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Abstract. We employ the theory of rational choice to examine whether observable choices

from feasible sets of prospects can be generated by the optimization of some underlying

decision criterion under uncertainty. Rather than focusing on a specific theory of choice,

our objective is to formulate a general approach that is designed to cover the various

decision criteria that have been proposed in the literature. We use a mild dominance

property to define a class of suitable choice criteria. In addition to rationalizability per

se, we characterize transitive and Suzumura consistent rationalizability in the presence of

dominance. Journal of Economic Literature Classification Nos.: D11, D81.

Keywords: Uncertainty, prospects, rational choice, decision theory.



1 Introduction

It is by now well-established that the choice behavior of an economic agent can be con-

sidered more fundamental than the optimization of some objective. An agent’s choices

can be observed directly and, recognizing this early on in the development of demand

analysis, Samuelson (1938; 1948) laid the foundations of what has come to be known as

revealed preference theory; see also Houthakker (1950), among others. A consumer’s de-

mand function is taken as the primitive of the problem and the basic question is whether

the observable behavior of this agent is consistent with the standard hypothesis of utility

maximization under budget constraints. Although these early contributions restricted at-

tention to consumer choice in perfectly competitive markets, the theory of rational choice

progressed rapidly and more general choice scenarios were analyzed in contributions such

as those of Richter (1966), Hansson (1968) and Suzumura (1976a; 1977). Initially, the

analysis of rational choice behavior focused on models where a rationalizing relation was

assumed to be an ordering but, more recently, weaker coherence properties of a rational-

ization have been considered; see, for instance, Richter (1971) for an early contribution

in this spirit. A detailed review of rational choice and revealed preference theory can be

found in Bossert and Suzumura (2010).

Numerous theories of choice under uncertainty have emerged over the years; prominent

examples include proposals by von Neumann and Morgenstern (1944), Milnor (1954),

Savage (1954), Barberà, Barrett and Pattanaik (1984), Barberà and Pattanaik (1984)

and Kannai and Peleg (1984). Both probabilistic and non-probabilistic choice models

(such as set-based models) are covered by these and other contributions. In this paper,

we aim at combining the theory of rational choice with a general approach to choice

situations under uncertainty.

In decision problems under certainty, the revealed preference approach typically does

not try to uncover a specific objective the optimization of which may be revealed through

the observed choices; rather, the fundamental question is whether these choices are con-

sistent with some objective in the sense that the choices from each feasible set are the

greatest elements according to a rationalizing relation. Analogously, we do not want to

restrict ourselves to a specific theory of choice under uncertainty. Our basic question is

whether observable choices can be consistent with some coherent way of making decisions

in the presence of uncertainty. We therefore use as our primitive a set of prospects. Sup-

pose there is a universal set X (with at least two members) of certain outcomes and a

finite number of (at least two) possible states of the world. A prospect assigns to each
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possible state an outcome in X. We can think of a prospect as the result of an action

taken by an agent before the uncertainty regarding the state that actually occurs is re-

solved. The reason why we choose prospects to provide a fundamental description of our

choice situations is the generality we aim to achieve: if we were, for instance, to use lot-

teries as the objects to be chosen from, we would already be committed to a probabilistic

choice model. Because we do not want to rule out non-probabilistic models such as those

examined by Milnor (1954) and Barberà and Pattanaik (1984), for instance, we choose to

use prospects as our basic representation of choice situations under uncertainty. However,

models that do endow a decision maker with a probability distribution are included as

special cases in our approach.

The definition of a decision rule that we use in this paper is based on what we think

is a minimal requirement. Given a choice function defined on a domain of sets of feasi-

ble prospects, we first demand that there be a relation that rationalizes the observable

choices in the usual sense of generating them as greatest elements in the requisite feasible

set. In addition, we ask that the rationalization satisfy a dominance property so as to

be interpretable as a choice rule under uncertainty. The dominance condition is easily

described: if two prospects x = (x1, . . . , xm) and y = (y1, . . . , ym) are such that, for every

state i and for every state j, the certain prospect (xi, . . . , xi) that repeats outcome xi

in x over all states is revealed to be at least as good as the certain prospect (yj, . . . , yj)

that repeats outcome yj in y over all states, then prospect x must be at least as good as

prospect y. This is a very weak requirement because we do not demand state-by-state

dominance to be respected but, instead, merely unambiguous dominance where the worst

possible certain outcome in x is at least as good at the best possible certain outcome

in y. Although this condition that we impose in addition to rationalizability per se is

rather mild, it does impose further restrictions, as is shown once our formal framework is

introduced.

There is a resemblance to the analysis carried out by Bossert (2001) who also examines

rationalizability in the context of uncertainty. However, Bossert (2001) restricts atten-

tion to set-based models whereas our approach is considerably more general. Because of

the more specialized framework, Bossert’s (2001) restrictions differ from our dominance

property.

In the next section, we define the fundamentals of the problem to be addressed in this

paper, namely, the notions of prospects and choice functions. Section 3 provides necessary

and sufficient conditions for dominance rationalizability (that is, rationalizability by a

relation that respects the above-described dominance requirement). In sections 4 and 5,
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we add the coherence properties of transitivity and of Suzumura consistency, respectively,

to the list of requirements imposed on a rationalization. Section 6 concludes.

2 Prospects and choice functions

Suppose there is a set of alternatives or outcomes X with at least two elements. X

could be finite or infinite. There are m ∈ N \ {1} possible states of the world and a

prospect x = (x1, . . . , xm) with xi ∈ X for all i ∈ {1, . . . , m} specifies, for each state,

the alternative that materializes in this state. The set of all prospects is denoted by

Xm. Important special cases of prospects are the certain prospects in which the same

outcome emerges in all possible states. For any x ∈ X, the certain prospect associated

with alternative x is x1m, where 1m denotes the m-dimensional vector that consists of

m ∈ N \ {1} ones. The set of all non-empty subsets of Xm is X .

A (binary) relation on Xm is a subset R of the Cartesian product Xm × Xm and the

asymmetric part of R is P (R). The transitive closure tc(R) of a relation R on Xm is

tc(R) = {(x,y) | there exist K ∈ N and x0, . . . ,xK ∈ Xm such that

[x = x0 and (xk−1,xk) ∈ R for all k ∈ {1, . . . , K} and xK = y]}.

The transitive closure of a relation R is the smallest transitive relation containing R.

A relation R is Suzumura consistent if and only if, for all K ∈ N and for all x,y ∈ Xm,

(x,y) ∈ tc(R) ⇒ (x,y) 6∈ P (R).

The Suzumura consistent closure sc(R) of a relation R is given by

sc(R) = R ∪ {(x,y) | (x,y) ∈ tc(R) and (y,x) ∈ R}.

Suzumura consistency was first introduced in Suzumura (1976b). Analogous to the tran-

sitive closure of a relation, the Suzumura consistent closure of R is the smallest Suzumura

consistent relation containing R. The notion of a Suzumura consistent closure is due to

Bossert, Sprumont and Suzumura (2005). See Bossert and Suzumura (2010) for a detailed

discussion of Suzumura consistency and its use in individual and collective choice.

We assume that, in the presence of uncertainty, a decision maker faces a set of feasible

actions and that each action leads to a prospect in Xm. Rather than working with

actions and their induced prospects, we work with prospects directly in order to simplify

our exposition. Thus, a choice rule under uncertainty can be expressed by means of a
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choice function that selects, from each feasible set of prospects in its domain, a non-empty

subset of this feasible set. The only assumption (other than non-emptiness) that we make

about the domain of a choice function is that it includes all singletons and pairs of certain

prospects. Formally, a choice function with a certainty inclusive domain is a mapping

C: Σ → X such that {{x1m, y1m} | x, y ∈ X} ⊆ Σ ⊆ X and C(S) ⊆ S for all S ∈ Σ.

Because the certainty inclusiveness assumption will be maintained throughout the paper,

we will simply refer to C as a choice function with the understanding that this function

has a certainty inclusive domain.

3 Dominance rationalizability

As is well-known, a choice function C is rationalizable by a binary relation R on Xm if

and only if, for each feasible set of prospects S in the domain Σ, C selects the R-greatest

elements in S. However, in the present context of choice under uncertainty, we might

want to impose more than just the standard rationalizability property in order to think

of a choice function as representing a plausible method of selecting from sets of available

prospects. Clearly, there are many theories of choice under uncertainty such as those

pioneered and discussed by von Neumann and Morgenstern (1944), Milnor (1954), Savage

(1954), Fishburn (1970), Arrow and Hurwicz (1972), Gärdenfors (1976), Kim and Roush

(1980), Barberà, Barrett and Pattanaik (1984), Barberà and Pattanaik (1984), Kannai

and Peleg (1984), Barberà, Bossert and Pattanaik (2004), to name but a few.

The main purpose of the approach advocated in this paper is not the identification

of a specific theory of choice under uncertainty but, rather, to define a more general

criterion that subsumes many of the models proposed so far. Clearly, this means that

our definition of possible choice rules is quite permissive. In addition to probabilistic

choice rules such as those proposed by von Neumann and Morgenstern (1944) or Savage

(1954), our class of choice rules includes many others that are not based on (objective or

subjective) probabilities, such as those discussed by Milnor (1954) or Kannai and Peleg

(1984), for instance. Of course, our definition of possible choice rules still has some bite in

that it allows us to eliminate rules that we consider unacceptable given our interpretation;

this is illustrated below via a simple example. As we discuss in the concluding section,

our approach can be amended in a straightforward and intuitive manner if one desires to

come up with a more stringent definition. What we think of as the major contribution of

this paper is the method we propose to incorporate notions of uncertainty into a model

of rational choice.

4



Coming back to our definition of rationalizability in the current context, we propose

as a minimal requirement that, in addition to rationalizability per se, a weak dominance

property be respected. More precisely, we demand that observed choices involving certain

prospects be respected in the following sense. Consider two prospects x = (x1, . . . , xm)

and y = (y1, . . . , ym). If every certain prospect xi1m with i ∈ {1, . . . , m} is revealed to

be weakly preferred to every certain prospect yj1m with j ∈ {1, . . . , m} in the sense that

xi1m is chosen in a situation where yj1m is feasible, then the relation rationalizing C

must declare x to be at least as good as y. Formally, we say that a choice function C is

dominance rationalizable if and only if there exists a relation R on Xm such that

C(S) = {x ∈ S | (x,y) ∈ R for all y ∈ S} for all S ∈ Σ (1)

and

[(xi1m, yj1m) ∈ R for all i, j ∈ {1, . . . , m} ⇒ (x,y) ∈ R] for all x,y ∈ Xm. (2)

If C and R are such that (1) and (2) are satisfied, we also say that R is a dominance

rationalization of C or that C is dominance rationalized by R.

Property (1) represents the standard rationalizability requirement: for any feasible set

S in the domain of a choice function C, the set of chosen elements C(S) must coincide

with the set of R-greatest elements in S according to a (dominance) rationalization R.

That (2) imposes additional restrictions on C can be seen by considering the following

example. Suppose that the set of certain alternatives is X = {x, y, z}, that there are

m = 2 possible states of the world, and the certainty inclusive domain of C is given by

Σ = {{(x, x)}, {(y, y)}, {(z, z)},

{(x, x), (y, y)}, {(x, x), (z, z)}, {(y, y), (z, z)},

{(x, y), (y, z)}}.

Now define the choice function C by letting

C({(x, x)}) = {(x, x)}, C({(y, y)}) = {(y, y)}, C({(z, z)}) = {(z, z)},

C({(x, x), (y, y)}) = {(x, x)}, C({(x, x), (z, z)}) = {(x, x)}, C({(y, y), (z, z)}) = {(y, y)},

C({(x, y), (y, z)}) = {(y, z)}.

Consider the relation R on Xm defined by

R = {((x, x), (x, x)), ((y, y), (y, y)), ((z, z), (z, z)),

((x, x), (y, y)), ((x, x), (z, z)), ((y, y), (z, z)),

((y, z), (x, y))}.
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It is straightforward to verify that (1) is satisfied for C and R. However, there exists no

relation R′ such that, for C and R′, (2) is satisfied in addition to (1). By way of contra-

diction, suppose R′ is such a relation. First of all, as a consequence of (1) and the defini-

tion of C, we must have ((x, x), (y, y)) ∈ R′, ((y, y), (y, y)) ∈ R′, ((x, x), (z, z)) ∈ R′ and

((y, y), (z, z)) ∈ R′. Thus, (2) implies ((x, y), (y, z)) ∈ R′. Therefore, the prospect (x, y) is

an R′-greatest element in {(x, y), (y, z)} and (1) demands that (x, y) ∈ C({(x, y), (y, z)}),
in contradiction to the definition of C. Thus, even though the additional property that

we require of a rationalization in the context of choice under uncertainty is very weak,

it is not redundant and can be used to eliminate rules that are in violation of the basic

dominance condition (2).

Richter (1971) characterizes rational choice in a general setting where no additional

requirements such as that expressed by (2) are imposed. In our framework, an analogous

result can be obtained by modifying his necessary and sufficient condition in a suitable

manner. To do so, we first introduce the notion of the direct revealed preference relation

Rd
C associated with a choice function C. This relation is defined by letting, for all x,y ∈

Xm,

(x,y) ∈ Rd
C ⇔ there exists S ∈ Σ such that [x ∈ C(S) and y ∈ S] .

Because we have to take into account the dominance property in addition to mere ratio-

nalizability, we consider the following relation that incorporates this requirement. The

direct revealed preference and dominance relation RC corresponding to C is defined by

letting, for all x,y ∈ Xm,

(x,y) ∈ RC ⇔ (x,y) ∈ Rd
C or

[
(xi1m, yj1m) ∈ Rd

C for all i, j ∈ {1, . . . , m}
]
.

Following Samuelson’s (1938; 1948) observation in the context of rationality in con-

sumer choice problems, Richter (1971) establishes that the direct revealed preference

relation Rd
C associated with a choice function C must be respected by any rationalizing

relation R in the sense that Rd
C is contained in R. An analogous result is valid in our

setting. However, because of the additional dominance requirement we impose, the rela-

tion RC rather than Rd
C must be respected when choices are made from sets of feasible

prospects. This leads to the following result, which is analogous to the above-mentioned

observation due to Richter (1971).

Lemma 1 If a choice function C is dominance rationalized by a relation R, then RC ⊆ R.
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Proof. Suppose that R is a dominance rationalization of C and that (x,y) ∈ RC . By

definition of RC , there are two possible cases:

(a) (x,y) ∈ Rd
C ;

(b) (xi1m, yj1m) ∈ Rd
C for all i, j ∈ {1, . . . , m}.

In case (a), the definition of Rd
C implies that there exists S ∈ Σ such that x ∈ C(S)

and y ∈ S. Thus, x is an R-greatest element in S by (1) which, together with y ∈ S,

implies (x,y) ∈ R.

In case (b), the result just established for case (a) implies that (xi1m, yj1m) ∈ R for

all i, j ∈ {1, . . . , m}. By (2), it follows that (x,y) ∈ R.

We can now use this lemma to characterize dominance rationalizability. Again, the

method of proof is based on that employed by Richter (1971). In our framework, however,

some additional steps are needed as a consequence of imposing the dominance require-

ment. The following property of a choice function C turns out to be necessary and

sufficient for dominance rationalizability.

Direct dominance revelation coherence. For all S ∈ Σ and for all x ∈ Xm,

(x,y) ∈ RC for all y ∈ S ⇒ x ∈ C(S).

Direct dominance revelation coherence requires that the relation RC be respected by the

choice function C. It is relatively straightforward to see that this is indeed necessary for

dominance rationalizability. As established in the following theorem, the property is also

sufficient.

Theorem 1 A choice function C is dominance rationalizable if and only if C satisfies

direct dominance revelation coherence.

Proof. We first prove the only if part of the equivalence stated in the theorem. Suppose

R is a dominance rationalization of C. Let S ∈ Σ and x ∈ S be such that (x,y) ∈ RC

for all y ∈ S. By Lemma 1, it follows that (x,y) ∈ R for all y ∈ S. Because R is a

dominance rationalization of C, this implies x ∈ C(S) and direct dominance revelation

coherence is established.

To prove the if part of the theorem, suppose that C satisfies direct dominance reve-

lation coherence. We now show that R = RC is a dominance rationalization of C.
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To establish that (1) is satisfied for R = RC , suppose first that S ∈ Σ and x ∈ S are

such that (x,y) ∈ RC for all y ∈ S. Direct dominance revelation coherence immediately

implies x ∈ C(S).

Now suppose that S ∈ Σ and x ∈ S are such that x ∈ C(S). By definition, this

implies (x,y) ∈ Rd
C for all y ∈ S and, because Rd

C ⊆ RC , we obtain (x,y) ∈ RC for all

y ∈ S.

Finally, we show that (2) is satisfied for R = RC . Suppose x,y ∈ Xm are such that

(xi1m, yj1m) ∈ RC for all i, j ∈ {1, . . . , m}. By definition of RC , for each i, j ∈ {1, . . . , m},
there are two possible cases:

(a) (xi1m, yj1m) ∈ Rd
C ;

(b) ((xi1m)g, (yj1m)h) ∈ Rd
C for all g, h ∈ {1, . . . , m}.

Because (xi1m)g = xi and (yj1m)h = yj for all g, h ∈ {1, . . . , m}, (xi1m, yj1m) ∈ Rd
C

follows in both cases. Thus, by definition of RC , we obtain (x,y) ∈ RC and the proof is

complete.

Note that the above proof does not make use of the assumption that C is a choice function

with a certainty inclusive domain; the conclusion of Theorem 1 remains true if Σ can be

any arbitrary non-empty domain. However, the certainty inclusiveness of Σ is crucial for

the results to be established in the following two sections.

4 Transitive dominance rationalizability

In traditional choice models that do not involve uncertainty, demanding rationalizability

without any further restrictions on the rationalizing relation can be considered somewhat

unsatisfactory. If, for instance, all rationalizations of a choice function generate strict

preference cycles, it is difficult to think of the choice behavior thus revealed as coherent.

The same reasoning applies to dominance rationalizability in the context of choosing from

feasible sets of prospects: in addition to (1) and (2), one may want to demand that a

dominance rationalization possesses some coherence property such as the well-established

transitivity requirement. In this section, we show how transitivity can be incorporated

into our model of choice under uncertainty. Interestingly, as mentioned at the end of

the previous section, the certainty inclusiveness assumption on the domain of a choice

function is important for the main result of this section.
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Lemma 1 has a natural counterpart in the transitive setting (see Richter, 1971). All

that needs to be done is to replace the relation RC with its transitive closure tc(RC) so

that we obtain the following result.

Lemma 2 If a choice function C is dominance rationalized by a transitive relation R,

then tc(RC) ⊆ R.

Proof. Suppose that R is a transitive dominance rationalization of C and that (x,y) ∈
tc(RC). Thus, there exist K ∈ N and x0, . . . ,xK ∈ Xm such that x = x0, (xk−1,xk) ∈ RC

for all k ∈ {1, . . . , K} and xK = y. By Lemma 1, it follows that x = x0, (xk−1,xk) ∈ R

for all k ∈ {1, . . . , K} and xK = y. Because R is transitive, we obtain (x,y) ∈ R.

Our characterization of dominance rationalizability by a transitive relation relies on the

assumption that the domain of C is certainty inclusive. Adapting direct dominance reve-

lation coherence to the transitive framework considered in this section is straightforward

and the requisite necessary and sufficient condition is obtained by replacing RC with its

transitive closure tc(RC).

Transitive dominance revelation coherence. For all S ∈ Σ and for all x ∈ Xm,

(x,y) ∈ tc(RC) for all y ∈ S ⇒ x ∈ C(S).

The main result of this section characterizes dominance rationalizability by a transitive

relation.

Theorem 2 A choice function C is dominance rationalizable by a transitive relation if

and only if C satisfies transitive dominance revelation coherence.

Proof. The proof of the only if part of the theorem is a straightforward adaptation of

the proof of the only if part of Theorem 1; we leave it to the reader to verify that all that

is required is to replace RC with tc(RC) and Lemma 1 with Lemma 2.

To prove the if part of the theorem, suppose that C satisfies transitive dominance

revelation coherence. We show that R = tc(RC) is a transitive dominance rationalization

of C.

Clearly, R = tc(RC) is transitive by definition.

To establish that (1) is satisfied for R = tc(RC), suppose first that S ∈ Σ and x ∈ S

are such that (x,y) ∈ tc(RC) for all y ∈ S. By transitive dominance revelation coherence,

x ∈ C(S).
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Now suppose that S ∈ Σ and x ∈ S are such that x ∈ C(S). By definition, this implies

(x,y) ∈ Rd
C for all y ∈ S and, because Rd

C ⊆ RC ⊆ tc(RC), we obtain (x,y) ∈ tc(RC) for

all y ∈ S.

Finally, we show that (2) is satisfied for R = tc(RC). Suppose x,y ∈ Xm are such

that

(xi1m, yj1m) ∈ tc(RC) for all i, j ∈ {1, . . . , m}. (3)

Because Σ is a certainty inclusive domain, {xi1m, yj1m} ∈ Σ for all i, j ∈ {1, . . . , m}.
Because tc(RC) dominance rationalizes C, (3) implies xi1m ∈ C({xi1m, yj1m}) for all

i, j ∈ {1, . . . , m}. Thus, by definition of the direct revealed preference relation, we have

(xi1m, yj1m) ∈ Rd
C for all i, j ∈ {1, . . . , m}. By definition of Rd

C , we obtain (x,y) ∈ RC

and, because RC ⊆ tc(RC), it follows that (x,y) ∈ tc(RC) = R.

5 Suzumura consistent dominance rationalizability

Full transitivity is often considered too demanding a requirement, especially in (but not

restricted to) the context of collective choice. Thus, it is worthwhile to study the possibil-

ity of obtaining characterization results that employ notions of dominance rationalizability

that are weaker than transitive dominance rationalizability and stronger than mere dom-

inance rationalizability. One possibility to do so is to explore dominance rationalizability

by a Suzumura consistent relation. The reason why we focus on Suzumura consistency as

a suitable weakening of transitivity rather than on alternative properties such as quasi-

transitivity or acyclicity is discussed in the concluding section of the paper.

As in the previous section, our starting point is an analogue of Lemma 1 where RC is

replaced with its Suzumura consistent closure sc(RC).

Lemma 3 If a choice function C is dominance rationalized by a Suzumura consistent

relation R, then sc(RC) ⊆ R.

Proof. Suppose that R is a Suzumura consistent dominance rationalization of C and

that (x,y) ∈ sc(RC). By definition, we can distinguish two cases.

(a) (x,y) ∈ RC ;

(b) (x,y) ∈ tc(RC) and (y,x) ∈ RC .

In case (a), Lemma 1 implies (x,y) ∈ R.

In case (b), there exist K ∈ N and x0, . . . ,xK ∈ Xm such that x = x0, (xk−1,xk) ∈ RC

for all k ∈ {1, . . . , K} and xK = y. Moreover, (y,x) ∈ RC . By Lemma 1, it follows that
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x = x0, (xk−1,xk) ∈ R for all k ∈ {1, . . . , K} and xK = y. Therefore, (x,y) ∈ tc(RC).

Furthermore, (y,x) ∈ R as a consequence of Lemma 1. If (x,y) 6∈ R, it follows that

(y,x) ∈ P (R). Because (x,y) ∈ tc(RC), this contradicts the Suzumura consistency of R.

Thus, (x,y) ∈ R.

A necessary and sufficient condition for dominance rationalizability by a Suzumura con-

sistent relation is obtained by employing the Suzumura consistent closure instead of the

transitive closure when formulating the requisite coherence property.

Suzumura consistent dominance revelation coherence. For all S ∈ Σ and for all

x ∈ Xm,

(x,y) ∈ sc(RC) for all y ∈ S ⇒ x ∈ C(S).

The proof of our final characterization result is analogous to that of Theorem 2; we leave

it to the reader to verify that all that is required is to replace the transitive closure with

the Suzumura consistent closure and Lemma 2 with Lemma 3.

Theorem 3 A choice function C is dominance rationalizable by a Suzumura consistent

relation if and only if C satisfies Suzumura consistent dominance revelation coherence.

6 Concluding remarks

In traditional models of rational choice on general domains without uncertainty, rational-

izability by a transitive relation is equivalent to rationalizability by a reflexive, complete

and transitive relation; see Richter (1966). The same observation applies to the current

framework. Richter’s (1966) proof technique employs a variant of Szpilrajn’s (1930) ex-

tension theorem and proceeds by showing that any extension of the transitive closure of

the direct revealed preference relation to a reflexive, complete and transitive relation also

rationalizes C. That the dominance property does not change this result follows from

the assumption that we operate on certainty inclusive domains. As a consequence of this

property, the restriction of the direct revealed preference relation (and, thus, the restric-

tion of RC) to the set of certain prospects is already reflexive and complete. Therefore,

no new pairs need to be added to the original relation as a consequence of the domi-

nance requirement. However, the same argument does not apply to arbitrary domains

because the above-mentioned reflexivity and completeness property of the restriction of

RC is not guaranteed without assuming that Σ is certainty inclusive. This means that
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there may exist extensions that do not obey the restrictions imposed by the definition

of dominance rationalizability by a transitive relation, and existential clauses may have

to be invoked to formulate necessary and sufficient conditions. See Bossert (2001) for

analogous observations in the more restricted framework of set-based decision rules.

In contrast, Suzumura consistent dominance revelation coherence is not sufficient for

dominance rationalizability by a reflexive, complete and Suzumura consistent relation.

This is an immediate consequence of the observation that Suzumura consistency and

transitivity coincide in the presence of reflexivity and completeness; see Suzumura (1976b).

The reason why we focus on Suzumura consistency as the weakening of transitivity to

be considered is that properties such as quasi-transitivity or acyclicity cannot be treated in

an analogous fashion. This is the case because there is no such thing as a quasi-transitive or

an acyclical closure: if a relation fails to be quasi-transitive or acyclical, there is no unique

way of defining a unique superset of this relation that possesses the requisite property. For

instance, if x is strictly preferred to y, y is strictly preferred to z and z is strictly preferred

to x, the resulting relation clearly is not acyclical (and, of course, not quasi-transitive).

In order to obtain a superset of this relation that is acyclical, one of the pairs (y,x), (z,y)

or (x, z) has to be added to the original relation, but any one of the three possibilities

will do. Analogously, to obtain a quasi-transitive superset of the relation, two of the three

pairs need to be added but, again, any two will do the job. Thus, there is no well-defined

closure operation for these properties and, as a consequence, a condition that demands

such a closure to be respected cannot be formulated. This observation also applies to

dominance rationalizability by itself: because there does not exist a complete closure of a

relation, our condition does not work if we want to obtain dominance rationalizability by a

reflexive and complete relation. See Bossert and Suzumura (2010) for a detailed discussion

of these issues in the traditional rational choice framework without uncertainty.

Our definition of the class of possible decision rules is very permissive—the dominance

requirement appears to be quite uncontroversial. If one intends to come up with more

restrictive notions of suitable decision models, the method suggested here may be applied

to this alternative setting. Because of this observation, we think of this paper as pro-

viding two contributions: in addition to the results that we consider to be of interest in

themselves, we propose a general method that can be employed when applying theories

of rational choice to the analysis of decision making under uncertainty.
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Barberà, S. and P.K. Pattanaik (1984), “Extending an order on a set to the power

set: some remarks on Kannai and Peleg’s approach,” Journal of Economic Theory,

Vol.32, pp.185–191.

Bossert, W. (2001), “Choices, consequences, and rationality,” Synthese, Vol.129, pp.343–

369.

Bossert, W., Y. Sprumont and K. Suzumura (2005), “Consistent rationalizability,” Eco-

nomica, Vol.72, pp.185–200.

Bossert, W. and K. Suzumura (2010), Consistency, Choice, and Rationality, Cambridge,

MA: Harvard University Press.

Fishburn, P.C. (1970), Utility Theory for Decision Making, New York: Wiley.

Gärdenfors, P. (1976), “Manipulation of social choice functions,” Journal of Economic

Theory, Vol.13, pp.217–228.

Hansson, B. (1968), “Choice structures and preference relations,” Synthese, Vol.18,

pp.443–458.

Houthakker, H.S. (1950), “Revealed preference and the utility function,” Economica,

Vol.17, pp.159–174.

Kannai, Y. and B. Peleg (1984), “A note on the extension of an order on a set to the

power set,” Journal of Economic Theory, Vol.32, pp.172–175.

13



Kim, K.H. and F.R. Roush (1980), “Preferences on subsets,” Journal of Mathematical

Psychology, Vol.21, pp.279–282.

Milnor, J. (1954), “Games against nature,” in: R. Thrall, C. Coombs and R. Davis, eds.,

Decision Processes, New York: Wiley, pp.49–59.

Richter, M.K. (1966), “Revealed preference theory,” Econometrica, Vol.41, pp.1075–

1091.

Richter, M.K. (1971), “Rational choice,” in: J.S. Chipman, L. Hurwicz, M.K. Richter

and H.F. Sonnenschein, eds., Preferences, Utility, and Demand, New York: Harcourt

Brace Jovanovich, pp.29–58.

Samuelson, P.A. (1938), “A note on the pure theory of consumer’s behaviour,” Econom-

ica, Vol.5, pp.61–71.

Samuelson, P.A. (1948), “Consumption theory in terms of revealed preference,” Eco-

nomica, Vol.15, pp.243–253.

Savage, L.J. (1954), The Foundations of Statistics, New York: Wiley.

Suzumura, K. (1976a), “Rational choice and revealed preference,” Review of Economic

Studies, Vol.43, pp.149–158.

Suzumura, K. (1976b), “Remarks on the theory of collective choice,” Economica, Vol.43,

pp.381–390.

Suzumura, K. (1977), “Houthakker’s axiom in the theory of rational choice,” Journal of

Economic Theory, Vol.14, pp.284–290.

Szpilrajn, E. (1930), “Sur l’extension de l’ordre partiel,” Fundamenta Mathematicae,

Vol.16, pp.386–389.

von Neumann, J. and O. Morgenstern (1944), Theory of Games and Economic Behavior,

Princeton: Princeton University Press.

14




