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Abstract

In this paper, we consider testing marginal normal distributional assumptions. More precisely,

we propose tests based on moment conditions implied by normality. These moment conditions

are known as the Stein (1972) equations. They coincide with the �rst class of moment

conditions derived by Hansen and Scheinkman (1995) when the random variable of interest is

a scalar di�usion. Among other examples, Stein equation implies that the mean of Hermite

polynomials is zero. The GMM approach we adopted is well suited for two reasons. It

allows us to study in detail the parameter uncertainty problem, i.e., when the tests depend

on unknown parameters that have to be estimated. In particular, we characterize the

moment conditions that are robust against parameter uncertainty and show that Hermite

polynomials are special examples. This is the main contribution of the paper. The second

reason for using GMM is that our tests are also valid for time series. In this case, we adopt a

Heteroskedastic-Autocorrelation-Consistent approach to estimate the weighting matrix when

the dependence of the data is unspeci�ed. We also make a theoretical comparison of our

tests with Jarque and Bera (1980) and OPG regression tests of Davidson and MacKinnon

(1993). Finite sample properties of our tests are derived through a comprehensive Monte

Carlo study. Finally, three applications to GARCH and realized volatility models are presented.

Key words: Normality, Stein-Hansen-Scheinkman equation, GMM, Hermite polynomials,

parameter uncertainty, HAC, OPG regression.
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1 Introduction

In many econometric models, distributional assumptions play an important role in the

estimation, inference and forecasting procedures. Robust estimation methods against

distributional assumption are available, such as the Quasi-Maximum-Likelihood (White, 1982;

QML) and Generalized Method of Moments (Hansen, 1982; GMM). However, knowing the true

distribution of the considered random variable may be useful for improving inference. Such is

the case in stochastic volatility models where several studies have shown that simulation and

Bayesian methods outperform the QML and GMM methods (Jacquier, Polson and Rossi, 1994;

Kim, Shephard and Chib, 1998; Andersen, Chung and Sorensen, 1999; Gallant and Tauchen,

1999). Moreover, knowing the distribution is also crucial when one forecasts non linear variables

like volatility in the EGARCH model of Nelson (1991), or the high frequency realized volatility

model of Andersen, Bollerslev, Diebold and Labys (2002, ABDL). This is also important when

one evaluates density forecasts as in Diebold, Gunther and Tay (1998). In risk management

literature (see Christo�ersen, 1998, and Berkowitz, 2001), the most popular measure of risk,

that is the Value at Risk (VaR), is based on quantiles and, hence, on distributional assumptions.

In continuous time modeling, Chen, Hansen and Scheinkman (2000) argue that an interesting

approach is to �rst specify the unconditional distribution of the process, and then specify the

di�usion term. Therefore, developing tests procedure for distributional assumption diagnostics

in both cross-sectional and time-series settings is of particular interest.

The main purpose of our paper is to provide a new approach for testing normality.

We consider normality given that its importance in the econometric literature. Moreover,

econometricians are more familiar with testing normality. Finally, any continuous distribution

may be transformed on a normal one.

There is a very important literature on testing normality. This includes tests based on

the cumulative distribution (Kolmogorov, 1933; Smirnov, 1939), the characteristic function

(Koutrouvelis, 1980; Koutrouvelis and Kellermeier, 1981; Epps and Pulley, 1983), the moment

generating function (Epps, Singleton and Pulley, 1982), the third and fourth moment (Mardia,

1970; Bowman and Shenton, 1975; Jarque and Bera, 1980; Bera and Jarque, 1981), the Hermite

polynomials (Kiefer and Salmon, 1983; van der Klaauw and Koning, 2001).1

Our approach is based on testing moment conditions. The conditions we consider are

based on Stein (1972), where it is showed that the marginal distribution of a random variable

is normal with zero mean and unit variance if and only if a particular set of moment conditions

hold. Each moment condition is known as the Stein equation (see for instance Schoutens,

2000). We show that special examples of this equation correspond to the zero mean of any

Hermite polynomials. Interestingly, the Stein equation coincides with the �rst class of moment

1Multivariate tests are also based on the third and fourth moments (Mardia, 1970; Bera and John, 1983;
Richardson and Smith, 1993; Kilian and Demiroglu, 2000; Fiorentini, Sentana and Calzolari, 2002).
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conditions given by Hansen and Scheinkman (1995) for continuous time processes when one

considers a normal process, that is the Ornstein-Uhlenbeck process.2

We use the GMM approach for testing the Stein equation. The GMM approach is very

appealing for two reasons. It is well suited for correcting the test statistic distribution when

one uses estimated parameters. Moreover, it is easy in the GMM setting to take into account

potential dependence in the data when one tests marginal moment conditions.

In general, the normality assumption is made for unobservable variables. Hence, one has

to estimate the model parameters and then test normality on the �tted variables such as the

residuals. As a consequence, one has to take into account the parameter uncertainty, since

it is well known that in general the distribution of the test statistic is not the same when

one uses the true parameter and an estimator. This problem leads for instance Lilliefors

(1967) to tabulate the Kolmogorov-Smirnov test statistic when one estimates the mean and

the variance of the distribution. In the linear homoskedastic model, White and MacDonald

(1980) showed that various tests are robust against parameter uncertainty, in particular tests

based on moments that used standardized residuals. Finally, note that Dufour, Farhat, Gardiol

and Khalaf (1998) developed Monte Carlo tests to take into account parameter uncertainty in

the linear homoskedastic regression model in �nite samples.

It turns out that the GMM setting is well suited for incorporating parameter uncertainty

in testing procedures by using Newey (1985) and Tauchen (1985). In this paper, we show

that some testing functions are robust to the parameter uncertainty problem, that is the

distribution of the test statistic when one uses the true unknown parameter coincides with the

feasible test statistic when one uses an estimator of the parameter. Hermite polynomials are

special examples of functions that have this robustness property. This result is a generalization

of Kiefer and Salmon (1983) who showed that tests using Hermite polynomials are robust to

parameter uncertainty when one considers a non linear homoskedastic regression estimated

by the maximum likelihood method. In contrast, our result holds whatever the model and

the estimation method. This property is very important when one uses advanced technical

methods as in the stochastic volatility case. This result is the main contribution of the paper.

The second reason for using GMM is that when the variable of interest is serially

correlated, the GMM setting is also well suited to take into account this dependence by using

Heteroskedastic-Autocorrelation-Consistent (HAC) method of Newey and West (1987) and

Andrews (1991). Using a HAC procedure in testing marginal distributions was already adopted

by Richardson and Smith (1993) and Bai and Ng (2001) for testing normality, Ait-Sahalia

(1996) and Conley, Hansen, Luttmer and Scheinkman (1997) for testing marginal distributions

of non linear scalar di�usion processes.

2Hansen and Scheinkman (1995) gave two class of moment conditions related respectively to the marginal
and conditional distributions of the process. Note, however, that while Hansen and Scheinkman (1995) derived
these moment conditions in a Markovian case, we do not make this assumption.
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The paper is organized as follows. In section 2, we introduce the Stein equation and

characterize its relationships with Hermite polynomials and Hansen and Scheinkman (1995)

moment conditions. In section 3, we derive the test statistics we consider in both cross-sectional

and time series cases. Then, we study the parameter uncertainty problem in section 4. In

section 5, we provide an extensive Monte Carlo study in order to assess the �nite sample

properties of the test statistics we consider and to compare them with the most popular

methods, i.e. the Kolmogorov-Smirnov and Jarque-Bera tests. Section 6 applies our theory to

three examples from the volatility literature while the last section concludes. All the proofs

are provided in the Appendix.

2 The Stein equation

In this section, we �rst introduce the Stein (1972) equation which will be the basis of the test

functions we consider to test normality. Then we specify this equation when one considers

the Hermite polynomials. This is important because the most popular normality test in the

econometric literature, namely the Jarque and Bera (1980) test, is based on moment conditions

on the third and fourth Hermite polynomials. Finally, we also relate the Stein equation to the

�rst moment conditions derived by Hansen and Scheinkman (1995) in the case of a continuous

time process.

2.1 The Stein equation

Stein (1972) shows that a random variable X has a standard normal distribution N (0; 1) if

and only if, for any di�erentiable function f such that Ejf 0(Z)j < +1 where Z is N (0; 1),3

we have

E[f 0(X)�Xf(X)] = 0: (2.1)

It is straightforward to show that (2.1) holds under normality. Hence, the main result of Stein

(1972) is that (2.1) characterizes the normal distribution. The Stein equation (2.1) has several

implications. A simple one is the classical recursive moment formula. More precisely, if one

considers the case of monomial functions, that is fi(X) = X i, i = 0; 1; :::, the Stein equation

(2.1) implies that

E[X i+1] = iE[X i�1]:

The Stein equation (2.1) is the basic test function we consider for testing normality. This may

be applied to monomials, polynomials and more general functions. An important property in

the Stein equation is that by construction, the expectation of the considered function is zero.

3Observe that in the normal case, we have EjXf(X)j < +1 when Ejf 0(X)j < +1.
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Therefore, one has not to compute theoretical formula as one would do when using for instance

marginal moments. In other words, if one considers an integrable function g and wants to check

that the empirical counterpart of E[g(X)] is close to the theoretical formula, then the Stein

equation is useful because it is not necessary to compute the theoretical formula. Instead, one

must compare the empirical counterparts of E[g(X)] and E[XG(X)] where G is any primitive

function of g. Of course, this means that one has to compute the primitive of g. An alternative

solution is to de�ne, when it is possible, the function h(X) � g(X)=X. In this case, if one can

use the function h in the Stein equation, then one gets

E[g(X)] = E[Xh(X)] = E[h0(X)]:

There are some functions of interest for which the Stein equation becomes simple. This is the

case for the Hermite polynomials we consider below.

2.2 Hermite polynomials

The orthonormalized Hermite polynomialsHi associated to the N (0; 1) distribution are de�ned

by

Hi(x) = exp(
x2

2
)
(�1)ip

i!

di exp(�x2=2)
dxi

: (2.2)

From (2.2), it is easy to show that the Hermite polynomials are given by the following recursive

formula

8i > 1; Hi(x) =
1p
i
fxHi�1(x)�

p
i� 1Hi�2(x)g; H0(x) = 1; H1(x) = x: (2.3)

By applying (2.3), we have

H2(x) =
1p
2
(x2 � 1); H3(x) =

1p
6
(x3 � 3x); H4(x) =

1p
24
(x4 � 6x2 + 3): (2.4)

When a random variable X follows a normal distribution N (0; 1), the transformed random

variables Hi(X), i = 0; 1; :::; have some interesting properties. In particular, they are

orthonormal, that is:

E[Hi(X)Hj(X)] = Æij; (2.5)

where Æij is the Kronecker symbol. By applying (2.5) to j = 0 and i 6= 0, one gets

8i > 0; E[Hi(X)] = 0; (2.6)

that is, the Hermite polynomials Hi(X) are centered for i > 0.
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In order to characterize the relationships between the Stein equation (2.1) and the Hermite

polynomials, note that (2.2) implies the following restrictions are ful�lled by the derivatives of

the Hermite polynomials:

H
0

i(x) =
p
iHi�1(x) and (2.7)

H
00

i (x)� xH
0

i(x) + iHi(x) = 0: (2.8)

Let us now apply the Stein equation (2.1) to the function H 0
i(x)=

p
i. This function is clearly

di�erentiable and integrable. Therefore, we have

1p
i
E[H

00

i (X)�XH
0

i(X)] = 0:

By using (2.8), this equation implies (2.6). As a consequence, the Stein equation (2.1) implies

(2.6). It turns out that the converse holds also:

Proposition 2.1 Let X be a random variable such that 8i > 0; E[Hi(X)] = 0: Then, the

equation (2.1) holds for any di�erentiable function f such that

E[jf 0(Z)j] < +1 where Z is assumed to be N (0; 1).

As a consequence, a random variable X is N (0; 1) if and only if (2.6) holds.

This means that for statistical inference purposes, in particular testing, one could use Hermite

polynomials only.

2.3 Continuous time case

Consider a univariate di�usion process Xt assumed to be the stationary solution of

dXt = �(Xt)dt+ �(Xt)dWt; (2.9)

where Wt is a standard Brownian process. Then, Hansen and Scheinkman (1995) provide

two sets of moment conditions related to the marginal and conditional distributions of Xt

respectively. For the marginal distribution, Hansen and Scheinkman (1995) show that

E[Ag(Xt)] = 0; (2.10)

where g is assumed to be twice di�erentiable and square-integrable with respect to the marginal

distribution of Xt and A is the in�nitesimal generator associated to the di�usion (2.9), that is:

Ag(x) = �(x)g0(x) +
�2(x)

2
g00(x): (2.11)

A well known continuous time process for which the marginal distribution is N (0; 1) is the

standardized Ornstein-Uhlenbeck process de�ned by

dXt = �kXtdt+
p
2kdWt; k > 0; X0 � N (0; 1): (2.12)
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For this process, Hansen and Scheinkman (1995) moment condition (2.10) becomes:

E[�kXtg
0(Xt) + kg00(Xt)] = 0: (2.13)

Thus, by considering the function f de�ned by f � g0, we obtain the Stein equation (2.1)

(since k 6= 0). Thus, the Hansen and Scheinkman (1995) moment condition (2.10) coincides

with the Stein equation (2.1).

The continuous time setting provides examples of processes where the marginal distribution

is normal while the conditional distribution is not. A �rst example may be constructed as

follows. For a given speci�cation of �(x) and �(x), the marginal density function of the

process Xt is, up to a scale,4

�(x)�2 exp(

Z x

z

2�(u)

�(u)2
du):

This density function suggests that two di�erent speci�cations of �(x) and �(x) may give the

same marginal distribution. It turns out that this is the case.5 As a consequence, it is possible

to get a scalar di�usion such that the marginal distribution is N (0; 1) while the conditional

distribution is not normal, that is a non Ornstein-Uhlenbeck process.

A second example may be obtained by subordination. More precisely, assume that we

observe a sample x1; x2; :::; xT of a process Xt with Xt = YSt, where Yt is a stationary scalar

di�usion and St, t = 1; :::; T , is a positive and increasing process with S1 = 1. Under the

assumption that the processes fY� ; � 2 IR+g and fSt; t 2 N�g are independent, the marginal

distribution of the processes Xt and Yt coincide. Therefore, if the process Yt is a standardized

Ornstein-Uhlenbeck process, the marginal distribution of Xt is N (0; 1) while its conditional

distribution is (in general) not normal.

3 Test statistics

In the section, we provide the test statistics for testing normality. All of them are based on

the Stein equation (2.1). We study in detail the cross-sectional and the time series cases. In

this section, we assume that we observe a sample of the random variable of interest, i.e., we

do not take into account the potential problem of parameter uncertainty (see next section).

3.1 The general case

Consider a sample x1; :::; xT , of the variable of interest denoted by X. The observations may be

independent or dependent. We assume that the marginal distribution of X is N (0; 1). Let f1,

4For a given z, the scale parameter is chosen so that the density integral equals one.
5See Ait-Sahalia, Hansen and Scheinkman (2001) for a review of all the properties of di�usion processes we

consider in this paper.
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..., fp, be p di�erentiable functions such that f
0
i is integrable. For a real x, de�ne the vector g(x)

2 IRp, which components are (f 0i(x)�xfi(x)) for i = 1; :::; p. Thus, by the Stein equation (2.1),

we have E[g(X)] = 0. Assume that any component of the vector g(X) is square-integrable

and that the matrix � de�ned by

� � limT!+1V ar[
1p
T

TX
t=1

g(xt)] =
+1X

h=�1

E[g(xt)g(xt�h)
>]; (3.1)

is �nite and de�nite positive, then we have (see Hansen, 1982)

1p
T

TX
t=1

g(xt) �! N (0;�) (3.2)

while  
1p
T

TX
t=1

g(xt)

!>
��1

 
1p
T

TX
t=1

g(xt)

!
� �2(p): (3.3)

For the feasibility of the test procedure, one needs the matrix � or at least a consistent

estimator. It is clear that if one does not specify the dependence between the observations x1,

x2,..., xT , then one needs to estimate �.

3.2 The cross-sectional case

Consider the cross-sectional case and assume that the observations are independent and

identically distributed (i.i.d.). In this case, we have

� = V ar[g(X)] = E[g(X)g(X)>]:

Observe that by using the Stein equation (2.1), one can have a simple form for E[g(X)g(X)>].

More precisely, it is easy to show that

E[g(X)g(X)>] = E[f(X)f(X)> + f 0(X)f 0(X)>]: (3.4)

Two cases may arise. In the �rst one, one can explicitly compute the matrix � and, hence, one

can use the test statistic (3.3). This is the case for the Hermite polynomials that we consider

below. In the second case, computing explicitly � is not possible (or diÆcult), then one can

use any consistent estimator of � and denoted by �̂T . Examples of consistent estimators of

�T are

�̂1;T =
1

T

TX
t=1

g(xt)g(xt)
> and �̂2;T =

1

T

TX
t=1

�
f(xt)f(xt)

> + f 0(xt)f
0(xt)

>
�
: (3.5)
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In this case, one can use the following test statistic

 
1p
T

TX
t=1

g(xt)

!>
�̂�1T

 
1p
T

TX
t=1

g(xt)

!
� �2(p): (3.6)

Assume now that we consider the Hermite polynomials. We showed in the previous section

that when one applies the Stein equation (2.1) to the function fi(x) = H 0
i+1(x)=

p
i, one gets

E[Hi(X)] = 0:

But the unconditional variance of Hi(x) is one. Hence, for i � 0, we have

1p
T

TX
t=1

Hi(xt) �! N (0; 1) and

 
1p
T

TX
t=1

Hi(xt)

!2

� �2(1): (3.7)

Moreover, the Hermite polynomials are orthogonal. Hence, the test statistic based on di�erent

Hermite polynomials are asymptotically independent. In other words, when one uses a test

statistic based on several Hermite polynomials, the corresponding matrix � derived previously

is diagonal. Besides, the diagonal matrix � is indeed the identity since the variance of

each Hermite polynomial equals one. For instance, if we consider the Hermite polynomials

H3; H4; :::; Hp, then the test statistic is

pX
i=3

 
1p
T

TX
t=1

Hi(xt)

!2

� �2(p� 2): (3.8)

It is worth noting that this result is more general than one of Kiefer and Salmon (1982) who

showed (3.8) when the variables xt are estimated residuals in a linear model when one uses the

maximum likelihood method. We will discuss Kiefer and Salmon (1982) results in more detail

in the next section where we consider the parameter uncertainty problem.

3.3 The time series case

Assume now that the observations are correlated and represent a sample of a process. Then,

without additional assumptions on the dependence, one can not explicitly compute the matrix

� and has to estimate it. A traditional solution is to estimate this matrix by using a

Heteroskedastic-Autocorrelation-Consistent (HAC) method like Newey and West (1987) or

Andrews (1991). This is one of the motivations of using a GMM approach for testing

normality. This was already used by Smith and Richardson (1991) and was more recently

and independently of our work highlighted by Bai and Ng (2001).

In contrast to the cross-sectional case, one can not show that test statistics based on

two di�erent Hermite polynomials are asymptotically independent. More precisely, consider

a component (i; j), with i 6= j, of the matrix �. In this case, E[Hi(xt)Hj(xt)] is zero by the
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orthogonality of the Hermite polynomials (2.5). However, without additional restrictions, we

think that E[Hi(xt)Hj(xt�h)] is in general nonzero for h 6= 0. Thus, the matrix � will be in

general non diagonal.6

In contrast, this may be the case if one makes additional assumptions on the dependence

of the process xt. An important example is when one assumes that the process xt is a normal

autoregressive process of order one, AR(1), that is

xt = 
xt�1 +
p
1� 
2 "t; "t i:i:d: N (0; 1) and j
j < 1: (3.9)

In this case, any Hermite polynomialHi(xt) is an AR(1) process which autoregressive coeÆcient

equals 
i, that is

E[Hi(xt+1)jx� ; � � t] = 
iHi(xt): (3.10)

In this case, it is easy to show that

�ij =
+1X

h=�1

E[Hi(xt)Hj(xt�h)] =
1 + 
i

1� 
i
Æij: (3.11)

As a consequence, the matrix � is diagonal and, hence, the test statistics based on di�erent

Hermite polynomials are asymptotically independent. Besides, when one tests normality and

ignores the dependence of the Hermite polynomials, one gets a wrong distribution for the

test statistic. For instance, assume that one considers a test based on a particular Hermite

polynomial Hi. Then, the test statistic becomes

1� 
i

1 + 
i

 
1p
T

TX
t=1

Hi(xt)

!2

� �2(1): (3.12)

Thus, by ignoring the dependence of the Hermite polynomial Hi(xt), one overrejects the

normality when 
 � 0 or i is even and underrejects otherwise. Monte Carlo simulations

in the sixth section will assess this. This is important in practice since many economic time

series are positively autocorrelated.

3.4 Skewness and excess kurtosis

A traditional approach for testing normality is to study the skewness and excess kurtosis of

the variable of interest (Mardia, 1970; Bowman and Shenton, 1975; Jarque and Bera, 1980).

More precisely, when a random variable X is distributed as N (0; �2), we have

E[X3] = 0 and E[X4 � 3�4] = 0; (3.13)

6In their paper, Bai and Ng (2001) write in page 5 that the tests based on the excess skwness and excess
kurtosis are asymptotically independent under normality even for time series data. They do not provide a
proof however.
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where the �rst condition deals with skewness while the second one deals with excess kurtosis.

For simplicity, assume that we observe an i.i.d. sample x1; x2; :::; xT . Then, when the parameter

�2 is known, the test statistic implied by moment condition in (3.13) is

p
T

�
1
T

PT
t=1 x

3
t

1
T

PT
t=1 x

4
t � 3�4

�
n!+1�! N

�
0
0
;

�
15�6 0
0 96�8

��
: (3.14)

Thus, skewness and excess kurtosis test statistics are asymptotically independent. Moreover,

we have the following test statistic

1

15

 
1p
T

TX
t=1

(xt=�)
3

!2

+
1

96

 
1p
T

TX
t=1

[(xt=�)
4 � 3]

!2

n!+1�! �2(2): (3.15)

Note that this test statistic is di�erent from one of Jarque and Bera (1980) given by

1

6

 
1p
T

TX
t=1

(xt=�̂)
3

!2

+
1

24

 
1p
T

TX
t=1

[(xt=�̂)
4 � 3]

!2

n!+1�! �2(2); (3.16)

where �̂ is the MLE of � in a regression model. This di�erence is due to parameter uncertainty

that we consider in the following section.

3.5 OPG regression

Davidson and MacKinnon (1993) considered testing normality through skewness and excess

kurtosis. In particular, they reformulated Jarque and Bera (1980) test in terms of outer-

product-of-the-gradient (OPG) regression.

More precisely, as in Davidson and MacKinnon (1993), assume that one is interested in

testing that yt is N (�; �2) where �2 is a known parameter and de�ne xt by xt = yt � �. The

assumption that the mean and variance of xt are zero and �2 could be tested by the following

OPG regression

1 = bxt + s(x2t � �2) + residual: (3.17)

Assume now that one is interested in testing skewness. Then, Davidson and MacKinnon (1993)

propose to add in (3.17) the regressor x3t , i.e.,

1 = bxt + s(x2t � �2) + ax3t + residual; (3.18)

and to test that the coeÆcient a is zero. The test statistic being the t statistic of the estimator

of a. Given that x3t is orthogonal with x2t � �2 and not with xt, the numerator of the t test is

the mean of x3t minus the mean of its projection on xt, i.e.

1

T

TX
t=1

x3t �
 PT

t=1 x
4
tPT

t=1 x
2
t

!
1

T

TX
t=1

xt

10



which is, under normality and when T is large, very close to

1

T

TX
t=1

x3t � 3�2
1

T

TX
t=1

xt:

Davidson and MacKinnon (1993) showed that the variance of x3t � 3�2xt is 6�
6. Thus, the t

statistic is very close to

1
T

PT
t=1 x

3
t � 3�2 1

T

PT
t=1 xtp

6�6
: (3.19)

Similarly, Davidson and MacKinnon (1993) showed that one can test excess kurtosis by doing

the following OPG regression

1 = bxt + s(x2t � �2) + ax3t + b(x4t � 3�4) + residual; (3.20)

and that the t-statistic related to the coeÆcient b is very close to

1
T

PT
t=1 x

4
t � 6�2 1

T

PT
t=1 x

2
t + 3�4p

24�8
: (3.21)

Observe that the test statistics (3.19) and (3.21) may be written as

1

T

TX
t=1

1p
6
[(xt=�)

3 � 3(xt=�)] =
1

T

TX
t=1

H3(xt=�) (3.22)

and

1

T

TX
t=1

1p
24
[(xt=�)

4 � 6(xt=�)
2 + 3] =

1

T

TX
t=1

H4(xt=�): (3.23)

Given that the variance of H3(xt=�) is one, the test statistic (3.19) is also the t-statistic of the

coeÆcient ~a in the two OPG regressions

1 = bxt + s(x2t � �2) + ~aH3(xt=�) + residual; and (3.24)

1 = ~bH1(xt=�) + ~sH2(xt=�) + ~aH3(xt=�) + residual: (3.25)

In addition, given that the variance of H4(xt=�) is one, the test statistic (3.21) is also the

t-statistic of the coeÆcient ~b in the two OPG regressions

1 = bxt + s(x2t � �2) + ~bH4(xt=�) + residual; and (3.26)

1 = ~bH1(xt=�) + ~sH2(xt=�) + ~bH4(xt=�) + residual: (3.27)
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Finally, because H3(xt=�) and H4(xt=�) are orthogonal, the test statistics (3.19) and (3.21)

are respectively the t-statistic of the coeÆcients ~a and ~b in the two OPG regressions

1 = bxt + s(x2t � �2) + ~aH3(xt=�) + ~bH4(xt=�) + residual; and (3.28)

1 = ~bH1(xt=�) + ~sH2(xt=�) + ~aH3(xt=�) + ~bH4(xt=�) + residual: (3.29)

In other words, given the orthonormality of Hermite polynomials, testing that the empirical

mean of the third Hermite polynomial is numerically the same as testing that the coeÆcient

~a in the previous regressions is zero. It is also the case when one tests excess kurtosis by using

the fourth Hermite polynomial and, more generally, for higher order Hermite polynomials.

4 Parameter uncertainty

In most empirical examples, the normality assumption is made for an unobservable random

variable. This is the case for a regression, linear or non linear, homoskedastic or heteroskedastic,

where the normality assumption is in general made on the (standardized) residuals. This

is also the case for non linear time series as volatility models (e.g., GARCH or stochastic

volatility models). Thus, one must �rst estimate the parameters of the model and then get

�tted residuals. Then, one tests the normality assumption of the residuals by using the �tted

residuals. In some other empirical examples, the normality assumption is made on observable

variables but the parameter of the normal distribution, i.e., the mean and the variance, are

unknown. Therefore, one must also estimate these parameters in order to test normality.

It is well known that the asymptotic distribution of a test statistic that depends on an

unknown parameter, denoted by �0, may be di�erent from the asymptotic distribution of the

same test statistic applied by using a consistent estimator of �0, denoted by �̂T . The main

reason is that one has to take into account the uncertainty of �̂T in the testing procedure. This

is known as the parameter uncertainty problem.

The GMM approach is well suited for this problem, which is the �rst reason we are using

it in the paper to test normality. Newey (1985) and Tauchen (1985) provided a general theory

for taking into account the parameter uncertainty in testing procedures. Their approach is the

following. Assume that one has to test the following moment condition

E[g(zt; �
0)] = 0; (4.1)

where zt is a random variable, potentially multivariate, and �0 is an unknown (vectorial)

parameter. Under the null hypothesis, we have

1p
T

TX
t=1

g(zt; �
0) ! N (0;�g) where �g = limT!+1V ar[

1p
T

TX
t=1

g(zt; �
0)]: (4.2)

12



Assume that one has a square-root T consistent estimator of �0, denoted by �̂T , i.e.

p
T (�̂T � �0) ! N (0; V�): (4.3)

Then, a natural approach to test (4.1) is by using T�1=2
PT

t=1 g(zt; �̂T ). Therefore, one needs

the asymptotic distribution of this test statistic. It is easily obtained by using a Taylor

approximation around the unknown parameter �0. More precisely, we have:

1p
T

TX
t=1

g(zt; �̂T ) =
1p
T

TX
t=1

g(zt; �
0) + [

1

T

TX
t=1

@g(zt; �
0)

@�>
]
p
T (�̂T � �0) + op(1): (4.4)

De�ne the matrix Pg by

Pg = limT!+1
1

T

TX
t=1

@g(zt; �
0)

@�>
: (4.5)

Then, we can rewrite (4.4) in the following form:

1p
T

TX
t=1

g(zt; �̂T ) = [Ip Pg]

2
64 1p

T

TX
t=1

g(zt; �
0)

p
T (�̂T � �0)

3
75+ op(1); (4.6)

where Ip is the p � p identity matrix and p the dimension of g. From (4.6), it is clear that

the asymptotic distribution of the test statistic in the left hand side of (4.6) depends on the

asymptotic distributions of two random variables, T�1=2
PT

t=1 g(zt; �
0) and

p
T (�̂T � �0) which

are given respectively in (4.2) and (4.3), and their asymptotic covariance.7 As a consequence,

the parameter uncertainty generally changes the asymptotic distribution of test statistic when

one uses an estimator instead of the unknown parameter �0.

In general, the matrices that appear in the asymptotic distributions (4.2) and (4.3) are easily

estimated. However, it is diÆcult is to estimate the asymptotic covariance matrix between

T�1=2
PT

t=1 g(zt; �
0) and

p
T (�̂T � �0). This is the case when one uses advanced estimation

methods, especially simulation techniques8 as in the case of stochastic volatility and latent

factor models.

An alternative method that adopted in this paper is to consider moment conditions such

that the matrix Pg is zero, i.e.,

Pg = 0: (4.7)

In this case, the asymptotic distribution of T�1=2
PT

t=1 g(zt; �
0) and T�1=2

PT
t=1 g(zt; �̂T )

coincide. Hence, the test statistic is robust against the parameter uncertainty.

7We assume that the asymptotic distribution of the right hand side of (4.6) is normal.
8See Gouri�eroux and Monfort (1996) for a review.
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In the sequel, we need to be more speci�c about the examples we will consider in order

to characterize the moment conditions that are robust against the parameter uncertainty. We

consider three examples:

Example 1: regression with exogenous variables. Let zt = (yt; x
>
t )
> be a vector where yt

is an endogenous variable, xt is a (vectorial) exogenous variable. We assume that there exists

a unique parameter �0 = (�0>; �0>)> such that

yt = m(xt; �
0) + �(xt; �

0; �0) ut; and ut N (0; 1); (4.8)

where �0 and �0 are real vectors and m(x; �) and �(x; �; �) are two real functions. A special

example is the cross-sectional case where the random variable ut is i.i.d. by assumption.

Another example is the time series case where the variable ut may be serially correlated.

However, it is assumed to be independent from xt.

The model adopted by Jarque and Bera (1980) is the special case where

m(xt; �) = x>t � and �(xt; �; �) = �; (4.9)

i.e., they considered a linear homoskedastic regression model with potentially correlated

residuals. Kiefer and Salmon (1983) adopted also a special case of (4.8) by assuming

�(xt; �; �) = � and ut i:i:d:; (4.10)

i.e., a non linear regression model with homoskedastic and i.i.d. errors.

Example 2: time series regression. This example is similar to the �rst one, but we now

assume that the variables xt are lagged values of yt and ut is i.i.d., i.e.,
9

E[yt j y� ; � � t� 1] = mt(�
0); V ar[yt j y� ; � � t� 1] = �2t (�

0; �0); (4.11)

ut � yt �mt(�
0)

�t(�0)
and ut i:i:d: N (0; 1): (4.12)

Special examples of this case are ARMA models with GARCH errors (Bollerslev, 1986).

Example 3: marginal distribution of a process. In this case, we assume that we observe

a sample y1; :::; yT , of a process which marginal distribution is assumed to be N (m0; �02) where

m0 and �0 are unknown parameters. Hence, the standardized process is N (0; 1), that is

ut � yt �m0

�0
and ut N (0; 1): (4.13)

Observe that in all these examples, the normal variable of interest ut may be written as

ut(�) =
yt �mt(�)

�t(�)
; (4.14)

where the normality assumption holds for ut(�
0) and denoted by ut. We can now characterize

the test functions g that are robust against parameter uncertainty in Example 1, 2 or 3.

9Observe that we adopt a di�erent notation than for the �rst example in order to incorporate non Markovian
models like MA and GARCH.
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Proposition 4.1 Consider ut as de�ned in Example 1, 2 or 3. Let �̂T be a square-root T

consistent estimator of �0 such that (4.3) and ût the corresponding estimated residuals. De�ne

the function ~g(:) by ~g(ut(�)) = g(zt; �): Then, a suÆcient condition such that the asymptotic

distribution of the test statistics T�1=2
PT

t=1 g(zt; �
0) and T�1=2

PT
t=1 g(zt; �̂T ) coincide is

E[~g0(ut)] = 0 and E[ut~g
0(ut)] = 0: (4.15)

This proposition means that a suÆcient conditions ensuring the robustness of our test statistic

against the parameter uncertainty is the orthogonality of ~g0 with H0 and H1, i.e.

E[H0(ut)~g
0(ut)] = 0 and E[H1(ut)~g

0(ut)] = 0: (4.16)

It is worth noting that we do not assume that the considered test statistic comes from the

Stein equation (2.1). Indeed, this result encompasses the results of White and MacDonald

(1980). Besides, this proposition holds in both cross-sectional and time series cases. Finally,

while (4.15) is a suÆcient condition, it is generically necessary. It may not be necessary for

some estimators with very particular asymptotic variances.

Before further characterizing (4.16) when one considers the Stein equation (2.1), let us

apply this proposition when one considers tests based on excess skewness and kurtosis as did

Jarque and Bera (1980) and Bai and Ng (2001). More precisely, assume that one considers the

moment conditions

E[~g1(ut)] = 0 and=or E[~g2(ut)] = 0; where ~g1(ut) = u3t and ~g2(ut) = u4t � 3: (4.17)

It is clear that the function ~g1 violates the �rst condition in (4.15) while ~g2 violates the second

one. Thus, in this case, one must correct the asymptotic distribution of the test statistic by

taking into account the parameter uncertainty. Jarque and Bera (1980) did this correction by

using a Lagrange multiplier test.

When one considers test statistics based on the Stein equation (2.1), that is when one

assumes that

~g(x) = f 0(x)� xf(x);

the condition (4.15) may be characterized through the function f(x):

Proposition 4.2 Let f(x) be a di�erentiable function and de�ne ~g(x) by ~g(x) � f 0(x)�xf(x).
Then, the condition (4.16) holds if and only if

E[f(ut)] = 0 and E[f 0(ut)] = 0: (4.18)

This proposition may be easily applied in practice. One has to take any integrable function

denoted by s(x) such that E[js(Z)j] < +1 where Z is assumed to be N (0; 1). Then, de�ne
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the function �s(x) by �s(x) = s(x)�E[s(Z)] and the function �f(x) as the primitive of �s(x) which

is centered, that is E[ �f(Z)] = 0. Then, by construction, the condition (4.18) holds for �f(x).

When on uses the conditions based on the Hermite polynomials (2.6), the conditions (4.15)

and (4.18) hold for any (linear combination of) Hermite polynomial Hi(x) with i � 3. This is

the main result of our paper:

Proposition 4.3 Consider ut as de�ned in Example 1, 2 or 3. Let �̂T be a square-root T

consistent estimator of �0 such that (4.3). Let g be a vectorial function such that any component

is a linear combination of Hermite polynomials Hi(x) with i � 3. Then, the asymptotic

distribution of the test statistics T�1=2
PT

t=1 g(zt; �
0) and T�1=2

PT
t=1 g(zt; �̂T ) coincide.

This result was already stated in Kiefer and Salmon (1983). However these authors assumed

that the model is a non linear regression with homoskedastic and i.i.d. errors, that is under (4.8)

and (4.10). Moreover, they showed this result when �̂T is the maximum likelihood estimator. In

other words, both assumptions are relaxed in the previous proposition. This is very important

in many empirical examples where computing the maximum likelihood estimator is diÆcult or

unfeasible. In addition, the results of Davidson and MacKinnon (1993) in their OPG regression

where the consider parameter uncertainty are also a special case of the previous proposition.

We now characterize the relationship of the Jarque and Bera (1980) test with the previous

proposition. The test statistic they proposed is for example one under (4.9). More precisely,

let ût de�ned by

ût =
yt � x>t �̂

�̂
(4.19)

where �̂ and �̂ are the MLE of � and �. Then, Jarque and Bera (1980) showed that

1

6

 
1p
T

TX
t=1

û3t

!2

+
1

24

 
1p
T

TX
t=1

[û4t � 3]

!2

n!+1�! �2(2): (4.20)

In Jarque and Bera (1980), the constant is in the regressors. Hence, we have

TX
t=1

ût = 0: (4.21)

In addition, �̂2 is given by �̂2 = T�1
PT

t=1(yt � x>t �̂)
2: Therefore, we have

1

T

TX
t=1

û2t = 1: (4.22)

Hence, when one combines the left-hand side of (4.20) with (4.21) and (4.22), one gets

1

6

 
1p
T

TX
t=1

[û3t � ût]

!2

+
1

24

 
1p
T

TX
t=1

[û4t � 6û2t + 3]

!2

; i:e:;
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1p
T

TX
t=1

H3(ût)

!2

+

 
1p
T

TX
t=1

H4(ût)

!2

:

In other words, Jarque and Bera (1980) test coincides with the joint test based on third and

fourth Hermite polynomials. However, the setting they considered is less general than ours. In

addition, their estimation method is the ML while in our case we only need a square-root T

consistent estimator.

In summary, when one wants to test normality, N (0; 1), through skewness and excess

kurtosis, one has two methods that are robust against parameter uncertainty. One can either

use the third and fourth Hermite polynomials on the �tted residuals whatever the estimation

method, or, use the Jarque and Bera (1980) test on the standardized residuals, i.e., the �tted

residuals minus their empirical mean divided by their standard deviation.10 Of course, for time

series, the second method is not valid while one has to use a HAC method for estimating the

variance-covariance matrix in the �rst method.

5 A Monte Carlo study

In this section, we provide some Monte Carlo experiments to study the �nite sample properties

of the tests we proposed. We also compare our tests with the most popular ones, that is the

Kolmogorov-Smirnov and the Jarque-Bera tests. These two tests are respectively denoted by

KS and JB in the tables. Note that when we consider the parameter uncertainty problem,

we also provide the Lilliefors modi�ed Kolmogorov-Smirnov test and denoted by M-KS in the

tables.

All the test functions we consider are based on Hermite polynomials given their robustness

against parameter uncertainty. We consider test functions based on individual Hermite

polynomials Hi for i = 3; :::; 10. We also consider joint tests based on (H3; H4; :::; Hi), for

i = 4; :::; 10. These tests are denominated by H3�i for i = 4; :::; 10 in the tables.

In all the simulations experiments, we consider four sample sizes: 100, 250, 500 and 1000.

All the results are based on 50000 replications. We report in the tables the empirical probability

of rejecting the null hypothesis when one considers tests at 5% signi�cance level. Tests based

on 10%, 2.5% and 1% are similar to 5% and are omitted to save space.11

Cross-sectional case. We start by simulating an i.i.d. sample from a N (0; 1). We assume

that we know the mean and the variance. Obviously, this is unrealistic in practice. However,

this is a good benchmark for the realistic cases where the parameters are unknown and have

to be estimated. We reported the results in Table 1. Consider the tests based on individual

10These two methods are suÆcient ones. In particular, Fiorentini, Sentana and Calzolari (2002) show that
for some heteroskedastic models estimated by the ML method, test based on the fourth moment (as in Jarque
and Bera, 1980) applied to the �tted residuals is still valid.

11They are available upon request from the authors.
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Hermite polynomials. Their �nite sample properties are clearly good. In particular, they do

not reject the null more than the nominal level, even with the smaller sample size. However,

while the tests based on higher order polynomials Hi for i � 6 underreject the null for the four

sample sizes, this is not problematic given that we are considering the level of the tests. The

tests based on several Hermite polynomials have also very good �nite sample properties for

the four sample sizes. Indeed, we do not observe the under rejection when we use high order

Hermite polynomials.

Consider now the popular tests, i.e. KS and JB. The KS test works very well whatever

the sample size. Interestingly, the properties of tests based on the Hermite polynomials are

very close to the KS test and some times better for the sample size 100 when one considers a

test based on H4. However the JB test does not work well and overreject the null. The main

reason is that when the empirical mean of the sample is not zero, the asymptotic distribution

of the Jarque and Bera (1980) test is not a �2(2).

In Table 2, we present the results of the same tests12 on the same samples when one does

not know the mean and the variance and estimates them. Thus, the test statistics are based on

the standardized residuals. By comparing Table 2 with Table 1, it is clear that tests based on

Hermite polynomials underreject a little bit the null assumption which again is not problematic.

However the di�erence between knowing or not the mean and the variance decreases with the

sample size and almost vanishes when the sample size is 1000. This con�rms the robustness of

these tests against parameter uncertainty. This is in contrast with the Kolmogorov-Smirnov

test that almost never rejects the null. However, the Lilliefors modi�ed test works well whatever

the sample size. This is also the case for the JB test since by construction, the empirical mean

of the standardized residuals is zero. Indeed, the JB test coincides with the joint test based

on H3 and H4, that is H3�4.
13

We now study the power of the considered tests against some interesting alternative

assumptions for the cross-sectional case. In particular, we consider Student, chi-square

and exponential alternatives. We start by simulating i.i.d. random variables from Student

distributions with six di�erent degrees of freedom: a) T (60); b) T (30); c) T (20); d) T (10); e)

T (6); f) T (3). Recall that for a random variable that follows a T (�) distribution, the moments

of order higher than �-1 are not de�ned. Hence, the moments of Hi are not de�ned if i > ��1.

Moreover, the asymptotic distribution of the corresponding test statistics are not chi-square

if 2i > � � 1 since the variance of the Hermite polynomial Hi is not de�ned. The results are

presented in Table 3. It is clear that the power of the tests is low when the degree of freedom

� is high. This is not surprising since a T (�) distribution tends toward a normal one when

� ! +1. However, when the degree of freedom decreases, the power of the tests increases

12We do not consider H1 and H2 since these moments are used to estimate the mean and the variance.
13There is a small di�erence in Table 2 between JB and H3�4 tests since in JB test, the variance is estimated

by T�1
PT

t=1
(xt � �X)2 while in the Hermite case it is estimated by (T � 1)�1

PT

t=1
(xt � �X)2 where T is the

sample size and �X the empirical mean.
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and becomes very good when the degree of freedom is smaller than 10, which is the relevant

case in the volatility literature; see the �rst example in the empirical section. A surprising

result is that the fourth Hermite polynomial captures much more the non normality than the

higher polynomials. In contrast, tests based on odd polynomials do not work well. This is not

surprising given that the mean in population of any odd Hermite polynomial is zero (when it

is well de�ned) for any symmetric distribution and, hence, for a Student one.

In order to understand the behavior of the power of test statistics against Student

distributions, we characterize in the following proposition their behavior for the third and

fourth Hermite polynomials.

Proposition 5.1 Let y1; y2; :::; yT , an i.i.d. sample of a random variable Y that follows a

T (�) where � is assumed to be higher than eight (� > 8), and de�ne the random variable X by

X = Y
p
(� � 2)��1. Then:

p
T

 
1
T

PT
t=1H3(xt)

1
T

PT
t=1H4(xt)

�
0q
3
2

1
��4

!
T!+1�!

�
0
0
;

�
A(�) 0
0 B(�)

��
; (5.1)

where

A(�) =
�2 � � + 10

(� � 6)(� � 4)
and B(�) =

24�3 + 1321�2 + 708� � 1572

(� � 8)(� � 6)(� � 4)
: (5.2)

As a consequence:  
1p
T

TX
t=1

H3(xt)

!2

T!+1�! A(�)�2(1); and (5.3)

 
1p
T

TX
t=1

H4(xt)

!2

T!+1�! +1: (5.4)

In addition, when T is large, we have the following approximation result: 
1p
T

TX
t=1

H4(xt)

!2

� 1

T
B(�)�2(1; T 2C(�)) where C(�) =

3

2

1

(� � 4)B(�)
: (5.5)

Equation (5.3) implies that when one uses the third Hermite polynomial for testing normality

while the random variable is a Student T (�) at, say, 5% level, one accepts normality with a

probability that equals P (A(�)�2(1) > 3:84) if one assumes that 
1p
T

TX
t=1

H3(xt)

!2

T!+1�! �2(1):

In Table 4, we provided for all values of � we considered in the Monte Carlo experiment, the

value of A(�) and the probability P (A(�)�2(1) > 3:84). These results are compatible with the
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Monte Carlo ones; in particular, the theoretical probabilities of rejection are very close to the

Monte Carlo ones for the sample size T = 1000. Given that a test based on the third Hermite

polynomial is not powerful, this is also the case for any test that uses this polynomial, as the

joint test based on the third and fourth polynomial. In contrast, equation (5.4) explains why

a test based on the fourth Hermite polynomial has a good asymptotic power against Student

distribution.

Consider now the power of the tests against a �2(1) and an exponential distribution, exp(1).

The results are reported in Table 5. They clearly imply that tests based on the third and fourth

Hermite polynomials are very powerful whatever the sample size and that they are similar to the

modi�ed Kolmogorov-Smirnov test. However, tests based on individual higher order Hermite

polynomials are less powerful for small sample sizes.

Dependent case. Consider now the dependent case, where the variable of interest is

serially correlated. We consider several autoregressive normal processes of order one, AR(1),

i.e., we assume that the conditional distribution of the variable of interest denoted by xt given

its past is N (�xt�1; 1 � �2). Observe that the marginal distribution of xt is N (0; 1). We

consider four values for �: a) � = :1; b) � = :5; c) � = :7 and d) � = 0:9. We did the same

tests as for the independent case by assuming that do not know the unconditional mean and

variance of xt.

We start by ignoring the dependence of the data, that is we assume that the sample size

is i.i.d.; the results are reported in Table 6a. They clearly mean that all the tests, including

M-KS and JB ones, overreject the null when the sample size is higher than 250. This distortion

is problematic. Therefore, we take into account the dependence of the data.

Next, we assume that we know the autoregressive structure. This is not always a realistic

assumption. We do it however in order to get a benchmark. We consider two cases; in the �rst

one, we assume that we know the autoregressive parameter while we estimate it by OLS in the

second case. Given that the autoregressive feature of the data is known, we assume that the

weighting matrix that appears in the test statistic is diagonal and that the diagonal coeÆcients

are given by (3.11). The results are provided in Table 6b and Table 6c. These results are clearly

good and similar to the ones provided in Table 2 for the independent case. We observe again

an under rejection of normality, in particular when the autoregressive coeÆcient increases.

We then test normality by ignoring the autoregressive feature of the data but by taking

into account their dependence. Therefore, we do not assume that the weighting matrix � is

diagonal. Instead, we estimate it by a HAC method. The HAC method is developed by using

the quadratic kernel with an automatic lag selection procedure of Andrews (1991). The results

are reported in Table 6d. From this table, it is clear that univariate tests work well. However,

joint tests overreject the normality assumption, especially for small sample sizes and for tests

that are based on three or more Hermite polynomials. The overrejection is relatively small for

the test based on third and fourth Hermite polynomials.
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We now study the power of these tests against an autoregressive model of order one where

the innovation is a Student one. Again, with the same autoregressive parameters as previously,

we consider the same degree of freedom as in the i.i.d. case, i.e., 60, 30, 20, 10, 6 and 3. Observe

that the marginal distribution of the processes are (probably) not Student. However, their tails

are clearly fatter than for a normal distribution. The results are reported in Tables 7a, 7b, 7c,

7d, 7e and 7f. We also report in Table 7g the results of the example where the innovation is

T (5). We consider this example for comparison purposes with Bai and Ng (2001). The main

results of the tables can be summarized as follows. The test based on univariate polynomials

and di�erent from the third one work well; however, their power decreases when both the

degree of freedom of the Student distribution and the autocorrelation parameter are high. The

tests univariate, bivariate and trivariate tests based on the third Hermite polynomials (denoted

in the tables by H3, H3�4 and H3�5) are not powerful, especially when the autocorrelation is

high. The main reason is symmetry. The second reason, given by Bai and Ng (2001), is that

when the autocorrelation parameter is high, the Central Limit Theorem suggests that process

of interest is close to a normal one. Note however that our results for H3�4 are di�erent from

ones of Bai and Ng (2001) when they test normality (for � = 5) since that they �nd that their

test are powerful. The main reason is that we do not assume diagonality of the weighting

matrix when we do joint tests while Bai and Ng (2001) do. As we pointed out in the third

section, there is no reason to assume in general that the tests are asymptotically independent.

However, it is the case for an AR(1) process, i.e., the setup we adopted as well as Bai and Ng

(2001) in our simulation. Given that we are interested on the power of the tests, we did not

take into account this asymptotic independence in our simulations.

6 Empirical examples

In this section we provide three empirical examples. The �rst one concerns GARCH models

while the second and third ones deal with high frequency realized volatility.

6.1 First example: GARCH model

A very popular model in the volatility literature is GARCH(1,1) of Bollerslev (1986). More

precisely, Bollerslev (1986) generalizes the ARCH models of Engle (1982) by assuming that

yt =
p
htut with ht = ! + �y2t�1 + �ht�1; where ! � 0; � � 0; � � 0; �+ � < 1; (6.6)

and the process ut is assumed to be i.i.d. and N (0; 1). An important characteristic of GARCH

models is that the kurtosis of yt is higher than for a normal variable. It turns out that �nancial

returns are also leptokurtic and, hence, GARCH models describe well �nancial data.14

14The second characteristic that GARCH models share with �nancial returns is the clustering e�ect. For a
survey on GARCH models, see for instance Bollerslev, Engle and Nelson (1994).
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However, some empirical studies showed that the implied kurtosis of a GARCH(1,1) is lower

than empirical ones. These studies lead Bollerslev (1987) to assume that the standardized

process ut may follow a Student distribution. Under this assumption, GARCH(1,1) �t very

well �nancial returns. Indeed, by using Bayesian likelihood method, Kim, Shephard and Chib

(1998) showed that a Student GARCH(1,1) outperforms in terms of likelihood another very

popular volatility model, namely the log-normal stochastic volatility model of Taylor (1986)

popularized by Harvey, Ruiz and Shephard (1994).

The �rst example we consider in our empirical study is testing normality of the standardized

residual ut. We consider the same data as Harvey, Ruiz and Shephard (1994) and Kim,

Shephard and Chib (1998),15 i.e., observations of weekday close exchange rates from 1/10/81

to 28/6/85. The exchange rates are the U.K. Pound, French Franc, Swiss Franc and Japanese

Yen, all against the U.S. Dollar. We estimate the model by a Gaussian QML method. The

method is consistent as soon as the variance ht is well speci�ed (Bollerslev and Wooldridge,

1992). We get the �tted residuals ût and test their normality. The results are provided in Table

8. It is clear that normality of the residuals is strongly rejected by all the tests, in particular

those related to the tails (even polynomials). The di�erence between JB and H3�4 tests is

relatively small; this fact is in line with the results of Fiorentini, Sentana and Calzolari (2002)

who showed that the test based on the fourth moment for GARCH models is still valid even

if the parameters are estimated.16 Observe that the magnitude of normality rejection is in the

following increasing order: FF-US$, UK-US$, SF-US$, and Yen-US$. Interestingly, this order

is the same than one implied by the Student GARCH models estimated by Kim, Shephard and

Chib (1998), since these authors reported in their Table 13 the following degree of freedom:

12.82, 9.71, 7.57 and 6.86.

6.2 Second and third examples: realized volatility

Several recent studies highlight the advantage of using high-frequency data to measure volatility

of �nancial returns. These include Andersen and Bollerslev (1998), ABDL (2001) and

Barndor�-Nielsen and Shephard (2001); for a survey of this literature, Andersen, Bollerslev and

Diebold (2001) and Barndor�-Nielsen and Shephard (2002) should be consulted. Typically,

when one is interested in volatility over, say, a day, then these papers propose to study the

estimation of this volatility by the sum of the intra-daily squared returns, such as returns over

�ve or thirty minutes. This measure of volatility is called the realized volatility.

More precisely, consider St a continuous time process representing the price of an asset or

the exchange rate between two currencies. Assume that it is characterized by the following

15We are grateful to Neil Shephard for providing us with the data.
16Recall that exchange rates returns are symmetric.
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stochastic di�erential equation:

d log(St) = mtdt+ �tdWt with d�2t = ~mtdt+ ~�td ~Wt; (6.7)

where Wt and ~Wt are standard Brownian processes, potentially correlated. Assume that the

time t is measured in units of one day. Consider a real h such that 1=h is a positive integer.

Then, integrated and realized volatility denoted respectively by IVt and RVt(h) are de�ned by

IVt �
Z t

t�1

�2udu and RVt(h) �
1=hX
i=1

r
(h)2
t�1+ih; (6.8)

where r
(h)
t�1+ih is the return over the period [t � 1 + (i � 1)h; t � 1 + ih], given by r

(h)
t�1+ih �

log(St�1+ih)� log(St�1+(i�1)h). It turns out that when h goes to zero, realized volatility RVt(h)

converges (in probability) to integrated volatility IVt.

6.2.1 Second example: distribution of standardized residuals

In their forecasting paper, ABDL (2002) presented empirical results suggesting that the

standardized residuals "t(h) de�ned by "t(h) � (rt=
p
RVt(h)) where rt is the daily return,

i.e. rt = log(St)� log(St�1), are N (0; 1). These empirical results were based on the skewness,

kurtosis, and nonparametric estimation of density of "t(h). This is our second example.

We consider the same data as in ABDL (2002),17 i.e. returns of three exchange rates,

DM-US$, Yen-US$ and Yen-DM, from December 1, 1986 through June 30, 1999. The realized

volatilities are based on observations at �ve and thirty minutes. Therefore, we have six series.

For each variable, we de�ne the standardized residuals and test their normality.

We start by testing that the standardized residuals are N (0; 1), i.e., we assume as

ABDL(2002) that the mean and variance of the normal distribution are known and equal

to zero and one respectively. The results are provided in Table 9a. In Panel A, we provide

the results when one assumes that the standardized residuals are independent. Given that this

independence is not obvious, we also provided in Panel B results of the test statistics that do

not assume the independence and use a HAC method for estimating the weighting matrix.

The results form Table 9a clearly reject the N (0; 1) assumption, particularly test based

on the fourth Hermite polynomial which is powerful. Note that the results in Panel B are

close but di�erent from ones of Panel B, suggesting that some feature (like dependence or

heteroskedasticity) of the data are not taken into account in Panel A.

Another striking result in Panel A is the di�erence between the Jarque-Bera (JB) test and

the test based on third and fourth Hermite polynomials (H3�4). This di�erence suggests that

the mean of the residuals is not zero or that their variance is not one. Therefore, we also

17We are grateful to Ramazan Gen�cay for providing us the OLSEN data and to Torben Andersen and Paul
Labys for providing us their data.
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test normality of the residuals with unknown mean and variance. The results are reported in

Panel A of Table 9b when one assumes independence and in Panel B when one estimates the

weighting matrix by a HAC procedure. The main message from Table 9b is that normality is

not rejected for standardized residuals based on �ve-minute realized volatility and rejected for

ones based on thirty-minute realized volatility.

6.2.2 Third example: distribution of realized volatility

Another assumption made in ABDL (2002) is conditional normality of the log of realized

volatility. Hence, log-realized volatility are also unconditionally normal. This is our third

example. In Table 10, we provide the results of testing normality of log-realized volatility with

unknown mean and variance. The weighting matrix is again estimated by a HAC procedure of

Andrews (1991). It is clear that unconditional normality of log-realized volatility is rejected,

particularly for realized volatility based on �ve-minute returns.18 Observe that the rejection is

due to the asymmetry of the distribution. In this test, we assume that the weighting matrix

is well de�ned. This is not necessarily the case. In particular, ABDL (2002) reported results

that clearly indicate a presence of long memory in log-realized volatility. In this case, the

weighting matrix is not well de�ned and our test procedures are not valid. However, this is

also the case for the procedures of ABDL (2002). which are based on the skewness, kurtosis,

and nonparametric estimation of density of log-realized volatilities. Testing normality under

long memory is more diÆcult and is left for future research.

7 Conclusion

In this paper, we consider testing marginal normal distributional assumptions for both cross-

section and time series data. We use the GMM approach to test moment conditions given

by Stein (1972) equations and the �rst class of moment conditions derived by Hansen and

Scheinkman (1995) when the process of interest is a scalar di�usion. The main advantage

of our approach is that tests based on Hermite polynomials are robust against parameter

uncertainty. In addition, the GMM setting is well suited to take into account serial correlation

by using a HAC procedure. We provide simulation results that clearly show the usefulness of

our approach. We also apply our approach to test for normality in three volatility models.

Three main extensions have to be considered. The �rst one is to extend our approach to

the multivariate case. The second one is to consider other distributions, in particular Pearson

ones. These two extensions are under consideration by using the Hansen and Scheinkman

(1995) moment conditions which are valid in both multivariate normal and non normal cases.

A third important extension will be testing normality under long memory.

18In their study, ABDL (2002) used thirty-minute realized volatilities.
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Table 1: Size of the tests.
Mean and variance are known.

T 100 250 500 1000

H1 .0508 .0514 .0525 .0500
H2 .0511 .0485 .0498 .0486
H3 .0549 .0542 .0556 .0515
H4 .0475 .0470 .0494 .0498
H5 .0362 .0431 .0483 .0504
H6 .0205 .0266 .0320 .0361
H7 .0128 .0156 .0199 .0239
H8 .0135 .0116 .0126 .0142
H9 .0188 .0168 .0143 .0128
H10 .0122 .0160 .0184 .0158
H3�4 .0582 .0562 .0565 .0531
H3�5 .0599 .0624 .0632 .0599
H3�6 .0544 .0580 .0609 .0611
H3�7 .0503 .0525 .0552 .0558
H3�8 .0504 .0499 .0513 .0512
H3�9 .0480 .0488 .0500 .0487
H3�10 .0445 .0458 .0484 .0474
KS .0446 .0470 .0493 .0486
JB .1498 .1632 .1743 .1741

Note: The data are i.i.d. from a N (0; 1) distribution.

We test the N (0; 1) assumption. Thus, we do not

estimate the mean and standard deviation. The

results are based on 50000 replications. For each

sample size, we provide the frequency of rejection at

a 5% level. Hi�j corresponds to the joint test based

on Hk, i � k � j. KS and JB are the

Kolmogorov-Smirnov and Jarque-Bera tests.
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Table 2: Size of the tests.
Mean and variance are estimated.

T 100 250 500 1000

H3 .0429 .0475 .0490 .0497
H4 .0308 .0378 .0427 .0456
H5 .0242 .0360 .0432 .0478
H6 .0121 .0214 .0288 .0342
H7 .0068 .0122 .0168 .0217
H8 .0077 .0086 .0101 .0130
H9 .0123 .0143 .0112 .0105
H10 .0060 .0126 .0166 .0151
H3�4 .0410 .0455 .0463 .0480
H3�5 .0418 .0513 .0532 .0543
H3�6 .0361 .0473 .0526 .0553
H3�7 .0331 .0423 .0469 .0506
H3�8 .0325 .0396 .0429 .0464
H3�9 .0309 .0389 .0422 .0440
H3�10 .0284 .0368 .0406 .0428
KS1 .0001 .0002 .0001 .0002
M-KS2 .0519 .0537 .0567 .0596
JB3 .0433 .0473 .0470 .0485

Note: The data are i.i.d. from a N (0; 1) distribution.

We test the normality assumption. Thus, we

estimate the mean and standard deviation. The

results are based on 50000 replications. For each

sample size, we provide the frequency of rejection at

a 5% level. Hi�j corresponds to the joint test based

on Hk, i � k � j. KS and JB are the

Kolmogorov-Smirnov and Jarque-Bera tests.

M-KS is the modi�ed Kolmogorov-Smirnov test.
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Table 3: Power of the tests against Student distributions.

Panel A: �=60
T 100 250 500 1000

H3 .0566 .0649 .0683 .0680
H4 .0487 .0729 .0949 .1303
H5 .0373 .0614 .0783 .0946
H6 .0210 .0392 .0546 .0737
H7 .0114 .0236 .0351 .0539
H8 .0122 .0167 .0243 .0350
H9 .0204 .0245 .0250 .0276
H10 .0124 .0259 .0347 .0353
H3�4 .0627 .0836 .1003 .1255
H3�5 .0636 .0913 .1129 .1403
H3�6 .0565 .0855 .1081 .1387
H3�7 .0515 .0770 .0994 .1296
H3�8 .0508 .0740 .0935 .1211
H3�9 .0486 .0722 .0913 .1161
H3�10 .0454 .0682 .0881 .1131
KS .0001 .0001 .0001 .0003
M-KS .0532 .0602 .0641 .0689
JB .0658 .0854 .1015 .1263

Panel B: �=30
T 100 250 500 1000

H3 .0744 .0863 .0897 .0942
H4 .0782 .1330 .1942 .3033
H5 .0559 .0982 .1294 .1635
H6 .0331 .0660 .0986 .1373
H7 .0202 .0432 .0710 .1055
H8 .0188 .0300 .0500 .0715
H9 .0325 .0415 .0445 .0562
H10 .0214 .0479 .0671 .0737
H3�4 .0930 .1403 .1915 .2797
H3�5 .0940 .1488 .2046 .2937
H3�6 .0859 .1415 .1974 .2870
H3�7 .0794 .1302 .1827 .2701
H3�8 .0774 .1239 .1734 .2539
H3�9 .0743 .1222 .1696 .2448
H3�10 .0696 .1165 .1637 .2358
KS .0001 .0002 .0003 .0004
M-KS .0613 .0687 .0805 .1003
JB .0973 .1426 .1932 .2809

Panel C: � = 20
T 100 250 500 1000

H3 .0961 .1172 .1231 .1296
H4 .1117 .2109 .3423 .5396
H5 .0771 .1420 .1980 .2526
H6 .0489 .1031 .1579 .2271
H7 .0297 .0719 .1210 .1862
H8 .0270 .0538 .0858 .1369
H9 .0470 .0670 .0795 .1104
H10 .0340 .0773 .1113 .1378
H3�4 .1290 .2148 .3265 .5001
H3�5 .1285 .2229 .3348 .4996
H3�6 .1189 .2126 .3232 .4876
H3�7 .1109 .1977 .3034 .4632
H3�8 .1084 .1897 .2881 .4418
H3�9 .1045 .1862 .2815 .4264
H3�10 .0985 .1788 .2731 .4127
KS .0003 .0005 .0005 .0011
M-KS .0664 .0832 .1074 .1556
JB .1339 .2179 .3284 .5013

Panel D: �=10
T 100 250 500 1000

H3 .2508 .3078 .3345 .3599
H4 .3224 .5921 .8272 .9722
H5 .2058 .3671 .4945 .6014
H6 .1591 .3158 .4629 .6181
H7 .1094 .2368 .3780 .5452
H8 .1053 .2056 .3230 .4793
H9 .1450 .2353 .3079 .4237
H10 .1143 .2486 .3700 .5021
H3�4 .3374 .5793 .7997 .9602
H3�5 .3219 .5666 .7858 .9526
H3�6 .3086 .5567 .7811 .9527
H3�7 .2920 .5308 .7556 .9427
H3�8 .2813 .5113 .7372 .9323
H3�9 .2702 .4976 .7227 .9232
H3�10 .2579 .4810 .7068 .9155
KS .0047 .0093 .0214 .0698
M-KS .2003 .3081 .4624 .7087
JB .3448 .5826 .8009 .9605

Note: The data are i.i.d. from a T (�) distribution. We test the normality assumption. Thus, we estimate the mean and variance.

The results are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. Hi�j is the

joint test based on Hk, i � k � j. KS, M-KS and JB are the Kolmogorov-Smirnov, modi�ed KS and Jarque-Bera tests.
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Table 3. Continued.

Panel E: �=6
T 100 250 500 1000

H3 .3143 .4085 .4654 .5183
H4 .5060 .8449 .9802 .9999
H5 .3321 .5637 .7138 .8223
H6 .2710 .5219 .7284 .8943
H7 .2080 .4501 .6682 .8445
H8 .1808 .3894 .6078 .8153
H9 .2496 .3968 .5646 .7597
H10 .2278 .4615 .6545 .8253
H3�4 .5117 .8296 .9738 .9998
H3�5 .5013 .8183 .9695 .9995
H3�6 .4946 .8203 .9710 .9997
H3�7 .4766 .8028 .9653 .9994
H3�8 .4650 .7881 .9601 .9993
H3�9 .4540 .7794 .9563 .9991
H3�10 .4404 .7659 .9512 .9989
KS .0110 .0338 .1152 .4167
M-KS .2450 .4787 .7661 .9701
JB .5195 .8322 .9742 .9998

Panel F: �=3
T 100 250 500 1000

H3 .6279 .7567 .8251 .8753
H4 .8975 .9983 1.000 1.000
H5 .6973 .9041 .9633 .9849
H6 .6649 .9199 .9903 .9998
H7 .5831 .8882 .9780 .9959
H8 .5339 .8583 .9770 .9991
H9 .5982 .8432 .9640 .9961
H10 .6109 .8973 .9792 .9971
H3�4 .8927 .9976 1.000 1.000
H3�5 .8842 .9967 1.000 1.000
H3�6 .8935 .9979 1.000 1.000
H3�7 .8824 .9970 1.000 1.000
H3�8 .8742 .9966 1.000 1.000
H3�9 .8673 .9960 1.000 1.000
H3�10 .8578 .9956 1.000 1.000
KS .2398 .6816 .9726 1.000
M-KS .7381 .9789 .9999 1.000
JB .8961 .9977 1.000 1.000

Table 4: Probability of rejection for Student distributions.

� A(�) P (A(�)�2(1) > 3:84)
3 { 1
6 { 1
10 4:16 .337
20 1.74 .137
30 1.41 .099
60 1.17 .071
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Table 5: Power of the tests against asymmetric distributions.

Panel A: �2(1) distribution.

T 100 250 500 1000

H3 1.000 1.000 1.000 1.000
H4 .9887 1.000 1.000 1.000
H5 .8423 .9779 .9993 1.000
H6 .8214 .9855 .9997 1.000
H7 .8620 .9970 1.000 1.000
H8 .7812 .9593 .9952 1.000
H9 .9162 .9720 .9926 .9994
H10 .7859 .9400 .9879 .9988
H3�4 1.000 1.000 1.000 1.000
H3�5 1.000 1.000 1.000 1.000
H3�6 1.000 1.000 1.000 1.000
H3�7 1.000 1.000 1.000 1.000
H3�8 1.000 1.000 1.000 1.000
H3�9 1.000 1.000 1.000 1.000
H3�10 1.000 1.000 1.000 1.000
KS 1.000 1.000 1.000 1.000
M-KS 1.000 1.000 1.000 1.000
JB 1.000 1.000 1.000 1.000

Panel B: exp(1) distribution.

T 100 250 500 1000

H3 1.000 1.000 1.000 1.000
H4 .8964 .9980 1.000 1.000
H5 .7001 .8755 .9699 .9981
H6 .6161 .9094 .9909 .9999
H7 .6281 .9434 .9977 1.000
H8 .6366 .8766 .9533 .9924
H9 .7427 .9316 .9630 .9871
H10 .6159 .7908 .9102 .9762
H3�4 1.000 1.000 1.000 1.000
H3�5 1.000 1.000 1.000 1.000
H3�6 1.000 1.000 1.000 1.000
H3�7 1.000 1.000 1.000 1.000
H3�8 1.000 1.000 1.000 1.000
H3�9 .9999 1.000 1.000 1.000
H3�10 .9999 1.000 1.000 1.000
KS .9191 1.000 1.000 1.000
M-KS 1.000 1.000 1.000 1.000
JB 1.000 1.000 1.000 1.000

Note: The data are i.i.d. from a �2(1) (Panel A) and exp(1) (Panel B) distributions . We test the normality assumption. Thus,

we estimate the mean and variance. The results are based on 50000 replications. For each sample size, we provide the frequency

of rejection at a 5% level. Hi�j is the joint test based on Hk, i � k � j. KS, M-KS and JB are the Kolmogorov-Smirnov,

modi�ed KS and Jarque-Bera tests.
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Table 6a: Size of the tests under serial correlation which is ignored.

Panel A: � = :1
T 100 250 500 1000

H3 .0415 .0466 .0480 .0501
H4 .0300 .0393 .0421 .0451
H5 .0234 .0352 .0424 .0479
H6 .0119 .0214 .0283 .0354
H7 .0063 .0121 .0167 .0218
H8 .0076 .0092 .0103 .0141
H9 .0111 .0134 .0109 .0111
H10 .0058 .0128 .0162 .0147
H3�4 .0390 .0458 .0454 .0474
H3�5 .0409 .0518 .0531 .0540
H3�6 .0357 .0473 .0519 .0548
H3�7 .0323 .0420 .0462 .0513
H3�8 .0316 .0397 .0426 .0468
H3�9 .0303 .0392 .0420 .0446
H3�10 .0279 .0362 .0405 .0436
KS .0001 .0001 .0002 .0002
M-KS .0521 .0560 .0562 .0594
JB .0413 .0473 .0463 .0479

Panel B: � = :5
T 100 250 500 1000

H3 .0595 .0735 .0773 .0812
H4 .0266 .0415 .0502 .0568
H5 .0199 .0344 .0433 .0491
H6 .0093 .0193 .0261 .0333
H7 .0058 .0118 .0156 .0210
H8 .0068 .0085 .0100 .0127
H9 .0084 .0124 .0108 .0111
H10 .0043 .0115 .0147 .0152
H3�4 .0465 .0606 .0686 .0750
H3�5 .0455 .0625 .0701 .0753
H3�6 .0388 .0555 .0652 .0712
H3�7 .0342 .0481 .0567 .0633
H3�8 .0325 .0445 .0509 .0567
H3�9 .0293 .0418 .0481 .0521
H3�10 .0259 .0383 .0449 .0490
KS .0004 .0002 .0004 .0004
M-KS .0644 .0713 .0744 .0758
JB .0493 .0623 .0696 .0755

Panel C: � = :7
T 100 250 500 1000

H3 .0972 .1348 .1497 .1611
H4 .0297 .0593 .0854 .0992
H5 .0233 .0366 .0530 .0646
H6 .0119 .0198 .0298 .0394
H7 .0062 .0129 .0175 .0232
H8 .0063 .0102 .0123 .0160
H9 .0059 .0104 .0125 .0145
H10 .0032 .0073 .0126 .0145
H3�4 .0655 .1067 .1395 .1586
H3�5 .0692 .1044 .1306 .1493
H3�6 .0582 .0909 .1161 .1354
H3�7 .0515 .0788 .1016 .1179
H3�8 .0454 .0698 .0912 .1038
H3�9 .0392 .0621 .0819 .0939
H3�10 .0353 .0555 .0736 .0849
KS .0012 .0015 .0018 .0019
M-KS .1082 .1199 .1275 .1328
JB .0694 .1090 .1408 .1595

Panel D: � = :9
T 100 250 500 1000

H3 .1920 .3009 .3595 .3906
H4 .0789 .1964 .2617 .3030
H5 .1134 .1373 .1599 .1794
H6 .0667 .0959 .1111 .1265
H7 .0337 .0513 .0730 .0917
H8 .0228 .0378 .0534 .0694
H9 .0102 .0256 .0377 .0509
H10 .0077 .0179 .0263 .0362
H3�4 .1519 .3401 .4423 .4984
H3�5 .1983 .3351 .4207 .4825
H3�6 .2117 .3423 .4167 .4693
H3�7 .1964 .3196 .3983 .4600
H3�8 .1849 .2994 .3759 .4385
H3�9 .1645 .2780 .3558 .4184
H3�10 .1490 .2547 .3328 .3958
KS .0310 .0506 .0606 .0631
M-KS .3212 .3971 .4298 .4477
JB .1621 .3465 .4457 .4998

Note: The data follow an AR(1) process: xt j xt�1 � N (�xt�1; 1� �2). We test the normality assumption. We do not take into
account the serial correlation in the tests. The results are based on 50000 replications. For each sample size, we provide the

frequency of rejection at a 5% level. The notations Hi�j , KS, M-KS and JB are de�ned in Table 5.
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Table 6b: Size of the tests under serial correlation.
The serial correlation is known and taken into account; � is known.

Panel A: � = :1
T 100 250 500 1000

H3 .0409 .0462 .0477 .0498
H4 .0300 .0392 .0420 .0451
H5 .0234 .0352 .0424 .0479
H6 .0119 .0214 .0283 .0354
H7 .0063 .0121 .0167 .0218
H8 .0076 .0092 .0103 .0141
H9 .0111 .0134 .0109 .0111
H10 .0058 .0128 .0162 .0147
H3�4 .0388 .0455 .0452 .0472
H3�5 .0406 .0517 .0529 .0540
H3�6 .0355 .0472 .0517 .0548
H3�7 .0322 .0419 .0461 .0511
H3�8 .0316 .0397 .0426 .0467
H3�9 .0302 .0391 .0419 .0445
H3�10 .0277 .0361 .0404 .0435

Panel B: � = :5
T 100 250 500 1000

H3 .0346 .0429 .0456 .0477
H4 .0225 .0331 .0361 .0435
H5 .0167 .0308 .0376 .0455
H6 .0091 .0183 .0256 .0335
H7 .0050 .0108 .0149 .0211
H8 .0064 .0083 .0108 .0128
H9 .0082 .0115 .0113 .0110
H10 .0045 .0104 .0147 .0138
H3�4 .0309 .0405 .0424 .0469
H3�5 .0318 .0445 .0482 .0533
H3�6 .0276 .0403 .0475 .0541
H3�7 .0251 .0365 .0421 .0496
H3�8 .0246 .0346 .0395 .0458
H3�9 .0230 .0337 .0387 .0439
H3�10 .0212 .0316 .0372 .0424

Panel C: � = :7
T 100 250 500 1000

H3 .0265 .0388 .0415 .0444
H4 .0143 .0257 .0346 .0364
H5 .0099 .0210 .0308 .0391
H6 .0055 .0130 .0196 .0271
H7 .0036 .0081 .0115 .0173
H8 .0044 .0075 .0096 .0116
H9 .0049 .0086 .0104 .0112
H10 .0027 .0080 .0115 .0134
H3�4 .0236 .0349 .0395 .0410
H3�5 .0222 .0363 .0441 .0471
H3�6 .0184 .0328 .0416 .0455
H3�7 .0170 .0296 .0374 .0419
H3�8 .0162 .0283 .0350 .0388
H3�9 .0146 .0272 .0341 .0376
H3�10 .0133 .0254 .0321 .0364

Panel D: � = :9
T 100 250 500 1000

H3 .0090 .0209 .0322 .0405
H4 .0040 .0106 .0187 .0264
H5 .0030 .0073 .0135 .0217
H6 .0015 .0035 .0082 .0130
H7 .0010 .0025 .0064 .0090
H8 .0013 .0032 .0067 .0084
H9 .0010 .0034 .0065 .0098
H10 .0008 .0021 .0046 .0084
H3�4 .0083 .0187 .0298 .0370
H3�5 .0068 .0168 .0290 .0379
H3�6 .0060 .0135 .0250 .0336
H3�7 .0053 .0129 .0231 .0307
H3�8 .0047 .0117 .0219 .0296
H3�9 .0040 .0107 .0206 .0277
H3�10 .0035 .0097 .0197 .0267

Note: The data follow an AR(1) process: xt j xt�1 � N (�xt�1; 1� �2). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we know the AR(1) dynamics and that we know �. The results are based

on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j are de�ned

in Table 5.
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Table 6c: Size of the tests under serial correlation.
The serial correlation is known and taken into account; � is estimated.

Panel A: � = :1
T 100 250 500 1000

H3 .0412 .0464 .0479 .0499
H4 .0300 .0393 .0420 .0451
H5 .0234 .0352 .0424 .0479
H6 .0119 .0214 .0283 .0354
H7 .0063 .0121 .0167 .0218
H8 .0076 .0092 .0103 .0141
H9 .0111 .0134 .0109 .0111
H10 .0058 .0128 .0162 .0147
H3�4 .0389 .0457 .0453 .0473
H3�5 .0408 .0517 .0529 .0539
H3�6 .0356 .0473 .0517 .0548
H3�7 .0322 .0419 .0460 .0512
H3�8 .0316 .0397 .0426 .0467
H3�9 .0303 .0392 .0419 .0446
H3�10 .0279 .0362 .0404 .0435

Panel B: � = :5
T 100 250 500 1000

H3 .0339 .0430 .0459 .0478
H4 .0221 .0326 .0364 .0435
H5 .0165 .0306 .0378 .0455
H6 .0092 .0184 .0257 .0334
H7 .0051 .0108 .0149 .0211
H8 .0065 .0084 .0108 .0128
H9 .0083 .0115 .0113 .0110
H10 .0045 .0104 .0147 .0137
H3�4 .0315 .0400 .0421 .0472
H3�5 .0318 .0444 .0486 .0532
H3�6 .0275 .0408 .0473 .0537
H3�7 .0245 .0367 .0426 .0500
H3�8 .0245 .0350 .0395 .0459
H3�9 .0229 .0338 .0388 .0439
H3�10 .0211 .0317 .0374 .0425

Panel C: � = :7
T 100 250 500 1000

H3 .0235 .0376 .0414 .0437
H4 .0126 .0243 .0339 .0361
H5 .0096 .0204 .0305 .0391
H6 .0052 .0130 .0197 .0268
H7 .0035 .0080 .0116 .0170
H8 .0042 .0074 .0094 .0117
H9 .0048 .0087 .0105 .0111
H10 .0029 .0079 .0116 .0135
H3�4 .0204 .0335 .0383 .0400
H3�5 .0198 .0359 .0432 .0465
H3�6 .0171 .0319 .0411 .0460
H3�7 .0157 .0293 .0371 .0419
H3�8 .0149 .0284 .0351 .0394
H3�9 .0137 .0273 .0336 .0375
H3�10 .0125 .0258 .0319 .0364

Panel D: � = :9
T 100 250 500 1000

H3 .0023 .0163 .0293 .0381
H4 .0016 .0085 .0172 .0258
H5 .0020 .0064 .0130 .0213
H6 .0005 .0033 .0082 .0130
H7 .0007 .0022 .0057 .0090
H8 .0006 .0023 .0067 .0080
H9 .0005 .0024 .0062 .0094
H10 .0005 .0016 .0041 .0079
H3�4 .0029 .0144 .0273 .0353
H3�5 .0026 .0137 .0268 .0370
H3�6 .0021 .0113 .0233 .0334
H3�7 .0019 .0105 .0224 .0305
H3�8 .0015 .0099 .0210 .0291
H3�9 .0015 .0089 .0199 .0278
H3�10 .0014 .0082 .0186 .0264

Note: The data follow an AR(1) process: xt j xt�1 � N (�xt�1; 1� �2). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we know the AR(1) dynamics but not � which is estimated by OLS. The results

are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j

are de�ned in Table 5.
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Table 6d: Size of the tests under serial correlation.
The serial correlation is unknown; � is estimated by a HAC procedure.

Panel A: � = :1
T 100 250 500 1000

H3 .0338 .0416 .0463 .0477
H4 .0556 .0756 .0754 .0694
H5 .0404 .0407 .0420 .0415
H6 .0441 .0416 .0459 .0497
H7 .0372 .0431 .0468 .0469
H8 .0387 .0444 .0483 .0494
H9 .0402 .0450 .0441 .0453
H10 .0400 .0462 .0456 .0455
H3�4 .0423 .0822 .0894 .0825
H3�5 .0186 .0642 .1022 .1090
H3�6 .0157 .0356 .1362 .2218
H3�7 .0286 .0342 .0971 .2402
H3�8 .1267 .0648 .0809 .2682
H3�9 .2706 .1249 .1014 .2160
H3�10 .6553 .3723 .2440 .2326

Panel B: � = :5
T 100 250 500 1000

H3 .0334 .0424 .0464 .0501
H4 .0386 .0665 .0732 .0713
H5 .0421 .0431 .0428 .0434
H6 .0452 .0442 .0463 .0466
H7 .0380 .0424 .0442 .0469
H8 .0360 .0426 .0466 .0466
H9 .0413 .0429 .0443 .0450
H10 .0379 .0430 .0449 .0461
H3�4 .0276 .0702 .0875 .0879
H3�5 .0141 .0424 .0804 .1017
H3�6 .0133 .0233 .0648 .1599
H3�7 .0292 .0254 .0495 .1393
H3�8 .1311 .0593 .0536 .1119
H3�9 .2866 .1325 .0828 .1062
H3�10 .6810 .3951 .2390 .1703

Panel C: � = :7
T 100 250 500 1000

H3 .0293 .0400 .0436 .0479
H4 .0229 .0512 .0708 .0747
H5 .0477 .0475 .0470 .0456
H6 .0534 .0475 .0463 .0472
H7 .0387 .0449 .0459 .0475
H8 .0387 .0420 .0452 .0485
H9 .0400 .0436 .0445 .0438
H10 .0373 .0429 .0461 .0465
H3�4 .0154 .0461 .0771 .0872
H3�5 .0110 .0240 .0483 .0775
H3�6 .0128 .0179 .0278 .0656
H3�7 .0291 .0234 .0268 .0498
H3�8 .1344 .0700 .0459 .0472
H3�9 .2868 .1668 .0925 .0640
H3�10 .6705 .4716 .2861 .1618

Panel D: � = :9
T 100 250 500 1000

H3 .0156 .0258 .0346 .0399
H4 .0065 .0182 .0383 .0613
H5 .0449 .0504 .0525 .0504
H6 .0485 .0638 .0576 .0518
H7 .0411 .0416 .0435 .0463
H8 .0483 .0467 .0455 .0485
H9 .0371 .0445 .0443 .0461
H10 .0377 .0436 .0462 .0492
H3�4 .0053 .0118 .0283 .0571
H3�5 .0047 .0093 .0151 .0284
H3�6 .0043 .0131 .0159 .0191
H3�7 .0108 .0288 .0301 .0238
H3�8 .0322 .1309 .1119 .0635
H3�9 .0714 .2551 .2397 .1385
H3�10 .1330 .5814 .5634 .3831

Note: The data follow an AR(1) process: xt j xt�1 � N (�xt�1; 1� �2). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we do not know the AR(1) dynamics. We use a HAC method. The results

are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j

are de�ned in Table 5.
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Table 7a: Power of the tests under serial correlation against T(60) innovations.

Panel A: � = :1
T 100 250 500 1000

H3 .0200 .0699 .1198 .2102
H4 .8742 .8853 .9016 .8263
H5 .8902 .8944 .8962 .6667
H6 .8844 .8930 .9049 .6985
H7 .8772 .8839 .8925 .6633
H8 .8670 .8749 .8820 .6002
H9 .8566 .8669 .8732 .5557
H10 .8532 .8619 .8680 .5285
H3�4 .0297 .0574 .0843 .1185
H3�5 .0037 .0039 .0083 .0627
H3�6 .8434 .8620 .8638 .4546
H3�7 .8665 .8763 .8871 .5990
H3�8 .8664 .8737 .8803 .5929
H3�9 .8591 .8679 .8741 .5539
H3�10 .8501 .8611 .8669 .5062

Panel B: � = :5
T 100 250 500 1000

H3 .0071 .0223 .0471 .0957
H4 .9173 .9253 .9305 .7719
H5 .9293 .9352 .9362 .6891
H6 .9274 .9347 .9385 .7109
H7 .9234 .9311 .9343 .6728
H8 .9178 .9267 .9300 .6267
H9 .9114 .9224 .9262 .5713
H10 .9079 .9186 .9227 .5396
H3�4 .0124 .0236 .0388 .0826
H3�5 .0013 .0018 .0026 .0287
H3�6 .8968 .9155 .9194 .4587
H3�7 .9168 .9270 .9307 .6120
H3�8 .9168 .9263 .9292 .6077
H3�9 .9131 .9236 .9269 .5803
H3�10 .9075 .9194 .9235 .5312

Panel C: � = :7
T 100 250 500 1000

H3 .0019 .0056 .0114 .0330
H4 .9414 .9493 .9525 .7186
H5 .9510 .9570 .9584 .7218
H6 .9511 .9573 .9598 .7137
H7 .9487 .9555 .9584 .6979
H8 .9449 .9532 .9563 .6617
H9 .9392 .9506 .9541 .6043
H10 .9331 .9480 .9521 .5406
H3�4 .0064 .0093 .0138 .0500
H3�5 .0006 .0012 .0013 .0125
H3�6 .9123 .9438 .9489 .4083
H3�7 .9421 .9526 .9562 .6140
H3�8 .9434 .9526 .9561 .6371
H3�9 .9404 .9511 .9546 .6142
H3�10 .9352 .9488 .9529 .5630

Panel D: � = :9
T 100 250 500 1000

H3 .0002 .0007 .0008 .0014
H4 .0025 .9756 .9815 .0401
H5 .0017 .9793 .9848 .0359
H6 .0057 .9800 .9850 .0634
H7 .0208 .9796 .9846 .0862
H8 .0018 .9782 .9839 .0355
H9 .0002 .9764 .9830 .0126
H10 .0002 .9742 .9821 .0060
H3�4 .0055 .0025 .0021 .0376
H3�5 .0001 .0002 .0004 .0017
H3�6 .0014 .9548 .9783 .0077
H3�7 .0004 .9764 .9832 .0143
H3�8 .0013 .9773 .9834 .0285
H3�9 .0004 .9764 .9830 .0163
H3�10 .0002 .9750 .9824 .0078

Note: The data follow an AR(1) process: xt = �xt�1 + "t, "t � T(60). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we do not know the AR(1) dynamics. We use a HAC method. The results

are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j

are de�ned in Table 5.
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Table 7b: Power of the tests under serial correlation against T(30) innovations.

Panel A: � = :1
T 100 250 500 1000

H3 .0497 .1404 .2063 .2465
H4 .8225 .8693 .9181 .9494
H5 .8406 .8529 .8586 .7845
H6 .8278 .8615 .8959 .8228
H7 .8161 .8442 .8681 .8110
H8 .7995 .8261 .8491 .7411
H9 .7829 .8114 .8325 .7081
H10 .7750 .8026 .8195 .6710
H3�4 .0576 .0939 .1286 .0756
H3�5 .0048 .0108 .0356 .0893
H3�6 .7671 .7947 .7928 .5632
H3�7 .7990 .8309 .8638 .7403
H3�8 .7988 .8217 .8429 .7462
H3�9 .7866 .8122 .8331 .6941
H3�10 .7720 .8000 .8161 .6363

Panel B: � = :5
T 100 250 500 1000

H3 .0161 .0512 .0932 .1607
H4 .8811 .9009 .9180 .8512
H5 .8979 .9072 .9085 .6610
H6 .8935 .9097 .9210 .7100
H7 .8881 .9021 .9105 .6877
H8 .8783 .8930 .9014 .6167
H9 .8674 .8847 .8929 .5648
H10 .8600 .8787 .8860 .5293
H3�4 .0249 .0434 .0657 .0880
H3�5 .0021 .0031 .0070 .0730
H3�6 .8460 .8727 .8759 .4129
H3�7 .8761 .8928 .9051 .6047
H3�8 .8764 .8916 .8989 .6119
H3�9 .8697 .8859 .8941 .5666
H3�10 .8597 .8795 .8869 .5081

Panel C: � = :7
T 100 250 500 1000

H3 .0044 .0129 .0296 .0704
H4 .9120 .9269 .9351 .6338
H5 .9269 .9374 .9416 .5083
H6 .9265 .9380 .9444 .5239
H7 .9234 .9350 .9415 .5138
H8 .9170 .9306 .9377 .4549
H9 .9082 .9266 .9339 .3856
H10 .8977 .9222 .9299 .3371
H3�4 .0123 .0173 .0285 .0848
H3�5 .0008 .0017 .0019 .0586
H3�6 .8597 .9145 .9244 .2423
H3�7 .9123 .9293 .9376 .4066
H3�8 .9145 .9295 .9367 .4394
H3�9 .9098 .9272 .9346 .3989
H3�10 .9023 .9237 .9316 .3473

Panel D: � = :9
T 100 250 500 1000

H3 .0004 .0007 .0013 .0036
H4 .0072 .9669 .9717 .0465
H5 .0037 .9727 .9765 .0491
H6 .0152 .9736 .9772 .0609
H7 .0427 .9729 .9765 .0624
H8 .0050 .9709 .9751 .0378
H9 .0007 .9678 .9739 .0193
H10 .0003 .9639 .9723 .0135
H3�4 .0081 .0034 .0037 .0942
H3�5 .0001 .0003 .0004 .0163
H3�6 .0020 .9243 .9672 .0218
H3�7 .0010 .9676 .9741 .0391
H3�8 .0032 .9694 .9747 .0324
H3�9 .0012 .9681 .9739 .0246
H3�10 .0003 .9654 .9728 .0149

Note: The data follow an AR(1) process: xt = �xt�1 + "t, "t � T(30). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we do not know the AR(1) dynamics. We use a HAC method. The results

are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j

are de�ned in Table 5.
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Table 7c: Power of the tests under serial correlation against T(20) innovations.

Panel A: � = :1
T 100 250 500 1000

H3 .0790 .1961 .2767 .3733
H4 .7912 .8757 .9494 .9932
H5 .7981 .8185 .8396 .8701
H6 .7882 .8481 .9053 .9616
H7 .7689 .8189 .8673 .9213
H8 .7442 .7940 .8418 .8980
H9 .7192 .7713 .8185 .8713
H10 .7059 .7570 .8004 .8493
H3�4 .0810 .1161 .1521 .2133
H3�5 .0070 .0257 .0896 .2328
H3�6 .6958 .7253 .7344 .7578
H3�7 .7425 .8036 .8685 .9404
H3�8 .7410 .7864 .8316 .8899
H3�9 .7229 .7719 .8177 .8722
H3�10 .7016 .7516 .7924 .8412

Panel B: � = :5
T 100 250 500 1000

H3 .0262 .0781 .1322 .1828
H4 .8508 .8902 .9243 .9676
H5 .8701 .8872 .8884 .8972
H6 .8637 .8962 .9163 .9465
H7 .8544 .8832 .8983 .9225
H8 .8411 .8727 .8854 .9087
H9 .8248 .8598 .8738 .8951
H10 .8140 .8499 .8627 .8833
H3�4 .0366 .0579 .0836 .1152
H3�5 .0028 .0053 .0191 .0663
H3�6 .7943 .8371 .8355 .8374
H3�7 .8367 .8737 .8941 .9290
H3�8 .8375 .8684 .8811 .9044
H3�9 .8280 .8619 .8751 .8979
H3�10 .8144 .8510 .8643 .8836

Panel C: � = :7
T 100 250 500 1000

H3 .0071 .0230 .0499 .0824
H4 .8871 .9111 .9223 .9370
H5 .9055 .9226 .9257 .9255
H6 .9046 .9238 .9328 .9418
H7 .9007 .9196 .9269 .9330
H8 .8921 .9141 .9218 .9277
H9 .8789 .9075 .9168 .9220
H10 .8638 .9009 .9103 .9154
H3�4 .0169 .0272 .0418 .0592
H3�5 .0013 .0016 .0031 .0089
H3�6 .8050 .8905 .9009 .8998
H3�7 .8843 .9119 .9225 .9317
H3�8 .8879 .9119 .9204 .9258
H3�9 .8812 .9084 .9173 .9227
H3�10 .8698 .9029 .9127 .9180

Panel D: � = :9
T 100 250 500 1000

H3 .0007 .0013 .0024 .0051
H4 .0137 .9559 .9660 .9678
H5 .0071 .9641 .9717 .9730
H6 .0251 .9652 .9723 .9738
H7 .0599 .9641 .9715 .9730
H8 .0094 .9612 .9704 .9718
H9 .0014 .9566 .9687 .9706
H10 .0005 .9516 .9663 .9688
H3�4 .0112 .0046 .0052 .0079
H3�5 .0001 .0003 .0006 .0006
H3�6 .0032 .8901 .9593 .9643
H3�7 .0016 .9563 .9687 .9711
H3�8 .0067 .9589 .9696 .9712
H3�9 .0023 .9570 .9687 .9706
H3�10 .0006 .9532 .9670 .9694

Note: The data follow an AR(1) process: xt = �xt�1 + "t, "t � T(20). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we do not know the AR(1) dynamics. We use a HAC method. The results

are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j

are de�ned in Table 5.
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Table 7d: Power of the tests under serial correlation against T(10) innovations.

Panel A: � = :1
T 100 250 500 1000

H3 .1531 .3184 .4744 .6205
H4 .7713 .9417 .9946 .9999
H5 .7066 .7774 .8496 .9234
H6 .7126 .8650 .9565 .9955
H7 .6798 .8198 .9162 .9762
H8 .6349 .7762 .8839 .9611
H9 .5945 .7404 .8535 .9423
H10 .5760 .7130 .8226 .9210
H3�4 .1165 .1302 .1677 .2382
H3�5 .0260 .1079 .2833 .4745
H3�6 .5396 .6042 .6884 .8079
H3�7 .6331 .8015 .9271 .9919
H3�8 .6264 .7602 .8734 .9536
H3�9 .5979 .7382 .8519 .9463
H3�10 .5631 .6960 .8060 .9104

Panel B: � = :5
T 100 250 500 1000

H3 .0575 .1500 .2404 .3716
H4 .7975 .9017 .9714 .9983
H5 .7886 .8184 .8451 .8839
H6 .7889 .8729 .9349 .9829
H7 .7683 .8419 .8957 .9504
H8 .7407 .8185 .8787 .9382
H9 .7059 .7934 .8542 .9176
H10 .6801 .7729 .8329 .8982
H3�4 .0612 .0818 .1082 .1515
H3�5 .0094 .0296 .1041 .2614
H3�6 .6347 .6939 .7078 .7406
H3�7 .7304 .8284 .9060 .9733
H3�8 .7302 .8033 .8600 .9213
H3�9 .7117 .7967 .8586 .9235
H3�10 .6813 .7706 .8287 .8931

Panel C: � = :7
T 100 250 500 1000

H3 .0159 .0548 .1023 .1602
H4 .8106 .8784 .9210 .9692
H5 .8382 .8741 .8809 .8906
H6 .8326 .8862 .9188 .9541
H7 .8241 .8756 .9009 .9287
H8 .8048 .8654 .8904 .9196
H9 .7734 .8512 .8776 .9049
H10 .7339 .8356 .8636 .8913
H3�4 .0304 .0478 .0650 .0873
H3�5 .0036 .0057 .0178 .0612
H3�6 .6122 .8001 .8083 .8070
H3�7 .7802 .8615 .8958 .9379
H3�8 .7927 .8580 .8813 .9087
H3�9 .7788 .8532 .8795 .9095
H3�10 .7495 .8407 .8671 .8931

Panel D: � = :9
T 100 250 500 1000

H3 .0010 .0024 .0059 .0138
H4 .0297 .9276 .9441 .9520
H5 .0201 .9412 .9532 .9576
H6 .0486 .9427 .9545 .9599
H7 .0801 .9415 .9528 .9585
H8 .0228 .9368 .9502 .9566
H9 .0058 .9278 .9473 .9539
H10 .0024 .9167 .9431 .9506
H3�4 .0210 .0084 .0111 .0159
H3�5 .0003 .0006 .0006 .0010
H3�6 .0052 .7310 .9293 .9422
H3�7 .0067 .9261 .9470 .9545
H3�8 .0178 .9323 .9485 .9552
H3�9 .0085 .9284 .9471 .9539
H3�10 .0032 .9201 .9444 .9516

Note: The data follow an AR(1) process: xt = �xt�1 + "t, "t � T(10). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we do not know the AR(1) dynamics. We use a HAC method. The results

are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j

are de�ned in Table 5.
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Table 7e: Power of the tests under serial correlation against T(6) innovations.

Panel A: � = :1
T 100 250 500 1000

H3 .2102 .4324 .5973 .7244
H4 .8263 .9878 .9999 1.0000
H5 .6667 .8287 .9336 .9791
H6 .6985 .9196 .9901 .9998
H7 .6633 .8888 .9745 .9956
H8 .6002 .8352 .9541 .9964
H9 .5557 .8062 .9374 .9904
H10 .5285 .7663 .9137 .9856
H3�4 .1185 .1095 .1148 .1315
H3�5 .0627 .2002 .3715 .5162
H3�6 .4546 .6419 .8304 .9327
H3�7 .5990 .8667 .9802 .9996
H3�8 .5929 .8324 .9524 .9896
H3�9 .5539 .7977 .9379 .9941
H3�10 .5062 .7457 .9042 .9828

Panel B: � = :5
T 100 250 500 1000

H3 .0957 .2330 .4013 .6008
H4 .7719 .9512 .9969 1.0000
H5 .6891 .7714 .8544 .9259
H6 .7109 .8853 .9721 .9982
H7 .6728 .8347 .9323 .9796
H8 .6267 .8050 .9182 .9818
H9 .5713 .7626 .8865 .9651
H10 .5396 .7297 .8633 .9541
H3�4 .0826 .0859 .0990 .1320
H3�5 .0287 .1016 .2532 .4411
H3�6 .4587 .5644 .6791 .8125
H3�7 .6120 .8296 .9524 .9965
H3�8 .6077 .7744 .8918 .9591
H3�9 .5803 .7686 .8965 .9752
H3�10 .5312 .7195 .8520 .9467

Panel C: � = :7
T 100 250 500 1000

H3 .0330 .0964 .1761 .3087
H4 .7186 .8727 .9586 .9959
H5 .7218 .7883 .8163 .8519
H6 .7137 .8539 .9311 .9828
H7 .6979 .8222 .8886 .9449
H8 .6617 .8055 .8831 .9460
H9 .6043 .7732 .8521 .9217
H10 .5406 .7352 .8282 .9067
H3�4 .0500 .0651 .0748 .0966
H3�5 .0125 .0249 .0796 .2158
H3�6 .4083 .6198 .6407 .6738
H3�7 .6140 .8006 .9019 .9729
H3�8 .6371 .7770 .8500 .9121
H3�9 .6142 .7789 .8629 .9342
H3�10 .5630 .7451 .8283 .9008

Panel D: � = :9
T 100 250 500 1000

H3 .0014 .0060 .0144 .0333
H4 .0401 .8695 .9167 .9400
H5 .0359 .8941 .9260 .9346
H6 .0634 .8955 .9309 .9473
H7 .0862 .8940 .9267 .9412
H8 .0355 .8823 .9222 .9390
H9 .0126 .8580 .9145 .9330
H10 .0060 .8217 .9048 .9265
H3�4 .0376 .0153 .0204 .0270
H3�5 .0017 .0018 .0017 .0037
H3�6 .0077 .4973 .8678 .8952
H3�7 .0143 .8469 .9145 .9363
H3�8 .0285 .8691 .9163 .9335
H3�9 .0163 .8597 .9144 .9333
H3�10 .0078 .8343 .9077 .9279

Note: The data follow an AR(1) process: xt = �xt�1 + "t, "t � T(6). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we do not know the AR(1) dynamics. We use a HAC method. The results

are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j

are de�ned in Table 5.

41



Table 7f: Power of the tests under serial correlation against T(3) innovations.

Panel A: � = :1
T 100 250 500 1000

H3 .2465 .4043 .5058 .5951
H4 .9494 .9998 1.0000 1.0000
H5 .7845 .9683 .9938 .9977
H6 .8228 .9899 .9999 1.0000
H7 .8110 .9859 .9990 .9999
H8 .7411 .9704 .9991 1.0000
H9 .7081 .9591 .9970 1.0000
H10 .6710 .9402 .9959 1.0000
H3�4 .0756 .0309 .0135 .0056
H3�5 .0893 .1807 .2523 .3223
H3�6 .5632 .9090 .9789 .9900
H3�7 .7403 .9795 .9997 1.0000
H3�8 .7462 .9732 .9974 .9993
H3�9 .6941 .9583 .9985 1.0000
H3�10 .6363 .9331 .9951 .9999

Panel B: � = :5
T 100 250 500 1000

H3 .1607 .3311 .4694 .5726
H4 .8512 .9972 1.0000 1.0000
H5 .6610 .9060 .9808 .9947
H6 .7100 .9637 .9986 1.0000
H7 .6877 .9472 .9946 .9995
H8 .6167 .9153 .9915 .9999
H9 .5648 .8899 .9844 .9994
H10 .5293 .8645 .9773 .9992
H3�4 .0880 .0487 .0296 .0170
H3�5 .0730 .1557 .2371 .3142
H3�6 .4129 .7762 .9425 .9804
H3�7 .6047 .9356 .9973 1.0000
H3�8 .6119 .9164 .9888 .9982
H3�9 .5666 .8919 .9879 .9998
H3�10 .5081 .8530 .9760 .9988

Panel C: � = :7
T 100 250 500 1000

H3 .0704 .1917 .3516 .5074
H4 .6338 .9452 .9978 1.0000
H5 .5083 .7425 .8995 .9773
H6 .5239 .8596 .9812 .9997
H7 .5138 .8247 .9596 .9951
H8 .4549 .7854 .9476 .9961
H9 .3856 .7306 .9185 .9904
H10 .3371 .6859 .8964 .9870
H3�4 .0848 .0687 .0527 .0397
H3�5 .0586 .1169 .1970 .2834
H3�6 .2423 .5219 .7737 .9325
H3�7 .4066 .7886 .9672 .9993
H3�8 .4394 .7655 .9356 .9895
H3�9 .3989 .7463 .9329 .9943
H3�10 .3473 .6911 .8968 .9852

Panel D: � = :9
n 100 250 500 1000

H3 .0036 .0183 .0449 .0914
H4 .0465 .6330 .8661 .9644
H5 .0491 .6044 .7306 .7803
H6 .0609 .6041 .8310 .9427
H7 .0624 .6004 .7863 .8870
H8 .0378 .5582 .7873 .9107
H9 .0193 .4771 .7350 .8723
H10 .0135 .3971 .6777 .8501
H3�4 .0942 .0358 .0373 .0361
H3�5 .0163 .0281 .0348 .0717
H3�6 .0218 .1973 .4509 .5501
H3�7 .0391 .4498 .7428 .9112
H3�8 .0324 .5073 .7209 .8356
H3�9 .0246 .4834 .7425 .8891
H3�10 .0149 .4220 .6901 .8410

Note: The data follow an AR(1) process: xt = �xt�1 + "t, "t � T(3). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we do not know the AR(1) dynamics. We use a HAC method. The results

are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j

are de�ned in Table 5.
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Table 7g: Power of the tests under serial correlation against T(5) innovations.

Panel A: � = :1
T 100 250 500 1000

H3 .2288 .4567 .6103 .7263
H4 .8575 .9951 1.000 1.000
H5 .6746 .8674 .9614 .9885
H6 .7142 .9404 .9955 1.000
H7 .6845 .9178 .9881 .9980
H8 .6167 .8710 .9774 .9989
H9 .5725 .8481 .9639 .9965
H10 .5406 .8099 .9487 .9948
H3�4 .1128 .0928 .0834 .0821
H3�5 .0761 .2228 .3642 .4884
H3�6 .4488 .7056 .8921 .9585
H3�7 .6148 .9004 .9912 .9999
H3�8 .6118 .8729 .9751 .9950
H3�9 .5677 .8385 .9665 .9984
H3�10 .5148 .7891 .9422 .9939

Panel B: � = :5
T 100 250 500 1000

H3 .1111 .2677 .4592 .6404
H4 .7775 .9679 .9992 1.000
H5 .6500 .7749 .8874 .9581
H6 .6840 .8994 .9842 .9996
H7 .6458 .8492 .9536 .9904
H8 .5918 .8157 .9404 .9926
H9 .5328 .7730 .9147 .9823
H10 .5062 .7384 .8908 .9766
H3�4 .0875 .0816 .0880 .1018
H3�5 .0422 .1328 .2879 .4450
H3�6 .4121 .5661 .7380 .8829
H3�7 .5773 .8417 .9706 .9992
H3�8 .5732 .7883 .9224 .9791
H3�9 .5412 .7785 .9225 .9892
H3�10 .4901 .7256 .8813 .9723

Panel C: � = :7
T 100 250 500 1000

H3 .0395 .1133 .2158 .3999
H4 .6805 .8820 .9733 .9989
H5 .6541 .7473 .7962 .8602
H6 .6489 .8448 .9426 .9905
H7 .6310 .7999 .8927 .9537
H8 .5874 .7842 .8888 .9637
H9 .5230 .7394 .8525 .9383
H10 .4588 .6939 .8228 .9263
H3�4 .0581 .0684 .0737 .0893
H3�5 .0211 .0448 .1260 .2903
H3�6 .3406 .5429 .5934 .6874
H3�7 .5348 .7793 .9121 .9850
H3�8 .5607 .7443 .8446 .9214
H3�9 .5331 .7490 .8669 .9542
H3�10 .4786 .7041 .8223 .9170

Panel D: � = :9
T 100 250 500 1000

H3 .0019 .0076 .0203 .0428
H4 .0424 .8341 .9067 .9366
H5 .0403 .8623 .9049 .9119
H6 .0639 .8643 .9172 .9427
H7 .0794 .8625 .9094 .9312
H8 .0370 .8454 .9058 .9292
H9 .0154 .8057 .8943 .9204
H10 .0080 .7507 .8802 .9114
H3�4 .0497 .0179 .0240 .0311
H3�5 .0029 .0030 .0036 .0066
H3�6 .0107 .4078 .8109 .8456
H3�7 .0186 .7872 .8949 .9268
H3�8 .0306 .8223 .8943 .9162
H3�9 .0191 .8084 .8951 .9219
H3�10 .0102 .7689 .8841 .9123

Note: The data follow an AR(1) process: xt = �xt�1 + "t, "t � T(5). We test the normality assumption. We take into account

the serial correlation in the tests. We assume that we do not know the AR(1) dynamics. We use a HAC method. The results

are based on 50000 replications. For each sample size, we provide the frequency of rejection at a 5% level. The notations Hi�j

are de�ned in Table 5.
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Table 8: Testing N (0; 1) of �tted residuals for a GARCH(1,1) model.

UK-US$ FF-US$ SF-US$ Yen-US$

H3 1.86 (.173) 1.24 (.264) 51.0 (.000) 17.5 (.000)

H4 42.6 (.000) 38.7 (.000) 189 (.000) 577 (.000)

H5 9.53 (.002) 15.5 (.000) 590 (.000) 3713 (.000)

H6 46.8 (.000) 126 (.000) 2562 (.000) 28553(.000)

H7 26.9 (.000) 8.7 (.003) 10956 (.000) 181020 (.000)

H8 45.9 (.000) 8.5 (.000) 35135 (.000) 945122 (.000)

H9 17.2 (.000) 2.35 (.125) 88029.039 (.000) 4186878.386 (.000)

H10 9.13 (.003) 42.9 (.000) 177511 (.000) 15683206 (.000)
H3�4 44.4 (.000) 39.9 (.000) 240 (.000) 594 (.000)

H3�5 54.1 (.000) 55.4 (.000) 830 (.000) 4308 (.000)

H3�6 100 (.000) 182 (.000) 3393 (.000) 32861 (.000)

H3�7 127 (.000) 191 (.000) 14349 (.000) 213882 (.000)

H3�8 173 (.000) 271 (.000) 49485 (.000) 1159004 (.000)

H3�9 191 (.000) 273 (.000) 137514 (.000) 5345882 (.000)

H3�10 200 (.000) 316 (.000) 315026 (.000) 21029088 (.000)

KS 1.01 (.010) .754 (1.00) 1.29 (.010) 1.07 (.010)

JB 44.6 (.000) 4.1 (.000) 240 (.000) 597 (.000)

Note: We test the N (0; 1) assumption of the standardized residuals. The volatility model is a GARCH(1,1) and is estimated by

the Guassian QML method. We report the test statistics and their corresponding p-values in parenthese. The data are daily

exchange rate returns used by Harvey, Ruiz and Shephard (1994) and Kim, Shephard and Chib (1998). Hi�j is the joint test

based on Hk, i � k � j. KS and JB are the Kolmogorov-Smirnov and Jarque-Bera tests.
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Table 9a: Testing N (0; 1) of stantardized residuals by realized volatility.
Panel A: i.i.d. assumption.

DM-US$-5 DM-US$-30 Yen-US$-5 Yen-US$-30 Yen-DM-5 Yen-DM-30
H3 .259 (.6106) .450 (.5023) .019 (.8910) .759 (.3837) .172 (.6780) .076 (.7822)
H4 6.57 (.0104) 6.69 (.0097) 3.83 (.0503) 8.91 (.0028) 1.99 (.1577) 11.0 (.0009)
H5 1.24 (.2649) .507 (.4764) .523 (.4696) .435 (.5095) .074 (.7859) .004 (.9504)
H6 1.24 (.2661) 2.38 (.1228) .296 (.5865) 2.26 (.1325) .019 (.8916) 6.18 (.0129)
H7 1.29 (.2566) .274 (.6006) .590 (.4424) .157 (.6923) .039 (.8427) .035 (.8510)
H8 .710 (.3994) .041 (.8397) .153 (.6961) .003 (.9593) .057 (.8106) 1.31 (.2526)
H9 .533 (.4653) .074 (.7851) .207 (.6491) .111 (.7390) .038 (.8446) .007 (.9337)
H10 .501 (.4791) .125 (.7239) .223 (.6370) .354 (.5517) .143 (.7055) .035 (.8511)
H3�4 6.82 (.0330) 7.14 (.0281) 3.85 (.1458) 9.67 (.0080) 2.17 (.3382) 11.1 (.0040)
H3�5 8.07 (.0447) 7.65 (.0539) 4.37 (.2238) 1.1 (.0177) 2.24 (.5237) 11.1 (.0114)
H3�6 9.30 (.0540) 1.0 (.0399) 4.67 (.3229) 12.4 (.0148) 2.26 (.6880) 17.2 (.0017)
H3�7 1.6 (.0602) 1.3 (.0671) 5.26 (.3850) 12.5 (.0283) 2.30 (.8063) 17.3 (.0040)
H3�8 11.3 (.0795) 1.3 (.1109) 5.41 (.4921) 12.5 (.0512) 2.36 (.8841) 18.6 (.0049)
H3�9 11.8 (.1062) 1.4 (.1660) 5.62 (.5848) 12.6 (.0815) 2.40 (.9347) 18.6 (.0096)
H3�10 12.3 (.1369) 1.5 (.2289) 5.84 (.6649) 13.0 (.1122) 2.54 (.9599) 18.6 (.0170)
KS 2.52 (.0100) .598 (1.000) 2.43 (.0100) .519 (1.000) 1.99 (.0100) .788 (1.000)
JB .998 (.6073) 11.9 (.0026) .819 (.6640) 13.5 (.0011) 2.14 (.3428) 16.4 (.0003)

Panel B: serial correlation.
DM-US$-5 DM-US$-30 Yen-US$-5 Yen-US$-30 Yen-DM-5 Yen-DM-30

H3 .623 (.4300) .889 (.3459) .046 (.8303) 1.43 (.2319) .425 (.5146) .138 (.7105)
H4 17.8 (.0000) 17.7 (.0000) 8.99 (.0027) 19.4 (.0000) 5.65 (.0175) 21.2 (.0000)
H5 3.87 (.0492) 1.30 (.2533) 1.66 (.1975) 1.09 (.2973) .224 (.6362) .009 (.9240)
H6 4.13 (.0420) 6.83 (.0090) .963 (.3265) 6.22 (.0127) .060 (.8069) 15.2 (.0001)
H7 4.77 (.0290) .913 (.3392) 2.04 (.1531) .457 (.4991) .142 (.7059) .095 (.7583)
H8 2.87 (.0904) .140 (.7087) .590 (.4426) .008 (.9272) .209 (.6472) 3.52 (.0606)
H9 2.24 (.1346) .259 (.6105) .817 (.3660) .364 (.5463) .157 (.6924) .024 (.8777)
H10 2.24 (.1344) .495 (.4817) .947 (.3304) 1.25 (.2640) .595 (.4405) .114 (.7351)
H3�4 19.9 (.0000) 18.6 (.0001) 1.1 (.0064) 22.1 (.0000) 6.23 (.0445) 22.5 (.0000)
H3�5 23.2 (.0000) 19.1 (.0003) 11.9 (.0079) 22.2 (.0001) 6.26 (.0996) 24.5 (.0000)
H3�6 32.2 (.0000) 2.0 (.0005) 19.7 (.0006) 24.2 (.0001) 15.2 (.0043) 24.8 (.0001)
H3�7 32.8 (.0000) 2.0 (.0013) 19.7 (.0014) 25.3 (.0001) 15.7 (.0076) 25.2 (.0001)
H3�8 65.1 (.0000) 23.1 (.0007) 46.3 (.0000) 25.5 (.0003) 47.5 (.0000) 25.3 (.0003)
H3�9 76.0 (.0000) 23.6 (.0013) 46.5 (.0000) 27.7 (.0002) 48.1 (.0000) 25.4 (.0006)
H3�10 178. (.0000) 73.9 (.0000) 66.4 (.0000) 33.3 (.0001) 146. (.0000) 25.4 (.0013)
Note: We test the N (0; 1) assumption of the standardized residuals. The volatility is the daily realized volatility computed with

�ve-minute and thirty-minute returns. We report the test statistics and their corresponding p-values in parenthese. We use the

same dat as ABDL (2002). In Panel A, we assume that the residuals are i.i.d., while we allow them to be serially correlated in

Panel B. In this case, we use a HAC method of Andrews (1991) to estimate the weighting matrix. Hi�j is the joint test based on

Hk, i � k � j.

45



Table 9b: Testing normality of stantardized residuals by realized volatility.
Panel A: i.i.d. assumption.

DM-US$-5 DM-US$-30 Yen-US$-5 Yen-US$-30 Yen-DM-5 Yen-DM-30

H3 .789 (.3744) .550 (.4584) .142 (.7068) .930 (.3348) .154 (.6947) .128 (.7203)

H4 .011 (.9151) 11.7 (.0006) .172 (.6785) 11.5 (.0007) 1.99 (.1581) 14.8 (.0001)

H5 3.31 (.0690) .600 (.4387) 1.76 (.1847) .334 (.5634) .040 (.8422) .061 (.8051)

H6 1.27 (.2601) 1.29 (.2559) .173 (.6778) 1.66 (.1981) .177 (.6738) 5.42 (.0199)

H7 .684 (.4081) .232 (.6298) .312 (.5767) .108 (.7423) .023 (.8784) .093 (.7600)

H8 .600 (.4385) .094 (.7586) .317 (.5731) .049 (.8242) .608 (.4355) .695 (.4044)
H9 .141 (.7073) .027 (.8705) .091 (.7629) .111 (.7392) .061 (.8049) .008 (.9290)

H10 .165 (.6842) .308 (.5787) .536 (.4641) .540 (.4625) .138 (.7107) .006 (.9372)

H3�4 .800 (.6702) 12.2 (.0022) .313 (.8550) 12.5 (.0020) 2.15 (.3419) 15.0 (.0006)

H3�5 4.11 (.2500) 12.8 (.0050) 2.07 (.5574) 12.8 (.0051) 2.19 (.5346) 15.0 (.0018)

H3�6 5.38 (.2508) 14.1 (.0069) 2.25 (.6907) 14.5 (.0059) 2.36 (.6692) 2.4 (.0004)

H3�7 6.06 (.3004) 14.4 (.0135) 2.56 (.7678) 14.6 (.0123) 2.39 (.7934) 2.5 (.0010)

H3�8 6.66 (.3534) 14.5 (.0250) 2.87 (.8244) 14.6 (.0234) 2.99 (.8095) 21.2 (.0017)

H3�9 6.80 (.4498) 14.5 (.0433) 2.97 (.8881) 14.7 (.0396) 3.06 (.8798) 21.2 (.0034)

H3�10 6.97 (.5402) 14.8 (.0634) 3.50 (.8990) 15.3 (.0540) 3.19 (.9216) 21.3 (.0065)

KS .797 (1.000) .682 (1.000) .646 (1.000) .713 (1.000) .485 (1.000) .894 (.0100)

JB .801 (.6699) 12.3 (.0022) .314 (.8548) 12.5 (.0019) 2.15 (.3413) 15.0 (.0006)

Panel B: serial correlation.

DM-US$-5 DM-US$-30 Yen-US$-5 Yen-US$-30 Yen-DM-5 Yen-DM-30

H3 .863 (.3528) .874 (.3498) .160 (.6896) 1.53 (.2158) .204 (.6513) .205 (.6505)

H4 .014 (.9043) 27.0 (.0000) .21 (.6471) 23.1 (.0000) 3.35 (.0671) 24.8 (.0000)

H5 5.93 (.0149) 1.44 (.2294) 2.65 (.1038) .778 (.3779) .081 (.7754) .127 (.7219)

H6 2.70 (.1000) 3.15 (.0760) .341 (.5592) 4.20 (.0405) .360 (.5487) 12.3 (.0005)
H7 1.46 (.2272) .668 (.4136) .653 (.4190) .284 (.5939) .053 (.8174) .233 (.6296)

H8 1.29 (.2557) .291 (.5893) .645 (.4219) .147 (.7016) 1.56 (.2112) 1.70 (.1918)

H9 .335 (.5626) .079 (.7789) .198 (.6563) .346 (.5562) .172 (.6785) .026 (.8728)

H10 .439 (.5077) 1.07 (.2998) 1.35 (.2451) 1.76 (.1849) .396 (.5292) .019 (.8907)

H3�4 .968 (.6163) 27.9 (.0000) .309 (.8568) 26.2 (.0000) 3.65 (.1609) 26.8 (.0000)

H3�5 6.31 (.0973) 28.6 (.0000) 3.60 (.3077) 26.8 (.0000) 3.66 (.3009) 3.0 (.0000)

H3�6 14.6 (.0057) 39.1 (.0000) 5.98 (.2005) 32.6 (.0000) 12.2 (.0157) 3.1 (.0000)

H3�7 18.7 (.0021) 39.2 (.0000) 8.04 (.1538) 35.8 (.0000) 12.2 (.0315) 32.1 (.0000)

H3�8 21.0 (.0018) 4.4 (.0000) 9.98 (.1254) 36.6 (.0000) 19.0 (.0041) 35.4 (.0000)

H3�9 21.4 (.0032) 4.7 (.0000) 11.8 (.1057) 37.2 (.0000) 19.3 (.0074) 36.0 (.0000)

H3�10 22.7 (.0038) 47.3 (.0000) 18.4 (.0185) 38.0 (.0000) 19.8 (.0112) 36.8 (.0000)
Note: We test the normality assumption of the standardized residuals. The volatility is the daily realized volatility computed

with �ve-minute and thirty-minute returns. We report the test statistics and their corresponding p-values in parenthese. We use

the same dat as ABDL (2002). In Panel A, we assume that the residuals are i.i.d., while we allow them to be serially correlated

in Panel B. In this case, we use a HAC method of Andrews (1991) to estimate the weighting matrix. Hi�j is the joint test based

on Hk, i � k � j.
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Table 10: Testing log-normality of realized volatility.

DM-US$-5 DM-US$-30 Yen-US$-5 Yen-US$-30 Yen-DM-5 Yen-DM-30

H3 1.6 (.0011) 8.31 (.0039) 1.2 (.0014) 6.99 (.0082) 8.67 (.0032) 3.58 (.0585)

H4 7.46 (.0063) 5.91 (.0151) 3.61 (.0572) 3.41 (.0646) 5.17 (.0230) 3.37 (.0664)

H5 .149 (.6998) 2.92 (.0872) 1.14 (.2858) 2.19 (.1393) .749 (.3869) .002 (.9685)

H6 .000 (.9966) .035 (.8517) .732 (.3923) .997 (.3181) 1.77 (.1831) .997 (.3181)

H7 8.94 (.0028) .827 (.3633) 1.01 (.3163) 1.65 (.1984) .742 (.3891) 2.66 (.1030)

H8 .708 (.4000) .476 (.4903) .919 (.3377) 1.29 (.2558) 1.02 (.3116) 1.66 (.1974)

H9 1.46 (.2265) .563 (.4532) .007 (.9323) 4.00 (.0455) 8.14 (.0043) .868 (.3514)
H10 .562 (.4534) 1.05 (.3046) 2.19 (.1390) 4.02 (.0448) 1.06 (.3039) .417 (.5182)

H3�4 16.9 (.0002) 1.5 (.0052) 16.8 (.0002) 9.63 (.0081) 11.0 (.0040) 7.05 (.0295)

H3�5 17.6 (.0005) 1.5 (.0145) 17.4 (.0006) 9.79 (.0204) 17.3 (.0006) 7.74 (.0518)

H3�6 17.7 (.0014) 15.2 (.0044) 19.2 (.0007) 16.0 (.0030) 17.3 (.0017) 7.83 (.0981)

H3�7 24.0 (.0002) 15.5 (.0084) 26.2 (.0001) 24.5 (.0002) 18.6 (.0023) 1.1 (.0715)

H3�8 25.6 (.0003) 15.5 (.0165) 28.2 (.0001) 25.9 (.0002) 18.9 (.0043) 1.2 (.1157)

H3�9 25.9 (.0005) 17.5 (.0147) 28.3 (.0002) 26.4 (.0004) 25.6 (.0006) 12.1 (.0968)

H3�10 27.0 (.0007) 19.9 (.0108) 28.5 (.0004) 27.9 (.0005) 26.2 (.0010) 12.5 (.1323)

Note: We test the normality assumption of the log of realized volatility. The realized volatility is computed with �ve-minute

and thirty-minute returns. We report the test statistics and their corresponding p-values in parenthese. We use the same data as

ABDL (2002). We use a HAC method of Andrews (1991) to estimate the weighting matrix. Hi�j is the joint test based on Hk,

i � k � j.
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Appendix

Proof of Proposition 2.1. Let assume that a random variable x is such that E[Hi(x)] = 0.

We will prove that this variable follows the Stein equation (2.1) to prove the proposition.

Consider a polynomial f of degree n; it can be written as a linear combination of the �rst n

Hermite polynomials, i.e., it exist (�0; :::; �n) such as: f(x) =
Pn

i=0 �iHi(x): Thus, using (2.3)

and (2.7), one gets:

f 0(x)� xf(x) =
nX

i=0

�iH
0
i(x)�

nX
i=0

�i(xHi(x))

=
nX
i=1

�i

p
iHi�1(x)� �0x�

nX
i=1

�i

�p
iHi�1(x) +

p
i + 1Hi+1(x)

�

= ��0H1 �
nX
i=1

�i

p
i + 1Hi+1(x) = �

nX
i=0

�i

p
i + 1Hi+1(x);

which implies that E[f 0(x)� xf(x)] = 0. Consider now a continuously di�erentiable function

f whose derivative function is continuous (f is C1), such that E jf 0(x)j < 1 and let " be a

positive real number. 8(a; b) 2 R
2 , we have:

Z +1

�1

(f 0(x)� xf(x))�(x)dx = f(a)�(a)� f(b)�(b) +

Z b

a

(f 0(x)� xf(x))�(x)dx (A.1)

where �(x) is the density function of a N (0; 1) random variable. Given that f 0 is continuous

function on the compact set [a; b], the Stone-Weierstrass Theorem implies that:

9N 2 N 8n � N; 9Pn 2 R
n [X]; kf 0 � Pnk1 < ";

where kf 0 � Pnk1 = supx2[a;b] j f 0(x) � Pn(x) j. and R
n [X] is the set of polynomials with

degree m � n. De�ne the polynomial Qn(x) by Qn(x) =
R x

a
Pn(t)dt + f(a). Observe that

Qn is a polynomial of degree n + 1, Qn(a) = f(a) and Qn(b)
n!+1�! f(b). Hence, given that

E (Pn(x)� xQn(x)) = 0, one gets by integration by part:

0 = Qn(a)�(a)�Qn(b)�(b) +

Z b

a

(Pn(x)� xQn(x))�(x)dx:

Hence, we have:

E(f 0(x)� xf(x)) = E(f 0(x)� xf(x))� E(Pn(x)� xQn(x))

= (Qn(b)� f(b))�(b) +

Z b

a

�(x)�(x)dx�
Z b

a

x

Z x

a

�(t)dt�(x)dx; (A.2)

where �(x) = f 0(x) � Pn(x). The �rst term of (A.2) tends to 0 when n ! +1. The second

term of (A.2) is bounded by "
R +1
�1

�(x)dx while the third one is bounded by "
R +1
�1

x2�(x)dx.

Hence, we get that E(f 0(x)� xf(x)) = 0, which achieves the proof of the proposition.�
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Proof of Proposition 4.1. Consider the �rst example and observe that

g(zt; �) = ~g(ut(�)) = ~g

�
yt �m(xt; �)

�(xt; �)

�
:

Then, we have:
@g

@�>
(zt; �) = ~g0

�
yt �m(xt; �)

�(xt; �)

�
@m

@�>
(xt; �)� ~g0

�
yt �m(xt; �)

�(xt; �)

�
(yt �m(xt; �))

�2(xt; �)

@�

@�>
(xt; �)

= ~g0(ut(�))
@m

@�>
(xt; �)� ~g0(ut(�))ut(�)

1

�(xt; �)

@�

@�>
(xt; �):

Hence, we have:

E

�
@g

@�>
(zt; �

0)

�
= E

�
~g0(ut(�

0))
�
E

�
@m

@�>
(xt; �

0)

�
�E �~g0(ut(�0))ut(�0)�E

�
1

�(xt; �)

@�

@�>
(xt; �

0)

�

since xt is an exogenous variable. Hence, under (4.15), we have E

�
@g

@�
(zt; �

0)

�
= 0; i.e., (4.7)

holds. This achieves the proof for the �rst example. The same proof holds for the second

example since ut is independent of y� , � � t� 1.

Consider now the third example. We still have � = (m; �). Hence:
@g

@�>
(zt; �) = ~g0(ut(�))

�
1
0

�
� ~g0(ut(�))ut(�)

1

�

�
0
1

�
; and E

�
@g

@�
(zt; �

0)

�
= 0 under (4.15).

This achieves the proof for the third example.�

Proof of Proposition 4.2. Since ~g(x) = f 0 � xf(x), we have ~g0(x) = f 00(x)� xf 0(x)� f(x)

and x~g0(x) = (xf 0(x))0 � x(xf 0(x)) + f 0(x) � xf(x) � 2f 0(x). Applying the Stein equation

(2.1) to f 0(x) and xf 0(x) proves the proposition.�

Proof of Proposition 4.3. The orthogonality property of the Hermite polynomials, i.e.

(2.5), and (2.7) prove the proposition.�

Proof of Proposition 5.1. Given that Y � T (�), EY p is well de�ned when p < �. In this

case, we have EY p = �p=2�
�
p+1
2

�
�
�
��p
2

�
=
�
�
�
1
2

�
�
�
�
2

��
if p is even and EY p = 0 otherwise.

Thus, for � > 8, we have E[H3(X)] = Cov(H3(X); H4(X)) = 0, E[H4(X)] =

r
3

2

1

� � 4
:

In addition, we have: V ar(H3(X)) = EH2
3 (X) = 6�1(EX6 � 6EX4 + 9EX2) = A(�). The

same computations lead to show that V ar(H4(X)) = B(�). This achieves the proof of (5.1).

The results (5.3), (5.4) and (5.5) are implied by (5.1).�
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