaki's variational tehnique are two methods

allowing one to extrat a divergene-free vetor �eld from any vetor �eld. From

a high altitude wind speed, a veloity �eld is generated on a staggered grid over

a topography given by an analytial funtion. The Cartesian grid Embedded

Boundary method is used for solving a Poisson equation, obtained from the pro-

jetion, on an irregular domain with mixed boundary onditions. The solution

of this equation gives the orretion for the initial veloity �eld to make it suh

that it satis�es the onservation of mass and takes into aount the e�ets of the

terrain. The inompressible veloity �eld will be used to spread a wild�re over

the topography with the Level Set Method. The algorithm is desribed for the

two and three dimensional ases and onvergene tests are done.

Key words : Embedded boundary method, wild�res, spread, projetion method,

mass-onsistent model.
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INTRODUCTION

British-Columbia, Alberta and California fae eah year important forest �res

on their territories. Fires are essential for maintaining the diversity and health

of forest eosystems, but they also bring a lot of drawbaks. Many mathemati-

al models are urrently used to predit the propagation of �res. More aurate

simulations ould prevent the negative impats of wild�res on publi health and

safety of individuals, and ould also derease the loss of property and natural

resoures.

Simulation models for the spread of wild�res, suh as PROMETHEUS and

FARSITE, use the equations of �uid mehanis. Di�erent fators must be taken

into onsideration when simulating the spread. The weather, the e�ets of the

topography, the di�erent type of fuels and obstales are a few examples. Adding

more parameters and variables to the model inreases its auray but also the

omputational ost, hene hoies must be made. Most urrent models tend to

use the law of onservation of mass and onservation of momentum, but those

models often neglet the e�ets of the terrain and of the �re as a dilation soure

term.

The aim of this thesis is to develop the �rst part of a new model to predit

e�iently and aurately the spread of forest �res. The approah hosen here takes

into aount the topographi e�ets of the terrain on the wind diretion, whih is

often negleted in urrent models. The tangential wind to the surfae is non-zero

sine the e�ets of visosity, more spei�ally the frition of the wind �eld with

the terrain, are negleted. The �nal veloity vetor �eld must only satisfy the

law of onservation of mass. Two proedures an be used to transform an initial
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vetor �eld into an inompressible vetor �eld. After a short disussion on mass-

onsistent models, hapter one presents Sasaki's variational tehnique followed by

the projetion method. The model will also onstrut the initial vetor �eld from

a high altitude wind. The di�erent possibilities are disussed at the end of the

�rst hapter.

In order to apply the onstraint of inompressibility on the wind vetor �eld,

a Poisson equation is solved on an irregular domain. In fat, the shape of the

topography is embedded in the omputational domain using a Cartesian grid. This

method is alled the Embedded Boundary Method and was developed by Phillip

Colella and his team at the Lawrene Berkeley National Laboratory (LBNL).

This approah is based on the Finite Volume Method and is explained in hapter

two for the two-dimensional ase. Convergene of the solutions and error analysis

are also studied.

In hapter three, the model and the algorithm are generalized to three dimen-

sions. The implementation of the model was done with EBChombo, a software

developed by the Applied Numerial Algorithms Group (ANAG) at the Berkeley

Lab. The test ases used in the two-dimensional ase are generalized for a domain

in three dimensions in order of study the onvergene of the solutions.



Chapitre 1

A MASS-CONSISTENT MODEL

Models for simulating wind �ow fall into two main ategories : prognosti

models and diagnosti models. The �rst kind onsiders time-dependent hydrody-

nami equations suh as Navier-Stokes to foreast how the wind �ow will evolve.

These models also inlude many fators suh as turbulene, moisture, momentum

and heat. Elaborated models require preise data in order to deliver aurate

preditions and suh data is not always available. On the other hand, diagnos-

ti models generate wind �elds that satisfy spei� physial onstraints. Models

that assure the onservation of mass are typially alled mass-onsistent models.

These are simpler than prognosti models, they require less data and have the

big advantage of having a low omputational ost.

The goal of this thesis is to onstrut a preditive mass-onsistent model for

wild�re propagation. The model will generate a veloity �eld that will take into

aount the e�ets of the topography on the wind �ow. A more aurate wind �eld

will lead to better preditions of the �re front spread. Sine only the onstraint

of onservation of mass is onsidered, the simulations will be faster than models

using also the momentum equation and hene be useful for preditions.

Following a desription of the problem, two methods whih generate mass-

onsistent �ow are presented. Then, a short disussion on the initialization of the

vetor �eld reveals the hallenges for aurate preditions.
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1.1. Formulation of the problem

The model is explained for the two-dimensional ase, but it an be easily

generalized to three dimensions. Consider a retangular region in R
2 of length Lx

and height Ly. The topographial height above mean sea level is expressed by a

funtion H : R → R depending on the horizontal oordinate x. The omputational

domain Ω is the region ontained between the funtion H(x) and the top of the

retangular region as shown in �gure 1.1. The only information given for the wind

is the magnitude of a high altitude horizontal wind vg = (ug, 0) from whih an

initial veloity vetor �eld v = (u, v) must be onstruted. This initial vetor �eld

might not be divergene-free, but sine the wind is assumed to be invisid (no

visosity) it must be tangential to the terrain surfae, whih means that it satis�es

the slip ondition v · n = 0, where n is the outward normal at the topography

surfae. We then look for a orretion that will transform the vetor �eld v in

an inompressible vetor �eld vd whih also ful�ls the slip ondition vd · n = 0.

Boundary onditions for the sides and top of the domain have to be de�ned suh

that the �ow will be allowed to go through.

1.1.1. Conservation of mass and inompressibility

In order to get an inompressible vetor �eld vd, we must apply a onstraint

to the vetor �eld. In �uid dynamis, the onservation of mass is expressed by

the ontinuity equation

∂ρ

∂t
+ ∇ · (ρv) = 0 (1.1.1)

where the operator ∇ = ( ∂
∂x

, ∂
∂y

, ∂
∂z

), ρ = ρ(x, y, z) is the density of the �uid and

v = (u(x, y, z), v(x, y, z), w(x, y, z)) where u, v and w are the veloity of the �ow

in the x, y and z diretions. Notie that in our model, the variables ρ and v do

not depend on time, sine we are interested in a stationary �ow, hene ∂ρ/∂t = 0.

The density of the �uid is assumed to be onstant everywhere on the domain, so

equation (1.1.1) beomes

∇ · v = 0 (1.1.2)
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Fig. 1.1. Representation of the omputational domain Ω in 2 and

3 dimensions, with the topography given by H(x) and the high

altitude wind vg.

where equation (1.1.2) is the inompressibility onstraint on the �ow. This on-

dition expresses and guarantees the onservation of mass for our model. Mathe-

matially, it also means that the vetor �eld is divergene-free.

1.2. Sasaki's variational tehnique

There are di�erent approahes to apply the onstraint of mass onservation

on a given vetor �eld. A quik look at the literature in atmospheri sienes

shows that most models are based on a variational alulus method developed by

Sasaki [22℄. Ratto et al. [20℄ have reviewed these models whih are adapted to

take into aount ertain parameters and features of the �ow, but the ore of the

tehnique remains the same.
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1.2.1. Ellipti equation

Sasaki's variational tehnique is a natural approah in atmospheri sienes.

Meteorologists onstrut their models with a variety of empirial data, suh as

wind veloity. The variational method allows them to �nd, for a set of observed

wind data, a minimal orretion to adjust the wind suh that it will beome

divergene-free.

In fat, this method minimizes the variation between the adjusted values vd =

(ud, vd, wd) and the initial values v = (u, v, w) in a generalized least squares

formulation :

I(ud, vd, wd) =

∫

Ω

[
β2

1(u
d − u)2 + β2

2(v
d − v)2 + β2

3(w
d − w)2

]
dV (1.2.1)

where βi (i = 1, 2, 3) are the Gauss preision moduli. These weights are used for

the alibration of the adjustments of the wind �eld vd with the observed values

v. They will be explained in more details in setion 1.2.3.

Sine we are looking for an adjusted vetor �eld vd whih ful�ls the onserva-

tion of mass, we add the onstraint given by equation (1.1.2) :

G(ud
x, v

d
y , w

d
z) =

∂ud

∂x
+

∂vd

∂y
+

∂wd

∂z
= 0 (1.2.2)

to the funtional I :

J =

∫

Ω

EdV = I +

∫

Ω

λGdV (1.2.3)

where λ = λ(x, y, z) is a Lagrange multiplier. Writing expliitly the funtional J

in equation (1.2.3) we have :

J(ud, vd, wd, λ) =

∫

Ω

[

β2
1(u

d − u)2 + β2
2(v

d − v)2 + β2
3(w

d − w)2

+λ

(
∂ud

∂x
+

∂vd

∂y
+

∂wd

∂z

)]

dV (1.2.4)

We now want to minimize the funtional J under the strong onstraint of

onservation of mass. To ahieve this goal, we must look at the �rst variation

of J and �nd when it is equal to zero : δJ = 0. From alulus of variations,
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one knows that the solutions whih minimize the funtional J satisfy the Euler-

Lagrange equations :

∂E

∂f
−

3∑

i=1

∂

∂xi

∂E

∂(∂f/∂xi)
= 0 (1.2.5)

where E is the integrand of the funtional J , f = (ud, vd, wd, λ) and (x1, x2, x3) =

(x, y, z). Solving with the Euler-Lagrange equations (1.2.5), we �nd

ud = u +
1

2β2
1

∂λ

∂x
(1.2.6)

vd = v +
1

2β2
2

∂λ

∂y
(1.2.7)

wd = w +
1

2β2
3

∂λ

∂z
(1.2.8)

∂ud

∂x
+

∂vd

∂y
+

∂wd

∂z
= 0. (1.2.9)

Note that solution (1.2.9) orresponds to the inompressibility onstraint (1.1.2).

Ratto et al. [20℄ notied that all mass-onsistent models assume the Gauss pre-

ision moduli to be equal in the horizontal plane of the eulidean spae :

β1 = β2. (1.2.10)

In fat, important distintions are seen between the horizontal omponents and

the vertial omponent of the adjusted vetor �eld with the initial vetor �eld.

There is no suh big di�erene between the horizontal diretions of the two ve-

loity �elds.

Di�erentiating equations (1.2.6), (1.2.7), (1.2.8) with respet to x, y, z re-

spetively, and substituting the results in equation (1.2.9), this ellipti equation

is obtained :

∂2λ

∂x2
+

∂2λ

∂y2
+

(
β1

β3

)2
∂2λ

∂z2
= −2β2

1

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

. (1.2.11)

Using the solution λ(x, y, z) of equation (1.2.11), we an orret the initial

vetor �eld v with equations (1.2.6)-(1.2.8) and �nd the divergene-free vetor

�eld vd. In order to solve the ellipti equation, we need to speify the boundary

onditions related to the model.
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1.2.2. Boundary onditions

For the variational problem desribed above, Ishikawa [13℄ gives the assoiated

boundary onditions as :

∮

∂Ω

δf

[
3∑

i=1

∂E

∂(∂f/∂xi)

]

· ndA = 0 (1.2.12)

where n is the outward normal vetor to the domain boundary ∂Ω and δf an

arbitrary �rst variation of f . Solving the part between the brakets always leads to

λ. The integral will be zero if the integrand is zero, hene the boundary onditions

beome

λδvd · n = 0 on ∂Ω (1.2.13)

where δvd denotes the �rst variation of the veloity.

From equation (1.2.13), either the multiplier λ or the normal veloity ompo-

nent variation δvd ·n must be zero at a boundary. Sherman [24℄ laimed that only

one of those two onditions must be imposed at a time, otherwise it would overde-

termine the problem and the solution would not be unique. In fat, Núñez et al.

[19℄ have shown that the sole properties of J guarantee the existene and unique-

ness of a �eld vd that minimizes globally J . Most authors of atmospheri sienes

artiles have followed the hoie adopted by Sherman and her interpretation of

the boundary onditions.

For �ow-through or open boundaries, the appropriate boundary ondition is

the homogeneous Dirihlet ondition,

λ = 0. (1.2.14)

For this ondition, the normal derivative of λ might not be equal to zero, whih is

generally the ase. Hene, a non-zero adjustment of the initial veloity omponent

normal to the boundary might our. Moreover, a onstant value of λ at an open

boundary also implies that no orretion is made for the veloity omponents in

the non-normal diretion, sine the non-normal derivatives of λ are zero. This

property is useful sine we want to onserve the magnitude of the wind at the

top boundary.
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For no-�ow-through or losed boundaries, the homogeneous Neumann bound-

ary ondition,

∂λ

∂n
= 0 (1.2.15)

is hosen. It implies that there is no adjustment in the normal veloity omponent,

hene the variation of normal veloity is zero :

δvd · n = 0. (1.2.16)

If the initial normal veloity omponent through the boundary is zero :

v · n = 0 (1.2.17)

the adjusted �ow of mass aross the boundary is also zero whih means that the

orreted vetor �eld will satisfy the slip ondition. The Neumann ondition is

then appropriate for the terrain surfae boundary. Aording to Núñez et al. [19℄,

a more appropriate boundary ondition for the terrain surfae would be

ni
1

β2
i

∂λ

∂xi
= −v · n. (1.2.18)

Notie that this boundary ondition only oinides with the homogeneous Neu-

mann boundary ondition in two ases. First when the topography is �at and the

initial veloity �eld is parallel to the terrain boundary : v ·n = 0. The seond ase

is when all βi = 1 and again the initial veloity �eld is parallel to the boundary.

They also mentioned that the homogeneous Neumann ondition is inonsistent

when using the Finite Element Method, hene FDM should be used with this on-

dition. From equation (1.2.18), we understand why Barnard et al. [2℄ and Ross

et al. [21℄ mentioned that applying the losed boundary ondition requires that

the initial veloity �eld must respet the slip ondition at the surfae in order to

satisfy the impenetrability onstraint when solving the ellipti equation with the

Finite Di�erene Method.

For our model, the following boundary onditions are seleted :

∂λ

∂n
= 0 for the terrain surfae boundary (1.2.19)

λ = 0 for the top and sides boundaries (1.2.20)
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1.2.3. Stability parameters

We now disuss the parametrization of the Gaussian preision moduli. It was

noted that the oe�ients β1 = β2 and β3 play an important role in the orre-

tion of the veloity �eld. These weights an alter the �ow pattern and the residual

divergene of the adjusted �ow �eld. Determining the right values for these pa-

rameters remains a major problem for wind models in atmospheri sienes. It

has been noted through simulations of mass-onsistent models that the odes are

not diretly sensitive to the values of β1 and β3 but to their ratio. This is why a

new parameter was introdued :

β =
β1

β3

. (1.2.21)

We reall the funtional I in equation (1.2.1) now with β1 = β2 :

I(ud, vd, wd) =

∫

Ω

[
β2

1(u
d − u)2 + β2

1(v
d − v)2 + β2

3(w
d − w)2

]
dV. (1.2.22)

One an see that large values of β3 will imply minimal adjustments for wd in

(wd−w)2 sine the funtional is being minimized. The same argument is valid for

small values of β3 that will enfore bigger adjustments of wd. The same reasoning

an be used with the parameter β. For β ≫ 1, �ow adjustment in the vertial

diretion will predominate, so that wind is more likely to go over a terrain barrier

rather than around it. For β ≪ 1, �ow adjustment will our primarily in the

horizontal plane, so the wind is more likely to go around a terrain barrier rather

than over it.

Notie that when β → 0, the adjustment is purely horizontal and when β → ∞

the adjustment is stritly vertial. From a physial perspetive, this last remark

was used by the WINDS software [11℄ so that β ould be de�ned as the at-

mospheri stability parameter, where the strati�ation obtained is unstable when

β ≫ 1, stable when β ≪ 1 and neutral when β = 1.

The mass-onsistent models usually adopt one of these two approahes when

using the parameter β. It is either onstant in the entire domain Ω and the values

depend on atmospheri stability or it an be expressed as a funtion β = β(x, y, z)

and the values depend on the atmospheri stability and features of the topography.
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1.3. Projetion method

In the last setion, we explained an approah widely used in atmospheri

sienes to get a solenoidal vetor �eld from a given vetor �eld. Here, we introdue

another method for solving problems in omputational �uid dynamis. Chorin [4℄

has introdued this method based on the Hodge deomposition whih allows one

to extrat a divergene-free vetor �eld from any given vetor �eld.

1.3.1. Hodge deomposition

Theorem 1.3.1 (Hodge deomposition). Let Ω be a simply onneted domain

with smooth boundary ∂Ω. Any vetor �eld v on Ω an be uniquely deomposed

in the form

v = vd + ∇ϕ (1.3.1)

where ∇ · vd = 0 in Ω and vd · n = 0 on ∂Ω.

In other words, any vetor �eld v an be deomposed into two orthogonal

omponents ; one divergene-free part vd and a url-free part expressed as the

gradient of a salar �eld ϕ . Applying the divergene operator on eah side of

equation (1.3.1) we have

∇ · v = ∇ · vd
︸ ︷︷ ︸

=0

+∇ · ∇ϕ (1.3.2)

∇ · v = ∆ϕ (1.3.3)

where ∆ is the Laplaian operator in Cartesian oordinates. The solution of this

ellipti equation given by ϕ(x, y, z) will give the orretion to be added to the

initial vetor �eld v suh that we get the solenoidal vetor �eld vd :

vd = v −∇ϕ. (1.3.4)

The boundary onditions required for solving the ellipti equation an be found

by taking the normal omponent on both sides of equation (1.3.1) :

v · n = vd · n
︸ ︷︷ ︸

=0

+∇ϕ · n (1.3.5)

v · n = ∇ϕ · n (1.3.6)
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whih is the Neumann boundary ondition :

∂ϕ

∂n
= v · n on ∂Ω. (1.3.7)

1.3.2. Projetion operator

Sine vd is uniquely determined, we an de�ne a projetion operator P , suh

that

P(v) = vd. (1.3.8)

Based on the proedure desribed above, we an de�ne P as

P = I −∇ (∇ · ∇)−1 ∇· (1.3.9)

The operator P de�ned this way is idempotent, P2 = P , self-adjoint, P = PT

and the norm of the operator is less than or equal to one, ‖P(v)‖2 ≤ ‖v‖2. These

properties are used to prove that the operator is stable.

1.3.3. Comparison with the variational method

One again, the projetion method requires the solution of the following Neu-

mann problem :

∆ϕ = ∇ · v on Ω (1.3.10)

∂ϕ

∂n
= v · n on ∂Ω. (1.3.11)

Setting the parameters β1 = β2 = β3 = 1 in equation (1.2.11) we have

∂2λ

∂x2
+

∂2λ

∂y2
+

∂2λ

∂z2
= −2

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z

)

(1.3.12)

that is

∆λ = −2∇ · v (1.3.13)

It an be notied that equation (1.3.13) is exatly the same as equation (1.3.10)

up to the onstant -2. The solution of both ellipti equations is a salar �eld

from whih the gradient gives the orretion to the initial vetor �eld (equations

(1.2.6)-(1.2.8) and (1.3.4)) that will make it divergene-free. We an therefore say

that both methods are similar.
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There are two main di�erenes between these methods. First, the boundary

onditions for solving the ellipti equations are not the same. In the projetion

method, only Neumann onditions are used unlike the mixed onditions (Dirihlet

and Neumann) used in the variational method. The Hodge deomposition assumes

that the divergene-free vetor �eld vd will be parallel to the domain boundary

∂Ω sine vd ·n = 0, whih is de�nitely not the kind of vetor �eld we are looking

for.

It is also important to notie that the projetion P is well-de�ned sine vd is

uniquely determined as mentioned in the Hodge deomposition theorem. Uniity

of the projetion is guaranteed by the Neumann boundary onditions. In the

urrent model, we are interested in using both Dirihlet and Neumann onditions.

We will then lose the uniity of the projetion. Hene, the orreted �eld vd

found with the projetion P will be the losest vetor �eld to v suh that it is

inompressible.

Finally, the main di�erene reside in the Gauss moduli. Sine our model does

not rely on experimental data, exept the high altitude wind speed, there is no

need for a alibration of the model with the weights βi, hene they will be set

equal to one. In order to avoid onfusion with the notation, the salar �eld will

be noted by ϕ rather than λ and the problem that will be solved is the following :







∆ϕ = −2∇ · v on Ω

∂ϕ

∂n
= 0 on terrain surfae boundary

ϕ = 0 on side and top boundaries

(1.3.14)

1.4. Vetor field initialization

The way the initial vetor �eld is initialized has a huge impat on the struture

of the adjusted vetor �eld. Remember that the orreted vetor �eld will be the

losest vetor �eld to the initial vetor �eld that satis�es the onservation of mass.

Hene the initialization proess is a very important step.

There are di�erent types of data that are available to onstrut the initial wind

vetor �eld ; meteorologial data from ground stations or towers stations, wind

pro�lers, gradients or geostrophi wind. It has been observed that the quality
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of this data is usually poor and that its density is more than often insu�ient

for resolving variations of the �ow above omplex topography. Moreover, the data

gives only information for the vertial pro�le of the wind, never for the horizontal.

These reasons enourage an initialization of the vetor �eld with a high altitude

wind, whih is alled the geostrophi wind in the literature.

As inWINDS [11℄, a vertial pro�le an be onstruted from the geostrophi

wind. Most of the models studied by Ratto et al. [20℄ split the atmosphere into two

layers : the surfae layer (SL) and the Planetary Boundary Layer (PBL). Over the

PBL (1000m-2000m), the wind is assumed to be onstant with height and given

by the geostrophi wind. The surfae layer takes into aount frition/visous

e�ets and is usually ontained in the �rst 100m of the atmosphere. This layer

is not of great interest sine the slip ondition is applied at the surfae of the

terrain in this model. Between the two layers, di�erent interpolation shemes an

be used to get the vertial pro�le : linear, logarithmi or power law.

Barnard et al. [2℄ and Ross et al. [21℄ have also notied that applying the

losed boundary ondition on the terrain surfae requires that the initial veloity

�eld must respet the slip ondition at the terrain surfae in order to satisfy the

impenetrability onstraint. Sine there is usually no information on the horizontal

pro�le, i.e. on the vertial omponent of the wind �eld, we will follow Barnard

and set the vertial wind omponent to zero w = 0.

1.4.1. Potential �ow and onformal oordinates

Barnard et al. [2℄ have observed that lak of veri�ation is a major di�ulty

for mass-onsistent models. Many papers used real data to alibrate and verify

the results given by the model. Ross et al. [21℄ found out that if β1 = β2 = β3 and

that the right hand side of equation (1.3.14) vanishes, then ϕ represents a veloity

potential. They also used simple terrain shapes (half-ylinder, hemisphere, ellip-

soid) for whih the analyti solution of the potential �ow is known to generate a

potential �ow and verify the e�ieny of their model. They use terrain-following
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(onformal) oordinates to solve the Poisson equation :







ξ = x

η = y

σ(x, y) =
ht(x, y) − z

ht(x, y) − H(x, y)

(1.4.1)

where ht(x, y) is the height of the domain whih in our ase is onstant and where

H(x, y) is the height of the topography. The surfae of the terrain is reahed when

σ = 1 and the top boundary when σ = 0. They still solve the ellipti equation

with Cartesian oordinates but with a di�erent Neumann boundary ondition at

the terrain surfae in order to get the potential �ow. They initialized their model

with a uniform bakground wind in onformal oordinates and they found that

the generated �ow is in good agreement with the analyti potential �ow. Even if

the problem is solved in Cartesian oordinates, onformal oordinates are useful

for onstruting an initial veloity �eld tangent to the terrain and parallel to the

top domain boundary.



Chapitre 2

SOLVING THE MODEL IN 2 DIMENSIONS

There exists many ways to solve the Poisson equation introdued in the last

hapter. Di�erenes between previous mass-onsistent models ome from numer-

ial algorithms for solving ellipti equations and from the hoie of the values

used for the parameters. For instane, Sherman [24℄ used the Finite Di�erene

Method (FDM) and disretized the topography in a stair-step fashion. Ishikawa

[13℄ solved the ellipti equation with FDM as well but on a staggered grid. Ross

et al. [21℄ and Barnard et al. [2℄ used onformal oordinates to solve the ellipti

equation in order to get better integration of the terrain surfae and ensure the

appliation of the slip ondition. Forthofer [10℄ used the Finite Element Method

(FEM) to solve the PDE.

This hapter will onsider the Embedded Boundary Method (EBM) for solv-

ing the ellipti equation with the appropriate boundary onditions for the two-

dimensional ase. This is the �rst time that EBM is applied to an empirial model

used to simulate the spread of wild�res. The partiular feature of this approah is

that it embeds an irregular boundary into a Cartesian grid. Hene, the generated

wind �elds should be in better agreement with the terrain surfae.

Sine the EBM is based on the Finite Volume Method (FVM), this last method

is �rst introdued before moving on to EBM. The onvergene of the algorithm

is tested for di�erent terrain shapes and initial wind vetor �elds, and an error

analysis is also onduted. Finally, the divergene-free vetor �elds are used to

spread the �re over di�erent terrain surfaes.
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2.1. Finite Volume Method

The FVM is a useful approah for solving numerially partial di�erential

equations (PDE). It allows the divergene operator to be disretized using the

divergene theorem, suh as in the Poisson equation. The �nite-volume approah

has some onsiderable advantages suh as regular preditable memory aess and

higher auray for less omputation. In this setion, we explain how the FVM

an solve our ellipti equation without topography embedded in the retangular

domain.

2.1.1. Disretization of the domain

Consider a retangular domain Ω ⊂ R
2. The domain has length Lx and height

Ly and is disretized using a Cartesian grid whose retangular ontrol volumes are

de�ned as Υi,j = [(i− 1
2
)hx, (i+

1
2
)hx]× [(j− 1

2
)hy, (j + 1

2
)hy] for i = 1, . . . , Nx and

j = 1, . . . , Ny. The number of horizontal and vertial ells, Nx and Ny, are used

to de�ne the horizontal and vertial mesh spaing hx = Lx/Nx and hy = Ly/Ny.

The method uses ontrol volumes Vi,j = Υi,j ∩ Ω.
PSfrag replaements
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Fig. 2.1. Disretization of the two-dimensional domain for FVM.

2.1.2. Divergene operator

We are now looking to solve the following Poisson equation

∆ϕ = −2∇ · v (2.1.1)
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where v = (u, v) is the initial vetor �eld and ϕ is a salar �eld. Equation (2.1.1)

an be written in onservation form

∇ · F = −2∇ · v (2.1.2)

where the �ux F = ∇ϕ is the onserved quantity.

To ahieve a disretization of the divergene operator, we �rst reall the di-

vergene theorem :

Theorem 2.1.1 (Divergene theorem). Let Ω be a ompat region in R
n with a

pieewise smooth boundary ∂Ω. If F is a ontinuously di�erentiable vetor �eld

de�ned on a neighbourhood of Ω, then we have

∫

Ω

∇ · FdV =

∮

∂Ω

F · ndA. (2.1.3)

Using the ell average value of the divergene of F and the divergene theorem

in R
2 we have ;

∇ · F ≈
1

|Vi,j|

∫

Vi

∇ · FdV =
1

|Vi,j|

∮

∂Vi

F · ndA (2.1.4)

=
1

|Vi,j|

[

hyFi+ 1

2
,j + hxFi,j+ 1

2

− hyFi− 1

2
,j − hxFi,j− 1

2

]

(2.1.5)

where n is the outward unit normal to the ontrol volume ell Vi,j and |Vi,j| = hxhy

the volume of Vi,j. This orresponds to the midpoint rule disretization of the line

integral. Hene, the disretized divergene operator DM(F)i,j is

DM(F)i,j =
Fi+ 1

2
,j − Fi− 1

2
,j

hx

+
Fi,j+ 1

2

− Fi,j− 1

2

hy

(2.1.6)

The �uxes are illustrated in �gure 2.2. In the Poisson equation, a disretized
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Fig. 2.2. Fluxes on every edge of ontrol volume Vi,j.



20

divergene operator is also applied to the initial vetor �eld v. It would be de-

sirable to use the same disretization of the operator. We also need a onsistent

disretization for the gradient operator sine F = ∇ϕ. The MAC projetion seems

quite appropriate for this ase.

2.1.3. Marker-and-Cell Projetion

There are many ways to disretize mathematial operators. The disretization

mostly relies on the kind of grid on whih the omputation is done. The Marker-

and-Cell (MAC) projetion introdued by Harlow and Welh [12℄ uses a staggered

grid, where the omponents of the vetor �eld are de�ned on the edges of the

ontrol ells and the salar �eld is de�ned at the enter as shown in Figure 2.3.

PSfrag replaements
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Fig. 2.3. Staggered grid with the ell-entered salar �eld ϕ and

the edge-entered omponents of the veloity �eld (u, v).

Let DM and GM be the disrete divergene and disrete gradient operators

over the staggered grid. The divergene is de�ned using the divergene theorem on

the ontrol ell as before and the gradient by entered di�erene over the edges :

DM(v)i,j =
ui+ 1

2
,j − ui− 1

2
,j

hx

+
vi,j+ 1

2

− vi,j− 1

2

hy

(2.1.7)

and de�ne

GM(ϕ)i+ 1

2
,j =

ϕi+1,j − ϕi,j

hx

(2.1.8)

GM(ϕ)i,j+ 1

2

=
ϕi,j+1 − ϕi,j

hy

(2.1.9)

Remember that our method uses a projetion operator P de�ned in equation

(1.3.9). Let P
M be the disretization of this projetion. It is then de�ned as

P
M = I − GM

(
DMGM

)−1
DM

(2.1.10)
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and it is easy to verify that DM(PM(v)) = 0. This means that the disretized

projetion operator is exat. See Appendix A for a disussion of the disretization

of projetions.

For the MAC projetion, the disretization of the Laplae operator (∆ = ∇·∇)

is de�ned as DM(GM(ϕ))i,j whih orresponds to the standard 5 point stenil

Laplaian for interior ontrol volume ells (i = 2, ..., Nx − 1 and j = 2, ..., Ny − 1)

as shown in Figure 2.4.

Fig. 2.4. Standard 5 point stenil Laplaian DM(GM(ϕ))i,j.

Despite the fat that the omponents of the vetor �eld are not olloated,

the MAC projetion has the advantage that the no-�ow boundary ondition an

be set expliitly at walls for retangular domains sine the edges of the boundary

ells math the domain boundaries.

2.1.4. Boundary �uxes

In order to use the divergene operator on the ontrol volume ells on the

boundaries of the domain, the �uxes at the boundaries must be spei�ed. For the

bottom boundary, the problem uses a Neumann ondition
∂ϕ
∂n

= 0. In this ase,

the �ux is simply zero, Fi, 1
2

= 0.

For the top and side boundaries, the Dirihlet ondition ϕ = 0 is used. This

type of ondition does not presribe diretly a partiular value for the �ux at

the boundary. Hene, we follow Johansen and Colella [14℄ and use a three-point

gradient stenil in order to get a spei� value of the �ux on the boundary. The

gradient formula is given by

∂ϕ

∂n
=

1

d2 − d1

[
d2

d1

(
ϕB − ϕ1

)
−

d1

d2

(
ϕB − ϕ2

)
]

(2.1.11)
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where ϕB is the value of the funtion ϕ on the boundary given by the Dirihlet

ondition, ϕ1 and ϕ2 are the losest grid point values of ϕ to ϕB. Those two grid

points are respetively at distanes d1 and d2 from the boundary. This stenil has

a disretization error of order O(h2). Figure 2.5 shows how the �ux on the right

boundary is alulated by

∂ϕ

∂x
= FNx+ 1

2
,j =

1

hx

[

3
(
ϕB − ϕNx,j

)
−

1

3

(
ϕB − ϕNx−1,j

)
]

(2.1.12)
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Fig. 2.5. Interpolation of the boundary �ux FNx+ 1

2
,j for applying

the Dirihlet ondition using ϕB, ϕNx,j and ϕNx−1,j.

Note that this interpolation leads to an outward pointing gradient. With the

�uxes at the boundary �xed, it is easy to see that the Laplaian operator will

have 3 di�erent stenils over the domain as pitured in Figure 2.6.

Fig. 2.6. The 3 di�erent stenils for the Laplaian operator.

2.1.5. Symmetri matrix

Solving the Poisson equation with the FVM redues to �nd a solution of a

linear system Aϕ = b. For the two-dimensional ase, we use the row-wise ordering
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to form the vetor ϕ of the ϕi,j de�ned at the enter of the ontrol volume ells :

ϕ = (ϕ1,1, . . . , ϕNx,1, ϕ1,2, . . . , ϕNx,2, . . . , ϕ1,Ny
, . . . , ϕNx,Ny

) (2.1.13)

The oe�ients in front of the unknown values of ϕi,j �ll up the matrix A of

size NxNy ×NxNy. More preisely, the main diagonal ontains the oe�ients of

ϕi,j, the diagonals above and below the main diagonal the oe�ients of ϕi±1,j and

the two extra diagonals, with Nx−2 zero elements between the upper/lower diag-

onal, the oe�ients of ϕi,j±1. Hene, the symmetri matrix A has the struture

shown in �gure 2.7 whih is the same as that of the FDM.
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Fig. 2.7. Symmetri matrix of the linear system with Nx = 6 and

Ny = 8.

All known values suh as ϕB and the RHS of the Poisson equation, DM(v)i,j,

are put in the vetor b. The linear system Aϕ = b is solved using the solver

mldivide in MATLAB whih uses a diret method.

2.1.6. Correted vetor �eld

One we get the solution given by the vetor ϕ, we an ompute the orreted

vetor �eld with equations (1.2.6)-(1.2.8) of hapter 1. The orreted �eld on the

staggered grid is easily alulated with the MAC gradient operators :

ud
i+ 1

2
,j

= ui+ 1

2
,j +

1

2
GM(ϕ)i+ 1

2
,j (2.1.14)

vd
i,j+ 1

2

= vi,j+ 1

2

+
1

2
GM(ϕ)i,j+ 1

2

(2.1.15)
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Notie that it is important to alulate GM(ϕ)i+ 1

2
,j and GM(ϕ)i,j+ 1

2

on the

boundaries with the same gradient stenil used for omputing the �uxes on the

boundaries. Otherwise, the �nal divergene will not be zero on the ells next to

the boundaries.

2.2. Embedded Boundary Method

We will now fous on the Embedded Boundary Method for solving numeri-

ally the ellipti equation (2.1.1) on an irregular two-dimensional domain Ω. This

approah uses a �nite-volume disretization on the Cartesian grid on whih the

boundary of the topography is embedded. In this hapter, we will fous on the

simple 2D ase whih is disussed by Johansen and Colella [14℄.

The retangular domain Ω uses the same Cartesian grid as mentioned earlier.

The topography whih is given by the funtion H(x) is represented as a pieewise

linear funtion where the oordinate x = (i ± 1
2
)hx is de�ned on the ontrol

volume ell edges. The funtion H(x) orresponds to the lower boundary of Ω.

The geometry of the irregular domain Ω is represented with its intersetion with

the Cartesian grid. The method uses ontrol volumes Vi,j = Υi,j ∩ Ω and their

faes Ai± 1

2
,j and Ai,j± 1

2

whih are the intersetion of ∂Vi,j with the oordinate lines

{x = (i ± 1
2
)hx} and {y = (j ± 1

2
)hy}. The intersetion of the boundary of the

irregular domain and the Cartesian ontrol volumes are the faes AB
i,j = Υi,j∩∂Ω.

In order to onstrut an appropriate divergene operator, areas and volumes

are written as nondimensional terms :

volume frations : κi,j = |Vi,j|(hxhy)
−1

fae apertures : αi± 1

2
,j = |Ai± 1

2
,j|h

−1
y and αi,j± 1

2

= |Ai,j± 1

2

|h−1
x

boundary apertures : αB
i,j.

It is assumed that those values an be alulated with an auray of order O(h2).

Notie that α, κ ∈ [0, 1]. When κ = 0, the ontrol volume ell is ompletely

ontained in the topography and when κ = 1, the ell is full, meaning that the

topography does not ut the ell.

As before, we use the fat that the Laplaian operator ∆ϕ in LHS of equation

(2.1.1) an be written on a onservative form as ∇ · F with F = ∇ϕ. It is then
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possible to disretize the divergene operator ∇· using the divergene theorem :

DM(F)i,j =

1

κi,j

(
αi+ 1

2
,jFi+ 1

2
,j − αi− 1

2
,jFi− 1

2
,j

hx

+
αi,j+ 1

2

Fi,j+ 1

2

− αi,j− 1

2

Fi,j− 1

2

hy

+ αB
i,jF

B
i,j

)

(2.2.1)

where the �uxes Fi± 1

2
,j, Fi,j± 1

2

and the �ux on the embedded boundary FB, de�ned

at the entroid of every ell faes, are linear ombinations of ϕi,j and of the

boundary values ϕB. This disretization takes into aount the struture of the

volume ell, partiularly when we are alulating the divergene in a ut ell

(0 < κ < 1). The left piture in Figure 2.8 gives an example of �uxes loated

at the fae entroids in a ut ell, while the fae entroids oinide with the fae

enters in a full ell.

Fig. 2.8. Fluxes in a ut ell (0 < κ < 1) and in a full ell (κ = 1).

The �ux FB
i,j ≡ 0 (red arrow) sine a Neumann ondition is applied

at the terrain surfae boundary.

Remember that a homogeneous Neumann ondition
∂ϕ
∂n

= 0 is applied on

the terrain surfae boundary whih implies that FB
i,j ≡ 0. Hene, the divergene

operator beomes

DM(F)i,j =
1

κi,j

(
αi+ 1

2
,jFi+ 1

2
,j − αi− 1

2
,jFi− 1

2
,j

hx

+
αi,j+ 1

2

Fi,j+ 1

2

− αi,j− 1

2

Fi,j− 1

2

hy

)

(2.2.2)

It is important that the �uxes be de�ned at the entroid of the faes Ai± 1

2
,j and

Ai,j± 1

2

in order to keep a good approximation of the disretization of the integral.

For �uxes de�ned on the vertial faes Ai± 1

2
,j, a linear interpolation sheme is
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used with the above ell. For instane, the �ux Fi+ 1

2
,j on the fae Ai+ 1

2
,j when

0 < αi+ 1

2
,j < 1 an be alulated using the interpolation formula :

Fi+ 1

2
,j =

(
1 + αi+ 1

2
,j

2

)

GM(ϕ)i+ 1

2
,j +

(
1 − αi+ 1

2
,j

2

)

GM(ϕ)i+ 1

2
,j+1 (2.2.3)

This interpolation is illustrated in Figure 2.9. Note that for full faes (without

embedded boundary), the fae aperture αi+ 1

2
,j = 1, hene the regular entered

di�erene is used :

Fi+ 1

2
,j = GM(ϕ)i+ 1

2
,j. (2.2.4)
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For the �uxes de�ned on the horizontal faes Ai,j± 1

2

, a linear interpolation

sheme using the �ux in either the right or left ell is required. It is important to

use the appropriate interpolation so the omputation makes sense. The �ux Fi,j+ 1

2

on the fae Ai,j+ 1

2

when 0 < αi,j+ 1

2

< 1 an be alulated using this interpolation

formula :

Fi,j+ 1

2

=

(
1 + αi,j+ 1

2

2

)

GM(ϕ)i,j+ 1

2

+

(
1 − αi,j+ 1

2

2

)







GM(ϕ)i+1,j+ 1

2

if terrain is on the left side

GM(ϕ)i−1,j+ 1

2

if terrain is on the right side

(2.2.5)

The two ases are shown in Figure 2.10.

When the divergene is alulated in a full ell (κi,j = 1) for whih all fae

apertures α = 1, we reover the MAC divergene operator given by equation
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Fig. 2.10. Interpolation of the �ux Fi,j+ 1

2

on a ut ell edge when

the terrain is on the right hand side or left hand side.

(2.1.6) for the FVM :

DM(F)i,j =
Fi+ 1

2
,j − Fi− 1

2
,j

hx

+
Fi,j+ 1

2

− Fi,j− 1

2

hy

(2.2.6)

A ritial feature of the EBM, as explained by Johansen and Colella [14℄, is

the assumption that the solution an be extended smoothly outside of Ω. As an

be seen in Figure 2.10, some grid values ϕ are overed by the terrain. Johansen

and Colella assume that there are solution values for them that are su�iently

smooth so that a trunation error analysis based on Taylor expansions will be

valid.

For top and side boundaries whih have Dirihlet onditions, the same gradient

stenil is used as in the previous setion. Johansen and Colella use one more

onstraint on the disretization of the domain that is related to this gradient

formula : the interpolation stenil must not reah into ells with zero volume

(κ = 0), hene the Cartesian grid must be �ne enough.

The divergene on the right hand side of equation (2.1.1) is

DM(v)i,j =
1

κi,j

(
αi+ 1

2
,jui+ 1

2
,j − αi− 1

2
,jui− 1

2
,j

hx

+
αi,j+ 1

2

vi,j+ 1

2

− αi,j− 1

2

vi,j− 1

2

hy

)

(2.2.7)
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The interpolation of the vetor �eld omponents in the middle of the faes in a

ut ell use the same interpolation explained earlier

uI
i+ 1

2
,j

=

(
1 + αi+ 1

2
,j

2

)

ui+ 1

2
,j +

(
1 − αi+ 1

2
,j

2

)

ui+ 1

2
,j+1 (2.2.8)

vI
i,j+ 1

2

=

(
1 + αi,j+ 1

2

2

)

vi,j+ 1

2

+

(
1 − αi,j+ 1

2

2

)







vi+1,j+ 1

2

if terrain is on the left side

vi−1,j+ 1

2

if terrain is on the right side

(2.2.9)

2.2.1. Sparse matrix

As before, the solution of the Poisson equation is found by solving a linear

system of the form Aϕ = b with the mldivide solver in MATLAB. Sine the

omputational domain Ω is irregular, (the zero volume ells, κ = 0, are not

taken into aount in the omputation), the matrix loses its symmetri property,

but it is still a sparse matrix. For the purpose of omputation, lines and rows

orresponding to ells where κ = 0 are not removed, but instead, a fake value is

added to the main diagonal element, so the matrix is not singular. See Figure 2.11

for the struture of the matrix A for the ase of an exponential terrain surfae.
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Sparse matrix

Fig. 2.11. Sparse matrix A for solving Poisson equation on an

irregular domain with an embedded exponential hill with Nx = 6

and Ny = 8.
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2.2.2. Correted vetor �eld

One the vetor ϕ is known, the orreted �eld on the staggered grid is easily

alulated with the MAC gradient operators :

ud
i+ 1

2
,j

= ui+ 1

2
,j +

1

2
GM(ϕ)i+ 1

2
,j (2.2.10)

vd
i,j+ 1

2

= vi,j+ 1

2

+
1

2
GM(ϕ)i,j+ 1

2

(2.2.11)

when αi+ 1

2
,j and αi,j+ 1

2

are not equal to zero. One again, it is important to

alulate GM(ϕ)i+ 1

2
,j and GM(ϕ)i,j+ 1

2

on the domain boundaries with the same

gradient stenil used for omputing the �uxes on the boundaries.

2.3. Convergene and error analysis

In order to study the e�ieny and auray of the Embedded Boundary

Method, the algorithm will be used for solving onstant or partiular initial ve-

loity �elds over di�erent geometries.

Two de�nitions of the usual norms were used for evaluating the onvergene.

In the ase of values on the staggered grid, the p−norm is de�ned as :

‖ξ‖p =




∑

(i,j)∈Υi,j

|ξi,j|
ph2





1/p

(2.3.1)

where Υi,j is the Cartesian grid over the total retangular domain. Knowing that

h2 = L2/N2, we an rewrite (2.3.1) as :

‖ξ‖1 =
1

N2

∑

(i,j)∈Υi,j

|ξi,j| (2.3.2)

‖ξ‖2 =
1

N




∑

(i,j)∈Υi,j

|ξi,j|
2





1/2

(2.3.3)

‖ξ‖∞ = max
(i,j)∈Υi,j

|ξi,j|. (2.3.4)

up to a onstant L. When the exat analyti solution for a given test ase is

unknown, a referene solution is used to hek the onvergene of the algorithm.

The referene solution is a numerial solution for a problem on a �ner grid. Then,

we hek at whih rate the error between solutions on the oarser grids and the
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referene solution diminishes when the grid resolution gets loser to the referene

grid. In our ase, we will ompute the absolute error of the horizontal and vertial

omponents of the orreted vetor �eld vd = (ud, vd) with the omponents of the

referene solution. Then we will hek if the errors onverge for di�erent norms

above.

For instane, the absolute error for ud is given by

eN(ud
N) =

∣
∣
∣ud

Nref
− ud

N

∣
∣
∣ . (2.3.5)

where Nref is the number of ells of referene grid and N the number of ells of

the atual grid.

In order to ompute the absolute error eN for the staggered omponents of

the wind, we must ompare the same grid nodes for eah disretization of the

grid. Sine we are using a staggered grid for our vetor �eld omponents, we must

take the mean of the omponents of every grid exept the oarsest grid, so we an

ompute the error at the same loation on all grids. Figure 2.12 shows the vetor

omponent ud for N = 2 and N = 8. Notie that the number of ells N in those

Fig. 2.12. The onvergene of ud on the red points of the grid

N = 2 is done with the mean of the blue points of the grid N = 8.

norms will have to be replaed by Ncoar whih is the number of horizontal (resp.
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vertial) omponents of the veloity of the oarsest grid on whih the onvergene

tests are done. This orresponds to Ncoar = 6 in our example in �gure 2.12.

Sine the disretization of the topography relies on the grid, eah disretization

hanges the geometry of the domain. In order to avoid misleading errors, we will

not onsider the vetor �eld omponents where αi+ 1

2
,j and αi,j+ 1

2

are not equal to

one for the oarsest disretization.

The seond de�nition of the norm is a volume-weighted norm as used by

Johansen and Colella [14℄ for ell-entered quantities. For a ell-entered variable

ξ, the max norm is :

‖ξ‖∞ = max
(i,j)∈Ω

|ξi,j| (2.3.6)

and the p−norm :

‖ξ‖p =




∑

(i,j)∈Ω

|ξi,j|
pκi,jh

2
/ ∑

(i,j)∈Ω

κi,jh
2





1/p

(2.3.7)

where Ω is the omputational domain and κi,j the volume fration of eah ontrol

ell.

This de�nition of the norms is partiularly useful when the exat solution of

the equation is known. If it is not the ase, we proeed as before using a referene

solution whih is the solution on a grid of very �ne resolution. Then, we ompute

the error between the solutions of the oarsest grids and the referene �ne grid. In

our ase, we are interested in the onvergene of the veloity �eld. Sine the norms

are de�ned for ell-entered quantities, we average the edge-entered veloity �eld

at the enter of eah ell. Then, the referene solution must be averaged to the

oarse grid using a volume-weighted average :

Av(ξf ) =
1

V c

∑

vf∈F

V fξvf
(2.3.8)

where F is the set of ells of the �ne grid vf ontained in the ell of the oarse grid

vc and where V f and V c are the volume of ells vf and vc respetively. Figure

2.13 shows the ells vf of the �ne grid when N = 8 that are ontained in the

oarse ell vc of the grid N = 2.
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Fig. 2.13. The �ne to oarse averaging of a ell-entered quantity

using a volume-weighted average of values of the �ne grid N = 8

to the oarse grid N = 2.

This average is useful sine it allows us to use all the grid ells of any resolution

grid size for omparing with the referene grid, whih is not the ase with the

previous de�nition of the norm, sine we were restrited to the number of values of

the oarsest grid Ncoar. Also, the volume-weighted average onsiders the geometry

of the terrain in the two grids.

The absolute error for the omponent ud is then given by

eN(ud
N) =

∣
∣
∣Av(ud

Nref
) − ud

N

∣
∣
∣ . (2.3.9)

where Nref is the number of ells of referene grid and N the number of ells

of a oarser grid. The absolute error is omputed for the other omponents of

the orreted vetor �eld vd = (ud, vd). Then, we hek if the errors onverge

to zero for di�erent volume-weighted norms. It is important to note that for the

two-dimensional test ases, the volume-weighted norms were taken over all full

volume ells only.

All onvergene tests are performed on square domains :

L = Lx = Ly

N = Nx = Ny

h = hx = hy.

For all our ases, we set L = 10 and we use as a referene solution the results

obtained on the grid with Nref = 512 ells and the oarsest grid is N = 8.
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The solutions of the di�erent ases will be shown with the streamlines of the

veloity �eld and the ontour plots for the �nal divergene and veloity ompo-

nents. Those �gures will be done using the following parameters for the disretiza-

tion of the retangular domain in all ase tests :

N L

64 10

Tab. 2.1. Parameters used for test ases in 2D.

2.3.1. Flat terrain ase

The �rst test is done on a topography whih is a �at line de�ned by

Hflat(x) =
Ly

3
. (2.3.10)

This simple geometry does not show the powerful features of EBM but it allows

us to hek if the onvergene rate of EBM for a retangular domain is similar

to the FVM. We also want to see the e�ets of the boundary onditions on the

�nal veloity �eld. Even if we are just onsidering veloity �elds for whih the

magnitude hanges with height in our model, we de�ne the following arbitrary

initial veloity �eld for this test ase :

(u, v)flat = (100 + x
5

4 , 0). (2.3.11)

Note that for a onstant horizontal veloity �eld over a �at terrain and even a

horizontal veloity �eld with inreasing amplitude over the y−axis, the initial

divergene will be zero, meaning that the initial vetor �eld is already mass-

onsistent. This will result in the trivial solution ϕ = 0 over the whole domain,

hene the gradient giving the orretion will be zero and the �nal vetor �eld will

be the same as the initial one. For that reason, we use an initial veloity �eld

whih depends on x.

Sine the veloity inreases with x, we an therefore expet an inreasing

divergene on the x−axis. The algorithm results in a zero-divergene veloity

�eld as is shown in Figure 2.14.
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Fig. 2.14. Streamlines and divergene of initial and �nal vetor

�elds (u, v)flat over the �at terrain surfae Hflat.

Notie that the streamlines of the �nal vetor �eld are not exatly straight

as we ould expet. Figure 2.15 shows the ontour plot of the �nal veloity �eld

omponents.
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Fig. 2.15. Contour plot of the �nal veloity �eld omponents

(ud, vd)flat over the �at terrain surfae Hflat.
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As we an see, even if the initial vertial veloity omponent v was zero, a

orretion was added to this omponent. This might be explained by the homo-

geneous Dirihlet boundary ondition at the top of the domain whih does not

fore the �nal vetor �eld to remain horizontal at the top boundary.

In �gure 2.16, we plot the di�erent norms of the absolute errors de�ned above

on a log-log sale as a funtion of the parameter N .
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Fig. 2.16. Norms of the staggered absolute error eN (top) and

volume-weighted norms of the ell-entered absolute error eN (bot-

tom) of (ud, vd)flat.

The onvergene rate of the absolute error eN in the di�erent norms are shown

in the following tables.

We notie a big di�erene between the max norm of the two tables even if

their de�nition is the same. This is explained by the fat that in the ase of the

max norm of the absolute error of the staggered omponents, only a few number
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eN L∞ L1 L2

u 1.87 1.83 1.85

v 1.87 1.89 1.88

Tab. 2.2. Convergene rate of staggered absolute error eN for (ud, vd)flat.

eN L∞ L1 L2

u 1.06 2.05 1.94

v 1.08 2.00 1.93

Tab. 2.3. Convergene rate of ell-entered absolute error eN for (ud, vd)flat.

of edges are used for omputing the error, while in the volume-weighted norm,

all ells are onsidered, espeially those lose to the embedded boundary, where

the larger errors usually our. Otherwise, for the L1 and L2 norms, the rate of

onvergene is about O(h2).
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2.3.2. Sinusoidal hills ase

We now onsider a slightly more ompliated geometry in order to hek the

performane of the Embedded Boundary Method. The topography is de�ned by

a sinusoidal funtion :

Hsin(x) =
Ly

30
sin(x + 10) +

Ly

8
(2.3.12)

The arbitrary initial vetor �eld is horizontal and onstant and given by

(u, v)sin = (1, 0). (2.3.13)

The initial veloity �eld does not satisfy the slip ondition at the terrain

boundary, hene we expet some divergene at the terrain surfae, as shown by

Figure 2.17. Notie that the streamlines of the initial vetor �eld are only hor-

izontal and that some streamlines are missing in the seond avity. This is due

to the fat that the partiles near the terrain surfae that trae the streamlines

reah the terrain surfae at some point and remember that the veloity vetor

�eld is de�ned as zero under the topography. The vetor �eld is well orreted

sine the streamlines of the �nal vetor �eld are parallel to the topography and

the �nal divergene is zero everywhere.

The onvergene of the error for the two omponents of the �nal vetor �eld

is shown in Figure 2.18.

The onvergene rates of the absolute error eN in the di�erent norms are

shown in the following tables.

eN L∞ L1 L2

u 2.21 1.96 2.05

v 2.06 2.09 2.06

Tab. 2.4. Convergene rate of staggered absolute error eN for (ud, vd)sin.

eN L∞ L1 L2

u � 1.82 1.57

v � 1.81 1.12

Tab. 2.5. Convergene rate of ell-entered absolute error eN for (ud, vd)sin.
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Fig. 2.17. Streamlines and divergene of initial and �nal vetor

�elds (u, v)sin over the sinusoidal hills Hsin.

We notie that the max norm does not onverge in the lower graph. The max

norm is reahed in a ell near the terrain surfae. The most plausible explanation

for the non-onvergene in this norm is the hange in the geometry of the topog-

raphy for eah disretization of the grid. Sine the geometry is not exatly the

same for two di�erent disretizations this would a�et the averaging of the refer-

ene solution on a oarser grid done with (2.3.8) and thus a�et the onvergene

of the solution.

For the other volume-weighted norms, the onvergene rate is a bit lower than

what we have seen in the �at terrain ase sine the geometry is more ompliated.

The norms of the staggered errors are better though, whih might be explained

by the fat that the initial veloity �eld was onstant rather than aelerating as

in the �at terrain ase.



39

10
0

10
1

10
2

10
3

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

N
o

rm
s
 o

f 
a

b
s
o

lu
te

 e
rr

o
r

 

 

||u||
∞

||u||
1

||u||
2

||v||
∞

||v||
1

||v||
2

10
0

10
1

10
2

10
3

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

N

N
o

rm
s
 o

f 
a

b
s
o

lu
te

 e
rr

o
r

 

 

||u||
∞

||u||
1

||u||
2

||v||
∞

||v||
1

||v||
2

Fig. 2.18. Norms of the staggered absolute error eN (top) and

volume-weighted norms of the ell-entered absolute error eN (bot-

tom) of (ud, vd)sin.
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2.3.3. Exponential hill ase

The two previous test ases used relatively smooth topographial shapes. We

now want to test the EBM algorithm over a more ompliated geometry. The

topography is de�ned by

Hexp(x) = 4 exp

(

−

(

x −
Lx

2

)2
)

+
Ly

10
(2.3.14)

with the highest peak reahing half of the vertial domain length. Sherman [24℄

remarks that the topography should not reah the top boundary of the ompu-

tational domain, whih makes sense. Ratto et al. [20℄ adds that the top domain

boundary should be high enough over the topography in order to obtain good

results.

We one more use a onstant horizontal initial vetor �eld given by

(u, v)exp = (1, 0). (2.3.15)

As in the ase of the sinusoidal hills, the region where the omputed divergene

of the initial veloity �eld is not zero will be near the terrain surfae and the

resulting streamlines will be horizontal. This is shown in Figure 2.19.

We remember that Ross et al. [21℄ and Barnard et al. [2℄ insisted that the

slip ondition should be applied on the initial veloity �eld with the homogeneous

Neumann boundary ondition at the terrain surfae for satisfying the impenetra-

bility onstraint. Sine we initialized our veloity �eld with a horizontal vetor

�eld, we should therefore observe a �nal vetor �eld that is not tangent to the

terrain surfae. Figure 2.20 shows that it is not the ase and that the slip ondi-

tion is satis�ed on the topography. This might be an advantage of the EBM over

the FDM.

We now verify if the oarse shape of the geometry has some reperussions on

the onvergene of the �nal vetor �eld. Convergene of the absolute error in the

di�erent norms is presented in Figure 2.21.

The onvergene rates of the absolute error for di�erent norms of �gure 2.21

are shown in the following tables.
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Fig. 2.19. Streamlines and divergene of the initial and �nal vetor

�elds (u, v)exp over exponential hill Hexp.
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Fig. 2.20. Final vetor �elds (u, v)exp over the exponential hill Hexp.

The max norm still does not seem to onverge when only full ells are taken

into aount. The non-onvergene in this norm is not aused by small volume

ells, sine these are not used when the max norm is omputed. It an be shown

that even if those ells are not taken into aount, the maximum of the error is
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Fig. 2.21. Norms of the staggered absolute error eN (top) and

volume-weighted norms of the ell-entered absolute error eN (bot-

tom) of (ud, vd)exp.

eN L∞ L1 L2

u 0.85 1.82 1.57

v 0.59 1.81 1.12

Tab. 2.6. Convergene rate of staggered absolute error eN for (ud, vd)exp.

eN L∞ L1 L2

u � 1.62 1.12

v � 1.80 1.35

Tab. 2.7. Convergene rate of ell-entered absolute error eN for (ud, vd)exp.

always reahed in the ells lose to the terrain surfae. Even if the max norm

does not onverge, the generated veloity �eld is still inompressible sine it has



43

zero-divergene and an be used for wild�re spread simulations. In atual models

for wild�res spread, the wind veloity whih is onsidered for the propagation of

the �re is always taken from a ertain height above the topography, hene we

don't need to worry muh about the fat that the max norm of the absolute error

is not onverging.

For the L2-norm, the rate of onvergene is now about O(h). The exponential

topography has a greater impat on the �nal veloity �eld as was expeted.
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2.3.4. Half-ylinder hill ase

We now want to hek if our numerial solution onverges to an exat solution.

Exat solutions for the Poisson equation are known for very simple geometries

suh as the half-ylinder. Final veloity �elds generated from uniform onstant

initial veloity �elds are expeted to generate a potential-like �ow. Hene, from an

initial vetor �eld, we will try to generate a potential �ow for whih the analyti

solution is known. Wang et al. [25℄ and Ross et al. [21℄ used a uniform veloity

�eld in onformal oordinates to ahieve this. We will see that good results an

be obtained in Cartesian oordinates when solving with the EBM.

Our test ase will be to �nd the potential �ow around a half-ylinder. We use

onventional polar oordinates (r, θ) to solve the following Laplae equation :

∆ϕ = 0 (2.3.16)

with the following boundary onditions :

Far away from the ylinder of radius R, i.e. r/R ≫ 1, the �ow is assumed to be

only horizontal :

∇ϕ = (u, 0) (2.3.17)

and on the ylinder surfae, i.e. r = R, the slip ondition must be ful�lled :

v · n = ∇ϕ · n = 0 (2.3.18)

⇒
∂ϕ

∂r
= 0. (2.3.19)

The exat solution of this problem is given by the potential ϕ :

ϕ(r, θ) = u

(

r +
R2

r

)

cos θ. (2.3.20)

The vetor �eld an be found �rst of all in polar oordinates :

vr =
∂ϕ

∂r
= u

(

1 −
R2

r2

)

cos θ (2.3.21)

vθ =
∂ϕ

∂θ
= −u

(

1 +
R2

r2

)

sin θ (2.3.22)
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but sine we are using Cartesian oordinates for our omputation, we will use the

vetor �eld (u, v) :




u

v



 =




cos θ − sin θ

sin θ cos θ








vr

vθ



 . (2.3.23)

One again, the onvergene will be tested in square domains. We will ompare the

vetor �eld omponents of the numerial solution (ud, vd) with the exat solution

(uexact, vexact) by alulating the absolute error of the di�erene. For example,

eN(ud) =
∣
∣uexact

N − ud
N

∣
∣ . (2.3.24)

Then we will take the volume-weighted norms of eN(ud) de�ned earlier. All this

is also done for vd.

In the artiles [21℄ and [25℄, the authors use a uniform bakground wind in

onformal oordinates as the initial vetor �eld. They say that sine ∇ · v = 0,

the Poisson equation will then be redued to the Laplae equation ∆ϕ = 0 so

the numerial solution should onverge to the solution of potential �ow. Ross et

al. use terrain-following oordinates to satisfy the slip ondition on the terrain

boundary and solve the Laplae equation. In our ase, we use the initial vetor

�eld given by

(u, v)cyl = (1, 0) (2.3.25)

and the topography is de�ned by

Hcyl(x) =

√

R2 −

(

x −
Lx

2

)2

(2.3.26)

with R =
Lx

8
.

We already know that the divergene of the initial veloity �eld will not be zero

everywhere sine the vetor �eld is not tangential to the half-ylinder boundary.

This an be seen in Figure 2.22. In this �gure, the streamlines of the �nal veloity

�eld are drawn in red and those of the exat veloity �eld in blak. As we an see,

the pro�les drawn by the streamlines are very similar, but this does not mean

that the numerial solution onverges to the analyti solution.
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Fig. 2.22. Streamlines and divergene of the initial and �nal vetor

�elds (u, v)cyl over half-ylinder hill Hcyl.

Figure 2.23 shows the absolute error of the numerial solution with the exat

solution in di�erent volume-weighted norms. We an therefore onlude that there

is no onvergene. This might our for di�erent reasons. First, the exat solution
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Fig. 2.23. Volume-weighted norms of the ell-entered absolute

error eN of (ud, vd)cyl.
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is found when solving the Laplae equation. In our ase, we are solving a Poisson

equation sine the initial divergene is not zero over the whole domain. In the

mathematial problem, one of the boundary onditions assumes that the initial

veloity must be only horizontal at in�nity. Our solution is found with Dirihlet

boundary onditions on a �nite domain. The size of the domain might be too

small for the ylinder radius. Probably the two solutions would be even loser for

a smaller ylinder radius. However, even if the solution does not onverge, the

resulting numerial �ow looks very muh like a potential �ow.

Figure 2.24 shows the ontour plot of the horizontal omponents u of the �nal

vetor �eld and exat vetor �eld. The pro�le is very similar exept in magnitude.

This is even more obvious when looking at Figure 2.25 whih shows the pro�le
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Fig. 2.24. Contour plot of horizontal omponent of numerial and

exat veloity �elds over a half-ylinder hill Hcyl.

of the omponents of the numerial vetor �eld over the exat vetor �eld. We

see that the pro�les have quite the same shapes but that the magnitude of the

veloity is di�erent, partiularly for the omponent u.

Figure 2.26 shows the numerial and exat vetor �elds lose to the surfae

of the half-ylinder. The vetor �elds do not math perfetly lose to the terrain

surfae, whih might ontribute to the errors between the numerial and exat

solutions. This di�erene might be an artefat due to the average of the numerial

staggered veloity �eld sine no extrapolation is done in zero volume ells when

omputing the average in the ut ells.
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over a half-ylinder hill Hcyl.
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2.4. Fire spread by an inompressible flow

In this setion, we explain how the �re is moved by a mass-onsistent wind.

First, a divergene-free vetor �eld vd is generated from a given initial wind vetor

�eld v whih ful�ls the slip ondition on the terrain surfae. The global veloity

vtot of the �re is given by

vtot = vd + vfire

where vd is the divergene-free wind vetor �eld and vfire some onstant veloity

for the �re itself moving on the topography. In ase of absene of wind, the �re

would move at onstant speed vfire. Sine the vetor �eld vd is tangent to the

topography, only the horizontal omponent ud is needed.

utot
i+ 1

2
,j

= ud
i+ 1

2
,j

+ u
fire

i+ 1

2
,j

where u
fire

i+ 1

2
,j

= proj
x
vfire and where j is the lowest vertial index where ui+ 1

2
,j is

non-zero.

Euler's method is used to simulate the �re propagation :

dx

dt
= vtot (2.4.1)

x
n+1 − x

n

∆t
= vtot (2.4.2)

x
n+1 = x

n + ∆tvtot (2.4.3)

Figure 2.27 shows the evolution of the position of a �re represented by a point

(•) and starting on the left side of the domain. The �re is pitured at every time

step ∆t = 1 for di�erent terrain geometries on a 50 × 50 grid. The initial vetor

�eld is de�nded as v = (1, 0) and norm of the �re veloity |vfire| = 0.5.

2.4.1. Wind e�et depending on its altitude

We now illustrate how the wind a�ets the �re spread depending on the height

at whih it is hosen. Here, we experiment with this e�et using the sinusoidal and

exponential hills. In both ases, the initial wind vetor �eld is uniform, v = (1, 0),

and the �re veloity is |vfire| = 0.5. The orreted wind vetor �eld is alulated

on a uniform 50×50 grid and ∆t = 1. Figure 2.28 shows that the wind at di�erent
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Fig. 2.27. Fire spreading over di�erent terrain shapes (wind in�ow

is on the left side).

heights over the topography has little in�uene on the �re spread, whih is not

the ase with the exponential topography in �gure 2.29.
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heights of the wind.
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Chapitre 3

SOLVING THE MODEL IN 3 DIMENSIONS

We now generalize the model for the three dimensional ase. This part of

the projet was ahieved with the use of EBChombo, a software developed by

the ANAG team at the Lawrene Berkeley National Laboratory. EBChombo is

a olletion of C++ lasses with FORTRAN subroutines for the onstrution of

numerial PDE algorithms in omplex geometries using the Embedded Boundary

Method. It is based on Chombo whih also provides tools for solving PDE suh

as Adaptive Mesh Re�nement (AMR) and allows the use of parallel omputing.

We �rst explain how EBM is implemented in EBChombo and more preisely

how the embedded boundary and the operators are disretized to 3D. Then the

test ases of the previous hapter are generalized in 3D for testing the onvergene

of the algorithm.

3.1. Embedded Boundary Method

We reall that the aim of the Embedded boundary method here is to solve

the ellipti equation :

∇ · ∇ϕ = −2∇ · v (3.1.1)

on an irregular domain in three dimensions with homogeneous Neumann ondi-

tion at the embedded boundary and homogeneous Dirihlet ondition at domain

boundaries. This hapter generalizes the algorithm based on the �nite volume

method explained in hapter two. The general idea of the approah is well ex-

plained in the artile of Shwartz et al. [23℄.
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3.1.1. Disretization of the domain

The underlying disretization of spae is given by retangular ell-entered

ontrol volumes on a Cartesian grid Υi = [(i − 1
2
u)hd, (i + 1

2
u)hd], i ∈ Z

D where

hd is the mesh spaing in the d−diretion, and u ∈ Z
D is the vetor with all

omponents equal to one.

The geometry of the irregular domain Ω is represented by its intersetion with

the Cartesian grid. The method uses ontrol volumes Vi = Υi∩Ω and faes A
i± 1

2
ed

whih are the intersetions of ∂Vi with the oordinate planes {x : xd = (id±
1
2
)hd}.

Here ed is the unit vetor in the d−diretion. The intersetion of the boundary

of the irregular domain and the Cartesian ontrol volumes are the faes AB
i

=

Υi ∩ ∂Ω.

The disretized divergene operator requires some geometri data on the on-

trol volume ells suh as areas and volumes written in nondimensional terms :

volume frations : κi = |Vi|
∏D

d=1

1

hd

fae apertures : α
i± 1

2
ed

= |A
i± 1

2
ed
|
∏

d′ 6=d

1

hd′

boundary apertures : αB
i
.

It is also assumed that these values an be alulated with auray of O(h2).

Loation of entroids and the average outward normal an also be omputed with

these expliit formulas :

fae entroid : x
i+ 1

2
ed

=
1

|A
i+ 1

2
ed
|

∫

A
i+1

2
ed

xdA

boundary fae entroid : xB
i

=
1

|AB
i
|

∫

AB
i

xdA

outward normal : nB
i

=
1

|AB
i
|

∫

AB
i

n
BdA

where n
B is the outward normal to the boundary ∂Ω de�ned for eah point on

∂Ω. Again, the auray of these omputed quantities is assumed to be O(h2).
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3.1.2. Embedded Boundary representation

EBChombo uses an impliit funtion φ : R
D → R for embedding the irregular

geometry in the Cartesian grid and de�ning the omputation domain Ω :

Ω = {x : φ(x) < 0} (3.1.2)

∂Ω = {x : φ(x) = 0}. (3.1.3)

This approah has been hosen by the ANAG team for di�erent reasons,

namely the easy omputation of funtions suh as the normal at the boundary

and representation of sophistiated geometries. Moreover, the moments whih

are used for omputing the entroids an be found using the divergene theorem,

Taylor expansions, least squares, reursion, and 1D root �nding. An advantage is

that an expliit representation of the irregular domain and its boundary is never

needed nor omputed. The artile of Ligoki et al. [16℄ explains in more detail

how this is ahieved.

In our ase, we assume in the 2D model that the topography was given by

an analyti funtion H : R
D−1 → R where D = 2. In order to represent suh

funtions in EBChombo, we will use an impliit funtion of the form φ(x, y, z) =

H(x, y) − z.

3.1.3. Divergene operator

The divergene operator ∇· is disretized using the divergene theorem as

before. Let F = (F 1, . . . , FD) be a funtion of x. By the midpoint rule we have :

∇ · F ≈
1

|Vi,j|

∫

Vi

∇ · FdV =
1

|Vi,j|

∮

∂Vi

F · ndA (3.1.4)

≈
1

κih

[(
∑

±=+,−

D∑

d=1

±α
i± 1

2
ed

F d(x
i± 1

2
ed

)

)

+ αB
i
ni

B · F(xi
B)

]

. (3.1.5)

One again, the homogeneous Neumann boundary ondition is applied on the

embedded boundary, meaning that F(xi
B) = 0. Hene, the disrete divergene

operator beomes

DM(F)i,j =
1

κih

(
D∑

d=1

α
i+ 1

2
ed

F d
i+ 1

2
ed

− α
i− 1

2
ed

F d
i− 1

2
ed

)

(3.1.6)
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3.1.4. Flux interpolation

In order to use the divergene operator on the volume ontrol ells next to

the boundaries of the domain, the �uxes on the boundaries must be spei�ed. At

the embedded boundary, the problem uses a homogeneous Neumann ondition

∂ϕ
∂n

= 0, whih means that the �ux is simply zero, F(xi
B) = 0.

For the top and side domain boundaries, the homogeneous Dirihlet ondition

ϕ = 0 is applied as in the 2D ase. As we have seen before, this kind of ondition

does not presribe a partiular value for the �ux at the boundary, hene the �ux

must be interpolated. We use the same three-point gradient stenil as in equation

(2.1.11) of the two-dimensional problem in order to get a spei� value of the �ux

on those boundaries.

For example, the �ux on the right boundary in the diretion d = 1 is given by

F
i+ 1

2
e1

=
1

h1

[

3
(
ϕB − ϕi

)
−

1

3

(
ϕB − ϕi−e1

)
]

. (3.1.7)

where ϕB is the value of ϕ at the boundary.

The divergene operator requires �uxes to be de�ned on the fae entroid of

the volume ells. For ut ells, the �ux must be spei�ed at the entroid of the

fae ells. In order to ahieve this, EBChombo applies a bilinear interpolation

using the value of the �uxes in the neighbouring ells. A bilinear interpolation

an be seen as a omposition of two linear interpolations.

For instane, given a fae with outward normal e1 with entroid x, the �ux

F d
i+ 1

2
e1

in the d−diretion for d 6= 1 is linearly interpolated by :

F d
i+ 1

2
e1

= η
(ϕi+e1

− ϕi)

h
+ (1 − η)

(ϕi+e1±ed
− ϕi±ed

)

h
(3.1.8)

η = 1 −
|x · ed|

h
(3.1.9)

± =







+ x · ed > 0

− x · ed ≤ 0
. (3.1.10)

This part is illustrated by the red dashed lines in Figure 3.1. Then, the �ux

is interpolated at the entroid using a linear interpolation of the two previous
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linearly interpolated �uxes, whih results in the bilinear interpolation :

F
i+ 1

2
e1

= ηF d
i+ 1

2
e1

+ (1 − η)F d
i+ 1

2
e1±ed′

(3.1.11)

η = 1 −
|x · ed′ |

h
(3.1.12)

± =







+ x · ed′ > 0

− x · ed′ ≤ 0
. (3.1.13)

where d′ 6= d and d′ 6= 1. This last step is pitured by the blue dashed line in

Figure 3.1 whih gives an example of the bilinear interpolation of the �ux F
i+ 1

2
e1

at the entroid in the ase where d = 2 and d′ = 3.

PSfrag replaements

e1

e2

e3

Fig. 3.1. Interpolation of the �ux F
i+ 1

2
e1

at the entroid of the ut

fae ell edge using bilinear interpolation. The sheme here is for

the ase where d = 2 and d′ = 3.

Note that for ut faes where the distane between the fae entroid and the

fae enter only depends on one of the two tangential omponents of the fae, the

bilinear interpolation redues to a simple linear interpolation as shown in Figure

3.2.

As mentioned by Shwartz et al. [23℄, this is a nontrivial hoie for omputing

the �uxes on ut fae ells. In fat, experiments have shown that this hoie

of bilinear interpolation assures the stability of the method for all test ases,

espeially for some on�gurations of adjaent small ontrol volumes, whih was

not true when using a more simple linear interpolation.
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PSfrag replaements

e1
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e3

Fig. 3.2. Interpolation of the �ux F
i+ 1

2
e1

at the entroid of the

ut ell fae using linear interpolation when the distane between

the fae entroid and the fae enter only varies in the tangential

diretion e3.

3.1.5. MAC Projetion

We give some details on the lass EBCompositeMACProjector whih was used

to obtain the divergene-free veloity �eld from an initial veloity �eld using

the MAC projetion and the Embedded Boundary Method. EBChombo is built

so that it takes advantage of the adaptive mesh re�nement (AMR) multigrid

algorithm developed by Martin and Cartwright [17℄. Sine the 2D version has

not been implemented with AMR, the tests in 3D use only one level, meaning

that none of the multigrid features were used here.

The funtions in the lass �rst ompute the right hand side of equation (3.1.1)

ρ = −2∇ · v. Then the ellipti equation ∆ϕ = ρ is solved with the Embedded

Boundary Method on a Cartesian grid. Finally, the projetion is ompleted by

doing the orretion :

v
d = v +

1

2
∇(∆−1∇ · v). (3.1.14)

Some parameters must be de�ned in order to use the lass orretly. For all

simulations, a number of 40 iterations were done for pre-onditioning. The Gauss-

Seidel method was used as the relaxation method and the minimum residual

method for solving the ellipti equation.
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3.2. Convergene and error analysis

As in hapter two, we study the e�ieny and auray of the Embedded

Boundary Method. The algorithm will be used for solving onstant or partiular

initial veloity �elds over di�erent geometries.

When the exat solution is unknown, we study the onvergene of the algo-

rithm using a referene solution whih is solution on a grid of very �ne resolution.

Then, we ompute the error between the solutions of the oarsest grids and the

referene �ne grid. In our ase, we are interested by the onvergene of the velo-

ity �eld. Sine the norms are de�ned for ell-entered quantities, we average the

edge-entered veloity �eld at the enter of eah ell. Then, the referene solution

must be averaged to the oarse grid using a volume-weighted average available in

the EBCoarseAverage lass :

Av(ξf ) =
1

V c

∑

vf∈F

V fξvf
(3.2.1)

where F is the set of ells of the �ne grid vf ontained in the ell of the oarse

grid vc and where V f and V c are the volume of ells vf and vc respetively. Figure

3.3 shows the ells vf of the �ne grid N = 8 that are ontained in the oarse ell

vc of the grid N = 2.

Fig. 3.3. The �ne to oarse averaging of a ell-entered quantity

using a volume-weighted average of values of the �ne grid N = 8

to the oarse grid N = 2.
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The absolute error for the omponent u is given by

eN(uN) =
∣
∣Av(uNref

) − uN

∣
∣ . (3.2.2)

where Nref is the number of ells of the referene grid and N the number of ells

of a oarser grid. The absolute error is omputed for the other omponents of the

orreted vetor �eld vd = (ud, vd, wd). Then, we hek if the errors onverge for

di�erent norms. We use the volume-weighted norm de�ned in the Johansen and

Colella artile [14℄, whih is available in the EBArith lass. For a ell-entered

variable ξ, the max norm is :

‖ξ‖∞ = max
(i,j,k)∈Ω

|ξi,j,k|. (3.2.3)

and the p−norm :

‖ξ‖p =




∑

(i,j,k)∈Ω

|ξi,j,k|
pκi,j,kh

D
/ ∑

(i,j,k)∈Ω

κi,j,kh
D





1/p

(3.2.4)

where Ω is the omputational domain and κi,j,k the volume fration of eah ontrol

ell.

For the 3D test ases, the norms of the absolute error were taken over all

non-zero volume ells.

All onvergene tests are performed on square domains :

L = Lx = Ly = Lz

N = Nx = Ny = Nz

h = hx = hy = hz.

and where the vertial axis is given by y. For all our tests, L = 10 and we use as

a referene solution the results obtained on the grid Nref = 128 and the oarsest

grid is N = 4.

The solutions of the di�erent ases will be shown with the streamlines of the

veloity �eld and the ontour plots for the �nal divergene and veloity ompo-

nents. Those �gures will be done using the following parameters for the disretiza-

tion of the retangular domain in all test ases :



61

N L

64 10

Tab. 3.1. Parameters used for test ases in 3D.

3.2.1. Flat terrain ase

The �at terrain is a simple topography for whih the Embedded Boundary

Method should not be so di�erent from the Finite Volume Method. The topog-

raphy is a plane surfae de�ned by

Hflat(x, y) =
Ly

3
. (3.2.5)

For the tests, we use a horizontal initial veloity �eld whih is aelerating in the

x−diretion :

(u, v, w)flat = (100 + x
5

4 , 0, 0). (3.2.6)

Figure 3.4 shows the divergene of the orreted veloity �eld on three planes

rossing the omputational domain Ω, the grey horizontal plane being the �at

topography.

Fig. 3.4. Divergene of the �nal vetor �eld (u, v, w)flat over the

�at terrain Hflat.
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The onvergene of the orreted veloity �eld with a referene solution is

shown in �gure 3.5.
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Fig. 3.5. Volume-weighted norms of the ell-entered absolute er-

ror eN of (ud, vd, wd)flat.

Using the polyfit funtion in Matlab, we �nd that the rate of onvergene

for the three omponents of the veloity �eld presented in the following tables.

The rate of onvergene is about O(h2) for the L1−norm and the L2−norm. For

eN L∞ L1 L2

u 1.11 2.00 1.89

v 1.10 2.09 1.89

w 1.09 2.07 1.87

Tab. 3.2. Convergene rate of (u, v, w)flat in di�erent norms.

the L∞−norm, the error onvergene rate is O(h). This might be explained by

the fat that the largest errors are ontained in partial volume ells.

3.2.2. Sinusoidal hills ase

As in hapter two, we try our 3D algorithm over a geometry whih has a few

more features. The topography is de�ned by the sinusoidal funtion :

Hsin(x, y) =
Ly

30
sin(x + 10) +

Ly

8
(3.2.7)



63

and the initial veloity �eld is horizontal and onstant in the x−diretion :

(u, v, w)sin = (1, 0, 0). (3.2.8)

The results are similar to those obtained in 2D. We take a loser look to the

onvergene whih is shown in �gure 3.6.
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Fig. 3.6. Volume-weighted norms of the ell-entered absolute er-

ror eN of (ud, vd, wd)sin.

In this ase, we already notie that the rate of onvergene in L∞−norm does

not onverge. Remember that in the 3D ase, the partial volume ells are kept

in the omputation of the volume-weighted norms, whih is not the ase in 2D.

Sine the largest errors our near the terrain surfae, this might explain why the

errors don't onverge in the L∞−norm. Moreover, as explained for this test ase in

hapter two, the geometry of the terrain surfae hanges with eah disretization

of the grid whih a�ets the averaging of the referene solution on a oarser grid.

This ould also explain the non-onvergene in this norm.

eN L∞ L1 L2

u � 1.76 1.11

v � 1.61 1.22

w � 1.75 1.07

Tab. 3.3. Convergene rate of (u, v, w)sin in di�erent norms.
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The rate of onvergene in the other two norms is lower that what was seen

in the �at terrain test ase. In fat, the L2−norm seems to be more 1st order

aurate rather than 2nd. Compared to the results obtained for u and v in the

two-dimensional ase, it is quite similar but still lower order. Again, this might

be aused by the values of the veloity �eld in the partial volume ells when

omputing these norms.

3.2.3. Exponential hill ase

The last test ase aims to hallenge the algorithm with a more omplex to-

pography. The exponential hill is de�ned by

Hexp(x, y) = 4 exp

(

−

(

x −
Lx

2

)2
)

+
Ly

10
. (3.2.9)

We use the same initial vetor �eld as before :

(u, v, w)exp = (1, 0, 0). (3.2.10)

The exponential topography is represented by the grey surfae in Figure 3.7

while the 3 other planes show the remaining divergene after orreting the initial

vetor �eld. One again, we notie that the �nal divergene is zero everywhere.

Fig. 3.7. Divergene of the �nal vetor �eld (u, v, w)exp over expo-

nential hill Hexp.
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The onstant horizontal veloity �eld is orreted to beome the divergene-

free veloity �eld tangent to the topography where wind speed-up an be observed

at the top of the hill. This is pitured by the ontour plot of the veloity ompo-

nent u in Figure 3.8.

Fig. 3.8. Contour plot of the omponent u of the �nal vetor �eld.

Figure 3.9 shows the �nal vetor �eld over the exponential hill.

Fig. 3.9. Vetor plot of the �nal vetor �eld (u, v, w)exp over ex-

ponential hill Hexp.
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The onvergene of the algorithm for this test ase is graphed in Figure 3.10.
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Fig. 3.10. Volume-weighted norms of the ell-entered absolute

error eN over exponential hill Hexp.

One again, nothing seems to onverge in the L∞−norm. The onvergene rate

in the L2−norm is even lower than in the sinusoidal hills ase. This is probably

aused by the fat that the geometry is more prominent than the small sinusoidal

hills and takes up a bigger region of the domain.

eN L∞ L1 L2

u � 1.57 0.96

v � 1.59 0.82

w � 1.93 1.19

Tab. 3.4. Convergene rate of (u, v, w)exp in di�erent norms.



CONCLUSIONS

The goal for this projet was to implement a new approah for modelling wild-

�re spread. The model is based on mass-onsistent models that were developed

over the last 30 years for wind modelling in atmospheri sienes. We have shown

that Sasaki's variational tehnique was very similar to the projetion method.

This last approah was used for extrating a divergene-free veloity �eld from

any initial vetor �eld.

The model was formulated in suh a way that it an be initialized with a

high altitude wind whih an be interpolated over the whole domain down to

the surfae. The geometri features of the topography whih aounts for most of

the �nal veloity pro�le are now treated e�iently with the Embedded Bound-

ary Method. This tehnique based on the Finite Volume Method was used for

modelling wind in two and three dimensions.

Error analysis has shown that the EBM algorithm onverges for all ases

exept in the max norm. This norm is more sensitive to the error ourring in ut

ells than the other ells of the omputational domain. In 2D, the half-ylinder

ase test has shown that the resulting mass-onsistent wind veloity is very similar

to the potential �ow even if our numerial solution does not onverge to the exat

solution.

Further researh will implement the inlusion of the �re feedbak as a dilation

soure term in the omputation of the wind, more preisely when solving the

Poisson equation. This additional step will lead to a mass-onsistent and �re-

indued �ow that ould be more representative of the atual wind in a wild�re

region, espeially for high intensity �res. New numerial methods will have to be

developed in order to address the numerial issues related to the inlusion of the
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soure term in the projetion operators. It will also be interesting to determine

the regimes where the oupled �re-atmosphere mass-onsistent model should be

used prior to the use of the onservation of momentum equation.
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Annexe A

PROJECTIONS

The projetion method whih has been introdued in hapter one was used

throughout the thesis for solving the Poisson Equation. We have hosen a dis-

retization of the operators on a MAC grid for our algorithm. We show here two

other ways for disretizing the projetion operators, the divergene operator ∇·,

the gradient operator ∇ and the projetion operator P .

Cell-Centered Projetion

The ell-entered projetion uses a grid where the omponents of the vetor

�eld v and the salar �eld ϕ are olloated, i.e. de�ned at the enter of the ontrol

ells. Let Do and Go be the disrete divergene and disrete gradient operators

over the ell-entered grid. The natural way to de�ne those operators is using the

entered di�erene approximations :

Do(v)i,j =
ui+1,j − ui−1,j

2hx

+
wi,j+1 − wi,j−1

2hy

(A.0.11)

and

Go(ϕ)i,j =

(
ϕi+1,j − ϕi−1,j

2hx

,
ϕi,j+1 − ϕi,j−1

2hy

)

. (A.0.12)

The projetion operator is then de�ned as

P
o = I − Go (DoGo)−1

Do
(A.0.13)

and Do(Po(v)) = 0.

Unfortunately, solving the Poisson equation is more ompliated sine the

Laplaian Do(Go(ϕ))i,j is di�erent from the standard Laplaian. The stenil is like
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the standard 5 point Laplaian but it is expanded as it an be seen in Figure A.1.

This deouples a two-dimensional grid into four distint subgrids whih makes

Fig. A.1. Expanded Laplaian Do(Go(ϕ))i,j

the linear algebra more ompliated to solve the Poisson equation. Osillations in

the solution might also our but it an be orreted with �lters. Note also that

the subgrids an be reoupled with the boundary onditions.

MAC Projetion

The Marker-and-Cell (MAC) projetion introdued by Harlow and Welh [12℄

uses a staggered grid, where the omponents of the vetor �eld are de�ned on the

edges of the ontrol ells and the salar �eld is de�ned at the enter as shown in

Figure A.2.

PSfrag replaements

ui− 1
2

,j ui+ 1
2

,j

vi,j− 1
2

vi,j+ 1
2

ϕi,j

Fig. A.2. Staggered grid with the ell-entered salar �eld ϕ and

the edge-entered omponents of the veloity �eld (u, v).

Let DMAC and GMAC be the disrete divergene and disrete gradient op-

erators over the staggered grid. The divergene is de�ned using the divergene

theorem on the ontrol ell and the gradient by entered di�erenes over the

edges :

DMAC(v)i,j =
ui+ 1

2
,j − ui− 1

2
,j

hx

+
wi,j+ 1

2

− wi,j− 1

2

hy

(A.0.14)
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and

GMAC(ϕ)i+ 1

2
,j =

ϕi+1,j − ϕi,j

hx

(A.0.15)

GMAC(ϕ)i,j+ 1

2

=
ϕi,j+1 − ϕi,j

hy

(A.0.16)

The projetion operator is then de�ned as

P
MAC = I − GMAC

(
DMACGMAC

)−1
DMAC

(A.0.17)

and DMAC(PMAC(v)) = 0.

For this projetion, the Laplaian de�ned as DMAC(GMAC(ϕ))i,j is the stan-

dard 5 point stenil Laplaian as shown in Figure A.3.

Fig. A.3. Standard 5 point stenil Laplaian

Despite the fat that the omponents of the vetor �eld are not spei�ed at

the same plae on the grid, the MAC projetion has the advantage that the slip

boundary ondition an be set expliitly at walls for retangular domains.

Cell-Centered Approximate Projetion

The two previous projetions are alled exat projetions sine the divergene

of the divergene-free vetor �eld is exatly zero. Some properties of the MAC and

ell-entered projetions would be desirable in the same projetion. For instane,

we might want the omponents of the vetor �eld to be olloated. Also, it would

be easier to use the standard Laplaian rather than the expanded one. These

properties are inluded in the ell-entered approximate projetion. The vetor

and salar �elds are de�ned at the enter of the ontrol ells, so the operators Go

and Do an be used. To avoid di�ulties with the expanded Laplaian, we use

the standard Laplaian de�ned by GMAC and DMAC when solving the Poisson
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equation. Hene, we are solving

DMAC(GMAC(ϕ))i,j = Do(v)i,j. (A.0.18)

The operator P̃ is then de�ned as

P̃ = I − Go (L)−1 Do
(A.0.19)

where L 6= DoGo. Hene, the projetion P̃ is non-idempotent P̃ 6= P̃
2 but P̃ ≈ P̃

2.

Also, Do(P̃(v)) = O(h2), whih means that vd is not exatly divergene-free and

P̃ is then alled an approximate projetion operator.


