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RÉSUMÉ

Cette thèse étudie une approche intégrant la gestion de l’horaire et la conception de

réseaux de services pour le transport ferroviaire de marchandises. Le transport par rail

s’articule autour d’une structure à deux niveaux de consolidation où l’affectation des

wagons aux blocs ainsi que des blocs aux services représentent des décisions qui com-

plexifient grandement la gestion des opérations. Dans cette thèse, les deux processus de

consolidation ainsi que l’horaire d’exploitation sont étudiés simultanément. La résolu-

tion de ce problème permet d’identifier un plan d’exploitation rentable comprenant les

politiques de blocage, le routage et l’horaire des trains, de même que l’habillage ainsi

que l’affectation du traffic.

Afin de décrire les différentes activités ferroviaires au niveau tactique, nous étendons

le réseau physique et construisons une structure de réseau espace-temps comprenant

trois couches dans lequel la dimension liée au temps prend en considération les impacts

temporels sur les opérations. De plus, les opérations relatives aux trains, blocs et wagons

sont décrites par différentes couches. Sur la base de cette structure de réseau, nous mo-

délisons ce problème de planification ferroviaire comme un problème de conception de

réseaux de services.

Le modèle proposé se formule comme un programme mathématique en variables

mixtes. Ce dernier s’avère très difficile à résoudre en raison de la grande taille des ins-

tances traitées et de sa complexité intrinsèque. Trois versions sont étudiées : le modèle

simplifié (comprenant des services directs uniquement), le modèle complet (comprenant

des services directs et multi-arrêts), ainsi qu’un modèle complet à très grande échelle.

Plusieurs heuristiques sont développées afin d’obtenir de bonnes solutions en des temps

de calcul raisonnables.

Premièrement, un cas particulier avec services directs est analysé. En considérant une

caractéristique spécifique du problème de conception de réseaux de services directs nous

développons un nouvel algorithme de recherche avec tabous. Un voisinage par cycles est

privilégié à cet effet. Celui-ci est basé sur la distribution du flot circulant sur les blocs

selon les cycles issus du réseau résiduel.
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Un algorithme basé sur l’ajustement de pente est développé pour le modèle com-

plet, et nous proposons une nouvelle méthode, appelée recherche ellipsoïdale, permet-

tant d’améliorer davantage la qualité de la solution. La recherche ellipsoïdale combine

les bonnes solutions admissibles générées par l’algorithme d’ajustement de pente, et re-

groupe les caractéristiques des bonnes solutions afin de créer un problème élite qui est

résolu de façon exacte à l’aide d’un logiciel commercial. L’heuristique tire donc avan-

tage de la vitesse de convergence de l’algorithme d’ajustement de pente et de la qualité de

solution de la recherche ellipsoïdale. Les tests numériques illustrent l’efficacité de l’heu-

ristique proposée. En outre, l’algorithme représente une alternative intéressante afin de

résoudre le problème simplifié.

Enfin, nous étudions le modèle complet à très grande échelle. Une heuristique hy-

bride est développée en intégrant les idées de l’algorithme précédemment décrit et la

génération de colonnes. Nous proposons une nouvelle procédure d’ajustement de pente

où, par rapport à l’ancienne, seule l’approximation des coûts liés aux services est consi-

dérée. La nouvelle approche d’ajustement de pente sépare ainsi les décisions associées

aux blocs et aux services afin de fournir une décomposition naturelle du problème. Les

résultats numériques obtenus montrent que l’algorithme est en mesure d’identifier des

solutions de qualité dans un contexte visant la résolution d’instances réelles.

Mots clés: conception de réseaux de services, transport ferroviaire de marchan-

dises, conception du réseau en fonction du temps.



ABSTRACT

This thesis studies a scheduled service network design problem for rail freight trans-

portation planning. Rails follow a special two level consolidation organization, and the

car-to-block, block-to-service handling procedure complicates daily operations. In this

research, the two consolidation processes as well as the operation schedule are consid-

ered simultaneously, and by solving this problem, we provide an overall cost-effective

operating plan, including blocking policy, train routing, scheduling, make-up policy and

traffic distribution.

In order to describe various rail operations at the tactical level, we extend the phys-

ical network and construct a 3-layer time-space structure, in which the time dimension

takes into consideration the temporal impacts on operations. Furthermore, operations on

trains, blocks, and cars are described in different layers. Based on this network structure,

we model the rail planning problem to a service network design formulation.

The proposed model relies on a complex mixed-integer programming formulation.

The problem is very hard to solve due to the computational difficulty as well as the

tremendous size of the application instances. Three versions of the problem are studied,

which are the simplified model (with only non-stop services), complete model (with

both non-stop and multi-stop services) and very-large-scale complete model. Heuristic

algorithms are developed to provide good feasible solutions in reasonable computing

efforts.

A special case with non-stop services is first studied. According to a specific char-

acteristic of the direct service network design problem, we develop a tabu search algo-

rithm. The tabu search moves in a cycle-based neighborhood, where flows on blocks are

re-distributed according to the cycles in a conceptual residual network.

A slope scaling based algorithm is developed for the complete model, and we pro-

pose a new method, called ellipsoidal search, to further improve the solution quality.

Ellipsoidal search combines the good feasible solutions generated from the slope scal-

ing, and collects the features of good solutions into an elite problem, and solves it with

exact solvers. The algorithm thus takes advantage of the convergence speed of slope
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scaling and solution quality of ellipsoidal search, and is proven effective. The algorithm

also presents an alternative for solving the simplified problem.

Finally, we work on the very-large-size complete model. A hybrid heuristic is devel-

oped by integrating the ideas of previous research with column generation. We propose

a new slope scaling scheme where, compared with the previous scheme, only approxi-

mate service costs instead of both service and block costs are considered. The new slope

scaling scheme thus separates the block decisions and service decisions, and provide a

natural decomposition of the problem. Experiments show the algorithm is good to solve

real-life size instances.

Keywords: service network design, rail freight transportation, time-dependent

network design.
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CHAPTER 1

INTRODUCTION

Since the early 1960s, network design problems have received much attention in the

operations research society because of their significance and variety of substantial appli-

cations. The range of network design applications keeps getting broader in recent years,

including transportation networks [e.g. 34]; telecommunication networks [e.g. 84]; cen-

tralized teleprocessing networks [e.g. 76]; energy systems [e.g. 21], etc.

Service network design in transportation represents a major application of network

design. The service network design problem is very concerned to transportation service

providers who offer, for example air services, truck services, as it provides a very innate

tool given the intuitive network presentation of most transportation paradigms.

In this research, we study a service network design problem, aiming at generating

an outline of the operating plan for rail freight transportation. In this chapter, we first

introduce the background of railway transportation, and present our research problem.

1.1 Rail Freight Transportation

As a major category of freight transportation in modern society, rail freight trans-

portation plays an important role in the world’s economy. Only in Canada, Mexico, and

the United States, more than 3, 600 railroads operate over 270, 000km of track [69], and

several top ones (Class I rails) generate a total annual revenue of 67.4 billion USD [1].

As a mainstay of transportation for many basic industries, rail distinguishes itself

with other transportation ways (e.g. airlines, shipping lines) by its particular infrastruc-

ture and complex operations.

Railways operate on a physical rail network, consisting of terminals and tracks. Rail

terminals include stations and yards. Stations are dedicated to car exchange with cus-

tomers. At the origin station, customers take empty cars and load the cars with commodi-

ties to be transported; at the destination station, loaded cars are cleared by customers and
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empty cars are returned. Generally, the station where a customer takes empty/loaded cars

and the station where loaded/empty cars are returned is the same, with exceptions if it

benefits the transportation afterwards. In yards, rails perform major handling operations,

for example, car classification, blocking, train assembly and disassembly, etc. Terminals

in the physical rail network are linked by tracks. Tracks include main-line tracks con-

necting major yards, and branch (also known as local or secondary) lines which attach

the stations with their nearby yard. Generally, given the considerable construction cost

and land occupancy, most rail networks present a hub-and-spoke distribution paradigm.

The demand in rail freight transportation is usually expressed in terms of tonnage or

cars of certain commodities to be moved from one terminal to another. Given the special

commodity species, appropriate car type has to be employed. For example, hopper cars

for bulk loads and tank cars for liquid. For a commodity type, there might be several

types of cars which are feasible, e.g. double-stack and flat cars for containers. In a

modern rail company, there exist around 20 types of cars which are commonly exploited.

Car loads together with the appropriate car type employed are thus treated as the basic

traffic flow unit on tracks.

Every loaded movement on a rail network leads to a supply of empty cars at destina-

tion. Therefore, if transportation demand is unbalanced, empty cars must be repositioned

to avoid their accumulation in some parts of the network where more traffic is directed.

Repositioning empty freight cars can thus help rails offer better transportation service to

its customers by reducing the average time they have to wait for empty cars, and decrease

the capital investment associated with equipment ownership.

Transportation services provided by rail carriers are implemented by trains. Each

train consists of one or more locomotives, hauling a queue of cars (both loaded and

empty). From ancient steam to advanced electric or hybrid power, locomotives provide

motive power for moving cars on tracks. Multiple locomotives can be jointed to achieve

a higher hauling capacity; however, the connection of locomotives is restricted by the

engine type, sequence, or even the position in the car queue.

Hauled by locomotives, a train follows a physical route from its origin where the

train assembles to its destination where the train disassembles. Feeder trains on branch
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lines are used to provide transportation between the customer’s station and the yard des-

ignated, and long-haul trains provide transportation among yards. Due to the expensive

crew charge and engine depreciation cost, dedicated trains are only offered for important

customers with large and regular demands, and consolidation-based trains are broadly

applied otherwise, commonly for long-haul transportation. Consolidation is a widely

applied concept in many transportation industries, meaning service provider group ship-

ments from different customers, load the shipments into the same vehicle, and transport

them together in order to reduce the operating cost.

During the journey of a train, there might be stops where some cars are loaded to

or unloaded from the train. Loading/unloading a car to a train is realized by attach-

ing/detaching the car to/from the very end of the car queue. Operating on tracks, un-

loading a car somewhere in the middle of the car queue is a burden: all tail cars “after”

the target car must be detached and temporarily stored on a siding track in the terminal,

remove the target car, and re-attach the tail cars. Such unloading operations become a

major source of inefficiency and unreliability for rail transportation when multiple dis-

crete cars must be removed from a train. To reduce the redundant yard operations, rails

build an intermediate formation of commodities, called block. A block is associated with

an origin-destination pair and consists of a group of cars. The block origin and desti-

nation may or may not be the origin or destination of any car in the block. However,

cars in a block are treated as a unit, and share the common portion of their trips during

the block life cycle. As a result, trains are made of blocks, and blocks are made of cars.

Rails thus work under a special double consolidation organization: loaded and empty

cars are grouped to build blocks, and blocks are grouped to make up trains.

The first level consolidation is grouping cars into blocks. To build blocks, cars with

various commodities and different origins and destinations are classified (or sorted) in

the appropriate yards in the rail network, called classification yards. In general, a classi-

fication yard is equipped with a set of parallel tracks, called classification tracks. When

a block is built, at least one classification track must be assigned to the block. It is pos-

sible to allot more than one classification track to the same block in order to increase the

block capacity. After received in a yard (either from customer stations or other yards),
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cars are kept in receiving tracks. To enter a block, cars need to be moved from receiving

tracks to the proper classification track which is designated to the block. The receiving-

to-classification track movement is implemented according to the yard infrastructure.

Two types of classification yards commonly present, flat yard and hump yard. In flat

yard, cars are moved by shunters (or switch engines), and in hump yard cars are pushed

to the top to a hump and slide to the proper classification track by gravity. At the block

destination, the block is broken down and the component cars are either delivered to

customer’s station by feeder trains, or re-classified to shape another block. Therefore,

each car may pass one or several blocks in its transportation journey.

The second level consolidation concentrates at transporting blocks with trains. Each

train may take more than one block, and at each intermediate stop some blocks are loaded

or unloaded. Two observations emerge: first, it is possible for a block to take only a

section of the train between any two stops; second, from its origin to its destination, a

block may be taken by a sequence of train sections. After unloaded from a train at an

intermediate terminal, the block waits in a transfer track and later be loaded to another

train, and this process is called transfer (or swap).

Other rail operations are related to the use of the rolling stock and the schedule of

crew. Because of the high capital expenditure of locomotives, a major concern to every

railway is to maximize the use of available engines. The locomotive assignment allots

power engines to cover all planned trains while satisfying some constraints such as trac-

tion power requirements, compatibility restrictions and maintenance constraints. Crew is

also necessary for operating trains, and an effective crew schedule should match the pro-

posed trains, respecting the employ regulations, and maximize the working efficiency.

While looking into the railway transportation, another major issue one should not

avoid is delay, as a considerable percentage of car-time ascribes to idling either on tracks

or in yards. The track lines can be made of a single track, as is often the case in North

America and in most developing countries, or may contain two or more tracks, as is com-

mon in Europe. To allow trains traveling in different directions on a single-track line to

meet, sidings are built at regular intervals along the line. These short track sections allow

one train to pull over and free the line for another. Sidings are also used to permit a fast
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train to pass a slower one. Meeting and passing usually generate delays on sidings. Yard

delays derive from various yard operations, mainly from classifications and transfers.

The accumulation delay from classification includes the car waiting in receiving tracks

for classification, as well as the holding in classification tracks for more cars to be gath-

ered. On average, each classification process results in approximately one day delay for

the shipment. Transfers usually bring connection delays where blocks wait in transfer

tracks for the next outbound train. In addition, on the same train route, comparing with

multi-stop trains, apparently direct trains reduce the delays occurring at the intermediate

stops.

The daily operation of freight rail transportation can be briefly summarized as fol-

lows. Empty cars are loaded at the customer’s station, and transported to the rail yard

nearby by feeder trains. The cars then wait for the classification process in receiving

tracks. After the classification, cars are formed into blocks. Then the block waits and

later taken by an outbound train. On its way to the block destination, the block may

be unloaded at some intermediary yard, and transferred to another train after possible

connection delay. At the block destination, the block is broken down, and the cars are

reclassified and included in another block if they have not reached their destination yard.

At the destination yard, the cars are sent to the consignee by feeder trains, and the empty

cars are returned to rails later. The empty cars are then repositioned or wait for the next

journey.

1.2 Rail Operating Plan

Rail freight transportation presents a complex system, and the performance and prof-

itability of a rail system depend for a large part on efficient and coordinated terminal and

long-haul transport operations.

In order to achieve the allocation of resources to activities that fulfills the economic

objective and customers’ service expedition, railroads must establish an operating (the

terms “load” and “transportation” are also used) plan. The operating plan consists of

two facets, exterior and interior. Exteriorly, rails propose to potential customers a ser-
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vice plan, which organizes a set of trains to be provided. A service represents a train

characterized by the origin, destination, train route, speed, capacity, as well as service

schedule either expressed in the form of frequency or timetable. Given the complex

car-to-block and block-to-train consolidation operations, rails also need to regulate the

interior operations. The interior operations support the service plan, and are invisible to

customers. The interior operating policies indicate the tactical decision-makings, and an-

swer the question such as, which blocks should be built, which cars are grouped to which

block, which train takes which blocks, where the empty cars would be sent, which crew

should be assigned to which train, etc. Apparently, the exterior service plan sets the

guideline for the interior policies, and the interior policies affect the performance of the

services in the service plan.

Rail operating plan concerns the main daily operations in the rail freight transporta-

tion industry. Generally, a rail operating plan consists of following policies.

Blocking Policy Blocking policy determines the block building decision, including the

car classification policies for each yard. The blocking policy is usually updated

with the demand pattern seasonally or with a major change of rail infrastructure.

Train Routing, Scheduling, and Make-up Train routing sets up the routing plan of

trains. Scheduling specifies timing information for each possible occurrence of

train during a given scheduling length. Scheduling may be indicative, e.g., the fre-

quency is only specified assuming a more or less uniform distribution of departures

over the time period. Alternatively, a timetable may be specified for each service

indicating arrival and departure times for each terminal on the service route. The

train make-up policy gives the assignment of blocks to trains.

Resource Allocation Resource allocation (or asset management) dispatches the neces-

sary resource to each train to support the appropriate service performance. Two

major resources, locomotives and crew are generally concerned. Locomotive as-

signment allocates to each train a fleet of engines to match the power requirement

of the train. The locomotives sent to a train may be heterogeneous, and must re-
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spect the connection regulations of different type. Crew scheduling dispatches for

each train a crew, according to the employee work hour and regulations.

Traffic Distribution Traffic distribution specifies for each particular demand the itinerary

used from its origin to its destination: the sequence of blocks and train services,

and the corresponding yard operations. As part of traffic routing, empty car repo-

sition indicates the routing of empty cars in order to answer the future demands.

We notice that all these issues are interrelated, and particular operating policies in rail

freight industry, especially blocking policy for the first consolidation process, and train

routing, scheduling, and make-up policy for the second, as well as their interactions

make the rail operation plan very complicated.

1.3 Research Problem

Tactical planning for freight rail carriers aims to select the train services to operate

over the contemplated schedule length (e.g., week) together with their frequencies or

schedules (timetables), the blocks that will make up each train, the blocks to be built in

each yard, the routing of the cars loaded with the customers’ freight using these services

and blocks, and empty car movements. It involves many selections (services, blocks,

schedules) and routing decision makings (loaded and empty cars), each with network-

wide impacts and all strongly and complexly linked in economic terms and in their time-

space dimension. Tactical operation planning is thus a complex problem in most cases.

Many researchers have dedicated to the railway field to develop optimization models

and methods to assist rails to operate under an effective, smooth, and cost-efficient way.

However, most of the previous efforts were focusing on a specific problem, or only a

small portion of the rail transportation, or make significant simplifying hypotheses, as

surveyed by [2, 31, 34, 92]. Generally speaking, the industry solution of rail operating

plan is obtained by solving the two consolidation process separately, and on top of that,

cars (both loaded and empty) are distributed and resources (e.g. crew and locomotives)

are assigned.



8

To detail the relationship among the tactical planning issues, one needs to address

this problem in a comprehensive way, and it requires an integrated model. However, no

model currently available in the literature addresses in an integrated formulation all the

tactical planning issues. Our goal is to answer this challenge and present an integrated

tactical planning tool for rail freight transportation.

In this research, we assume the rail network characteristics and information for the

facilities and infrastructure are available, and the transportation demand can be obtained

from demand forecasting. Most origin and destination stations are on secondary lines.

Even when this is not the case, and the station is located on a main trunk line, the move-

ment of loaded and empty cars between stations and their respective designated yards is

generally performed by feeder trains whose scheduling is usually not within the scope

of the tactical planning process designing the long-haul service network. We follow this

practice in this research and assume that all demands are specified at the appropriate

origin and destination yards. Furthermore, focusing our study on the analysis of two

consolidation process, we suppose the resource allocation policies are determined in a

later time. That is, for all the train services provided, there is enough crew and locomo-

tives to support the train movement.

By integrating the blocking policy, train routing, scheduling, and make-up policy and

traffic distribution, our objective is to minimize the total operating cost, while meeting

the transportation demands from various customers as well the empty demands from

rails. Other constraints should be considered come from the rail operations, including

the restrictions on number of trains running on each track, limitations on capacities on

trains and blocks provided, constraints on number of cars to be handled in each yard,

and number of blocks to be built in each yard, etc.

The tactical planning process producing a transportation plan is generally known as

the service network design problem [34]. The corresponding service network design

problem aims to making the most efficient use of the railroad’s assets to achieve its

economic and customer-service performance objectives. In this research, we integrate

the major tactical planning issues in rails, and analyze the trade-offs among them by

study a service network design model. The major difficulties we are facing to come
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from two aspects. First, how to describe the complex operations of rails. To address the

various operations on trains, blocks, and cars, as well as their time-related decisions, we

are obliged to develop a new network structure. Second, such service network design

problems usually lead to very complicated formulations, which present the complication

in both mathematical complexity and application scale.

To address the problem, we construct a special multi-layer time-space network struc-

ture. Analyzing both temporal and special aspects of operations, a time-space structure

can be a useful tool for scheduling the operations in a network. Furthermore, multi-layer

structure is incorporated to address the specific operations on trains, blocks, and cars

respectively.

To solve such a problem which is complex and large-scale, rather than the exact

algorithms which guarantee the optimal solution, we are particular interested in the

heuristic/meta-heuristic solutions to achieve a balance between the solution qualities

and computing efforts. In this research, several heuristics algorithms are elaborately

developed according to different versions of the model.

1.4 Thesis Outline

The rest of the thesis is organized as follows.

The general network design is introduced in Chapter 2, where we first discuss the

classification of network design problems, and present two traditional formulations. It

is followed by a review of solution methods, with both exact and approximation ap-

proaches. Chapter 3 presents a general introduction of tactical planning and service

network design in the freight transportation area. Some modeling methods applied in

the transportation network design are also presented, together with a selective literature

review. In Chapter 4, previous research in tactical planning of rail freight transportation

is reviewed.

Chapter 5 proposes a new integrated model for the service network design in rail

freight transportation. A complex 3-layer time-space structure is constructed in order to

describe the various operations in rails, as well as their temporal information.
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In Chapter 6, we study several heuristic algorithms. A tabu search solution, a slope

scaling based algorithm, and a hybrid heuristic are developed, according to the charac-

teristics of the simplified model (with only non-stop service), the complete model (with

both non-stop and multi-stop services), and very-large-scale complete model.

Chapter 7 presents the numerical experiments. The heuristic algorithms proposed are

compared with the state-of-the-art mathematical solver, and the computational results

demonstrate the robust performance of our algorithms.

In Chapter 8, we summarize the research results, and conclude by discussing several

interesting issues deserving further investigation and research.



CHAPTER 2

NETWORK DESIGN

Expressed in very general terms, the network design problem can be briefly stated as

follows. We have a set of nodes (or vertices) N which, according to the specific con-

text, may represent cities in a transportation network, switch centers in a computer or

telecommunication network, etc. These nodes communicate with one another, exchang-

ing, for instance, commodities of various types, telephone traffic, data traffic, electrical

power or whatsoever. To that aim, a network has to be designed (or improved) which

typically consists in building (or adding) links between some properly chosen pairs of

nodes. These links describe resources to carry communication. Depending on the con-

text of application, links could represent urban roads or highways in transportation net-

works, transmission facilities in telecommunication networks, electric lines in energy

systems, etc. The links between nodes may be arcs (in the directed case) or edges (in the

undirected case) of a graph. Various characteristics could be associated to the links in

the network, and in general we have capacity and cost. Capacity regulates the resources

on the link, and cost is the price one pays for installing or adding more resource on a

link, as well as the price for routing flows. We use (i, j) to denote an arc (an edge if no

orientation is addressed) connecting two nodes i and j. Let A be the set of all arcs (or

edges) in a graph, the associated graph is G = (N ,A).

Besides the structural representation provided by the graph, a network design prob-

lem is also provided with information for the level of communication to be established

between nodes. This information has long been identified as flow requirements or de-

mands.

With all these information, network design is the selection of arcs (edges) in the

graph to satisfy the flow requirements, under the constraints of the species and amount

of resources. Examples of such constraints are flow following prescribed traffic require-

ments, or achieving a desired level of security, or satisfying specific technical restric-

tions, e.g. compatibility of various types of equipments. The objective is generally to
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minimize the total cost, including both cost for routing flows and cost for installing re-

sources.

This chapter is organized as follows. Section 2.1 introduces the classifications of

network design problems. Section 2.2 presents two kinds of general formulations, with

flow variables basing on links and paths respectively. In Section 2.3, we review some

solution efforts, with both exact and approximate approaches.

2.1 Network Design Problems

Network design problems could be categorized by many criteria. In this section, we

introduce basic concepts and variants of classifications of network design problems.

2.1.1 Commodity and Demand

In general, a product or data to be moved in the network is described by a commodity

with a single origin and destination. A commodity therefore is associated with an origin-

destination (O-D) pair. In some applications of network design, a commodity may be

shipped from several origins to fulfill the demand of several destinations. For example,

the models where the supply is from several origins to satisfy a given demand are often

used in the study of the distribution of raw materials. It is worth to notice that one

may view the commodity of same type with different origins/destinations as different

commodities. For example, for the demand of shipping coals from several origins to one

destination, one could consider sending several commodities each from a different origin

to the destination. Therefore, demands in the network can always be treated as multiple

commodities each with an O-D pair.

Denote a commodity (or traffic) as p. Some previous researches are based on the flow

of one single demand with commodity type m(p) and amount (or volume) w(p), which

flows from its origin (source) o(p) ∈ N to its destination (target) d(p) ∈ N . However, in

numerous situations, the network is designed in order to allow communications between

many pairs of nodes concurrently. Thus, one has to consider a number of individual

(single-commodity) flows, collected in set P . In the case where |P| distinct commodities
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have to be simultaneously routed through the network so as to share the resource on

links, we have what is commonly referred a multicommodity problem.

2.1.2 Capacity

In most practical cases, we have parameters in the network specifying the amount of

resource (e.g. number of communication facilities) available (or to be installed) on links

or nodes in the network. We focus on the link resource as node resource can be translated

by disaggregating each node with two conceptual vertices, and considering the resource

on the artificial link connecting them.

The amount of resource existing on a link (i, j) in the network is characterized by

the capacity of the link, denoted by uij . Apparently, it is assumed that the capacities are

expressed in the same unit (or weight) as the flow requirements. One observes, some

problems impose capacities on many individual resources, which can be modeled by

multiple links between i and j with corresponding capacities u1
ij, u

2
ij, · · · , u

|R|
ij , each for

a type of resource r ∈ R. A capacitated network design model describes the resource

capacity on links, possibly including the constraint of resource on each link, or partial

capacity for some resources, or both constraints.

When we consider a network design problem in which uij is at least the largest

possible flow on link (i, j), that means the total flow on link (i, j) always respects its

capacity. This case corresponds to the uncapacitated network design.

2.1.3 Flow Cost and Design Cost

Costs may be associated to some or all links in the network, including flow cost and

design cost.

Flowing commodities on a link (i, j) generates a flow cost cp
ij which is in most cases

related to the type and volume of commodity p on the link. The flow cost is generally

linear with the flow on the link, however, nonlinear flow cost is sometimes used to model

flow congestion effects.

To depict the resource installation, the design cost, fij is normally associated to each
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link (i, j) to model the cost of constructing new facilities, or the cost of adding capacity

to existing facilities. The design cost is generally described by a piece-wise cost func-

tion, modeling the unit of resource to be installed on the link. An interesting variant

occurs when we restrict the design cost to a fixed cost (or fixed charge), where only one

unit of resource can be associated to each link. In that case, links are either open (with

one unit capacity) or close (with zero capacity) in the final design.

2.1.4 Static / Dynamic

The multicommodity problem introduced above can be viewed as a static case, and it

should be carefully distinguished from another situation where a set of single-commodity

demands present, but the network is designed to meet these requirements in different

time. With non-simultaneous flow, one needs to explicitly consider the additional tem-

poral factors and constraints, e.g., time delay cost in the objective, time-dependent re-

source availability on links. Such cases where commodities flow at different time, or

the network presents a different form during different time, are referred as dynamic (or

time-dependent) network design.

To model such non-simultaneous network flow, a time dimension is usually attached

to the physical network to shape a time-space network, in which every physical node is

duplicated at each time in the time horizon. Apparently, the time-space structure expends

the network dramatically and makes the problem much larger.

2.1.5 Mono-Layer / Multi-Layer Network

As dynamic network design usually expands the network “horizontally” with a time

dimension, one may further consider another expansion of the network by “vertically”

delaminating the network into layers.

Multi-layer network design usually derives from telecommunication, where data are

wrapped into packages and sent with different devices, e.g. optical fibers for bits and

routers for packets. A multi-layer network is constructed with several parallel layers,

and each layer carries the flow of commodities with a corresponding format. Demands
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are routed through layers until reaching the final destination. Focusing on one layer,

the demand of commodity (with appropriate commodity format) is determined if one

fixes the flows in other layers. In this case, each layer represents a general (mono-layer)

network design.

Relative capacities representing the devices for different formats of the commodity

are installed in each layer. To describe the resources serving different formats, design

costs are usually associated in each layer, and the problem turns into a multi-level net-

work design. Additional complexity is usually introduced with the interactions between

flow costs and design costs in multiple layers.

2.1.6 Deterministic / Stochastic

Most of the network design models are deterministic where parameters (demands,

capacities, costs, etc.) are either estimate-based, or from historical data, or from future

predictions.

To describe the uncertainties in realistic, sometimes stochastic is introduced to the

network design to address the probabilistic information, mainly on the undetermined

demand expectations, uncertain costs, possibility of delays, etc. Stochastic version of

the network design problem can be decomposed into several discrete stages, also called

scenarios, where different probabilities on parameters are associated. The probabilities

assigned to scenarios are deterministic and subjective to the application. They also are

called weights reflecting the relative importance in an uncertain environment. In general,

a stochastic solution is unnecessarily optimal for any individual scenario, but suitably

balanced against various scenarios.

2.2 Network Design Models

Beyond the apparent diversity of practical applications involved, most of network

design problems can be presented by a rather limited number of basic models.

Generally, a network design formulation has two types of variables, design variables

and flow variables.
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Design variables address the resource decision on links. Many models contribute to

the fixed-cost version where the design variables yij are restricted to {0, 1}. yij = 1 only

if link (i, j) is open, that is, link (i, j) is selected in the final network or for capacity

expansion; the link is closed when yij = 0. If we extend the design variable definition

to,

yij ≥ 0, integer, (i, j) ∈ A

meaning, for all the (i, j) ∈ A, yij represents the number of facilities or units of resource,

or the level of service offered. Nevertheless, as shown by [51], the variant with integer

variables can be reformulated with {0, 1} variables by variable disaggregation.

Other variables xp
ij are continuous flow variables indicating the amount of flow of

traffic p using link (i, j). Thus 0 ≤ xp
ij ≤ w(p). A variant is to use xp

ij to represent the

percentage of demand volume w(p) on link (i, j), 0 ≤ xp
ij ≤ 1. This variant is especially

suitable for uncapacitated network design where each demand can be intuitively normal-

ized to one unit. Some applications may require integer value for flow variables, for

example xp
ij ∈ {0, 1} to regulate the non-fractional flow of each demand. Most method-

ological developments, however, have been dedicated to network design formulations

with continuous flow variables.

It is also possible to define flow variables on each path instead of on each link. Let

Lp be the set of paths for commodity p, connecting o(p) to d(p). We define hp
l the flow

of traffic p on path l ∈ Lp. A parameter δlp
ij is associated, δlp

ij = 1 if link (i, j) belongs to

path l ∈ Lp, and δlp
ij = 0 otherwise. Thus we have,

xp
ij =

∑
l∈Lp

hp
l δ

lp
ij . (2.1)

Two mostly applied network design formulations are introduced as follows, which

differ from the type of flow variables employed. The general link-based formulation will

be discussed in detail to explain the different classes of network design problems, and

an equivalent path-based formulation is briefly introduced later.
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2.2.1 Link-based Formulation

The link-based Fixed-charge Multicommodity Capacitated Network Design (FM-

CND) formulation is most commonly found in the literatures. A case with continuous

flow variables on flow volume can be illustrated as follows.

min
∑

(i,j)∈A

fijyij +
∑

(i,j)∈A

∑
p∈P

cp
ijx

p
ij (2.2)

s.t.
∑
j∈N

xp
ij −

∑
j∈N

xp
ji = wp

i i ∈ N , p ∈ P ; (2.3)

∑
p∈P

xp
ij ≤ uijyij (i, j) ∈ A; (2.4)

(y, x) ∈ φ (i, j) ∈ A, p ∈ P ; (2.5)

yij ∈ {0, 1} (i, j) ∈ A; (2.6)

xp
ij ≥ 0 (i, j) ∈ A, p ∈ P . (2.7)

The objective function as shown in (2.2) measures the total cost in the network, which

includes the fixed costs for offering the resource (or opening the links), and flow costs

of moving commodities (transport products).

The flow conservation constraint (2.3) expresses the usual demand satisfaction re-

quirements imposed on each traffic p at each node i ∈ N . wp
i is the absolute demand for

traffic p at node i,

wp
i =


w(p) if node i is the origin of demand p, i = o(p);

−w(p) if node i is the destination of demand p, i = d(p);

0 otherwise.

Constraint (2.4), called linking (or forcing) constraint, states that the total flow on

link (i, j) cannot exceed its capacity uij if the link is chosen in the design of the network

(yij = 1) and must be 0 if link (i, j) is not part of the selected network (yij = 0). There

are some other forms of linking constraint. An example with multiple link capacities
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corresponding to each commodity is shown in (2.8).

xp
ij ≤ up

ijyij (i, j) ∈ A, p ∈ P (2.8)

where up
ij is the non-negative partial capacity restricting the amount of flow of p moving

through link (i, j). One observes, if it is assumed that up
ij ≥ min(uij, w(p)), (2.8)

becomes redundant for the network design formulation, in that case, the inequality is

denoted strong linking inequality. Formulation with additional (2.8) is also called strong

formulation, comparing with the version otherwise which is denoted weak formulation.

Another special form of linking constraints exists when we consider the network design

problem in an undirected graph. Note that even if the graph is undirected, flows are

directed, in which case, the edge capacity is shared between every commodity flowing

through the edge regardless of the direction. The linking constraint in an undirected

network is presented as,

∑
p∈P

(
xp

ij + xp
ji

)
≤ uijyij (i, j) ∈ A.

Additional constraints related to the design of the network or relationships among

variables are gathered up in (2.5). These constraints might model, for example, topo-

logical restrictions imposed upon the configuration of the network, or side constraints

restricting the resources shared by several links, etc. An important type of such con-

straints reflects the financial limitation which applies in many cases.

∑
(i,j)∈A

fijyij ≤ B.

The constraint states that the maximum expenditure for constructing the network is lim-

ited by a total budget B.
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2.2.2 Path-based Formulation

The Path-based Fixed-charge Multicommodity Capacitated Network Design (P-FMCND)

formulation is with flow variables basing on each path. The path-based formulation is

equivalent to the link-based model according to equation (2.1). An example of path-

based formulation is expressed below, where percentage flow variables are engaged.

min
∑

(i,j)∈A

fijyij +
∑
p∈P

∑
l∈Lp

kp
l h

p
l (2.9)

s.t.
∑
l∈Lp

hp
l = 1 p ∈ P ; (2.10)

∑
p∈P

∑
l∈Lp

hp
l δ

lp
ijw(p) ≤ uijyij (i, j) ∈ A; (2.11)

yij ∈ {0, 1}, (i, j) ∈ A; (2.12)

0 ≤ hp
l ≤ 1 l ∈ Lp, p ∈ P . (2.13)

In the objective, kp
l is the flow cost for moving w(p) unit of traffic p on path l,

kp
l =

∑
(i,j)∈A

cp
ijδ

lp
ijw(p).

Constraint (2.10) is the flow conservation constraint corresponding to (2.3), and the link-

ing constraint (2.11) is related to (2.4). Constraint (2.5) of FMCND does not exist in the

P-FMCND formulation. It is usually addressed during the path generation process.

Several important problem classes may be derived from the general network design

by the appropriate definition of the network G. When fixed costs are associated to nodes,

one obtains network location formulations. Traveling salesman problem which consists

of finding a minimum cost cycle that traverses through each node exactly once is formed

by proper setting of constraint (2.5). Different sets of constraints on the form of the

optimal network design yield the steiner and the spanning tree problems. And the vehicle

routing problem may be viewed as a special case of the spanning tree formulation. These

major extensions further remark the significance of network design.
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For more detail of the fixed-charge network design models, interested readers can

refer to Crainic [34].

2.3 Solution Methods

The network design problem has long been recognized as one of the most difficult

and challenging problems in combinatorial optimization. The generic fixed-charge net-

work design models introduced in Section 2.1 is with non-concave objective, and is

known as NP -hard [85]. The difficulties of solving this problem exist in the following

ways. First, the trade-offs between fixed design costs and flow costs conduct the link

selection in the network. Selecting more links gives opportunities for reducing the flow

costs at the expense of higher fixed costs. On the other hand, with fewer links in the

design, the fixed costs are lower but the routing costs increase. Second, in the capaci-

tated version commodities compete for the limited resource on links. Furthermore, the

problem size grows very quickly with the increase of the nodes, links, and commodi-

ties, especially when the time-space network or multi-layer network is concerned, which

leads the real-sized applications extremely large.

With the mixed integer programming (MIP) formulations, network design problem

may be approached by the methodologies available for this class of problems.

One intuitive method to solve network design problem is to restrict the convex hull

of the problem by adding so-called valid inequalities (or cuts). Valid inequalities are in

the form of linear constraint, which might be redundant for the network design formula-

tion but not for its linear programming (LP) relaxation. For example, the strong linking

inequality (2.8) presents a cut for the network design formulation. Apparently, if one

can construct the convex hull of the problem by these cuts, the original problem could be

solved by linear programming methods. Various cuts are implemented within the frame-

work of cutting plane method, in which, the formulation is tightened by a succession of

resolutions of the LP relaxation of the problem and cut generations.

Benders decomposition [56] is another approach used to solve the problem. The

structure of network design problem presents a natural decomposition scheme for the
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Benders approach. The fundamental idea behind this method is to decompose the for-

mulation into two simpler subproblems. The first subproblem, called master problem, is

generally associated with the design variables which present a tentative configuration of

the network. The second part, called auxiliary problem, obtains the values correspond-

ing to the multicommodity flow problem while keeping the design variables fixed, and

generates cuts for the master problem. Therefore, the master problem gives a network

pattern under which the auxiliary problem finds the optimal distribution of commodi-

ties. The master and auxiliary problems are solved iteratively, until no more cuts can be

generated.

Implicit enumeration scheme or branch-and-bound, are widely applied in solving

network design problems. Branch-and-bound extracts the network design problem within

a branch-and-bound tree and each tree node represents a subproblem where some vari-

ables are restricted. Relaxation approaches have been applied to obtain the lower bound

of the original problem. Lagrangian relaxations and LP relaxation are the two mostly

applied approaches. In the Lagrangian relaxation, multipliers are adjusted by non-

differentiable optimization techniques, for example, subgradient or bundle method. For

the LP relaxation, dual ascent is often used to improve the lower bound. Dual ascent

generates lower bounds by solving the LP dual problem approximately. Then the solu-

tion of the LP dual is strengthened by iteratively updating the dual variable in the dual

problem. Other methods are also imposed to improve the lower bound. Branch-and-cut

is a branch-and-bound algorithm in which cutting planes are generated throughout the

branch-and-bound tree. Rather than re-optimizing fast at each tree-node, the branch-

and-cut algorithm adds as much cuts as necessary to get a tight bound at each tree-node.

Given the NP -hard complexity of most network design problems, researchers have

often used approximate (heuristic, meta-heuristic) algorithms as alternative solution meth-

ods for solving large-scale network design applications, or to give upper bounds in the

branch-and-bound algorithm. Three commonly utilized heuristics are add, delete, and

interchange procedures. The add heuristic starts with some feasible design and add links,

one at a time, choosing at each step the link that gives the greatest decrease in cost. The

delete heuristic is similar, but starts with an initial design containing all candidate links,
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and removes links one at a time. Starting with some initial design, the interchange

heuristics add and/or delete a link at each step until no further improvement in cost is

possible.

In the following, we review and analyze various solutions applied to the network

design problem by the type of network design models.

2.3.1 Uncapacitated Network Design

The uncapacitated version of network design problem, with infinite capacity on links,

has been quite well studied in several research reports.

Magnanti and Wong [86] applied Benders decomposition for the fixed-charge un-

capacitated network design. A special progressing technique eliminating non-optimal

variables is combined with acceleration techniques. This implementation of Benders de-

composition has solved undirected network problems to optimality with up to 30 nodes

and 90 edges.

Balakrishnan et al. [13] proposed an efficient dual ascent method for fixed-charge

network design models with complete demand patterns. Initial from a feasible solution

generated by the dual ascent algorithm, the traditional add/delete heuristic is used for

further improvements. Computational results confirmed that on problem instances with

up to 45 nodes and 595 edges, the approach provides good lower bounds within 1% to

4% of optimality.

In Holmberg and Hellstrand [66], a Lagrangian heuristic within the branch-and-

bound scheme has been developed. The Lagrangian heuristic is based on the Lagrangian

relaxation of flow conservation constraints. The Lagrangian dual is solved by the sub-

gradient method from initial heuristic solutions. The performance of the approach de-

pends on the setting of many parameters, and modifications might be required to tune the

method according to a certain problem structure. However, on a given parameter setting,

a larger problem with 40 nodes, 1, 000 arcs, and 600 commodities has been solved to

optimality. With respect to problem size and solution time, this method outperforms the

state-of-the-art mathematical solver at the time.

Sun et al. [112] developed a tabu search heuristic with simplex-based local search.
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The procedure is guided by several searching memories, including immediate memory to

find the local approximated optima, short-term memory to intensify the optimal search,

and long-term memory to diversify the search among the least visited arcs. The algo-

rithm is tested on some dense instances with 50, 000 demands.

For the uncapacitated version, the efficient solution methods exist partially because

the good characteristic of the LP relaxation of the uncapacitated network design. As

shown by Hellstrand et al. [64], the polytope of the LP relaxation of uncapacitated net-

work design problem is quasi-integral. That is, any edge of the network design (integer)

polytope is an edge of the LP relaxation polytope. However, such property is unlikely to

hold for the capacitated problem.

2.3.2 Capacitated Network Design

While in some cases the network can be assumed to be uncapacitated, capacitated

models are more general and often much more suitable for real-life applications. How-

ever, the limited link capacities make the problem much more complex.

Valid inequalities are generated to tighten up the formulation of the problem for the

development of efficient solution methods. Other than the strong inequality (2.8), several

well-known cutset inequalities derive from particular structures of the network. These

inequalities are based on the idea that in any feasible network solution, the capacity of

the links of any partition (cutset) that cuts off some origins from their destinations must

be sufficient to carry the demands across the partition. Such inequalities include cover

cuts, minimum cardinality cuts, flow cover cuts, and flow pack cuts, which are explained

by [12, 20, 28, 111] in detail.

Stallaert [110] developed a cutting plane procedure for the fixed-charge capacitated

network design. Properties of the fractional extreme points of the LP relaxation are

used to construct a class of inequalities. Chouman et al. [29, 30] adapted to capac-

itated network design several important families of valid inequalities, and developed a

cutting-plane algorithm. Efficient separation heuristics and lifting procedures are used in

conjunction with the cut generation algorithm. These efforts improve the lower bounds

through the identification of new valid inequalities. However, solving the resulting LP re-
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laxation requires considerable computational efforts since the formulation is even larger

because of the importation of valid inequalities.

Benders decomposition methods, based on the idea of partition and constraint gener-

ation, have been successfully applied to uncapacitated network design problems. How-

ever, only a few efforts exist for the capacitated network design, and are for the specially

defined cases (as reviewed by [32]). Sridhar and Park [109] incorporated Benders cuts

with some cutset cuts, and indicated that Benders cuts are more effective for the prob-

lems with heavy traffic demands. Rei et al. [103] applied local branching cuts [48] to

accelerate the classical Benders decomposition algorithm. Costa et al. [33] analyzed

Benders cuts, cutset inequalities and metric cuts (a special case of Benders cut) for the

network design problem. The authors have shown that cutset inequalities are a subclass

of Benders inequalities, but are not necessarily metric inequalities. Benders decompo-

sition method is also applied by Fortz and Poss [50] to solve a 2-level network design

problem.

Branch-and-bound algorithms are the most common tools to solve capacitated net-

work design problems. An efficient branch-and-bound algorithm requires improving the

lower bounds provided by relaxations. Gendron and Crainic [52] compared several re-

laxations (LP relaxation, Lagrangian relaxation on linking constraints, Lagrangian relax-

ation on flow conservation constraints) on both weak and strong formulations. The au-

thors showed that both Lagrangian relaxations on the strong formulation yield the same

theoretical lower bound. The strong LP relaxation also generates the same bound be-

cause the subproblem has the integrality property. On the weak formulation, Lagrangian

relaxation on linking constraints outperforms LP relaxation and Lagrangian relaxation

on flow conservation constraints. Nevertheless, experiments concluded that the gaps

shown by the upper bounds provided by a resource-based decomposition are still large,

especially when with high fixed costs on links.

Linear programming relaxation, especially the weak relaxation, as shown by pre-

vious researchers, generally does not provide good approximations to the capacitated

network design problem. In order to obtain tight bounds, valid inequalities are usually

incorporated, and branch-and-cut algorithms are developed. For example, Günlük [62]
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presented a branch-and-cut method for the capacitated network design problem, where

not only valid inequalities but also branching strategies are studied. The proposed al-

gorithm shows a competitive performance on small instances, and beats the classical

branch-and-bound algorithm on larger ones.

Compared with the LP relaxation, Lagrangian relaxation approaches sound more

promising. However, the two Lagrangian-based relaxations have pros-and-cons respec-

tively. While relaxing the linking constraints, the subproblem can be decomposed into a

number of shortest path problems. When the flow conservation constraints are relaxed

with Lagrangian multipliers, it yields a series of very simple and separable knapsack

problems; however, the network structure is vanished.

Gendron and Crainic [54] proposed a bounding procedure based on the Lagrangian

relaxation on the linking constraints. The lower bound is derived by optimizing the

Lagrangian dual with the traditional subgradient method. The computational effort re-

quired by the procedures is significantly reduced by designing parallel implementations

that exploit a decomposition by commodity [53]. The authors also showed that the im-

plementation and calibration of Lagrangian-based methods have a significant impact on

the behavior and performance.

Holmberg and Yuan [67] proposed a Lagrangian approach by relaxing the flow con-

servation constraints, and solved the Lagrangian dual by the subgradient method. The

solution method also includes techniques for finding primal feasible solutions to serve

as the upper bound. The Lagrangian approach is then embedded into a branch-and-

bound scheme for further improvements. To speed up the branch-and-bound procedure,

a heuristic variable fixing method is used for choosing promising tree nodes, by the

information from the Lagrangian dual solution. While variable fixing is applied, the

method turns into a heuristic. Computational results showed that the method is efficient

in generating near-optimal solutions.

In the process of solving the Lagrangian dual problem, researchers noticed that the

traditional subgradient method performs unevenly, sometime shows a zigzag behavior or

even worse, and it may stop far from the optimal solution. Crainic et al. [43] calibrated

and compared bundle and subgradient methods applied to the optimization of Lagrangian
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duals arising from two Lagrangian relaxations (on linking constraints and flow conser-

vation constraints respectively) of the capacitated network design. The authors showed

the fact that the bundle method appears superior to subgradient approaches because they

converge faster and are more robust relative to different relaxations, problem character-

istics, and the selection of initial parameter values. The study also demonstrated that

good lower bounds may be computed efficiently for large-scale instances of the network

design problem.

Another way to improve the Lagrangian relaxation is to tighten the solution space

by adding valid inequalities. This is commonly realized by appending the dualized cuts

into the formulation to preserve the structure of Lagrangian subproblem. Sellmann et al.

[107] presented a branch-and-bound approach. The authors focused on local tighten-

ing strategies, such as variable fixing and local cuts which are only valid for the current

sub-tree in the branch-and-bound tree. Different variable fixing strategies are evaluated

solitarily and in combined versions. This approach seems promising, but the success ex-

ists in trading tighter solution space with more difficulties in solving the Lagrangian dual

problem because a large number of constraints are dualized. Kliewer and Timajev [80]

also integrated Lagrangian-based branch-and-bound with valid inequalities. Two types

of valid inequalities, the cover inequalities and local cuts, are carefully incorporated

into Lagrangian relaxation, maintaining the structure of the subproblems. Experiments

indicated that the incorporation of valid inequalities improves the overall performance

significantly, and the proposed relax-and-cut algorithm outperforms many other exact

and heuristic methods in terms of running time and solution quality.

Due to the extreme complexity of the capacitated network design problem, heuris-

tics and meta-heuristics have been applied to balance the quality of the final solution

generated and the computational effort required. Unlike the exact solutions which guar-

antee the ascertainment of the optimality, heuristic solutions aim at locating near-optimal

solutions in rather short solution time. The solution schemes such as Benders decompo-

sition, branch-and-bound introduced above can also be used as a heuristic, so long as the

process stops when the predefined gap between upper and lower bound is reached.

Kim and Pardalos [77] proposed a slope scaling approach for solving the capaci-
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tated network design problem by adapting an economic viewpoint to the fixed costs.

Slope scaling is an iterative scheme that consists in solving a linear approximation of

the original formulation at each iteration. The costs of each linear approximation are

adjusted in order to reflect the total cost incurred by the solution at the previous itera-

tion. The iterations proceed until two successive solutions are identical. Computational

results on a wide range of problems with more than 200 nodes and 10, 000 arcs are re-

ported. The results demonstrated that the proposed procedure generates solutions within

0.65% of optimality on the tested instances. Crainic et al. [44] improved the performance

of the slope scaling by importing two features: Lagrangian perturbation and long-term

memory perturbation. After the slope scaling process, the dual information from some

relaxation of the original problem is used to modify the approximation factors. An in-

tensification/diversification mechanism based on long-term memories is also adopted

to escape from local optimum. Computational experiments proved that the intensifica-

tion/diversification component of the algorithm is essential for the effectiveness, which

also demonstrate that the algorithm is competitive with the best known heuristics for the

problem, especially on the larger and more difficult instances. Kim et al. [79] also in-

corporated slope scaling with additional search memories, including short-term memory

for intensification and long-term memory for diversification. The searching memories

are integrated within a tabu search strategy. Similar with the slope scaling, a capacity

scaling idea has been proposed by Katayama et al. [73]. Instead of approximating the

fixed cost in each iteration, the authors adjusted the surrogate capacity on each link to

scale the contribution from the design cost components. A path-based formulation is

studied, and the column and raw generation integrated enables the method to address

large problems, however, only results on small instances are reported.

Crainic et al. [42] presented an efficient tabu search heuristic for large-sized network

design problems. The algorithm is based on the path-based formulation. Tabu search

moves are defined in two neighborhoods: Simplex pivot-type moves on a continuous

neighborhood for local search which is guided by column generation, and diversification

moves on a discrete neighborhood. The reported results show that the procedure is ro-

bust with respect to the parameter selected, and it finds good solutions on large instances
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which cannot be addressed by the mathematical solvers at the time. Zaleta and Socar-

rás [114] have later adopted the idea to the undirected version of the network design

problem.

Ghamlouche et al. [57] proposed a cycle-based neighborhood for meta-heuristics

aiming at the fixed-charge capacitated network design. The neighborhood defines moves

that may explicitly consider the impact on the total design cost of potential modifications

to the flow distribution of several commodities. The fundamental idea is to explore the

space of the design variables by rerouting flows around cycles. Thus, compared to link-

based neighborhoods, not only the move evaluations are more comprehensive given all

commodities on a cycle are explicitly considered, but also the range of cycle moves is

broader because flow deviations are no longer restricted to paths connecting origins and

destinations of commodities. A tabu search is developed to evaluate the quality of the

proposed neighborhood. Experiments on instances of various sizes (up to 700 arcs and

400 commodities) showed that the powerful performance of the cycle-based neighbor-

hood. The solution algorithm is later strengthened by the path relinking method [58]. In

the implementation, tabu search provides feasible solutions and contributes to a reference

solution set, path relinking then takes two reference solutions from the reference set, and

tries to find a “linking” to connect these two solutions in the cycle-based neighborhood.

Path relinking phase stops when the reference set has been exploited, then either stop-

ping criteria are verified or the procedure repeats to build a new reference set with tabu

search. Several strategies for building reference set and selection of reference solutions

are compared. Extensive experiments indicated that the path relinking procedure appears

more robust than tabu search in terms of both solution quality and computational effort.

Alvarez et al. [6] studied a capacitated network design problem on an undirected net-

work. Scatter search algorithms are developed and compared, and computational results

showed that the relative gap between the optimal solution and scatter search solution

in a range varying from 0.4% to 1% on instances with up to 60 edges. The algorithm

is strengthened by generating a population of solutions with greedy search heuristic as

starting points to the scatter search procedure [7].

Recently, some researchers tried to combine heuristic ideas with exact mathemati-
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cal solvers (or MIP solvers, usually provided by CPLEX), in order to take advantage

from both sides: the robustness of heuristic for finding promising solution domains, and

efficiency of MIP solvers for exploring the local domain. Lewis [83] implemented exper-

imental designs to reduce the solution space by identifying and setting critical variables

prior to running a MIP solver. The solution gives better results than the MIP solver

alone. Hewitt et al. [65] studied both link-based and path-based formulations, where

path-based formulation selects variables for the link-based formulation, and elite prob-

lems with elaborately selected variables are tackled by MIP solvers. Rodríguez-Martín

and Salazar-González [104] applied the local branching idea in order to partition the

solution space with local branching cuts, and used MIP solvers to explore each local do-

main. The same local branching idea has been applied by Fischetti et al. [49] to solve the

multi-level network design problem. These methods generally outperform the existing

meta-heuristics and produce high-quality solutions on most of the benchmark instances

with reasonable computational efforts.

Parallel computation may save the computational time for the realistically dimen-

sioned problem instances. To speed up computation, computational workload is divided

and dispatched to several processors. One example comes from Gendron and Crainic

[53] who applied parallel computation in the branch-and-bound tree to solve the re-

stricted problem at each node. In the case of heuristic, parallelism may also improve the

quality of the solution. Crainic and Gendreau [37] presented a cooperative parallel tabu

search method for the path-based formulation. Several communication strategies are an-

alyzed and compared. The experiments demonstrated that parallel implementations find

better solutions than sequential ones. Crainic et al. [45] described a first multi-level par-

allel search algorithm on the cycle-based tabu search for the capacitated network design

problem. The method appeared competitive, particularly on difficult problems where

a large number of commodities are considered. A general review and analysis of par-

allel heuristics can be found in Crainic and Toulouse [40], and see Crainic [35] for a

taxonomy of parallel approaches for tabu search.
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2.4 Summary

Network design is a central problem in combinatorial optimization. The general

formulations not only model a variety of network design issues, but also represent a

number of related network models. Two commonly applied formulations (with flow

variables basing on link and path respectively) are reviewed.

Although easy to describe, network design problems are very difficult to solve. His-

torically, uncapacitated network design models are well studied. However, for the ca-

pacitated version, exact and efficient solution methods generally do not exist, except for

special variants of the problem formulation. Branch-and-bound is the most common

way to solve this complicated problem. Upper bound presented by a feasible solution

is normally given by a heuristic. Relaxation methods, especially Lagrangian relaxations

are used to generate the lower bound of the original formulation, however, solving the

Lagrangian dual problems can be a hard work.

Because the problem is NP -hard, approximate algorithms are often preferred to ex-

act algorithms for solving large-size instances occurring in practice. Meta-heuristics re-

spectively based on the cycle-based and path-based neighborhoods have been presented,

and proved to be efficient for constructing good feasible solutions. Math-heuristics such

as slope scaling with guiding memories are also investigated. Parallel and distributed

computations offer another interesting perspective to overcome real-life dimension in-

stances within a reasonable solution time.

Recently, some efforts are contributed to the combination of valid inequalities with

Lagrangian relaxation, as well as MIP solvers with heuristic ideas to give better solu-

tions. While interesting results are reported, it is noted that successful solutions of this

difficult problem may exist in the integration of many different approaches developed in

history. Specifically, the sophisticated combination of valid inequalities, heuristics, and

MIP solvers implies a promising avenue.

More discussion of modeling and algorithmic issues of the network design problem

is surveyed by Gendron et al. [55], Balakrishnan et al. [14], and Minoux [88].



CHAPTER 3

SERVICE NETWORK DESIGN IN FREIGHT TRANSPORTATION

Distributing passengers and all kinds of goods and materials, transportation is essential

to the health of the economy. Transportation is implemented by carriers (e.g. airlines,

shipping lines, less-than truckload (LTL), railways) who operate planes, ships, trucks,

trains, or any combination of above methods, and provide transportation services. Some

services are dynamic determined (e.g. taxi), however, to serve the customers’ demands,

nowadays many carriers set up a service plan to regulate the services to be provided.

The application of network design can be found in many fields, and service network

design in transportation represents one of the major categories. Service network design

considered in this chapter derives from the freight transportation industry, and is par-

ticular relevant to the companies or organizations operating consolidation transportation

systems, in which case, services are shared by a broad number of customers.

In the rest of this chapter, we briefly introduce the general freight transportation sys-

tem and its hierarchical structure, and then address the service network design problem.

After that, some selective examples of service network design in transportation are re-

viewed to illustrate previous researches.

3.1 Freight Transportation System

Freight transportation undertakes the work of carrying commodities from their ori-

gins to their destinations in a transportation network. A transportation network consists

of all kinds of terminals (e.g. station, port) and physical links (e.g. road, rail tracks) or

conceptual links (e.g. air course, sea route).

Customers present transportation demands from their origin to the destination. These

demands are generally associated with an O-D pair, and characterized by the weight,

type, and dimensions (as in LTL) or unit of cargos (as containers in maritime shipping or

cars in railway). Accompany with the demands, customers usually propose requirements
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for the shipping time, either regarding to the maximal transportation time from the origin

or the due date at the destination.

Carriers provide services to answer the transportation demands. A service consists

of one or a covey of vehicles to carry the shipments from one terminal to another. For

example, air service with planes, express delivery service with trucks, and rail service

with trains. According to various criteria, we have different types of services.

Main-Line and Feeder Services Regarding to the service scope, we have main-line

services and feeder services. Main-line services represent long-haul (e.g. intercity

or interstate) transportation between major terminals, and feeder services provide

local (or urban) transportation between a major terminal and the secondary termi-

nals nearby, as well as between local secondary terminals. For example, when a

container is shipped from America to Europe with intermodal services, it is usually

picked up by a feeder service (by trucks or barges) to the nearby port, and shipped

by a big containership (main-line service) to cross the Atlantic. In some indus-

tries, e.g. airlines and railways, both main-line long-haul services and feeder local

services are provided, and hub-and-spoke distribution paradigms usually emerge

in such transportation networks.

Customized and Consolidation-based Services Freight services can be divided into

customized (or dedicated) services and consolidation-based services. For the cus-

tomized transportation, the full truck-load (FTL) door-to-door service offers a typ-

ical example, where each demand is carried by one or a fleet of vehicles which are

dedicated to this customer, that is, each service is tailored for a demand. Cus-

tomized services can be dynamic as dial-a-delivery (like dial-a-ride in passenger)

transportation, or prescheduled according to long-term contracts with VIP cus-

tomers who present significant amount of demands regularly. Instead of offering

exclusive service for each demand, many carriers (e.g. railway, airline) combine

the demands from different customers and move the freights with possibly differ-

ent origins and destinations by some common services. The progress that service

providers group commodities from customers is called consolidation. In order to
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consolidate shipments from different customers, different cargoes and vehicles are

grouped, or simply moved from one service to another at the consolidation termi-

nal (e.g. rail classification yard, LTL breakbulk) in the transportation network. On

the way of its journey, a shipment may pass one or several consolidation terminals

before reaching its destination.

Multi-Stop and Non-Stop Services During the journey of a service, there might be

some intermediate stops, where some cargos are loaded to or unloaded from the

service. Customized services for important customers are generally non-stop,

which is from the origin directly to the destination. On the contrary, consolidation-

based long-haul transportation presents multi-stop services in many cases, with

exceptional non-stop services given there is enough amount of demands between

two end-of-line terminals.

A transportation system (or transportation plan) regulates various services and op-

erations in the transportation process. The most important component of a transporta-

tion system is the service decision. In general, service decisions are determined in sev-

eral stages: customized services are usually more profitable and planned first, and the

consolidation-based services are studied on top of it. Nevertheless, the consolidation-

based transportation contributes to a considerable portion of the business for carriers

operating on a large transportation network, and the associated operations are more com-

plicated. In the following, we focus our interests on this case.

In the consolidation-based transportation, carriers must propose regular services,

which are generally specified by the origin, destination, intermediate stops, and service

route, in order to satisfy the customers’ demands. Before the departure of a service, there

is usually an assembly process where cargos are loaded, e.g. cars are joint to make up

trains, containers are loaded on ships. At the destination terminal, convoys are disman-

tled (or disassembled). Other characteristics are usually associated to a service, such as

speed or priority. Speed is generally related to the service schedule, which gives the ex-

act departure time at the origin, the arrival/departure time at the intermediary stops, and

the arrival time at the destination. Rather than schedule, sometimes frequency is used



34

to indicate the number of services provided in a certain planning horizon, and priority is

usually adopted to address the precedence of each service.

In order to ensure the proper performance of the proposed services, it’s necessary

for carriers to establish a series of working rules or policies. The consolidation policies

present the major decision-makings regarding the issues of which and how cargos are

attached to each service. For example, the blocking policy in rails and loading plan in

shipping lines. The consolidation policy regulates the traffic grouping operations for car-

riers, and may brings additional temporal restrictions to customers, such as cut-off time

(the latest moment shipments are given to the carrier in order to catch a service). Some

other components also appear in a freight transportation system, e.g. empty flow and

resource allocation. Due to the imbalance that exists in trade flows, empty cars, trucks,

and vehicles must be moved (repositioned) in order to respect the demand in the future.

It is worth to notice that even the flow in the network is equilibrated in the long run,

it is unnecessary to be balanced in a short term. The problem of how many and where

to send each kind of empties (empty cars, empty containers, etc) to be reused appears

in many industries (e.g. rail, LTL). Another notion often encountered in transportation

system has to do with asset allocation, e.g. how many consolidation equipments should

be assigned to each terminal in order to carry the consolidation workload, which power

unit and crew should be assigned to carry which service, etc.

Concerning various decisions restricted by a lot of human and material resources,

transportation systems are rather complex. See Crainic [36] for a more general presen-

tation of transportation systems.

3.2 Tactical Planning

According to the complex transportation system, transportation planning problems

emerges in different corners. Problems facing to transportation planners can be grouped

into several classes according to the facet of the organization concerned.

Strategic Level : Strategic decisions determine the general development policies and

broad operating strategies of the system, where one is mainly concerned with the
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construction of infrastructures and acquisition of durable devices that will remain

active over a long period of time. Examples of decisions at this planning level

are the design and evolution of the transportation network. Other than the firm

scale, strategic planning also takes place at the regional or national range, where

the transportation networks or services of several carriers are simultaneously con-

sidered.

Tactical Level : Tactical problems are related to medium and short term issues that gen-

erally involve the specifications of operating policies updated every few months.

In this level, decisions are sensitive only to significant variations in parameters.

For example, when the new terminals or routes are introduced to the transporta-

tion network, or demands change seasonally. Tactical decisions need to be made

mainly concerning the design of the service to be provided, general operating rules

for each terminal, as well as workload distribution among terminals. The general

guideline for empty reposition is also studied in this level.

Operational Level Operational level issues concern the delicate detail of the system.

Problems in this level are considered by local management (e.g. steering coordi-

nators or port dispatchers) in a dynamic environment. Yard cargo management,

maintenance activities, crews reposition form the main part of the problems in this

level.

This hierarchical structure presents how the information flows among the decision-

making levels. From the top strategic level to the bottom operational level, each level

sets the general policies and guideline for the decisions taken at the next level. On the

contrary, lower level decisions supply the essential information for the decision-making

process at the higher level. This popular classification is explained in greater detail by

Assad [11], who also gave examples of problems that belong to each category.

The tactical planning aims to determine, over a medium-term horizon, an efficient

allocation and utilization of resources to achieve the best possible performance of the

whole system. Tactical planning handles the major decision-makings for the general
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operations, and has a great impact to the working efficiency and profitability of trans-

portation service providers. According to Crainic and Laporte [38], the main decisions

made through the tactical planning should concern the following issues.

Service Selection Selection of the services to be offered, as well as determination of

the characteristics of each service, including the origin and destination terminal,

intermediate stops and physical route. Priority (with frequency) or speed (with

schedule) decisions are also indicated in this process.

Traffic Distribution For each commodity, the traffic distribution is the routing specifi-

cation for the shipments between each origin-destination pair, including the ser-

vices used, terminals passed through, and operations performed in terminals.

Terminal Policies Terminal policies concern the specification of the activities to be per-

formed in terminals. For example, in rail applications, they indicate how trains

entering each yard should be inspected and disassembled, and how cars should be

sorted and reassembled into blocks to form new outbound trains, etc.

Empty Balancing Empty balancing refers to the problem of repositioning empty vehi-

cles and other resources so that they can be re-used to satisfy the needs in the next

planning period.

The issues considered in the tactical planning are interrelated, and present complex

trade-offs. For example, traffic distribution must be honored by the service selection in

order to answer the transportation demands, however, the consolidation process which

prepares commodities is restricted by terminal equipments and working policies. Empty

balancing also contributes to the traffic flow, and should be considered together with the

terminal policies in order to avoid terminal congestions.

Some industrial solutions are obtained by solving these planning problems individu-

ally, and the final plan is the aggregation of the optimal solutions of each problem. Such

efforts include [61] for express shipping, [70] for intermodal transpiration, and [69] for

railways. This approach is unnecessarily optimal in a mathematical sense but it allows
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carriers/planners to easily address the above problems which are specific to the different

mode of transportation.

3.3 Service Network Design

Service network design models are typically developed to assist the tactical plan-

ning for the transportation industry. The idea is to maximize the profit by setting routes

and schedules/frequencies, with respect to various resource constraints. For example,

airline companies must determine the air service network and frequency of the flights

considering aircrafts/vehicles and crew availability. Similarly, express package deliv-

ery companies establish routes, assign aircraft to them and decide about the routing of

packages.

Service network design is vital to transportation providers. A proper service network

design can yield better service quality and cost reductions. The total amount of these

reductions is closely related to each specific problem, however, the economical impor-

tance of most of the transportation problems and the key role played by the network

design suggest that the savings can be significant. One good example is from Santa Fe

Railway, one of the largest railway companies in North America, who applied a whole

solution tool for service network design in 1998, and the results reveal a potential for 4%

cost savings over the current railroad operating plan, coupled with 6% reduction in late

service [59, 60].

Service network design specifies the services to be offered, to satisfy the transporta-

tion demands and ensures the profitability of the company. To maximize the profitability,

carriers would like to minimize the total operating/transportation cost, which in general

matches the customers’ interests. However, nowadays more and more customers require

not only low tariffs, but also high service quality which is normally expressed in terms

of service speed, reliability and flexibility. How to achieve the best trade-off between

operating cost and service performance is the main objective of service network design.

Therefore, the relation between one hand in service quality and the other hand in trans-

portation cost has to be shown in service network design models.
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To select the best solution for the carrier and customers, one has to simultaneously

consider the routing of all traffics, level of service on each route and service characteris-

tics, as well as operations in each terminal. That is, most of the issues in the tactical plan-

ning. Service network design thus describes a system-wide view of the transportation,

including the operations performed in different facilities and the resource requirements

which are usually conflicting.

Many efforts have been directed toward various aspects of the service network design

in freight transportation, and applications can be found in many contexts, for example,

in LTL [e.g. 27, 47, 97, 100, 105], express shipment [e.g. 10, 15, 18, 61, 78], rail [e.g.

17, 41, 72, 93], and multimodal transportation [e.g. 39, 94]. Most service network design

models yield multicommodity capacitated network design formulations. Base on the

fashion dealing with the temporal aspect, service network design can be categorized into

service network design with frequency and service network design with schedule, based

on the static and dynamic formulations respectively. The two variants are illustrated

below, together with some examples in the literatures.

3.3.1 Service Network Design with Frequency

Frequency service network design concerns the tactical issues such as: what type of

service to offer, how often over the planning horizon to offer it, which traffic itineraries/routes

to operate, what are the appropriate terminal workloads and policies, etc. A possible re-

sult from such frequency service network design models should like: “Carrier provides

4 services from terminal Montreal to terminal Toronto in 2 days (planning horizon), two

of them are express services, and the other two are regular services with an intermediary

stop at terminal Kingston”.

The frequency service network design model is suitable for situations where demands

vary considerably, and/or the actual timing of the demand is unknown. Frequency ser-

vice network design model may be further classified into decision and output according

to how the formulation generates the frequency for each service. In the first case, ser-

vice frequencies are explicit integer decision variables, and in the second case, service

decision variables are binary, and frequencies are derived from traffic flow.
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A good example of service network design with frequency decisions comes from

Crainic and Rousseau [39]. The authors presented a general modeling and algorith-

mic framework for the tactical planning of freight transportation with explicit frequency

variable on each possible service route. The model has a nonlinear multicommodity

multimodal network design formulation, which considers the cost for providing service,

cost of distributing freight, and cost of delay. The solution method of the general model

combines a heuristic and decomposition scheme which works alternately on the service

level and traffic distribution subproblem. Special applications of the above framework

in rail and LTL are developed respectively by [41, 105, 106]. Crainic et al. [41] studied

the classification/blocking operations in rails. Experiments of rail applications are from

Canadian National Railway, one of the largest transportation corporations in Canada,

and the results on historical data suggest a saving of 3% to 4% in total operating cost.

Roy and Delorme [106] described a structure of the LTL model. The applications of this

tactical planning model on several trucking companies are reported by Roy and Crainic

[105].

For the output frequency service network design, a fixed-charge network design for-

mulation is used to address the decision of providing services on the designated route

or not. Then the frequency of the service is obtained as the output of the traffic flow

variable subject to the restrictions on service level.

Powell and Sheffi [101] proposed a network optimization model to solve the load

plan problem for motor carriers. The design problem is formulated as a large-scale

mixed-integer model, and some heuristics are developed to determine how to consoli-

date flows of shipments over the network. Powell [97] later extended the model, and

improved the solution method. In the new model, the frequency is derived from the

service level constraint, which is represented heuristically through a set of minimum fre-

quencies on links. The method decomposes the problem into one master problem and

several subproblems by the hierarchical structure of the system, with an add/delete local

improvement heuristic to solve the master problem. The presented algorithm is tested

on the data from a large motor carrier with over 300 terminals. Powell and Sheffi [102]

further improved the previous work by developing an interactive optimization system
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that allows users to deal with hard-to-quantify constraints.

Another service network design application exists in express shipment delivery trans-

portation, where shipments are transported from origins to destinations on daily basis,

and timing constraints are stringent. Kuby and Gray [81] examined the effectiveness of

hub-and-spoke networks with stopovers and feeders, and compared their performance to

direct flights into a hub. Two kinds of variables: package flow decision variables and

aircraft routing decision variables are used. However, the authors assumed that only one

sorting hub exists and the network is small. Kim et al. [78] focused on a multi-hub ex-

press shipment problem. A mixed-integer formulation is presented, with the objective

function minimizing the costs of deploying transportation assets to form the service net-

work, and costs of transportation in order to respect the demands. A heuristic approach

is employed, in which routes are generated first, and then shipment movements are com-

puted. Barnhart et al. [18] extended the work from [78], and the solution is improved

by iterating between selecting routes and moving shipments. Armacost et al. [10] trans-

formed the formulation of [78] to a new composite variable formulation for the service

network design problem. The authors showed that the LP relaxation of the new formu-

lation gives a better lower bound than conventional approaches. Barnhart and Shen [15]

extended the previous work to integrate the service network design for premium and de-

ferred express shipment delivery. New solution approaches based on column generation

are developed.

3.3.2 Service Network Design with Schedule

The service network design with schedule, also called dynamic service network de-

sign, targets at the planning of schedules and support decisions related to issues such as

if we offer the service or not and when services depart. A corresponding solution might

look like this: “ One service is provided from terminal Montreal to terminal Toronto

every day, the service departs from Montreal at 10am, and arrives at the intermediary

terminal Kingston at 1pm. Loading/uploading process takes 2 hours at Kingston, and

service continues from Kingston and arrives at Toronto at 6pm”.

To address the schedule of the services, a time dimension is generally introduced to
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the network structure to construct a time-space network. This is usually achieved by

representing the operations in the system over a certain number of time periods.

D

s
1

s
2

s
3

A

B

C

Figure 3.1: Illustration of Physical Network

A typical time-space network structure has been presented by Farvolden and Powell

[47]. On the physical network (shown in Figure 3.1), three services are designed, where

s1, s3 are by the way of (A → B → C → D), and s2 is via (A → C → D). The

time-space network corresponding to this physical network is illustrated in Figure 3.2.
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Figure 3.2: Illustration of Time-Space Network

Two sets of nodes and three sets of links are defined in the time-space network. The

first set of nodes is terminal node, created by replicating each terminal in the physical

network at each time in the time horizon. The second set of nodes called super node,

each corresponds to a terminal in the physical network, serves as the ultimate destination



42

of all flows which end at the terminal (only supper node Ds is shown in Figure 3.2). Each

terminal node is connected to the terminal node in the next time of the same terminal by

an inventory link. Flows on these links represent the waiting process in terminals. Service

links, connecting two terminal nodes of different terminals, represent shipments being

transported between terminals. Finally, the super links which connect the one terminal

node to the associated super node represent the shipment-specific penalty which depends

on the arrival time of each shipment.

Comparing these two figures, one notices that the routes corresponding to the three

services in the time-space network not only characterize the routine of the services, but

also address the schedule of the services. However, the time-space network has a so

much larger and more complicated structure than the physical network.

On the time-space network, Farvolden and Powell [47] described a scheduled service

network design problem for LTL transportation. The objective, which is to minimize

the total shipment routing and travel costs of tractors over the time-space network, is

addressed with two sets of decision variables, the shipment routing decisions and the

vehicle dispatching decisions. Penalty cost is applied to penalize deliveries before/after

specified due dates. However, the empty balancing and consolidation operations were

not described in the model. An efficient primal-partitioning algorithm is proposed, where

column generation algorithm is used to solve the freight routing problem, and service

configuration is explored by the add/delete heuristic.

Haghani [63] constructed a special time-space network to describe the railway oper-

ations. Each terminal is represented by two vertices at each time point, and the termi-

nal operations are explicitly addressed by the links connecting the vertices. The inter-

terminal links thus show traffic movements of both loaded and empty cars, and intra-

terminal links represent consolidation, connection, and delays for consolidation. A large

scale nonlinear mixed-integer formulation is proposed based on the network structure

and the model is solved by a heuristic with decomposition technique.
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3.4 Summary

Tactical planning arises from airlines, truck companies, railroads, etc., wherever

there is a need to determine minimum cost services and operations, given constraints

on resource availability and level of services.

Service network design concerns most of the tactical planning issues in the trans-

portation system, and can be a very useful tool to aid the decision-making process for

planning operations and services. Most service network design models yield a mul-

ticommodity capacitated network design formulation, which currently has no efficient

solution. Moreover, when applied into each application field, researchers are facing to

additional complexity introduced to account for the particularities of the application,

which usually makes the problem even harder.

Crainic and Laporte [38] and Crainic [34] presented recent reviews on service net-

work design in transportation.



CHAPTER 4

RAIL FREIGHT OPERATION PLANNING

Aiming at establishing a plan of operations to achieve the goals of profitability and qual-

ity of services, rail operation planning is vital to rail carriers. On one hand, a good

operating plan improves the working efficiency and decreases the operating costs; on

the other hand, the rigorous competitions between rail companies as well as the pres-

sure arising from other transportation industry (e.g. truck) urge the good application of

operating plan for providing reliable and flexible services.

An intuitive way to construct a rail operating plan is to decompose the operating

plan according to the working procedure. A blocking model is first made to indicate

the routing of freight and the distribution of classification work among the yards in the

network, and then train routing and make-up models are studied to determine the routing

and frequency of trains and the assignment of blocks to trains. The scheduling model

performs on the result of the routing and make-up model to specify the timetable of ser-

vices. After, the resource allocation model assigns enough locomotive power and crew

to support the train movement. Empty balancing model concerning about the reposition

of empty cars then enforces the performance of the railroads. This procedure is applied

by Ireland et al. [69], who presented a whole solution tool for Canadian Pacific Railway.

These tools use operations research approaches, such as an optimal block sequencing

algorithm, a heuristic algorithm for block design, simulation, and time-space network

algorithms for planning locomotive usage and distributing empty cars.

There are many models exist for rail freight transportation, either addressing an indi-

vidual issues, or several issues in a combination. We present in this chapter an analysis

of major publications on rail tactical planning issues, to understand the state of recent

research. However, resource management is only briefly introduced since they are not

concerned in the following research.
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4.1 Blocking Policy

Blocking policy is developed for a medium-term (tactical) planning horizon, and is

updated as traffic conditions and customer needs change significantly. In general, the

blocking policy is generated by solving a blocking problem, in order to choose which

blocks to build at each yard and to assign sequences of blocks to deliver each shipment,

with an objective of minimizing the operating cost which may include total transporta-

tion, handling, and delay cost, etc.

Bodin et al. [22] developed a nonlinear mixed-integer programming model for the

railroad blocking problem. The model is based on a blocking network, which is a net-

work on the same node set of terminals but with arcs representing potential blocks rather

than physical tracks. The authors used a piece-wise objective to model the shipping,

handling, and delay cost. They also included constraints on the minimum and maximum

block load, maximum number of blocks, and so called pure strategy constraints, which

assume that all commodities traveling between two terminals should follow the same

blocking path. Because the resulting model is too large to be handled by the computa-

tional tools available at the time, the authors manually fixed some integer variables, and

the best solution found was within 3% of tight lower bound.

Newton et al. [93] extended the aforementioned blocking model, and considered the

different priority classes of traffic. A network formulation is proposed on the blocking

network. No fixed costs were associated to blocks, but several capacity restrictions were

considered to limit the number of blocks and the total volume of freight processed at each

yard. A solution approach [16] is developed to find good solutions for the link-based

multicommodity network flow model. In this so called branch-and-price algorithm, a

column generation algorithm is used to solve the LP relaxation throughout the branch-

and-bound tree. Numerical experiments indicated that the proposed method is efficient,

and for the instance with 150 nodes, 6, 800 possible blocks, and 1, 300 commodities, the

algorithm found feasible solution within 0.4% optimal in a couple of hours.

Barnhart et al. [17] used the same formulation as [93], and applied a dual-based

Lagrangian relaxation approach to solve the problem. Unlike the previous branch-and-
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price approach, the linking constraints are relaxed in a Lagrangian fashion, and then the

Lagrangian relaxation is decomposed into two disjoint subproblems: a traffic flow sub-

problem and a block building subproblem. In this manner, the approach greatly reduces

the memory requirement and computational effort for large-scale problems. To speed up

the convergence of the subgradient optimization, a dual ascent approach is developed to

give the initial setting of Lagrangian multipliers. The model is tested on the blocking

problem from a major railroad in the United States, and the result showed the blocking

plan generated can significantly reduce the current rail operating cost.

Another extension of the above blocking model is studied by Ahuja et al. [4]. A

special neighborhood search algorithm is developed to heuristically improve the current

blocking policy. The algorithm is tested on the data provided by three major railroads in

North America, and the computational results confirmed the efficiency and its potential-

ity to be applied to rails.

4.2 Train Routing, Scheduling, and Make-up

Given the blocking policy which indicates the distribution of blocks, the train routing

problem determines the routing and frequency of trains. Some train routing models are

based on the existing blocking policy, and the make-up policy, which indicates the allo-

cation of blocks to trains, usually be combined in the routing model. However, there are

some routing models that work with the car flow directly, and either ignore the block-

ing policy in the system or consider the blocking policy implicitly, in which cases, an

explicit train make-up model is necessary to distribute blocks on trains.

Assad [11] provided one of the earliest contributions to the train routing and make-

up problem, and a multicommdoity network flow formulation is adopted. Marín and

Salmerón [87] studied the train routing problem, and a service network design model

is developed in which a train service is defined by its origin, destination, a set of stops,

speed, and capacity in terms of cars. Considering the constraints on the number of cars

transported on each track segment, number of cars processed at each yard, and train

numbers, the model aims to minimize the sum of fixed cost for each train, handling and
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delay cost of cars, and installation cost for additional trains. To solve this problem, the

authors first decomposed the model into two subproblems: the routing for freight cars

and the grouping of cars to trains. Three heuristic methods (descent method, simulated

annealing, tabu search) are proposed, and a branch-and-bound algorithm is presented for

a modified linear formulation.

With the efficient routing of trains and freight produced by routing models, it is nec-

essary to synchronize the use of the available tracks/yards since they are shared by many

trains on the physical network. The timetable of trains is addressed by scheduling mod-

els based on the train routing model in which the temporal information is usually roughly

described by the queuing method. To attach the temporal dimension to a given routing

plan, a large number of scheduling models [e.g. 3, 24–26, 113] has been developed to

coordinate the moving of train and other corresponding resources (e.g. locomotives). In

many cases, the given routing plan provides a good base for the train scheduling; how-

ever, sometimes the congestion in the train schedule may suggest a major modification

of the routing plan. Some compound models attempting to integrate train routing and

scheduling these two intertwined problems have been presented.

Morlok and Peterson [89] are probably the first to integrate train routing and schedul-

ing in a single optimization model. Considering the questions of the route and interme-

diate stops of the train, departure time of the train, cars per train and speed of the train, a

very large mixed-integer formulation has been developed. The objective of this model is

to minimize the total cost, including engine and crew cost, intermediate yard cost, car-

time cost and cost of additional horsepower per car. Four groups of variables are used

in the model. The first group is the binary decision variable for train services, which is

defined by a route in the network, a set of stops, a departure time at the initial yard, speed

and capacity. The second type represents the cars per train, and another two groups de-

termine the total car time used by the various train scheduling procedures. Instances

in somewhat small rails are solved with a branch-and-bound procedure. However, this

model did not analyze the yard operations, neither break down freight cars by types.

Huntley et al. [68] developed a computerized routing and scheduling system to help

planners at CSX Transportation account for the effects of train decisions. In this model,
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demands are represented as origin-destination batches. When constructing a plan from

a set of batches, the objective is to minimize the operating cost without any car miss-

ing connections with trains. In this model, each terminal-to-terminal link in the routes

is assumed to follow a preset path. Considering the routing and scheduling function

simultaneously, a demand-driven approach is developed.

Newman and Yano [91] proposed a model within the context of scheduling direct and

multi-stop trains, and assigning containers for each train for the rail portion of the inter-

modal transportation. The objective is to achieve on-time delivery with minimum cost,

including a fixed charge for each train, variable transportation and handling cost for each

container, and yard storage cost. Three kinds of integer variables indicating the number

of containers held in inventory, number of containers shipped on tracks, and number of

trains are used. The problem is modeled as a piecewise-concave-cost multicommodity

network flow problem, and both centralized and decentralized approaches are presented

to construct feasible solutions.

With the established blocking policy and service plan, some researchers isolated the

train make-up problem, and considered the block-to-train assignment. Nozick and Mor-

lok [94] addressed the rail movement of freight within the context of rail-truck inter-

modal transportation given a fixed train schedule over a medium-term horizon. The

model focused on the operations that are usually within the control of railroads, includ-

ing the line-haul and yard operations. Taking equipment and locomotive repositioning

into account, the objective is to minimize the cost of transportation such that traffic

movements are feasible with respect to equipment availability, and on-time delivery of

shipments. A heuristic is developed for solving this model. Kwon et al. [82] formulated

a multicommodity flow problem to determine the traffic routing, and to improve a given

blocking plan and block-to-train assignment. The model is represented on a time-space

network structure, and the formulation takes into account the train capacity restrictions,

with the objective to find an assignment to minimize the late delivery penalties. Column

generation is applied to solve the linear model, and the model is tested on a hypothetical

rail network. Jha et al. [71] also looked into the block-to-train assignment problem. The

problem is modeled on a time-space network as well with a multicommodity network
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flow formulation. Both Lagrangian heuristic algorithm and greedy construction heuristic

are developed to obtain feasible solutions within a short computing time.

4.3 Empty Car Reposition

The empty car management problem consists of distributing empty cars in the rail

network to improve the railroad’s ability to promptly answer requests for empty cars

while minimizing the costs associated with their movement. The empty car reposition

problem is either studied in the operational level or with the service planning in the

tactical level. The first approach is to plan the empty flows on top of a given service plan,

and dynamically distribute empty cars with the residual capacity on trains. The second

way of considering this problem is to predict the demand and supply of empty cars, and

then view the empties as commodities in the tactical planning. In this sense, empty flow

is treated as a part of demand flow, and empty equipment balancing is incorporated into

the traffic routing problem.

As reviewed by Dejax and Crainic [46], some early formulations are to minimize the

total empty car-time cost over a certain periods, subject to the given imbalance of cars

of a homogeneous fleet. Such efforts include Powell and Carvalho [98, 99], who de-

termined the number of flat cars to be sent from one terminal to another by formulating

a logistics queuing network. Recent research extends the area to dynamic, stochastic

and with heterogeneous fleet. Sherali and Suharko [108] developed a tactical decision-

making system with two empty car repositioning formulations. The first formulation

considered uncertainties in transit times, priorities with respect to time and demand lo-

cations, and multiple objectives related to minimizing different degrees of lateness in

delivery. The second model further integrated the consideration of blocking policy.

Heuristics are used to solve the models. Bojović [23] tried to balance the cost of un-

met demands and the sum of car ownership and utilization costs, and a model basing on

optimal control theory is developed.

Joborn et al. [72] presented an optimization model for empty car distribution in a

scheduled railway system. The authors first defined kernel paths, representing move-
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ments of cars with identical origin and destination. The empty distribution network thus

can be transformed into a time-space network with fixed cost on kernel paths. A tabu

search heuristic is developed to solve the model. The solutions obtained from the model

display the economy-of-scale effect, in the sense that the empty car movements in the

solution are coordinated to reduce the number of car clusters which is a group of cars

transported together on the network.

Another optimization model for empty car management was applied by Narisetty

et al. [90] in Union Pacific Railroad. The problem formulation targets at finding the

best possible matches between available empty cars and customer demands, and also

compatible with the current operating plan, namely the residual capacity of the scheduled

service plan. The desirable match is evaluated by transportation costs, car-substitution

costs, early/late delivery penalties, customer priority, and service efficiency. Around

10% improvement is reported in their final results.

Bektas et al. [19] studied the problem of dynamic reassignments of empty cars to

outbound trains at a given yard, in order to minimize the total dwell time of the cars

processed at the yard. During the reassignment process, both blocking policy and train

schedule must be respected. The approach is tested on data from Canadian National

Railway, and the experiments showed an around 5% time saving with the proposed pro-

cedure.

4.4 Resource Allocation

The term resource (or asset) in this section is specially donated to the horsepower

and manpower that required for providing train services. Most of the previous researches

were focusing on two major resources, locomotives and crew. Despite the proper assign-

ment, an asset may be repositioned between terminals if it ends a train in one location

and is operating its next train from a different location.

Traditionally, in many instances, asset management issues were not directly included

into tactical planning process. It is generally implicitly assumed, however, that assets are

available when needed, and consequently, their management, assignment, and reposi-
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tioning is left to be dealt with at the operational level of planning on an already-decided

service network [e.g. 3, 5].

Recently, some efforts have been made to combine the asset management to the

service network design. Pedersen and Crainic [95] imported vehicle management to

intermodal transportation with train canals. Pedersen et al. [96] generalized the model

with asset positioning and utilization by addressing constraints on asset availability at

terminals, which are denoted as design-balanced constraints. However, only one single

type and unit of asset (i.e. engine) is required to perform a service. Several formulations

are compared and a tabu search heuristic is proposed to solve the model. Andersen et al.

[8, 9] extended the model from [96] to describe multi-asset management and coordina-

tion considerations, as well as the interactions between rail services being designed and

services in collaborating transportation systems.

4.5 Integrated Models

Apparently, the sequential solution of planning issues obtained through the previous

aggregation method might not be necessarily optimal, due to the lack of the consideration

of trade-offs among service decisions and block decisions, as well as their schedule.

Some researchers therefore focus on the study of developing approaches of integrating

several aspects of rail operations and analysis of a number of activities simultaneously.

In the work of Crainic et al. [41], traffic class is first defined as an O-D pair, together

with a commodity type. A set of itineraries for each traffic class is also defined, each to

specify a feasible journey of this traffic class. Itinerary includes the train service path fol-

lowed and the operations (classification or transfer) performed at intermediate stops. By

selecting the best traffic distribution for each traffic class, one not only solves the traffic

routing problem but also determines the blocking and train make-up strategies as well as

the distribution of classification work between yards. Two decision variables are used,

which are continuous volume variable of each traffic class traveling on its itineraries,

and integer frequency variable associated with possible train services. The objective

function is the sum of operation and delay cost of itineraries and train services. The
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model presents a nonlinear mixed-integer multicommodity formulation. By introducing

the train capacity constraints into the objective function, the authors solved the problem

by decomposing the problem into a master problem and subproblems one for each traffic

class. The master problem modifies the service level based on the given traffic distribu-

tion. For each subproblem, column generation is applied to determine the best traffic

distribution for each traffic class. The model is solved by placing high frequencies for

all services at the beginning, then iterates between the master problem and subproblems

until the improvement in the objective function is less than a predefined value. Crainic

and Rousseau [39] further presented a general model for multicommodity multimode

freight transportation and explained the solution methodology in greater detail.

Haghani [63] attempted to combine train routing, scheduling, make-up and empty

car distribution problems. Based on a given physical network, a time-space network is

constructed with fixed operating times. In the time horizon considered, links are built

representing normal routing, express routing, classification, delays and deliveries. With

the decision variables concerning the flow of loaded cars, flow of empty cars, and num-

ber of engines provided on links, the model chases the objective to minimize the total

cost defined by routing cost, classification cost, delay cost for classification and con-

nection, and penalty cost for late delivery. The model has not only flow conservation

constraints on the loaded cars, empty cars and engines, also restrictions for the linkage

between loaded and empty cars. The formulation is a large-scale mathematical program

with a nonlinear objective function and linear constraints. A heuristic decomposition

approach is proposed to solve somewhat simple problems and appears efficient for small

rail systems.

Keaton [74] presented a model examining the problem of simultaneously deciding

which pairs of terminals are provided with direct train service, and whether to offer

more than one train per day, as well as the routing of freight and the blocking of rail

cars. The service network was made up of one network for each pair of yards in the sys-

tem with positive demand. Links represented trains and connections in yards, as well as

a priori determined blocking alternatives. Two kinds of variables are used in the model,

integer variables for train connections and continuous variables for the distribution of
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traffic. However, blocking was not an explicit decision. The objective is to minimize

the total cost which includes train cost, car time costs, and classification costs in yards.

The constraints considered in the model include the classification capacity in terms of

blocks, train load capacity in terms of cars, as well as the flow conservation constraints.

A heuristic method based on Lagrangian relaxation is developed for the model, but it

is unable to give good lower bound with the train load limits. When ignoring the train

load constraints, the proposed algorithm has been proved to be efficient. If the resulting

solution contains some overloaded trains, heuristic adjustments are necessary to restore

the feasible operating plan. Keaton [75] worked on the same problem, and more con-

straints are considered, such as the maximum transit time constraint for each O-D pair.

With the assumption that all cars between each O-D pair must follow the same routine

(pure strategy), the problem is modeled with two kinds of integer variables. Lagrangian

relaxation technique is used to solve the problem. However, it is difficult to evaluate the

feasible operating plan produced by the model since no tight lower bound is reported.

Gorman [59] proposed a model aiming at the design of a scheduled operating plan

that follows the particular operation rules of a given railroad. Model simplifications have

been introduced to achieve a comprehensive mathematical network design formulation,

and costs considered are the fixed crew costs of train, marginal cost per unit on a train

including fuel and locomotive cost per unit, equipment and locomotive time costs while

a train is in transit, and classification cost for each unique demand on a train. However,

the delay cost for freight in terminals is not addressed. A hybrid meta-heuristic (tabu-

enhanced genetic search) was developed to generate candidate train schedules, which

were evaluated on their economic, service, and operational performances. On relatively

small but realistic instances, the meta-heuristic performed well and was used for strategic

scenario analysis for a major railroad in North American [60].

4.6 Summary

Tactical planning for rail freight transportation is an important and complicated field.

One source of complication in rail freight transportation is the complex double consol-
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idation organization, car-to-block and block-to-train grouping procedure. The relations

between consolidation processes and their interactions with the rest of the system are the

most critical trade-offs in rail freight transportation.

Various models focusing on each part of the rail system have been reviewed. Due

to the intuitive transportation network topology, service network design has been widely

applied in rail tactical planning. However, most of the previous models focus on one

level consolidation, and either basing on the result from, or simply ignoring, or implicitly

considering the other consolidation level.

Our review of many previous researches reveals areas where opportunities exist for

new optimization development. A good opportunity lies in the improvement of formal

methods for linking decisions from different consolidation levels. Another opportunity

exists in the combination of operating policies with schedule. Since the traditional ap-

proach does not take the scheduling into consideration when making the train routing

plan and blocking policy, considerable savings might be generated if we plan and at the

same time synchronize the trains services and yard operations.

Integrating blocking policy, train routing, scheduling, and make-up policy and traffic

distribution (loaded and empty) into one model may be a promising direction, but also

a challenging avenue. Compound models lead to difficulties in both modeling approach

and solution method. A more complicated network structure is necessary to fully de-

scribe the trade-offs among planning issues. The targeting model always results in a

complex mathematical formulation in the form of multicommodity capacitated network

design, and needs the development of special tailored solution algorithms.



CHAPTER 5

3-LAYER TIME-SPACE NETWORK STRUCTURE AND MODELS

Rail freight transportation is based on a rail network (or physical network). A physical

network can be denoted by G = (V , E), where each vertex v ∈ V represents a terminal

and each link e ∈ E stands for a rail track segment. Planning at the tactical level, sec-

ondary stations are aggregated and only major yards handling a large number of traffic,

and main-line tracks connecting yards are considered. One simple physical network with

4 yards and 4 directed tracks is illustrated in Figure 5.1.

B

A C

D

Figure 5.1: A Simple Rail Network

The physical network comes with a number of restrictions on rail operations. The

volume of activities a classification yard may perform during any time period is restricted

by the layout and physical characteristics of the yard infrastructure, as well as available

facilities (e.g. shunter engines). Let uC
v be the car handling capacity in terms of cars,

and uB
v the number of blocks that may be built at the yard. To simplify the presentation,

we assume that a classification track is required for each block being built, and uB
v is

determined by the number of classification tracks of the yard. Furthermore, we assume a

rail track e ∈ E cannot accommodate more than ue number of trains at the same time. In

general, train running capacity depends on the physical track condition, track mile, the

speed and direction of each train, as well as time interval between adjacent departures,

etc. Working at the tactical level, however, there is no need to specify the detailed on-

track delay and we assume the train running capacity only depends on track condition.

Apparently, the physical network, which often appears in earlier works, is insufficient

to picture the temporal information and the flows in different formats. In this chapter, a 3-
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layer time-space structure is first presented, to describe the time-dependent operations of

rail freight transportation. A general model for integrated rail planning is then proposed

with the associated cost and capacity analysis, followed by a discussion of a simplified

variant.

5.1 3-Layer Time-Space Network Structure

To picture the temporal information, we associate to the rail network a time dimen-

sion with T time points, denoted by t ∈ {0, · · · ,T− 1}. As rails work periodically, the

time dimension is defined as cyclic, that is, time point T− 1 is followed by 0. The time

horizon is thus divided into T time periods.

With the double consolidation organization, in rails, flows present in three formats:

services, blocks, and cars. To properly present traffic movements, we further delaminate

the time-space structure into three layers, which are denoted service layer, block layer,

and car layer, as shown in Figure 5.6. Each layer concerns operations and delays on

shipments either in the form of service, block or car. The time dimension is the same in

the three layers.
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Block Layer

Figure 5.2: 3-Layer Structure

Most consolidation work is carried out in yards. To represent yard operations, we

decompose each yard with two nodes at each time point, an IN node and an OUT node.

The IN node depicts the receiving of services, blocks or cars in the yard at the time point,

and the OUT node represents the departure of corresponding objects. Denote N S, N B
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and N C the sets of nodes in the service, block and car layer, respectively.

Links are defined to represent various operations and delays (by horizontal links in

each layer) and formation transforms between cars and blocks, as well as blocks and

services (by vertical links connecting layers). Define temporal length (or length) of a

link the total time periods this link covers. Vertical links have length 0.

5.1.1 Service Layer and Service

Links in the service layer represent possible operations on trains, including moving

links and stop links. Some moving links and stop links are shown in Figure 5.3 which

derives from the rail network in Figure 5.1. From an OUT node representing the origin

yard at departure time to an IN node representing the destination yard at arrival time, a

moving link stands for a non-stop train movement on a physical route with a constant

travel time. A set of rail tracks, defined as E(a), is associated to each moving link a to

indicate the physical route passed. On a physical route, shorter moving links represent

train running on a greater speed, and using lower speed trains causes longer transit time.

For example, (i5, i6) and (i5, i7) on route (B → C). Parallel moving links, with the same

origin and destination node as well as the same length, may also exist. Parallel moving

links represent train movements following different routes between two yards with the

same departure time and transit time. In Figure 5.3, a1 and a2 are both from node i1 to

i2, however, they follow routes (A → B → C) and (A → C), respectively. Describing

train tarry at an intermediate yard, a stop link connects an IN node to the next OUT node

of the same yard, as shown (i4, i5). Let ASM be the set of moving links, ASR the set of

stop links.

In the service layer, a service (denoted by s) is defined as a path consisting of a series

of moving links and stop links. At its origin OUT node o(s), the service assembles and

departs, and at the destination IN node d(s), the service disassembles. The journey of

a service is characterized by the moving links (collected in set ASM(s)) it passes. For

each service, we are therefore aware of its origin, destination, service route, intermediate

stops, and schedule. Let S be the set of all services we may provide.

A service section is a sub-journey of a service, and it is represented by a sub-path
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Figure 5.3: Service Layer

between two unnecessarily consecutive stops. For example, service s1 in Figure 5.3

departs from yard A and arrives at yard D. The service consists of 3 moving links, and

includes 6 service sections: (i3 → i4), (i5 → i7), (i8 → i9), (i3 → i4 → i5 → i7),

(i5 → i7 → i8 → i9), and the service itself. Given a service s ∈ S, L(s) is the set of

its service sections, and for a service section l, s(l) denotes the service that l belongs to.

The journey of service section l is marked by a sub-set of moving links in service s(l),

ASM(l) ⊆ ASM(s(l)). The stop links in the service section l is collected in set ASR(l).

5.1.2 Block Layer and Block

Links in the block layer represent yard operations on blocks, which are either trans-

ferred or delayed for connection. Two types of links, transfer links and transfer delay

links are defined, collected in set ABT and ABH respectively. As shown in Figure 5.4, a
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transfer link, e.g. (i7, i8), connects an IN node to the next OUT node, representing the

service-switching procedure, that is, blocks are disconnected from one service and later

connected to another. A transfer delay link attaches two consecutive IN nodes of a yard,

e.g. (i6, i7), standing for one-period delay for catching the next service.

In order to attach the block layer to the service layer, vertical links are defined to

represent loading/unloading blocks to services. Each load block link departs from an

OUT node in the block layer to its upstairs OUT node in the service layer, representing

loading blocks onto services. On the contrary, an unload block link is a downward link

between two vertical IN nodes, standing for unloading blocks from services.

Regardless of the building process, the journey of a block is defined by a block path

(or block) from an OUT node to an IN node (OUT and IN are from different yards).

A block is formed by a series of service sections from different services, which are

connected by transfer delay links, transfer links and necessary vertical links. The service

sections, transfer links, and transfer delay links in block b are collected in set L(b),

ABT(b), and ABH(b) respectively. In addition, building a block takes a classification

track in the block origin, and the classification track occupancy time for forming block

b is denoted by h(b). Let B be the set of all potential blocks.

If project the service sections in the top layer to the block layer, we have a block-

layer projection consisting of service sections, transfer links and transfer delay links, as

shown in Figure 5.4. (i3 → i6 → i7 → i8 → i9) corresponds to a block, which is

taken by a service section departing from yard A at time point 1, delayed and transferred

at yard C, then shipped by another service section (i8, i9) and terminates at yard D.

(i3 → i7 → i8 → i9) describes a similar block, which takes service section (i3, i7) from

yard A to C.

5.1.3 Car Layer

The bottom car layer as shown in Figure 5.5 has classification links, car waiting

links, and car holding links, expressing classification and delays on cars. A classifica-

tion link, e.g. (i2, i4), characterizes the classification operation, that is, cars are moved

from receiving tracks into classification tracks. Car waiting links, e.g. (i1, i2), represent
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delays for classification: cars wait in receiving tracks to be classified. Next, between two

neighboring OUT nodes, a car holding link is built to describe one-period of holding: cars

wait in classification tracks for more cars coming in, as (i4, i5). Let ACC, ACW and ACH

be the set of classification links, car waiting links and car holding links, respectively.

More vertical links are required to connect the car layer with the other two. One

upward link is made from each OUT node in the car layer to the corresponding OUT node

in the block layer. The link is called form up link and depicts the operation that blocks

are formed up. On the contrary, one downward break down link connects two vertical IN

nodes between the block layer and the car layer, and shows the process that blocks are

broken down into cars.

A yard section of the 3-layer time-space network is illustrated in Figure 5.6.

We assign the car reception from and delivery to customers at the IN nodes of the car
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layer. The journey of a particular demand, denoted itinerary, is then a path in the 3-layer

time-space network between two IN nodes of the car layer representing their origin and

destination yards. From the origin IN node which represents the receiving at the origin

yard, the cars first wait in car waiting links. After being classified through a classification

link, the cars reach an OUT node, and are delayed on car holding links until enough cars

are gathered. When the block is formed, the traffic goes up to the block layer through

a block form-up link. Then, the block is loaded onto a service and shipped by service

sections in the service layer. At an intermediate yard, the block is unloaded to the block

layer, delayed and later transferred to another service. At the block destination, the block

is broken down, and the traffic returns back to the car layer. The cars are delivered if it is

the final yard of the shipment; otherwise, the cars will be re-classified and pass the block

layer and service layer again.
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Figure 5.6: Yard Section of 3-Layer Time-Space Network

5.2 Integrated Service Network Design Model

Base on the 3-layer time-space structure proposed above, we proceed to define costs

and capacities, and formulate the integrated service network design model.

To specify the characteristics of different demands, traffic (or shipment) is first de-

fined. Each traffic p is specified by the origin yard o(p) ∈ V , destination yard d(p) ∈ V ,

type of commodity m(p), quantity (number of cars) w(p), receiving time r(p) represent-

ing when cars are received from customer at their origin, and maximum delivery time

h(p) indicating the maximal transit time allowed. Let P be the set of all traffic. Each

traffic therefore is associated with an O-D pair in the 3-layer structure, from an IN node

representing the receiving of freight at the yard o(p) at time r(p), to another IN node

representing the delivery at yard d(p) at time r(p) + h(p). We notice, r(p) + h(p) might

represent a time in the next planning cycle as we are working on a cyclic time dimension.

Denote A the union of links in all layers. We define three types of variables which

are associated with car flow, block decision, and service decision respectively.
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xap ≥ 0 number of cars of traffic p traveling on link a ∈ A;

yb ∈ {0, 1} if we build block b ∈ B, yb = 1; otherwise yb = 0;

zs ∈ {0, 1} if service s ∈ S is provided, zs = 1; otherwise zs = 0.
Denote xbp the flow of traffic p on block b. Also, we define the indicator function

δsb
al = 1 if the moving link a ∈ ASM of service s belongs to the service section l ∈ L(b)

of block b, and 0 otherwise. Notation xasp =
∑

b∈B
∑

l∈L(b) δsb
alxbp indicates the flow of

p on moving link a ∈ ASM of service s, and xsp =
∑

a∈ASM(s) xasp indicates the total

workload of service s with respect to the cars hauled on all its moving links.

The Integrated Service Network Design (ISND) model is thus formulated as follows.

All notations are summarized later in Table 5.I.

Φ = min
∑
p∈P

∑
a∈A

capxap +
∑
b∈B

cF
byb+

∑
s∈S

cF
szs (5.1)

s.t.
∑

a∈A+(n)

xap −
∑

a∈A−(n)

xap = wp
n ∀n ∈ N C,∀p ∈ P ; (5.2)

∑
p∈P

xbp ≤ ybub ∀b ∈ B; (5.3)

∑
p∈P

xasp ≤ zsus ∀a ∈ ASM, s ∈ S; (5.4)

yb ≤ zs(l) ∀l ∈ L(b), b ∈ B; (5.5)∑
p∈P

xap ≤ ua ∀a ∈ ACC; (5.6)

∑
b∈B(v,t)

yb ≤ uB
v ∀v ∈ V ,∀t ∈ {0, · · · ,T− 1}; (5.7)

∑
s∈S(e,t)

zs ≤ ue ∀e ∈ E ,∀t ∈ {0, · · · ,T− 1}; (5.8)

xap ≥ 0 ∀a ∈ A,∀p ∈ P ; (5.9)

yb ∈ {0, 1} ∀b ∈ B; (5.10)

zs ∈ {0, 1} ∀s ∈ S. (5.11)

The objective function (5.1) is the sum of operating costs on all links, and costs of

building blocks and providing services. A fixed cost cF
s is defined on each service s,
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standing for the cost of supplying the service (power, crew, and so on), as well as as-

sembling and disassembling the train. A fixed cost cF
b is attached to block b representing

the classification track occupancy during the building process and transfers indicated by

the transfer links in the block path. Define cF
b = cF

bo +
∑

a∈ABT(b) cF
ba, where cF

bo is the

fixed cost from classification track occupancy, and cF
ba is the contribution from the swap

operation on transfer link a.

cap is the unit flow cost for traffic p on link a ∈ A. cap represents both operating

costs and time cost on links. That is, for inter-yard moving links a ∈ ASM, cap repre-

sents the hauling expense and time cost depending on the physical route passed, train

running speed, etc. For car classification link a ∈ ACC, cap is the time cost and handling

expense for inspection and the power for moving cars from receiving tracks to classifi-

cation tracks. cap represent mainly a time cost on the stop links a ∈ ASR, block transfer

links a ∈ ABT, block transfer delay links a ∈ ABH, car waiting links a ∈ ACW, and car

holding links a ∈ ACH.

For the sake of later presentation, we define some notations. Let clp be the flow cost

for traffic p on service section l, that is clp =
∑

a∈ASM(l) cap+
∑

a∈ASR(l) cap. cbp is the flow

cost for traffic p on block b, which is the sum of flow costs on its service sections, transfer

links, and transfer delay links, cbp =
∑

l∈L(b) clp +
∑

a∈ABT(b)∪ABH(b) cap. Apparently, if

we look on the car-layer projection where potential blocks are mapped into the bottom

car layer (as in Figure 5.5), the objective (5.1) can also be written as,

Φ = min
∑
p∈P

∑
a∈ACC∪ACW∪ACH

capxap +
∑
p∈P

∑
b∈B

cbpxbp +
∑
b∈B

cF
byb +

∑
s∈S

cF
szs (5.12)

Traffic flow conservation constraint (5.2) guarantees the proper delivery for each

traffic, wherein A+(n) and A−(n) represent the sets of outward and inward links of

node n ∈ N C, and wp
n is the absolute demand for traffic p at node n. wp

n = w(p) if n is

the origin node of p; wp
n = −w(p) if n is the destination node; otherwise wp

n = 0.

Linking constraints (5.3) - (5.5) explicitly describe relations among cars, blocks, and

services. Each block contains a number of cars, and a block must be built before any

cars are assigned to it, thus we have (5.3). ub is the capacity of block b in terms of the
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number of cars, which yields from the length of the classification track assigned to build

the block. Constraint (5.4) states that for each service, the total number of cars on all

blocks must be less than the capacity of the service us. More locomotives on a train may

increase the hauling ability, however due to the infrastructure of the tracks and terminals

passed, there is still a restriction on the load of each train. In this research, the maximal

load us on service s is defined in terms of cars, which can also be modeled in terms of

weight. Similar with (5.3), blocks are transported by service sections, and a service must

be provided if one of its sections is asked by open blocks. The relation is described by

(5.5).

In the operating process, we also meet restrictions from diverse facilities/resources

of the rail system, such as the physical characteristics of the tracks, the yard construc-

tion and configuration, equipment allocation and crew assignment policy, etc. All those

restrictions could be very close to each instance, and generally, at the tactical level, we

have the rail constrains (5.6) - (5.8). In car handling constraint (5.6), ua is the handling

capacity on classification link a ∈ ACC in terms of cars, which derives from the yard

classification capacity uC
v . With the constraint, yard congestion is avoided and excess

classification work must be delayed and performed in later time periods. Let B(v, t) be

the set of blocks which are built at yard v in time period t, meaning ∀b ∈ B(v, t), t is in

h(b) time periods ahead of o(b). Block building constraint described in (5.7) restricts the

number of blocks being built in a yard, where the block building capacity uB
v is applied.

Train running constraint (5.8) is considered so as to restrict the number of trains running

on a track at the same time. S(e, t) is the set of services running on physical track e ∈ E
in time period t. With the proper train running constraints in consideration, we prevent

the on-track congestion and ensure the on-time transportation of trains.

Finally, constraints (5.9) - (5.11) specify the domain of each variable.

The ISND model generates a mixed-integer programming formulation. By choosing

zs for all s ∈ S, we characterize the service decision, including route, schedule, capacity

and speed (by the length of moving links). The variable yb decides which block should

be built, and the make-up policy is addressed by the according L(b). With the variable

xap for all the a ∈ A and p ∈ P , we determine the routing of loaded and empty cars
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Notation Description
G rail network, (V , E) are the set of yards and tracks;
t ∈ {0, · · · ,T− 1}, time point;

ASM set of moving links in service layer;
ASR set of stop links in service layer;
S set of services in service layer;

ASM(s) set of moving links in service s;
L(s) set of service sections in service s;
s(l) the service that section l belongs to;
ABT set of transfer links in block layer;
ABH set of transfer delay links in block layer;
B set of blocks in block layer;

h(b) classification track occupancy time: before origin node o(b), time required
for a classification track assignment to build b;

L(b) set of service sections in block b;
ACW set of waiting links in car layer;
ACC set of classification links in car layer;
ACH set of holding links in car layer;
A ASM ∪ ASR ∪ ABT ∪ ABH ∪ ACW ∪ ACC ∪ ACH, the union of links;
P set of traffic;
cap flow cost of traffic p ∈ P on a ∈ A;
clp flow cost of traffic p ∈ P on service section l ∈ L;
cbp flow cost of traffic p ∈ P on block b ∈ B;
cF
s fixed cost for providing service s;

cF
b fixed cost for building block b, cF

b = cF
bo +

∑
a∈ABT(b) cF

ba;
A+(n) outward car layer links/blocks of node n ∈ N C;
A−(n) inward car layer links/blocks of node n ∈ N C;

wp
n absolute demand for traffic p at node n ∈ N C;

ua car handling capacity on classification link a ∈ ACC;
S(e, t) set of services running on physical track e in time period t;

ue train running capacity on track e ∈ E ;
B(v, t) set of blocks building in the yard v and in time period t;

uB
v block building capacity of yard v ∈ V;

us train load capacity of service s ∈ S;
ub block load capacity of block b ∈ B.

Table 5.I: Notation Summary

and the processes cars should go through at each yard. Moreover, our model gives an

approximated schedule for yard operations (classification and transfer) by xap.

This model considers the most important elements in the tactical planning level in rail
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freight transportation. By minimizing the total cost while satisfying various constraints,

shipments are distributed through blocks and services in a cost-efficient manner, which

also gives explicit decisions for block building and service providing. The model bal-

ances the trade-offs among blocking policy, train routing, scheduling, make-up policy

and traffic distribution, and produces a skeleton for the operating plan.

5.3 Direct Service Network Design Model

When we look into the rail industry, sometimes a special case emerges where all

services are direct (without intermediary stops). Such case often presents in industrial

transportation (e.g. coal, agriculture products) or regional transportation.

Define a Direct Service Network Design (DSND) model a special case of ISND

where only direct services present. We are particularly interested in the DSND because

it shows a good property. With only one service section on each direct service, we have

S = L, and blocks are actually transported by direct services other than service sections.

In the scope of DSND, we use S to denote the direct service (or service section) set. This

property allows degenerating the time-space network to a 2-layer structure with only the

block layer and car layer, where direct services are mapped to the new block layer, which

is shown in Figure 5.7. The car layer in the 2-layer structure remains unchanged.

Links in the block layer now include direct services, transfer links, and transfer delay

links. A block is defined as a path in the block layer describing its journey and the

associated handling operations. The path of a block in DSND is made up of a series of

direct services, which are connected by transfer and transfer delay links. For example,

the path (i3 → i4 → i5 → i6) in Figure 5.7 represents a block put on a direct service

departing from yard A at time 1, transferred at yard B at time 3, then moved by service

(i5, i6) to its destination yard C at time 5.

The DSND model has the same objective function (5.1) to minimize the total oper-

ating cost, and respects constraint (5.2) - (5.11). However, given the fact that each direct

service consists of only one moving link, |ASM| = |S|, the train load constraint (5.4) can
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Figure 5.7: Block Layer of 2-Layer Time-Space Network

be rewritten as, ∑
p∈P

xsp ≤ zsus ∀s ∈ S. (5.13)

5.4 Summary

Compared with the physical network which presents the rail infrastructure, the 3-

layer time-space network describes operations on services, blocks, and cars in respective

layers, and addresses the temporal aspect of operations and delays with a time dimension.

The ISND model shows a complicated network design formulation. With service

design variables in the service layer and block decisions in the block layer, the model

also presents a multi-level network design. Other than the extreme complexity, very

large instance size in applications is another obstacle that keeps ones from solving this

problem efficiently.

A special simplification with only direct services is also discussed. With an inter-
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esting characteristic, DSND not only reduces the variable set of ISND (as only direct

services and blocks consisting of direct services are considered), but also degenerates

the network to a 2-layer structure.



CHAPTER 6

HEURISTIC ALGORITHMS

The ISND and DSND model proposed above can be viewed as a special form of the

FMCND formulation. Moreover, when applied in rails, we are facing additional com-

plexity introduced to account for the particularities of rail, which makes the problem

even harder. In addition, for the instances of interesting size, given the plentiful amount

of potential blocks to be built and services for selection, we obtain a large number of

variables. As a result, we do not expect good performance from exact methods on this

complex and large-sized problem, and only interested in heuristic algorithms which are

capable to provide near-optimal solutions within reasonable computing efforts.

In this chapter, we study several heuristic solutions. Starting from DSND, we first

develop a tabu search algorithm. An algorithm based on slope scaling method is later

constructed for the ISND model. Then a hybrid heuristic combining the tabu search,

slope scaling, and column generation ideas is developed for the very-large-size ISND.

6.1 Tabu Search

In the context of DSND model, we have only direct services, that is |S| = |L| =

|ASM|. As a minimization problem, we notice in the DSND model, services which are

not used by any open block should not appear in the final design, and whenever a block

is open all its component direct services must also be open according to the linking

constraints. Each block pattern thus has its optimal direct service pattern. The advantage

gives us the privilege to focus on the block design, and only implicitly consider the

service decisions during the solution procedure. Based on the observation, we define a

neighborhood aiming at changing the status of blocks in the means of deviating traffic

flows in the time-space network.

The cycle-based neighborhood idea is applied due to its promising performance on

FMCND. Focusing on the modification of car flow, we work on the car-layer projection
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consisting of car-layer links and blocks. First we define a cycle as a closed chain consist-

ing of car-layer links and blocks, and the car-layer links/blocks in the chain may follow

different directions. A block design is a vector ỹ as well as the inherent optimal service

design vector z̃. If ỹ honors the block building constraints (5.7) everywhere and the as-

sociated z̃ satisfies the train running constraints (5.8) on all tracks in each time period,

we say the block design ỹ(z̃) is eligible. For any solution with an eligible block design,

the neighbors of current block design are defined as all the eligible block designs we can

obtain through the steps in Figure 6.1.

1. Choose a block. Starting from the block, identify a cycle.

2. Deviate the total car flow through the cycle, from one path to the other, so that at
least one block status changes.

3. On the cycle, open all the blocks with flow, and close all other blocks.

Figure 6.1: Cycle-based Neighborhood Specification

The neighborhood specified by the above procedure can be very large if we take all

the blocks in consideration, and an enumeration of all potential cycles is impractical. To

achieve good feasible solutions in a short computing time, we restrict the neighborhood

scope in each move.

Given a block design ỹ(z̃), the distribution of cars is given by a capacitated multi-

commodity network flow problem in the car-layer projection. The associated car flow

problem is defined as,

φ(ỹ(z̃)) =
∑
p∈P

∑
a∈ACC∪ACW∪ACH

capxap +
∑
p∈P

∑
b∈B

cbpxbp (6.1)

subject to traffic flow conservation constraint (5.2), car handling constraint (5.6), as well

as the flow capacity on blocks (6.2) and trains (6.3), which are derived from (5.3) and
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(5.13) respectively.

∑
p∈P

xbp ≤ ỹbub ∀b ∈ B; (6.2)

∑
p∈P

xsp ≤ z̃sus ∀s ∈ S. (6.3)

The problem is denoted as Traffic Routing Sub-Problem (TRSP). The objective of

TRSP, denoted φ
(
ỹ(z̃)

)
, includes the travel costs on all car-layer links and blocks, but

does not have the fixed design costs of the block design. The DSND objective value on

block design ỹ(z̃) is then obtained as φ
(
ỹ(z̃)

)
plus the design costs, which is

∑
b∈B cF

b ỹb+∑
s∈S cF

s z̃s.

Our tabu search algorithm starts with an initialization phase, which provides an eli-

gible block design. Then, the algorithm iteratively improves the current block design by

implementing a sequence of cycle-based local searches until the stop criteria are met.

In each local search, the existing solution is improved by replacing the current block

design with one of its neighbors, and then the traffic distribution is determined by the

associated TRSP. When we reach a promising area, an intensification phase is called for

further improvement. In case the improvement of a local search is insignificant or no

good neighbor shows up, diversification is launched to escape from the local optimum.

Schematically, an outline of the tabu search algorithm is shown in Figure 6.2,

1. Initialization.

2. Repeat until stop criteria are met,

• cycle-based local search;

• if the current solution is better than or close to the best overall, intensification;

• else if the improvement is negligible, diversification.

3. Stop.

Figure 6.2: General Procedure of Tabu Search

In the following, we describe the main algorithmic choices and detail each procedure,
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except the stop criteria which will be set within computational experiments.

6.1.1 Initialization

The initialization phase provides an initial eligible block design. In order to satisfy

the customers’ demands to the maximum extent, it is preferable to open all potential

blocks in the very beginning. However, the train running capacity ue and the block

building capacity uB
v prevent us from opening all the blocks.

An integer programming formulation is solved to generate an initial eligible block

design with maximal number of blocks. The problem has two sets of binary decision

variables on blocks and services correspondingly. The objective (6.4) is to maximize the

number of open blocks, subject to block building constraints (5.7) and train running con-

straints (5.8), as well as the linking constraints (5.5) between blocks and services. The

integer programming problem is then solved by the branch-and-bound method. As there

is little need to find the optimal solution for the initial problem, the solving procedure

stops when a near-optimal solution is obtained in a short time.

max
∑
b∈B

yb (6.4)

By opening as many blocks as possible, the initial block design leads to preposter-

ously large design costs on both blocks and services. Nevertheless, the extra high fixed

cost cannot guarantee the feasible flow of cars. This is due to the additional constraints

considered in the model, coming from the car handling capacity restricting the number

of cars that can be classified at each yard, as well as the car flow capacity on each block.

The infeasibility of the according TRSP is avoided by introducing the artificial links (or

super itineraries) in the car layer. For each traffic, an artificial link is appended, from

the IN node that represents the receiving of the demand to the IN node corresponding to

the delivery. The length of the artificial link equals to the due transit hour of the traffic.

Each artificial link receives the same flow capacity as the volume of the associated traffic

demand, and an arbitrarily high flow cost ensures that the artificial link will bear flow

only if the distribution is infeasible. With the additional artificial links, the associated
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TRSP always has a solution irrespective of the current block design. Our algorithm will

start with the initial eligible block design, regardless if the artificial links are used or not,

and try to reach a feasible solution before meeting the stop criteria.

6.1.2 Residual Network and Local Search

Starting from an initial block design, we progress to improve the current solution by

running a series of local searches. The intention of local search is to divert car flows

following a cycle, so that the status of one or several blocks is modified, and leads to

significant modification of traffic flows. Keeping the idea in mind, we are interested in

the cycles bearing enough car flow and after deviation flows on some blocks are empty

so that those blocks are free to close.

First, we define residual value the flow volume one can deviate around the cycle.

Consequently, we are interested in such cycles with their residual value equal to the flow

on one open block. On a block design ỹ(z̃), we denote Γ as the set of flow volumes on

all open blocks,

Γ(ỹ) = {
∑
p∈P

xbp > 0, b ∈ B and ỹb = 1}.

For each value γ ∈ Γ, we identify the cycles that support the variation of γ units of car

flow, and an accessorial γ-residual network is constructed.

The γ-residual network has the same nodes as the car layer, and the conceptual arcs

in the residual network represent the changing (either increasing or decreasing) of γ

flow on blocks, classification links, car waiting links and car holding links. The γ-

residual network uses a positive-cost arc to represent an increase of γ flow on the car-

layer link/block when there is enough flow capacity remaining, and flow decrease on the

car-layer link/block is described by an arc with negative cost if extra γ flow exists.

On different links/blocks, we have different regulations for introducing residual arcs.

First, for each block b from nodes i to j, we introduce a forward arc (i, j)+ if an addi-

tional γ cars of flow can pass on block b = (i, j). That is, the residual capacity on b

is greater than or equal to γ. A positive cost c+
ij is associated with the arc (i, j)+, ap-

proximates the cost for routing extra γ cars of unified commodity on the block, plus the
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possible design cost if the block, as well as the direct services underneath, are currently

closed. Symmetrically, we include a backward arc (j, i)− if the total traffic flow on block

b = (i, j) is no less than γ. The cost on arc (j, i)− is the saving value for reduction of

γ flow on block b. The possible design cost of block b, including the fixed cost on the

block, and the potential fixed costs on some of the direct services if applicable, is also

subtracted once the reduction leaves the block and services empty. The construction of

the γ-residual network is illustrated in Figure 6.3. For an open block (i3, i5), we may

have arc (i3, i5)
+ if there is enough flow capacity left and, arc (i5, i3)

− if the current flow

on the block is no-less-than γ. Corresponding to a close block (i3, i6), we include arc

(i3, i6)
+ if the residual capacity on the block is over γ.

4321

n−OUT

n−IN

m−OUT

m−IN

Car Layer

open block
close block

classification link

i 3 i 4

i 2i 1

i 5 i 6

1 2

3 4

5 6

t = 

Residual Networkγ

i

i i

i i

icar waiting link

car holding link

0

Figure 6.3: Construction of γ-Residual Network

On each car waiting link, e.g. (i1, i2), or car holding link, e.g. (i3, i4), both the

(i1, i2)
+ and (i2, i1)

−, as well as the (i3, i4)
+ and (i4, i3)

− can be defined following the

same principle above. Particularly, we always have forward arc (i1, i2)
+ and arc (i3, i4)

+

since there is no flow capacity applicable on both car waiting links and car holding

links. Focusing our attention on design decisions, instead of constructing residual arcs

for each classification link, we aggregate the classification flows and build residual arcs
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to represent adding/subtracting flows on intra-yard paths made of classification links, car

waiting links and car holding links between each (IN, OUT) node pair (IN and OUT are

from a same yard). For example, an arc (i1, i4)
+ is used to represent that extra γ flow is

added between i1 and i4, precisely on paths (i1 → i2 → i4) and (i1 → i3 → i4). If the

total flow on these paths exceeds γ, an arc (i4, i1)
− is included on which we associate

a negative cost to represent the saving for the decline of γ flow on the intra-yard paths

between i1 and i4.

Given an open block b in the current solution, we therefore generate a residual net-

work with a residual value equal to the car flow γ on block b. Starting from the residual

arc representing clearing the flow on the block, enumeration of all cycles passing through

the arc in the γ-residual network is very expensive. We here are particularly interested in

the lowest-cost cycle only, which implies the maximal savings following the deviation.

The idea of forming such lowest-cost cycles is to find the lowest-cost path from j to i in

the residual network to complete the cycle for an arc (i, j)−. To find the path with the

lowest cost from j to i, an extended Bellman-Ford algorithm is developed. The algorithm

keeps a vector at each node, labeling the temporal length of the lowest-cost path. The

length vectors eliminate over-length paths since by the assumption each demand must

be delivered in its due transit hour. Furthermore, examinations are performed to avoid

looping in lowest-cost paths because negative arcs present in the residual network. The

pseudo code of the extended Bellman-Ford algorithm is described in Figure 6.4. From j

to i, the algorithm is proven efficient to find a series of lowest-cost paths with different

temporal lengths. We pick the one with the overall lowest cost, together with the origin

arc, a lowest-cost cycle is then obtained.

In a local search, lowest-cost cycles deriving from all open blocks in the current

solution are compared and the one with the minimum cost is selected. Furthermore, the

minimum-cost cycle is accepted only if it is non-positive (means saving). A non-positive

cost cycle accelerates the convergence, and has the highest probability to yield a better

solution. We then move the flow following the minimum-cost cycle. After the deviation,

the origin block of the cycle is cleared and closed. Some other blocks may be opened or

closed accordingly to achieve the new design.
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1. Define temporal length upper bound τ .

2. For each node n ∈ N and each t ∈ {1, · · · , τ} do,

• distance(n, t) = ∞ and prev_node(n, t) = ®.

3. For each t ∈ {1, · · · , τ} do,

• distance(j, t) = 0.

4. LIST = {j}.

5. While LIST 6= ® do,

• remove an element u from LIST ;

• for each node v ∈ N+(u) and each t ∈ {1, · · · , τ} do,

– t′ = t + len(u, v);
– if t′ ≤ τ and distance(v, t′) > distance(u, t) + costu,v and v is not in

the path from j to u do,
∗ distance(v, t′) = distance(u, t) + costu,v;
∗ prev_node(v, t′) = u;
∗ if v /∈ LIST , then add v to LIST .

6. Stop.

Figure 6.4: Extended Bellman-Ford Algorithm

An example for local search is given below. Figure 6.5 illustrates such journeys

through a vertical projection of the 2-layer network on the car layer (only a few car-layer

links and the projections of blocks are shown). Four demands are specified by their O-D

node pairs. Notice that demands d1 (i.e., from origin O1 to destination D1) and d2 have

the same origin and destination node, but they follow different itineraries in the current

solution. d1 goes through block b4 and then block b6, which means the traffic passes two

classifications in yards A and C. d2 is first delayed, but only block b1 is used.

The instance shown in Figure 6.5 is further detailed in Figure 6.6, where the informa-

tion on each link is illustrated as (fixed cost, unit flow cost, current flow, flow capacity).

Given the open block b4 and its existing flow γ = 20, we generate a γ-residual net-

work. As shown in Figure 6.7, emanating from the destination node of arc (i5, i3)
−,



78

0 1 98

OUT

IN

OUT

IN

OUT

IN

OUT

IN

Yard A

Yard B

Yard C

Yard D

O
3

O
1
O

2

D
1
D

2
D D

3 4

Classification Link

O
4

b
5

b
2

b
4

b
6

1
b

Car Waiting Link Car Holding LinkBlock Projection

Figure 6.5: Flows in 2-Layer Time-Space Network (Projection)

representing eliminating γ flow on block b4, we apply the extended Bellman-Ford algo-

rithm. From i3 to i5, the path with the overall low cost is selected. Together with arc

(i5, i3)
−, a lowest-cost cycle is formed.

Suppose the cycle shown in Figure 6.7 is also the minimum-cost cycle, among the

lowest-cost cycles from all open blocks in the current design. Following the cycle, flows

are moved and a neighbor block design is obtained (shown in Figure 6.8). On the new

block design, demand d1 now will be delayed and later go through block b1 together with

demand d2, and blocks b4 and b6 are cleared and closed.

Two short-term memories, one for blocks and one for services, are used to prevent

local search from looping or entering infeasible domains. The memories, called block
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Figure 6.6: Solution in 2-Layer Time-Space Network (Projection)

tabu list and service tabu list, keep a tabu tenure for each block/service. A positive

tenure means the block/service is prohibited to be opened or closed. When a new design

is achieved, random tabu tenures are attached to all the blocks/services have just been

modified. All positive tenures in both tabu lists descend by 1 each time we return to a

feasible flow distribution on an eligible block design.

After a candidate neighbor block design is obtained through a non-positive cost cy-

cle, a verification of the block building constraint and train running constraint is per-

formed. The verification ensures the procedure remains on the eligible block design

domain. If one of these constraints is violated, the last eligible block design is restored,

and we tabu the blocks that disobey the block building constraint in the block tabu list,
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as well as the illegal services for the train running constraint in the service tabu list.

The local search then restarts to find another minimum-cost cycle consisting of non-tabu

blocks and non-tabu services, and then the outcome block design is validated again. As

long as the new block design satisfies the block building constraint and train running

constraint, we move to the new eligible block design.

The traffic is re-distributed by solving the associated TRSP on the new block design.

As a linear network flow problem, TRSP on a given block design can be well solved

by the Simplex method. It is possible that artificial flows exist in the resulting TRSP

solution. The reasons for the artificial flow are twofold. First, in the local search proce-

dure, we failed to explicitly take the train load constraint into account, and the defacto
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Figure 6.8: New Solution on Neighbor Block Design (Projection)

relaxation may lead to overflows on some services. Second, we move a group of demand

flows at each local search move. As a common part of traffic itineraries is replaced, the

modification may not be practicable for all the relative demands. A restoration phase is

then implemented to regain a feasible flow distribution. The restoration phase is similar

to the local search procedure. However, we generate cycles deriving from artificial links

instead of open blocks, and the residual value set Γ is restricted to the flow volumes on

artificial links.

The local search procedure is synthesized in Figure 6.9.
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1. Given the current solution, for each open block b do,

• determine the current flow γ on block b;

• construct the γ-residual network;

• based on block b, apply the extended Bellman-Ford algorithm to determine
a set of lowest-cost paths with different lengths by non-tabu blocks and ser-
vices;

• pick the path with the lowest cost, and form a lowest-cost cycle;

• update the minimum-cost cycle.

2. If the minimum-cost cycle is non-positive do,

• following the minimum-cost cycle, obtain a candidate block design;

• update block tabu list and service tabu list;

• if the candidate block design is eligible,

– move to the candidate block design by opening and closing the appro-
priate blocks and the associated direct services;

– solve the associated TRSP;
– if artificial links are used, restoration;

3. Stop.

Figure 6.9: Local Search Procedure in Cycle-based Neighborhood

6.1.3 Intensification

One of the privileges of the cycle-based neighborhood is the wide range of moves

in the solution space. However, when working in a petite promising space, it becomes

a drawback and the search may “step over” the optimum with a faulty cycle, which

suggests a considerable cost reduction but results in an infeasible solution. We propose

the intensification, a supplementary procedure aims to elaborately polish the current

solution. Two separate intensification phases are employed in a sequence.

In the first intensification phase, a sliding problem is solved. The sliding problem

has the same formulation as the DSND model, and only includes the blocks currently

open as well as their “parallel” blocks: the blocks with the same routing departing at the
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previous time point as well as the next time point. The sliding problem integrates many

cycles that represent postponing/advancing the existing open blocks for one period, and

it helps to converge steeply by avoiding the analysis of a sequence of “small” cycles

separately. With only a few variables considered, the sliding problem is tractable with

the MIP solver.

No matter the first intensification progresses or not, we implement a second phase.

The second phase can be viewed as a special local search procedure, and we consider the

flow of a demand at each time, assuming the flows of other demands remain unchanged.

The same cycle-based neighborhood definition is applied. As in the local search, a set

of residual values is first determined, which is now the flow of one traffic on every open

block. For a traffic p ∈ P , Γp is then defined as Γp(ỹ) = {xbp > 0, b ∈ B and ỹb = 1}.

A γ-residual network is built based on each γ ∈ Γp, and the lowest-cost cycles are

formed and evaluated. Moves are adapted only if the cycle with the minimum cost has

a negative value. The process repeats until no negative-value cycle is detected in any γ-

residual network, and then the process continues to the next traffic p. Since the pivots in

the intensification phase concern the flow of one traffic only, there is no need to re-solve

the associated TRSP every time. Car flows will be shifted by hand, as long as the train

load constraints are satisfied.

The intensification phases are implemented when reaching a hopeful solution area,

that is, when a new best or near-best solution is found.

6.1.4 Diversification

In case the local search fails to improve the current best solution, or the improvement

is insignificant, it implies that we are restricted in a local optimum. As we are working

in a huge solution space, being trapped in a local area is inevitable. To jailbreak from

the local optima, we propose a diversification process.

The diversification is actualized by two long-term memories, which are used to keep

the opening frequency for blocks and services. These memories are denoted as block

frequency list and service frequency list, respectively. Each time a feasible flow distribu-

tion on an eligible block design is obtained, we accumulate the opening frequencies of
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all the open blocks and open services by 1 in the frequency lists.

To diversify the solution space, a small fraction of open blocks with high opening

frequencies are forced to close. Also, tabu tenures of these blocks are updated to avoid

returning back in the following several local search moves. Same strategy is applied on

services, and by closing the most-opened services, all blocks passing on the services are

also closed. Furthermore, to prevent closing the same backbone block repeatedly, an

additional local memory is adopted to keep the diversification history.

With the closure of several essential blocks, artificial links might be used to carry

extra flows. Restoration process is applied to find an alternative block design and re-

cover the feasible traffic distribution. The local search will restart there when a feasible

solution is achieved.

The tabu search we proposed performs local search moves in the cycle-based neigh-

borhood. Compared with the cycle-based tabu search by Ghamlouche et al. [57], in

which the algorithm evaluates all the cycles coming from all the links, our local search

is restricted to the cycles deriving from blocks currently open, and we only adopt the

non-positive cycles. Furthermore, in our algorithm, we focus our attention on the design

decisions only, and leave the intra-yard flow determined by the network flow problem.

All these arrangements impel the procedure to converge faster, and enable us to find

superior solutions within logical solving time.

6.2 Slope Scaling with Ellipsoidal Search

Compared with DSND, the ISND with multi-stop services is based on the 3-layer

time-space network structure, which makes ISND much more complex. One major ad-

vantage of the 3-layer structure is to detail the relations between service sections and

blocks, however, it also puzzles the previous tabu search algorithm proposed on the 2-

layer structure. The effectiveness of the tabu search comes from the cycle-based neigh-

borhood applied, which provides good reduced cost evaluations for opening or closing

blocks. The cycle-based neighborhood fails on ISND because blocks are transported by

service sections but direct services in the 3-layer structure. For example, in the previ-
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ous structure, if closing a block also leaves one direct service empty, we count the fixed

service cost into the block closing contribution; while in the 3-layer structure, closing

a block does not lead to the change of services because only service sections are left

empty, i.e. services are only partly empty. All these require the development of a new

solution algorithm.

To develop a solution for the ISND, we applied the slope scaling method. Given the

defect of slope scaling on the general FMCND (as reviewed in Section 2.3), we adopt

a factor perturbation process similar with [44]. Moreover, a new population-based ap-

proach, named as ellipsoidal search is proposed to further improve the solution quality.

The overall procedure is guided by long-term memories, which conduct both factor per-

turbation procedure for slope scaling and ellipsoidal search procedure. In the rest of this

section, we detail slope scaling, long-term memory perturbation, ellipsoidal search and

the overall procedure, respectively.

6.2.1 Slope Scaling Procedure

In the ISND formulation, block building constraint (5.7) and train running constraint

(5.8) concern only binary design variables. Define R1-ISND a relaxed ISND by remov-

ing constraints (5.7) and (5.8). We observe, given a flow distribution x̃, it is easy to

produce the corresponding block design ỹ as well as service design z̃ underneath by

opening only blocks and services bearing car flow. The traffic distribution, together with

the open blocks and services thus form a feasible solution for the R1-ISND. Due to the

absence of constraints (5.7) and (5.8), the design ỹ(z̃) might be infeasible for the orig-

inal ISND. Nevertheless, solutions of the R1-ISND can be remedied by postponing or

advancing some open blocks and services, to release the overflows on some tracks and

in some yards. In this algorithm, we apply the slope scaling method to solve the R1-

ISND and generate feasible ISND solutions whenever good solutions of R1-ISND are

achieved.

To approximate the total cost in R1-ISND, two vectors of linearization factors are

defined, which are αb on each block b and βs on each service s. In each iteration,

linearization factors are modified to reflect the exact fixed costs. An Approximation
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Problem with factor α and β is defined as,

AP1(α, β) = min
∑
p∈P

∑
a∈A

capxap +
∑
p∈P

∑
b∈B

αbxbp +
∑
s∈S

βsxsp (6.5)

subject to traffic flow conservation constraint (5.2), car handling constraint (5.6), as well

as the flow capacity on trains (6.6) and blocks (6.7).

∑
p∈P

xasp ≤ us ∀a ∈ ASM, s ∈ S; (6.6)

∑
p∈P

xbp ≤ ub ∀b ∈ B. (6.7)

AP1(α, β) is a linear multicommodity capacitated network flow problem which can

be solved by the Simplex method, as we solve TRSP in tabu search. However, given the

larger size of ISND instance, it takes an overlong time and extra memory for the Simplex

method to reach an optimum. A heuristic solver based on the shortest augmenting path

algorithm is proposed to solve AP1, where flows are assigned to the lowest cost itinerary

with positive residual capacity. The residual capacity of an itinerary is the minimal

residual capacity on classification links and blocks passed. Moreover, on each block, we

also consider the train load capacity on all service sections used. Experiments in Section

7.2 show that the heuristic algorithm generates very good solutions with much shorter

solving time comparing with the Simplex method.

Given a setting of linearization factors, an AP1 is determined and solved, the flow

pattern x̃ then leads to a design where only blocks and services with positive car flows

are opened. If the total traffic flow on a block is positive, say
∑

p∈P x̃bp > 0 on block b,

ỹb = 1 and ỹb = 0 otherwise. Symmetrically, in the case the total workload
∑

p∈P xsp

on service s is positive, z̃s = 1, and z̃s = 0 on the contrary. Consequently, the total

design cost is the sum of fixed costs from open blocks and open services,
∑

b∈B|ỹb=1 cF
b +∑

s∈S|z̃s=1 cF
s . To reflect the total design cost, condition (6.8) should be satisfied.

∑
p∈P

∑
b∈B

αbx̃bp +
∑
p∈P

∑
s∈S

βsx̃sp =
∑

b∈B|ỹb=1

cF
b +

∑
s∈S|z̃s=1

cF
s (6.8)
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The left side of (6.8) is the second component in the AP1 objective (6.5), and it can be

rewritten as, ∑
b∈B|ỹb=1

αb

∑
p∈P

x̃bp +
∑

s∈S|z̃s=1

βs

∑
p∈P

x̃sp

As a result, we modify linearization factors with the following rules.

αb = cF
b/

∑
p∈P

x̃bp if ỹb = 1; (6.9)

βs = cF
s/

∑
p∈P

x̃sp if z̃s = 1. (6.10)

And the linearization factors of close blocks and close services remain unchanged. It is

seen that with this setting, condition (6.8) is respected.

Linearization factors at iteration i are denoted as α(i) and β(i). The initial factor

values are set as,

αb(0) = cF
b/ub ∀b ∈ B;

βs(0) = cF
s/(us|ASM(s)|) ∀s ∈ S.

We use the aggregated flow capacity (aggregation of capacities on component moving

links) in the β definition, because β is updated by the total workload xsp of the service.

By Kim and Pardalos [77], this setting provides an effective initial solution.

In iteration i, AP1 with factors α(i) and β(i) is then solved, and the outcome car flow

pattern is used to complete a R1-ISND solution by opening only blocks and services with

positive flow. Linearization factors in iteration i+1 are then updated by (6.9) and (6.10),

and the procedure proceeds to solve a new AP1 problem.

The overall history of slope scaling is stored in long-term memories, which track

three service and block utilization measures over all iterations (the measures are not

re-initialized following perturbation and ellipsoidal search phases). The average flow,

peak flow and opening frequency on each block, as well as on each service, of the pre-

vious iterations are kept. For each block b, the average flow x̄b is the mean of previous

car flows on the block, defined as
∑

1≤j≤i

∑
p∈P x̃bp(j)/i, where x̃bp(j) is the flow of
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traffic p on block b in iteration j. The peak flow x̂b is the maximal car flow on the

block so far, x̂b = max1≤j≤i{
∑

p∈P x̃bp(j)}. The opening frequency fb is the number

of iterations with
∑

p∈P x̃bp > 0. Similarly, on each service s, the average workload

x̄s =
∑

1≤j≤i

∑
p∈P x̃sp(j)/i, peak workload x̂s = max1≤j≤i{

∑
p∈P x̃sp(j)}, and fs de-

notes the opening frequency of service s. The long-term memories are used within the

perturbation and ellipsoidal search phases.

In the slope scaling procedure, each time we find identical flow distributions in con-

secutive iterations, there is no update for linearization factors and slope scaling is stalled.

Moreover, we observe, though a different solution may have been obtained for the AP1

problem, the corresponding feasible R1-ISND solution might not improve with respect

to the previous one, and sometimes it takes many iterations to converge to a local optimal

R1-ISND solution. Given the large magnitude of the 3-layer time-space network, solv-

ing a series of AP1 could be rather time-consuming even if they are solved heuristically.

Another parameter Inonimprove
max is used to regulate the maximum number of continuous

iterations without any improvement on the current objective of R1-ISND. Therefore, we

stop slope scaling iterations either it fails to determine a different traffic distribution in

continuous slope scaling iterations or we reach the maximum number of non-improved

iterations according to the R1-ISND solution.

The local optimal solution of R1-ISND obtained may have overflows on tracks and

yards, and violates block building constraints as well as train running constraints in the

ISND formulation. To regain feasibility, we slide some open blocks/services forward

or backward along the time horizon, in order to lighten the block building load at some

yards and reduce services on some tracks. Based on a R1-ISND design ỹ(z̃), a sliding

problem is solved to search feasible solutions for the ISND. Similar as defined in Sec-

tion 6.1.3, the sliding problem is a small-size ISND, with only open blocks/services in

ỹ(z̃), and their parallel neighbors. Parallel neighbors of a service include services with

the same train route and transit time, departing at the previous and the later time point.

Parallel neighbors of a block are defined similarly. Such a sliding problem has only a

small portion of design variables, and can be efficiently solved by a MIP solver. It is

possible that a sliding problem does not return any feasible solutions according to the
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given set of open blocks/services and their parallel neighbors. The infeasibility implies

that there exist too many blocks building at some yard at a time or too many services

running on some track simultaneously. In this case, penalties are associated to the rel-

evant linearization factors following the diversification strategy (to be introduced in the

next section), and we continue with the next iteration of slope scaling.

6.2.2 Factor Perturbation

Factor perturbation phase disturbs linearization factors in order to guide the search

into a promising area of the solution space where slope scaling can again proceed. Per-

turbations are implemented by incenting or reducing linearization factors. Two per-

turbation strategies are proposed, diversification and intensification, which follow the

same guideline as the diversification and intensification in tabu search. In diversifica-

tion, we would like to move the search into a not-yet explored area of the solution space,

by making some blocks/services that attract flow frequently less interesting and some

blocks/services more interesting if they are rarely used. On the contrary, intensification

solidifies the blocks/services with high flow frequency, and leaves the rest less interest-

ing.

In either diversification or intensification, one key question is which linearization

factors should be adjusted. To measure the blocks/services frequently or rarely used,

four frontier values δ+, δ− and θ+, θ− are defined by opening frequency fb and fs. The

average opening frequency f̄B and f̄S , and the standard deviation σB and σS are first

calculated. For blocks, δ+ and δ− are computed as, δ+ = f̄B + ω+σB, δ− = f̄B − ω−σB.

For services, we have θ+ = f̄S + ω+σS and θ− = f̄S − ω−σS , where ω+ and ω− are

parameters. δ+ and δ− mark the frontiers of block frequency. If frequency fb is bigger

than δ+, block b is viewed as frequently used. On the contrary, when fb < δ−, we say b

is rarely used in previous iterations. Same rule applies on services with frontiers θ+ and

θ−.

While δ+ and δ− regulate the blocks frequently or rarely used, rewards or penalties

are associated to the linearization factors so that the blocks are more/less interesting in

the following iterations. The extent of the reward or penalty is conducted by the ratio
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µb = x̄b/x̂b (µb = 0 if x̂b = 0). The ratio is used to estimate the flow variability.

When µb is close to 1, it means the historical car flows on block b are always close to

the maximal flow. If µb approaches 0, the amounts of flow attracted by block b varies

significantly along iterations. In diversification, higher penalties are added to the blocks

with high variability, and less penalties to those with small variations. We define in

diversification, for each block b ∈ B, αb = αb(1 + µb) if fb ≥ δ+, and αb = αbµb if

fb < δ−. Symmetrically, in intensification, higher rewards for less variations, and lower

rewards for higher variations. For each block b ∈ B, αb = αb(1 − µb) if fb ≥ δ+, and

αb = αb(2−µb) if fb < δ−. Same rule is applied on services with definition µs = x̄s/x̂s

(µs = 0 if x̂s = 0). When diversification, for each service s ∈ S, βs = βs(1 + µs) if

fs ≥ θ+, and βs = βsµs if fs < θ−. In intensification, βs = βs(1− µs) if fs ≥ θ+, and

βs = βs(2− µs) if fs < θ−.

As we have two perturbation strategies, the next question is which one, either diversi-

fication or intensification, should we choose at each perturbation. Apparently, a sequence

of continuous intensifications emphasize and explore the local area well with a price of

ignoring other promising areas, and over-diversified search covers more blocks/services

with a chance of missing the optimum. To avoid the situation where we intensify or

diversify too much, two other parameters are defined. Let I inten
max denote the maximal

number of continuous implementations of intensification, and Idiver
max for diversification.

I inten
max prohibits repeated intensifications and Idiver

max forces the process exit diversification

and look deeper for better solutions.

After perturbation, the slope scaling then restarts from the new linearization factor

setting. We denote SS+LMP the procedure which iterates between slope scaling (SS)

and long-term memory perturbation (LMP).

6.2.3 Ellipsoidal Search

As the slope scaling procedure is only applied indirectly, sometimes ISND solutions

suggested by the R1-ISND leave a considerable optimality gap. Given a series of fea-

sible solutions produced by sliding problems, we intent to incorporate the promising

attributes shown from the solutions, and generate better solutions. A new population-
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based algorithm is proposed.

The algorithm derives from the path relinking scheme: during the slope scaling pro-

cedure, each time a sliding problem is solved, the obtained feasible solution is added

into a reference solution set if applicable; then two reference solutions in the reference

set are selected, one as the initial solution and the other as the guiding solution. Instead

of finding a path between two solutions in a neighborhood as the classical path relinking,

we shape an ellipsoid space, and apply a MIP solver to explore the ellipsoid space. The

initial solution is then removed from the reference set. If the MIP solver finds a different

solution than the guiding solution, the reference set is updated by the new solution, and

the algorithm restarts, otherwise stop. We name this new method ellipsoidal search, and

a pseudo code is given in Figure 6.10. In the following, we discuss the major components

in the ellipsoidal search, including reference solution selection and ellipsoid shaping.

1. Given a reference solution set.

2. Select guiSol and iniSol.

3. Shape an ellipsoid space.

4. Generate an intermediate feasible solution in the ellipsoid with MIP solver.

5. Remove iniSol from the reference set.

6. If the intermediate feasible solution updates the reference set, go to step 2.

7. Stop.

Figure 6.10: Ellipsoidal Search Procedure

In our algorithm, feasible reference ISND solutions are provided during the slope

scaling by solving sliding problems, and the quality and diversity of reference solutions

are supported by factor perturbations, which is conducted by long-term memories.

Identification of the initial and the guiding solution is critical as “seeds” are im-

portant to an evolutionary algorithm. Several policies for choosing initial and guiding

solutions are investigated by Ghamlouche et al. [58] regarding the FMCND problem.

Their conclusion indicates that two policies are of the most interesting and with compa-
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rable performance. One is to define guiding solution as the best solution in the reference

set, while initial solution as the solution with the maximum hamming distance from the

guiding solution; the other is to define guiding solution and initial solution as the most

distant solutions in the reference set. The success of these policies emphasized the im-

portance of diversity of the reference solutions. The first policy is more theoretically

sound, as on one hand, it preserves the overall best solution, and on the other hand it

provides the maximal variation. We choose to work with this referent selection policy.

Shaping an ellipsoid also has great impacts to the quality and efficiency of the proce-

dure. An ellipsoid solution space is built with the local branching idea. Equipped with

the initial solution and the guiding solution, we first calculate the hamming distance be-

tween the two solutions, denoted it as k. An elite problem is defined as an ISND with

k-distance cut, and fed with the initial solution as the starting solution. The elite prob-

lem therefore explores the k-opt neighborhood of the initial solution, which is defined

as all solutions with maximal k design variable status changed from the initial solution.

Apparently, the k-opt neighborhood of the initial solution covers the guiding solution.

The k-distance cut in the elite problem dramatically reduces the solution space, however

with a large number of design variables, the k-opt neighborhood could still be very big.

The k-opt neighborhood is further trimmed, and an ellipsoid (illustrated in Figure 6.11)

is shaped.

The process of shaping an ellipsoid space in the elite problem includes variable se-

lection and variable fixing. Variable selection chooses only a set of decision variables

to be considered in the elite problem in order to further reduce the searching space, and

variable fixing preserves some variables with values according to the guiding solution, to

ensure the proper searching direction. According to the nature of ISND, we have choices

to select or fix binary variables basing on either block or service decisions as blocks and

services are interrelated. Compared with block decisions, service decisions generally

have more impacts as each service is shared by many blocks. Missing one key service

variable in the elite problem will severely deteriorate the solution quality. As a result,

in the following we shape ellipsoids based on block decisions, i.e. select and fix block

decision variables, and include all service variables accordingly.
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ISND solution space

k−opt neighborhood

initial

guiding

ellipsoid

Figure 6.11: Illustration of Ellipsoid within k-opt Neighborhood

Variable selection elaborately builds a block variable set. Denote Bini the set of open

blocks in the initial solution and Bgui the set of open blocks in the guiding solution.

An intuitive proposal is to define the variable set as the union of open blocks in both

solutions, Bini∪Bgui. However, one may want to further improve the variable set. There

are trade-offs: on one hand, one would limit the variable set to improve the efficiency

because removing one block from the variable set leads to the deduction of a number

of flow variables; on the other hand, without missing the optimum, one would like to

include all blocks with promising characteristics.

To enrich the variable set, we explore the long-term memories. That is, a block not in

Bini ∪ Bgui also has its chance to be considered in the elite problem, if it shows steadily

in the previous slope scaling iterations, which is regulated by long-term memories, x̄b

(average flow on block b) and x̂b (maximal flow on b),

x̄b/x̂b > λ (6.11)

where λ is a parameter. Only blocks satisfying inequality (6.11) are included in the elite

problem.
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An alternative for variable selection is to regulate the size of the block variable set.

Other than the block variables in Bint ∪ Bgui, vacancies in the variable set are filled with

blocks following the sequence indicated by x̄b/x̂b. Blocks bearing steady flows are filled

first, until the variable set reaches the predefined cardinality. The variable set size is

defined with parameter ϕ,

|Bgui| × ϕ (6.12)

The two variable selection variants will be compared in Section 7.2. As a result, in

the elite problem, only a rather small portion of block variables picked by one of the

regulations above is considered.

Variable fixing ensures the searching direction from the initial towards the guiding

solution, and accelerates the solving procedure of elite problems. Among the selected

block variables, blocks open in both initial and guiding solutions (in set Bint ∩ Bgui) are

fixed to open (= 1) in the elite problem. Furthermore, the common flows from both

reference solutions are also fixed.

Because the slope scaling process actually addresses the R1-ISND problem, and the

ellipsoid search intensifies the ISND problem directly, the trajectory included by ellip-

soid search is not a superposition with slope scaling.

6.2.4 Overall Procedure

The overall procedure incorporates the ellipsoidal search (ES) with SS+LMP, and

the SS+ES+LMP is indicated in Figure 6.12.

The overall procedure is organized into many phases, which are separated by factor

perturbations. In each phase, a sequence of slope scaling iterations find a local best of the

R1-ISND, and sliding problems are solved to produce feasible solutions of the ISND. If

the new solutions contribute to the reference set, ellipsoidal search is implemented before

factor perturbation is triggered. The procedure repeats until either we meet the maximal

solving time or the maximal number of iterations of slope scaling.

The SS+ES+LMP approach presented mixes up several heuristic ideas, and takes

advantage from both slope scaling converging speed on large instances and efficient per-
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1. Set initial values for linearization factors α, β.

2. Until factor perturbation condition is satisfied, repeat,

• generate an approximation problem AP1(α, β);

• solve the AP1(α, β) with the augmenting path heuristic;

• update factor α, β according to the traffic distribution.

3. Solve sliding problems to generate a series of feasible solutions.

4. If reference solution set is updated, implement ellipsoidal search.

5. If stopping criteria are met, stop.

6. Disturb linearization factors α, β based on long-term memories, go to 2.

Figure 6.12: Slope Scaling + Ellipsoidal Search + Long-term Memory Perturbation

formance of MIP solvers on small ones. On one hand, compared with Crainic et al. [44]

and Kim et al. [79], the defect of slope scaling method is further amended by the pro-

posed ellipsoidal search algorithm. On the other hand, compared with Hewitt et al. [65]

and Rodríguez-Martín and Salazar-González [104] who constantly “push” the search

with a MIP solver from the current best, our method only shapes an ellipsoid space

whenever slope scaling returns good feasible solutions, then MIP solvers are applied to

find “linking” between reference solutions. In addition, while applying MIP solvers to

explore a local area, ellipsoidal search is more directionally conducted (from the initial

to the guiding solution), and accelerates the procedure as common open variables are

fixed.

6.3 A Hybrid Heuristic

We observe, due to the fact that each block consists of a series of service sections,

in each ISND instance there exist much more block variables than service variables, and

the very large block variable set expands the instance size dramatically together with the

traffic flows on each block. Any application of the ISND model to a very-large-scale
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rail company leads to a huge number of variables. Finding the optimal solution, even a

near-optimal solution for such problems is very difficult.

Given the path property of blocks, block variables can be considered implicitly rather

than explicitly. In this section, we assume that only transportation demands and potential

services are available in the problem setting, and we solve the ISND by dynamically

generating blocks during the solving procedure.

The methodology is based on an innovative slope scaling scheme, where only the

decision variables in the service layer are linearized in the approximation problem. By

preserving the blocking decision variables, the approximation problem shows a network

design formulation. Tabu search heuristic is applied to solve the approximation problem.

The new slope scaling scheme also allows integrating column generation idea to address

large instances. We propose a heuristic column generation procedure, denoted block

generation, which is implemented in the tabu search process at each time the cycle-based

neighborhood is evaluated.

The overall procedure thus performs in a double looping organization: in the outer

loop, slope scaling improves the ISND solution together with ellipsoidal search, and

inner loop tackles approximation problems by tabu search, while providing interesting

block variables with block generation. The outer loop is guided by long-term memories,

and the inner loop is conducted by tabu memories. The major algorithmic components

in both outer loop and inner loop are detailed as below.

6.3.1 Outer Loop

In Section 6.2, we applied slope scaling to solve the ISND by linearizing all deci-

sion variables in the approximation problem, and the approximation problem presents a

network flow formulation. However, by doing so, one loses the track of block decisions

in the approximation problem. In order to preserve the block variables and eventually

generate blocks dynamically, we propose a new slope scaling scheme where only service

design costs are approximated.

Given a feasible flow distribution x̃, a service s should be open if the workload on

the service is positive. Say
∑

p∈P x̃sp > 0, z̃s = 1. When a service is open, the fixed
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service cost cF
s must be paid. We approximate the fixed service costs with a vector of

linearization factor β, each defined on a service s. To describe the fixed cost on a service,

βs is adjusted according to equation (6.13) if service s is open in z̃.

∑
p∈P

βsx̃sp = cF
s z̃s (6.13)

An Approximation Problem with linearization factor β is thus formulated as follows.

AP2(β) = min
∑
p∈P

∑
a∈A

capxap +
∑
b∈B

cF
byb +

∑
s∈S

∑
p∈P

βsxsp (6.14)

subject to traffic flow conservation constraint (5.2), block load constraint (5.3), car han-

dling constraint (5.6), block building constraint (5.7), as well as train load capacity (6.6).

To distinguish with the AP1 problem in Section 6.2, we denote this approximation prob-

lem AP2.

The ISND objective (5.1) and AP2 objective (6.14) differ only at the last component,

where the service design costs are approximated by β. Three main observations emerge

according to the AP2 definition. First, AP2 also presents a FMCND formulation. Define

a surrogate flow cost for each service section c′lp =
∑

a∈ASM(l)(cap + βs) +
∑

a∈ASR(l) cap.

Each block is associated with a fixed cost cF
b and a surrogate flow cost c′bp for each

traffic p. c′bp is the sum of flow costs on the block path, where each component service

section has flow cost c′lp. Therefore, AP2 can be translated into a block network design

formulation, and the objective (6.14) can be rewritten as,

AP2(β) = min
∑
p∈P

∑
a∈ACW∪ACC∪ACH

capxap +
∑
p∈P

∑
b∈B

c′bpxbp +
∑
b∈B

cF
byb

Second, without service decisions, train running constraint (5.8) is omitted, and AP2 is

actually the approximation of a relaxation of ISND. We define R2-ISND as an ISND

without constraint (5.8). Third, any AP2 solution contains a flow pattern x̃ and a block

design ỹ, which can be intuitively converted to a R2-ISND solution by opening only

services used by the open blocks in ỹ. That is, in the case one of the service sections of
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s is used by b and ỹb = 1, z̃s = 1; z̃s = 0 on the contrary.

Denote β(i) the linearization factor setting at slope scaling iteration i. When AP2

with linearization factor β(i) is solved with the inner loop (to be explained in Section

6.3.2), an AP2 solution x̃ and ỹ is obtained. A solution of R2-ISND with service design

z̃ is thus achieved by opening only the services employed. Linearization factors β are

then modified to approximate the fixed costs for providing services in z̃. According to

condition (6.13), linearization factors β are updated following the regulation (6.15) if

service z̃s = 1, and remain the same otherwise.

βs = cF
s/

∑
p∈P

x̃sp (6.15)

Slope scaling repeats the above progress to improve the R2-ISND objective, until a

local optimum of R2-ISND is reached. Without constraint (5.8), a R2-ISND solution

might violate the train running capacity in ISND. To retrieve the feasibility of ISND,

some open services and blocks are slid along the time horizon. A sliding problem (de-

fined as same as in Section 6.2.1) is solved by MIP solver to produce feasible solutions

for the ISND.

To overleap from a local domain, and restart in a different area, slope scaling is per-

turbed by disturbing linearization factors. A similar perturbation method as Section 6.2.2

is applied. Long-term memories record the average workload, maximal workload, and

opening frequency of each service. Two same strategies for perturbations, intensification

and diversification are applied. Intensification incents the car flow on services with high

opening frequency by decreasing the corresponding linearization factors, and diversifi-

cation attracts more cars on services that seldom been used. In each perturbation phase,

either intensification or a diversification is performed by disturbing linearization factors

according to long-term memories. The decision on perturbation strategy is conducted by

parameters addressing the upper bound of continuous intensification/diversification.

Slope scaling process is therefore divided into phases by perturbations. Each phase

solves a sequence of AP2 until we reach a local optimum of R2-ISND, then sliding prob-

lems are solved to generate feasible solutions of ISND, which are saved in a reference
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solution set. Ellipsoidal search is applied to combine the attracting characteristics of

good solutions in the reference set, and further improve the solution quality.

The outer loop procedure is summarized in Figure 6.13.

1. Set initial values for linearization factors β.

2. While outer loop stopping criteria are not met,

• generate an approximation problem AP2(β);

• inner loop solves AP2(β);

• if factor perturbation criteria are met

– generate ISND solutions by solving sliding problems,
– ellipsoidal search,
– factor perturbation by long-term memories,

• else

– update linearization factor β.

3. Stop.

Figure 6.13: Outer Loop Procedure

From the initial setting of linearization factors β(i = 0), slope scaling iteratively

improves the R2-ISND solution. Factor perturbation criteria are set as either we find

identical block designs in consecutive iterations or reaching the maximum number of

iterations without improvement on the R2-ISND solution. If one of the above criteria

is met, a series of sliding problems are solved until there is no progress, and ellipsoidal

search is implemented to improve the ISND solution. Linearization factors are then

perturbed and slope scaling restarts if the stopping criteria are not met, which is generally

indicated by the maximal solving time.

6.3.2 Inner Loop

Each time linearization factors β are updated, inner loop is engaged to solve the

AP2(β). AP2 presents a complicated block network design formulation, and we intent
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to solve AP2 with dynamic generation of block variables in order to address very-large-

scale instances. The general column generation with the use of dual variables provides

an intuitive option, however, the method is insufficient for AP2. This is because the

additional attributes associated with blocks. Recall the block definition, the flow cost

of a block is the sum of the flow costs on its component service sections, transfer links

and transfer delay links. The fixed cost of a block is determined by its origin yard

(classification track occupancy cost cF
bo) and intermediate transfers (fixed swap cost cF

ba),

and by assumption, capacity ub and classification track occupancy time h(b) are decided

by the block origin. Apparently, the attributes of a block is determined when the block

path in block-layer projection is fixed. However, as transfers links contribute to both

block flow costs and fixed blocking cost, it is impossible to prove the lowest-cost block

path before we decide the flow on block.

The reason we choose cycle-based tabu search heuristic to solve AP2 is twofold.

First, according to one of the observations from the previous research: the efficiency

of slope scaling relies on the performance of the approximation problem solver. Even

though AP2 are solved heuristically, the short AP2 solving time enables the overall pro-

cedure to accommodate more slope scaling iterations, and eventually improve the solu-

tion quality. Second, unlike the link-based neighborhood where some links in the net-

work are maneuvered (opened or closed) and flows are redistributed accordingly, cycle-

based neighborhood deviates flows and links are opened or closed corresponding to the

new flow pattern. Aiming at flows, a residual value (car flow volume to be deviated in

the neighborhood) is selected before each move evaluation in the cycle-based neighbor-

hood. With a selected residual value, we are able to address the fixed costs associated

with blocks, and it facilities the block generation.

In Section 6.1, we applied the cycle-based neighborhood and developed a tabu search

heuristic to solve the DSND problem with non-stop services. Without the service design

variables, each AP2 here can be viewed as a special DSND case where fixed service costs

are all set to 0. A similar tabu search algorithm is applied to solve each AP2. Additional

modifications are made to adapt in the slope scaling scheme. First, the eligible block

design definition is a little different as train running constraints do not present in AP2.
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Second, as in the consecutive slope scaling iterations, only a portion of linearization

factors are updated, so that only the surrogate flow cost c′bp on some blocks are changed

and block fixed costs remain the same. That implies, AP2(β(i − 1)) and AP2(β(i)) are

kind of similar. As we are solving a series of similar AP2, there is no need to solve each

AP2 from scratch, and we use the best solution of AP2(β(i − 1)) as the initial solution

of AP2(β(i)). Third, we incorporate the block generation procedure to generate more

interesting blocks during the tabu search.

In the 3-layer time-space network, blocks show a link-path duality: from the car

layer perspective, each block is a link connecting an OUT node to an IN node; from the

block layer perspective, each block is a path. The link nature causes it impractical to

price blocks implicitly in the car-layer projection. Therefore, when generating blocks,

we work on the block-layer projection, which consists of service sections, transfer links,

and transfer delay links.

The journey of a block is described by a path from an OUT node to an IN node in the

block-layer projection. Define eligible OUT→IN node couple in the block-layer projec-

tion, where OUT and IN are from different yards and at different time point. Given an

eligible node couple, we might have multiple paths from the OUT to the IN node consist-

ing of a series of service sections connected by transfer links and transfer delay links.

We define a kernel block set for each eligible node couple, where all blocks connecting

the origin OUT node to the destination IN node are collected.

During the tabu search procedure, a γ-residual network is constructed with two types

of arcs: forward arcs and backward arcs. A forward arc represents allocating γ more flow

on the car-layer link/block, and backward arc depicts that γ unit flow is withdrew from

the link/block. Residual arcs are derived from either blocks or car-layer links. When

constructing a γ-residual network, we focus on the residual arcs from blocks as car-

layer links are directly assessable. Given an eligible node couple, say (i, j), where i is

the OUT node, and j is the IN node. Each block in the kernel block set may supply a

forward arc (i, j)+ and a backward arc (j, i)− for the γ-residual network. That is, in the

γ-residual network, we might have multiple forward and backward arcs connecting the

node couple.
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After the γ-residual network is constructed, the backward arc where γ derives is first

selected. We then determine a cycle with the lowest cost, which is made of the selected

backward arc, together with a shortest path in the residual network connecting the target

to the source of the backward arc. The shortest path consists of a series of residual arcs,

either forward or backward. Now suppose the shortest path uses a residual arc between

an eligible node couple (i, j) in the γ residual network, If a residual arcs from j to i is

used (if there exists any), it must be the backward arc with the lowest cost among all

(j, i)−. If a forward residual arc from i to j is used, only the forward arc (i, j)+ with

the lowest cost needs to be considered. As backward arcs only derive from open blocks

which are already in consideration, our interest exists in the forward residual arc with

the lowest residual cost connecting the OUT→IN node couple. That is, we are interested

in finding in each kernel block set the block with the capacity to carry extra γ flow,

suggesting the lowest-cost forward arc.

Finding such blocks equals to finding lowest-cost paths for each eligible node couple

in the block-layer projection. Equipped with a residual value γ provided by the cycle-

based neighborhood, we are able to linearize the fixed cost contribution from transfer

links. A conceptual (β, γ)-block layer is constructed, where we have service sections

(only the ones with at least γ residual capacity), transfer links and transfer delay links,

each with a customized flow cost. The customized flow costs are regulated as below.

Average cost definitions are applied given the γ residual value from tabu search are con-

sidered as unified flow. (6.16) gives the surrogate flow cost on each service section,

which is the average flow cost on service sections with linearization factor effects. Cus-

tomized transfer link cost is presented in (6.17), where the block fixed cost component

is linearized by γ. Average transfer delay cost is shown in (6.18).

c′l =
∑

a∈ASM(l)

(∑
p∈P cap

|P|
+ βs(l)

)
+

∑
a∈ASR(l)

∑
p∈P cap

|P|
∀l ∈ L; (6.16)

c′a =

∑
p∈P cap

|P|
+

cF
ba

γ
∀a ∈ ABT; (6.17)

c′a =

∑
p∈P cap

|P|
∀a ∈ ABH. (6.18)
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On the (β, γ)-block layer, we find the shortest (most cost efficient) path for every eli-

gible OUT→IN node couple. The extended Bellman-Ford algorithm proposed in Section

6.1 is applied, which is further modified to ensure the shortest path generated respects

the block definition, that is, each block starts and ends with service sections. To achieve

this, we first find shortest paths from the origin OUT node (say node i) to an OUT nodes

(say node q). According to the network structure, such paths either stop at the origin

OUT node q = i or end with a transfer link. These paths are then attached with services

sections (q, j) departing from the OUT node q, and the distance (cost) at the final IN node

j is updated and labeled.

When a new block path is generated, a block is obtained with a flow cost cbp (sum of

the flow cost on component links), a fixed cost cF
b (sum of cF

bo from the origin yard and

cF
ba from transfer links passed), a capacity ub and a building time h(b) (from origin yard).

Such a block leads to a forward arc which is able to carry γ extra flow from the origin

OUT node to the destination IN node with the lowest residual cost, and will be considered

when we build cycles in the γ-residual network.

Our block generation process has similarities and differences with the general col-

umn generation process. The AP2(β) with current block set serves the restricted master

problem, and the shortest path algorithm acts as the pricing function to select the inter-

esting blocks to be enclosed. However, compared with the column generation applied on

network flow problems where paths are selected according to dual variable information

and then flows are re-distributed, we preselect a flow amount γ, linearize the flow cost

on each link, generate more paths (blocks), and feed them into tabu search to further

modify the flows.

The tabu search is guarded from vain looping by tabu memories where tabu tenures

are saved, however, when solving AP2, tabu tenures are only associated with blocks.

When the status of a block has been changed (opened or closed), a tabu tenure is ran-

domly picked in a predefined integer range and associated to the block. After each move,

the tabu tenure is updated by −1 if positive. Another functionality of tabu memory is to

prevent the search from infeasible domains. Each time a minimum-cost cycle is calcu-

lated, the block building constraint is verified first. If the cycle is leading to a neighbor
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block design where block building constraints are violated, relevant blocks are sent to

the tabu memory, and we restart to calculate next non-tabu cycle.

Same as the previous tabu search, processes have been applied to direct the search

into/out of specific searching areas. In the case a new best AP2(β) solution is found,

one would like to look deeper in the area and try to locate other good solutions. Cycles

of each demand are evaluated with an assumption that all flows from other traffics are

fixed. In the case there is no or just minor improvements in the last move, it is very

possible that the tabu search is restricted in a local area. To diversify the tabu search,

long-term frequency memories from outer loop are explored, and open blocks hauled by

the frequently-opened services are forced to close.

The inner loop procedure is recapitulated in Figure 6.14. The best solution of the last

AP2(β(i−1)) provides the starting solution for AP2(β(i)). From the solution, a sequence

of moves in the cycle-based neighborhood thus improves the AP2(β) solution, and each

time we evaluate the neighborhood with a residual value γ, on the (β, γ)-block layer,

blocks are generated to enhance the block set. Inner loop stopping criteria are indicated

by the maximal number of tabu search moves or maximal number of continuous non-

improved moves according to the AP2(β) solution.

6.3.3 Overall Procedure

We denote the new hybrid algorithm the BEST method as Block generation, Ellip-

soidal search, Slope scaling and Tabu search are integrated in the compound heuristic.

The overall BEST procedure starts with an initialization phase, where an initial set of

blocks B′ is generated by building a block on each service section. That is, only “direct”

blocks are generated. For those blocks, the block flow cost equals to the flow cost on

the service section used, the block fixed cost and block load capacity come from the

block origin. The SS+ES+LMP heuristic is applied to provide an initial ISND solution

on the given set of blocks. Preliminary linearization factor β(0) in BEST are then set

to approximate the service fixed costs from the initial ISND solution, and the rest of the

initial solution (flow distribution and block design) is adopted as the starting solution

of AP2(β(0)). The algorithm then starts the outer loop to improve the ISND solution,
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1. Given AP2(β), and known block set B′.

2. While inner loop stopping criteria are not met,

• reset minCycle;

• for each open block b in curSol,

– calculate the flow value γ on b,
– generate blocks for each eligible OUT→IN node couple,
– include new blocks into set B′,
– construct a γ-residual network,
– find the lowest-cost cycle starting from the backward arc representing

block b,
– update the minCycle;

• deviate flow following the minCycle, and change the block design;

• distribute traffic on the new block design.

3. Stop.

Figure 6.14: Inner Loop Procedure

where each AP2 is solved with inner loops.

Compared with the SS+ES+LMP heuristic, BEST heuristic presents a quite algorith-

mic difference. We propose a new slope scaling scheme within BEST, which basically

provides a decomposition of the 3-layer structure: one block network design problem

in the lower two layers (car-layer projection) and one block generation problem in the

upper two layers (block-layer projection). Keeping the exact block design costs in the

objective, AP2 in the lower layers presents a better approximation for the original ISND

than AP1 in SS+ES+LMP. However, by preserving the block decisions, AP2 shows a

FMCND formulation. Comparing with the network flow formulation of AP1, the com-

plex network design formulation of AP2 generally leads to a longer computing time even

we solve them heuristically, but the trade-off is we are now working on smaller AP2 with

much less variables than AP1.



CHAPTER 7

COMPUTATIONAL RESULTS AND DISCUSSION

The performance of the proposed algorithms is analyzed in this chapter. According

to different models, we first generate sets of random instances, and calibrate the main

parameters and procedures conducting the solving process. Algorithm efficiency is then

tested on simulant instances with the overall best parameter setting.

To evaluate the performance, algorithms are compared with the standard branch-and-

bound algorithm offered by a well-known mathematical package, CPLEX v10, which is

also used as the MIP solver embedded. All programs are coded in C++, and tests are

implemented on computers with 2.4Hz CPU and 16 GB of RAM, operating under Linux.

The required input of the DSND and ISND model includes the physical character-

istics, demand pattern, as well as potential services and blocks. Deriving from the rail

system, physical network features and demand pattern are straightforward, and can be

easily accessed. To enumerate candidate services, service routes are picked and com-

bined with possible speeds and stops. The complete service list is obtained by departing

all promising route-stop-speed combinations at each time point in the planning horizon.

Service sections from the service list are connected by transfer links and transfer

delay links in the block layer to generate potential blocks. During the generation proce-

dure, additional restrictions can be integrated. Such restrictions come from equipment

availability, environment, operating time, transportation laws, human resources, etc. For

example, the blocks on over-zigzag routes are shunned; temporal (e.g. holiday) regula-

tions of yards. These application constraints help us capture the essential attributes of

the real data, and effectively prune the irrational blocks.

The instances tested are randomly generated. Even with the same physical magnitude

and the same time horizon, random instances differ greatly in the number of blocks and

services. Moreover, various constraints on different operations with diverse resources

make it impossible to unify the compact/loose concept between all capacities and flows

in the multi-layer time-space network. The relative ratio between fixed cost and flow cost
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is also hard to specify because we have fixed costs from both blocks and services. As a

result, we leave the variance of the instances to randomicity, and for each combination

of physical magnitude and time horizon, instances are generated with increasing demand

numbers to roughly partition the car flow density.

7.1 Results for Tabu Search

3 sets of direct service instances are generated to test the tabu search algorithm. Set

D-S includes the small instances with only 4 to 5 yards and a time horizon with 10 time

periods. Set D-M is the medium set, and the instances in set D-M have 7 yards with

either 10 or 14 time periods. In set D-L, the instances vary from 7 to 10 yards with 14

time periods, which are very large and difficult to solve.

Instance parameters are shown in Table 7.I, 7.II, and 7.III, where the columns hold

the instance name, number of potential blocks, number of possible direct services, num-

ber of yards, number of tracks, time dimension and demand number. Three tables show

that the appended time dimension and the 2-layer structure multiple the network scale.

Even for the smallest instance with only 4 yards, we generate hundreds of blocks and end

up with more than 10, 000 variables. Moreover, with the increase of the number of yards

and tracks, as well as the length of the time horizon, the size of the instances increases in

an exponential fashion. For large instances with 10 yards and 14 time periods, we easily

produce over 120, 000 blocks, and over 100 million flow variables.

Inst Block D-Serv Yard Track Time Demand
ds01 1340 400 4 10 10 40
ds02 720 280 4 10 10 80
ds03 660 280 4 10 10 120
ds04 1780 560 5 14 10 100
ds05 1420 440 5 14 10 150
ds06 1140 350 5 14 10 200
ds07 1790 680 5 18 10 50
ds08 1050 500 5 18 10 100
ds09 1420 620 5 18 10 150

Table 7.I: Instance Parameters: Set D-S
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Inst Block D-Serv Yard Track Time Demand
dm01 9310 2140 7 20 10 150
dm02 5760 1440 7 20 10 200
dm03 6740 1240 7 20 10 250
dm04 6240 2300 7 32 10 200
dm05 2970 1230 7 32 10 250
dm06 5730 2040 7 32 10 300
dm07 29092 3080 7 20 14 250
dm08 80374 3136 7 20 14 300
dm09 19824 2212 7 20 14 350

Table 7.II: Instance Parameters: Set D-M

Inst Block D-Serv Yard Track Time Demand
dl01 35014 6356 7 32 14 450
dl02 9212 3556 7 32 14 500
dl03 17570 3528 7 32 14 400
dl04 99946 15274 10 60 14 400
dl05 126490 18872 10 60 14 500
dl06 116494 13356 10 60 14 600
dl07 39172 16464 10 60 14 700
dl08 81298 23072 10 60 14 800
dl09 124488 22358 10 60 14 900

Table 7.III: Instance Parameters: Set D-L

7.1.1 Parameter Calibration

The major parameters guiding the tabu search algorithm are calibrated here.

• Tabu tenure is the most important parameter in a tabu search. A proper setting

of tabu tenure prevents the search from cycling without constraining it too much.

Each time a tabu status is updated, either in block tabu list or service tabu list, a

random tenure is selected in the interval and is associated to the according block

or direct service. Two intervals, [7, 15] and [10, 20] are proposed.

• To conduct the intensification phase, a threshold is used to determine the good

solutions. When the gap between the current solution and the best solution so far

is less than the threshold, the intensification phase is triggered. Two values, 5%

and 7%, are compared.
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• The diversification percentage figures out the variance range in each diversification

phase, and manages the searching scope of the tabu search. Either the 8%, 10%

or 15% top-frequency blocks/services are closed in the tabu search diversification

phase.

A total of 12 parameter setting combinations are thus examined. Calibration experi-

ments are implemented on 9 instances (3 instances randomly picked from each instance

set), which are each solved with all parameter settings. The calibration experiments end

when we reach the 20 continuous non-improved local searches. We rank the parameter

combinations for each instance according to both solution quality and solution time. A

score of 10 to 1 is assigned to each of the first 10 places on the basis of solution quality

and solution time respectively. The better the solution, the higher the solution score;

the longer the solution time, the lower the time score. The scores on each problem are

summed up and displayed in Table 7.IV, where the first three columns present the set-

ting, the two columns in the middle give the solution score and time score, and the last

column reports the total score.

TabuTenure IntensThreshold DiversRatio Sol. Score Time Score Ttl Score
[7,15] 5% 8% 47 43 90
[7,15] 5% 10% 41 51 92
[7,15] 5% 15% 64 30 94
[7,15] 7% 8% 46 39 85
[7,15] 7% 10% 35 48 83
[7,15] 7% 15% 59 27 86

[10,20] 5% 8% 48 40 88
[10,20] 5% 10% 35 32 67
[10,20] 5% 15% 49 47 96
[10,20] 7% 8% 35 41 76
[10,20] 7% 10% 42 45 87
[10,20] 7% 15% 57 35 92

Table 7.IV: Tabu Search Parameter Calibration

Statistics in Table 7.IV show that setting ([7, 15], 5%, 15%) gives the best solutions,

and setting ([7, 15], 5%, 10%) leads to the shortest solution times. Parameter setting

with TabuTenure = [10, 20], IntensThreshold = 5% and DiversRatio = 15%
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achieves the highest total score, and balances the trade-offs between solution quality and

efficiency. The tabu search experiments in the following are conducted with this setting.

7.1.2 Result Analysis

The proposed tabu search algorithm is tested on the instances in set D-S, D-M and

D-L respectively.

For comparison purposes, the instances are first solved by CPLEX. The CPLEX

solver stops either when the optimum is found or when we reach the maximum CPU

time (t = 10 hours = 36, 000 sec).

Numerical results of the 3 instance sets are reported in Table 7.V, 7.VI, 7.VII re-

spectively. Comparison tables are divided into 3 groups. The first group is the CPLEX

solution, including the best solution, solution time (in second), and the optimal gap. The

second group is the tabu search solution, which terminates at 20 non-improved local

searches. Tabu search solution, solution time, solution gap with the CPLEX solution,

and number of local search iterations are reported. Longer runs are preformed to further

illustrate and analyze the heuristic’s behavior. When the tabu search program stops at a

maximum of 300 local searches, the results are shown in the third group. Same as the

CPLEX solution, tabu search always ends after reaching the maximum CPU time. All

results are rounded to integer for the sake of display.

The conclusion that emerges from the first instance set is that for small instances, the

proposed tabu search algorithm is proven to be efficient to find optimal or near-optimal

solutions within a short time. Compared with CPLEX, which solves all the instances, our

tabu search solution (stop at 20 non-improved iterations) achieves the average optimal

gap 0.81% within an average 40% of solution time.

The results displayed in Table 7.VI prove the robust performance on medium in-

stances. Where CPLEX fails to prove the optimality, tabu search finds good solutions

which are close to the best solution yielded by CPLEX, yet within a much shorter solu-

tion time. Moreover, with the increase of the instance, tabu search results approach and

start to catch up with the best CPLEX solution. When the optimal gap is considerable,

we have a better opportunity to outperform CPLEX. On set D-M, the mean CPLEX gap
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Inst CplSol time(s) OptGap TS.Sol time(s) CplGap Iter TS.(300i) time(s) CplGap Iter
ds01 33670 100 0.00% 33670 25 0.00% 26 33670 497 0.00% 300
ds02 57412 108 0.00% 57631 176 0.38% 39 57630 2401 0.38% 300
ds03 88099 282 0.00% 88099 124 0.00% 21 88099 6225 0.00% 300
ds04 87435 2037 0.00% 87934 492 0.57% 23 87619 7669 0.21% 300
ds05 117000 7819 0.00% 118975 776 1.69% 28 117810 10583 0.69% 300
ds06 147273 11057 0.00% 149190 621 1.30% 22 149190 t 1.30% 268
ds07 46944 279 0.00% 47537 117 1.26% 28 46944 1046 0.00% 300
ds08 92601 2602 0.00% 92907 325 0.33% 21 92906 4884 0.33% 300
ds09 136493 1143 0.00% 138916 276 1.77% 26 138023 13056 1.12% 300
avg 0.81% 0.45%

Table 7.V: Tabu Search Results on Instance Set D-S

is 0.27%, and on average our heuristic takes only 31% of the solution time as CPLEX

does.

Inst CplSol time(s) OptGap TS.Sol time(s) CplGap Iter TS.(300i) time(s) CplGap Iter
dm01 138357 t 3.17% 142825 5137 3.23% 39 142825 24616 3.23% 300
dm02 206363 t 1.57% 211229 7315 2.36% 58 209084 t 1.32% 143
dm03 205191 t 2.77% 206432 10590 0.60% 53 206432 t 0.60% 139
dm04 181202 t 3.57% 183983 9760 1.53% 56 183983 t 1.53% 143
dm05 197500 t 1.51% 202724 5677 2.64% 34 200089 t 1.31% 117
dm06 213495 t 1.48% 215003 6433 0.71% 27 214120 t 0.29% 98
dm07 208530 t 5.34% 215738 10505 3.46% 34 209485 t 0.46% 94
dm08 261751 t 18.18% 232060 26190 -11.34% 41 232060 t -11.34% 58
dm09 286731 t 4.32% 284656 19429 -0.72% 51 284656 t -0.72% 75
avg 0.27% -0.36%

Table 7.VI: Tabu Search Results on Instance Set D-M

As expected, the solutions are further improved when we extend the solution process

up to 300 local searches. In a CPU time of 10 hours, we have identified higher-quality

solution for 8 out of 16 instances in set D-S and D-M if they are not optimized already.

The average optimal gap drops from 0.81% to 0.45% in set D-S, and in set D-M, the gap

with CPLEX decreases from 0.27% to −0.36% (improvement).

Table 7.VII summarizes the behavior of the cycle-based tabu search on large in-

stances, where our tabu search performs superiorly. The performance of CPLEX dete-

riorates fast with the increase of instances. With the same running time, we always find

better solutions than CPLEX with prominent advancement. The average improvement is

over 11%, and the maximal improvement reported reaches up to 14.18% (dl02). When

CPLEX fails to provide any solution, indicated by × as in the last part of the table,
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feasible solutions are always presented by the tabu search algorithm. One notices, in

most cases, we do not reach the 20 non-improved criteria and the procedure stops due

to the maximal solving time, which is also an indication of the complexity of the DSND

problem.

Inst CplSol time(s) OptGap TS.Sol time(s) CplGap Iter TS.(300i) time(s) CplGap Iter
dl01 304782 t 12.67% 284529 t -6.65% 38 284529 t -6.65% 38
dl02 337940 t 24.40% 291499 11541 -13.74% 25 290016 t -14.18% 61
dl03 282844 t 26.22% 244149 t -13.68% 30 244149 t -13.68% 30
dl04 393135 t 19.44% 360179 t -8.38% 32 360179 t -8.38% 32
dl05 456321 t 25.70% 397350 t -12.92% 21 397350 t -12.92% 21
dl06 × t - 459216 t - 13 459216 t - 13
dl07 × t - 555333 t - 16 555333 t - 16
dl08 × t - 510350 t - 13 510350 t - 13
dl09 × t - 639816 t - 10 639816 t - 10
avg -11.07% -11.16%

Table 7.VII: Tabu Search Results on Instance Set D-L

After the tests on three instance sets, we conclude that the tabu search algorithm on

the cycle-based neighborhood is able to yield very good solutions for the DSND model

studied. Compared with CPLEX, the heuristic helps to locate the optimal solution for

small-sized problems and near-optimal solutions for medium problems within a reason-

able amount of computation time. More importantly, the algorithm provides good quality

solutions for the large instances which are intractable for other methods.

7.2 Results for SS+ES+LMP

To test the SS+ES+LMP heuristic, 30 ISND instances are generated and divided into

2 sets. Both sets include instances with 5 to 10 yards and 14 to 60 tracks, while set C-S

has a shorter time dimension with 7 time periods and set C-L has 10. Instance parame-

ters are listed in Table 7.VIII and 7.IX. The two tables show that the multi-stop service

instances in the 3-layer structure dramatically expand the physical network, and they

generally present more potential services and blocks than the direct service instances.

Even the smallest instance with only 5 yards, we obtain thousands of blocks and end

up with hundreds of thousands of variables. On the instance with 10 yards and 10 time

periods, we easily produce over 300 million flow variables.
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Inst Block Service Yard Track Time Demand
cs01 1855 301 5 14 7 150
cs02 2765 266 5 14 7 200
cs03 2121 322 5 14 7 250
cs04 3241 259 5 18 7 250
cs05 1533 273 5 18 7 300
cs06 7497 413 5 18 7 350
cs07 39473 756 7 20 7 350
cs08 29449 693 7 20 7 400
cs09 19453 623 7 20 7 450
cs10 18424 840 7 32 7 450
cs11 9093 749 7 32 7 500
cs12 11102 700 7 32 7 550
cs13 140105 1834 10 60 7 600
cs14 236628 2016 10 60 7 700
cs15 279230 2674 10 60 7 800

Table 7.VIII: Instance Parameter, Set C-S

Inst Block Service Yard Track Time Demand
cl01 8900 550 5 14 10 100
cl02 4700 490 5 14 10 150
cl03 3600 500 5 14 10 200
cl04 1580 340 5 18 10 150
cl05 2570 500 5 18 10 200
cl06 8060 510 5 18 10 250
cl07 46150 1230 7 20 10 200
cl08 49920 1270 7 20 10 250
cl09 50000 1080 7 20 10 300
cl10 58930 1350 7 32 10 250
cl11 55580 1140 7 32 10 300
cl12 22900 1220 7 32 10 350
cl13 491150 3080 10 60 10 500
cl14 421370 3030 10 60 10 700
cl15 326550 3050 10 60 10 900

Table 7.IX: Instance Parameter, Set C-L

7.2.1 Parameter Calibration

In SS+ES+LMP, slope scaling, ellipsoidal search, and factor perturbation are all

complex procedures managed by many parameters. For the sake of clarity, we first
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discuss the factor perturbation calibration and procedure options for slope scaling based

on SS+LMP, and then calibrate ellipsoidal search on the chosen setting of SS and LMP.

7.2.1.1 Factor Perturbation Calibration

As indicated in the literatures, the perturbation phase has a great impact to the slope

scaling results. The performance of SS+LMP depends on the appropriate calibration of

parameters conducting the factor perturbation.

• Parameter Inonimprove
max regulates one of the entries of the perturbation phase, and

concerns the local optimum of R1-ISND. A larger threshold means more efforts

in polishing the local best and a lower value leads to a wider search domain but

with a higher possibility of missing the local optimum. Three values, 8, 10 or 15

are compared.

• Parameters Idiver
max and I inten

max indicate the maximum number of consecutive imple-

mentations of diversification and intensification strategy, respectively. Here we

intent to balance the procedure and minimize vain repeats. The setting Idiver
max = 1,

I inten
max = 1 forces to perform one strategy to the other irrespective whether the

current strategy improves the R1-ISND solution or not. Small values on both pa-

rameters provide rational tolerance for repeats and leave equal chances for both

strategies. Two value pairs (2, 2) and (3, 3) are proposed.

• The range of perturbation is managed by parameters ω+ and ω−. In most cases, in

a good solution of R1-ISND, only a small portion of blocks/services are opened,

which causes the average opening frequency n̄B and n̄S very small. In order to

keep the frontier δ− and θ− positive so that some blocks and services are consid-

ered as rarely used, we choose ω− = 0. Similarly, ω+ should be ≤ 1 in order

to keep δ+ and θ+ rational. In calibration, we compare two options ω+ = 0 and

ω+ = 1.

All 12 parameter combinations are evaluated on another set of random instances,

denoted instance set C-C (shown in Table I). A maximum 300 slope scaling iterations
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is applied as the stopping criteria. As the iteration number is generally proportional to

the solution time, parameter combinations are weighted according to solution quality

only. A point of 10 to 1 is assigned to each of the top 10 places. The better the solution

quality, the higher the score. Scores of each setting are summed up and shown in Table

7.X, where the first three columns present the setting of Inonimprove
max , (Idiver

max , I inten
max ) and

ω+, and the last column holds the score. In SS+LMP, both shortest augmenting path

heuristic and Simplex method are used as AP1 solver (see next section for the detailed

discussion), however, only scores from shortest augmenting path are reported here.

Inonimprove
max (Idiver

max , I inten
max ) ω+ Score

8 (2, 2) 0 33
8 (2, 2) 1 49
8 (3, 3) 0 34
8 (3, 3) 1 46

10 (2, 2) 0 36
10 (2, 2) 1 67
10 (3, 3) 0 45
10 (3, 3) 1 49
15 (2, 2) 0 51
15 (2, 2) 1 61
15 (3, 3) 0 39
15 (3, 3) 1 59

Table 7.X: Perturbation Parameter Calibration

Table 7.X reveals that, setting Inonimprove
max = 8 generally performs worse than the

other two values, and Inonimprove
max = 15 is on average better than Inonimprove

max = 10 set-

ting, but the difference is minor. For parameter pair (Idiver
max , I inten

max ), (2, 2) and (3, 3) are

rather comparable. Setting ω+ = 1 usually outperforms ω+ = 0. One combination

Inonimprove
max = 10, (Idiver

max , I inten
max ) = (2, 2) and ω+ = 1 stands out with the highest rank,

and conducts the overall best performance. In the following experiments, we disturb

linearization factors with this setting.
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7.2.1.2 Slope Scaling Calibration

In the slope scaling calibration, we fix the solver for approximation problems. As

discussed before, we have two solver options for AP1, the Simplex method and the pro-

posed shortest augmenting path heuristic. Both procedures are evaluated on instance

set C-C. Experiments show that the augmenting path heuristic outperforms the Sim-

plex method on all parameter settings. We here only include two figures displaying the

evolutions of two variants (on instance cc06 with parameter setting Inonimprove
max = 8,

(Idiver
max , I inten

max ) = (2, 2) and ω+ = 1). Figure 7.1 compares the R1-ISND evolutions with

augmenting path heuristic and Simplex method, and Figure 7.2 differentiates the perfor-

mance of two variants according to the ISND solutions generated. In each figure, the

horizontal axis gives the solving time, and the vertical axis gives the solution value.

Figure 7.1: SS+LMP, Comparison of R1-ISND Evolutions

The first conclusion from Figure 7.1 is that of both variants, slope scaling converges

really fast and the perturbation works well: intensifications force the search to find better

solutions, and diversifications help to escape from local optima even though it initially

deteriorates the solution significantly. The augmenting path heuristic is more efficient
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Figure 7.2: SS+LMP, Comparison of ISND Evolutions

to produce feasible AP1 solutions and enables more slope scaling iterations in a limited

computing time. Traffic distribution obtained by the augmenting path heuristic is not

necessarily optimal, but it offers more promising bases, and eventually generates better

ISND solutions as shown in Figure 7.2. Hence, we choose the augmenting path heuristic

as the AP1 solver.

7.2.1.3 Ellipsoidal Search Calibration

The success of the ellipsoidal search relies on the proper shape of the ellipsoid space.

Two ellipsoid shaping strategies are compared. The first one, regulated by (6.11) is

denoted as s1, and the other one, managed by (6.12) is s2.

• In strategy s1, λ marks the steady flow threshold. If λ is over small, the elite

problem to be solved is large, and it takes a rather long time to converge. If λ is

too big, we have a higher chance to miss the promising blocks in the elite problem.

Three values, 15%, 25% and 50% are compared.

• Strategy s2 loads a fixed number of block variables into the ellipsoid, where ϕ
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regulates the cardinality of the block set. Generally, we have ϕ ≥ 2 in order to

contain all blocks in Bini ∪ Bgui. Therefore, we choose 2 as the first value for ϕ.

Two more values, 5 and 10 are also proposed.

Total 6 settings (s1 with λ = 15%, 25%, 50%; s2 with ϕ = 2, 5, 10) are compared

based on instances in set C-C. A same 10 to 1 rating system as above is adopted, and Ta-

ble 7.XI displays the score of each setting. We observe, s2 usually outperforms s1. This

is possibly because when with large instances, percentage threshold loses the control of

ellipsoid scale, and causes over-sized elite problems. The setting s2, ϕ = 5 achieves the

highest score, and is picked for the later experiments.

s1, λ = 15% s1, λ = 25% s1, λ = 50% s2, ϕ = 2 s2, ϕ = 5 s2, ϕ = 10
71 76 75 74 81 80

Table 7.XI: Ellipsoid Search Parameter Calibration

With this setting, only a rather small portion of blocks are selected. For example,

in instance cc08, less than 200 block variables out of 75, 000 are picked in each elite

problem.

7.2.2 Results Analysis

To analyze the behavior of both factor perturbation and ellipsoidal search, as well

as the overall performance of the heuristic proposed, we organize experiments into

two stages. First, the SS+LMP process is evaluated, and then the complete heuristic,

SS+ES+LMP.

CPLEX results on ISND instances are first obtained. Table 7.XII displays the com-

putational results of the instance set C-S. CPLEX solution, solution time, and optimal

gap are shown in the first three columns. CPLEX solver terminates when either the opti-

mum is found or reaching the maximal solving time (t= 10 hour). The first observation

derives that except some small instances, CPLEX is unable to find an optimal solution

within the time limit, which further demonstrates the complexity of the ISND problem.

Moreover, with the increase of the instance, CPLEX soon loses its efficiency, and the
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limited performance leaves a considerable optimal gap. On large instances (e.g. cs13

with 10 yards and 60 tracks), an × indicates that CPLEX fails to identify any feasible

solution due to the extreme complexity or exhausted memory.

Inst CplSol time(s) OptGap SS+LMP(1000i) CplGap time(s) TimeGap
cs01 75157 329 0.00% 75667 0.68% 266 -19.22%
cs02 72471 t 2.69% 74228 2.43% 410 -98.86%
cs03 78629 816 0.00% 79616 1.25% 345 -57.74%
cs04 82784 t 0.41% 83462 0.82% 688 -98.09%
cs05 98705 828 0.00% 100173 1.49% 963 16.28%
cs06 110333 t 7.13% 109542 -0.72% 1042 -97.11%
cs07 267198 t 39.17% 187930 -29.67% 4154 -88.46%
cs08 230244 t 38.23% 171912 -25.34% 4005 -88.88%
cs09 174471 t 32.79% 135343 -22.43% 7830 -78.25%
cs10 176248 t 19.37% 161141 -8.57% 2891 -91.97%
cs11 155526 t 22.97% 140845 -9.44% 2782 -92.27%
cs12 183386 t 18.07% 169669 -7.48% t 0.00%
cs13 × - - 216927 - t -
cs14 × - - 201368 - t -
cs15 × - - 229553 - t -

Table 7.XII: SS+LMP Results on Instance Set C-S

The next four columns in Table 7.XII show the SS+LMP solution, solution gap with

CPLEX solution, SS+LMP solving time as well as the time gap. A limit of 1, 000 slope

scaling iterations is imposed, and for the purpose of comparison, the maximal solving

time (10 hour) is also imposed. On small instances with 5 yards (cs01-cs06), SS+LMP

approaches the CPLEX solution. An average 0.99% CPLEX gap is reached with an av-

erage 59.12% saving on computing time. Especially in the cases CPLEX proves the op-

timality (cs01, cs03, cs05), SS+LMP solution is rather close to the optimal solution. On

instances with 7 yards (cs07-cs12), SS+LMP converges impressively, and outperforms

CPLEX in both solution time and solution quality. The mean improvement on those

instances is 17.16%, and it takes only an average 26.70% computing time as CPLEX

does. The best performance is reported on instance cs07, compared with the CPLEX

solution obtained in 10 hours, nearly 30% improvement is achieved by SS+LMP within

less than 1.5 hour. Furthermore, where CPLEX fails to give any solution (cs13-cs15),
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the superiority of SS+LMP is emphasized by providing feasible solutions, even though

it terminates at the maximal solving time without reaching 1, 000 iterations.

Results on instance set C-L are shown in Table 7.XIII. Instances in set C-L have

a longer time dimension and are generally even larger. On these instances, SS+LMP

displays a similar performance, and appears significantly more robust than the branch-

and-bound method applied by CPLEX.

Inst CplSol time(s) OptGap SS+LMP(1000i) CplGap time(s) TimeGap
cl01 94900 t 4.02% 96345 1.52% 126 -99.65%
cl02 90967 t 6.78% 92495 1.68% 203 -99.43%
cl03 128099 t 2.68% 130037 1.51% 304 -99.16%
cl04 79418 27534 0.00% 79566 0.19% 278 -98.99%
cl05 129305 1822 0.00% 131273 1.52% 343 -81.18%
cl06 105275 t 9.30% 105144 -0.12% 1006 -97.21%
cl07 225581 t 50.09% 146270 -35.16% 1399 -96.11%
cl08 169187 t 19.04% 165325 -2.28% 1734 -95.18%
cl09 293613 t 53.99% 178798 -39.10% 3350 -90.70%
cl10 208201 t 32.98% 163591 -21.43% 3162 -91.22%
cl11 187314 t 35.07% 149691 -20.09% 3317 -90.79%
cl12 226847 t 29.12% 187950 -17.15% 1900 -94.72%
cl13 × - - 273842 - t -
cl14 × - - 264326 - t -
cl15 × - - 326381 - t -

Table 7.XIII: SS+LMP Results on Instance Set C-L

To further study the performance, we extend the SS+LMP solution time to 10 hours.

The SS+LMP solutions and solution gap with CPLEX are reported in the first two

columns in Table 7.XIV and Table 7.XV. In 16 out of 24 cases we achieved a better

solution than SS+LMP(1000i) results with a longer computing time. Compared with

CPLEX solutions with the same solution time, SS+LMP reaches an average 0.52% so-

lution gap on instances with 5 yards (cs01-cs06, cl01-cl06), and an average 20.30%

improvement on instances with 7 yards (cs07-cs12, cl07-cl12).

Ellipsoidal search is then incorporated in order to further improve the solution qual-

ity. Results of SS+ES+LMP are shown in the column indicated by SS+ES+LMP(10h).

Column SS+LMP(10h)Gap and CplGap present the relative gap with SS+LMP solutions



121

Inst SS+LMP(10h) CplGap SS+ES+LMP(10h) SS+LMP(10h)Gap CplGap
cs01 75347 0.25% 75157 -0.25% 0.00%
cs02 73446 1.35% 72483 -1.31% 0.02%
cs03 79202 0.73% 78731 -0.59% 0.13%
cs04 83462 0.82% 82784 -0.81% 0.00%
cs05 99651 0.96% 98705 -0.95% 0.00%
cs06 109502 0.75% 107576 -1.76% -2.50%
cs07 187930 -29.67% 183527 -2.34% -31.31%
cs08 170525 -25.94% 166283 -2.49% -27.78%
cs09 134790 -22.74% 133110 -1.25% -23.71%
cs10 161141 -8,57% 158486 -1.65% -10.08%
cs11 136806 -12.04% 132723 -2.98% -14.66%
cs12 169669 -7.48% 167424 -1.32% -8.70%
cs13 216927 - 212204 -2.18% -
cs14 201368 - 195208 -3.06% -
cs15 229553 - 228770 -0.34% -
Avg -1.55%

Table 7.XIV: SS+ES+LMP Results on Instance Set C-S

Inst SS+LMP(10h) CplGap SS+ES+LMP(10h) SS+LMP(10h)Gap CplGap
cl01 94944 0.05% 94676 -0.28% -0.24%
cl02 91432 0.51% 89554 -2.05% -1.55%
cl03 129256 0.90% 128097 -0.90% 0.00%
cl04 79563 0.18% 79418 -0.19% 0.00%
cl05 130413 0.86% 129305 -0.85% 0.00%
cl06 104138 -1.08% 101656 -2.38% -3.44%
cl07 146270 -35.16% 142283 -2.73% -36.93%
cl08 165325 -2.28% 158157 -4.34% -6.52%
cl09 178798 -39.10% 167934 -6.08% -42.80%
cl10 160778 -22.78% 155919 -3.02% -25.11%
cl11 149691 -20.09% 145052 -3.10% -22.56%
cl12 186722 -17.69% 180356 -3.41% -20.49%
cl13 273842 - 271156 -0.98% -
cl14 264326 - 257230 -2.68% -
cl15 326381 - 326575 0.06% -
Avg -2.20%

Table 7.XV: SS+ES+LMP Results on Instance Set C-L

and CPLEX solutions with 10 hours computing time, respectively.

Results displayed in Table 7.XIV and Table 7.XV underscore the important role of
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the ellipsoidal search phase in the solution procedure. In almost all cases (29 instances

out 30), SS+ES+LMP obtains better solutions than SS+LMP. The average improvement

is reported as 1.55% in Table 7.XIV and 2.20% in Table 7.XV. The best performance is

achieved on instance cl09 with over 6% improvement.

Another observation from the results shows the satisfactory behavior of the SS+ES+LMP

procedure. On the 5 instances where CPLEX finds the optima, SS+ES+LMP achieves

optima in 4 cases, and on the only one where we failed the optimal gap is rather small

(0.13%). Statistics also show that on 28 out of 30 instances tested, the SS+ES+LMP

heuristic finds solutions better than or equal to the CPLEX solution, with impressive im-

provements especially on large instances. The average CPLEX improvement is 0.63%

on instances with 5 yards, and 22.56% on instances with 7 yards.

As a special case of ISND, DSND can also be tackled by the SS+ES+LMP heuris-

tic. The performance of SS+ES+LMP and tabu search algorithm on D-S, D-M, D-L

instances are compared in Table 7.XVI, 7.XVII, and 7.XVIII. Two experiments are im-

plemented. The first 3 columns show the SS+ES+LMP solution in 10 hours, the com-

parison with tabu search results (TS(10h)Gap), and the comparison with CPLEX results

(CplGap). The second experiment is conducted by the combination of SS+ES+LMP and

tabu search, that is, SS+ES+LMP is first implemented for 300 iterations, and then tabu

search continues with the best solution obtained. The results of the second experiment

is shown in column SS+ES+LMP(300i)+TS.

Inst SS+ES+LMP(10h) TS(10h)Gap CplGap SS+ES+LMP(300i)+TS TS(10h)Gap CplGap
ds01 33670 0.00% 0.00% 33670 0.00% 0.00%
ds02 57412 -0.38% 0.00% 57631 0.00% 0.38%
ds03 88099 0.00% 0.00% 88099 0.00% 0.00%
ds04 87435 -0.21% 0.00% 87435 -0.21% 0.00%
ds05 117000 -0.69% 0.00% 117850 0.03% 0.73%
ds06 147273 -1.28% 0.00% 149071 -0.08% 1.22%
ds07 46944 0.00% 0.00% 47406 0.98% 0.98%
ds08 92664 -0.26% 0.07% 92664 -0.26% 0.07%
ds09 136493 -1.11% 0.00% 136602 -1.03% 0.08%
avg -0.44% 0.01% -0.06% 0.38%

Table 7.XVI: SS+ES+LMP Results on Instance Set D-S

The observation from the first experiment demonstrates that SS+ES+LMP is even
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Inst SS+ES+LMP(10h) TS(10h)Gap CplGap SS+ES+LMP(300i)+TS TS(10h)Gap CplGap
dm01 139947 -2.02% 1.15% 140405 -1.69% 1.48%
dm02 206080 -1.44% -0.14% 206586 -1.19% 0.11%
dm03 203484 -1.43% -0.83% 204831 -0.78% -0.18%
dm04 181104 -1.56% -0.05% 182030 -1.06% 0.46%
dm05 196985 -1.55% -0.26% 200101 0.01% 1.32%
dm06 213125 -0.46% -0.17% 213923 -0.09% 0.20%
dm07 206944 -1.21% -0.76% 209694 0.10% 0.56%
dm08 230054 -0.86% -12.11% 235309 1.40% -10.10%
dm09 281596 -1.07% -1.79& 284306 -0.12% -0.85%
avg -1.29% -1.66% -0.38% -0.78%

Table 7.XVII: SS+ES+LMP Results on Instance Set D-M

Inst SS+ES+LMP(10h) TS(10h)Gap CplGap SS+ES+LMP(300i)+TS TS(10h)Gap CplGap
dl01 277609 -2.43% -8.92% 279212 -1.87% -8.39%
dl02 286917 -1.07% -15.10% 288710 -0.45% -14.57%
dl03 238241 -2.42% -15.77% 239593 -1.87% -15.29%
dl04 346538 -3.79% -11.85% 347521 -3.51% -11.60%
dl05 398467 0.28% -12.68% 394413 -0.74% -13.57%
dl06 464758 1.21% 457521 -0.37%
dl07 546171 -1.65% 546506 -1.59%
dl08 509609 -0.15% 506227 -0.81%
dl09 653138 2.08% 640347 0.08%
avg -0.88% -1.24%

Table 7.XVIII: SS+ES+LMP Results on Instance Set D-L

more robust than the tabu search. In almost all the instances (24 out of 27), SS+ES+LMP

finds better solutions than tabu search, and the average improvement is reported as

0.44%, 1.29% and 0.88% in the 3 sets. The second experiment indicates that, by combin-

ing the SS+ES+LMP and tabu search, we also find better solutions than the tabu search.

Compare the results from both experiments, SS+ES+LMP(10h) and SS+ES+LMP(300i)+TS

solutions are rather comparable. The SS+ES+LMP(300i)+TS results from D-S and D-

M are not as good as SS+ES+LMP(10h), but SS+ES+LMP(300i)+TS presents a better

performance on large instances in D-L. We notice, however, the SS+ES+LMP(300i)+TS

gives a smaller standard deviation (0.05) than SS+ES+LMP(10h) solutions (0.06) with

respect to the tabu search improvement, which suggests SS+ES+LMP(300i)+TS has a

more stable performance.

With the experiments on both ISND and DSND instances, we conclude that the pro-

posed SS+ES+LMP algorithm is very efficient to provide good feasible solutions for



124

both models. For all the instances tested, within a significant less solving time, SS gen-

erates feasible solutions effectively. Furthermore, LMP disturb the searching area, and

direct the SS into promising domains. ES explore the ellipsoid space “between” feasi-

ble solutions with MIP solvers, and further improve the solution quality. Experiments

show that SS+ES+LMP finds optimal or near-optimal solutions on small instances, and

outperforms CPLEX on all instances with interesting size.

7.3 Results for BEST

In this section, we evaluate the performance of the BEST heuristic proposed. The

same parameter setting of tabu search, slope scaling, factor perturbation, and ellipsoidal

search, as calibrated before are applied. The initial solution of BEST is provided by a

SS+ES+LMP phase on the preliminary block set terminates with maximal 300 iterations,

or maximal 5 hours solution time, which ever reaches the first.

In order to test both efficiency and robustness, experiments are organized in two

stages. In the first stage, we compare the BEST output with the best value obtained by

CPLEX, as well as to the results from the SS+ES+LMP heuristic. The same two data

sets C-S and C-L are used to verify the quality of BEST. In the second stage, we analyze

a rail application and experience some very-large-scale instances.

The CPLEX results and SS+ES+LMP results are shown in Table 7.XIX and 7.XX.

The first two columns comes from Table 7.XII and Table 7.XIII. Column CplSol indi-

cates the CPLEX solution within 10 hours CPU time, and column OptGap displays the

optimal gaps returned by CPLEX. The next two columns are from Table 7.XIV and Ta-

ble 7.XV, and display the SS+ES+LMP results with the same CPU time, and their gap

with the CPLEX solutions.

Column BEST displays the solution from the BEST heuristic proposed, where the

same computing time as CPLEX and SS+ES+LMP is imposed. The BEST solution is

compared with CPLEX solution, and the gap percentage is shown in column CplGap.

We observe, BEST finds solutions rather close or a little better than CPLEX on 5-yard

instances with an average 0.36% improvement, and improves CPLEX significantly on
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Inst CplSol OptGap SS+ES+LMP CplGap BEST CplGap SS+ES+LMP Gap
cs01 75157 0.00% 75157 0.00% 75157 0.00% 0.00%
cs02 72471 2.69% 72483 0.02% 72575 0.14% 0.13%
cs03 78629 0.00% 78731 0.13% 78743 0.14% 0.02%
cs04 82784 0.41% 82784 0.00% 82784 0.00% 0.00%
cs05 98705 0.00% 98705 0.00% 98760 0.06% 0.06%
cs06 110333 7.13% 107576 -2.50% 107785 -2.31% 0.19%
cs07 267198 39.17% 183527 -31.31% 186370 -30.25% 1.55%
cs08 230244 38.23% 166283 -27.78% 168112 -26.99% 1.10%
cs09 174471 32.79% 133110 -23.71% 133197 -23.66% 0.07%
cs10 176248 19.37% 158486 -10.08% 158716 -9.95% 0.15%
cs11 155526 22.97% 132723 -14.66% 134663 -13.41% 1.46%
cs12 183386 18.07% 167424 -8.70% 170195 -7.19% 1.66%
cs13 × - 212204 - 212045 - -0.07%
cs14 × - 195208 - 185678 - -4.88%
cs15 × - 228770 - 224068 - -2.06%
Avg -0.04%

Table 7.XIX: BEST Results on Instance Set C-S

Inst CplSol OptGap SS+ES+LMP CplGap BEST CplGap SS+ES+LMP Gap
cl01 94900 4.02% 94676 -0.24% 94929 0.03% 0.27%
cl02 90967 6.78% 89554 -1.55% 90129 -0.92% 0.64%
cl03 128099 2.68% 128097 0.00% 128505 0.32% 0.32%
cl04 79418 0.00% 79418 0.00% 79563 0.18% 0.18%
cl05 129305 0.00% 129305 0.00% 129307 0.00% 0.00%
cl06 105275 9.30% 101656 -3.44% 103193 -1.98% 1.51%
cl07 225581 50.09% 142283 -36.93% 144070 -36.13% 1.26%
cl08 169187 19.04% 158157 -6.52% 158719 -6.19% 0.36%
cl09 293613 53.99% 167934 -42.80% 169997 -42.10% 1.23%
cl10 208201 32.98% 155919 -25.11% 156230 -24.96% 0.20%
cl11 187314 35.07% 145052 -22.56% 147253 -21.39% 1.52%
cl12 226847 29.12% 180356 -20.49% 182786 -19.42% 1.35%
cl13 × - 271156 - 261401 - -3.60%
cl14 × - 257230 - 252635 - -1.79%
cl15 × - 326575 - 316503 - -3.08%
Avg 0.02%

Table 7.XX: BEST Results on Instance Set C-L

7-yard instances with an average 21.80% improvement.

The gap with SS+ES+LMP solution is shown in column SS+ES+LMP Gap, which

shows BEST finds very close solutions with the same computing effort. Results of the
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BEST algorithm is a bit weak than the SS+ES+LMP heuristic on small and medium

instances, however, the difference is minor. On 5-yard instances, the average gap is

reported 0.28% and 0.99% on 7-yard instances. These results may be explained by the

less BEST iteration number in the total computing time due to the complexity of each

approximation problem and additional computation for block generations. When with

bigger instances, BEST starts to outperform SS+ES+LMP. These results clearly indicate

the trade-off between the complex-but-small AP2 in BEST and simple-but-large AP1

problem in SS+ES+LMP. The overall performance of SS+ES+LMP and BEST is rather

comparable. The average gap with SS+ES+LMP is reported −0.04% for instance set

C-S and 0.02% for instance set C-L.

To analyze the real instance scale, we study a case with a Class-I rail carrier in North

America. The rail carrier operates about 120 stations countrywide, which are aggregated

into 27 station clusters. Providing coast-to-coast services, the rail carrier handles roughly

4 million carloads annually, and is facing to around 1, 000 unit requirements (for core

and bulk plan) per week.

In the second experiment stage, we generate another set of instances, marked as C-

XL, with 15 to 30 yards, 7 time periods and 1, 000 demands. The parameters of instance

set C-XL is shown in Table 7.XXI. Apparently, instances in set C-XL are much larger

than the ones in C-S and C-L. Any instance in C-XL leads to a huge number of potential

blocks and it is impossible to load the whole model to the computers employed.

Inst Service Yard Track Time Demand Block(ini) Block(final) BEST
cxl01 3654 15 60 7 1000 10031 92092 1003753
cxl02 4816 15 90 7 1000 13587 73717 868602
cxl03 4116 20 60 7 1000 10969 87514 1101111
cxl04 6048 20 80 7 1000 16212 62587 1071811
cxl05 9779 20 120 7 1000 30940 41538 1103703
cxl06 7434 25 90 7 1000 19978 45143 1155523
cxl07 13342 25 120 7 1000 38339 44366 1137879
cxl08 14896 25 150 7 1000 44653 49399 1089380
cxl09 14784 30 135 7 1000 41258 49595 1428480

Table 7.XXI: Instance Parameters and Results, Set C-XL

The very-large-size network structure of C-XL instances causes to a much longer
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solving time. We extend the total solving time to 7 days. The initial and final numbers

of potential blocks generated are indicated in the column Block(ini) and Block(final),

which show the proper performance of the block generation procedure. One observes,

comparing with the huge block number in C-S and C-L instances, which could be hun-

dreds of thousands, only a rather small portion of blocks are generated and considered

in BEST. The final BEST solutions are listed in the last column of Table 7.XXI.

The two experiments evaluate the performance of BEST heuristic proposed. Com-

putational results from instances of three data sets are satisfactory, and BEST heuristic

closely approaches or improves the CPLEX solutions, and finds solutions comparable

with the previous SS+ES+LMP heuristic. Without considering all blocks explicitly in

the very beginning, the algorithm is capable to address very-large-scale instances and is

applicable to solve real-life size instances deriving from the rail transportation.



CHAPTER 8

CONCLUSION

The major objective of this thesis is to build an integrated tactical planning tool for rail

freight transportation. Precisely, we study a scheduled service network design problem,

in which two consolidation processes, as well as the operation scheduling are considered.

By optimizing this problem, an outline of the whole operating plan is produced.

As shown in the literature review, the rail planning issues are generally studied indi-

vidually, and the overall operating plan is the output of sequential solutions of blocking

policy, train routing, scheduling, freight distribution and resource allocation. Some en-

deavors have been made by previous researchers to combine some aspects, but none

of them present synchronous decision-makings for both consolidation procedures (ser-

vice decision and block decision) with the associated temporal assessment. As far to

the author’s knowledge, this is the first study to integrate all these most important rail

operations in a time-dependent context.

The main contribution of this dissertation comes from two facets. First, from the

modeling perspective, we extend the physical network and present a 3-layer time-space

structure to describe the complex rail operations. Comparing with the rail network,

the proposed network structure is extended in both temporal (multiple time period) and

polymorphisial (multiple objects) ways. The new structure allows us to analyze the

time-related operations on trains, blocks and cars, and address the traffic itinerary as

well as the journey of blocks and services at the same time. Second, from the solution

perspective, we developed several solution algorithms, according to different models.

The difficultness of the models comes from two ways, the extreme mathematical

complexity and very large applications. The mathematical complexity derives from the

trade-off between fixed costs on blocks/services and flow costs on links, trade-off be-

tween operations on different layers (block and service), and trade-off between deci-

sions along the time dimension (scheduling). Furthermore, any reasonable application

of the models in rails generates thousands of decision variables and millions of flow
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variables. We study the characteristics of each version of the problem, and developed

heuristic algorithms respecting to the DSND model, ISND model, and very-large-scale

ISND model.

The DSND, which is a special case of ISND with only non-stop services, is first

studied. The case can be often found in many applications such as industrial transporta-

tion (e.g. coal, green products). By removing the multi-stop services in the system, the

problem is simplified and keeps a reduced set of potential services. The non-stop service

case also holds a favorable property that each block is taken by several direct services,

rather than service sections of multi-stop services. The good property allows us to focus

on the block network design, instead of two level designs synchronously. According to

the DSND problem, the network is degenerated to a 2-layer time-space network.

A tabu search algorithm on cycle-based neighborhood is proposed for DSND. Com-

pared with Ghamlouche et al. [57], improvements have been made through several key

setups. First, we expend the cycle-based concept and consider both block fixed costs and

direct service fixed cost in each local search move. Second, we focus on the block de-

cisions and only concern the cycles deriving from open blocks. Numerical experiments

demonstrate that the proposed algorithm is robust for providing near-optimal solutions

within reasonable solving efforts and outperforms CPLEX on large instances.

We developed a SS+ES+LMP algorithm to solve the ISND model. The heuristic

algorithm is based on slope scaling idea, and the solving procedure is guided by long-

term memories which keep a record of the history search track. A factor perturbation

phase is adopted to further intensify/diversify the procedure. We also proposed an ellip-

soidal search algorithm, to integrate the good solutions found during the slope scaling

procedures.

The algorithmic contribution of the SS+ES+LMS exists in the modification of slope

scaling and proposition of ellipsoidal search. Given the characteristics of the model, in

the slope scaling, fixed costs from both blocks and services are approximated by lin-

earization factors. The service fixed costs are described by total workload given the

variant car flows on different service sections. The slope scaling process is accelerated

by adopting heuristic solutions for each linear approximation problem. The ellipsoidal
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search we proposed can be viewed as a new effort to combine heuristic ideas and exact

solvers, in which a small “ellipsoid” in the solution space is shaped by variable selection

and fixing, and explored by MIP solver. The SS+ES+LMP algorithm performs robustly

in experiments, where it either finds a near-optimal solution or discovers feasible solu-

tions with substantial improvements than the mathematical solver.

We also propose a hybrid solution to solve the very-large-scale ISND problems. The

BEST algorithm integrates the slope scaling, ellipsoidal search, tabu search and column

generation ideas. A new slope scaling scheme is proposed, which naturally decompose

the model into two subproblems: one block network design problem in the bottom two

layers, and a block generation problem in the top two layers. The decomposition allows

blending tabu search with column generation ideas: the previous tabu search algorithm is

modified to tackle the approximation problems, in which the residual values in each local

search move conduct the block generation process. By starting with only a very small

set of block decision variables, the algorithm is capable to address very large instances.

The result from the largest experiment (with 30 yards, 7 time periods, 1, 000 demands)

makes it possible to identify national operating plan with weekly schedule for large-scale

railways.

Other contributions behind the research derive from its generalization. Modeling

wise, the 3-layer network structure can be further applied to address the operations in re-

lated transportation modes, such as LTL, aviation and shipping lines where consolidation

takes an important part, or intermodal transports where the long-haul legs can be viewed

as blocks in rail. Furthermore, although presented in a monograph for rail transporta-

tion, the powerful performance of the methodologies proposed inspires the algorithmic

generalization, to the general multi-layer time-space network design problems, or even

more general network design problems. For example, the BEST algorithm can be intu-

itively applied to a multi-level network design problem which consists of several layers,

where links in a layer present both fixed design cost and linear flow cost, and a path in

one layer is associated with fixed cost and flow cost deriving from its component links,

and supplies a conceptual link for the next layer. Another generalization avenue comes

from ellipsoidal search. The ellipsoidal search generates new solutions by exploring an
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ellipsoid space between reference solutions. In this research, the idea is particularly im-

plemented on the ISND model studied. The outstanding performance suggests a broader

range of applications in solving combinatorial optimization problems (e.g. FMCND)

cooperating with a heuristic scheme (e.g. tabu search).

Aside from generalization and more applications of the proposed models and method-

ologies, there are several issues that we are recommending for the future research in the

rail tactical planning problem. One might want to further integrate asset (locomotives,

and crew) allocation into the ISND. This could be realized with a network with more lay-

ers to represent operations on additional resources. Another potential avenue is inspired

by the stochastic nature of reality, where demand expectation is generally presented with

possibilities. A stochastic model which balances the scenarios might attract more at-

tention from industry. The models and methodologies proposed in this thesis present

alternatives for solving each individual scenario, however, the cooperation of threads is

up to be studied. This brings another interesting topic, parallel programming or dis-

tributed computing. Other than the application on stochastic models, parallel computing

and distributed computing are also possibly applicable to the deterministic models we

studied. For example, in slope scaling, one may extend the factor perturbation phase,

and adopt several perturbation policies in parallel. Multiple approximation problems

can be produced, which could be parallelized and computed on different computers to

find many reference solutions simultaneously. Ellipsoidal search phase can also be par-

allelized by solving elite problems each derives from a pair of reference solutions in the

reference set. A further study of such issues and development of approximation schemes

to permit real-time implementations are suggested as future research topics.
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Appendix I

Instance Parameters: Set C-C

Inst Block Service Yard Track Time Demand
cc01 3350 450 4 10 10 90
cc02 3340 460 4 10 10 120
cc03 14970 1280 5 14 10 100
cc04 9490 890 5 14 10 150
cc05 27350 1200 5 14 10 200
cc06 5790 810 5 18 10 120
cc07 19970 1590 5 18 10 150
cc08 75960 2550 5 18 10 200
cc09 106310 2090 7 20 10 150

Table I.I: Instance Parameters: Set C-C
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