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RÉSUMÉ

Les sociétés modernes dépendent de plus en plus sur les systèmes informatiques et

ainsi, il y a de plus en plus de pression sur les équipes de développement pour produire

des logiciels de bonne qualité. Plusieurs compagnies utilisent des modèles de qualité, des

suites de programmes qui analysent et évaluent la qualité d’autres programmes, mais la

construction de modèles de qualité est difficile parce qu’il existe plusieurs questions qui

n’ont pas été répondues dans la littérature. Nous avons étudié les pratiques de modélisa-

tion de la qualité auprès d’une grande entreprise et avons identifié les trois dimensions

où une recherche additionnelle est désirable : Le support de la subjectivité de la qua-

lité, les techniques pour faire le suivi de la qualité lors de l’évolution des logiciels, et la

composition de la qualité entre différents niveaux d’abstraction.

Concernant la subjectivité, nous avons proposé l’utilisation de modèles bayésiens

parce qu’ils sont capables de traiter des données ambiguës. Nous avons appliqué nos

modèles au problème de la détection des défauts de conception. Dans une étude de deux

logiciels libres, nous avons trouvé que notre approche est supérieure aux techniques

décrites dans l’état de l’art, qui sont basées sur des règles.

Pour supporter l’évolution des logiciels, nous avons considéré que les scores produits

par un modèle de qualité sont des signaux qui peuvent être analysés en utilisant des

techniques d’exploration de données pour identifier des patrons d’évolution de la qualité.

Nous avons étudié comment les défauts de conception apparaissent et disparaissent des

logiciels.

Un logiciel est typiquement conçu comme une hiérarchie de composants, mais les

modèles de qualité ne tiennent pas compte de cette organisation. Dans la dernière partie

de la dissertation, nous présentons un modèle de qualité à deux niveaux. Ces modèles

ont trois parties : un modèle au niveau du composant, un modèle qui évalue l’importance

de chacun des composants, et un autre qui évalue la qualité d’un composé en combinant

la qualité de ses composants. L’approche a été testée sur la prédiction de classes à fort

changement à partir de la qualité des méthodes. Nous avons trouvé que nos modèles à

deux niveaux permettent une meilleure identification des classes à fort changement.
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Pour terminer, nous avons appliqué nos modèles à deux niveaux pour l’évaluation de

la navigabilité des sites web à partir de la qualité des pages. Nos modèles étaient capables

de distinguer entre des sites de très bonne qualité et des sites choisis aléatoirement.

Au cours de la dissertation, nous présentons non seulement des problèmes théoriques

et leurs solutions, mais nous avons également mené des expériences pour démontrer les

avantages et les limitations de nos solutions. Nos résultats indiquent qu’on peut espérer

améliorer l’état de l’art dans les trois dimensions présentées. En particulier, notre travail

sur la composition de la qualité et la modélisation de l’importance est le premier à cibler

ce problème. Nous croyons que nos modèles à deux niveaux sont un point de départ

intéressant pour des travaux de recherche plus approfondis.

Mots clés: Génie logiciel, qualité du logiciel, modèles de qualité, études empi-

riques, réseaux bayésiens, évolution du logiciel, composition de la qualité.



ABSTRACT

As society becomes ever more dependent on computer systems, there is more and

more pressure on development teams to produce high-quality software. Many com-

panies therefore rely on quality models, program suites that analyse and evaluate the

quality of other programs, but building good quality models is hard as there are many

questions concerning quality modelling that have yet to be adequately addressed in the

literature. We analysed quality modelling practices in a large organisation and identi-

fied three dimensions where research is needed: proper support of the subjective notion

of quality, techniques to track the quality of evolving software, and the composition of

quality judgments from different abstraction levels.

To tackle subjectivity, we propose using Bayesian models as these can deal with

uncertain data. We applied our models to the problem of anti-pattern detection. In a

study of two open-source systems, we found that our approach was superior to state of

the art rule-based techniques.

To support software evolution, we consider scores produced by quality models as

signals and the use of signal data-mining techniques to identify patterns in the evolution

of quality. We studied how anti-patterns are introduced and removed from systems.

Software is typically written using a hierarchy of components, yet quality models do

not explicitly consider this hierarchy. As the last part of our dissertation, we present two

level quality models. These are composed of three parts: a component-level model, a

second model to evaluate the importance of each component, and a container-level model

to combine the contribution of components with container attributes. This approach was

tested on the prediction of class-level changes based on the quality and importance of

its components: methods. It was shown to be more useful than single-level, traditional

approaches.

To finish, we reapplied this two-level methodology to the problem of assessing web

site navigability. Our models could successfully distinguish award-winning sites from

average sites picked at random.

Throughout the dissertation, we present not only theoretical problems and solutions,
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but we performed experiments to illustrate the pros and cons of our solutions. Our

results show that there are considerable improvements to be had in all three proposed

dimensions. In particular, our work on quality composition and importance modelling

is the first that focuses on this particular problem. We believe that our general two-level

models are only a starting point for more in-depth research.

Keywords: Software engineering, software quality, quality models, empirical

studies, Bayesian models, software evolution, quality composition.



CONTENTS

RÉSUMÉ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xv

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xix

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxi

CHAPTER 1: INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . 1

1.1 A Historical Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Defining Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Ensuring Quality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.4.1 Manipulation of Higher-order Concepts . . . . . . . . . . . . . 7

1.4.2 Tracking the Evolution of Quality . . . . . . . . . . . . . . . . 8

1.4.3 Quality Composition . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Dissertation Organisation . . . . . . . . . . . . . . . . . . . . . . . . . 8

CHAPTER 2: BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 Quality Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Definitional Models . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Operational Quality Models . . . . . . . . . . . . . . . . . . . 13

2.2 Model Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2.1 What are Software Metrics? . . . . . . . . . . . . . . . . . . . 16



x

2.2.2 What can we Measure? . . . . . . . . . . . . . . . . . . . . . . 16

2.2.3 Quality Indicators . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.4 Notable Code Metrics . . . . . . . . . . . . . . . . . . . . . . 19

2.3 Model Building Techniques . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Regression Techniques . . . . . . . . . . . . . . . . . . . . . . 21

2.3.2 Machine-Learning Techniques . . . . . . . . . . . . . . . . . . 23

2.4 Open Issues in Quality Modelling . . . . . . . . . . . . . . . . . . . . 25

2.4.1 Incompatibility of Measurement Tools . . . . . . . . . . . . . . 25

2.4.2 Unwieldy Distributions . . . . . . . . . . . . . . . . . . . . . . 26

2.4.3 Validity of Metrics . . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.4 The Search for Causality . . . . . . . . . . . . . . . . . . . . . 28

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

CHAPTER 3: STATE OF PRACTICE IN QUALITY MODELLING . . . 31

3.1 Quality Modelling Practices: an Industrial Case Study . . . . . . . . . . 31

3.1.1 Quality Evaluation Process . . . . . . . . . . . . . . . . . . . . 33

3.1.2 Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Initial Exploration of Concerns . . . . . . . . . . . . . . . . . . . . . . 37

3.2.1 Systems Studied . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.2.2 Metrics Studied . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.2.3 Analysis Techniques . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.4 Issue 1: Usefulness of Metrics . . . . . . . . . . . . . . . . . . 40

3.2.5 Issue 2: Combination Strategies . . . . . . . . . . . . . . . . . 41

3.3 Research Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

CHAPTER 4: DEALING WITH SUBJECTIVITY . . . . . . . . . . . . 47

4.1 Existing Techniques to Model Subjectivity . . . . . . . . . . . . . . . . 48

4.1.1 Fuzzy Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2 Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . 50

4.2 Evaluating the Quality of Design . . . . . . . . . . . . . . . . . . . . . 51



xi

4.2.1 Industrial Interest in Anti-pattern Detection . . . . . . . . . . . 51

4.2.2 The Subjective Nature of Pattern Detection . . . . . . . . . . . 54

4.2.3 Detection Methodology . . . . . . . . . . . . . . . . . . . . . 54

4.2.4 Evaluating our Bayesian Methodology . . . . . . . . . . . . . 58

4.2.5 Scenario 1: General Detection Model . . . . . . . . . . . . . . 61

4.2.6 Scenario 2: Locally Calibrated Model . . . . . . . . . . . . . . 64

4.3 Discussion of the Results . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.1 Threats to Validity . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3.2 Dealing with Good Programs . . . . . . . . . . . . . . . . . . . 66

4.3.3 Estimating the Number of Anti-Patterns . . . . . . . . . . . . . 67

4.3.4 Alternative Code Representation . . . . . . . . . . . . . . . . . 68

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

CHAPTER 5: ANALYSING THE EVOLUTION OF QUALITY . . . . . 69

5.1 Industrial Practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.2 State of the Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3 Identifying and Tracking Quality . . . . . . . . . . . . . . . . . . . . . 72

5.3.1 Dealing with Temporal Data . . . . . . . . . . . . . . . . . . . 72

5.3.2 Quality Trend Analysis . . . . . . . . . . . . . . . . . . . . . . 73

5.3.3 Finding Quality Trends . . . . . . . . . . . . . . . . . . . . . . 74

5.4 Tracking Design Problems . . . . . . . . . . . . . . . . . . . . . . . . 74

5.4.1 Global View on the Evolution of Blobs . . . . . . . . . . . . . 75

5.4.2 Evolution Trends Identified . . . . . . . . . . . . . . . . . . . 76

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.5.1 How to Track Blobs? . . . . . . . . . . . . . . . . . . . . . . . 82

5.5.2 How to Remove Blobs? . . . . . . . . . . . . . . . . . . . . . 82

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

CHAPTER 6: HIERARCHICAL MODELS FOR QUALITY AGGREGA-

TION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.1 A Multi-level Composition Approach . . . . . . . . . . . . . . . . . . 86



xii

6.2 Modelling Code Changeability . . . . . . . . . . . . . . . . . . . . . . 88

6.2.1 Change Models . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2.2 Determining Method Importance . . . . . . . . . . . . . . . . . 92

6.3 Comparing Aggregation Strategies . . . . . . . . . . . . . . . . . . . . 99

6.3.1 Study Definition and Design . . . . . . . . . . . . . . . . . . . 99

6.3.2 Data Analysed . . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.3.3 Variables Studied . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.3.4 Operationalising the Change Models . . . . . . . . . . . . . . . 102

6.3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

CHAPTER 7: COMPOSITION OF QUALITY FORWEB SITES . . . . 117

7.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.1.1 Finding Information on a Web Site . . . . . . . . . . . . . . . . 118

7.1.2 Assessing Site Navigability . . . . . . . . . . . . . . . . . . . 119

7.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

7.3 A Multi-level Model to Assess Web Site Navigability . . . . . . . . . . 121

7.3.1 Bayesian Belief Networks . . . . . . . . . . . . . . . . . . . . 121

7.3.2 Assessing a Web Page . . . . . . . . . . . . . . . . . . . . . . 122

7.3.3 Navigation Model . . . . . . . . . . . . . . . . . . . . . . . . 126

7.3.4 Assessing a Web Site . . . . . . . . . . . . . . . . . . . . . . . 128

7.4 Case Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4.1 Study Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4.2 Navigability Evaluation Results . . . . . . . . . . . . . . . . . 130

7.4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

CHAPTER 8: CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . 135

8.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136



xiii

8.1.1 Handling Subjectivity . . . . . . . . . . . . . . . . . . . . . . 136

8.1.2 Supporting Evolution . . . . . . . . . . . . . . . . . . . . . . 137

8.1.3 Composing Quality Judgements . . . . . . . . . . . . . . . . . 138

8.1.4 Application to Web Applications . . . . . . . . . . . . . . . . . 138

8.2 Future Research Avenues . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2.1 Crowd-sourcing . . . . . . . . . . . . . . . . . . . . . . . . . . 139

8.2.2 Using Complex Structures instead of Metrics . . . . . . . . . . 139

8.2.3 Activity Modelling . . . . . . . . . . . . . . . . . . . . . . . . 141

8.3 Other Research Paths Explored . . . . . . . . . . . . . . . . . . . . . 141

8.4 Closing Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145





LIST OF TABLES

3.I Method-level metrics studied . . . . . . . . . . . . . . . . . . . . 39

3.II Class-level metrics studied . . . . . . . . . . . . . . . . . . . . . 39

3.III Descriptive statistics for the NASA data set . . . . . . . . . . . . 40

3.IV Rank correlations between method metrics and bug count . . . . . 41

3.V Rank correlations between class metrics and bug count . . . . . . 42

3.VI Classification rates for class fault-proneness . . . . . . . . . . . . 43

4.I GQM applied to Blobs . . . . . . . . . . . . . . . . . . . . . . . 55

4.II GQM applied to Spaghetti Code . . . . . . . . . . . . . . . . . . 55

4.III GQM applied to Functional Decomposition . . . . . . . . . . . . 56

4.IV Program Statistics . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.V Salient symptom identification . . . . . . . . . . . . . . . . . . . 60

4.VI JHotDraw: inspection sizes . . . . . . . . . . . . . . . . . . . . . 67

5.I Degradation growth rates in Xerces . . . . . . . . . . . . . . . . 80

5.II Refactorings identified in Xerces for the correction of Blobs . . . 81

6.I Relative weights for each importance function. . . . . . . . . . . 98

6.II Descriptive statistics for replication data . . . . . . . . . . . . . . 100

6.III Correlations: number of changes and class metrics/model output 106

6.IV Correlations: number of changes and scores (type 2 models) . . . 107

6.V Correlations: number of changes and scores (type 3 models) . . . 109

7.I Inputs to the navigability model . . . . . . . . . . . . . . . . . . 124

7.II Page navigability CPT . . . . . . . . . . . . . . . . . . . . . . . 126

7.III Independent samples test . . . . . . . . . . . . . . . . . . . . . . 130





LIST OF FIGURES

2.1 ISO9126 quality decomposition . . . . . . . . . . . . . . . . . . 12

2.2 Distribution of cyclomatic complexity . . . . . . . . . . . . . . . 26

3.1 Fault distribution per development phase . . . . . . . . . . . . . 32

3.2 Stakeholders in a quality evaluation process . . . . . . . . . . . . 32

3.3 Quality evaluation process of our partner . . . . . . . . . . . . . 34

3.4 Example of industrial quality models . . . . . . . . . . . . . . . 34

3.5 Example of a maintainability model . . . . . . . . . . . . . . . . 35

3.6 Fault-proneness model using method-level metrics . . . . . . . . 44

3.7 Fault-proneness model using class-level metrics . . . . . . . . . 44

4.1 Fuzzification process of a metric value . . . . . . . . . . . . . . . 49

4.2 Functional decomposition detection rules . . . . . . . . . . . . . 52

4.3 GQM applied to the Blob . . . . . . . . . . . . . . . . . . . . . . 56

4.4 Probability interpolation for metrics . . . . . . . . . . . . . . . . 57

4.5 Inspection process for Bayesian inference . . . . . . . . . . . . . 62

4.6 Inter-project validation . . . . . . . . . . . . . . . . . . . . . . . 63

4.7 Local calibration: average precision and recall . . . . . . . . . . . 65

5.1 Quality signal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.2 Dendrogram of quality signals . . . . . . . . . . . . . . . . . . . 75

5.3 Blob Ratios vs. Total Classes . . . . . . . . . . . . . . . . . . . . 76

5.4 Evolution Trend Classification . . . . . . . . . . . . . . . . . . . 77

5.5 Evolution Trends Distribution of Blobs . . . . . . . . . . . . . . 78

6.1 Logical decomposition of a system . . . . . . . . . . . . . . . . . 86

6.2 General composition model . . . . . . . . . . . . . . . . . . . . 87

6.3 Class-method composition model . . . . . . . . . . . . . . . . . 88

6.4 Single-level change model . . . . . . . . . . . . . . . . . . . . . 90

6.5 Single-level change model explained . . . . . . . . . . . . . . . . 90



xviii

6.6 Sample method-level model . . . . . . . . . . . . . . . . . . . . 91

6.7 Modified type 1 change model to support method-level quality

models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.8 Aggregation models for method-level evaluations . . . . . . . . . 92

6.9 Simple call graph between methods in their classes . . . . . . . . 95

6.10 Simple call graph between methods in their classes . . . . . . . . 98

6.11 Method change model . . . . . . . . . . . . . . . . . . . . . . . 103

6.12 Inspection efficiency for different sized inspections using class-

level information . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.13 Inspection efficiency for different standard aggregation strategies . 108

6.14 Inspection efficiency for different sized inspections by combining

method-level information . . . . . . . . . . . . . . . . . . . . . . 110

6.15 Inspection efficiency (in terms of size) . . . . . . . . . . . . . . . 111

7.1 Navigability Evaluation Process . . . . . . . . . . . . . . . . . . 119

7.2 The original page-level navigability model: site-level metrics are

identified in light gray . . . . . . . . . . . . . . . . . . . . . . . 123

7.3 The modified page-level navigability model . . . . . . . . . . . . 123

7.4 Binary input classification . . . . . . . . . . . . . . . . . . . . . 125

7.5 Site-level quality model . . . . . . . . . . . . . . . . . . . . . . 129

7.6 Navigability scores for good and random sites . . . . . . . . . . . 131

7.7 Initial model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.8 Potential improvements to the site . . . . . . . . . . . . . . . . . 132



LIST OF APPENDICES

Appendix I: Reformulating Class-level Metrics . . . . . . . . . . . . .xxiii





ACKNOWLEDGMENTS

I thank my advisor, Houari Sahraoui for introducing me to the problems with empir-

ical software engineering. He taught me that good experimentation is difficult and needs

to be done in a rigorous manner. He also helped me become independent by assisting in

the supervision of other students in my research group.

I would like to thank my collaborators. I thank Foutse Khomh who was a great

research partner, for our great discussions that lead to multiple publications. I thank Prof.

Yann-Gaël Guéhéneuc for his great toolkit (Ptidej), scientific discussions, and moral

support. I also thank Marouane Kessentini and Prof. Naouel Moha, for our productive

partnerships concerning anti-patterns. Finally, I would like to thank Simon Allier and

Prof. Bruno Dufour for their help understanding how call graphs work.

Most importantly, my Ph.D. would not have been possible without the support of my

wife, my “grande pitoune”, Catherine and the love of my two-year-old “petite pitoune”,

Fiona. I would also thank my pop, Jean Vaucher, for his help focusing my ideas and for

rereading my dissertation.





CHAPTER 1

INTRODUCTION

At the start of the 21st century, software is at the heart of many important aspects

of society. Not only are these software systems omnipresent, but their complexity is

an order of magnitude greater than anything produced ten years ago. These systems

were built over the course of many years during which developers come and leave. The

consequence is that keeping an old system up to date with new requirements is very

expensive. Conservative studies show that well over 50% of effort is spent on mainte-

nance [Bel00, HM00]. In this context, it is important to have tools and techniques to

regularly check the quality of these systems to ensure that, with time, a system does not

become a burden.

1.1 A Historical Perspective

In the sixties, IBM decided to advance the state of the art with an ambitious operat-

ing system called OS/360. At the time, this OS was one of the most complex software

ever undertaken. Although eventually a commercial success, its development proved

to be almost too difficult to manage, going billions over budget: the estimate was 675

million dollars, but it cost 5 billion dollars [IBM08]. At its peak, over 50,000 em-

ployees were working on the project. The cost of the project was such that it was

famously coined the 5 billion dollar gamble by Fortune magazine, for if the project

failed, IBM would have gone bankrupt. Many important lessons were learned from this

ordeal [FPB78], and these contributed to the emergence of the field of software engi-

neering as its managerial failure was much discussed in the NATO Software engineering

conferences [NR69, BR70].

The NATO conferences had the objective of shaping the field of software engineer-

ing. It was for this purpose that different participants described issues with producing

good software. One of the most important issues raised was how to scale production up
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to the new large systems and limit costs. The main method was to improve the process of

“manufacturing code”. They argued that process improvement would improve software

quality, a term mostly reserved to describe software that conforms to its specification

and that contains few bugs. The advantage of having “clean” code was expressed only

once, by M.D. McIlroy (p.53 [NR69]). He stated that some effort should be spent to

evaluate the “quality of work” of a programmer, by assessing its readability.

Since the early days of software engineering, the notion of quality has had to evolve.

It was typically thought that a system would be developed, and as soon as all the bugs

were found and corrected, it would then be used with little or no modification. Even-

tually, the system would be retired and replaced by a newer system. This was not the

case. The construction of these early monster systems was not cost-efficient, and there-

fore management moved towards an evolution model hoping to reuse previously coded

artefacts. In this context, the seemingly unimportant factor of readability becomes very

important. The predominant methodologies like the waterfall model [Roy70] focused

on the production of a final, functional system; these were not adapted to the reality of

modifying large-scale systems [McC04].

Another important change to software systems is their increasing level of interactiv-

ity. In the sixties and seventies, programs were batch-oriented and there was little to

no interaction. Ever since the advent of user interfaces, user expectations in terms of

usability have constantly increased. Currently, trends on the Web even allow users to

interact with each other with user-generated content. Consequently, for modern soft-

ware to be successful, it should not only provide bug-free functionality, but it should do

so with an adequate user-experience. Concerning the issues of user perceived quality,

Kan [Kan95] states that it is an ambiguous, multi-dimensional concept. In particular, he

distinguishes between the user view of quality which can be experienced but not defined,

and the professional view which can be measured and controlled. Of course, the view of

professionals is difficult to assess objectively because it is determined by their specific

quality-related needs.
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1.2 Defining Quality

According to the Oxford Dictionary, quality is the degree of excellence of a thing. A

quality software system is one that works well and gives satisfaction. With the majority

of effort being spent to maintain systems [Bel00, HM00], we can assume that quality

should mean that the system will continue to give satisfaction in the future.

For a broader understanding of software quality, Kitchenham and Phleeger [KP96]

refer to the work of David Garvin [Gar84]. Garvin presents case studies of quality

management from different industries, mostly manufacturing. He reports five views of

quality:

• The transcendental view: quality can be recognized, but not defined. This can be

seen as the idealised view of quality presented by software evangelists;

• The user view: quality is how well a product suits a user’s needs. This view

considers, but is not limited to, the notion of crashes as it relates to user experience;

• The manufacturing view: quality can be guaranteed by following a well-controlled

series of steps. This perspective focuses on improving the development process.

It follows the philosophy that by following a good process, we should be able to

produce good software;

• The product view: the quality of software depends on its internal characteristics.

This is the view of most metrics advocates. If a product is well written, then an

external perception of quality should in turn be good;

• The value view: quality depends on what someone would pay for it. This is typi-

cally a viewpoint of investors and upper management.

Each of these views corresponds to that of different types of stakeholders. Ideally,

the best product would satisfy all these stakeholders, but this is rarely the case. For

example, a development team might consider their code base unwieldy and would like to

restructure (product view), but management does not want to spend more on the product

as the restructuring might not produce enough value (value view) [BAB+05].
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Kitchenham and Phleeger then used these views to organise the results of a survey.

The majority of respondents said that the manufacturing and user views were the most

important. Ironically, other research suggests that users often do not know what they

would like unless they experience it first [Gla09]. Without this experience, users will

focus on an idealised view of what they want (e.g. multitude of features and few bugs).

However, his idealised view rarely corresponds to their actual appreciation of the sys-

tem [Sch03b].

It is impossible to find a universally accepted notion of quality as it depends both

on the application domain and on the needs of the different stakeholders. For example,

the aeronautics industry needs for their systems to be as reliable as possible by avoiding

failures. A text editor would obviously not have the same reliability requirement; instead,

it might have a requirement to be user-friendly. The perception of quality also depends

very much on the stakeholder. Managers might be interested in limiting the cost of

maintaining old systems while a user would have other criteria to evaluate quality.

The abstract nature of quality is a problem as quality control is an important part

of all fields of engineering. In software engineering, we therefore use concrete, useful

approximations of quality (e.g., absence of bugs) and try to exploit this data to improve

the quality of software to enable various stakeholders to make enlightened decisions. For

example, we might like to know when a system is reliable enough to be released.

The objective of quality modelling is to describe relationships between different ex-

plicative factors and quality. Until now, we have focused on quality as an abstract con-

cept. However, for it to be understood and controlled, it first needs to be measured, and

the exact measurement to hard to define. Furthermore, this measure can be difficult to

collect because it cannot be measured directly on the system. Rather, it is observed in

a specific context that is domain and stakeholder dependent. For example, to measure

reliability, it is possible to use the average up time of a system. This measure would

obviously require the system to be executed.
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1.3 Ensuring Quality

There are many approaches proposed to produce and ensure high-quality software.

One approach considers the process used to build software. By setting up a process that

includes quality-assurance activities, the perceived quality of a system should increase.

In fact, over the past decades, there have been significant process-level improvements

which in turn have improved the software produced. There are many existing method-

ologies that focus on different perceptions of quality. For example, the Cleanroom pro-

cess [MDL87] is focused on defect prevention. On the other hand, agile methodologies

like eXtreme programming [Bec99] try to keep software as flexible as possible in order

to quickly get feedback from its users.

To ensure quality, these development methodologies rely on activities like formal

methods, testing, and code inspections to judge if a system is ready to be released.

Formal methods use proofs to show that code actually conforms to a specification.

Formal methods are very expensive because they require well-defined specifications,

and consequently are usually only used for important parts of mission critical applica-

tions [Men08].

Testing is generally considered the most important quality assurance activity. It con-

sists of comparing the state and behaviour of a system to expectations; it can focus on

different aspects like reliability, performance, and conformity to specification. However,

it is limited to finding given specific parameters (e.g.finding faults within a specific exe-

cution context). It therefore cannot guarantee the absence of problems. From a manage-

ment standpoint, it is difficult to assess when enough testing has been completed before

releasing software [oST02]. Testing is a relatively costly task: studies show that testing

accounts for over 30% of forward development costs [Bei90], and many mission-critical

systems even have more testing code than actual system code. Therefore, the amount

of testing done is typically limited by the resources available. Testing can ensure that

there are few bugs in a system and that the specification is followed, but it cannot predict

future problems like high maintenance costs.

Finally, code inspection techniques require developers to read the code of others and
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evaluate its quality. Code inspections are very useful as they can uncover a great variety

of problems, some are functional [BS87, SBB+02], but many are concerned with abstract

notions of software quality like its capacity to be changed for future needs [ML08]. The

basic idea is that well written code is good quality code, which needs minimal testing

and which should be easy to maintain. Typically, inspectors will evaluate different as-

pects of the code, like its understandability, the presence undue complexity, and the use

of known robust patterns. This notion of quality is difficult to test as it depends not only

on the satisfaction of current needs, but of future needs as well. To benefit from in-

spections, developers need to read, understand, and comment code, which requires time.

Consequently, this approach cannot be applied to the totality of a large system.

The idea motivating quality modeling is that code inspections are good, but require

human intervention and are, therefore, too costly to be applied on the totality of a system.

A quality model tries to automate the inspection process. As inputs, the model uses

metrics which describe characteristics a human inspector would use, and tries to predict

an inspector’s quality assessment. There are limits to what a model can do automatically.

Although it tries to mimic an expert’s judgment, it can only analyse the surface structure

of the system. For example, it can check for the presence of comments, check formatting,

and even consider the size and links between different modules, but it cannot analyse

elements of good design like meaningful comments, reuse of tested architectures and

algorithms. A model may try to simulate a human process by using AI techniques.

Quality models can find different niches in different development processes. In

agile development processes, they can be included in a continuous integration pro-

cess [DMG07], and executed every day, informing developer of potential problems. In

a more process-heavy methodology, these can be used by independent validation and

verification teams who perform quality audits [MGF07].

As a quality model can evaluate the totality of a system, it can be used for two

purposes. First, it can guide testing efforts and more elaborate inspections to certain

parts of a system exhibiting bad properties. Second, knowing the quality of the different

parts of a system, a model could provide an aggregate measure of the system. From

a management perspective, a model can thus be used to guide decisions. They can,
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for example, enforce quality-level obligations or estimate the cost of ownership of their

systems.

1.4 Problem Statement

The current state of research focuses on proposing models that directly mimic a hu-

man inspection process. Models typically use metrics describing structural properties

(like size, coupling, and cohesion) of the system extracted either from design artefacts

or directly from the source code. As outputs, they produce an estimated value of an indi-

cator of quality like bugs or effort [LH93b, MK92, BBM96, HKAH96, KM90, OW02,

NBZ06]. These two quality indicators are arguably the most unambiguous measures of

quality as few can deny that a system that crashes should be fixed, or that a system that

is expensive to maintain might need to be restructured.

There are however some problems with the application of state of the art techniques.

At the start of our research, a large company asked us to evaluate their quality modeling

efforts. They had performed a literature review and applied existing standards to build

quality models. They wanted independent and knowledgeable experts to audit their ap-

proach and suggest improvements. Our investigations of their modeling efforts identified

the following problems in current research on quality modeling.

1.4.1 Manipulation of Higher-order Concepts

The first problem comes from the theory that underpins traditional fault-prediction

models: that good design leads to good quality. The problem is that it is not obvious

what good design is. Current practices rely on code-level metrics to decide if a module

is well designed. Such approaches ignore the fact that good design conveys meaning and

semantics that are not easily measurable. Therefore, we need to manipulate higher-order

concepts (e.g., design patterns and practices), to improve the state of quality modelling.

Unfortunately, there are no exact techniques to identify these semantically rich concepts.

Furthermore, these concepts are useful only if they are applied to specific contexts. For

example, a design pattern is a reusable solution for a specific type of problem. Unfortu-
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nately, different developers might disagree on whether pattern is appropriate for a given

context; this is because judging the quality of design is a subjective activity.

1.4.2 Tracking the Evolution of Quality

Good design allows developers to modify and improve a system. Recent research

has included aspects of this when modelling quality. Typically, this is done by including

changes in a quality model [MPS08, NB05b]. Yet, changes, like design, have strong

semantic meanings. For example, changes can be done to add functionality or to correct

a bug. There also exists work that tries to classify changes [AAD+08, MV00], but what

is lacking are techniques to identify changes in code that have a significant impact

on the quality of a system.

1.4.3 Quality Composition

A final problem concerns the absence of quality composition models. Typically,

a quality model evaluates quality on one specific type of software artefact, more often

than not, the level for which we have access to quality indicators. In procedural code,

the evaluated artefacts are either files or procedures; in object-oriented systems, the fo-

cus is generally on classes. The quality of a system is a function of the quality of its

constituents [BD02], but to the best of our knowledge, no research seeks to determine

which types of aggregation functions are appropriate. For a decision-maker who wants a

bird-eyes view of the state of their systems, the lack of a proper aggregation mechanism

is a serious problem. For example, our partner uses an aggregated quality score to moni-

tor outsourced maintenance activities. This score is then used to accept or reject changes

to the system. They consequently need for this score to represent the actual quality of

the system.

1.5 Dissertation Organisation

This dissertation is organised as follows:
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1. Chapter 2 covers quality models. It describes input variables, output variables and

model building techniques. It also describes open issues in quality modelling.

2. Chapter 3 covers industrial practice. We examined the practices at a large com-

pany and observed problems that influenced the directions of our research. We

reproduced some of the issues raised on available data sets.

3. Chapter 4, addresses subjectivity in quality assessment. We proposed the use

Bayesian models to support subjectivity. We successfully applied these models

to the problem of anti-pattern detection.

4. Chapter 5 explains how to use quality models to track quality over time. We

presented a signal analysis technique to identify quality change patterns.

5. Chapter 6, we present issues with quality composition, and propose a general

model to enhance quality models to support composition relationships. We in-

troduced the complex notion of importance when combining low-level data. Ex-

perimentally, we show that our enhanced models can produce superior results to

traditional single-level models.

6. Chapter 7 shows how our composition techniques can be applied to a different

domain (web sites vs. executable code). In a study of 40 web sites, we found that

our models could correctly distinguish good site from randomly selected ones.

7. We conclude the dissertation in Chapter 8, where we describe the lessons we

learned, the discarded research paths, and discuss potential future work.





CHAPTER 2

BACKGROUND

This chapter presents the background material required to understand the evaluation

of quality in software systems. In particular, we focus on quality models, and software

metrics. We also provide an overview of existing techniques to build these models.

Finally, we raise open issues pertaining to quality. Specific related work required to

understand a specific chapter will be present at that moment.

2.1 Quality Models

The goal of modelling quality is to establish a relationship between measurable as-

pects of a system and its quality. There are two types of quality models: definitional

models and operational models. Definitional models decompose a high-level, abstract

notion of quality into more concrete contributing factors. Operational models are some-

times based on these definitional models, but the main difference is that they can be

implemented and executed to produce quality scores.

2.1.1 Definitional Models

Many definitional models have been proposed: the McCall [MRW77],

Boehm [Boe78], FURPS [GC87] and ISO 9126 [ISO91] models, to name a few. The

first three models were created in specific industrial contexts while the last is an ISO

standard. All models organise quality in a tree-like structure where quality character-

istics are either measured directly or composed using other characteristics (or subchar-

acteristics). Figure 2.1 presents this progressive decomposition of quality into metrics.

These models are interesting because they point out different non-functional aspects of

software to consider when evaluating quality.

The first criticism of these models is that they are not operational. While they express

the need for measurement, they do not define which exact metrics to use and how to
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Figure 2.1: ISO9126 quality decomposition

combine information from one level to another. For example, the McCall and FURPS

models consist of checklists of concepts to evaluate, but do not specify what to measure

and how to obtain quality values [AKCK05]. Second, these standards are not based

on empirically observed relationships, but rather on qualitative, sometimes anecdotal

evidence [PFP94, JKC04]. Other criticism comes from the fact that these models have a

limited view of quality which is based on a developer perspective instead of a managerial,

more value-based perspective [Pfl01, BAB+05].

Another family of models is the result of the Dromey model [Dro95] building frame-

work. The idea proposed is that abstract quality attributes cannot be measured directly.

There are however quality-carrying properties that can be measured on the entities used

to build the system. These properties can impact the abstract quality characteristics.

Good properties should therefore be built into software to insure its good quality while

bad properties should be avoided. As this is a model building framework, Dromey does

not present how to implement and validate a model.
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2.1.2 Operational Quality Models

The step between having a theoretical model and putting one into operation is com-

plex. The literature describes two approaches that correspond to two different perspec-

tives on quality. The first is a top-downmanagerial approach because management wants

to verify or attain certain managerial goals. The second is a bottom-up approach corre-

sponding to the view of an independent quality team that conducts audits to locate quality

problems in a code base.

A pragmatic reason why these approaches are different is the issue of data owner-

ship [Wes05]. If you want to evaluate a system, you need to have access to data, and

the access to this data depends directly on who controls its production. Let us consider a

scenario with a manager, a development team, and users. The manager knows a project’s

budget and schedules. A developer knows the time spent on its development tasks. Users

know its operational problems. In order to study these different factors, we would need

for these different actors to report the data needed, in a relatively systematic process. A

top-down management decision can impose the collection of certain metrics because it

allocates the budget of some of these actors. On the other hand, an auditing team gener-

ally has to make do with what is available, or easily extracted because its audits should

not directly interfere with the activities of development teams.

2.1.2.1 Top-down Models: a Goal-oriented Approach

Basili and Weiss [BW84] described a systematic measurement process called GQM

to evaluate and guide quality assurance in an industrial setting. GQM stands for Goal-

Question-Metric and proposes a top-down approach to modelling. First, management

should define a clear quality goal like minimizing downtime of a system. Then, relevant

questions should be defined that verify if the goal has been attained. Finally, specific

metrics should be chosen to answer the questions asked and verify objectively if the

goals have been attained. A key aspect to this methodology is that it can be extended to

track quality and suggest improvements [BR88].

In [BMB02], Briand et al. describe a methodology to define the variables in a quality
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model. They separate the process in four steps:

1. Setting up the empirical study: derive measurement goals from corporate objec-

tives. These goals should define a set of hypotheses that relate attributes of some

entities to others. For example, the use of product size to predict effort.

2. Definition of measures for independent attributes: this is the conversion of an

abstract attribute to a concrete measurement applied to input variables. This map-

ping should be done after a literature review and a refinement process. Example:

size measured as lines of code (LOCs).

3. Definition of measures for dependent variables: same process, but for the quality

metric. For example, effort measured as number of staff months.

4. Refinement and verification of the proposed hypothesis. This is when the exact

relationship is refined. For example, we can assume that there is a linear function

between LOCs and number of staff months. This assumption can be tested.

As we mentioned, these steps are only applicable when it is possible to select the

metrics used. Otherwise, we need to consider a bottom-up, data driven approach.

2.1.2.2 Bottom-up Models: Locating Problems

The second perspective concerns independent verification and validation (IV&V )

teams. Some large companies, like our partner, use IV&V teams to perform quality

audits. Their raison d’être is to provide an in-house expertise in quality control. They

act as internal consultants to ensure a certain level of quality in their applications using

different techniques like inspections and testing. Their main focus is to efficiently locate

problems and transmit this information back to the development teams for correction.

These teams have a difficult time getting metrics because they tend to deal with a

large number of development teams, each with its own particularities. A former research

chair with the IV&V team at NASA, Tim Menzies [Men08] makes the case for using

simple static (i.e. non-executed) code metrics in quality models. His justification is
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that only those metrics can be collected in a consistent format over a long period of

time. Other metrics, like dynamic (executed) metrics, could possibly provide interesting

information to consider, but their collection is not cost-effective because an IV&V team

would need to manage, understand, and run different representative execution profiles.

Consequently, the models used by NASA only rely on static code metrics to predict

where bugs might lie and focus black-box testing to those areas.

In this dissertation, we share the NASA view on metrics: we only consider data

that is measurable on the product and evaluate its influence on quality indicators. The

reasons stated by Tim Menzies also affect our partner: other types of data are either

unavailable, in ad hoc formats, or outdated [Par94]. This is also similar to the situation

of university research teams that study open-source systems where there is no controlled

metric collection process.

2.2 Model Building

The point of a model is to establish a relationship between two sets of variables:

explicative factors, called independent variables, and observed quality assessment, called

dependent variable. Essentially, we are looking for a function f of the form:

quality≈ f (attributes)

where quality is our quality score, and attributes are metrics describing the system.

In general, quality is a metric that is an indicator of quality like the absence of faults.

The attributes are typically code metrics that describe the structure of the system. Fi-

nally, the function depends on the type of relation that links the structure of a system to

its quality.

The models can serve two purposes. They can either focus on predicting quality or

on explaining the underlying relationships. Prediction only requires that the function

f be accurate and produce a good estimate of quality. To use a function to understand

the phenomenon, then the model needs to be able to assess individual contributions of

independent variables to quality.
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2.2.1 What are Software Metrics?

Measurement is at the heart of a quality assurance process. The act of measurement

is the assignment of a value to the attribute of an entity [ISO91]. This permits a de-

scription, and a subsequent quantitative analysis of a phenomenon. From a management

perspective, what is measured should provide information to guide decision-making.

2.2.2 What can we Measure?

Many aspects of a software development process can be measured. What is measured

will determine the usefulness of a quality model. Fenton [Fen91] lists three types of

entities that can be measured:

1. The product: This category includes the artefacts produced during all develop-

ment cycles, e.g. there are the design documents, the source code, etc.

2. The process: This category includes activities, methods, practices and transforma-

tions applied in developing a product, e.g. the development methodology, testing

procedures, etc.

3. The resources: The category describes the environment whether software, mate-

rial, or personnel.

These entities have both internal attributes which can be measured directly and ex-

ternal attributes, measured within a specific context (e.g. operational environment). For

example, program size can be measured directly (e.g. using a Unix wc command), but

there is no direct measure of how much effort is required to change a program because

this would require knowledge of external factors like the skills of a developer. What is

measured typically depends on the possibility, the cost, and the benefit of extracting a

metric. Typically, internal metrics are cheaper to compute than external metrics because

they can be quantified unambiguously, even automated to a certain extent [MGF07]. In

fact, internal product metrics are so cheap to extract, that at Microsoft, developers have

tools regularly extracting code metrics installed in their work environments [NB05a].
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External metrics (e.g. the opinion of a developer) are more expensive to collect, but

contain more pertinent information.

To get an appreciation of the quality of an entity, we use certain external attributes,

called quality indicators. The most common indicators concern bugs (measured using

a count or by density). This corresponds to the intuitive notion that “good” software

should not contain errors. It is an external measure because it requires the system to be

executed for an error to appear. This quality indicator is expensive to gather because it

requires a relatively systematic process where development maintenance teams archive

their testing activities.

There is an abundant (overwhelming) literature on this subject; Zuse [Zus97] lists

hundreds of articles proposing over 1500 metrics. Here, we concentrate on the important

metrics that have been most studied.

2.2.3 Quality Indicators

As stated in the previous section, the only source of coherent and consistent metrics is

the source code. However, these internal metrics do not indicate the quality of a system.

We therefore need to have access to additional data: quality indicators. For an overview

of the quality indicators studied in the literature, we refer to a survey conducted by

Briand and Weiss [BW02] in 2002. They surveyed almost 50 studies with respect to the

metrics used and their analysis techniques. Their survey indicates that the most studied

indicator is the presence of faults. Since 2002, these types of studies have multiplied

(e.g., [EZS+08, ZPZ07, MPF08]). Most other studies focused on either effort or change

(e.g.,[KT05, KL07, DCGA08, KDG09]).

2.2.3.1 Software Faults

The study of faults is an obvious choice as a crash will obviously impact every stake-

holder. Finding a clean source of bug data is, however, a difficult task because they can

be discovered at many different stages in a development life-cycle: development, testing,

or operation. This means that there are different owners of this data [Wes05]. Developers
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rarely keep track of the mistakes they make while coding. We therefore need to get this

data from testers and users. Data from testers can be gathered relatively systematically,

but data from users is much more difficult to deal with. A typical approach is that users

will file bug reports and we want to extract bug counts from these reports. However, bug

reports tend to lack important information to perform a study. The most obvious problem

is that of traceability: given a bug description, what is the most likely part of the software

responsible? Depending on the organisational structure of a company, there might be a

paper-trail that can be mined to figure out what code modification corrected which bug,

and where. Current state of the art techniques use heuristics to match information con-

tained in bug reports to different software entities. These typically combine information

from mining version control system logs and from bug-repositories [EZS+08, DZ07].

They sometimes produce noisy results because the heuristics used (e.g. searching for

bug identifiers in commit logs) depend on the presence of patterns in the data analysed.

The study of bug repositories shows that although they are an essential source of

information, they also present significant problems with data coherence. First, there

are incorrectly classified bug reports [AMAD07, AAD+08, BBA+09]. Misclassifica-

tion might mean that what is thought to be a bug is actually an enhancement request.

Second, some development teams know that bug reports can affect their performance

reviews. Consequently, development teams may try to hide severe bugs for political rea-

sons [OWB04]. These problems are a reason why researchers tend to limit the use of

bug data to determining if a software entity is fault-prone or not (> 0 bugs) [Men08].

2.2.3.2 Effort

The second most studied indicator is effort. Effort is even more difficult to measure

because software engineers tend to rarely indicate the time spent on specific activities.

There are two solutions to circumvent this problem. First, managers have effort data,

but on a macro-scale (project-level). This could allow a high-level study of quality, but

this information would be difficult to map to specific software components. Second,

for a fine-grained analysis, researchers generally use changes as a surrogate measure.

Changes in code can be measured in terms of size, type and scope [NB05b]. However,
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unlike faults, changes are not necessarily a sign of something bad; good software is

likely to be modified to provide additional functionality. Moreover, we would expect a

developer to add a lot of code if he adds lot of new functionalities.

As with faults, changes are often treated as binary activities: components are con-

sidered change-prone or not [DCGA08, KDG09] because the total development effort

of modifying code is not only related to the size of a change, but also to the subsequent

activities in the development process like re-testing.

2.2.3.3 Other Quality Indicators

There are few other studied quality indicators like reusability [MSL98] and perceived

cohesion [EDL98], but assessing reusability and cohesion requires a developer to review

a whole system, a requirement that would not scale to large systems.

2.2.4 Notable Code Metrics

Over the past decades, researchers have proposed a multitude of metrics to charac-

terise different aspects of software artefacts. These metrics generally focus on notions

like size, complexity, coupling and cohesion [YC79]. We present here what could be

considered the standard set of metrics. These are widely used in research and are in-

cluded in commercial tools such as McCabeIQ1 and Borland TogetherSoft2. Further-

more, the metrics described here are those used by NASA and by our industrial partner.

For an extensive comparison of standard OO metrics, we refer to [JRA97]; for an ex-

haustive list of coupling metrics, we refer to [BDM97, BDW99]; for a list cohesion

metrics, we refer to [BDW98].

2.2.4.1 Traditional Metrics

The first well-studied metric was the number of lines of code (LOCs), used to de-

scribe the size of a system. LOCs were used by Wolverton [Wol74] to measure the pro-

1http://www.mccabe.com/iq.htm
2http://www.borland.com/us/products/together/index.html
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ductivity of developers. The widespread acceptance of this metrics is due to its simplicity

and the ease of its interpretation. It has however been criticised for several reasons. The

major concerns are that it does not take into account simple formatting rules (e.g. use of

hanging brackets) and is language-dependent because a programming languages can be

more verbose than another. We can still assume that LOCs is a reasonable measure of

size within a specific context (e.g., same language and coding rules).

More robust measures of size were proposed in the seventies by McCabe [McC76]

and Halstead [Hal77]. The McCabe metric suite analyses the control flow graph of pro-

cedures to measure different types of complexity. The most popular metric is cyclomatic

complexity which counts the number of independent paths through this graph. The Hal-

stead complexity metrics are based on the number of different operands and operators

defined in a program.

2.2.4.2 Object-oriented Metrics

For object-oriented (OO) programs, a metric suite was proposed by Chidamder and

Kemerer [CK91]. They proposed six metrics to characterise different aspects of classes.

The metrics cover coupling, cohesion, complexity and added the use of inheritance. Al-

though their metric suite, also called the CK metrics, has its fair share of weaknesses,

the most notable being the lack of empirical validation at time of proposal, this suite is

still in use almost 20 years later. For a given class, their metrics are defined as follows:

• Weighted Method Complexity (WMC): summation of the complexity of the

methods in the class;

• Number of Children (NOC): the number of direct children of a class;

• Depth of the Inheritance Tree (DIT): the maximum distance to the root of the

inheritance tree;

• Response For Class (RFC): the number of methods that can be invoked in re-

sponse to a message received by an object of the class;
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• Lack of COhesion in Methods (LCOM): the disjoint set of local methods with

regards to attributes;

• Coupling Between Objects (CBO): the number of other classes that use and that

are used by the class.

The exact interpretation of WMC is open to interpretation because the complexity of

a method is left undefined. Metric extraction tools often simply assign a value of one per

method [LH93a].

2.3 Model Building Techniques

The standard approach for building models is to apply statistical regression tech-

niques or machine learning to a set of data previously collected. Next, we discuss both

techniques.

2.3.1 Regression Techniques

There is a multitude of regression techniques used in quality evaluation. We typically

select the regression analysis that corresponds to the type of relationship ( f ) we believe

exists between independent and dependent variables. Then, there are methods that try to

find the optimal parameters to fit the data to this function. Most tools like SPSS and R

have many predefined regression analyses implemented.

We reformulated the quality function for regression in Equation 2.1. In this equation,

quality describes the desired output, the function f is of a form defined by the regression

type, code_metrics are the metrics used, and β is the set of parameters that are estimated

by the regression.

quality≈ f (code_metrics,β ) (2.1)

Different types of regression exist ( f ). There is work on applying linear regres-

sion [MK92, KMBR92], logistic regression [BTH93, KAJH05], Poisson

regression [KGS01], and negative-binomial [OWB04] to quality evaluation. These de-
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fine not only the function type, but the specific type of parameters β considered and the

type of variables that can be used.

All these regression types provide ways to ensure that 1) the relationship found is

significant (not likely due to chance, e.g., using an F-test), and 2) that the model correctly

explains the relationship (goodness of fit, e.g., using R-square). These two types of

information are both important for the interpretation of the model [KDHS07]. A model

could very well be significant, but explain very little of the phenomenon. Likewise, it

might provide a good explanation, but there might not be a sufficient number of elements

examined to assert that it is significant. We can also examine the parameters estimated,

β to assess the importance of different independent variables in the model. We can

verify both the statistical significance of parameters and its relative importance in the

regression function.

Linear regression assumes that there is a linear relationship between metrics and a

quality indicator. This is arguably the most intuitive regression technique; we therefore

present an illustrative example. Let us consider that size, as measured in LOCs has a

linear relationship with the number of faults. The regression function is expressed in

Equation 2.2. The analysis (e.g. least ordinary square) estimates the slope β1 and the

intercept β0 of the function given the data available. If the relationship is significant, the

value of the slope (β1) can be interpreted. For every additional line of code, we would

expect the number of faults would typically increase by β1.

f aults≈ β0+LOCs×β1 (2.2)

The research using this technique dates back almost 20 years [MK92, KMBR92].

The authors of this work did not actually verify if the assumption of linearity made

sense. As it turns out, recently the relationship between size and faults was explored

by Koru et al. [KZEL09] who showed that it is not linear: as modules get bigger, the

density of faults decreases. There exist recent fault models based on multi-variate (many

independent variables) linear regression. These will apply transformations (e.g. Box-

Cox) to the dependent variable [SK03] to make sure that the relationship is coherent.
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Logistic regression is arguably the most popular technique as it is robust and is eas-

ily interpreted. It tries to explain the influence of discrete or continuous independent

variables on a binary output such as fault-proneness (contains at least a fault). This

technique was used in fault-proneness models [GFS05, BTH93, KAJH05] as well as

change-proneness models [KDG09]

Poisson regression assumes that the dependent variable has a Poisson distribution. It

thus functions on count data (non-negative integers). If we consider that faults are intro-

duced as events, then this regression technique might be appropriate. There is a problem

with the overdispersion of data. In a Poisson distribution, the mean and variance are

the same. However, faults, changes, and other indicators follow a power-law distribu-

tion where the mean and variance might not even be finite (this is discussed later in this

chapter). Researchers like Khoshgoftaar et al. [KGS01] and Ostrand et al. [OWB04]

have thus used variations on this regression to account for this dispersion. They have re-

spectively explored, the use of zero-inflated Poisson regression (which treats zero values

separately), and negative-binomial regression, which includes a dispersion parameter. A

negative-binomial regression is particularly interesting because it estimates a parameter

to handle cases when variance far exceeds the mean.

A common problem to all regression techniques is called multicollinearity. This

problem manifests itself when dependent variables are highly correlated with one an-

other. In this case, models cannot evaluate the contribution of individual metrics as they

compete with one another for importance in the model. Consequently, researchers tend

to address the problem of multicollinearity by either eliminating variables or by per-

forming pre-treatments like a principal component analysis to reproject the inputs onto

another set of orthogonal dimensions [KZEL09, NWO+05].

2.3.2 Machine-Learning Techniques

In the early nineties, researchers like Porter and Selby introduced machine-learning

techniques to build quality models [PS90]. Applying these techniques to the problem of

quality evaluation has some advantages and disadvantages. Many techniques are non-

parametric (do not rely on the particularities of the underlying distributions of variables),
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and can model relationships that regressions cannot. On the other hand, few machine-

learning techniques provide meaningful information as to the relative importance of met-

rics in the model.

Two main strategies exist: lazy techniques and eager techniques. A lazy technique

keeps a set of observations on hand and uses these observations directly to decide how to

predict the quality of a new observation. Eager techniques are very similar to statistical

regression as they attempt to derive a relationship between a training set of observations

and a quality indicator. This function is then reused to classify all new observations.

In the literature, there is a multitude of papers, each proposing the application of

a given machine-learning technique: neural networks [HKAH96, KAHA96], decision

trees [KPB06, KAB+96], k-nearest neighbours [KGA+97, GSV02, EBGR01], and boost-

ing [KGNB02, Zhe10, BSK02]. The problem with the majority of this previous work is

that the authors merely show how a machine-learning technique can be applied, but the

results do not indicate significant improvements.

Nowadays, modern machine-learning libraries like Weka [WF05] allow for a multi-

tude of algorithms to be executed on the same data set without needing any knowledge

of the specific techniques used. Recent articles usually present the results of multiple

machine-learning techniques [MGF07] to compare their relative performance. In their

research, Lessmann et al. [LBMP08], show that the exact algorithm used for building

models on publicly available NASA data is unimportant: most algorithms will converge

and produce an equivalent function. The usefulness of a given model would depend on

how easy it can be used (e.g., if it can be interpreted).

Using machine-learning techniques to validate models is different than using statisti-

cal techniques. Machine-learning algorithms do not provide measures of how well they

fit the data (unlike regression R-square). Instead, the models need to be tested empiri-

cally. Typically, a data set is split up in two parts. The first part is used to train the model,

and the other is used to test it. Generally, if the problem is a classification problem like

deciding if a module is fault-prone or not, we can use the correct classification rate. If

the result is a numeric value, then we can either consider using correlations or average

squared differences between predicted and known values.
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2.4 Open Issues in Quality Modelling

In this section, we present some open issues pertaining to quality modelling. In the

dissertation, we will not try to solve these problems. However, they affect our choices

and will shape our discussions in later chapters.

2.4.1 Incompatibility of Measurement Tools

From a practical perspective, any relationship or model derived using metrics from

one tool might not hold when using the “same” metrics, but extracted using another tool.

Lincke et al. [LLL08] challenged the assumption that all metric extraction tools tend to

use the same definitions to extract the same set of metrics. They ran different tools on

data sets and found that the differences can be significant. There are many factors that

explain these inconsistencies:

1. Some tools like MASU and CKJM [MYH+09, Spi06] analysing source code per-

form only limited type resolution. Therefore, any non-trivial class resolution will

incur imprecision.

2. Some tools analyse byte-code and this representation contains less information

than the source. For example, local variables in Java are not typed in the byte-

code. Consequently, to recover and consider these types, tool developers would

need to analyse the byte-code as in [GHM00]. However, this is often not the case.

3. Some classes are filtered from the set of considered classes. In Java, different

subsets of the standard library are often ignored. For example, when measuring

coupling, CKJM will ignore classes from the java.* pages.

Therefore, teams that want to set up coding guidelines using thresholds cannot sim-

ply reuse results from the literature unless they are sure the tools are the same.
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Figure 2.2: Distribution of cyclomatic complexity

2.4.2 Unwieldy Distributions

The type of distribution of the metrics used in models is a subject that has attracted

little attention from researchers in software engineering. Model builders often implicitly

assume that various parameters have simple bell-shaped distributions, but this may not

be the case when dealing with real software systems. The first important article comes

from a theoretical physicist, Christopher Myers [Mye03] who analysed the distribution

of metrics. Both Myers and Louridas et al. [LSV08] found that a great number of met-

rics like LOCs and all C&K metrics (excluding inheritance metrics) follow a power-law

distribution, a heavily skewed distribution.

A power-law distribution is characterised by the fact that the probability of observing

a value, p(x), decreases as x increases following the general form:

p(x) ∝
k

xα

where α > 1, and k can either be a constant or a slowly decreasing function (that depends

on x).

In Figure 2.2(a), we present the distribution of a complexity metric for the procedures
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taken from an industrial system3. We can see that the vast majority of values tend to be

around 0, but the mean is determined by a minority of high value instances (highly

complex methods in this example).

Such skewed distributions are typically displayed using a log-log plot (Figure 2.2(b)).

In a log-log plot, distributions decrease almost linearly. The corresponding slope corre-

sponds to the value of α . Theoretically, the value of α is very important because a

distribution has a finite mean only if α ≥ 2. Otherwise, the observed average value of a

sample would increase with the sample size. Moreover, if α < 3, the variance is infinite.

If the variance of a distribution is not finite, then we cannot manipulate distributions as if

they were normal [Ric94]. For any quality model like that of Bansiya and Davis [BD02],

which uses an average of class-level metrics values to assess systems, this is a serious

problem.

The α values of the coupling data studied in [LSV08] indicates that there exist av-

erage values for coupling, but that variance would tend towards infinity as more data

is obtained. Consequently, the average value is not a measure of central tendency. To

avoid this problem, researchers typically apply a logarithm function to these metrics,

which limits the impact of extreme values [AB06, MGF07]. These distributions are not

well understood and are still actively researched [CSN09].

2.4.3 Validity of Metrics

A metric is only useful if it correctly characterises the attribute that it should stand

for. For this reason, the validity of one of the standard CK metrics, LCOM, has been

challenged, and this lead to this (lack of) cohesionmetric to be redefined 4 times (LCOM2

to LCOM5). This is a serious problem and a possible reason why cohesion metrics are

often left out of quality models [BW02, SK03],

Though the metric is flawed, attributes like cohesion and coupling are important in-

dicators of quality. Good code is typically built using a divide and conquer strategy

where a software system is made up of small independent components. A good decom-

position ensures that these components are relatively independent from one another and

3Data is from the NASA IV&V dataset (PC1), which is studied futher in the thesis
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that each component deals with one facet of the application. The independence between

these components is what is called coupling and is typically measured by the number of

links to/from components. A cohesive component is one that only deals with a specific

facet of the application. This is an important concept and should be monitored, but it is

semantic in nature. Since this concept requires interpretation, it should be considered an

external metric. This is why it is hard to find a representative surrogate using an internal

metric.

Recently, there are new metrics based on information retrieval that try to assess cohe-

sion by estimating howmany domain concepts are manipulated by a component [MPF08].

These techniques go beyond traditional metrics that only consider code structure. How-

ever, they are still limited by choice of terms using the source code. What can be retained

is that both linguistic and structural information could be used in assessing cohesion, but

they are often not sufficient because they cannot replace human judgment.

2.4.4 The Search for Causality

Before basing action on the results of quality models, one should distinguish between

correlation and causality. Correlation indicates that there are systematic changes on a

variable whenever the other is changed. Causation [WRH+00, Pea00, FKN02] on the

other hand, is the relationship between two events where the first causes the second.

Discovering this type of relationship is very important when a model is used to guide

improvements. In to order to establish causality, there needs to be strong qualitative

evidence suggesting that our quantative observation is causational.

Operational quality models describe the relationship between metrics and quality in-

dicators. However, even if the relationship is significant, we can only state that there is a

correlation, but correlation does not imply causality. To assert that there is a causal rela-

tionship, there first needs to be a logical reason for the metrics to be the cause of quality.

This could be addressed by selecting metrics using a methodology like GQM [BW84].

Second, there needs to be no alternative explanation, from a confounding factor [LK03].

A confounding factor is a variable that is not considered in the model, but that is cor-

related both to the metrics considered and to the quality indicator. A model that only
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considers code metrics obviously misses information from the development context, e.g.

process and resources. For example, if the model was built using regression data from

a system written by C programmers with no OO background, it might identify that the

use of inheritance is a potential cause of maintenance problems. An alternative cause

could very well be the lack of experience of the developers using the OO paradigm. If

the model does not explicitly take into account developer experience (the confounding

factor), the only relationship visible is that inheritance is bad. Consequently, someone

might believe that the way to improve quality is to eliminate inheritance in the system

(instead of providing training to the developers). These confounding factors can reduce

the usefulness of a model to guide changes.

Even when we only consider the product, there are confounding factors; the most

important is the notion of size. A large number of existing studies have shown that size

is correlated to faults. Furthermore, a great number of metrics in the literature are also

highly correlated with size, thus any relationship identified using these metrics could be

attributed to size. El Emam et al. [EBGR01] discuss this problem. On a large commercial

system, they showed that CK metrics of complexity and coupling are highly correlated to

size. When they did not control for size, these metrics were all useful predictors of faults.

After control, this relationship disappeared indicating that the predictive relationship was

in great part due to size. In a rebuttal, Evanco [Eva03] mentions that this type of problem

is typical of many studies from social sciences. Trying to control size is only a logical

step for model building only if size is available when the model would be used. Since

the CK metrics can be extracted early towards the end of the design phase, it makes no

sense to consider that size is a true confounding factor.

2.5 Conclusion

In this section, we presented on the different concepts that will be used throughout the

dissertation. We focused on metrics and quality models. Furthermore, we indicated how

these concepts are used in modern research. Finally, we concluded with a presentation

of open-issues that will be used to discuss our methodologies and results. As our focus
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is not on theoretical models, in the next chapter, we present our work with an industrial

partner, as well as the problems they identified when building and applying their quality

models.



CHAPTER 3

STATE OF PRACTICE IN QUALITY MODELLING

During the course of our research, we had the opportunity to observe quality mod-

elling practices in the context of a large organisation. Our team was asked by a large

company in the transportation sector to evaluate its quality assessment process. After a

comprehensive review of the literature, this company had set up a state of the art quality

assurance process and acquired the latest code measurement tools; yet, it had concrete

problems in applying the process. In this chapter, we describe its quality modelling

approach and the different issues that it faced. Finally, we present a study of some of

these issues and discuss why we believe that these are interesting ideas from a research

perspective.

3.1 Quality Modelling Practices: an Industrial Case Study

Our industrial partner is the IT department of a very large company. This department

has over 800 employees and generates over $200M USD in sales. Following deregula-

tion in the transportation sector, it faced more and more international competition. In

order to remain competitive, our partner reviewed its IT development processes. The

most startling discovery it made was that the number of faults discovered late in the de-

velopment process was far superior to the number of faults discovered earlier on. The

fault distribution is illustrated in Figure 3.1. The percentage of faults (31%) discov-

ered after the systems were released was far greater than those discovered in any other

development phase, including integration testing (25%).

This observation prompted management to create an independent verification and

validation (IV&V ) team to verify the quality of the systems produced. This IV&V team

offers an auditing service to both internal and external teams who develop and maintain

the 200+ live systems the company operates. Between 10-25% of projects are regularly

examined by the IV&V team.



32

Development General Validation Integration Production

0
1
0

2
0

3
0

4
0

25%

19%

25%

31%

Figure 3.1: Fault distribution per development phase

There are three interested stakeholders in the quality auditing process (illustrated in

Figure 3.2):

• Quality engineers evaluate code-level risks, and provide information to managers

as well as corrections to developers;

• Managers evaluate system-level risks, and review performance of developers;

• Developers see their performance reviewed and need to write code that passes

quality checks.

Figure 3.2: Stakeholders in a quality evaluation process

The IV&V team adapted the ISO9126 standard to describe their quality needs and

applied the GQM methodology to define metrics to assess the quality of their systems.
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However, they needed advice as to how to validate their models; this prompted them to

contact us. There were three axes to our partnership: reviewing their quality evaluation

model, improving their identification of design problems, and providing visualisation

methods to assist with audits. I served as the contact between the quality engineers

and the researchers. My primary research focus was on quality evaluation, but I also

investigated design problems. To perform this review, we were provided with documents

detailing their requirements, processes, and tools. Furthermore, we conducted interviews

with the members of the IV&V team to better understand the situation. In the following

sections, we describe these issues.

3.1.1 Quality Evaluation Process

At the heart of the company’s quality measurement effort is a software suite that

automates the evaluation of systems. Upon the receipt of a system to audit, the IV&V

team enters the system into the suite, which first extracts metrics from methods and

classes using commercial tools. These metrics are then combined to produce scores

for different quality characteristics. Finally, the quality engineers manually review the

findings and often re-adjust some aspects of the quality model. This process is presented

in Figure 3.3.

Our interests lie in the three middle steps: metric extraction, quality evaluation, and

manual adjustments. We first looked at the specific metrics extracted and how they are

used to produce a quality score. The general form of their quality models is illustrated in

Figure 3.4. As we can see, their models are very similar to the ISO9126 product quality

model. The model describes how to aggregate and combine information from metrics to

quality evaluations. First, the models define combination strategies: metrics are trans-

formed to subcharacteristics using rules and thresholds, and the sub-characteristics are

combined to a produce the quality score using a weighted (arithmetic) mean. As in the

example, subcharacteristics are defined either at the method, class, or system-level, but

these are all eventually used to assess a system-level quality characteristic. These auto-

matic evaluations can contain errors and so the IV&V team reviews part of the code to

re-adjust the scores. Our interest in this step concerns the amount of manual intervention
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Figure 3.3: Quality evaluation process of our partner

required to finalise an audit.

Figure 3.4: Example of industrial quality models

To illustrate the execution of the model, we present a fictitious, but representative

quality model to assess the maintainability of a system in Figure 3.5. The characteristic

of maintainability is decomposed into three subcharacteristics: the comprehensibility of

methods, the cohesion of classes, and the modularity of the system. Every method is

judged according to rules to see if its level of comprehensibility is good, acceptable, or

bad which are respectively assigned the values of 1, 2 and 3. These individual values
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are aggregated to produce a score for the system-wide comprehensibility using the mean

value. The same process is repeated for the level of cohesion of classes. Finally, the

mean values of comprehensibility, cohesion, and modularisation are combined linearly

to produce a maintainability score between 1 and 3.

Figure 3.5: Example of a maintainability model

This model directly provides information to two types of stakeholders: the IV&V

team and managers. The IV&V team validates low-level information by verifying if

classes and methods with bad scores (subcharacteristic level) are indeed problematic. If

there is a problem, it is transmitted to the development team for correction. Otherwise,

the quality rating of the subcharacteristic is corrected and the model is re-executed. Man-

agers use this corrected, system-level quality assessment to assist in decision-making. In

extreme cases, they can reject a project that does not pass predefined quality thresholds.

Note that our partner’s model explicitly uses low-level quality evaluations to assess a

high-level quality measure. Although this is an intuitive notion, this has not been studied

explicitly in the literature.

3.1.2 Issues

We identified several problems with our partner’s models that hamper their effective-

ness. Some are theoretical, others are practical. Practical problems mostly come from

the fact that these models are used to judge the performance of developers who have

difficulty accepting that their performance is primarily judged using metrics. Apart from
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these industrial concerns, there are also several fundamental problems in the way the

models computes scores. Below, we give more details on the issues we identified. In the

next section, we show that the same issues recur in publicly available systems.

• Bad scores do not necessarily imply bad quality. The metrics and rules used in

the models are only symptoms that something is good or bad. It is possible for a

long method with few comments to be understood while a shorter method might

be totally unreadable. The problem is that corrections requested by the IV&V

team emphasize the importance of these symptoms. For example, a correction

request might state that method X is hard to understand because it has Y lines of

code and only Z% comments. From the perspective of development teams, they

see that they get a slap on the wrist when their code is structured in a certain way.

Instead of addressing the general problem, they will hack their code bases to fit

a model’s specific parameters. For the particular case of comprehensibility, some

(external) development teams started to use comment-generating templates in their

development environments. However, the comments in the templates are useless.

The fundamental problem is that the IV&V team presents symptoms as if they were

logical causes of quality problems.

• Thresholds are a source of conflict. The use of thresholds causes problems at

many different levels. First, they are used to discriminate between good and bad

code. For this use, the choice of appropriate thresholds is a source of contention

between the IV&V and the development teams. Development teams would like

permissive thresholds and IV&V teams would like thresholds to be more conser-

vative. Finding a balance is a delicate task that is complicated by the general

nature of the models: they are used to assess different types of systems each with

their particularities. Second, these same thresholds hide important information

concerning the magnitude of a problem. A model using thresholds cannot differ-

entiate between marginally bad code and catastrophic code that requires serious

attention. This is also important when tracking the evolution of a system. If a

quality model uses a threshold of 100 to discriminate between methods of accept-
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able and bad complexity, then any method with a complexity over 100 would be

considered equally bad. These thresholds thus create blind spots where the IV&V

team cannot evaluate if the development team is improving or degrading the qual-

ity of the system. The final problem is that numeric values are transformed to an

ordinal scale bad = 1,acceptable= 2,good = 3 before being combined using an

arithmetic mean. Means are not a measure of central tendency for metrics on an

ordinal scale.

The use of thresholds has a negative impact on a quality evaluation process:

thresholds are not universal; they hide information for the IV&V team, and lead

to inappropriate data manipulation.

• The model does not adequately rank problems The models produce detailed

reports of the status of every method, and class each possibly containing multiple

problems. In theory, IV&Vwould need to manually inspect the thousands of prob-

lems detected for large systems. Given that the IV&V team has limited resources,

it needs to prioritise its effort on detecting the most critical problems. The model,

through its use of thresholds and averages cannot prioritise the effort of the IV&V

team.

We believe that the model should be able to rank the risk of every component to

allow for an efficient inspection.

In the following section, we investigate these issues in publicly available data sets.

3.2 Initial Exploration of Concerns

The quality models of our partners are built to be general: they are applied on mul-

tiple systems, written in various in different programming languages. We wanted to

perform an evaluation of the importance of the different issues identified. Specifically,

we focused on the following questions concerning our partner’s quality model:

• Q1 - Can we use metrics to predict quality problems, and if so, can we hope to

find general quality models?
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• Q2 - What is the impact of using averages to combine metric values? How does

this compare to other strategies like sums and maxima?

Q1 investigates the impact of judging work solely using metrics. If the quality model

is inappropriate for the data it judges, then it cannot correctly identify high-risk code,

then an IV&V team needs to spend more time reviewing its results. Q2 examines the

choice of using means in our partner’s quality models and explores alternatives.

For political reasons, our partner could not provide us with enough data to perform

a study on their systems. Instead, we turned to publicly available data sets. We analysed

data sets published by NASA, which contains the quality indicators required for a quan-

titative study. This data contains only a few object-oriented systems, so we present only

an exploration of these problems.

The quality indicators available in the NASA data pertain to the reliability of a sys-

tem: there are bug counts and density for different types of software modules. For OO

systems, data is available for the class and method levels. For procedural code, the data

is available for procedures. The different software entities are described only by a set of

software metrics (the source is unavailable) and by quality information as entered by a

development team.

3.2.1 Systems Studied

We analysed the two publicaly available object-oriented systems1: KC1 and KC3, as

well as one procedural system, PC1 (for a procedure-level analysis). These systems are

relatively small. KC1 is a 43 KLOCs C++ system that is a subsystem in a ground system.

KC3 is an 18 KLOCs Java system that collects, processes and delivers satellite metadata.

PC1 is flight software from an earth orbiting satellite that is no longer operational. It

consists of 40 KLOCs of C code. The choice of systems is motivated by the assumption

that a same set of metrics is useful across language boundaries. Our interests lie in OO

systems, thus, we only performed a simple analysis of PC1. All systems have bugs

assigned to method/procedures.

1http://mdp.ivv.nasa.gov/
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Metric Definition Description
size Number of lines of code
comment density Number of lines of comments/Number of lines of code
vg McCabe [McC76] the cyclomatic complexity of a method: the number of

independent paths through the control flow graph

evg McCabe [McC76] the essential complexity of a method: the number of
independent paths through a simplified control flow graph

ivg McCabe [McC76] the design complexity of a method: the number of
complexity of the control flow graph that was simplified to include only paths containing
invocations of external procedure;

Unique operands Halstead [Hal77] Counts the number of operands in a method
Halstead effort Halstead [Hal77] Computes the effort to develop the method

based on number of operands and operators

Table 3.I: Method-level metrics studied

Metric Definition Description
CBO C&K [CK91] Coupling between objects (Sect. 2.2.4.1)
RFC C&K [CK91] Response set (Sect. 2.2.4.1)
WMC C&K [CK91] Class complexity (Sect. 2.2.4.1)
NOC C&K [CK91] Number of children (Sect 2.2.4.1)
DIT C&K [CK91] Depth of inheritance tree (Sect. 2.2.4.1)
LCOM C&K [CK91] Lack of Cohesion (Sect. 2.2.4.1)
Fan-in The number of unique incoming calls from other classes

Table 3.II: Class-level metrics studied

3.2.2 Metrics Studied

The metrics available in the NASA data set were extracted by McCabeIQ2. The

method-level and class-level metrics that we studied are presented in Tables 3.I and 3.II

respectively. For our analysis, we considered only a subset of metrics in the NASA

dataset for two reasons. First, our partner uses a different version of this tool, and there

are differences in some metric definitions. Second, many metrics are simple compo-

sitions of other metrics. For example, Halstead defined the number of operands and

operators (respectively n1 and n2) in a procedure/method. The Halstead “vocabulary

size” metric is n1+n2. We ignored the composed metrics unless used by our partner.

Some descriptive statistics are presented in Table 3.III. We can see that for most

metrics, the mean is not a measure of central tendency. It tends to be closer to the 3rd

quartile than the median. This suggests that the metrics follow a power-law distribution.

2http://www.mccabe.com/iq.htm
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Metric Min. 1st Qu. Median 3rd Qu. Max. Mean
LOC 1 3 9 24 288 20.39
%COMMENTS 0% 0% 0% 0% 78% 21%
vg 1 1 1 3 45 2.84
evg 1 1 1 1 26 1.675
ivg 1 1 1 3 45 2.548
unique operands 0 1 5 13 120 9.545
hal. effort 0 12 214 2278 324800 5247
CBO 0 3 8 14 24 8.32
RFC 0 10 28 44 222 34.38
WMC 0 8 12 22 100 17.42
NOC 0 0 0 0 5 0.21
DIT 1 1 2 2 7 2
LCOM 0 58 84 96 100 68.72
Fan-in 0 0 1 1 3 0.65
errors 0 0 0 0 7 0.2492

Table 3.III: Descriptive statistics for the NASA data set

3.2.3 Analysis Techniques

In this study, we used two types of analyses: correlations for univariate analysis3, and

machine-learning predictions. The use of correlations is guided by our partner’s code

inspection techniques where they choose the metric (or computed quality) to inspect the

code (in order of “badness”). A rank-order (Spearman) correlation seeks to evaluate if

the order of exploration is generally efficient.

3.2.4 Issue 1: Usefulness of Metrics

For this first issue, we investigated whether or not these general models can be ap-

plied while ensuring an acceptable performance. For this, we looked at the metrics used

within these models and how well they could individually contribute to a quality model.

To evaluate the exact choice of metrics, we performed a correlation analysis at the

method level. The rank correlation values between method-level metrics and the number

of bugs are presented in Table 3.IV. In bold are the correlations for the best metrics.

There are no strong correlations (all are < 0.5). This indicates that a model cannot

rely on a single metric to identify buggy code. However, there are many moderately

correlated metrics (0.3 to 0.4) that can be useful and included in a quality model.

When comparing the usefulness of the metrics, there are no clear winners. Size

3we used R version 2.9.2
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System size comments (%) vg evg ivg unique operands Halstead effort
KC1 0.15 0.20 0.47 0.41 0.49 0.37 0.40
KC3 0.44 0.20 0.39 0.28 -0.13 0.23 0.11
PC1 0.19 0.12 0.13 0.06 0.15 0.22 0.16
All 0.06 0.13 0.18 0.15 0.21 0.11 0.08

Table 3.IV: Rank correlations between method metrics and bug count

performs well for KC3 and PC1 (meaning that the nth largest class tends to be the class

with the nth most bugs), but size is the worst metric for KC1. Surprisingly, there is even

a complexity metric (ivg) that is negatively, though weakly, correlated to the number of

bugs. We assume that it is due to the programming language used. Another complexity

measure, essential complexity (or evg), calculates the “unstructureness” of methods, but

Java has only a limited number of constructs that can affect this metric. High values of

evg will be less present than in C programs. When we combine the data from all systems

(identified as All) and identify the best metrics this way, the best metrics are vg and ivg.

But, as mentioned before, both these metrics have their weaknesses. This observation

concords with the assessment of Menzies et al. [MGF07] that different individual metrics

are good for different models.

Any general metric-based model should be built by first identifying whether or not

the metric is useful. Furthermore, since we noticed that different metrics are useful in

different contexts, we believe that there needs to be an effort to adapt general models

to new systems. In the context of our partner’s practices, this means that development

teams might be correct when they demand that different thresholds and metrics be used

to judge their systems.

3.2.5 Issue 2: Combination Strategies

We presented our partner’s problem with using weighed means to compute system-

level quality estimates. We cannot test this aggregation strategy at the system-level;

instead, we focused on converting method-level metrics to class-level metrics. Cur-

rently, our partner’s models use arithmetic means to combine information. However, we

mentioned in Section 2.4.2 that a mean is not a measure of central tendency. For our fi-
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nal investigation, we combined the seven method-level metrics using averages, maxima

and sums to get a class-level metrics, as did Zimmermann et al. [ZPZ07] and Koru and

Liu [KL05], for a total of 21 combinations. Our objective is two-fold. First, to identify

what are the best metrics to predict faults. We did so by analysing correlations between

all metrics and # of faults in classes. Second, we wanted to know whether method-level

metrics or class-level metrics are more interesting, thus we built a fault-proneness model

using method metrics, class metrics, and both, and compared their performance.

Metric Correlation
sumHALSTEAD_EFFORT 0.63
maxNUM_UNIQUE_OPERANDS 0.63
sumNUM_UNIQUE_OPERANDS 0.61
maxHALSTEAD_EFFORT 0.61
sumLOC_TOTAL 0.60
maxLOC_TOTAL 0.58
COUPLING_BETWEEN_OBJECTS 0.58
sumCYCLOMATIC_COMPLEXITY 0.58
sumDESIGN_COMPLEXITY 0.57
maxDESIGN_COMPLEXITY 0.56
maxCOMMENTS 0.55
sumESSENTIAL_COMPLEXITY 0.55
avHALSTEAD_EFFORT 0.52
sumCOMMENTS 0.55
maxCYCLOMATIC_COMPLEXITY 0.55
avNUM_UNIQUE_OPERANDS 0.54
maxESSENTIAL_COMPLEXITY 0.51
avLOC_TOTAL 0.50
avDESIGN_COMPLEXITY 0.48
avCYCLOMATIC_COMPLEXITY 0.47
avESSENTIAL_COMPLEXITY 0.47
avCOMMENTS 0.46
WEIGHTED_METHODS_PER_CLASS 0.38
RESPONSE_FOR_CLASS 0.28
FAN_IN 0.11
DEP_ON_CHILD 0.10
PERCENT_PUB_DATA 0.07
DEPTH_INHERITANCE 0.05
LACK_OF_COHESION_OF_METHODS 0.01
NUM_OF_CHILDREN -0.18

Table 3.V: Rank correlations between class metrics and bug count

Table 3.V presents the metrics considered and their correlations with the number of

faults in KC1. We can see that class-level metrics (highlighted in gray) are clearly infe-

rior to method-level metrics on the system. Sums and maxima have higher correlations

than averages. Their importance is explainable by the notion of size: the bigger the class,

the more bugs it contains.

The effect of size also explains the cases when averages present good correlations.
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As most metrics follow a power distribution, the maximum value of a metric has a heav-

ily influence on the average. If the maximum value is important (an outlier), then it

pushes up the value of the mean. We can observe this phenomenon when the maximum

value of a metric is less important than its sum. When this occurs, the impact of outliers

on the average is less present (e.g., like with cyclomatic and essential complexity). In

these cases, the averages are less correlated to faults, indicating that average values are

often biased because of outlier values.

Finally, we compared the performance of a fault-proneness model built usingmethod-

level metrics, class-level metrics, and both. The results are presented in Table 3.VI. To

evaluate the combined effect of metrics, we used a machine learning technique called

the RIPPER (for Repeated Incremental Pruning to Produce Error Reduction) rule induc-

tor [Coh95] as implemented in Weka [WF05]. This technique learns rules from con-

tinuous or discrete input variables; the rules predict a discrete output. In our case, we

classify code according to whether or not it is fault-prone (containing > 0 f aults). We

chose to use RIPPER to reflect the rule-based approach of our partner.

Configuration classification rate
Method-level only 74%
Class-level only 70%
Both 74%

Table 3.VI: Classification rates for class fault-proneness

Method-level metrics produced the best classifier; furthermore, when both type of

metrics are combined, the RIPPER algorithm never used OO metrics in the rules it

creates. Thus, the method-only and combination models produced are the same. The

method-level model (rules presented in Figure 3.6) is sensitive to the notion of size. In

fact, the only metric used is the number of unique operands. The rules search either for

large methods, or for a single large method within a class otherwise containing mostly

small methods. The class-level model (Figure 3.7) uses only the class-level coupling.

What we can conclude from this study is that, for this system, method-level metrics

provide better information than class-level metrics for the prediction of faults. Finally,

averages seem to be heavily influenced by the tail of the distribution, making them more
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Rule 1: (maxNUM_UNIQUE_OPERANDS >= 22) => Fault-prone

Rule 2: (maxNUM_UNIQUE_OPERANDS >= 13) and (avNUM_UNIQUE_OPERANDS <= 5.65) => Fault-prone

Rule 3: default => sumERROR_COUNT= safe

Figure 3.6: Fault-proneness model using method-level metrics

Rule 1: (COUPLING_BETWEEN_OBJECTS >= 7) => Fault-prone

Rule 2: default => sumERROR_COUNT=safe

Figure 3.7: Fault-proneness model using class-level metrics

a measure of dispersion than a useful measure of central tendency.

3.3 Research Perspectives

The qualitative and quantitative investigation of our partner’s models helped us iden-

tify a few promising research perspectives. These perspectives guided the work pre-

sented in later chapters:

The subjective nature of quality assessment. Our interviews raised the issue that

developers and quality engineers disagree on specific metrics thresholds to use in the

quality models. Our quantitative study showed that the exact metrics to include is also

debatable. As we mentioned before, metrics do not measure something that directly

causes faults, rather they characterise zones of excessive complexity. Some complexity

can be an unavoidable as it is part of the problem; other complexity can come from in-

adequate solutions, but our models cannot distinguish between them. We believe we can

improve quality models by focusing on how to include the quality judgments of individu-

als because these different judgments implicitly include their capacity to understand and

manipulate complex code. In Chapter 4, we present a methodology to build such models.

Our approach is evaluated empirically on the problem of anti-pattern detections.

The composition of information from one level of granularity to another is non-

trivial. We also showed that information from methods seems more interesting than

class-level metrics to assess the quality of classes. However, there are different possible

ways to combine method-level information. We investigated and compared different

combination strategies. Our research is presented in Chapter 6.
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3.4 Conclusion

In this chapter, we presented industrial problems with the evaluation of the qual-

ity of software. We based our observations on a particular case study of our partner’s

quality modelling efforts. We showed that an industrial partner had problems produc-

ing trouble-free quality models even though it followed state of the art practices. Some

problems were identified in interviews with members of the IV&V team. At the heart

of these problems are disagreements between the IV&V and development teams on how

the models should be built and used. Other problems were identified in a quantitative

study of NASA data. These mostly pertain to the universal nature of the models and the

choice of metrics and rules. These issues serve to illustrate different barriers that affect

the acceptance of quality models in industry. In the following chapters, we present our

contributions to the state of practice.





CHAPTER 4

DEALING WITH SUBJECTIVITY

The evaluation of quality is ultimately a subjective activity. Different individuals

looking at the same code might have totally different opinions, depending on their needs

and expectations. However, in the context of an IV&V team, they want tools to indicate

which parts of the code need to be tested and inspected. For this, an organisation needs

to determine what metrics can be collected and used to build and validate its quality

models. It is however difficult to define and collect metrics that fully describe a complex

subjective notion of quality 1.

Many organisations track only “obvious” quality indicators, like the number of faults.

These metrics do not provide a complete view of quality, but most would agree that

buggy code is of bad quality. The value and simplicity of fault counts explains the

plethora of articles presenting fault-proneness quality models (e.g.,[GFS05, BTH93,

KAJH05]). However, even in this narrower context (i.e., reliability), there are other

important aspects like fault containment and recovery that should be considered to as-

sess software reliability [Mos09]. To consider these other aspects, we need to understand

how a system reacts to failures, a task that is difficult to automate.

Independently of what a system does, there is a notion of good code: code that

is structured into readable, independent modules. Many believe that this good code

should impact the quality of the end product. Studies consistently show that developer

productivity can vary by factors of up to 30 to 1 [FPB78, Boe81, SEG68]. To achieve

this level of productivity, developers must find ways to write code that is relatively bug-

free and maintainable. We therefore hypothesize that good code should lead to fewer

faults and good maintainability, symptoms of good quality.

Defining what constitutes good code is is also difficult: the adequacy of overall de-

sign to the nature of the task at hand requires the correct choice of objects and opera-

1The content of this chapter was my contribution to an article accepted for publication in the Journal
of Software Systems [KVGS10]. The article in question is the extension of article from the Internation
Conference on Software Quality 2009 [KVGS09].
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tions. All this requires intelligence and experience. Even the evaluation of code quality

is subjective. Different individuals might have different ideas of what good code is. Fur-

thermore, even with a consensual definition, their judgments might vary in magnitude

(e.g., an A- vs. B+ grade). Tempered judgments might be more acceptable to individuals

who object to binary thresholds.

In this chapter, we present different techniques to model subjectivity and propose an

approach to predict subjective developer opinions. Our approach uses Bayesian models

to describe an expert’s evaluation process and can be trained on subjective data. Finally,

we present the application of this approach to the problem of anti-pattern detection.

4.1 Existing Techniques to Model Subjectivity

To support subjectivity in a quality evaluation process, we must deal with uncertain

decisions: for a given system, the quality might be judged good or bad depending on

who performs the evaluation. Existing research has focused on two main categories

of techniques to deal with uncertain reasoning: those based on fuzzy logic and those

based on Bayesian inference. Fuzzy logic assesses the degree that a system conforms

to quality rules. Bayesian inference uses probabilities to model uncertainty. Given a

characterisation of a module, it estimates what is the probability the system is good/bad.

The problem is consequently one of classification, and therefore, there is no explicit

notion of magnitude. In the following sections, we discuss these techniques and the

cases when they are appropriate.

4.1.1 Fuzzy Logic

In the literature, many heuristics have been proposed to recognize good quality soft-

ware [Rie96]. These are typically formulated as rules, but tend to be difficult to identify

automatically. An example is the well-known design heuristic for software modules: low

coupling and high cohesion. This heuristic is difficult to apply because the notions of

high and low are vague: going from a precise measurement to a judgment is non-trivial.

Fuzzy logic can be used to model this vagueness. In traditional logic, we assign crisp
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values of truth ( f alse, true) to different observations (e.g., coupling(module) = high).

Fuzzy logic goes beyond traditional logic by assigning “degrees of truth” to propositions.

In our example, a module could be considered more or less part of the high coupling set

(e.g., high module_coupling= 75% and low module_coupling= 25%). By combining

fuzzy measures (e.g., metrics defined by degrees of low and high), we could evaluate

a degree of goodness/badness of a system [EL07]. If we were to apply the fuzzy set

operator AND, the quality of a module might be:

min(low module_coupling,high module_cohesion)

The first step in a fuzzy quality evaluation is the transformation of numeric val-

ues to their membership in fuzzy sets; this process is called fuzzification. This allows

continuous data to be converted to an ordinal scale, e.g. low, medium, or high. This

process is illustrated in Figure 4.1. For the second step, the evaluation process would

apply a series of operations on this data [KY95] using fuzzy operators like ANDs or

ORs. The result would be a quality score represented as a fuzzy membership (e.g.,

quality(module) = good,25% and quality(module) = bad,75%) . This membership

could be defuzzified if we need a crisp value.

Figure 4.1: Fuzzification process of a metric value xn. The value of xn is calculated by
its distance to its nearest fuzzy thresholds (x1 and x2)

.

Fuzzy logic has been to assess software quality in [SCK02, MB09]. We believe that

fuzzy logic can represent vague data and a vague evaluation process. There are two
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problems with fuzzy logic for quality assessment. First, it supposes that the heuristics

are accurate. Second, even though the output quality score is vague, it is assumed that

it is universal (higher value = better code). As mentioned before, quality evaluations

are not universal, and depend on individuals. This reason indicates that fuzzy logic is

not appropriate to handle subjectivity. It is however interesting for the manipulation

of metrics because fuzzification supports the transformation of continuous data to an

ordinal scale.

4.1.2 Bayesian Inference

Bayesian inference depends on a description of quality in probabilistic terms. The

quality of a system (Q) is generally represented as a conditional probability given a

probabilistic description of its attributes (A), or P(Q|A); in this representation, all un-

certainty is represented using probabilities. We could restate our previous example as

P(quality= high|Coupling,Cohesion).

In order to use Bayesian inference, we need to transform metrics describing these

attributes to probability distributions, e.g. P(coupling = low) and P(cohesion = high)

given a metric value, and describe the effect of combining these probabilities on quality.

This technique is known to be more robust than fuzzy logic when we have an idea of the

metrics’ distributions or when we have access to a large number of observations (histor-

ical data) [CNC+99]. When this is the case, we can accurately describe the probabilistic

relationship between measurable attributes and quality. Previous work used Bayesian

theory to support uncertainty in quality related decision making [PSR05, FN99], but did

not specifically address subjectivity.

To support subjectivity, we consider that probabilities should model the odds that a

stakeholder would agree with a quality assessment. This means that if we have P(quality=

high) = 90%, nine out of ten stakeholders would agree that quality is high. Where fuzzy

logic tries to assess a universal notion of quality (although vague), a probabilistic ap-

proach focuses on the probability that a specific quality evaluation is consensual. There-

fore, a higher probability does not necessarily mean that a module is of better quality;

only that more people would agree that a module is of good quality. The difficulty of
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using Bayesian inference lies in converting metrics to probability distributions and their

subsequent manipulation. Manymetrics follow power-law distributions and existing tool

support generally only supports normally distributed data. We consequently need to find

an adequate way to handle these metrics. However, our goal is to deal with diverging

opinions, and a Bayesian approach is, in our opinion, best suited for this task.

4.2 Evaluating the Quality of Design

Software engineers constantly make decisions that are reasonable solutions to the

problems they are trying to solve, and there are many viable alternative solutions. How-

ever, a bad solution can cause a lot of grief to a development team. One such area where

this is particularly true is software design. Identifying design problems early is impor-

tant, but requires developers to evaluate if a design is inappropriate for the problem they

are trying to solve.

In this section, we present the problem of anti-pattern detection, which we consider

an evaluation of the quality of the design of classes. Anti-patterns are recurring design

solutions that are considered harmful to the quality of a software system (mostly con-

cerning its maintainability). These harmful solutions are called anti-patterns because

they are typically presented following a template [BMB+98, Fow99] describing the

problem they pose, the symptoms that can be used to detect the problem, as well as

standard correction strategies. The symptoms can be used to identify metrics that can be

used to automate a detection process. We propose a Bayesian approach to support this

detection to assess the probability that a developer would consider that class is an anti-

pattern. This approach is tested and compared empirically to a state of the art rule-based

detection technique.

4.2.1 Industrial Interest in Anti-pattern Detection

A part of the partner’s IV&V process focuses on the detection of design flaws. In

their quality model, the IV&V team included rules to detect these flaws, using an ap-

proach similar to that of Marinescu [Mar04]). These detection models proved to be a
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burden as development teams argued that both thresholds and the results were inaccu-

rate. The underlying problem was that the IV&V team encoded what they thought were

good, universal rules, but did not consider the possibility that others might disagree. In

fact, there are many possible solutions and ways to organise code in a successful pro-

gram, some contradict the rules implemented in the detection models.

Through our collaboration, our partner had access to DECOR, a state-of-the-art anti-

pattern detection tool that is also based on rules [MGDM10]. The rules define sets of

classes sharing similar characteristics. Each set corresponds to one or many symptoms

that are indication that a class might be an anti-pattern. These rules describe either lin-

guistic (class and method names) or structural (metrics and associations) characteristics.

These are combined using Boolean set operations and a special operation to describe

association relationships to combine information from different classes. The result is a

set of candidate classes. An example of detection rules is shown in Figure 4.2.

RULE\_CARD : FunctionalDecomposition {

RULE : FunctionalDecomposition { UNION FunctionMethodClass

FunctionalAssociation};

RULE : FunctionMethodClass {(SEMANTIC: METHODNAME, {end, check,

validate, traverse, prepare, report, configure, init, create...}) } ;

RULE : FunctionaAssociation {ASSOC: associated FROM: MainClass ONE TO: aClass MANY };

RULE : MainClass { INTER NoPolymorphism NoInheritance };

RULE : NoInheritance {(METRIC: DIT, SUP\_EQ, 1, 0) };

RULE : NoPolymorphism { (STRUCT: DIFFERENT\_PARAMETER) };

RULE : MainClass { INTER NoPolymorphism NoInheritance };

RULE : aClass {INTER ClassOneMethod FieldPrivate};

RULE : ClassOneMethod {(STRUCT: ONE\_METHOD)};

RULE : FieldPrivate {(STRUCT: PRIVATE\_FIELD, 100) };

};

Figure 4.2: Functional decomposition detection rules

Briefly, in this example, a class is a Functional Decomposition anti-pattern if 1) one

of its methods contains terms like end, check, etc (FunctionMethodClass rule), or 2)

if it uses no inheritance (MainClass rule) and is associated to at least a class defining

only one method and which contains only private fields. The anti-patterns correspond to

heuristics described by Brown et al. [BMB+98].

Our partner found that the tool was not suited to their environment for the following

reasons:

• The number of false-positives was too important for the team to efficiently
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identify real problems. Moha et al.[MGDM10] focused on finding all possible

defects in a system (maximising recall). When DECOR was applied to Eclipse:

they found 2412 candidates on a system with over 9000 classes. The effort of

reviewing this list is too important for the approach to be usable in an industrial

setting. This problem is not limited to open-source systems as this was also ob-

served by our partner when applying DECOR to their systems.

• The rules defined were not appropriate for modern systems. The rules are

relatively imprecise and do not correspond to modern, industrial programs. For

example, to detect functional decompositions (Figure 4.2), a key rule is identified

by the label FunctionMethodClass: any class that declares a method containing the

term “create” is flagged as a defect. Such a rule labels many proper design patterns

like Factory classes, as problems, yet, design patterns are generally examples of

“good design”.

• The anti-patterns are not presented in order of importance. Having a large

number of results is less of a problem if the results are ranked because the IV&V

team could then inspect and validate classes in order of risk. The use of simple

unions and intersections does not allow for such a process. Consequently, a class

that presents all of the symptoms described would have the same importance as a

class presenting the minimum necessary conditions.

A fundamental problem with DECOR is that they use hard thresholds, and conse-

quently, the use of fuzzy logic, as in [AS06], could have addressed some of the problems

identified by our partner. However, this would not have solved the problems concerning

the conflicting points of view between the quality and the development teams. Since we

had access to anti-pattern data, indicating the opinions of different developers on two

systems, we opted for a Bayesian approach.

In previous work, we adapted DECOR to use a Bayesian approach [KVGS09]. We

defined equivalencies to its rules and applied machine learning techniques to train the

detection model. In this section, we present our later work: a methodology to build the

models directly from a catalogue of anti-patterns [BMB+98].
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4.2.2 The Subjective Nature of Pattern Detection

Our partners were not the first to notice the many problems with detecting anti-

patterns. In [DSP08], Dhambri et al. performed an experiment to test visualisation

techniques to locate anti-patterns. Reusing DECOR’s manually annotated replication

data as a baseline, they found that their subjects (and themselves) disagreed with many

evaluations.

The DECOR corpus contains multiple types of anti-patterns. They had asked five

groups to tag instances in different open-source systems, Xerces and Gantt. When 3/5

groups identified the same class, it was retained as an anti-pattern. We asked two students

with industrial experience and good knowledge of anti-patterns to independently review

the corpus. These students only agreed with the original corpus in 30% of cases, and

had a similar rate of disagreement with each other. The reason for these disagreements

mostly concerned two aspects: the students used different (implicit) symptoms to tag

anti-patterns and the students had different ideas on alternate design, i.e. would they

have designed the system differently. When there were agreements there was a strong

structural justification, mostly pertaining to size. We concluded that the problems were

due to the interpretation of the intentions of developers (semantics), not actual structural

symptoms.

4.2.3 Detection Methodology

We decided to apply a goal oriented approach to the detection of anti-patterns, fol-

lowing the GQM approach [BW84]. Following the work of Moha, we determined how

three types of anti-patterns could be identified. These were: Blobs, large classes that do

too much; Spaghetti Code, large, badly structured classes; and Functional Decomposi-

tion: classes that are only built to provide functions. For every anti-pattern, our goal is

its detection. The questions correspond to the different symptoms that are described in

the anti-pattern reference by Brown et al. [BMB+98]. Finally, we selected metrics to

evaluate every question. The choice of metrics was guided by two sources of informa-

tion. First, if Brown et al. described a specific metric, then it was chosen. If not, we



55

Goal: Identify Blobs
Definition: Class that knows or does too much
Question Metric
B1 Is the class a large class? Number of methods and attributes declared
B2 Is the class a controller class Presence of names indicative of control:

Process, Manage... (terms used in [MGDM10]
B3 Is the class not cohesive? LCOM5 is high
B4 Does the class use data classes Number of classes used that contain 90% accessors

Table 4.I: GQM applied to Blobs

Goal: Identify Spaghetti Code
Definition: Code that does not use appropriate structural mechanisms
Question Metric
S1 Does the class have long methods? maximum LOCs in methods is high
S2 Does the class have methods with # methods with no parameters is high

no parameters?
S3 Does the class use global variables? # global variable access is high
S4 Does the class not use polymorphism? % of non-polymorphic method calls is high
S5 Are the names of the class presence of names Process, Init, Exec, Handle,

indicative of procedural programming? Calculate,Make... (terms used in [MGDM10])

Table 4.II: GQM applied to Spaghetti Code

reused metrics used by Moha et al. in their rules. If they ignored the symptom, then we

defined our own metric. The result of our methodology is presented in Tables 4.I, 4.II

and 4.III.

4.2.3.1 Operationalising the Model

In Figure 4.3, we present the detection model corresponding to the Blob. There are

three levels to the detection process. The bottom corresponds to the metrics extracted;

the middle, to the questions, and the top to the goal. Between every level, there is an

operation that is defined. To pass from a metric to a symptom, we need to transform a

metric to a probability distribution. To pass from a symptom to a quality assessment, we

apply Bayesian inference (i.e., P(Blob|Symptoms)). From the perspective of a quality

engineer or a developer, he would likely not want to know if a class is a Blob as does

DECOR, but rather what are those that present the highest risk of being a Blob..
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Goal: Identify Functional Decompositions
Definition: Object-oriented code that is structured as function calls
Question Metric
F1 Does the class use functional names? same as Q5, in Table 4.II
F2 Does the class use object-oriented mechanisms # overridden methods> 0 or DIT > 1

(no inheritance, no polymorphism)
F3 Does the class use classes with % of invocations to classes/methods

functional names? with functional names (like Q1)
F4 Does the class declare a single method? # methods declared = 1
F5 Are all the class attributes private? % of private attributes = 100%

Table 4.III: GQM applied to Functional Decomposition

Figure 4.3: GQM applied to the Blob

Converting Metrics to Distributions To compute the probability distributions of the

symptoms, we first discretisedmetrics values into three different levels: “low”, “medium”,

and “high”. We used a box-plot to perform the discretisation. A box-plot, also known as

a box-and-whisker plot, is used to single out the statistical particularities of a distribution

and allows for a simple identification of abnormally high or low values. It identifies any

value outside [Q1−1.5× IQ,Q3+1.5× IQ], where Q1 and Q3 are respectively the first

and third quartile, and IQ is the inter-quartile range (Q3 - Q1). Figure 4.4 illustrates the

box-plot and the thresholds that it defines: LQ and UQ correspond respectively to the

lower and upper quartiles that define thresholds for outliers (LOut and UOut).

For each class in a system, and each symptom, the probability that the class presents
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the symptom is computed as follows:

• For symptoms captured by metric values, the probabilities are calculated as fol-

lows: we use three groups (“low”, “medium”, “high”) and estimate the probability

that a quality analyst would consider the metric values as belonging to each group.

Limiting the number of groups to three simplifies the interpretation of the detection

results. For each metric value, the probability is derived by calculating the relative

distance between the value and its surrounding thresholds like with a fuzzification

process. The probability is interpolated linearly as presented in Figure 4.4. In this

Figure, we present the probability density function corresponding to our statistical

analysis of metric values.

Figure 4.4: Probability interpolation for metrics

• For symptoms describing class names, probabilities are either 0 or 1, whether the

name contains a term or not. For method names, we treated the number of methods

containing the term as a metric and used the box-plot to interpolate a probability.

According to this rule, the probability that a class namedMakeFoo has a functional

name is 1 (P(FunctionalName= True) = 1);

• For symptoms that determine the strength of relationships, the probabilities are

calculated using the numbers of such relations, (e.g. the number of data classes

with which a class is associated). The more a class is associated to data classes,

the more likely it is a Blob. In our example, we consider that classes with over

90% of their methods that are accessors (return or set the values of an attribute),

are data classes. To convert this count to a probability distribution, its value is

interpolated between 0 and N where N is the upper outlier value observed in the
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program. If the upper outlier value of # of data classes in a system were 11, then a

class associated to 6 data classes would have a probability of 50% to be considered

a controller (P(ControllingBehaviour= T ) = 50%).

Evaluating Anti-pattern Probabilities The probability of a class being an anti-pattern

is inferred from the probabilities of symptoms using Bayes’ theorem. Every output node

has a conditional probability table to describe the decision given a set of inputs. In our

example, the probability of a class being a Blob depends on four symptoms. We can

use previously tagged data to fill a conditional probability table describing all possi-

ble combination of symptoms, i.e. P(Blob|Size= high,Cohesion= low,ContrBehav=

high,ContrLing= T ). When executing the model, the actual probability distribution of

all symptoms will be used to evaluate the probability of a class being a Blob (4.1) as we

assume the independence of all symptoms.

P(Blob) = ∑
Symptoms∈all combinations

P(Blob|Symptoms)×P(Symptoms) (4.1)

4.2.4 Evaluating our Bayesian Methodology

To empirically validate our approach, we followed a three step approach. First, we

built our corpus in such a way as to support multiple, contradictory opinions. Then, we

performed an analysis of the different symptoms presented earlier and evaluated their

usefulness. Finally, we executed our detection models to compare their performance to

DECOR.

4.2.4.1 Building an Uncertain Corpus

To test our approach, we used the corpus of DECOR. This corpus contains a set of

classes that are instances of every anti-pattern type (as judged by 3/5 groups). Addition-

ally, we had the opinions of 2 additional developers concerning those classes. To obtain

a corpus that supports conflicting opinions, we considered that every opinion is a vote
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(with data in DECOR counting as 3 positive votes). Thus, if a class tagged by DECOR

was also found to be an anti-pattern by one of our developers, then it would have 4 votes

for, and one vote against. All classes that were not part of the corpus had 3 negative

votes as our developers did not review them.

We could not encode this information directly in our model, thus we proposed the

use of “bootstrapping”, a technique that multiplies existing data in a corpus. Our class

with 4 positive votes would thus be included 4 times as a yes, and once as a no. If that

class were the only class considered in the corpus, its symptoms would consequently

have a probability of 80% of being evaluated as an anti-pattern. Finally, since we can-

not be sure that our prior knowledge (P(Q), unconditionally) is similar across projects,

we balanced our corpus to have an equal number of positive and negative classes by

randomly sampling our data set.

4.2.4.2 Systems Analysed

Programs ♯ Classes KLOCs
GanttProject v1.10.2 188 31
Xerces v2.7.0 589 240
Total 777 271

Table 4.IV: Program Statistics

We used two open-source Java programs to perform our experiments: GanttProject

v1.10.2, Xerces v2.7.0, presented in Table 4.IV. GanttProject2 is a tool for creating

project schedules by means of Gantt charts and resource-load charts. Xerces3 is a family

of software packages for parsing and manipulating XML.

We chose GanttProject and Xerces because DECOR had annotated the corpus. Fur-

thermore, they were small enough so that students could understand the general software

architecture in order review the annotations. We used the POM framework [GSF04] to

extract metrics.

2http://ganttproject.biz/index.php
3http://xerces.apache.org/
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Anti-patterns Symptoms
% in GanttProject

p-values
% in Xerces

p-values
AP Not AP AP Not AP

Blob

B1 100% 4% X 94% 3% X

B2 0% 7% × 5% 1% 53%
B3 0% 26% × 0% 19% ×
B4 72% 8% X 63% 48% X

S.C.

S1 100% 6% X 89% 6% X

S2 49% 3% X 19% 10% 70%
S3 38% 4% X 12% 2% 19%
S4 0% 44% × 27% 49% ×
S5 0% 2% × 36% 18% X

F.D.

F1 75% 47% X 87% 18% X

F2 70% 39% X 60% 19% X

F3 6% 8% 93% 67% 26% X

F4 63% 17% X 7% 8% 92%
F5 6% 4% 87% 0 3% ×
F6 75% 35% X 33% 57% 7%

Table 4.V: Intra project validation, salient symptom identification

4.2.4.3 Salient Symptom Identification

As mentioned before, some symptoms used by DECOR are inadequate in an in-

dustrial context. Figuring out which symptoms are useful can allow an IV&V team to

tweak their detection models. In this section, we identify which symptoms are useful in

a detection process.

We decided to use a simple univariate proportion test to identify the interesting symp-

toms for anti-patterns in both systems. The symptoms tested correspond to those pre-

sented in Tables 4.I, 4.II and 4.III. The test evaluates if the difference in the proportion of

anti-patterns and non anti-patterns is statistically significant (not due to chance). When

the difference is significant and the symptom is more present in anti-patterns, then it is a

useful detector for that system.

We applied this approach to both systems and the results are presented in Table 4.V.

The table contains the different proportions measured and the significance. When a

symptom was significant (<= 0.01 level), it is presented by a X; when it was not sig-

nificant, the exact value is shown; and when the relationship is the contrary of what is

expected, we use a × symbol. The first thing we notice is that there are many inap-

propriate symptoms. There are two possible explanations: the measure used might be

incorrect, or the symptom itself might not apply. In the case of symptom B3 for Blobs,

we are interested in using cohesion of a class, but the LCOM5 measure is not useful.
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As mentioned in Section 2.4.3, although there are many alternative measures, none in

the literature are shown to be a better measure of cohesion. The second thing we no-

tice is that there are a large number of symptoms that are useful only for one system;

their importance is context-dependent. Naming convention is such a case (S5 and F3).

The terms used are only useful for predictions on Xerces. Obviously, the development

teams followed different coding practices. Finally, we observed that a maximum of two

symptoms are useful for every model. These symptoms are thus the least context-depend

symptoms. The conclusion of the analysis of symptoms is that simply encoding heuris-

tics found in the literature is not a good idea to produce a general purpose detection

model.

This conclusion leads us to our empirical validation. We tested two scenarios. First,

we tested a general approach for which we built our models using data on one system

and tested it on the other. This corresponds to the approach of an IV&V team that uses

general knowledge to detection anti-patterns in a new system. The second scenario eval-

uates the importance of local data. We built a model for a system using only symptoms

that affect that system, and training on the local data (we used 3-fold cross-validation).

This scenario corresponds to an IV&V team tracking a system over a long period of time

during which they could adapt their prediction models.

4.2.5 Scenario 1: General Detection Model

For this scenario, we assumed that a quality analyst is reviewing a system for the first

time, and only has access to historical data from another program. He would therefore

use this data to build the model using this and apply the model to the other program.

This scenario is similar to that of DECOR and consequently our results are compared to

theirs.

A quality engineer needs to try to find the most anti-patterns possible with a limited

amount of resources. Consequently, we are interested in evaluating the performance of

our approach according to how useful it is given this constraint. We used two metrics

to assess the quality of our models: precision and recall. Precision is the rate of true

positives returned in a candidate set (# anti-patterns in candidate list÷ # candidates); it is
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Figure 4.5: Inspection process for Bayesian inference

a measure of how efficiently quality engineers spend their time. Recall is the proportion

of anti-patterns returned in the candidate set (# anti-patterns in candidate list ÷ # anti-

patterns in the system); it is a measure of how exhaustive is a model. We also included

the harmonic average of precision of recall called the balanced F1 measure.

Our approach does not directly return a set of candidates; instead, it returns a list

of all classes with their associated probability of being considered an anti-pattern. A

quality engineer would consequently investigate the most probable anti-patterns first,

and continue until he decides that he has seen enough (see Figure 4.5). DECOR, on the

other hand returns a fixed sized set. Our analysis is focused on precision as it indicates

how efficient is the model at optimising the resources of an IV&V team. Moreover, we

are interested in the first candidates as these are the classes that are the most likely to be

examined by a quality engineer.

For our first scenario, the results are presented in Figure 4.6. On the X axis, we have

the number of classes inspected by a quality engineer, and on the Y axis, we indicated

the corresponding recall and precision for the detection of unambiguous instances of

anti-patterns (5 votes) as these would be the results that would most likely satisfy any

quality analyst. The exception is for Functional Decompositions on Xerces because it

had no instances with 5 votes. For that program, we computed the precision and recall

for the instances with 3 or more votes.

In five cases, our systemwas superior to DECOR: the precision was better for the first

inspected classes. Furthermore, all faulty classes were found more efficiencly, requiring

quality engineers to inspect a set half the size of that of DECOR. This is also reflect in the

F1 measure, which indicates that, in general, our approach also provides better balanced

result sets. We observed the same phenomenon with the detection of Spaghetti Code on
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(a) Blob – Gantt, trained on Xerces (b) Blob – Xerces, trained on Gantt

(c) S.C. – Gantt trained on Xerces (d) S.C. – Xerces trained on Gantt

(e) F.D. – Gantt trained on Xerces (f) F.D. – Xerces trained on Gantt

Figure 4.6: Inter-project validation

Gantt. This model did not fare so well on Xerces. The symptom set used was inade-

quate as our precision is consistently inferior to that of DECOR. However, for the same

number of candidate classes, our precision/recall is equivalent. Finally, the Functional

Decomposition model produced mixed results. For Xerces, the models provided good

precision and recall. For GanttProject, the first five candidates were correctly classified.

These are promising results because they suggest that even in the absence of histori-
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cal data for a specific program, a quality analyst can use a Bayesian approach calibrated

on different programs and obtain an acceptable precision and recall, and outperform

DECOR. These results also show that a model could be built using data external to a

company and then be adapted and applied in this company successfully. These models

could also be enriched with locally salient symptoms to further improve their accuracy.

4.2.6 Scenario 2: Locally Calibrated Model

This scenario occurs when we know which symptoms are important. It is actually

rare that an IV&V team audits a new project. Most of the time, audits are recurrent as

they are part of an iterative development cycle. In this context, it is realistic to have a

model built using local data. Therefore, we used local data to build and test the detection

models. In this scenario, we compare these results to those produced in Scenario 1. This

scenario should represent the best possible setup given the symptoms we selected while

the previous scenario corresponds to a base line.

We built these local models using 3-fold cross-validation. Cross-validation is a tech-

nique to avoid testing on the same data as we use to calibrate our models, and avoid

the problem of overfitting models. It requires each model to be built and tested multiple

times using different combinations of our data set. In our case, the data set was split into

three equal-sized groups. For every run, the model used a different pair of groups for

training and the third group was used for testing. The precisions and recalls presented

here are the averages of the three runs.

All the results for the local project validation are presented in Figure 4.7. Each sub-

figure shows the average precision/recall curves for each combination of anti-pattern for

each program. The results indicate that local knowledge should be used whenever possi-

ble as the performance of every detection models is significantly increased compared to

Scenario 1. The identification of Blobs and Spaghetti Code is very accurate and includes

only a few false positives (all precisions of over 65%). We assume that this precision is

due to the notions of size, which are very important symptoms. Size is one of the few

concepts that can be measured directly unlike heuristics used to identify the developers’

intent (e.g., words that could indicate procedural thinking). The lack of semantics in the
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(a) Blob: Gantt (b) Blob: Xerces

(c) Spaghetti Code: Gantt (d) Spaghetti Code: Xerces

(e) Functional Decomposition: Gantt (f) Functional Decomposition: Xerces

Figure 4.7: Local calibration: average precision and recall

metrics used to detect Functional Decompositions explains the general poorness of the

models, even when using the best symptoms.
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4.3 Discussion of the Results

We now discuss the experiments and the use of a Bayesian approach by quality ana-

lysts based on the results of the experiments.

4.3.1 Threats to Validity

We showed that our models are able to efficiently prioritise candidate classes that

should be inspected by a quality analyst. The models, built using global data, can suc-

cessfully identify occurrences of anti-patterns. This is regardless of the nature of the

program: Xerces is a XML parser library, and Gantt is a full-fledged GUI; both were

developed by different development teams. Although these systems are open-sourced,

we have no reason to believe that closed-source systems would behave any differently.

Quality analysts in an another context should be able to build a repository of anti-patterns

on a set of programs and use this data to calibrate models on another context. The cus-

tomisation that we performed in the experiments was minimal, but improved detection

significantly. In an industrial setting, where audits are performed regularly, this customi-

sation could be more important.

4.3.2 Dealing with Good Programs

Another issue with our detection models concerns their application to “good” pro-

grams. To test how many false positives are returned when applied to a healthy system,

we applied our models to JHotDraw. JHotDraw4 is a GUI framework for structured

graphics (176 classes). It was designed as a design exercise by object-oriented experts.

It is a good reference of a program that most likely does not contain any occurrence of

anti-patterns.

Table 4.VI presents the number of classes that present all symptoms of the three anti-

patterns. These numbers indicate that only a few candidate classes need to be inspected

by quality analysts.

4http://www.jhotdraw.org
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Anti-Patterns ♯ Inspected Classes
Blob 1
S.C. 2
F.D. 0

Table 4.VI: JHotDraw: inspection sizes

The reason why the models return these false positives is the discretisation methods

used, which uses relative sizes (based on quartiles). For the detection of Blobs and

Spaghetti Code, size is an important symptom. Even in a program with generally small

classes (like JHotDraw), the models identify those that are relatively large.

It is possible for an organisation to impose global thresholds in the detection process.

These thresholds could be extracted from an analysis of a large number of systems. If we

had used the relative thresholds values measured on Xerces and GanttProject to identify

occurrences of the anti-patterns in JHotDraw, there would have been no candidate classes

corresponding to the highest level of probability.

4.3.3 Estimating the Number of Anti-Patterns

The problem with presenting a large list of candidates rather than a set is that it is

up to the quality engineer to decide when to stop looking. This concern affects all tech-

niques that rank results. Typically, we could sum the expectation of probabilities that

each class is considered an anti-pattern. The models presented tend to overestimate the

number of anti-patterns by 75-200%. This is due to the treatment of the metrics. To

correctly estimate the number of anti-patterns we would need to consider the precise

distribution of the metrics (mostly power-laws), instead of using a discrete represen-

tation. There are two problems with this treatment. First, most tools that implement

Bayesian inference do not handle power-laws. Second, the resulting model would be

hard to interpret by a quality analyst unlike conditional probability tables. In future

work, we consider moving towards using continuous probabilistic variables to describe

our metrics.
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4.3.4 Alternative Code Representation

In collaboration with a teammate from the Université deMontréal, Marouane Kessen-

tini, we have started to explore how to go beyond simple metrics to represent code.

Instead, we represent code as sets of predicates to describe complex code structures.

In [KVS10], we showed that these structures contain more semantic information than

metrics. In a study of both Xerces and Gantt, we could more accurately identify all

three types of anti-pattern (> 90% precision). Of course, these techniques require more

computation, but the results are encouraging and we believe that this is an interesting

research avenue to pursue.

4.4 Conclusion

In this chapter, we presented the problem of dealing with diverging opinions. We

proposed a way to combine these opinions using Bayesian inference. In particular, we

indicated how a corpus could be built to represent this subjectivity. We presented a

methodology to build detection models of anti-patterns. Anti-pattern detection is a very

subjective problem (only 30% of agreement), our Bayesian approach was shown to be

an appropriate solution. With no local knowledge, our models outperformed DECOR, a

state-of-the-art detection technique. When we included local data, we noticed significant

improvements.

The reason why we are interested in identifying anti-patterns is because these are

known design faults that impede maintainability of classes. However, there is the issue

of using our models to guide maintenance activities. In the next chapter, we present how

we can use our models to track the evolution of the quality of a system, in order to detect

when classes are degrading or improving.



CHAPTER 5

ANALYSING THE EVOLUTION OF QUALITY

Until now, we presented quality models (and detection models) in an isolated context:

they were executed on specific versions of a system. This is a limited, static view of qual-

ity management that is not representative of industrial practice. In such a setting, models

are used by IV&V teams to regularly track the quality of the systems developed. Conse-

quently, an IV&V team that performs these evaluations has quality information spanning

multiple releases. This historical information could be exploited to guide maintenance

efforts, but not without difficulty. Considering the changes in quality literally adds an-

other dimension of complexity for quality engineers, and can easily overload them with

too much information. Be that as it may, this additional complexity can be worthwhile

if it can prevent future developments problems1.

We are interested in two types of events. Sometimes changes to a system can de-

grade its quality; other times, they can improve quality. Identifying potentially recurring

changes that degrade quality could serve to establish coding guidelines for developers

and lead to an early detection. Additionally, there might be cases when quality problems

are solved in an elegant manner. These solutions might be re-usable and proposed to

development teams faced with similar problems.

5.1 Industrial Practice

In our partner’s process, the models are executed every time a development team

wants to release a new version of a system. This historical information is used by man-

agers to get a general appreciation of the work of a development team. When quality

scores drop below a specific threshold, then a QA engineer manually inspects the code.

The use of thresholds can hide information in such a context: a high quality system could

slowly degrade over a long period of time until a minor modification becomes the straw

1The content of this chapter was the subject of an article published at the 15th Working Conference on
Reverse Engineering (2009) [VKMG09]
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that breaks the camel’s back. Only at that point would a QA engineer notice that the

quality of code had been worsening without his knowledge.

To get a historical view of quality, past evaluations are typically presented using a

time series chart presenting scores over time. This approach is relatively standard as

many tools offer this view (e.g., Sonar2). However, there is still the problem with decid-

ing which parts of the software to visualize as it is impractical to simultaneously display

quality affecting thousands of software entities. This difficulty is one of the reasons our

partners’ quality engineers seldom use visualisation tools. In fact, they ignore informa-

tion from all but the previous quality evaluation. Consequently, there are certain quality

trends that might be ignored.

5.2 State of the Research

Much research has been done on the improvement of software maintenance. An im-

portant period that brought attention to the problem in modifying legacy system preceded

the year 2000 when many large, legacy systems needed to be modified to support four

digit dates. This incident created a surge of interest in tools and techniques to support

change.

Recent work focuses on the detection and analysis of change patterns: recurring

ways in which software changes. The best known patterns are refactorings. A refac-

toring is a behaviour preserving change to improve structure [Fow99]. An example is

“pushing methods” up to superclasses which takes methods from a set of classes and

moves them to a common superclass. These are typically implemented in development

tools to ensure that a change is complete, and that it does not alter behaviour. Some re-

search has tried to identify refactoring in code bases, but most techniques have problems

scaling [DCMJ06].

In a series of papers, Xing and Stroulia [XS04, XS05] proposed an approach to

analyse the evolution of the logical design of systems and recover distinct evolutionary

phases. This research tries to mine knowledge to improve the developer’s knowledge

2http://www.sonarsource.org/
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of the systems they maintain. The result of this research only indirectly affects quality:

this research finds common ways that the software product evolves. Other work focuses

on identifying other types of patterns like co-changing files [ZWDZ04], and code clone

evolution [HT99, BFG07]. In the past, we also investigated the presence of change

patterns in software using clustering techniques. In the systems analysed, we found that

developers structure their systems in ways to minimise future maintenance [VSV08].

Another direction of research provides help to understand system evolution through

visualisation techniques. For example, Eick et al. [ESM+02] developed tools to visualise

the evolution of software measures and change data, including size and effort. Langelier

et al. [LSP08] map static metrics of a system to characteristics of boxes (size, twist and

colour), and animate the evolution of these characteristics.

Finally, there is work trying to combine change information with quality measures.

Change metrics are now included in many quality models (e.g., [AB06, MPS08, NB05b]).

In these models, changes are included as inputs alongside structure metrics. Moser et

al. [MPS08] show that change metrics are better predictors than structure metrics for

faults. We might suspect that this relationship is obvious as bugs are introduced by

changes, but Arisholm et al. [AB06] studied another system and found structure to be a

better predictor than changes.

There are two main research axes that deal with the quality of evolving software.

The first is concerned with finding patterns in software to help developers understand

how systems change. The second is concerned in quality evaluation by including change

metrics with structure metrics as inputs in quality models. Our approach is an attempt

at bridging these two categories by finding and exploiting patterns in the variations of

quality by analysing its evolution in a time series.

Getting a clear grasp of the different trends present in a system can help identify

maintenance problems and improve the health of the system. By analysing the parts of

a system that have shown significant improvement, we could hope to find practices that

developers employ to keep their systems fit. These positive trends could be provided by

an IV&V team to a development team when concrete examples of quality improvements

are needed.
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5.3 Identifying and Tracking Quality

In this section, we present our approach for finding quality trends in evolving soft-

ware. We start by discussing issues pertaining to the analysis of temporal data. Then,

we present an approach to analyse the evolution of quality.

5.3.1 Dealing with Temporal Data

When trying to study evolution, a decision must be made on how to represent the

passing of time. Generally, we use either calendar time or the version numbers of soft-

ware releases. An analysis using calendar time implies that a project is audited at regular

intervals (e.g., every month, or even nightly in a continuous integration process). Ex-

tracting information regularly can produce some misleading results because these dates

might not correspond to an actual release. Many projects tend to be developed actively

until they become relatively stable. At that point, the development slows down. This is

the case with open-source projects like Xerces-J, which went from having releases every

month to every year. If weeks go by without any changes to the software, a quality audit

might be a waste of time.

Analysing the evolution of software according to release dates ignores specific times-

tamps and has the added advantage of consistently capturing a project in the same de-

velopment phase. Furthermore, this approach can indicate what type of maintenance

was performed (e.g., bug-fix versions indicate that developers did not add functionality,

and mostly removed bugs). This choice can have an adverse effect on models when

releases become rare. Xerces-J is now maintained by a small number of developers

who have limited knowledge of the inner workings of most of the project. Typically,

the quality of software tends to degrade when key knowledge of a system is lost due to

turnover [HBVW08]. As releases become infrequent, there should be even more atten-

tion paid to a system when it is changed. If the time between changes and releases is

long, then the feedback from an IV&V team might arrive too late to be useful.

A final problem concerns the tracking of new classes. We might assume that “new”

classes go through a period of debugging before becoming stable. But, not all new
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Figure 5.1: Quality signal: the quality of the module degrades over six versions

classes exist in the first version of the software; some are introduced much later. We

would need a technique that is able to adapt to the notion of class-centered time as

opposed to project-centered time.

We consider that the quality of every class is represented by a time series. These

series can be of different lengths and have different rates of change. The technique

used to identify trends should be able to support the fact that classes evolves somewhat

independently from each other, and can appear and disappear.

5.3.2 Quality Trend Analysis

The evolution of a class with respect to its level of quality can be represented as

a signal Q= (q1,q2,q3, ...,qn) where qi is the quality score of a class at the version i.

Version 1 represents a version in which a class appears in the system and n is the total

number of versions in which the class exists and is analysed. Such a signal is illustrated

in Figure 5.1.

Our approach consists of two steps. First, we seek to find different trends given a set

of signals representing how all classes have evolved. Then, we want to classify a specific

signal Q according to these trends to guide a subsequent, in depth-study of evolution.

Both these steps require a way to compare these signals given the aforementioned issues

with temporal data. We chose to use dynamic time warping.
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5.3.2.1 Dynamic Time Warping

Dynamic time-warping (DTW) is a well known signal analysis algorithm. DTW

was first presented by Kruskal and Lierberman [KL83] to compute a distance measure

between pairs of signals independent of timescale. This technique finds a “topological”

distance between two signals by modifying the time axis of each one. For example, it

can align two signals by matching peaks that occur at different times. It is commonly

used in speech recognition software to handle different speaking speeds. This ability

to modify time is important in the context of change pattern detection because changes

tend to happen irregularly, often independently of the system versions.

5.3.3 Finding Quality Trends

Identifying quality trends can be done completely manually or semi-automatically

using data mining techniques from a set of quality signals. We opted for a semi-automatic

process. By using mining techniques, it is possible to process all known quality signals

to find regular patterns, and present this information to an analyst for review.

To find candidate trends, we used a technique called clustering. Clustering is an

unsupervised classification technique that takes a set of items and tries to group items

together using a notion of similarity. To find possible trends, we applied agglomerative

hierarchical clustering using the DTW distance metric as a measure of dissimilarity. This

clustering algorithm starts by considering every item as a cluster and iteratively merges

similar clusters together. The specific algorithm is described in [BGA06]. The result

is a dendrogram representing all possible groupings as shown in Figure 5.2. A manual

analysis of these groupings provides a set of possible trends. A quality engineer can

select a set of clusters that makes senses.

5.4 Tracking Design Problems

We applied our approach to the problem of anti-pattern detection. We chose this

problem because there is substantial literature that discusses why anti-patterns appear

and how they should be removed. However, there is little hard, quantitative evidence that
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Figure 5.2: Dendrogram of quality signals. For the first step (on top), there are four
different clusters, one per signal. Every step, the two nearest clusters are merged. Even-
tually (bottom), we find a cluster that contains all the signals.

describes how anti-patterns are introduced and removed from systems. In this section,

we study the presence of Blobs in two systems: Xerces and EclipseJDT. Blobs are anti-

patterns that correspond to a large class that centralises functionality.

For this study, we reused a variant of the Blob detection model from Chapter 4.

This variant directly encoded the rules of DECOR and was presented in [KVGS09].

The quality signals are vectors containing the probabilities P(Blob|Symptoms) for every

version of a class. Our assumption is that classes that exhibit the highest probability of

being Blobs at some point in their existence would be those tracked by quality engineers.

We limit our study to these classes. Finally, we analysed released versions because this

corresponds to how our partners perform their audits.

5.4.1 Global View on the Evolution of Blobs

The first step in the study consisted of evaluating the number of Blobs that an IV&V

would track for every version of a system. Figure 5.3 presents the ratio of Blobs (right

axis) as well as the growth of the system (left axis, in number of classes) for every version

of the systems. The figure shows that the growth of both systems is relatively linear.

There are some different plateaus that correspond to minor versions during which few

new classes/Blobs are added. The proportion of Blobs is relatively stable in Eclipse (2%)

but increases significantly in Xerces (from 10 to 15%). This indicates that a sizeable part
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(a) Number of Blobs in Xerces from 1.0.1 to
2.9.0

(b) Number of Blobs in Eclipse JDT from 1.0.0
to 3.4.0

Figure 5.3: Blob Ratios vs. Total Classes

of the code base would need to be reviewed.

Globally, Xerces and Eclipse JDT have respectively 138 and 144 classes that were

considered to be Blobs at some point in their existence. The majority of these Blobs were

Blobs right from the start: 70% for Xerces and 61% for Eclipse JDT. This indicates that

these classes have a large number of responsibilities because of the original design, not

due to maintenance work. Consequently, an IV&V team might want to focus its effort

on inspecting large new classes. Furthermore, we noticed that a sizeable portion of

these classes were eventually eliminated. They were deleted in the proportion of 30% in

Xerces (41) and 19% in Eclipse JDT (29).

5.4.2 Evolution Trends Identified

We found seven typical trends as shown in Figure 5.4. These seven trends are iden-

tified from a to g. The different trends are defined by two or three point configurations

where every point can either have a low, medium, or high value. Low corresponds to

the lowest observed value of the signal (probability). Likewise, high corresponds to

the highest observed probability, and medium is (low+high)/2. Only three points are

needed because the DTW can stretch the signal as much as needed.

The Constant stereotype corresponds to a stable signal where the class is always

tagged as a Blob. Gradual improvement corresponds to a class that starts with a high
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(b) Gradual Degradation(a) Constant

(f) Sharp Improvement

(d) Temporary Badness

S

d(g,S)
d(a,S)

d(b,S)

d(c,S)

d(d,S)d(e,S)

d(f,S)

(g) Gradual Improvement

(e) Temporary Relief

(c) Sharp Degradation

Figure 5.4: Evolution Trend Classification

probability of being a Blob, probability which drops to a medium level before becoming

low. Sharp improvement is similar but the transition is abrupt: the signal level drops

from high to low in a single version. Gradual degradation and Sharp degradation show

the same phenomenon concerning degradation. Finally, Temporary relief and Tempo-

rary badness are stereotypes of classes that are only temporarily Blobs. To classify an

evolution signal S, we compute the distance with the different stereotypes. The DTW

algorithm finds d(x,S) as the minimal distance between x and S.

In the middle, we included an example of a subsequent classification: the quality

signal3 S. S is the signal to be classified, i.e. the probability that the class is a Blob, and

d(x,S) corresponds to the distance calculated by the DTW algorithm between the signal

S and a trend x. A signal is classified into the group that minimises the distance. The

example was classified as a gradual improvement (trend g) as its probability of being a

Blob decreased over time.

The distribution of different trends is presented in Figure 5.5. In Xerces, out of the

3the signal corresponds to org.apache.xerces.impl.XMLVersionDetector
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(a) Evolution Trends Distribution in Xerces (b) Evolution Trends Distribution in Eclipse JDT

Figure 5.5: Evolution Trends Distribution of Blobs

138 classes that were Blobs at some point in their existence, 91 (66%) showed no signif-

icant variations and followed the constant stereotype. 16 Blobs (12%) were corrected by

developers. This is significantly fewer than the number of Blobs deleted by developers

(30%). We found 22 (16%) presenting different degradation symptoms.

Similarly, Eclipse JDT, a system containing 144 Blobs had a large number of stable

Blobs, 96 (63%). In this system, almost as many Blobs were corrected, 21 (14%) as

were deleted (19%). Finally, 27 (19%) classes saw their quality degrade. We consider

that the classes corresponding to Temporary badness and relief are instances of both an

improvement and a degradation.

This classification process highlights three main types of evolution trends of interest:

improved, degraded, and constant Blobs. Analysing each group can provide key insights

into the nature of these complex classes, why they still exist or become more complex,

and how they are improved. We now analyse in greater detail these three evolution

trends.

5.4.2.1 Constant Trend

By far, this is largest group. It contains a high number of Blobs that are introduced at

the very beginning in systems and that remain Blobs throughout the existence of the sys-

tems. We investigated the motivation of experienced developers to create “bad classes”.

We contacted the primary developer of Xerces and presented to him a list of “confirmed”
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Blobs. His answer was that these classes were as complex as the problems addressed;

there was no simpler alternative.

Independently, we verified the use of design patterns [GHJV94] in these classes as

it could indicate a clear intention by developers to write clean code; the structure of the

classes is no accident. We found that 82% of the classes from this group were play-

ing roles in at least one of the following design patterns: Abstract Factory, Adapter,

Observer, and Prototype.

5.4.2.2 Degradation Trend

The Blobs observed in this category have two different reasons for their degrada-

tion: either they gained new responsibilities (and grew in size), or they gained new data

classes. In EclipseJDT, for the most part, these Blobs are very large classes from their

introduction. The main reason why their observed quality degrades is due to the addition

of data classes. This can be explained by the particular use of data classes in Eclipse:

often, data classes are used to communicate data between different application layers.

One typical case concerned a data class 4 that describes a certain range in an indexed

text store. This data class is in fact a value object used to transmit information from one

system layer to another. One large class5 uses it for that purpose. Although there seems

to be a justification for such design, any large class that interacts with a large number of

these value objects, centralises behaviour, a symptom of Blobs.

For Xerces, 11 of 15 sharp degradations are due to a similar situation: the quality

of a class degrades because it is already large and developers add new data classes.

Gradual changes, however, were all incurred by additional code. Table 5.I summarises

the changes occurring in the degraded classes. In this table, two different growth rates are

presented: the average relative size increases in instructions and in methods. The number

of versions indicates the duration of the gradual degradation. Sharp degradations show

an average increase of 150% in instruction size and 86% in method size between a pair

of versions. In the case of gradual degradations, the average change rate per version is

4org.eclipse.jface.text.Region
5org.eclipse.jdt.internal.debug.ui.snippeteditor.JavaSnippetEditor
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65% for instructions and 41% for methods. Not presented in the table, the total changes

in gradual degraded classes tend to be equivalent to that of the sharp degradations. Other

metrics like cohesion were not significantly impacted.

Table 5.I: Degradation growth rates in Xerces

Degradation Growth rate Growth rate Nb of
trend instructions/version methods/version versions

Sharp 363.64% 162.50% 1
Sharp 138.44% 283.33% 1
Sharp 214.98% 113.64% 1
Sharp 513.33% 100.00% 1
Gradual 40.99% 16.67% 2
Gradual 142.90% 6.67% 3
Gradual 9.46% 15.38% 5
Gradual 65.04% 6.25% 2
Gradual 34.28% 155.56% 3
Gradual 63.46% 42.86% 2
Gradual 103.33% 45.00% 4

The results presented in Table 5.I seem to indicate that, when performing a modifica-

tion on a class, developers should pay attention to the size of the changes made, as they

may induce a degradation of the quality of the class. We only observed one instance of

gradual degradation that would have escaped detection (9.5% average over 5 versions).

5.4.2.3 Improvement Trend

Two symptoms that can help detect Blobs are the size of a class and its use of data

classes. Fowler [Fow99] suggested refactorings to correct both large classes and data

classes. To correct large classes, these refactorings include Extract Class, Extract Sub-

class, and Extract Interface. When correcting a data class, the main concern is to limit

access to its public attributes using the Encapsulate Field refactoring and then to add

functionalities using theMove Method and Extract Method refactorings.

In our investigation of the improved Blobs, we analysed the different classes to iden-

tify if and what refactorings were applied. The results are presented in Table 5.II. The

vast majority of refactorings found in Xerces were not refactorings “by the book”. In

fact, four times, developers of Xerces extracted new super classes (indicated by ∗), a

refactoring not explicitly mentioned by Fowler as a solution to Blobs. Furthermore, in
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three cases out of five, the extracted classes became new Blobs. We observed thus that

the correction of Blobs may induce the creation of new Blobs.

Table 5.II: Refactorings identified in Xerces for the correction of Blobs

Improvement Refactoring Nb (%)

Sharp Move Method to data class 5 (31%)
Gradual Move Method from Blob 2 (13%)
Sharp Extract Superclass* from Blob 4 (25%)
Sharp Extract Class from Blob 1 (6%)

In Eclipse, the vast majority of corrections involved the addition of new methods to

the data classes. These typically included validation methods to ensure that the data

transmitted was coherent, and methods to provide multiple views of the data. The

widespread use of data classes in this system exists for organisational and architec-

tural reasons, and might not be indicative of defective design as per the work of Brown

[BMB+98] who states that data classes are a sign that developer might not know how

to program in an OO language. This is obviously not the case of EclipseJDT because it

was designed by Erich Gamma, an expert of software patterns and author of one of the

most important books on software design [GHJV94]. In large-scale, modern software

system, the use of data classes (mostly JavaBeans) is relatively common to transmit in-

formation from a subsystem to another. To apply a detection model to Eclipse, it might

be best to adapt the detection model to treat these classes appropriately as mentioned in

Section 4.2.4.3.

5.5 Discussion

We believe that our study of both systems is representative of an actual industrial

application of our technique. The systems analysed are successful systems: they have

been used by thousands of developers and have been actively developed for almost ten

years. Although, in the past, some design decisions might have been bad, the develop-

ers were able to keep the systems up to date with evolving specifications. Furthermore,

these projects are key components in commercial offering of large companies, in par-
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ticular IBM. We therefore believe that not only could our signal analysis approach be

followed by an IV&V team, but also that the results of our study contribute to the state

of knowledge in quality management.

5.5.1 How to Track Blobs?

The most important aspect of our study in analysing the evolution of Blobs concerns

their introduction. There is a common belief that Blobs are the result of slow degradation

in the code base. However, this was not so. In our study, large complex classes tend to be

introduced as such. It is thus important to inspect classes as soon as they are introduced

in the system. Degradation is only responsible for 15-20% of Blobs. This degradation

could be identified by including a change metrics in the detection model.

5.5.2 How to Remove Blobs?

Our study identified two ways used by developers to “correct” Blobs: some were

modified, but more often than not, they were removed from the system. These classes

were removed when the program specification changed significantly (e.g., when Xerces

would implement new W3C standards). In general, when this occurred, we noticed that

developers removed not only the Blobs, but the rest of the classes in the packages as

well. Blobs tend to be heavily coupled with other classes; they can be difficult to change

in an isolated manner. Sometimes, replacing classes can be easier than modifying them

if these packages are well modularised. If a development team wants to avoid problems

with Blobs, they can proceed by isolating the Blob from its associated (data) classes,

then swap in a suitable replacement.

We noted that few “proper” refactorings were found. There are two plausible expla-

nations for this. First, the systems were developed in the early 2000s. In those years,

there were few refactoring tools that could automate these changes. Second, we might

have had problems identifying these refactorings. In open-source systems, developers

tend to follow agile practices, which dictate that refactoring should be a continuous

process included with regular development activities. Correctly identifying these refac-
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torings amongst the different changes is very difficult. Even though we did not observe

this, refactoring activities can move functionality from a Blob to the data classes.

5.6 Conclusion

In this chapter, we proposed a methodology to identify trends describing how quality

evolves. We applied data mining technique using time-independent signal analysis tech-

niques to find recurring types of evolution in two mature open-source systems. Using

a Blob detection model, we found that these anti-patterns tend to not be the result of a

slow degradation of the code base. They are instead added to the system as such. Fur-

thermore, these classes are rarely corrected; instead, they are often replaced. We found

that potential Blobs tend to play roles in design patterns. Finally, we discussed how the

results of our study could be exploited by an IV&V team.

In future work, we want to evaluate if classes exhibiting the symptoms of a Blob from

their outset have a higher probability of being Blobs than those that degraded. Also, we

plan on exploring the possibility of evaluating when a team should consider replacement

vs. correction, and the issues with both solutions. Finally, it would be interesting to

extend this work to other systems, possibly systems that are considered failures. A major

problem with an analysis of “bad” project is that these projects, if open-source, tend to

die off before producing a sufficient number of versions to analyse.





CHAPTER 6

HIERARCHICALMODELS FOR QUALITY AGGREGATION

Large software systems are designed and implemented as multi-level hierarchies of

code entities. Thus, a system is composed of a number of sub-systems; each made up of

packages containing classes, which in turn, contain methods made up of statements and

variables. Unfortunately, most quality models do not handle hierarchies well. They were

developed to judge quality at a specific level of granularity, for example computing class

quality from class metrics. We call these type 1 models. Most research has concentrated

on the lower levels: quality models for classes or methods/procedures.

Although low-level models are useful for developers and testers, other stakeholders

need quality measures for higher-level entities. For example, a manager might want

a general view of the quality of the system illustrated in Figure 6.1. In practice, this

is done by simple aggregation of lower level values, e.g., using the average score of

classes [BD02], or by counting the number of error-prone classes (a standard reporting

practice in bug tracking systems). We call these type 2 models. However, not all parts

of a system are equally important: some parts corresponding to the system’s kernel

are always being used while others, like a function for an optional feature, might not.

One would expect that more accurate system modelling could be achieved by weighing

quality measures by a notion of importance.

This leads us to propose a general method to evaluate, at each level, the quality of an

entity from that of their components. This method involves three parts: a) a component-

level quality model, b) an aggregation model that weighs the relative importance of each

component and produces an aggregate quality score, and c) a container-level quality

model that uses this aggregate score as well as container-level metrics. We shall call

models based on this approach, type 3 models.

The usefulness of this approach was tested on the problem of identifying frequently

changing classes. Here, the aggregate is the class and the components are its methods.

We tested various approaches to determine importance and compared our importance-



86

Figure 6.1: Logical decomposition of a system (right) vs. quality stakeholders (left)

weighing approach to traditional aggregation techniques (e.g., sums and averages). We

found that by using graph analysis techniques to determine importance, we could im-

prove the identification of the highest-changed classes. This improvement is sufficient

enough to justify the extra work of gathering quality data at multiple levels.

6.1 A Multi-level Composition Approach

To the best of our knowledge, there is no work that tries to explicitly combine quality

information from different levels of a system in an intelligent way. In general, existing

approaches like [BD02, KL05, KL07, ZNG+09] combine metrics from the method level

to aid in a higher-level quality evaluation, using simplistic strategies where all com-

ponents are considered of equal weight. Implicitly, this assumes that the quality of a

container depends on the average quality of its components or on the sum of complexi-

ties of its components. Our general model explicitly models the quality of components,

the importance of components, and the container’s quality. Our approach is shown in
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Figure 6.2. In this figure, we have three distinct models:

Figure 6.2: General composition model

• Component model: this model is a traditional quality model that uses metrics to

assess the quality of a component.

• Aggregation model: this model evaluates the relative importance of the quality of

a component on its container. It uses two types of inputs to produce an aggregate

quality score: the individual quality scores of all components as judged by the

component model and data describing how these components are inter-related.

• Container model: this model evaluates the quality of the container (e.g., a class

in a class-level mode). It integrates container specific attributes with the quality

evaluation of its components.

To apply our approach, we propose three steps. First, we either build or reuse a

component model. Ideally, it should be self-contained. Then, we define an aggrega-

tion model that quantifies the impact of each component on its container. Finally, the

container model needs to be built and calibrated using information coming from the

aggregation model.

An important hurdle faced when using a multi-level strategy is the scarcity of avail-

able data. It is already difficult and expensive to collect clean data at the code-level,

where bugs are typically reported. It is even more difficult to find good package/system-

level quality data. Consequently, we believe that we can build the models separately



88

Figure 6.3: Class-method composition model

with the data at hand, and then back-fit the container model to make sure that the final

models are as accurate as possible. In our study, presented later in this chapter, we will

detail how this can be done in practice.

6.2 Modelling Code Changeability

We applied our general quality modelling approach to the problem of code change-

ability in order to test it. The majority of work on quality modelling focuses on identi-

fying high-risk components. One way to identify problem components is to identify the

ones that are in constant change because high-change components are moving targets for

IV&V teams. These high-change components could in fact correspond to good practices

like evolution patterns, but regardless of the reason for a change, any change requires

development and testing effort and should be identified.

Our approach applied to class-level changeability is illustrated in Figure 6.3. Our

component model is a method-level model that estimates the presence of changes in a

method. Such a model can be built using the different techniques presented in Chapter 2.

The scores of all methods in a class are aggregated using a compositionmodel to produce

a class-level metric. This aggregatedmetric is included as an input to a class-level model.

In this section, we present three different types of change models. We then present our

main contribution, the notion of importance.
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6.2.1 Change Models

Three types of models can be applied to the identification of high-change classes:

1. Type 1: simple single level models. These are class-level models that use class

attributes to predict class quality;

2. Type 2: models based that use method-level models, which consider all methods

to be equally important;

3. Type 3: an extension of type 2 models that includes an aggregationmodel to assess

the importance of individual methods.

A type 1 model corresponds to what is currently being produced and exploited by our

partner. For an IV&V team to build models of type 2, it would need to collect method-

level metrics. Finally, models of type 3 requires for the IV&V to define importance

functions, something that is currently inexistent in the literature.

6.2.1.1 Classic Class-level Models (type 1)

The first model type uses only class-level information. Our baseline change model is

based on the model shown in Figure 6.4 that Li and Henry [LH93b] used to predict class-

level changes. In the figure, we can see that high-change classes are identified using the

six metrics of the CK metrics suite1. We can see that no method-level information is

explicitly used to evaluate classes.

In this model, we can notice that some metrics belong to another level. In fact, out of

the six CK metrics, three (CBO, RFC, and WMC) can be calculated using a lower-level

model. WMC is defined as the sum of method complexities, where method complexity

is undefined. Obviously the complexity of a class could be computed using a method-

level model that estimates the complexity using a set of method-level metrics. Coupling

metrics like CBO and RFC try to assess the level of coupling of a class by considering

the coupling of its methods (and attributes for CBO). A formal description of how these

1Li and Henri actually used 5 out of 6 CK metrics. The model included two versions of WMC; they
replaced CBO with other coupling metrics.
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can be expressed at different levels is presented in Appendix I. We believe that these

metrics should be replaced by metrics provided by a method-level model.

Figure 6.4: Reference class change model

As a result, we can identify and remove these metrics from our class-level model as

illustrated in Figure 6.5, and replace them with a method-level model. We consider that

this is a general problem affecting most quality models (e.g., [ZPZ07, BD02]) that assess

entities that can be broken down into sub-entities.

Figure 6.5: Reference class change model: the metrics on the left correspond to method
characteristics; on the right, the metrics correspond to class characteristics.

6.2.1.2 Type 2: Adding Method-level Models

Research has shown that method-level metrics are useful; thus, researchers try to

use these metrics by using simple aggregation techniques. For example, Koru et al.

in [KL05, KL07] used the CK metrics as well as the maxima, sums, and averages of

method-level metrics to predict class-level changes. Type 2 models differ from this
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Figure 6.6: Sample method-level model

Figure 6.7: Modified type 1 change model to support method-level quality models

approach by including a method-level model to assess the quality of methods. Instead of

considering the average method size, a model would consider the average quality score

of a method.

To build a type 2 model, we need to have access to a tagged data set describing the

quality of methods. Therefore, there are additional costs implied by such an approach:

an IV&V team would need to collect and maintain a method-level corpus. As far as we

know, only the NASA data set contains clean method-level data. The exact model would

depend on the available data and can be built using standard model-building techniques

such as those used in Section 3.2.3. For example, Figure 6.6 illustrates a model that

evaluates the quality of a method using the NASA data set2.

In Figure 6.7, we present a type 2 model adapted from the Li and Henri model. We

can see that three CK metrics, CBO, WMC, and RFC, were removed from the model and

were replaced by an aggregate measure of method quality. Semantically, this aggregate

2Note that EVG, VG, etc are metrics explained in Section 3.2.2
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(a) Type 2 (b) Type 3

Figure 6.8: Aggregation models for method-level evaluations

measure represent the quality of contained methods: we judge whether or not the class is

risky given that its methods are good. In a type 2 model, we consider that all methods are

equally important. The aggregation strategy of individual method scores is consequently

similar to what is done in [KL05, KL07, ZNG+09, BD02]: we can use sums, maxima,

means, and medians.

6.2.1.3 Type 3: Adding an Importance Function

What distinguishes a type 2 model from a type 3 model is the addition of an impor-

tance function. Instead of treating every method as equal, it is weighed by a notion of

importance. The difference is illustrated in Figure 6.8. To improve on a type 2 model, an

IV&V team needs to understand how the importance of individual methods would affect

the quality of a class.

6.2.2 Determining Method Importance

Many existing class-level models combine information from methods, but these do

not assign importance to individual methods. Instead, they use standard aggregation

techniques like a sum or an average, which consider that every method is equally im-

portant. We believe that it is possible and advantageous to assess the importance of

methods. For example, a method that is executed frequently or is invoked from many

different locations might be considered important.
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6.2.2.1 Naive Aggregation Functions

In most quality models [KL05, KL07], method-level data is aggregated without a no-

tion of importance. They use standard aggregation techniques that consider method-level

metrics as a bag of values and generally describe the central tendency of these values or

produce a measure a cumulative impact. These importance functions are easy to com-

pute, but contain hidden assumptions that might or might not be acceptable depending

on the context of our assessment. Here are the four most common techniques:

• Means and medians: we assume that all methods have an equal weight and that

the average value of a metric of a set of methods is what would affect the quality

of a class. These are used as measures of central tendency to reflect a “standard”

use of any method within a class.

• Sums: we assume that quality, (or conversely risk) is cumulative. As more good

methods are present, the goodness of a class would increase. Unless the metric

is normalised, this strategy will favour classes containing many methods. Con-

versely, the same can be said of bad methods.

• Maxima (or minima): in general, software entities contain some extreme metric

values. This strategy stresses the importance of these “worst/best” parts of a class.

It will disregard any contribution of other methods.

When choosing a strategy over another, it is possible that the aggregation strategy

might provide an artificial view on method-level quality. For example, the complexity

metrics of methods follow a power-law distribution. An average quality measure might

overemphasize the importance of an outlier even though we are interested in a measure

of central tendency.

6.2.2.2 Importance Functions

Instead of using uninformed strategies, we believe that aggregation techniques should

be chosen according to our quality goal. It is logical that the quality of a method that
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is always executed might be more important than the quality of a method that is un-

reachable, or rarely invoked. Depending on how methods call one another, we could

estimate the probability that it should be executed or inspected and use that as a measure

of importance.

Ideally, we would use runtime data to estimate the probabilities. The problem with

such an approach is that it can be difficult to find a sufficient number of executions to

get a good approximation of “normal” executions. An alternate approach is to build a

call graph through a static analysis of the code. A call-graph represents the structure of

a program in terms of possible calling relationships. Call graphs are typically used by

compilers to optimise code execution. For the compiler to avoid introducing errors, this

graph should describe all possible execution paths through a program. In our case, we

will analyse call graphs to see which methods are more likely to be executed.

Figure 6.9 presents a simple call graph of four classes. The arrows indicate calls

between methods. If the method main corresponds to the entry point of the application,

then any method that is not reachable from this method should never be executed. This

is the case for method m2 as there is no path connecting main to m2. This method would

not likely affect the quality of a class. However, if we are analysing a code library, we

need to make assumptions on which methods are possible entry points. For example, we

could use all public methods. In our example, we assume that m2 is also an entry point,

as it would otherwise not be included in the call graph.

Metrics like fan-in and fan-out are based on this type of representation of code and

have been used in quality research (for example, [OA96, KM90]. These measure respec-

tively the number of incoming (calling methods) and outgoing edges (called methods)

in a graph. These metrics only measure direct coupling; consequently, the importance

measured is only local. These graphs however show characteristics that allow for a more

sophisticated analysis.

6.2.2.3 Characteristics of Call Graphs

The general topology of call graphs has been studied and they exhibit several charac-

teristics similar to other types of graphs observed in biology, social networks, etc [Mye03].
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Figure 6.9: Simple call graph between methods in their classes

First of all, they are scale-free. Scale-free network are networks that have a scale-free

degree distribution, meaning that there is no “average” number of incoming/outgoing

edges. Instead, the probability of a node having a degree of k follows a power-law dis-

tribution. Most nodes in such a graph are coupled to very few others (e.g., < 5), but

there are nodes that have huge number of couplings. Second, there is a small world

phenomenon that indicates that there are islands of tightly coupled methods [JKYR06],

with a few key methods interconnecting these groups. To identify important methods,

there are two different types of measures: those that are based on the graph topology,

which identify key “linking” methods, and those that focus on graph exploration, seen

as a stochastic process, which identify potentially high-execution methods. A systematic

survey and comparison of graph-based importance measures was reported in [WS03].

The first important study of scale-free graphs came from Freeman [Fre79]. In a study

of graph topology, he stated that the simplest notion of importance in a network is the

notion of degree. The degree of a node is the number of nodes it is directly connected

to. As this notion of importance is local, he mentioned two other notions: closeness and

betweeness. Betweeness is based on the frequency of a node appearing on the shortest-

paths separating pairs of points. Closeness is the inverse distance separating a node to
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all others in the graph. The notion of closeness is the basis of the notion of degrees of

separation in human networks, defined as the minimal distance connecting a person to

any other in a network.

The second category of measures represents the activities that are done on a graph.

The advent of the web contributed to this type of analysis. On the web, users navigate

a large network where every page is a node. Measures like the PageRank [BP98] model

the behaviour of users clicking different sites as a Markov chain. The measure estimates

the probability that a user would be on a page. These measures could be used on a call

graph where the resulting probability would be the probability that a method is being ex-

ecuted. In the field of software engineering, these types of measures have been explored

in the context of identifying fault-prone binaries using dependency graphs between pro-

grams [ZN08].

6.2.2.4 Call Graph Analysis Algorithms

The specific importance function used should depend on the activity we consider im-

portant. Our method-level change model decides whether or not a method will change

frequently. The importance function should in turn indicate if changing this method will

cause many class-level changes. We believe that we should look at central methods be-

cause a method in the middle of an execution trace could likely impact both the expected

result of all calling methods as well as all called methods. This strategy would downplay

both entry points and utility methods. In a call graph, the starting point represents the

entry point of an application, typically the main function. Methods that do not call any

others are often utility methods like equals() or toString(). We consider that four

different measures could be used to determine method importance:

• The degree of a method [Fre79]. This is the simplest measure to calculate: it is

the sum of calling and called methods. It should measure the impact of having a

high-change method on its immediate neighbourhood.

• The betweeness of a method [Fre79]. The betweeness of a method m is calculated

by measuring the proportion of shortest paths connecting every pair of methods
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which contain m.

• The probability of execution as measured by PageRank [PBMW99]. This algo-

rithm applied to a call graph approximates a random execution of a program.

Methods that are executed are useful and therefore will likely change as a user’s

needs will evolve.

• The centrality of a method can be measured by the Markov centrality algorithm

[WS03]. This algorithm calculates the inverse of the mean number of steps re-

quired to reach a method m from any other (in a Markov chain). This indicates

how likely a method will be called by others in the system.

We normalised the value of these metrics so that the sum of importance of all methods in

a system is one (1.0). A detailed description and comparison of the different algorithms

applied to social networks is presented in [WS03].

The example shown in Figure 6.10 will illustrate the various measures of importance.

We can assume that methods main and m2 are starting points in the call graph, and that

conversely, m6 and m8 are sinks. We would like for an importance function to identify

central methods like m4. In Table 6.I, we show the results of these different weighing

functions on the example code. Using the degree of a method accurately identifies m4 as

an important method (absolute degree of 5); it also gives significant weight tom8, a sink.

Betweeness and centrality on the other hand, assign little, if no importance, to starting

or sink methods. Finally, PageRank identifies m8 as the most important method because

most simulated execution paths will eventually reach the method; m4 is a close second.

In our importancemodels (type 3), the aggregationmodel calculates a simple weighted

importance of its methods:

method_input = ∑ importance(m)×quality(m)

This input is bounded between 0 and 1.
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Figure 6.10: Simple call graph between methods in their classes

Table 6.I: Relative weights for each importance function. The most important method is
identified in bold.

Method Degree Betweeness Centrality PageRank
main 0.08 0 0.01 0.04
m1 0.08 0.15 0.03 0.06
m2 0.08 0 0.02 0.04
m3 0.13 0.07 0.03 0.08
m4 0.21 0.48 0.61 0.17
m5 0.13 0.07 0.05 0.10
m6 0.04 0 0.08 0.12
m7 0.13 0.22 0.08 0.13
m8 0.13 0 0.09 0.24
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6.3 Comparing Aggregation Strategies

In the previous section, we presented three types of class-level change models. The

multi-level, sophisticated models could be useful, but they require significant invest-

ments to build and maintain. In this section, we present a study to show if these models

are worthwhile. We build instance of all three models and tested them on the problem of

identifying high-change classes.

6.3.1 Study Definition and Design

Our goal is to study the ability of the three different change models to predict the

changes in classes from the perspective of a software maintainer trying to assess main-

tenance risks. Our specific research questions are as follows:

1. RQ1: How good are models of type 1 at identifying high-change classes?

2. RQ2: Are models that aggregate information from a method-level model (type 2)

better than type 1 models?

3. RQ3: Are models that include importance functions (type 3) better than those

without (types 1 and 2)?

For RQ1, we evaluated the capacity of the Li and Henrymodel (from Section 6.2.1.1),

to identify high-change classes. Secondarily, we tested simpler models using single CK

metrics as input. For RQ2, we examined the performance of method-level metrics com-

bined using the standard aggregation techniques described in Section 6.2.2.1 (e.g., maxi-

mum and mean). Finally, for RQ3, we investigated the performance of models using the

various importance functions described in Section 6.2.2.2.

6.3.2 Data Analysed

To build our different models, we needed tagged data. We could not find data on a

single system describing both class and method-level changes. We consequently reused

two separated data sets. The first data set describes classes in open-source systems.
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Each class is characterised by OO metrics and is associated to a number of changes.

The second data set is the NASA data set used in Chapter 3, which provides metrics and

change data at the method level.

6.3.2.1 Class Change Data

Our main data set is the replication data used by a teammate, which is described

in [KGA09]. This data was used to build our class-level quality models. It describes

classes from six different open-source Java systems using metrics3. Also, classes are

tagged with the number of changes between the selected version and January 1st 2009.

Changes were identified by mining the version control system logs; all changes were

considered. Since we had full access to the source code of these systems, we could add

missing metrics to build our models.

The names, the versions, the size and the type of the systems analysed are presented

in Table 6.II. We used ArgoUML as our test system and used the other systems to build

and train the class-level model.

Table 6.II: Descriptive statistics for replication data
System version # classes type
ArgoUML 0.18.1 1237 application
Azureus 2.1.0.0 1232 application
JDT Core 2.1.2 669 library
JHotdraw 5.4b2 413 library
Xalan 2.7.0 734 library
Xerces 1.4.4 306 library

A few CK metrics used to describe these classes are implemented in a particular

manner that deserves additional details. WMC (or sum of method complexities) sums

the number of method invocations/field assignments in each method. It is consequently

very highly correlated to a notion of size. CBO counts the number of declared types (in-

cluding interfaces) coupled to a class. It does not consider constructor calls for coupling.

3The metric were extracted using the PTIDEJ tool suite and the metric definitions can be found at
http://www.ptidej.net.
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We used the most recent version of the LCOM metric (LCOM5). Finally, as the corpus

did not contain RFC, we calculated RFC independently using MASU4.

6.3.2.2 Method Change Data

To build the method-level model, we reused the three systems from the NASA data

set described in Section 3.2.2. For these systems, we did not have access to the source

code and consequently dealt with this data as a black box. The data set does not explic-

itly mention changes, so we considered that any method that had an issue requiring a

correction was changed. Additionally, many metrics were very highly correlated with

one another, so we included computed relative versions of the complexity metrics (e.g.,

vg / LOC).

As our test system is ArgoUML, we needed to be able to apply method-level models

on this system. We therefore reimplemented the majority of procedural metrics (e.g.,

LOC, fan-out, vg) used in the NASA data set for Java systems.

Before going further, we would like to note that the construction of both the class

and method-level models required external data. There is therefore no guarantee that the

models built will properly fit the particularities of our test system. This was shown to

have an effect both in Chapters 3 and 4. This can have a severe, negative influence on

our results, but we leveraged data that was available.

6.3.3 Variables Studied

A class in this study is represented as a vector of variables:

class= (iv1, iv2, ..., ivn,dv)

where ivi is an independent variable and dv is the dependent variable.

Dependent variable - The dependent variable used for all research questions is

whether or not the class is changed significantly more than the others. We used a box-

plot as used previously in Section 4.2.3.1 to determine if a class is high-change (HC) or

4http://masu.sourceforge.net



102

not (NHC). On ArgoUML, any class changed over 18 times was a high-change class.

Independent variables - For RQ1, we considered only the use of the CK metric

suite. These metrics were analysed separately and combined in the reference quality

model. For RQ2 and RQ3, we used our general class-level change model. We conse-

quently had four variables, the three class-level metrics as well as the aggregated scores

produced by the method aggregation model. In RQ2, we applied standard aggregation

techniques whereas in RQ3, we applied our importance functions.

6.3.4 Operationalising the Change Models

We built models corresponding to the three types of change models using Bayesian

models following the approach presented in Section 4. All metrics were discretised

using a box-plot. The quality models evaluate probability that a class/method has many

changes given a set of metrics (P(HC|iv)).

6.3.4.1 Class and Method Changeability Models

The method model was trained on NASA procedure/method data used in Section 3.2.

Training on this data, we found that the best model used only two inputs: a metric that

was a standard size metric and the other was a relative complexity metric (complexity

divided by size). We selected only one unnormalised metric because all the metrics

are highly correlated with one another. The combination of metrics that produced the

best results was the size of a method (in LOCs), and its relative essential complexity

(Figure 6.11).

To evaluate the quality of classes, we started by buildingmodels using the CKmetrics

as those built by Li and Henri, but we found that two class-level metrics, RFC and

LCOM5 had adverse effect on the predictive capacity of the models. The inclusion of

LCOM5 would have added noise to the model, and we found RFC to be too highly

correlated to WMC (as observed independently in other studies as [BD04, WH98]) for

both to be considered in the same model.

To construct our models of types 2 and 3, we reused the type 1 model. The idea is
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Figure 6.11: Method change model

that we build a model that considers global method quality (e.g., low or high quality)

using CBO and WMC. Then, we replace the way it assesses method quality by with a

method model. To do this, we isolated the contributions of CBO and WMC using an

independent probabilistic variable P(method_quality= high|WMC,CBO), and learned

the probabilities that P(Classchange= high|method_quality,LCOM,DIT,NOC). When

testing RQ2 and RQ3, we directly used a probability distribution of method-level change

(P(method_quality= H)) as interpolated from our aggregate method quality.

6.3.4.2 Aggregation Model and Call Graph Creation

For RQ3, we tested the four importance function presented in Section 6.2.2.4 on

statically constructed call graphs. In OO systems where runtime object types can de-

termine exact method calls, building a precise call graph is an undecidable problem.

Consequently the algorithms that are commonly used try to find approximations. For

this study, we used a points-to analysis (0-CFA) as implemented within SOOT5. This

algorithm requires for the whole program to be provided for analysis (including all li-

brary dependencies), and uses an entry point (the main method) to know the types of

objects in the system. In a previous study, we analysed the use of static call graphs to

measure coupling [AVDS10], and found that dynamic class-loading is a valid concern.

We therefore used SOOT’s support for basic dynamic class-loading (Class.forName()

5SOOT implements multiple type analysis algorithms (e.g., Class hierarchy analysis (CHA) and Rapid
type analysis (RTA)) that are used to build call graphs. These algorithms analyse which methods redefined
in subclasses can be invoked. SOOT is available at http://www.sable.mcgill.ca/soot/
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and Class.newInstance()).

6.3.4.3 Analyses Used

Our models are Bayesian models that produce a probability that a class is HC given

the set of dependent variables (HC|iv). As in Chapter 4, we consider that a quality

engineer would inspect these classes according to its evaluated risk. We propose two

ways to evaluate the performance.

The first seeks to verify if the ranked results are good; we do this using the rank cor-

relation (Spearman) between the evaluated probability and the number of actual changes.

The rank correlation indicates whether or not the inspection would be done in the best

order possible, i.e., in order of decreasing # of changes. This correlation penalises every

incorrectly positioned class equally. This way to measure the quality of rankings does

not necessarily correspond to the opinion of quality engineers as their interest lies in the

first results. We therefore also measured Pearson’s correlation, which considers the ac-

tual number of changes even though it is typically not used on non-normally distributed

data.

The second way to evaluate our models is to evaluate the efficiency of our approach

given an inspection task. Specifically, we are interested in evaluating how many changes

would be accounted for given the inspection of n classes. For this, we define the effi-

ciency of an inspection order of n elements as the ratio of number of changes found for

the first n classes ranked according to our model compared to the changes found in n

classes ranked optimally. Formally,

e f f iciency(n) =
NumberChangesFound(n)

NumberOptimalChanges(n)

Since we have an oracle providing the exact number of future changes for every class

(NumberOptimalChanges), we can determine what would have been the optimal set of

n classes and their corresponding changes. Both analyses are used for our univariate

analyses and model-based analyses.



105

6.3.5 Results

In this section, we present the results for our three different research questions. RQ1

was concerned with the use of OO metrics. RQ2 considered the contribution of method-

level metrics within a method-level quality model. The result of every method-level

evaluation is combined using standard aggregation strategies. Finally, for RQ3 we ex-

plored different sophisticated aggregation strategies.

6.3.5.1 RQ1: predicting class changes from class-level data

The correlations between the different OO metrics (including the scores produced by

our model) and the number of changes in each class are presented in Table 6.III. The

first thing we can observe is that the Li and Henry model is relatively weak, while WMC

is the best predictor of changes. This implies that the training data did not adequately

characterise our test system (ArgoUML).

Rank results The rank correlations indicate whether or not the order of the results is

similar to the rankings of an optimal inspection. The best strategy in this context is to use

the number of statements (as measured by this implementation of WMC). This measure

of size is fine-grained and can discern very small differences in size. However, consider-

ing only the differences in rank can be misleading. For example, there are over 400 more

statements in the largest class than in second largest class (6133 vs. 5720). On the other

hand, the three classes at the 100th rank all have the same number of statements (377).

This capacity to differentiate between small and very small classes helps to order classes

with few changes, but it is not very important for a quality engineer whose objective is

to locate dangerous classes. The correlations of CBO and our Li & Henri model are

both moderate (correlations between 30-50%). Cohesion, and inheritance metrics are all

weakly, but significantly correlated to the number of changes.

The Pearson correlation is included to indicate the strength of the relationship ob-

served. This type of correlation tends to overemphasize extreme values, but since a code

inspection would try to find the classes with an extremely large number of changes, this
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Table 6.III: Correlations: number of changes and class metrics/model output
Metric Correlation (rank) Correlation (Pearson)

Li&Henry (baseline) 31% 25%
WMC 51% 30%
CBO 33% 25%

LCOM 23% 20%
NOC 19% 14%
DIT 16% 10%

measure indicates if these outliers are near the top of an inspection list. Unlike rank

correlation, we only have metrics that are weakly to moderately correlated to changes

(20-30%).

The general tendency observed is that there is a bias towards size metrics (i.e., WMC

and CBO). This indicates that the extremely large classes tend to change more frequently

than small classes. This follows from the hypothesis that every line of code is subject

to change; therefore, the bigger the code, the bigger the chance of change. The Li and

Henry model is built on systems where the notion of size is considered; therefore, its

results (in Pearson correlation) are comparable.

Efficiency results In Figure 6.12, we plotted the efficiency of an inspection process

based on the same models. For inspections of fewer than 20 classes, all models are

inefficient: around 15% of changes are found. This is a serious problem for an IV&V

team as they would generally reject a model that wastes their time. In fact, the “best”

metric, WMC, performs poorly and every inspection would be costly as it returns very

large classes as false positives. As expected, on the long run, WMC performs well. An

unexpected result is that, NOC is the best ranker for the top 20 classes. The baseline

model gives average performance with 50% efficiencies at > 30 classes. It is better than

most individual metrics, but surprisingly, WMC is still the best. We can assume that the

model is too specific: the data we used to build and train the model is not a good fit for

ArgoUML.
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Figure 6.12: Inspection efficiency for different sized inspections using class-level infor-
mation

6.3.5.2 RQ2: including a Method-level Model

Table 6.IV: Correlations: number of changes and scores (type 2 models)
Metric Correlation (rank) Correlation (Pearson)
WMC 51% 30%
Max 32% 34%
Sum 30% 31%
Mean 22% 17%

Median -8% 2%

In RQ2, we studied the effect of using a method-level model whose results were com-

bined using naive aggregation techniques. In Table 6.IV and Figure 6.13, we present the

results for aggregation models using the maximum, sum, average and median values of

method-level models, as well as WMC for comparison purposes. We can observe that

both the maximum and the sum of method-level quality estimations show similar Pear-
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Figure 6.13: Inspection efficiency for different standard aggregation strategies

son correlations to WMC. They are, however, significantly better strategies at identify

the top high-change classes: for the first 75 classes, they are more efficient that WMC.

Afterwards, the max, sum, and WMCmodels are roughly equivalent. On the other hand,

using measures of central tendency does not produce interesting results. This is addi-

tional evidence that our partner’s extensive use of average is not a good idea.

We believe that the sum/max strategies are better predictors in an industrial context

than models of type 1 as few IV&V teams would adopt a process that cannot identify the

worst classes in a system. This finding supports our intuition that using a composition

model can improve a quality evaluation process.

6.3.5.3 RQ3: using Importance Functions

For our final research question, we investigated the usefulness of our intelligent ag-

gregation strategies. By using alternative ways to measure the importance of methods,
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we found that it is possible to improve the performance of our baseline, Li & Henry

model. First, we can see in Table 6.V that by weighing methods by their centrality in

a call-graph, we can identify better combination strategies. In fact, the Pearson correla-

tion between the Centrality and Page Rank output and the number of future changes is

relatively strong (near 50%). Using a local notion of centrality, measured by the degree

metric, does not produce interesting results even though it is superior to type 1 models.

Table 6.V: Correlations: number of changes and scores (type 3 models)
Metric Correlation (rank) Correlation (Pearson)

Page Rank 33% 47%
Centrality 31% 49%

Betweeness 26% 26%
Degree 25% 21%

In Figure 6.14, we present the inspection efficiency for our different strategies as well

as WMC as it was generally the best metric for inspection. The best correlated strategies,

Page Rank and Centrality, lead to the most efficient inspections as they identify highly-

changing classes: efficiency quickly stabilises at 70%. Furthermore, even for small

inspections, the PageRank is very efficient, meaning that it is able to identify the most-

changed classes in the system. After the first hundred classes (towards 10% of the classes

in the system), WMC becomes the best ranker.

The capacity of our composition-based models to predict change is actually quite

surprising as they were not specifically trained on ArgoUML, and we substituted the

training metrics for our more complex combination strategies. We believe that the call

graphs are able to eliminate noise, thus enhancing our results. Furthermore, the con-

cepts they measure seem to be system-independent as the results are superior to other

configurations.

Our observations are consequently that the more a method is central to an execution

path, the more likely it will be modified. This makes sense because 1) users would rarely

ask for a change to a part of a system that is never executed, and 2) failures are more

likely to be observed when code is executed, the changes measured could be corrections.
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Figure 6.14: Inspection efficiency for different sized inspections by combining method-
level information

6.3.6 Discussion

In this section, we discuss different issues with the proposed approach in the context

of this study, as well as the results of the study itself.

6.3.6.1 Cost-effective Inspections

We saw that size was a very important factor in a change identification process.

For an IV&V that focuses on testing software, focussing on large classes first can be a

reasonable idea. However, there are other quality assurance activities like Fagan code

inspections that require developers to read and understand the risky code identified. In

our evaluation of efficiency, we considered that every class was equal, regardless of its

size, and this showed WMC rivalling our best type 3 models. In industry, this is not

the case [AB06]: an IV&V team member can inspect 8-20 lines/minute [Men08]. When
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considering the effort required for checking, size becomes a very important factor. In this

section, we compare the inspection strategies using an alternative measure of efficiency.

We consider the average number of changes per line of code found for an inspection set

(change discovery rate). For the whole system, the change rate is 3.9%, or 39 changes

per KLOC.
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Figure 6.15: Inspection efficiency (in terms of size)

In Figure 6.15, we present the change discovery rates for five of the previous experi-

mental configurations. We can see that an inspection strategy based on size as measured

by WMC performs very poorly: the change discovery density is lower than 3%. This

indicates that the larger the class, the less relative changes it will likely have. On the

other hand, models of type 2 and 3 produce a far superior ranking. Until an inspection

size of 80 classes, the change discovery is between 8 and 10%. Using the maximum

aggregation strategy, type 2 model, produces the best rankings for the top 10 classes.

After these top classes, the quality of its rankings drops significantly below that of type
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3 models. Finally, of our different composition strategies, we can see that the degree

of a method is consistently a good strategy to guide inspections, and outperforms the

PageRank, which is correlated to size (35%, vs. 19% for degree).

Our results indicate that a team developing a quality model should know what it will

be used for. To locate high-change classes for tasks like testing where size might not be

an important factor, simple size-based strategies can be interesting. In other situations

that are dependent on the size of the class inspected, size should not be used. The type 2

and 3 models produce acceptable results for both situations.

6.3.6.2 Threats to Validity

Although we studied open-source systems, we believe that our approach would be

applicable in an industrial context. We have no reason to believe that closed source

systems would be structured any differently from the systems we analysed. The real

issue lies in the difficulty of gathering data. Already, it is difficult to gather one-level

data; to improve a simple type 1 model, metrics need to be extracted at different levels.

In our study, however, we used a general training data set completely independent of

our target systems. The models achieved interesting results. In the absence of local

data, a generic corpus could be a starting point for an industrial quality model effort.

Furthermore, we showed that it is possible to modify the aggregation strategy to improve

the performance of a generic quality model.

6.3.6.3 Call Graph Generation

There are two issues with call graph generations that have a direct impact on the

results of the quality models. In our opinion, a major limitation that would limit the

acceptance of our approach in an industrial setting is the cost required to build the call

graphs. The 0-CFA algorithm used in this study can require days of computation for

large programs, which can be unacceptable in certain contexts. Another important issue

of the 0-CFA algorithm is that it analyses whole programs. Unless we can accept the

additional imprecision of an approach as [DH08], we are limited to the study of full-
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fledged applications (no libraries and frameworks). Depending on the precision required

of a call graph, we could use cheaper call graph building techniques like RTA (rapid

type analysis) and CHA (class hierarchy analysis) that are extremely efficient, but less

precise. Furthermore, these techniques can handle incomplete applications at the cost

of adding more imprecision. In a study of call graphs [AVDS10], we showed that RTA

could be an interesting alternative to sophisticated analysis techniques.

Another issue with the use of statically constructed call graphs is the support of

dynamic class-loading. Most modern applications use reflection. We noted that as it was

used in a non-trivial manner in ArgoUML. In our previous study [AVDS10], we found

that nearly 2% of classes use reflection; certain parts of the application are unreachable

without the use of this reflection. The limited support in existing tools encourages us to

investigate alternative ways to support dynamic features in modern languages. Existing

techniques include combining static and dynamic analysis as [BSSM10].

6.3.6.4 The Generalisability of the Results

Our study demonstrates that combining information from different levels can im-

prove the identification of high-change classes. We must note that our results are based

on the observation of only one system, and we therefore cannot generalise beyond this

system. However, we believe that we have found an interesting research avenue as we

explicitly treat method calls as complex graphs. Furthermore, the fact that we merely

replaced part of a quality model by a more sophisticated sub-model and that our results

improved is an indication that it is possible to improve on state of the art practices basing

our quality models on a purely static analysis of code.

6.4 Related Work

In this chapter, we presented change models, but our primary purpose was not to

conduct research specifically in that area. We used these models as a test bed to test our

multi-level quality models. Here, we briefly describe existing work on change prediction

and changeability evaluation.
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There are different studies that focused on predicting software changeability. In one

of the first articles assessing maintainability, Munson and Khoghoftaar studied the use of

procedural metrics to identify high-change modules [MK92]. When large OO systems

started being produced, researchers performed similar studies on OO systems. Li and

Henri conducted the first study of the maintainability of classes when they tried to pre-

dict changes in classes using two size metrics as well as the CK metrics suite [LH93b].

Arisholm et al. [ABF04] compared the performance of dynamic and static coupling met-

rics for the classification of change-prone classes. Koru and Lio identified used sev-

eral metrics to identify and characterise high-change classes [KL07]. Finally, Koru

and Tian investigated how well high values of metrics corresponded to high levels of

change [KL05]. What these different studies share is that they use method-level metrics

that are aggregated implicitly or explicitly to assess the changeability of classes. Our

research challenges the assumptions that class-level metrics are sufficient to predict the

changeability of classes.

Other studies evaluated the changeability of classes that compose design patterns

and design defects [DCGA08, KGA09, KDG09]. Khomh et al. [KDG09] considered the

effect of bad smells on the changeability of classes. They found that classes presenting

more smells were more likely to change. We noted that some smells affect the methods

(e.g., Long parameter list), others affect classes. They considered that when at least one

“smelly” method was found, the class presented the smell. From our point of view, we

believe that these smells should have been studied at the method-level

Design patterns are another example where composition comes into play. In [KGA09],

Khomh et al. investigated the relationship between the change frequency of a class and

the roles it plays in a design pattern. They found that classes playing one or more roles

tend to change more than those playing no roles. Furthermore, these classes tend be

more complex (as measured by many metrics). This work is similar to ours as they

consider quality in the composition of classes. Classes are combined by role to form a

design pattern. What they investigated was the effect on a class “being contained” within

a pattern whereas, we consider the opposite relationship: a class “containing” methods.

In [DCGA08], Di Penta et al. showed how specific roles in design patterns affect the
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change-proneness of a class.

6.5 Conclusion

The majority of existing models predict quality using metrics extracted on a software

entity as a whole. They do not explicitly consider the fact that most of these entities are

in fact containers. Yet, many commonly used metrics are in fact aggregates of lower level

data, but the aggregation mechanisms used are naive. In this chapter, we introduced the

notions of quality composition using component quality models and that of importance

functions.

Our approach was presented on the example of class changeability. We adapted

an existing change model to include method-level information and tested it in an ex-

ploratory study. Our study showed that using component-level quality models increases

the discovery of high-change classes. Furthermore, we show that using an intelligent im-

portance function (Markov Centrality and Page Rank) produced the best rankings. The

next logical step would extend this study to additional systems to ensure that the results

found are generalisable.

Nevertheless, we consider our results to be very interesting as they open many re-

search perspectives. In particular, we found that central methods tend to change more

often than non-central methods, but there are many other aspects of software that could

be used to assess importance. We believe that there is a lot of potential work to be

done in assessing importance. For example, we could build cognitive models describing

how quality engineers explore a code base instead of simply using execution possibili-

ties. However, building such models is non-trivial as it requires data to analyse. This

type of data is currently unavailable and would require controlled experimentation to be

collected.





CHAPTER 7

COMPOSITION OF QUALITY FOR WEB SITES

Although, we focused on the quality of object-oriented software in previous chap-

ters, we also explored the use of our type 3 models in other contexts. In this chapter,

we present a second application of our composition strategy: we applied the strategy

to the problem of evaluating web site navigability1. We decided to go outside of the

realm of traditional software development to show how composition models can bridge

the gap between a code-level view and a user-level view. This type of model could help

a development team focus its programming effort on adding value to users. We believe

that since web sites are mostly used by non-experts there is potentially much more high-

level data to exploit in quality models. Our site navigation model combines low-level

information from individual pages as well as the presence of site-wide navigation mech-

anisms.

Arguably the most important problem with evaluating navigability is that it depends

on the exploration strategy of a site by a user [Pal02]. As noted before, this is the case

with all high-level notions of quality, it is subjective; different users will use different

ways to navigate a site and have different opinions of their experience doing so. This

chapter consequently uses the same Bayesian modelling as in Chapter 4.

7.1 Problem Statement

In this section, we present how users navigate web sites and describe our adaptation

of our composition model to this problem.

1The content of this chapter is the subject of a publication at the 12th IEEE International Symposium
on Web Systems Evolution [VS10].
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7.1.1 Finding Information on a Web Site

A user typically has two options to find information on a web site. He can either

explore the site, going from page to page by following links or, if available, he can use

other features like a search engine to access pages directly. Consequently, the general

navigability of a web site needs to take into consideration both ways to navigate the site.

First, it needs to evaluate the impact of visiting every page on the navigability of the web

site. This means that the model should evaluate how easy it is to find the appropriate

link to follow on every page and combine this to the probability that a user will be on

that page. Thus two models are involved: a page quality model and a navigation model.

In addition, our method must take into account the alternate navigation mechanisms that

are provided by the web site.

From an exploration perspective, a web site can be viewed as a directed graph; for-

mally, G ⇒ 〈V,E〉 where V and E are respectively the set of vertices representing the

pages and the set of directed edges representing links between pages. An edge (u,v)

represents a link in the page u to the page v. Vertex u, is called the head of the link and v,

the tail. For vertex u, the out-links is the set of links with u as the head, representing the

links to the other pages, and in-links is the set with u as the tail, representing the links to

u from the other pages.

A user requiring information located at page pdest needs to find a path (p1, p2, ..., pdest)

in G that takes him from his origin p1 to his destination pdest . In terms of the graph, this

is a greedy path-finding problem where at any given page a user needs to figure out

which out-link leads him closer to his destination. A site with good navigability should

ensure that few steps are required to reach any destination. Some potential navigation

difficulties arise due to pages with inadequate link identification (e.g., no titles and bad

anchor text) or to pages that overwhelm him with too much information (e.g., the user

needs to scroll down to find the correct link). There are consequently two sources of

information that influence this view of navigability: the quality of individual pages, and

the presence of these pages on an exploration path.

Another option available to a user is to use a search engine. By using the search
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engine, the user jumps directly to another page. Exploration is pertinent even if the site

has been indexed by a search engine because, lacking the correct keywords, a user may

not find the page he needs from the index. The two methods of navigation are thus

complementary.

7.1.2 Assessing Site Navigability

Figure 7.1 shows our composition model adapted for the evaluation of web site nav-

igability. The three sub-models handle respectively three kinds of decisions: the naviga-

bility at individual pages (white boxes), the importance of each page in the site to weight

the contribution of its navigability (light-gray box), and the navigability at the site level

(dark-gray box).

Figure 7.1: Navigability Evaluation Process

The different models describe the following aspects of navigability:

• The Page-level model describes the ability of a user to find relevant navigation

information on a given web page. This information can either be to find the correct

link to follow, or whether or not the page follows standard navigation practices that

allow users to go to the site’s home page or simply go back.

• The Composition model describes how likely a user will land up on a given web

page, and need to interact with the page.



120

• The Site-level model uses both the result of the composition model and a set of

site-level metrics. These site-level metrics describe the navigation mechanisms

available site-wide. For example, the presence of a search engine is a site-wide

mechanism.

7.2 Related Work

There is an abundance of information describing how to build usable Web sites

(e.g., http://usability.gov). This information is typically provided by practitioners.

However, unlike usability, the problem of building navigable sites is mostly the subject

of research articles. Zhang et al. [ZZG04] proposed complexity metrics to evaluate nav-

igability. Newman and Landay considered it as one of three aspects affecting the quality

of the interface design of Web applications [NL00]. Olsina et al. [OLR01] decompose

quality hierarchically and navigability is a factor affecting the suitability quality sub-

characteristics. Zhou et al. [ZLW07] proposed a navigation model that abstracts the user

Web surfing behaviour as a Markov model. This model is used to quantify the naviga-

bility. Cachero et al.

[CCMG+07] used a model-driven approach to define a model for the measurement of

navigability and a process for evolving this model. Finally, Ricca and Tonella [RT01]

propose using the UML to represent Web pages. Using this representation, they present

TestWeb, a tool to generate test cases.

Other methodologies consider additional characteristics to assess quality of web ap-

plications. For instance, Olsina et al. [OLR01] define WebQEM (Web Quality Eval-

uation Methodology). Albuquerque et al. [AB02] suggest FMSQE (Fuzzy Model for

Software Quality Evaluation) model. The model uses fuzzy logic and presents a quality

tree for e-commerce applications. It takes into account problems related to uncertainty

during quality evaluation. Shubert et al. [Sch03a] develop EWAM (Extended Web As-

sessment Method). The method is based on Fishbein’s behavioural model and Davis’

technology acceptance model. It is applied to e-commerce web sites and is supported by

a tool. Recently, Mavromoustakos et al. [MA07] use importance-based criteria for eval-
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uating requirements in their quality model WAQE (Web Application Quality Evaluation

model). Regarding the use of probabilistic approaches for quality assessment, Malak

et al. [MSBB06] propose a method for building web application quality models using

Bayesian networks. The approach of Malak et al. was used by Caro et al. [CCdSP07]

for the particular case of web portal data quality.

Finally, there is work done to model the behaviour of a user navigating a web site to

find specific information [CRS+03]. This work is very similar to the use of call graphs

(described in Section 6.3) that are used to identify what methods can be invoked for

a given execution. In our quality models, we are not interested in understanding the

behaviour of users conducting specific activities (e.g., finding information X located on

page Y ), but rather we want an estimate of the general acceptability of a site.

7.3 A Multi-level Model to Assess Web Site Navigability

In this section, we present the details of our multi-level navigability model. We start

by presenting the special type of Bayesian models used called Bayesian Belief Networks.

Then, we present the page model, the composition model, and finally, we finish with the

site-level model.

7.3.1 Bayesian Belief Networks

The models proposed are based on Bayesian Belief Networks (BBNs) [Pea88], a

specialised version of Bayesian models. BBNs are useful when there are too many

inputs for a conventional Bayesian model. Probabilistic modelling is based on Bayes’

conditional probability theorem, which combines the inherent probability of an output

(A) with its dependence on inputs (B) as well as the probability of (B) occurring. This is

expressed by the following equation:

P(A|B) = P(B|A)×P(A)/P(B) (7.1)

A problem with traditional Bayesian models is that we need to consider the effect

of every combination of inputs on an output. To consider the effect of n binary in-
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puts, we would need to build conditional probability tables (CPTs) describing what the

model should predict given 2(n−1) combinations. BBNs use a graph structure to organise

conditional dependencies and limit the size of the problem, thus simplifying the prob-

lem [Hec95].

A BBN [Pea88] is a directed, acyclic graph that organises the dependencies of a

set of random variables (X ). Every vertex of the graph corresponds to a variable and

every edge connecting two vertices indicates a probabilistic dependency from the head,

called parent, to the tail, called child. The random variables represented in the graph are

only conditionally dependent on their parents. Each node Xi in the network is associated

with a conditional probability table that specifies the probability distribution of all of its

possible values, for every possible combination of values of its parent nodes.

When building a BBN, each vertex should correspond to either a concept that is ob-

servable (and measurable) or to a decision point given inputs defined by parents. The

edges should be used to represent causal relations between vertices and allow a devel-

oper to interpret the results of an evaluation (e.g. the output is caused by this input).

This structuring can be done either automatically using heuristics found in the literature

[Pea00] or manually to correspond to a specific decision process. Since there is abundant

information on how to evaluate the quality of web sites, we chose the latter. The structure

only determines the dependencies between variables, the exact joint distribution needs

to be defined in the form of a CPT. Theses tables can be learnt using historical data, or

entered by an expert.

7.3.2 Assessing a Web Page

To assess the navigability of a web page, we adapted a BBN from [MSBB10]. This

model is presented in Figure 7.2. In their study, the authors presented and validated a

model that evaluates the navigability of a page with the possibility of using site-level

mechanisms. This model was obtained using a GQM approach [BCR94] to refine nav-

igability characteristics collected from ten sources (model proposals, standards, guide-

lines, etc.) In our proposed approach, as we separate page and site influences, navigation

mechanisms are moved to the site-level model. Figure 7.3 presents this modified BBN.
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Figure 7.2: The original page-level navigability model: site-level metrics are identified
in light gray

Figure 7.3: The modified page-level navigability model

We conserved the CPTs from this original BBN.

The decision of whether or not a page is easily navigable (navigability node) directly

depends on three sub-characteristics: the ability of a user to identify the correct link

to follow (UserFeedback), his access to available navigation mechanisms (Bind), and

the size of a downloaded page (PageSize). Both the UserFeedback and the Bind nodes

are intermediate decision nodes, which depend on other sub-characteristics that are then

decomposed into metrics. This model has 10 inputs that are described in Table 7.I.
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Table 7.I: Inputs to the navigability model
Metric Node Type

Page Size PageSize measure (count)
Ratio of links with titles LinkTitle measure ([0,1])
Ratio of links with text LinkText measure ([0,1])
Significance of page URL Meaningful URL binary
Indication of location in web site CurrentPosLabel binary
Visited links change colour VisitedColour binary
Presence of breadcrumbs PathMechanism binary
Number of links in page NumLinks measure (count)
Link to home (Home) LinkToHome binary
Support for Back Button (BB) BackButton binary

7.3.2.1 Input Metrics

In our model, every input needs to be converted to a random discrete variable. Bi-

nary metrics with two values: {T,F} are handled directly; but numeric metrics must

be converted to a set of discrete ordinal values, e.g., low,medium,high. These values

should reflect what a user might answer in a survey. For example, he might state that, for

a particular page, there are breadcrumbs, P(PathMechanism= T ) = 1 and that there are

many links P(LinkNumber = High) = 1. However, it is not only unfeasible to maintain

a group of users on hand whenever a developer wants to evaluate his site, it is unlikely a

user will be able evaluate every page in a large site. Consequently, this process needs to

be automated as well.

From the automation perspective, binary metrics fall into two categories. For the first

one, it is possible to determine automatically if the value of the metric is true or false.

For example, by analysing automatically the HTML source, one can decide whether the

visited links change colour (VisitedLinkColor= T ) or not (VisitedLinkColor= F).

Metrics of the second category are more difficult to extract automatically. This is

the case, for example, of PathMechanism. Indeed, we can decide whether or not there

are breadcrumbs only by using a heuristic rule. The rule uses two symptoms: the name

and identifiers of divisions and the names of CSS (presentation) styles. If either element

contains terms like “breadcrumbs”, then it is likely that the page contains breadcrumbs.

Deciding into which group a given metric should fall corresponds to a classification

problem. As we are dealing with heuristic, rules are encoded as classification BBNs
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where, given a set of symptoms S, the probability that the metric belongs to a class C

(T or F) is determined by P(C|S). An example of a BBN implementing the rule for

breadcrumbs is given in Figure 7.4. The CPTs corresponding to these rules were trained

on a set of randomly selected pages.

Figure 7.4: Binary input classification

To transform the numeric metrics into probability distributions, we calculated the

probability that the metric would be classified, for example, as “low”, “medium” or

“high” given a metric value. The exact number of classes depends on the attribute. The

process followed is described in [SBC+02]. First, we extracted metrics from a set of ran-

domly downloaded pages (over 1000). Second, for every metric, we derive the classes’

membership functions using fuzzy clustering. We used fuzzy kMeans clustering to find

k centroids corresponding to the k classes (three in the case of low,medium,high). In this

classification algorithm, k could be specified (usually two or three) or could be decided

using Dunn partition coefficient [Tra88], which measures the quality of a classification

(k that produces the best classification). Finally, the probability of a metric is calculated

on its relative distance to the value with its surrounding centroids as we did in Section 4

when we used box-plots.

7.3.2.2 Executing the Model

The navigability of a page is assessed by evaluating the probability that the naviga-

bility node is true (P(Navigability= T |inputs)) given the BBN structure and parameters

(CPTs). Navigability only depends on its three parents nodes, two of which need to be

recursively evaluated until an input node is reached. The value of input nodes needs to be

computed on the evaluated web page. The precise CPT is shown in Table 7.II. The prob-
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ability of having a good navigability (Nav) would be calculated by evaluating the effect

of all possible values (d) of the parent nodes (shortened to Bind, Size and Feed) on Nav

(illustrated in Equation 7.2). The individual parent nodes would need to be recursively

evaluated.

P(Nav= T ) = ∑
Bind,Size,Feed∈{d}

P(Nav|Bind,Size,Feed)P(Bind,Size,Feed) (7.2)

Table 7.II: Page navigability CPT
Bind PageSize UserFeedback True False

True High True 99% 1%
True High False 55% 45%
True Low True 80% 20%
True Low False 35% 65%
False High True 55% 45%
False High False 10% 90%
False Low True 45% 55%
False Low False 1% 99%

7.3.3 Navigation Model

The role of the navigation model is to evaluate the importance of each page, i.e., the

probability that a user will transit by that page to reach the desired page. This information

is used to weight the navigability scores obtained by the page navigability model in order

to produce a unique input to the web site navigability model.

Many existing algorithms decide on the importance of a page given the topology of

the site. One of the best known algorithms is the PageRank [PBMW99]. It determines

the probability that a user randomly clicking links will reach a given page. This particular

algorithm discriminates against pages with large numbers of outgoing links and few

incoming links. Yet, with regards to navigation, these pages are relatively important

since they provide a way for users to reach many possible destinations.

Our algorithm to compute importance is also based on random walks, but differs
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in the sense that it assigns more importance to transit nodes (like the home page).

For every given navigation depth, it calculates the probability a user will reach a page

given that at every page p he has a uniform probability of following any outgoing link

(1/outlinks(p)). The precise algorithm used is based on a breadth-first search and is

presented in the following Algorithm:

Algorithm:Visit probability

Inputs : home: the start page
Inputs : outlinks: a vector of outlink for a page
Outputs: weight: a vector describing the relative weight of a page
Q⇐ empty−queue

mark[home]⇐ visited

weight[home_page]⇐ 1
Clicks⇐ 0
enqueue home into Q
repeat

dequeue page from Q
foreach Link(page,v) ∈ outlinks(page) do

weight[v]⇐ weight[v]+weight[page]/|outlinks|
if mark[v] 6= visited then

mark[v]⇐ visited

enqueue v into Q
end
Clicks⇐Clicks+1

end
until Q is not empty ;
forall v ∈ weight do

v⇐ v/Clicks
end
return Visits

The way of modelling navigation will lend more weight to the home page, espe-

cially in shallow sites, which is normal when we consider that most users need to transit

through there. As with the breadth-first search, the algorithm assumes that a user will

only visit a page at most once. This is understandable since a user that is trying to locate

information enabling him to return to a previously visited page, will likely go back and

try another link instead of continuing on. The number of total possible clicks is used to

calculate the relative weight of a page between [0,1].
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The contribution of a page to the navigability of the site is determined by the func-

tion weighted_importance (Equation 7.3) where prob(page) is the probability that a

user will visit page and nav(page) is its navigability score as judged by the page-level

navigability model.

weighted_importance(page) = prob(page)×nav(page) (7.3)

The total page navigation score of a site is calculated by the function total_page_nav

(Equation 7.4). As expected, when all of the pages are of the same quality q, this func-

tion also returns q, no matter the contribution of the navigation model. Furthermore, a

common situation is when there are many pages at a same depth that follow the same

template. This is sometimes due to dynamic generation of pages. In this case, the influ-

ence of the template will be relative to the number of pages generated.

total_page_nav(site) =
∑p∈siteweighted_importance(p)

|site|
(7.4)

7.3.4 Assessing a Web Site

The navigability of a site depends both on the ability of a user to navigate pages to

find the desired page and the presence of site-level mechanisms. Three such mechanisms

are the presence of a menu, a site map and a search engine. All three mechanisms allows

for quick moves around different parts of the site.

A standard navigation menu in a site allows users to quickly switch to different parts

of the site. Even though the menu provides links, which are taken into account when

calculating the navigation path, semantically, a menu has a specific meaning for users,

which improves a site’s navigability. The same can be said of a site index, which links to

many other pages, but essentially provides a sense to how the site is organised and how

to navigate. Finally, a search engine allows access to parts of the site that might not be

explicitly linked.

The proposed model is illustrated in Figure 7.5. It combines the concept of navi-

gation mechanisms (a sub-graph) and page navigability (the other sub-graph). For the
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sub-graph NavigationMechanisms, we reused the CPT given at the page level of the

work in [MSBB10]. The input PageNavigability takes the probabilities obtained from

Equation 7.4.

Figure 7.5: Site-level quality model

7.4 Case Study

In this section, we present a study that serves to establish whether or not the model

correctly simulates the judgement of a user. Then, we show how the model can be used

to guide maintenance efforts on a site.

7.4.1 Study Setup

Two groups of web sites were analysed: a group of “good” sites and a group of

randomly sampled sites. The good sites are either Webby award winners or nomi-

nees2. In the judging process, different experts evaluate the sites according to six criteria

including their navigability. The randomly selected sites are pages linked by http:

//www.randomwebsite.com; they include both personal sites as well as large busi-

nesses. The set of good and random sites is disjoint. In this study, we test whether or not

the model finds a significant difference in navigability between the “good” sites and the

random ones. To this end, we perform a mean- difference test. t-test is used if the data is

2http://www.webbyawards.com/webbys/
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normally distributed. If not, a Mann-Whitney test is used instead. Normality distribution

is checked using a Kolmogorov-Smirnov test. The tested groups contain respectively 9

good sites and 14 randomly selected sites.

To download and evaluate the sites, we built a web crawler based on HtmlUnit, a

web-testing library. HtmlUnit3 supports JavaScript heavy pages. It allows our crawler to

treat the majority of sites. We also used this library to extract metrics. The two quality

models were built and executed using BNJ4, a library for probabilistic reasoning.

7.4.2 Navigability Evaluation Results

The results of our experiments are shown in Figure 7.6. Our approach clearly differ-

entiates the sites with good navigability from those that were selected randomly. Good

sites had an average navigability score of 0.74 vs. 0.51 for random sites. The scores

were normally distributed as indicated by a Kolmogorov-Smirnov test. Using a t-test

(Table 7.III), we found that the difference is statistically significant with a p-value of

0.00. We can then reject the null hypothesis that there is no difference between the two

groups in terms of navigability as evaluated by our model. We alternatively confirm that

the navigability model is able to correctly discriminate between web sites.

Table 7.III: Independent samples test
t df Sig. (2-tailed) Mean difference Std. error diff.

4.871 11.328 .000 .22365 .04592

7.4.3 Discussion

In addition to confirming statistically that our model is able to discriminate between

web sites in terms of navigability, our results allow us to look closely to three additional

points of interest: (1) can our model handle pages generated from templates? (2) is it

necessary to evaluate exhaustively all the pages of a site?, and (3) how could we use the

navigability model to improve a web site?.

3http://htmlunit.sourceforge.net
4http://bnj.sourceforge.net
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Figure 7.6: Navigability scores for good and random sites

For the first point, we noted that the “good” sites were much larger than the average

site and make heavy use of templates. As we conjecture in Section 7.3.3, our navigation

model correctly manages these sites. Our work could be enhanced by the inclusion of

wrapper (template) inference techniques [CMM02] that can automatically identify these

templates.

The second point of interest is that we did not see any significantly different score

in navigability between analysing a complete site (thousands of pages) and a portion of

the site (a hundred of pages). This is good news since sampling pages from a large site

is sufficient for its evaluation. However, what is the determining factor is actually the

depth of the search since it is at different levels that page quality tends to vary.

A final important point that is worth discussing is how to use our model to improve

navigability. This is important because a recurrent concern of industry is the relation-

ship between quality evaluation and quality improvement [SGM00]. Figure 7.7 shows,

for example, the result of the execution of our model on a good site. The navigability

of this site is considered good with a probability of 77.5%. The developers/managers

could consider that this probability is not high enough and that they could improve the

site to increase its navigability. Given the fact that there is a site menu (NavigationEle-
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Figure 7.7: Initial model

(a) With site map (b) No site map

Figure 7.8: Potential improvements to the site
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ments) and a search engine, there are two possible ways to improve the site: improve

the navigability of the pages, and/or add a site map. Already the site-wide mechanisms

are judged to be relatively good with P(NavigationMechanisms= good) = 85%, but the

page navigability is relatively bad (P(Pages= good) = 51%).

An important property of BBNs is that we can set the probabilities of any node

(including the Navigability node) and standard algorithms can update the probability

distribution of other nodes accordingly. Let’s set a managerial objective of increasing

general navigability to a level corresponding to a probability of 85%. A manager could

set the output node’s value to 85% and try two configurations: keep the site without a

map (P(SiteMap= Yes) = 0) and add a site map (P(SiteMap= Yes) = 1). With a site

map, page-level navigability needs to increase to 54% (Figure 7.8(a)) to reach the man-

agerial objective of 85% (almost equal to the current value of 51%). Without the site

map, page-level navigability needs to be increased to 72% (Figure 7.8(b)). The develop-

ment team could then estimate the cost of adding the map and the cost of modifying the

pages and find the cheapest solution. For the second solution, as we know the individual

navigability of the pages as well as their respective importance, some pages could be

targeted. For a particular page, we can repeat the output-probability setting to determine

the improvement option at the page level.

7.5 Conclusion

We applied the composition strategy presented in Chapter 6 to the problem of eval-

uating the navigability of web sites. We did so for four reasons. First, it shows that the

proposed approach can be applied to more than one problem. Second, it bridges the gap

with Chapter 4, as navigability is a subjective notion. Third, it shows how an aggregation

mechanism can be used to provide information from one stakeholder (HTML program-

mer) to a higher-level stakeholder, the site owner. Finally, we showed how to use the

model to guide improvements, an issue raised in Chapter 5.

There exists related work proposing models to evaluate different characteristics of

web sites. However, these models target either the page or the site level, and do not



134

provide explicit mechanisms to integrate both. Furthermore, most models are guidelines,

which have not been validated on real data. In this chapter, we proposed a simple way

to aggregate page-level information to evaluate the quality of sites based on a random

walk strategy. To evaluate the proposed model, we conducted a study on a sample of real

web sites. Our results show that our multi-level navigability model is able to correctly

discriminate between sites considered excellent and randomly selected sites.

The study presented here was a proof of concept that shows that it is possible to

build and use a model to support all three model-improvement dimensions. This study

could serve as a stepping-stone for a more extensive study, which would require a larger-

scale validation. Furthermore, it could be interesting to extend some of our previous

work [VBSH09] where we proposed a method to recommend improvements to a web

page on the basis of a quality model. Given a model, a set of possible transformations,

and an estimate of available resources, that method proposed an optimised sequence of

transformations to apply to a page. Considering the problem complexity, meta-heuristics

were used to find this sequence of transformation. We believe that such an approach

could be adapted to work in a multi-level model.



CHAPTER 8

CONCLUSION

As society becomes ever more dependent on computer systems, there is more and

more pressure on development teams to produce high-quality software. Clients now

expect modern systems to be delivered at little cost, and be flexible enough to satisfy

not only current needs, but their future needs as well. These expectations are such that

in order to ensure a certain level of quality in their systems, companies have invested

significant resources developing auditing tools like quality models.

Ideally, one would like to develop a system that could analyze a program and com-

pute its quality. Unfortunately, proper evaluation requires intelligence, just like eval-

uating the literary merits of a novel. In our case, a "quality analyzer" would have to

understand how a program works and see how this corresponds to the objectives of the

designers as well as best practices. Current models are much cruder: they try to predict

quality attributes like fault density or maintenance effort, based on low level source code

statistics, like code size or coupling between modules. Research in this area can be frus-

trating because we know, a priori, that the relation between measured inputs parameters

and "quality" is tenuous. At best, current models try to identify "problematic" bits of

code based on extreme metric values. Modelling often relies on machine learning, train-

ing on historical data. Even here we run into problems because clean, representative data

is hard to find. However, quality is important and any progress in state of practice has

high pay-off.

We worked with a large industrial partner to find operational problems that were

not adequately addressed in the literature and see what could be done to improve the

situation.

• Industrial quality models similar to those built by our partner lack proper empirical

validation;

• The thresholds found in these models are often arbitrary;
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• The use of thresholds does not allow for graded judgment;

• Models use standard aggregation mechanisms without verifying if these mecha-

nisms are correct;

• Models are not prescriptive. They do not suggest how best to correct problems

found;

• Models are not management-oriented. The information they produce tends to be

only useable by coders/quality engineers.

Even though our partner performed a literature review and tried to follow what it

thought were best practices, we could still observe fundamental problems in its models.

We do not believe this is an isolated case as many industry reports describe similar

problems.

8.1 Contributions

In this dissertation, we presented these problems in a study of our industrial part-

ner’s quality modelling approach and proposed ways to improve the state of the art of

quality modelling practices. We explored three dimensions to improve quality modelling

practices: subjectivity, evolution, and composition.

During the course of this dissertation, we made the following contributions:

8.1.1 Handling Subjectivity

We believe that part of the problem with using thresholds and hard rules is that dif-

ferent people have varying opinions on what is good code. We proposed a method to

identify high-level, subjective quality indicators and tested it on the problem of efficiently

detecting the presence of anti-patterns. Existing, state of the art techniques are based on

detection rules written by experts and classify code as either as “clean” or “unclean”.

This binary classification was shown to be inadequate because there were only a few

cases where a class was unanimously considered an anti-pattern in the corpus studied.
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Instead, we built Bayesian models to predict the probability that a quality engineer would

consider that the design of a class is a defect. In these models, subjectivity is encoding

using Bayes’ theorem.

The models built using our method produced results equal or superior to existing

rule-based models, and allowed for a flexible browsing of the candidate classes. Addi-

tionally, we showed that by returning ranked results, we can improve the efficiency of a

manual validation of the set of candidates.

8.1.2 Supporting Evolution

Suggesting improvements is a key aspect of what IV&V teams do. It is therefore

essential to get a better understanding of what type of quality evolution patterns exist

in software systems. Using an anti-pattern detection model, we presented a technique

to track the quality of evolving software entities. The vast majority of existing quality

models evaluates the quality of a snapshot of a system. There are many cases when a

team wants a dynamic view of the system under development in order to determine if

development is improving or degrading its quality. For example, our partner is interested

in identifying if the quality of certain parts of a system has degraded for contractual rea-

sons, or to evaluate if a development team is adequately correcting previously identified

problems. We proposed a technique to use a quality model to find interesting patterns

in the evolution of the quality of classes. We consider sequences of quality scores as a

signal and applied signal-based data-mining techniques. We were able to find groups of

classes sharing common evolution habits.

In a study of two open-source systems, we found that vast majority of classes ex-

hibiting the symptoms of Blobs are added to the program with these symptoms already

present. This type of anti-pattern is consequently not the result of a slow degradation

as sometimes expressed in the literature. Furthermore, many of these classes that seem

to implement too many responsibilities play roles in design patterns, a structure that is

typically thought to be a sign of good quality. In the systems studied, we also found that

code correction is rare, more often than not, bad classes are replaced.
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8.1.3 Composing Quality Judgements

Software is developed using different levels of abstraction, yet quality models gen-

erally do not explicitly consider these abstractions. Our partner however expressed the

need for quality models at various levels. In the company, IV&V team members want

detailed information concerning what parts of the system need additional testing/inspec-

tion, yet managers want to use a model to get an aggregate view of quality. In order

to estimate a higher-level view of quality, we performed a detailed study of different

aggregation strategies that combine quality information from a level of granularity to

another.

We performed a study to identify high-change classes using both method and class-

level metrics. We tested both traditional aggregation techniques and a new importance-

based approach. We found that building a simple model relying only on size (measured

by the number of statements) produces the best global inspection efficiency. This model

is however outperformed by our importance-based approach when trying to identify the

most changed classes. Since an IV&V team does not inspect the totality of results, and

focuses on the riskiest classes, we showed that our approach, using the PageRank algo-

rithm on statically generated call-graphs outperforms existing aggregation techniques.

We would like to note that our use of statically constructed call-graphs to approximate

runtime behaviour in quality models is new.

8.1.4 Application to Web Applications

Finally, we applied our importance-based approach to the assessment of the naviga-

bility of web sites. Many modern applications are now web-based, and thus we tested

our importance models to evaluate whether or not a web site can be easily navigated by

a user. We adapted an existing, low-level quality model and used an aggregation strategy

to evaluate the site as a whole. Our technique could successfully differentiate between

random sites and good sites (winners of Webby awards). This work is one of the few

empirically validated studies in the field. This work served to connect all three previous

contributions. The mechanisms used support subjectivity; we showed how the model
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can be used to recommend improvements, and finally, our aggregation model produces

managerial-level quality estimates from code-level data.

8.2 Future Research Avenues

This dissertation started out as an exploration of why some software is good, and

other software bad. We would have liked to find some obvious laws of goodness, but

we quickly realised that metrics describing program structure are not necessarily a good

indicator of goodness. What we should be collecting and analysing is higher-level, se-

mantic information. This data however is not available. We consequently had to focus

on doing the best we could with the data at hand, a practice common in industry. We

identified certain research perspectives that we deem of interest for future work.

8.2.1 Crowd-sourcing

In many cases, it is nearly impossible to collect the opinions of experts to study.

An alternate way of getting opinions is by using crowd-sourcing. For simple activities,

instead of relying on highly trained “experts”, you pay individuals very small amounts

of money (in the dollar range) to perform simple tasks in their spare time. In fields

like translation [CB09], crowd-sourcing has produced better results than experts, while

being cheaper. A way to perform crowd-sourcing is by using mechanical Turks like

those provided by Amazon 1. These Turks might not be usable to evaluate software, but

could be used to conduct relatively inexpensive controlled experiments to evaluate Web

sites. This data could help improve the navigability model presented in Chapter 7.

8.2.2 Using Complex Structures instead of Metrics

Most research studies the influence of code-level metrics on quality indicators, but

what we would like to study is higher-order semantic data. We believe that the simplifi-

cation of our representation of code to a collection of metric values reduces the efficiency

1https://www.mturk.com/mturk/welcome
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of quality models. A quality model should be able to reason using the relation of differ-

ent code-level entities to assess the quality of a system. From an industrial perspective

metrics are useful because they can be extracted by easy to use commercial tools, and

included in different types of models, but from a research perspective, metrics are of

limited value. We believe that code should be treated using alternative representations

such as the following:

8.2.2.1 Predicates

In our work with Marouane Kessentini [KVS10], we represented code as predicates

encoding the interactions between methods, attributes and classes, and found that this

was worthwhile for the problem of anti-pattern detection. We believe that these results

could be generalised to general quality models, and that a richer representation of code

should improve the general performance of quality models. Of course, these analyses

are done at a significant cost in terms of performance.

8.2.2.2 Graph Representations

Another representation of code is as a graph. Graphs are commonly used to describe

both static and dynamic characteristics of systems. Call graphs are used to describe

executions, and abstract syntax trees are indications of the structure of code. In our

study of different composition strategies to combine the quality of methods on the qual-

ity of classes, we performed a graph analysis of a statically constructed call-graph to

approximate the runtime importance of methods. This graph representation allowed for

a more complex analysis of the flows of information than existing metrics (e.g., fan-in

and fan-out). In fact, traditional metrics measure attributes locally, but by analysing a

representation of a whole program, it is possible to get a more accurate view of these

attributes.
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8.2.3 Activity Modelling

In Chapter 6, we presented standard importance functions. Since these were applied

to call graphs, we considered that the importance of a method depends on its execution.

For quality characteristics like reliability, this assumption certainly holds true. However,

if we are interested in assessing the understandability of the code, we might want to

determine importance using a code exploration model that is independent of the notion

of execution. We believe that an aggregation model should be mapped to an activity, like

the exploration model we used for web sites. There is, however, research to be done in

understanding and modelling what types of activities are done on software.

8.3 Other Research Paths Explored

During the five years we spent completing this dissertation, we explored other aspects

of quality modelling that we do not detail for lack of space and sake of consistency. This

section serves to briefly summarize our findings and warn others who wish to pursue

these paths of the types of problems they can expect.

Software design as an enabler From the beginning of our research, we have always

believed that good software design does not necessarily imply good quality. Rather, it

is an enabler: a well structured/designed system should support the activities that are

performed by a development team. Following this idea, we need two things: 1) an idea

to know how developers plan on modifying the system, and 2) higher-order patterns (like

design patterns) to indicate the adequacy of a structure to support certain changes. We

did some preliminary work on this subject [VS07, VS08], but decided to move on to

other research dimensions because it was almost impossible to build an adequate data

set describing the activities performed by developers.

The influence of changes on fault-proneness The first two years of our work were

spent building change models [VSV08]. We built a corpus comprising over 10 systems

over multiple versions. This required a lot of grunt work as we had to download these
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versions either from source-code repositories, or from software archive sites. In many

cases, the code could not compile, or wouldn’t run after compilation. This work required

that we recover the set of dependencies required of every version of the system; some

dependencies were not available on-line anymore. We also had a problem determining

the origin of different software entities [GZ05]. In successive versions of the system, we

had to identify whether “new” software entities were simply old ones that were renamed.

We built tools to assist with this classification, but ultimately, we needed to validate the

results manually.

The effort required to build such a corpus was not worth the effort from a research

perspective as an impact of changes on quality indicators was either minor, or not statis-

tically significant. Consequently, the majority of the corpus created was never exploited.

We must however admit that by reading the code of these systems and by building the

tools to performs code analyses, we developed a clear understanding of the problems

we were trying to model and of the complexity of maintaining software. In our opin-

ion, the key problem with our approach is that we studied good open-source projects.

Open-source projects tend to be abandoned/forked when maintenance costs become too

high. Consequently, the data we collected corresponded mostly to programs with good

structures and few maintenance problems, the phenomenon we wanted to study.

Our recommendation to future researchers wishing to perform these sorts of analyses

is to take time to find projects with quality problems. These will likely 1) be very large

as there needs to be substantial motivation to keep a project alive when it is hard to

maintain, or 2) closed-source where clients would pay for this difficult maintenance. In

either case, researchers should expect spending a lot of time building, understanding and

analysing their corpus.

Recovering clean bug data from version control systems Wewere interested in find-

ing objective quality indicators, and the standard indicator of “bad quality” is the pres-

ence of bugs. In two open-source systems we analysed, we tried to manually locate bugs

from version control system logs and annotate classes with this data. We were confronted

with two problems. First, the notion of a bug depends on who looks at the code. A bug



143

for a user often did not correspond to a bug for the developer. In the systems analysed,

often these bugs pertained to parts of a specification that were not implemented yet. In

open-source projects, developers will generally deliver an “unfinished” product as soon

as the important parts are ready to get feedback from the community. In this context,

what a user might consider bug fix is in fact a new feature for the developer. In our

efforts to build a clean corpus, we found that it was almost impossible, as an outsider,

to differentiate an improvement to the code from a bug-fix without an explicit indication

of the intention of the developers (e.g., explicit mention of bug fixes in the versioning

system).

Second, the number of obvious bugs identified can be very low. In one of the systems

we inspected (JFreeChart), we looked at all the CVS logs (and relevant code) for several

years of development. We found that only a few (obvious) bugs had been released over

the course of a few years of active development. Therefore, the noise to signal ratio was

very high. The errors we found were also trivially corrected. For example, we found

badly encoded RGB colour schemes, an error introduced by a developer who incorrectly

entered a constant value that only caused minor issues for users.

Moral Obtaining large corpora of clean, representative software upon which to train

and test models is of primary importance to any prospective researcher in this area. And

he must necessarily spend an inordinate amount of time gathering, understanding and

analyzing data; the quality of the data will ultimately determine his research perspec-

tives. If he ignores the type of data he has and tries to go forward anyways, his results

will be built on shaky foundations.

Our recommendation is to reuse existing data sources, participate with other re-

searchers to build/maintain clean corpora, or work with a development team willing

to invest its time to providing insight as to what they did to a system and why they did

it. The latter option is the best way to gather high-level metrics. This also requires sig-

nificant investments for researchers who should build tools and integrate them within

developers’ tool sets. If metric gathering is difficult or expensive for a development

team, it will not be done properly.
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8.4 Closing Words

Our work has been well received by the research community. We published 10 arti-

cles in software engineering. We have two articles describing anti-pattern detection. The

first was presented at the International Conference on Quality Software (QSIC) [KVGS09]

and was selected for a journal extension. The other will be presented at Automated Soft-

ware Engineering (ASE) later this year [KVS10]. We had two articles on software evo-

lution presented at the Working Conference on Reverse Engineering (WCRE) [VSV08,

VKMG09], a top conference in reverse engineering. Work describing a semi-automatic

technique to improve web site quality was presented at the WISE conference, an im-

portant web engineering conference. Our work has been cited in [CHH+10, ZK10],

indicating that the community has accepted our work and is using it as a building block

for future research.

Previously, we commented on the inordinate amount of work we invested in acquir-

ing data, building metric tools and analysis. We estimate that we studied almost 200

person-years’ worth of development 2. This exposure to different development practices

has made us aware of the alternatives and complexities facing software developers. In

the future, our endeavours, whether in academia or industry, will be shaped by the work

we did for this dissertation.

2Based on a COCOMO estimation provided by http://www.ohloh.net
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Appendix I

Reformulating Class-level Metrics

In this appendix, we show how metrics from the CK metric suite [CK91] can be

formulated using lower-level entities. In fact, the class-level metric value is obtained by

using a naive combination strategy.

Coupling Between Object (CBO)

In [CK91], Chidamber and Kemerer defined the CBO of a class as the number of

other classes to which it is coupled. A class c is coupled to a class d if c uses d or d

uses c. A class c uses d if one of its methods invokes a method or accesses a field in d.

Briand et al. formally defined CBO as follows:

CBO(c) = |d ∈C−{c}|uses(c,d)∨uses(d,c)|

where C is a set of classes and c ∈C, and

uses(c,d) = (∃m ∈MI(c) : ∃m
′ ∈MI(d) : m

′ ∈ PIM(m))

∨(∃m ∈MI(c) : ∃a ∈ AI(d) : a ∈ AR(m))

where m and m′ are methods, MI(c) is the set of implemented methods in class c,

PIM(m) is the set of polymorphically invoked methods of m, AI(c) is the set of imple-

mented attributes in class c, and AR(m) is the set of referenced attributes in the method

m. An attribute a is in AR(m) if a is read or written in the body of the method m.

From our perspective, CBO is an aggregate measure that combines the coupling of

methods and attributes. We can reformulate this metrics by stating that CBO measures

the size of the set defined as by the union ofmethod_couplings and attribute_couplings.

This can be expressed formally as:
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CBO(c) = |method_coupling(c)∪attribute_coupling(c)|

method_coupling(c) = ∪m∈ccoupling(m)

attribute_coupling(c) = ∪a∈ccoupling(a)

coupling(m) = d ∈C|∃md ∈ d : uses(m,md)∨uses(md,m)

coupling(a) = d ∈C|∃md ∈ d : reads/writes(md,a)

It is important to note that when using coupling measured at the level of a class, we

lose important information as to which part of a class is responsible for this coupling.

Therefore, we believe that measuring coupling at the method-level is more meaningful

than at the class-level for our problem of identifying and locating high-change code.

Response For Class (RFC)

Chidamber and Kemerer defined RFC for a given class as the number of unique

methods that can be invoked in response to a message to an object of that class. Briand

et al.formalised this definition as follows:

RFC(c) = |M(c)∪m∈M(c) PIM(m)| where M(c) is the set of all methods in class c,

and PIM(m) is the set of polymorphically invoked methods of m.

Yet again, the RFC value of a class can be expressed as the union of the response set

(RS) of its methods.

RFC(c) = | ∪m∈cRS(m)|

RS(m) = m∪PIM(m)

As with CBO, we believe RFC should be measured at the method-level if we are

interested in high-change code.
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Weighted Method Complexity(WMC)

WMC was directly defined by Chidamber and Kemerer as the sum of the complexi-

ties of its methods:

WMC(c) = ∑
m∈c

complexity(m)

where complexity is left undefined, but has been implemented as unity or by using a

method-level metric like cyclomatic complexity. Since the metric is directly defined for

methods, we believe it should be used in a method-level model.

Discussion

By deconstructing these metrics, we wanted to show how they could be expressed

using lower-level models evaluating the same characteristics, and an aggregation model

to combine individual evaluations. We believe that a better understanding of how to

combine these method-level metrics can add flexibility to class-level analyses.

First, there are advantages in perfecting a method-level model. The most important

advantage is that the model could be built using historical data to reflect a customised

definition of method quality for a development team. This model could hopefully use

combinations of metrics to identify the semantics of methods. There are cases when the

standard version of the metrics explored produce counter-intuitive results. Let us con-

sider a class defining no methods and a public attribute. WMC would consider this class

as less complex than a clean, refactored version of the same class that has its attribute

encapsulated using accessor methods. A well-trained lower-level model might identify

the method as an accessor that should not affect the quality of the class.


