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ABSTRACT

Let p1 = 2,p, = 3,p3 = 5, ... be the sequence of all primes, and let ¢ > 3 and
a be coprime integers. Recently, and very remarkably, Daniel Shiu proved an
old conjecture of Sarvadaman Chowla, which asserts that there are infinitely
many pairs of consecutive primes p,, p,+1 for which p, = p,;1 = a mod q.
Now fix a number ¢ > 0, arbitrarily small. In their recent groundbreaking
work, Daniel Goldston, Janos Pintz and Cem Yildirim proved that there are
arbitrarily large  for which the short interval (z,z + elog x| contains at least
two primes congruent to a mod ¢g. Given a pair of primes = a@ mod ¢ in such an
interval, there might be a prime in-between them that is not = @ mod ¢q. One
can deduce that either there are arbitrarily large x for which (z,z + €logz]
contains a prime pair p,, = p,+1 = a mod ¢, or that there are arbitrarily large x
for which the (z, z+¢€log x] contains a triple of consecutive primes py,, pnt1, Pri2-
Both statements are believed to be true, but one can only deduce that one of
them is true, and one does not know which one, from the result of Goldston-
Pintz-Yildirim.

In Part I of this thesis, we prove that the first of these alternatives is true,
thus obtaining a new proof of Chowla’s conjecture. The proof combines some
of Shiu’s ideas with those of Goldston-Pintz-Yildirim, and so this result may be
regarded as an application of their method. We then establish lower bounds for

the number of prime pairs p, = p,+1 = a mod ¢q with p,.1 — p, < elogp, and
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Pni1 < Y. Assuming a certain unproven hypothesis concerning what is referred
to as the ‘level of distribution’, 6, of the primes, Goldston-Pintz-Yildirim were
able to prove that p,,1—p, < 1 for infinitely many n. On the same hypothesis,
we prove that there are infinitely many prime pairs p, = p,+1 = a mod ¢ with
Prnt1 — Pn <Lq0 1. This conditional result is also proved in a quantitative form.

In Part IT we apply the techniques of Goldston-Pintz-Yildirim to prove an-
other result, namely that there are infinitely many pairs of distinct primes p, p/
such that (p — 1)(p' — 1) is a perfect square. This is, in a sense, an ‘approx-
imation’ to the old conjecture that there are infinitely many primes p such
that p — 1 is a perfect square. In fact we obtain a lower bound for the num-
ber of integers n, up to Y, such that n = ¢, --- /¢, the ¢; distinct primes, and
(6 —1)--- (£, —1) is a perfect rth power, for any given r > 2. We likewise ob-
tain a lower bound for the number of such n <Y for which (¢;+1)--- (£, +1) is
a perfect rth power. Finally, given a finite set A of nonzero integers, we obtain

a lower bound for the number of n <Y for which [, (p+ a) is a perfect rth

pln
power, simultaneously for every a € A.
Key words: applications of sieve methods; primes in short inter-

vals; primes in progressions.



RESUME

Soit p; = 2,ps = 3,p3 = 5, ... la suite des nombres premiers, et soient ¢ > 3
et a des entiers premiers entre eux. Récemment, Daniel Shiu a démontré une
ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjecturé qu’il existe
une infinité de couples p,, p,.1 de premiers consécutifs tels que p, = p,y1 =
a mod ¢q. Fixons € > 0. Une récente percée majeure, de Daniel Goldston, Janos
Pintz et Cem Yildirim, a été de démontrer qu’il existe une suite de nombres
réels x tendant vers l'infini, tels que lintervalle (z,z + elogz| contienne au
moins deux nombres premiers = a mod q. Etant donné un couple de nombres
premiers = @ mod ¢ dans un tel intervalle, il pourrait exister un nombre premier
compris entre les deux qui n’est pas = a mod ¢. On peut déduire que soit il
existe une suite de réels x tendant vers 'infini, telle que (z, z+€log x| contienne
un triplet p,, pni1, Prnie de nombres premiers consécutifs, soit il existe une suite
de réels z, tendant vers l'infini telle que I'intervalle (x, x + €log z] contienne un
couple p,, pnr1 de nombres premiers tel que p, = p,+1 = a mod g. On pense
que les deux énoncés sont vrais, toutefois on peut seulement déduire que I'un
d’entre eux est vrai, sans savoir lequel.

Dans la premiere partie de cette these, nous démontrons que le deuxieme
énoncé est vrai, ce qui fournit une nouvelle démonstration de la conjecture de
Chowla. La preuve combine des idées de Shiu et de Goldston-Pintz-Yildirim,

donc on peut considérer que ce résultat est une application de leurs mthodes.
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Ensuite, nous fournirons des bornes inférieures pour le nombre de couples
Dns Pns1 tels que p, = ppa1 = a mod q, ppe1 — pp < €logp,, avec ppy1 < Y.

Sous ’hypothese que 6, le < niveau de distribution > des nombres premiers,
est plus grand que 1/2, Goldston-Pintz-Yildirim ont réussi a démontrer que
Pni1 — Pn < 1 pour une infinité de couples p,,, pp+1. Sous la meme hypothese,
nous démontrerons que p,4+1 —pp <Kqg0 1 €t P, = Ppy1 = a mod ¢ pour une infi-
nité de couples p,, pn+1, €t nous prouverons également un résultat quantitatif.

Dans la deuxieme partie, nous allons utiliser les techniques de Goldston-
Pintz-Yildirim pour démontrer qu’il existe une infinité de couples de nombres
premiers p,p’ tels que (p — 1)(p’ — 1) est une carré parfait. Ce resultat est
une version approximative d’une ancienne conjecture qui stipule qu’il existe
une infinité de nombres premiers p tels que p — 1 est une carré parfait. En
effet, nous démontrerons une borne inférieure sur le nombre d’entiers naturels
n <Y telsque n =y ---{,, avec {1,...,¢, des premiers distincts, et tels que
(64—1)---(¢,—1) est une puissance r-ieme, avec r > 2 quelconque. Egalement7
nous démontrerons une borne inférieure sur le nombre d’entiers naturels n =
Oy 4. <Y telsque (€1 +1)--- (¢, + 1) est une puissance r-ieme. Finalement,
étant donné A un ensemble fini d’entiers non-nuls, nous démontrerons une
borne inférieure sur le nombre d’entiers naturels n < Y tels que Hp|n(p + a)
est une puissance r-ieme, simultanément pour chaque a € A.

Mots clés : applications des méthodes de crible ; nombres premiers
dans les intervalles courts; nombres premiers dans les progressions

arithmétiques.
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1. INTRODUCTION

1.1 Part I: Strings of congruent primes in short intervals

Let p1 = 2,ps = 3,p3 = 5,... be the sequence of all primes. The prime
number theorem states that n ~ p,/logp, as n — oo, and hence
N
1 Pn+1 — Pn

N lOgT_)l as N — oo.

n=1

In this sense, the nth prime gap p,+1 — p, is around log p,, on average. From

this we also deduce that

lim inf 222 =P

n—oo Og Pn
In 2005, after decades of partial progress by various authors, Goldston, Pintz
and Yildirnm [17, 21] made a spectacular breakthrough by proving the long-

standing conjecture that

lim inf Prt1 7 Pn

=0.

In words, the nth prime gap is infinitely often arbitrarily smaller than average.
Before Goldston-Pintz-Yildirim, the most important development in this
direction had been the work of Bombieri and Davenport [7], in which it is

established that liminf, ... (pny1 — pn)/logp, < (2 + \/3)/8 = 0.46650. . ..
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Bombieri’s work on the large sieve [5] is an essential feature of [7], and of all
subsequent improvements of that result, including the work of Goldston-Pintz-
Yildirim. For a comprehensive historical background and survey of results
related to this problem, see [20, 21, 31].

In [19] Goldston, Pintz and Yildirim extended their original argument to
primes in arithmetic progressions. Thus if we fix coprime integers ¢ > 3 and a
and let p| < py < --- be the sequence of all primes = a mod ¢, as a consequence
of [19, Theorem 1] we have

/ o
lim inf Pui1 = Pn

=0.
e logp,

In other words, for any fixed € > 0, we have p/, ., — p|, < elogp], for infinitely
many n.

Given such a pair p/,, p/, . ;, there may or may not be a prime in-between them
that is not = a mod ¢q. Hence one can deduce that either there are infinitely
many pairs of consecutive primes p,, = p,+1 = a mod ¢q with p,,1—p, < €log p,,
or that there are infinitely many triples of consecutive primes p,, Pni1, Prio
with ppio — pp < €logp,. Presumably both statements are true, however one
can only deduce that one of them is true, and one does not know which one,
from the result in [19].

In [32], Shiu proved an old conjecture of Chowla that there are infinitely
many pairs of consecutive primes p,,, p,+1 which are both = a mod ¢. Indeed
he was even able to extend this to k consecutive primes. This was a spectacular
accomplishment. We will combine the methods of Goldston-Pintz-Yildirim and

of Shiu to establish the following hybrid of those results:



1. Introduction 3

Theorem 1. Let ¢ > 3 and a be integers with (q,a) = 1, and fix any € > 0.

There exist infinitely many pairs of consecutive primes py,, pp+1 such that p, =

Pny1=a mod q and DPnt1 — Pn < Elogpn-

We will adapt the proof of Theorem 1 to obtain a lower bound for the

number of prime strings up to a given number Y:

Theorem 2. Let g,a and € be fixed as in Theorem 1. For all sufficiently
large Y, the number of pairs of consecutive primes pp,...,pp+1 < Y, with

)A

P = Prg1 = amod q and ppi1 — pn < €log py, is at least Y1/3008108Y)" ppere

A = A(q) is a constant depending only on q.

This is rather weak as a quantitative result, but we will see that a technical
improvement in a certain part of the proof of Theorem 1 would yield something
better.

The notion of the level of distribution of the primes, which we will define
in Section 3.2, plays an important role in the literature on short gaps between
primes. It is known, by the celebrated Bombieri-Vinogradov theorem (see
Lemma 2.4.5), that the primes have level of distribution at least 1/2, and the
well-known Elliott-Halberstam conjecture (see [16]) asserts that they have level
of distribution 1. Goldston-Pintz-Yildirim [17, 21] proved that if the primes
have level of distribution 6 > 1/2, then liminf, . (pn+1 —pn) < H () for some
constant H (#) depending only on 6, H(0.971) = 16 ([21, Theorem 1]). We will

prove:
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Theorem 3. Let ¢ > 3 and a be integers with (¢,a) = 1, and assume the primes
have level of distribution 6 > 1/2. Then there exist infinitely many pairs of
consecutive primes py, Pni1 Such that p, = ppr1 = a mod q and pp1 —pn < H,
where H := H(q,0) is a constant depending only on q and 0. Moreover, if

0 > 20/21, then there is a constant L such that H(q,0) < q~.
This conditional result also has a quantitative form:

Theorem 4. Let ¢ > 3 and a be integers with (q,a) = 1, assume the primes
have level of distribution 6 > 1/2, and let H := H(q,0) be as in Theorem 3.
Then the number of pairs of consecutive primes p,, Pp+1 < Y, with p, = ppi1 =
amod q and pyi1 — pn < H, is .9 Y/(logY)BO  where B(0) is a constant

depending only on 6.

The proof of Theorem 4 concludes Part I of this thesis. In Part II we will
prove two more theorems, which are largely unrelated to theorems 1 — 4. There
is, however, a common thread linking the two parts of this thesis. Namely, the
technique used to prove Theorem 5 is based on the technique of Goldston-
Pintz-Yildirim presented in Part I. Part I is an expansion of a preprint [15] by
the author, and Part II is also available as a preprint [14] by the author. Both

preprints [14] and [15] have been submitted for publication.

1.2 Part II: Products of shifted primes simultaneously taking

perfect power values

If we pick a large integer close to x at random, the probability that it is a
perfect 7th power is around x'/" /2. We might expect the shifted primes p + a
to behave more or less like random integers in terms of their multiplicative

properties. Thus, if we take a large squarefree integer n close to x, we might
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naively expect that o(n) = [],,(p+ 1) & n is an rth power with probability

close to x!/"

/x. However, as we will see, the probability is much higher than
this, indeed more than %738 /z_ for any given r. We will even show that the
likelihood of ¢(n) and o(n) simultaneously being (different) rth powers is more
than 20249 /z. (As usual, ¢ denotes Euler’s totient function and o denotes the
sum-of-divisors function.) It would seem that rth powers are ‘popular’ values
for products of shifted primes in general.

If we only count those n with exactly r prime factors, we will show that the
number of such n up to x for which ¢(n) is a perfect rth power is
> 2'/7/(log 2)"*2, and likewise for o(n). Thus there are > x'/2/(logz)* inte-
gers n < x for which n = pq, p and ¢ distinct primes, and (p — 1)(¢ — 1) is a
square. This may be seen as an ‘approximation’ to the well-known conjecture
that there are infinitely many primes p for which p — 1 is a square. It is easily
seen that there is at most one prime p for which p + 1 is a perfect rth power
(r > 2), namely 3+ 1 =22 7+ 1= 23 and so on.

Given an integer > 2 and a finite, nonempty set A of nonzero integers, let

B(x; A,r) = {n < x @ n is squarefree and

Hp\n(p + a) is an rth power for all a € A}.

Banks et. al. [4] proved, among several other results, that |B(x;{—1},2)]|,
|B(z; {+1},2)] = 207397 and that [B(x;{—1,+1},2)] > 2'/47°M) where
o(1) denotes a function tending to 0 as x tends to infinity. Theorem 5 general-

izes both of these results.
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Theorem 5. Fix an integer v > 2, and a finite, nonempty set A of nonzero

integers. As x — oo, we have
1B(x; A, )| = at/2AI=o),
Moreover, if |A| =1, then as x — 00, we have
B(z: A, )| > 207039-0(1),

In the case A = {—1} (respectively A = {+1}), B(z;A,r) is the set of
squarefree integers n up to = for which ¢(n) (respectively o(n)) is an rth
power. There is no condition on the number of prime factors of n, but Theorem

6 concerns

B*(z;—1,7) = {n < z : n is squarefree, w(n) = r and ¢(n) is an rth power},

B*(xz;4+1,7) = {n < x : n is squarefree, w(n) = r and o(n) is an rth power},

where w(n) is the number of distinct prime factors of n.

Theorem 6. Fix an integer r > 2. For all sufficiently large x, we have

rat/T

|B*(z; —1,7)|, |B*(z;+1,7)| > (log )72

The implied constant is absolute.



Part 1

STRINGS OF CONGRUENT PRIMES IN SHORT

INTERVALS



2. PROOF OF THEOREM 1 AND THEOREM 2

2.1 The idea of the proof

In this section, for the sake of exposition, we will proceed on the hypothesis
that Siegel zeros do not exist. (In the proof of Theorem 1 we will have to deal
with the possibility that Siegel zeros exist, and we do so, unconditionally, in
a standard way. The complications that arise are only technical, and of little
interest.) Fix coprime integers ¢ > 3 and a. Let N be a real parameter tending

to infinity, fix an arbitrarily small number € > 0, and set

H :=¢clogN, Q:=q H p.

p<H/(log H)?

Then the set
S:={he€(0,H]: (Q,h)=1and h =amod ¢}

is precisely the set of primes p € (H/(log H)? H] such that p = a mod gq.

Consider

L = Z (Zﬁ(@n+h)—10g3QN)AR(”§H7k+€)2>

N<n<2N \ heS
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where Ag(n; H, k + () is a real weight which we will define in Section 2.2 (see
(2.2.7)). If £ > 0, then for some n € (N,2N], the nth term of the outer sum
is positive, and so the set {p € (@n,Qn+ H] : p = a mod ¢} must contain two
or more primes. Goldston, Pintz and Yildirim [19] showed that . > 0 for all
sufficiently large N, and hence there are infinitely many n for which the interval
(@Qn,Qn + H]| contains two primes. The great achievement of Goldston, Pintz
and Yildirnm was to find a weight Ag(n;H, k + ¢) that makes this argument
work, and we refer to [20] for a synopsis of the evolution of ideas culminating
in their groundbreaking work.

In fact, with the right parameters (R = N'/4=¢ and a suitable H), one can
show that

25 (aigg) () e

Q IS 2020+1) &k 1N (2.1.1)
g " (1-¢) - a+omn]

#(Q) log N (+1 kE+20+41

as N — o0o. One can then apply the prime number theorem for arithmetic

progressions, and Mertens’ theorem, to show that

LA g L g 9@
S @ oe H¢<q>g(l ;)T

as H — oo. (Here, v = 0.57721... is the Euler-Mascheroni constant.) The

point here is that the first term of {---} in (2.1.1) does not vanish:

Q 15

(Q)log N

>, € (2.1.2)

for all sufficiently large H, and hence N. It follows that we may choose k, ¢

and € in such a way that £ > , €(log N)k+26+1,
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As it turns out, if we only assume that

@ is a multiple of q,
() is composed only of primes p < H,
@ is divisible by all primes p < log H,

Q < exp (cH/(log H)?) for some constant ¢ > 0,

then the same estimate (2.1.1) still holds for .Z (with the same parameters R
and H). Now if (2.1.2) also holds, that is if

S| >, H (@) = ng (1 — %) : (2.1.3)

as one might expect, then . > 0. Therefore to prove there are infinitely many
n for which (@Qn,Qn + H] contains at least two primes = a mod ¢, we only
need to show that .Z > 0 for a sequence of N tending to infinity.

Relaxing the conditions on @ will allow us to incorporate the ideas of Shiu

[32]. Thus, suppose a = 1 mod ¢, and suppose for now that

Q=q [] »

p<H
p#Z1 mod ¢

If there are any primes in the interval (Qn, @Qn—+ H], they must all be = 1 mod q.
Such a @Q does not satisfy Q < exp (cH/(log H)?), but

Q=q [] »
)

peZ(H
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with
P(H):={p<logH :p=1modq} U{p< H/(logH)*:p#1mod q},

does, and we might expect that, if there are any primes in (Qn,@Qn + H],
they are more likely than not to be = 1 mod ¢. If most of the primes in
this interval are = 1 mod ¢, then it must contain a pair of consecutive primes
that are = 1 mod ¢, by the pigeonhole principle. The goal, then, is to make
these notions precise, and prove that (2.1.3) holds with this choice of @, for a
sequence of H tending to infinity.

To this end we define
T:={he€(0,H]:(Q,h)=1and h # 1 mod ¢}.

Now if h € T, then h must be divisible by a prime p # 1 mod ¢, and since @
is divisible by all such primes < H/(log H)?, we must have p > H/(log H)?.
Exploiting the fact that elements of T" are divisible by large primes, we can

show that
H
7| < —. (2.1.4)
og
One would expect that

SUT| = [{he (0,H]: (@Qh) =1} >, H [] (1_1) :H(M>,

peEP(H)

(2.1.5)

because we form S UT by sieving out the interval (0, H] with primes from the
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set Z(H). If so, then since |T| is much smaller than this by (2.1.4), the set
S must be much larger than the set 7. We will show that this expectation
is borne out for a sequence of values H tending to infinity. Specifically, we
will show that for all sufficiently large X, (2.1.3) holds from some H satisfying
VX < HK X, and with more work,

X(log X)™* < H < X,

where A = A(q) is a constant depending only on ¢g. An application of Mertens’

theorem for arithmetic progressions reveals that

i Gb(Q) N H log H 1/¢(q) . |T’ log H 1/¢(a)
Q “ log H \loglog H loglog H ’

in other words S contributes much more than 7" to S U T, and so we have

$(Q)

|S|—]T|>>qH(7>, that is 2. 151 =1T]

o(Q) logN

>4 € (2.1.6)

whenever (2.1.5) holds. The case for a Z 1 mod ¢ is similar but slightly more
involved.

Now consider

L= ) (Zﬂ(@n+h)—Zﬁ(Qn+h)—log3QN>AR(n;H,k+€)2.

N<n<2N heS heT

With our choice of @), we can use (2.1.6) to show that £ > 0 for a sequence of

N tending to infinity. It is not difficult to prove that if £ > 0, then for some
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n € (N,2N] we have

{p € (@n,@n+ H]: p=amod g}

>2+{pe(@QnQn+ H]:p#amod g},

From this we deduce that (Qn,@n + H] contains a pair of consecutive primes

Pm =Pm41 = a mod q.

2.2 Preliminaries

In this section we will state two key technical propositions, to be proved in
sections 2.4 and 2.5. The first proposition requires some preparation. We begin
by quoting the Landau-Page theorem, a proof of which can be found in [10,
Chapter 14]. This theorem is used to handle problems arising from possible
irregularities in the distribution of primes, hence in Bombieri-Vinogradov type

theorems (see lemmas 2.4.5 and 2.4.6), caused by potential Siegel zeros.

Lemma 2.2.1 (Landau-Page theorem). There exists a constant ¢ such that the
following holds for any Y > c. There is at most one integer qo < Y, and at

most one real primitive character xo mod qq, such that

1

L(1—10,X0,9) =0 for some 0§ < 3oV

If qo exists, then qo > (logY)%. We call xo an exceptional character and qo an

exceptional modulus.

Throughout, we fix a number € > 0, we let H be a real parameter tending

monotonically to infinity, and we set N := exp(H/e), that is H = elog N. If
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there is an exceptional modulus
o = qo(H) < exp(H/e(log(H/e))?) = N/ oglogV)*,

let po := po(H) be its greatest prime factor; otherwise let py = 1.

For all sufficiently large H, either
po = 1 or pg is a prime with py > log H. (2.2.1)

To see this, note that all real primitive characters are products of Legendre
symbols with different odd primes, and possibly either the unique real char-
acter mod 4 or one of the two primitive real characters mod 8. Thus if ¢
exists it is of the form 2%p; - - - pg, where a < 3 and the p;’s are distinct odd
primes. If this is the case and py < log H, then the prime number theorem
implies ¢o < exp((1 + o(1))log H) < log N, but Lemma 2.2.1 states that
qo > (log N/(loglog N)?).

We let @ := Q(H) be a positive integer, upon which we will impose the

following conditions:

Q is composed only of primes p < H, (2.2.2)
@ is divisible by all primes p < log H, (2.2.3)
Q < exp (cH/(log H)?) for some constant ¢ > 0, (2.2.4)
if po(H) # 1 then po(H) does not divide Q. (2.2.5)

We let

H = {Ql‘—i—hl,...,Ql'—i-hk}, hl,...,hke[l,H]ﬂZ, (226)
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denote a set of distinct linear forms, and we define

Ar(miHf) =~ 57 p(d)(log R/dy, (2.27)

"d|P(n;H)
d<R

where >’ denotes summation over indices coprime with Qpo, and
P(n;H) == (@Qn+ hy) -+ (Qn + hy). (2.2.8)
Finally, we let

logn if n is prime,
¥(n) =

0 otherwise.

Proposition 2.2.2. Given ¢ > 0 and sufficiently large H, let N and py =
po(H) be as defined earlier, and let Q = Q(H) be a positive integer satisfying

(2.2.2) - (2.2.5). Fiz integers k = 2 and £ > 1, and let
H={Qz+hy,...,Qx+ hy}
be a set of distinct linear forms with
hi,....hg € [, HINZ and (Q,hy,..., h) = 1.

Let h € [1,H|NZ and suppose (Q,h) = 1, and let R = NY*= for some

¢ €(0,1/4). As H — oo, we have
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! (@)k S An(mH b+ 02 ~ (%W (2:2.9)

NN 0 ) (k+20)!

% (M) S (Qn+ B)Ap(niH, k + £

Q N<n<2N
([ Q [20\ (log R)*2
m(g) Goron  QrtheR
N (2.2.10)
2<€_|_ 1) (IOg R)k+2£+1 .
\(£+1)(1@+2£+1)! fQr+heH.

Proposition 2.2.3. Let ¢ > 3 and a be integers with (¢,a) = 1, and for a
given H, let pg = po(H) be as defined earlier. There is an infinite sequence
of integers Hy < Hy < ... such that for any i, taking H = H;, there ezists a
positive integer Q = Q(H), divisible by q and satisfying (2.2.2) — (2.2.5), such
that

1~ 171 1 (22,

where

S=S(H):={he(0,H]:(Q,h) =1 and h = a mod ¢}, (22.11)
T=T(H):={he€(0,H]:(Q,h) =1 and h # a mod ¢}. B

The implied constant depends at most on q.
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2.3 The proof of Theorem 1

Fix integers ¢ > 3 and a with (¢,a) = 1. Recall that H = elog N, with
e > 0 fixed, and pq is the greatest prime factor of the exceptional modulus
qo < NV0oslogN)® if it exists, otherwise py = 1. We choose H, Q = Q(H),
S =S(H),and T'= T(H) as in Proposition 2.2.3, so that @ is divisible by ¢
and satisfies (2.2.2) — (2.2.5), and

Q [S] -7

Q) logN c(q)e (2.3.1)

for some constant ¢(¢q) > 0, depending on ¢ at most.

We fix positive integers k, ¢ (to be specified later), and we let

H={Qx+ hy,...,Qr+ hy}

be a set of distinct linear forms such that, for each ¢, h; € [1, H]Na mod ¢ and

(Q,h;) =1. Welet R = NY*¢ with 0 < ¢ < 1/4 (to be specified later), and

we put
1@\
z=x ()
Xy (Z 9(Qn+h) =Y 9(Qn+h) —log SQN) Ar(n; H, b+ 0)2.
N<n<2N hes heT

We now show that if . > 0 for a sequence of numbers N, tending to infinity,

then Theorem 1 follows.
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Let

A, ={pe(@,Qn+H]:p=amodq}={p:p=Qn—+h,h €S},

B, ={pe(@,Qn+H]:pZamodq}={p:p=Qn+h,heT}.

If £ >0, then there is some n € (N, 2N] such that

|Anllog(Qn+ H) =) 9(Qn+ h)

heS

> " 9(@n+ h) +1og 3QN

heT

> |B,|log Qn + log 3QN.

Now

[Aullog (1+ H/Qn) < | A, H/Qn < H2/QN < log(3/2)

if N is sufficiently large, and so
log(3/2) 4+ (|An| — |Bnl]) log Qn > log 3Q N
and hence, as n < 2N, |A,| — |B,| > 1. But as these are integers,
[An| = [Bn| +2,

and so, by the pigeonhole principle, A,, contains a pair of consecutive primes
Pr, Pri1- These primes satisfy p,.1 — p, < H < elogQN < elogp,.

Now, by our choice of ‘H, a straightforward application of Proposition 2.2.2
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yields
20 (log R)k+2€
) (k+20)!
Q 220+1) logR
— 1+ 1
{ »(Q) heS (+1 k+20+1 ;
Qz+hgH Qz+heH
Q
- — 1 —(1+0(1))log3@QN ;.
EEP I
We have
Y 1=k > o1=18-
hes hes
Qx+heH Qz+hgH

log R = (1/4 — €¢)log N, and log3QN ~ log N by (2.2.4), therefore

20\ (log R)*+2
= () g e

Q |S|=T|  202+1) Kk 1
X{QS(Q) logN 41 k+2€+1(__€)_(1+0(1))}-

We have written o(1) for kQ/(¢(Q)log N), because

Q/d(Q) < loglog Q < loglog N.

By choosing ¢ = [v/k] and k sufficiently large, the bracketed expression {-- -}
above is, by (2.3.1),

> c(q)e+1—56 — (1+0(1)) =c(q)e — 56’ — o(1).

By choosing ¢ = ¢(q)e/10 (we may assume that e is small enough so that
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¢ < 1/4), we deduce that
L > c(q)e(log N)FH26H1 (2.3.2)

holds if NV is sufficiently large. By Proposition 2.2.3, we may choose H, equiv-
alently N, from a sequence of numbers tending to infinity, and Theorem 1

follows.

2.4 Proof of Proposition 2.2.2

2.4.1 Auxiliary lemmas

In the proof of Proposition 2.2.2 we will use the following lemmas. Lemma
2.4.4 is the heart of the proof. We begin by recalling a few facts about the

Riemann zeta-function ((s). We define

¢(s) := Zi for Res> 1.

ns
n=1

We extend this definition meromorphically to the whole complex plane by an-
alytic continuation. It can be shown that ((s) is analytic except for a simple

pole at s = 1, where the residue is 1. In fact

C(s):i+7+0(|s—1|) as s — 1 (2.4.1)

(see [34, (2.1.16)]). (Here, v = 0.57721 ... is the Euler-Mascheroni constant.)

The zeta-function has Euler product representation

) =1] (1 - —) _1, for Res > 1. (2.4.2)
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Lemma 2.4.1. Define contours

/L 1 g, I 1 g,
(g.—{l—m—FZt.tER}, (g.—{l—m—FZt.tER}.

For s on and to the right of €' we have ((s) # 0, and for s on and to the right
of € we have

1
— < log(|s| + 3). (2.4.3)

)= (s)

Proof. The explicit zero-free region for ((s) is due to Kadiri [29, Théoreme
1.1], who in fact showed that ((s) # 0if Res > 1 —1/(5.69693 log(|Im s|)) and

Ims > 2. Given A > 0 for which ((s) does not vanish for
Re(s) > 1 — A/(log(|Im s| + 3)),

the estimate 1/((s) < log(Im s + 3) is shown to hold for
Re(s) > 1 — A/4(log(|Tm s| + 3))

in [34, Section 3] (see [34, Theorem 3.11] and [34, (3.11.8)]). For any A" > 0, we
have ((s) —1/(s—1) < log(Im s+3) for Re (s) > 1 — A’/(log(|Im s|+ 3)). This
follows from the inequality |log ((s)| < loglogIm s + O(1), which holds in the
same region (see [33, I11.3, Theorem 16, (57)] or [34, Setion 3]). The bounds in
(2.4.3) are also explained in [21, (5.4)] and in [22, (5.2)], along with the bound
%(s) +1/s < log(Im s + 3), which holds for Re (s) > 1 — A/4(log(|Im s| + 3)).

We will not need to use any such bound for ¢’/(. O

In the following lemma and throughout Section 2.4, («) denotes the vertical
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line in the complex plane passing through the real number a.

Lemma 2.4.2. For any fized real number o > 0, we have

1 a® 0 if0<a<1,

2mi sitl :
(@) %(log a) ifa>1.

Proof. This is a variant of Perron’s formula (see [30, p. 143]). O

Let us introduce some notation for the next lemma. Given a k-tuple

H={Qz+ hy,...,Qx + hy}

of distinct linear forms, as in (2.2.6), we define

Q(d) :=Qd; H) = {nmod d : P(n;H) = 0 mod d}

for positive integers d, where P(n;H) := (Qn+hqy) --- (Qn+ hy), as in (2.2.8).

Given an integer h # hq,..., hg, we define

HT :=HU{Qz+h}, QF(d):=QH";d).

Let H be a large real number, let QQ = Q(H) be a positive integer satisfying
(2.2.2), (2.2.3) and (2.2.5), let H = {Qz + hy,...,Qx + hi} be a k-tuple of
distinct linear forms with h; € [1, H| N Z for each 4, and let h € [1, H| NZ be

such that Qz + h € 'H. We are interested in
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1 1 1
T \pu Tpm puie
PQpo

L Lo\ . L (2.4.4)
X H ( 81+1) (1 o p82+1) (1 o p81+82+1)
p
and
Qf(p)|—1/1 1 1
G+(81,82,Q+ H ( —| )|1 (Tl—FTQ— Sl+s2))
PQpo p p p
—k —k k
1 1
31+1 so+1 s1+s2+1
p p 2 p 1 2
(2.4.5)

where pg is as in (2.2.1).

The next lemma also introduces the important notion of admissibility. We
say ‘H is admissible if |Q2(p)| < p for all primes p, because in that case there could
feasibly be infinitely many prime k-tuples of the form Qn + hy,...,Qn + hy.
For future reference we make the following observations. For any prime p not

dividing @), it is clear that

Qp) ={-mQ',...,—hQ '} mod p. (2.4.6)

Hence if p t @, we have 1 < |Q(p)| < min(k, p), indeed

1 < |9Q(p)| < min(k,p—1)

if H is admissible, with [Q2(p)| = k if and only if the —h;Q ™" are distinct modulo



2. Proof of Theorem 1 and Theorem 2 24

p, that is if and only if p t A, where

A=AH):= [[ Ihi—hl

1<i<j<k
Since 1 < |h; — h;| < H for every i, j, p > H implies p{ A, as well as p{ Q by
(2.2.2). Hence

pt QA and |Q(p)| =k forall p> H. (2.4.7)

We also have A < a®) < H¥ . For any prime p dividing (Q, h - - - hy,) we have
P(n;H) = hy---hy, = 0mod p, hence |Q(p)| = p. This cannot happen if H
is admissible, so if ‘H is admissible, (@, h;y---hg) = 1, and for every prime p

dividing @ we have P(n;H) = hy -+ - by Z 0 mod p, hence |Q(p)| = 0.

Lemma 2.4.3. Let H be a real number, let Q = Q(H) be a positive inte-
ger satisfying (2.2.2), (2.2.3) and (2.2.5), and let H be as in (2.2.6), with k
fized. Also let h € [1, H{NZ be such that Qx + h ¢ H. For s1, sy satisfying

Re sy, Resy > —1/4, we have
G(s1,50;Q), GT (51,59 Q7) < exp (cH" " loglog H) , (2.4.8)
where ¢ is a constant depending only on k, and
0; := max (—Res;,0), i=1,2.

Moreover, for k <log H, H is admissible if and only if (Q,hy---hg) =1, and
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as H — o0, if (Q,h) = (Q,hy---hi) =1, we have

G(0,0:9), GH(0,0: %) ~ (%) | (2.4.9)

Proof. Several times throughout this proof, we will tacitly use the following
inequalities: the triangle inequality; 1 — |z| < |1 —z|, that is |1 — 2|7 <
(I—|z]) HLfor0< |z <1;(1—2)t' <143z for 0 <z <2/3;log(l4+1z) <«

for x > 0; for all primes p,

1 1 1
0< P ey < P <1 for ¢;:=max(—Res;0) < 1/4;

and for all primes p,

1 1 1

[psit] < poitl < Qa1 S 2/3 for ¢; := max(—Res;,0) < 1/4.

We will also tacitly use the standard estimate

1
Z—:logloga;—i—cl—i—O( >, cp = 0.261497. ..

p<T

log

(see [33, I.1 Theorem 9)).

Now fix s; and sy such that §; := max(—Res;,0) < 1/4, i = 1,2. We write

Glsvs =TT O[T o TI¢)

p1Qpo p<H PIQpo p>H
p<H p>H
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and treat the above products separately. We have

11

p<H

and

(1_

1

p31+52+1

!

= exp (k‘ Z log (1 + —(51+52)+1)>
p<H
< 1
<exp | k) o
p<H
1
< exp (k:H‘SlJ”SQ Z —)
p<H p

< exp (/{H‘Sl”2 log log H) ,

3
= exp ]{JZIOg (1 + W))
p<H p
3
Sexp | kY —
p<H p
1
< exp 3kH® Z —>
peti P

< exp (3kH5" log log H) ,
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i = 1,2. Thus, since 01, 05 < 01 + do, we have

_k —k k
1 1 1
H(-5=) (-5=) (-5)
<H p51+ p52+ p51+52+
Px

< exp (TkH" ™ loglog H) .

(2.4.10)

Also, since |Q(p)| < k for pt @ (by (2.4.6)), we have

()

PQpo
3k
S H <1 + p(51+52)+1)

p<H
p<H

3k
= exp Zlog (1+ 5+52)+1)> (2.411)

p<H

3k
<exp | Y p—<61+52>+1)

p<H

1
<exp | 3kHO 2 Z —)
p<H p

< exp (3k‘H51+52 log log H) :

Now, by (2.4.7) we may write

H (...)H(...): H(...)(...)H(...)

piQpo p>H p>H p>H
p>H PFDPo
= 7(po) H (1 -

p>H

kE /1
2_9 ]E 81+82

1 ! - 1 1 - 1 —1 '
' - poitl - poatl - psitsatl |
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where v(po) = 1 if pg < H, and

otherwise. Now clearly

3k -
[7(po)| < (1 - m) =1+o(1).

We have

10g (TLon () () <0

p>H

| ] k k k
08 - psitl - poatl + ps1tsatl

1 1
— klog (1 — p52+1> — klog (1 _p81+1)
1

In this last sum the Taylor series of the term corresponding to p is

k m
o Z < s1+1 p$2+1 o p81+82+1) kz ( 81+1>

m>1 m>1
I m I 1 1 "
™ Z 52+1 o Z E p81+52+1
o1 T m>1
k™ 1 1 "
- Z < s1+1 p82+1 - p81+82+1) + k Z ( s1+1>
m>2 m>2
I m I 1 1 mn
™ Z peatl - Z m prrtsatl d
m>2 m>=2

which in absolute value is at most

1 4k "
Z E p*(51+52)+1 :

m>2
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We may assume H is large enough so that 4k/H < 1/2, and so
Sl < S (e
p>H ‘ p>H m>2 <p (01+02)
2 41{? m—2
S Z ( 51+52)+1) Z <p—(51+52)+1)
p>H m2=2 (2.4.12)
1
2
<k Z p—2(51+52)+2
p>H
< k2

Exponentiating yields

k(1 1 1

H == T+T_ S1+S
p>H p pl p2 pl 2
1

1 —k —k 1 k
' (1 o p51+1> (1 B p52+1) (1 B p51+52+1)

<exp (O(k?)),

and combining yields

0 111
H(1—| (p)!(_+__ +))
PiGry PRt PR

p>H
—k —k k
1 1 (2.4.13)
<M (-7w) (-5x) (-5)
o +1 patl pertsatl
< exp (O(k?)).

Finally, combining (2.4.10), (2.4.11) and (2.4.13) yields
G(s1,59; Q) < exp (10kH 72 log log H )

for 0; := max(—Res;,0) < 1/4, i = 1,2. We bound G (s1, s9; Q") similarly.
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Since Qx + h € H, we have |Q*(p)] —1 =k < p for all p > H as in the first

case, and 0 < |Q7(p)| — 1 < min(k,p — 1) for all p1 Q. Noting that

min(k,p — 1) o k

< < 2k
p—1 p(1—1/p)

and carrying this through the above computations, we obtain the bound (2.4.8)
for G (s1, s9; Q7).
Now we will prove the second statement of the lemma. As we noted prior

to stating the lemma, for any prime p dividing (@, hy - - - hy) we have
P(n;H) = hy -+ hy = 0 mod p,

hence |[Q(p)| = p, and so H is not admissible if (@, hy - - - hg) # 1. Now assume
(Q,hy---hg) =1 and k < log H. Then for every prime p dividing @) we have
P(n;H) = hy - -+ hy # 0 mod p, hence [Q2(p)| = 0. For every other prime p we
have (2.4.6), and hence 1 < |Q(p)| < k < logH < p by (2.2.3). Hence H is
admissible if and only if (@, hq - hy) = 1, provided k < log H.

We will now establish (2.4.9) in the case of G(0,0;2). We assume H is large
enough so that 2k < log H, and that (@, hy---hy) = 1. Thus H is admissible
and |Q(p)| = 0 for p | @, hence

omoo-T1 (-2 (1-1)

PIQpo P

G ICER) () (-2

piQ

because if pg # 1 then pg 1 Q; otherwise @py = @ and the last product is empty.

As H tends to infinity, the last product tends to 1 by (2.2.1), so it suffices to
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show that

GXH)ﬁ:II<1—EE£M>(1—1)_k~1. (2.4.14)

0 p p

In fact since H is admissible, we see that 1 < [Q(p)| < min(k,p—1)ifptQ,
with |Q(p)| = k if and only if p 1 QA. We break &'(H) into two products

according as p | A or p{ A:

In this product p — k # 0 because p 1 @ implies p > log H by (2.2.3), and we
are assuming that log H > k. Then p t @) implies k£ < p/2, and the logarithm

of the first product of the last line of (2.4.15) is

1 /1 14k 1+k+£k
S (e )

k2
<K D) 5 < .
p?>  log Hloglog H

p>log H

For the second product, note that since




2. Proof of Theorem 1 and Theorem 2 32

the logarithm of the second product is

< D w(e )« 2,

plA p|lA
p>log H p>log H
k klog A k3
<—=3"1 o8 <
log H < log Hloglog A~ loglog H
P

by the prime number theorem and since A < H (2) < H K2 Exponentiating
and letting H — oo yields (2.4.14), and we have shown that (2.4.9) holds for
G(0,0; Q).

The case for G7(0,0; Q1) is similar. We have |[H*|=k+1as Qrz+h & H,

and analogously to (2.4.14) we have &'(H") ~ 1 as H — oo, where

S'(HY) = H (1 _ |Q;ﬂ> (1 - 1)(k+1)

PIQ p

(=) ) ()
(-2 ()

g

3

Hence

GH0,0;0%) = pgo (1 _ |Q*p(p_>|1— 1) 1;[ (1 - ]19) B
() ST (-2)
Q@

h (cb(Q))k

as H — oo, because the product over p | pg is ~ 1 by (2.2.1). ]



2. Proof of Theorem 1 and Theorem 2 33

In the following lemma and throughout the rest of Section 2.4, ¢ denotes
a constant depending on k£ and ¢ at most, which may be different at each

occurrence.

Lemma 2.4.4. Let k and ¢ be arbitrary but bounded positive integers. Suppose
G(s1,52) s a function which is defined and regular for Resi,Ress > —1/4,

and satisfies
G(s1,82) < exp (c(log R)* " log log log R) (2.4.16)
in this domain, where ¢ is a constant depending on k and ¢ at most, and
0; := max(—Res;,0), i=1,2.

Then the estimate

> /(1
ool

holds for all sufficiently large R.

log R k+2¢

(k+2¢0)!

C(Sl + S9 + 1) k Rsl+s2
[, Gtovsa (o Do) G o
> + O ((log R)¥~2(log log R)")

(2.4.17)

Proof. This proof is based on the outline in [18], with most of the details taken

from the proof of Lemma 3 of [21]. To set up for the proof, we put

U :=exp (@)
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and define the following contours (see Figure 2.1):

L} = {(50logU)~' +it : t € R} LYy = {(1001logU)~ " +it : t € R}

Ly :={(50logU) ' +it : [t| U}  Ly:={(100logU)~* +it: |t| < U/2}

L= {—(0logU) ' +it: |t| KU} L :={—(100logU) " +it:|t| <U/2}

By :={o+iU :|o| < (50logU) '} By:={o+iU:|o| < (100loglU) '}

(ng:LlUglUBl CKQZILQUD%QUBQ.

Throughout the proof all contours are traversed counter-clockwise. All of these

contours are to the right of the contour ¥ — 1, where % is the contour given in

Lemma 2.4.1. Thus we have good estimates (2.4.3) for (s + 1) and 1/{(s+ 1)

for s in this region. Also, ¢ will denote a constant depending on k and ¢ at

most, which may be different at each occurrence throughout the proof.

Before proceeding with the integration, let us establish some basic estimates,

which will be used in the course of the proof. First of all, for

1
1,2

9; == max(—Res;,0) < Moz U’ 1=1,2,

we have

loglog R
log R)*+%2 — | < L
(log ) P 12¢/log R

Therefore, by (2.4.16), we have

1
G(s1,82) < (loglog R)¢ for Resj,Resy > —

24log U’

(2.4.18)

(2.4.19)

(As it turns out, we will only consider the region on or to the right of the one

defined by (2.4.18), and so (2.4.19) will be applicable throughout the proof.)
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Fig. 2.1:
o
Lo
D —(241og([t]4+3)) "L +it
g B, D (50log U) "1 4iU
L. [s"+sl=n
[ Tt
(1001og U) ~L4iv/2
Ba
Ly
Lo
23
A
A
21
N 7
—(1001og U)
—iU/2
[

—(501log U) "t —iU
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We write the integrand in (2.4.17) as

H(Sl, 82)R81+82
(814 s9)k(s182) 1

where

(514 52)C(51 + 52 + 1))k

H{(s1,52) := G(s1, 52) (le(S1 +1)s2¢(s2 + 1)

is regular in a neighborhood of (0,0). We claim that if s, s5 and s + s9 lie on,

or to the right of, € — 1, and if Res;,Resy > —(24logU)~!, then

H(s1,82) < (loglog R)“(log(|s1 + sa| + 3))*(|s1 + s2| + 1)*

(log(|s] + 3))* (og(|sa| + 3))*
(Is1] +1)*(ls2| +1)*

(2.4.20)

For applying the translation s — s+1 to (2.4.1), we see that (s¢(s+1))™! — 1
as s — 0. We fix an € > 0 such that (s((s+1))~! < 2 for |s| < e. For such s, we
have (|s| + 1) log(]s| +3) < 1, hence (s¢(s+ 1))~ < (|s| + 1) log(|s| + 3).
For |s| > €, we have |s| < |s|4+1 < [s| (1+1/€e) < |s|. If, furthermore, s lies on,
or to the right of, € — 1, we have 1/{(s + 1) < log(|s + 1| + 3) < log(|s| + 3)

by (2.4.3) (s — s+ 1). Thus, in any case, we have

(sC(s+ 1)) < (|s| + 1) log(|s| + 3)

for s on, or to the right of, ¥ — 1. If s1, s5 and s; + s, are in the same range,

we use this and both estimates in (2.4.3) to deduce that
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(51 +82)C(s1+ 89+ 1)
51C(s1 4+ 1)s2((s2 + 1)

<K (‘81 + 52| + 1) 10g(‘81 + SQ‘ + 3)

log(]s1| + 3) log(|sa| + 3)
(Isi] + D) (Is2| +1)

To see how we used the estimate s((s + 1) — 1/s < log(|s| + 3) ((2.4.3),
s — s+ 1), note that this implies s{(s + 1) < |s|log(|s| + 3) + O(1). When
|s|] < 1, log(]s|+3) = O(1), hence sC(s+1) < (|s|+ 1) log(]s| +3), and clearly
this also holds when |s| > 1. Now applying (2.4.19), we obtain (2.4.20) for s,
and s in the specified range.

From (2.4.20), we deduce that the following estimates hold if sy, se and

s1 + sy lie on, or to the right of, € — 1, and if Re s;, Resy > —(241logU)~!

H(s1,52) < (loglog R)*(log(|s1| + 3))** (log(|s1| + 3))*, (2.4.21)

and

H(sy,82) < (loglog R)¢ if  |sy|,|se] < 1 orif |s;+so| < 1. (2.4.22)

Now we will show that

51’ 32)RS1+S2
// //\L (51 o+ 52)F (5,551 (o152 < &xp (—3VIogR), (2.4.23)
1

and that the same bound holds if the domain of integration is replaced by

Ly x L\ Ly. For if (s1,s9) € L} x L}, then

S1+52

__3
51 7o < Uloglog ) (log U )FRT0sT < exp (7451108 R) ,

(loglog R)°
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and so by (2.4.21),

H(s ,s Rs1ts2
/ / ! 2) 1 dsld52
s Jopg, (814 s2)F(s152)0F

(1 3 1 3))2k
< exp (3v/10g R) // (log ‘31’; ) <Og(|52‘;+rl ) dsyds,.

1\L1 |3 | |31|

(2.4.24)

Now, since £ + 1 > 2,

(log(]s1] +3))* / > (log(t +3))** (log U)**
d — Mt —
/L’ \L1 ’81\“1 s U th+t < U? 7

and
log(|s,| + 3))2¢ Toobsp + ToobsT Hio® log(|so| + 3))2F
PR e i YL TE
Lt ‘31’ W W‘” ’51‘
> (log(t + 3))%
< (logU)eH—i-/l Tdt

< (log U)“.

(2.4.25)

By (a corollary of) Fubini’s theorem, we may write the double integral on the
right-hand side of (2.4.24) as the product of the two integrals we have just
estimated, and (2.4.23) follows. An analogous argument gives the same bound
for the integral over L} x Lf \ Ls.

Next we will show that

(s1+ s2)F(s182)*!

RS1+82
/ / (s, 52) dsidsy < exp (—55v/10g R) . (2.4.26)
UBy J A UBy

For if s, € % then |R%2| = R~(100108U)™" — oxp (—155v1og R), and so similarly
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to (2.4.25) we have

1 3 2k Rs2
/ ( 0g(|52|‘ +|e+)1) |7 dsy < exp (—y/1og R) (log U)"H!
) S2

If s, € By then U < |sy] < U and |R%2| < R(10e)™ — oxp (155vIog R),

thus, since £ + 1 > 2, we have

(10g U)2k71
U£+1

log(|ss| 4+ 3))%* | R*2
/B ( g(| 2| €+)1) | |d82 < exp (ﬁ\/log—R)
2

|52

<L exp ( 2()[)\/log R)

because By is of length < (logU)~'. Hence the same bound holds for the

integral over % U By and, by the same argument, %, U B;. Since
51+ 89> (logU)™*

in this domain, we have

51’ 82)R81+82 doid
o1 451452
UBsy J A UBy 81 + 82 (8152)

< (loglog R)(log U)*

(log(|s1] +3))** [R*| (log(]sa| + 3))** [R**]
0+1 0+1 dsyds;
%UB, J#UB, |s1] | 5]

by (2.4.21). We obtain (2.4.26) by using Fubini’s theorem to write the double
integral as a product of two integrals and using the above estimates.
Finally, we will use the following estimates for the partial derivatives of

H(s1,s2). Recall Cauchy’s estimate for derivatives: if f(z) is analytic in the
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domain |z — zo| <, and if f(z) < M for |z — zy| = n, then

. Mj!
‘f(])(zo)‘ < '
We set
B 1
T 502 l0g U

so that for any s on or inside %}, and any s* with |s* — s| <7, s*,s and s* + s

are to the right of ¢ — 1 (see Figure 2.1). That is

1 1 1 1
—Res,0 —Res",0) < | =+ — < ;
max(—Res, 0), max(~Res", 0) (50+502) logU = 24logU

and so (2.4.19) — (2.4.22) are applicable here. Thus, by (2.4.22), we have

om oI jlm! .
——H(0,0) < = sup |H(s1, s2)| < (loglog R)¢(log R)U+™)/2,
9s5' D ( T Jsa Jsal=n sl < os 11
(2.4.27)
and for s, on or inside %; we have
o’ 4! o
——H(0,s9) < = sup |H(sy,s2)| < (loglog R)(log R)*/ (2.4.28)

j
ds1 W Jsil=n
and

i 1 .
— H(—$9,8) < L sup  |H(s1,52)] < (loglog R)°(log R)"/2.  (2.4.29)
dsy W |si+sal=n

To begin to evaluate .#, we shift the s;- and sp-contours from (1) to the

left to L) and L) respectively, then we truncate these lines to form L; and Lo,
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giving rise to our first error term. Thus

817 82 R51+82
1 d81d82
27rz L (s1 4 $2)*(s182)F

/ Lot L ) oy e
s1ds
2m Lo J 1L, N o, 81—1—82)]‘3(8182)“_1 ez

s1+s2
H(s1,5) R dsidss + O (exp (—%\/log R))

1, (814 82)%(s152)cH!

by (2.4.23). Shifting the s;-contour from L; back to .2}, we encounter a sin-
gularity at s; = 0, which lies inside %7, and another singularity at s; = —s,,

which also lies inside %7 since s, is on Ls. Thus, by the residue theorem,

81, 52 R81+82 s d
i1 451452
Ly Jr, (51 + 82)F(s152)

81, 82)R81+32
dsids
/LQ {Zﬁl /jluBl} (s1+ so)F(sysp)Ht 7

H(Sl,SQ)RSH_SZ
=2 R R dsid
m/ { es+81_essz} (81—|—82) (3132)”1 51d82

51, 52)R81+52 ds-d
i ( )@Jrl S$1aS82.
Lo J AUBy 51 82 5152

Now we shift the so-contour from Lo back to .%,. We will presently see that

the only singularity we encounter is at so = 0, which lies inside the rectangle

%>. Using the residue theorem to write

/ :/—/ :27rz'Res—/
Lo Ga LoUB>y 52=0 L UBo

and combining the last three equations, we see that
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H(Sl,SQ)R81+S2
# = ResR dsid
SzS%SIS% ((81 + 52)16(5182)€+1 510482

1 H(Sl, 52>R81+82
T 9. Res k 11
27 ) gup, $1=0 (81 + 52) (5182) +
1 ( H(Sl, 82)R81+S2
- — e
(81 + Sz)k(8182)é+1

1 H s1+s2
( (81782)R ) dSldSQ

— R
* 211 Sl—giZ (81 + 52) (5182)€+1

31’ 32)R51+52 )
(2mi)? /fzuBz /.,SﬁuBl (s1 dsydss + O <6Xp (—5\/ log R))

+ 82 (8182)€+1

=Iy—1I — L+ 13+ 0 (exp( 200\/10g—R)>

> d$1d$2

> d51d52

2 LAUB; s2=0

(2.4.30)

by (2.4.26).
Since sC(s+ 1) — 1 as s — 0 by (2.4.1), the residue of the integrand at

s; = 0 is a pole of order at most ¢ + 1. Therefore !, by Leibniz’s formula,

¢ .
H(Sl, 82 RS1 1 ( ) 6” ( H(O, 82) )

Res — D720 — (log R)i— [ ——2220

51 e% (31 + 82 é+1 0! Z 8 8811 (31 + Sg)k

and
o' (H(o,SQ) ) R (i)a_'H(O S)(—l)i—jk(kJr Do (kti—j—1)
Osi \(s1+ s2)* o 0s} ? shtizi
Hence
H(sy, s9) R (i,7)(log R)** &7
Eg(s)m ;JZO ]C-H —; 8831]{(0 82) (2431)

1. As noted in the proof of Lemma 3 of [21], if H(0,0) = G(0,0) = 0, the order of the
pole is at most £. Nevertheless, the formula we use to compute is still valid: one or more of
the initial terms will be 0. However, this situation does not arise in the proof of Proposition
2.2.2, nor does it in the proof of Proposition 3.2.2 below.
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where

ali, §) = (_1)2'3% (f) (;) Bk 1) (k+i—j—1).

The (i,7)th term in (2.4.31) contributes to Iy a pole at sy = 0 of order at

most £/ + 1+ k+1i — 7. Applying Leibniz’s formula again, we see that

RS2 oI
Res ——————H(s,0) =
3220 GLHIFRFI=T i (51,0)
O-k+i—j . -
1 (+k+i—7 Viboti i O™ 7
log R)*Hi=i—m —_ —_[(0,0).
(+k+i—j) 7;) ( m >(°g ) RER (0.0)

(2.4.32)

Combining (2.4.31) — (2.4.32) yields

i Atk+i—j om o

V4
QZZE:E:bWWWMﬁWMwwaﬂﬁﬂ@m, (2.4.33)
i=0 j=0 m=0

where

b(i,j,m) =

a(i, ) (€+k+z—j)

(C+k+i—j ) m
— = () () ()

By the combinatorial identity

Lo CIN (1 k(E 1) (kri—1) (20 1
Zb(Z’O’()):Z(i) O+ k+1)! :(e>m’

i=0 =0
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and since H(0,0) = G(0,0), we see from (2.4.27) and (2.4.33) that

26) (log R)*+2¢

Iy = G(0,0) < ) x20) + O ((log R)F2-12(10g log R)).

For I;, we put (2.4.28) into (2.4.31) and estimate the resulting integral,

which is similar to the one in (2.4.26). Thus

~

7

d
I < (loglog R)(log R ZZZ log R) Z+J/2/ iﬁ
)

i=0 j=0 UBy |59

~

< (loglog R)“(log R)" (log R)~™3/2(log U)*+17.

=0 75=0

We estimate I, by an analogous argument. Hence

I, I, < (loglog R)¢(log R)“T*/2.

Finally, for I3 we have

Res

S1=—82

H(Sl, 32)R31+32 i 1 akfl H(Sl, 82)R81+32
= 1m
(31 + SQ)kSliHSg—H $1——s5 ( _ 1)| ask—l £+1Sg+1
k—

i(s2)(log R)F1,

— S .
dsi™ 2, 52) (_1)g+j+18§(£+1)ﬂ

C ()2 g CRE DD
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Now by (2.4.29), we have

7

. d
il < loglog RS (g B [t
Ly |S

Ls iz0

i

< (loglog R)° Z(log R)9/2(Jog )24 D+

J=0

< (loglog R)*(log R)“+/2,
hence
k-1
I3 < (loglog R) CZ (log R)*~"/2 <« (loglog R)(log R)***.
=0
We obtain (2.4.17) by combining the estimates for Iy, ..., I3 with (2.4.30).

[]

We will need to estimate an error term involving

x
E*(N,q) := max max logp — —|.
(N, q) = maxe max ; 8P~ 500

p=a mod q

Lemma 2.4.5 (Bombieri-Vinogradov theorem). For any fized positive number

A there exists a positive number B = B(A), depending only on A, such that

Y EY(N.q) <a N(logN)™

g<N1/2(log N)~ B
Proof. See [6, Théoreme 17]. ]

This, the usual Bombieri-Vinogradov theorem, will not suffice here, but the

next lemma, which is Lemma 2 of [19], will.



2. Proof of Theorem 1 and Theorem 2 46

Lemma 2.4.6. Let () be an integer, and let Y and M be numbers, such that
O?<Y < M, wp@ bgM><Y (2.4.34)

If there is an exceptional modulus qo <Y, suppose po 1 Q for some py | qo;

otherwise, let pg = 1. If

R* = MY?Q 3 exp (—VlogM) ,

then we have, with explicitly calculable positive constants ¢y and cs,

M log M
Y E(MQD)<evmexp -2, (2.4.35)
Q log Y’
D<R*
(D,Qpo)=1
Proof. See [22, Theorem 6]. O

2.4.2  'The proof of Proposition 2.2.2

We now assume all but one of the hypotheses of Proposition 2.2.2. The
hypothesis we do not assume is that £ > 2: until stated otherwise at the
very end of the proof, we assume only that £ > 1. Thus H, N and R are
real parameters such that H = elog N, € > 0 arbitrarily small but fixed, and
R = NY*¢_ We assume H, N and R are sufficiently large, where the meaning
of ‘sufficiently large’ will be made clear in the context of the proof. Integers
k0 > 1 are fixed, Q@ = Q(H) is a number satisfying (2.2.2) — (2.2.5), and
H={Qz+ hy,...,Qr+ hi} as in (2.2.6).

Recall that

Q(d) = Q(d; H) :={nmod d : P(n;H) = 0 mod d},



2. Proof of Theorem 1 and Theorem 2 47

where P(n;H) = (Qn+ hy)--- (Qn + hi), as in (2.2.8). A Chinese remainder
theorem argument shows that n mod d € Q(d) if and only if p” || P(n;H) for
every p" || d, and so |©2(d)| defines a multiplicative function of d. Thus, if we

define

. au(d)(log R/d))if d < R,
Ar(d; ) == (2.4.36)

0 if d > R,

we see from (2.2.7) that

, 1
Ar(n;H,j) = i

!/ . /
! > u(d)(log R/dY = > Ap(d:j). (2.4.37)
d'Z(&H) "o

With this we are ready to begin the evaluation of the left-hand side of (2.2.9).
Let us abbreviate Ag(d; k + ¢) to A\y. Expanding the square and noting that

the condition

di | P(nyH), day | P(n;'H)

is equivalent to [di,ds] | P(n;H), which is equivalent to n mod [dy,ds] €
Q([dy, ds]), we obtain

Z Ar(nyH, k+0)* = Z Z/ Ad; Ady

N<n<2N N<n<2N \ldi,dz]|P(n;H)
/
=D e ) > !
dy,do m mod [d1,d2] N<n<2N (2438)

€Q([dy,d2]) n=m mod [d1,d2]

— Z, Ady Ady [U([d1, do])| ([di\fdﬂ +O<1>>

dy,d2

= NT +0(€),
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where

/ Q(ldy,d !
Tim 3 e L e S sl 0, )
1,02 1 o

We consider the error term £ first. From the definition (2.4.36) it is clear
that |A\g| < (log R)*™. Also, since (Q, hy---hy) = 1 we have |Q(p)| < k for
all p by (2.4.6) and since |[2(p)] = 0 if p Q. As we noted earlier, |Q(d)]
is multiplicative in d, so for squarefree d we have |Q(d)| < k“@, where w(d)

denotes the number of distinct prime factors of d. Therefore

E< (IOg R) (k+2) Z M2(d1)ﬂ2(d2)kw([d1’d2])

di,d2<R

= (log R0 >~ (D)™ Y~ 1 (2.4.39)

D<R? [d1,d2]=D

= (log R*™*0 % (D) (3k)“).

D<R2

Here we have used the elementary fact that if D is squarefree and D = [dy, ds],
then D = gejey, where (dy,dy) = g, di = geq, dy = ges, and (g,e1) = (g,€2) =
(e1,e2) = 1. Thus >7, 41_p 1 is precisely the number of ways of writing D as
a product of three pairwise coprime positive integers, namely 3<(P).

For positive integers x, we have

w(D

d d,
Z ) -2 (dy) < (log R*)" < (log N)*,

H

> o
D<R? d <R2?

(2.4.40)
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and hence
D)
Z (D) W(D < R? Z ,u < R*(log N)".
D<R? D<R?
Putting this last inequality, with x = 3k, into (2.4.39) we obtain
£ < R*(log N)**2t « N1/2, (2.4.41)
because R = N/4-<.
Now we consider 7. First of all, by (2.4.36) and Lemma 2.4.2, we have
~ (d) R\® ds
Ar(d;j) = — ,
1)
hence
Rsthz d81d82
Ady Ay = 2.4.42
7z 27rz / /1) At ds? (s189)kH1 ( )
Putting this into our expression for 7, we find that
L Q e dsid
- F Q)— 2.4.43
(27Ti)2 /(1) /(1) (817 52, )(8182)k+£+1 51052, ( )
where
r pldi)p(d) [2([dy, do))|
F Q) =
(817827 ) Z [dlde]dsldgz
di,dz
1 1 1
=11 — Gt (2.4.44)

PiQpo

C(s1+ 82+ 1) ))’“

= G(s1, 52; Q) (C(Sl + 1)¢(sg +1
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when Re sy, Resy > 0, by (2.4.2) and (2.4.4). (Recall that >’ means that the
sum is taken over indices coprime with Qpy.) Putting (2.4.44) into (2.4.43), we
see that 7 is the same as .# of Lemma 2.4.4, with G(s1, $2;2) in the role of
G(s1, $2).

Since H < log R, we have
G(s1,52;Q) < exp (c(log R)*** log log log R)

when ¢; := max(—Res;,0) < 1/4, i = 1,2, by (2.4.8). (Recall that ¢ denotes
a constant depending at most on k and ¢, which may be different at each
occurrence.) Also, G(0,0;9Q) ~ (Q/#(Q))* as H — oo by (2.4.9). In particular
we may assume H is large enough so that G(0,0; Q) > 1. Thus the hypotheses
of Lemma 2.4.4 are satisfied with G(s1, s2) = G(s1, $2;2), therefore by (2.4.17)

and since G(0,0;€) > 1, we have

(140 ((log R)"*(loglog R)°))  (2.4.45)

7-co00)(}) P

0 ) (k+20)

for all sufficiently large R. Since log R < log N, putting (2.4.41) and (2.4.45)
into (2.4.38), then using (2.4.9), we obtain

1 20\ (log R)*+2¢
= Ap(n:H, b+ 0% = (14 0(1))G(0,0: Q Vo8
¥ 2 Al 0= (1 o) () s

as H, N, R — 0o. We have established (2.2.9) of Proposition 2.2.2.
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We now turn to (2.2.10). Similarly to (2.4.38), we have
> 9(Qn+ h)Ap(n;H k4 0)°

N<n<2N
=S e S 9(Quth)

e N F= 944
o [d1,d2]| P(n;H) ( 6)
!
— Z Ad1 AdQ Z Z 1Og p
d1,d2 m mod [di,d2] QN+h<p<2QN-+h
€Q([d1,d2)) p=h mod Q

p=Qm-~+h mod [d1,d2]

We may assume (Qm + h,[dy,ds]) = (Q,[d1,ds]) = 1 in the last sum, so we
define
Q" (d) =Q(d) \ {mmod d : (Qm + h,d) # 1}.

For dy,dy with (Q, [d1,ds]) = 1 and m mod [dy, do] € Q*([dy, ds]), we let
hm mod Q[dl, dg]

be the unique congruence class mod Q[dy, ds| satisfying h,, = h mod @ and

hm = @m + h mod [dy, ds]. Thus, the last sum in (2.4.46) is equal to

3 gy 2QN+h QN th
5P 5(Qldr, da))  H(Qldr, o))

+ O (E*(3QN, Qld1, dy]))

QN+h<p<L2QN+h
p=hm mod Q[d1,ds]

where we recall that

Xz
E*(3QN,Q[d1,dp]) := max ~ ma o8P = S0ls &) |
(3QN, Qldy, do]) = max (0.l ) =1 ; # T 5L, o))

p=a mod Q[d1,d2]
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We now have

Z I Qn + h)Ar(n; H, k +0)* = %T* + O(&Y), (2.4.47)
N<n<2N
where
* ! )‘dl)‘d2 |Q*<[d17d2])|

T =
Cgb ¢([dy, da]) ’

£ = Z' Ay Az | - 1% ([d1, do])| E*(3QN, Qldy, do]).
di,dz

We consider the error term £* first. Similarly to (2.4.39) we have

£ < (log R*™0 3 (D) PV E*(3QN,QD) 3 1

D<R? [d,e]=D
= (log R*F+9 N 12(D) (3k)“ ") E*(3QN, QD),
D<R?

for clearly |Q*(d)| < |Q(d)|, and |Q(d)| < k“@ for squarefree d as noted prior
to (2.4.39). By the trivial inequality

NlogeQN  Nlog N
QOgQ<<og

E'(3QN,QD) < =05 >

and the Cauchy-Schwarz inequality, we have

S 12(D) (3K P B (3QN. QD)
D<R?
- 1/2 1/2
2 D ]{7 2w(D /
< [ Niogy 37 ERIEH > B*(3QN.QD)

D<R? D<R?

(2.4.48)
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Now we apply Lemma 2.4.6. By (2.2.2) — (2.2.5), we see that (2.4.34) is

satisfied with
Y = exp (QCH/(log H)2) — N2ce(1+o(1))/(loglog N)?2

and M = 3QN, where in this instance ¢ is the constant in (2.2.4). We also

have

R = NY22 < R = (3QN)'2Q exp (—/log 30N

for all sufficiently large N, and
calog M/logY = cy(1 4 0(1))log N/logY = c3(1 + o(1))(log log N)?/2ce.

Letting ¢3 = ¢2/12ce and putting this into (2.4.35), we deduce from Lemma
2.4.6 that

S E*(3QN. QD) < N(log )5 lesles ¥

D<R?

for all sufficiently large N. Putting this, as well as (2.4.40) with x = (3k)?,
into (2.4.48) yields

(log N)Z(k+€)+(3k)2/2+1/2

2 < N (10g N)2cg loglog N

< N(log N)¢sloglog N, (2.4.49)

We will now evaluate 7*, assuming first that Qz + h &€ H. Thus

‘HY| = HU{Qz +h}| =k+1,
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and for p{ @ we have

1% (p)] == [Q2p) \ {m mod p : (@m + h,p) # 1}|

= ‘{—Q’lhl, o, —Q7'h} mod p \ {—Q'h mod p}’
= H—Qflhb oty =Q 7 'hy, —Q'h} mod p \ {—Q'h mod p}‘
= [Q"(p)| — 1.

(Recall that QT (p) = Q(p; HT).) As with |Q2(d)|, a Chinese remainder theorem

argument shows that |Q2*(d)| defines a multiplicative function of d. Thus

10 ([dy, dy])| = H (1Q*(p)|-1),

pl[d1,d2]

provided [dy, ds] is squarefree and (Q,[dy,ds]) = 1, as is the case for di,ds
appearing in the sum defining 7.

Therefore, putting (2.4.42) into our expression for 7*, we find that

% 1 R81+52
"= (271-1)2 /(1) /(1) F+(31>52§Q+)W dsydss, (2450)

where

#p(dy) pu(da) [2*([dy, do])|
ng:,z o([dy, dy))di* dy?

Qt(p)| -1/ 1 1 1
:H<“_7I_'E+E_mm (2.4.51)

piQpo

= G+(51,82;Q+)(

F*(s1,50;07) :=

C(s1+s9+1) )k
C(s1+1)C(s2+1)

when Re sy, Re sy > 0, by (2.4.2) and (2.4.5). Putting (2.4.51) into (2.4.50), we

see that 7* is the same as .# of Lemma 2.4.4, with G (s1, s2; Q") in the role
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of G(s1, $2).

Since H < log R, we have
G (51,505 Q) < exp (c(log R)***%2 Joglog log R)
when 6. = max(—Res;,0) < 1/4, i = 1,2, by (2.4.8). Also,

G*(0,0;27) ~ (Q/4(Q))"

as H — oo by (2.4.9). In particular we may assume H is large enough so
that G*(0,0; Q%) > 1. Thus the hypotheses of Lemma 2.4.4 are satisfied with
G(s1,82) = GT(s1,89;Q7F), therefore by (2.4.17) and since GT(0,0; Q1) > 1,

we have

¢ ) v 20 (1+ 0 ((log R)""*(loglog R)")) (2.4.52)

) 1 k+2/0
T = G+(o,o;Q+)< 6) (log R)™=
for all sufficiently large R. Since log R < log N, putting (2.4.49) and (2.4.52)

into (2.4.47), then using (2.4.9), we obtain

% > 9(@Qn+ h)Ap(niH k + ()

N<n<2N

25) (og R0 9 4 53

— (o) ey 60000 () T

B Q "' 20\ (log R)F+2

- (555)  (3) @
as H, R, N — oo, provided Qz + h &€ H. We have established the first case of
(2.2.10).

We can reduce the case Qx + h € H to the first case as follows. Here we

assume |[H| = k > 2. Observe that if n € (N,2N] and Qn + h = p, a prime,
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then Qn+h = 0 mod [dy, ds] only if [dy,ds] = 1 or p. If d; = 1 then A\, \g, = 0,
and if d; = p then d; > QN + 1 > R. That is, P(n;H) = 0 mod [dy, dy] is
equivalent to P(n; H\ {Qz + h}) = 0 mod [dy, d2] when Ay, \g,, H(Qn+h) #0
and dq, dy < R. Therefore

> 9Qn+ h)Ar(n;H, k+0)

N<n<2N

= Y d@n+n | Y M

N<n<2N [d1,d2]| P(n;H)
!/
= Z 19(@77, + h) Z )‘d1 )\dQ
N<n<2N [d1,d2]|P(nsH\{Qz+h})
= ) @n+ M)A H\{Qz +h} k—1+L+1).
N<n<2N

Applying the above evaluation with the translation
H— H\{Qx+h}, k—k—-1 (—{+]1,
(2.4.53) becomes

3 QB AR M { Qe+ Bk — 1 £ 1)

N<n<2N

Q k—1+1 2(€+ 1) (log R>k71+2(€+1)
:(Ho(l))(m) <£+1 )(k—1+2(£+1))!

(2.4.54)

as H, R, N — oo. The second case of (2.2.10) being established, the proof of

Proposition (2.2.2) is complete.
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2.5 Proof of Proposition 2.2.3
2.5.1 Auxiliary lemmas
To prove Proposition 2.2.3, we will use the following lemmas.

Lemma 2.5.1. Fix integers q and a with (¢,a) = 1. There is a constant

c(q,a) >0, depending only on q and a, such that

H 1 — AN _cga)
p (log 1')1/¢(Q)

as r — Q.

Proof. This follows from the prime number theorem for arithmetic progressions.
For a more precise estimate, with the constant ¢(q, a) given explicitly, see [35,

Theorem 1]. O

Lemma 2.5.2. Let .#(x) denote the set of positive integers which are < x and
composed only of primes p =1 mod q. There is a constant c(q) > 0, depending

only on q, such that

|- (x)] = <c(q)+0< L )) v (log 2)Y/#@).

log x log x
Proof. See [32, Lemma 3|, in which the constant ¢(q) is given explicitly. O

The next lemma concerns ¥(z,y), the number of positive integers which are
< z and free of prime factors > y (y-smooth numbers). The ratio ¥(z,y)/x
depends essentially on u = log x/logy, and for u in a certain range is approxi-

mated by p(u), where p(u) is the Dickman-de Bruijn p-function, defined as the
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continuous solution to
1 0<u<l,
p(u) = (2.5.1)
L[ pt)dt > 1.
Lemma 2.5.3. The estimate
ARy = p(u) (1 + 0 (M)) (2.5.2)
Y logy
holds uniformly in the range
y>=3, 1<u<exp ((log y)3/5"5) , (2.5.3)
where § is any fixed positive number. The estimate
p(u) = exp (—ulogu — uloglogu + O(u)) (2.5.4)
holds for v > 3, and
\Ij(?;’ v) = exp (—ulogu — uloglogu + O(u)) (2.5.5)
holds uniformly in the range
3<u<y . (2.5.6)
Finally, as y — oo,
U(y, (logy)?) 1 (25.7)

y - yl/A+o(1)



2. Proof of Theorem 1 and Theorem 2 59

holds for any fixed number A > 1.

Proof. We refer to the survey article of Granville [23]. The asymptotic (2.5.2)
was shown to hold for the range (2.5.3) by Hildebrand [27]: see [23, (1.8),

(1.10)]. Hildebrand [27] also established that the less precise estimate

= p(u) exp (Os (wexp (—(log U)3/5_5>))

holds, for any fixed number 6 > 0, in the wider range (2.5.6) (see [23, (1.11),
(1.13)]). That (2.5.5) holds in the same range can be deduced from (2.5.4).
(The estimate (2.5.5) is less precise, but sufficient for our purposes.) For the
estimate (2.5.7), see [23, (1.14)].

The value of the Dickman-de Bruijn p-function is discussed in [23, 3.7 — 3.9],
and (2.5.4) was proved by de Bruijn in [8]. O

Lemma 2.5.4. Let & be a subset of the primes. As y — oo, the estimate

11 (1 - %) > % < (1+o0(1))e™ /:o p(v) dv. (2.5.8)

Py n>yv
peP pln=p<y
peEP

holds uniformly for u satisfying
u>1l, wu=-exp ((log y)3/5_5) , (2.5.9)

where 0 is any fized positive number.

Proof. Define
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If ¢ < y is prime, then

wevr= T (1-1)-(-1) T -

PLY n<
pe2U{L} p|ln=p<y
peES

Now

1\ ! 1 1 1 1 1
(-7) T i-(+irar) T i T o

n<e n<x m<e
pIn=py pln=p<y plm=py
peEP peEL pePU{L}

because every m appearing in the last sum may be written as nf® for some

a > 0 and some n appearing in the second last sum. Hence,
oz, y; P) 2 o(z,y; P U{L}),

and applying this inequality repeatedly, we obtain

o(x,y; P) 21_[(1—%) 3 %

Py n<
pln=p<y

Subtracting both sides from o(oco,y; Z) = 1 = p(oc0,y; {p < y}), we deduce

that

g(l—}) ; %éplg[y(l—l) 3 % (2.5.10)

peP p|ln=p<y pln=p<y
peES
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By partial summation,

1 < dU(t, U(z, < w(t,
3 E:/x (t y) _ (xy)+/x (tgy)dt

n>x

pln=p<y (2.5.11)

/Oo V) gy

t2

N

Now we assume x = y*, with u satisfying (2.5.9) and y tending to infinity.
We will divide the range of the last integral in (2.5.11) into three parts. First
of all, fix any ¢ € (0,1) and suppose t > exp(y¢), that is y < (logt)/c. By

(2.5.7) we have
Uty _ w(t (ogt)/) 1
2 = ) T flteto(l)

as t, and hence as y, tends to infinity. Thus, we may suppose y is large enough

so that W(t,y)/t? < 1/t'7/2, say, and

& Wt & dt 2
/ :9) g </ T m— (2.5.12)
ep(ye) T exp(y) t eexp (ey</2)

For the range = < t < exp(y°), the substitution ¢ = 3" yields

exp(y©) \Ij(t’ y) y¢/logy ‘I/(y”, y)

Next, we let u; = 2exp ((log y)3/5*5), and for u; < v < ¢, we use the estimate
(2.5.5):

W(y” !
% = exp (—U logv —vloglogv + O(U)) S =
v vv

where the last inequality holds for all sufficiently large v, hence for all suffi-



2. Proof of Theorem 1 and Theorem 2 62
ciently large y. Thus
ye/logy \Jy (v % 1 1
/ YY) 4, g/ <= (2.5.14)
Ul y Uy v ul
for all sufficiently large .
For u < v < uy, we use the estimate (2.5.2):
(Y “ 1 2
/ (yv,y) dv:/ o(v) (1+O ( ogl(oer ))) do
wo v . &Y . (2.5.15)
(4 0(1))/ p(v)dv — (1 + 0(1))/ p(v) do.
By (2.5.4) we have, similarly to (2.5.12), the estimate
/ p(v) dv < / T+ (2.5.16)
ul ul Che Uy
for all sufficiently large y.
Combining (2.5.11) — (2.5.16), we see that
/ (ty) dt = (1+o0(1)) logy/ p(v)dv + O (u;" logy) (2.5.17)

t2

for all sufficiently large y. Now by definition (2.5.1),

[ o= [ () do = (u+ Dplut 1)

and by (2.5.4), u;" = o((u+ 1)p(u+ 1)) as u; > 2u, and u; tends to infinity

with y. Therefore, combining (2.5.17) with (2.5.11) in fact gives

> < ons [~

n>y"
pln=p<y

(2.5.18)
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as y — 00, for w in the range (2.5.9). Finally, combining (2.5.18) with (2.5.10)

and applying Mertens’ theorem, we obtain (2.5.8). m

2.5.2  The proof of Proposition 2.2.3

We are now ready to define ) explicitly. The construction is modelled on
that of Shiu’s [32]. For the rest of this section we let ¢ > 3 and a be integers

with (¢,a) = 1. If a = 1 mod g, let

PH):={p<logH:p=1mod q}U{p < H/(logH)*: p#1mod ¢},

otherwise let

P(H) :={p<logH :p=1modq}
U{p < H/(logH)?:p#1,a mod ¢}
U{t(H) <p < H/(log H)? : p=1mod ¢}

U{p < H/t(H) : p=amod g},

with
log H logloglog H
t(H) =
(H) eXp( 2loglog H
and put
QH):==q [[ »» Q=0QH)=q [] p (2.5.19)
peEP(H) peX(H
paﬁpo

We check that (2.2.2) — (2.2.5) are indeed satisfied by Q: only (2.2.4) is not

immediate, but it follows from the prime number theorem.
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Analogously to (2.2.11), we define

S(H):={h € (0,H]: (Q(H),h) =1 and h = a mod ¢},

T(H) :={h € (0,H]: (Q(H),h) =1 and h # a mod ¢}.

Proposition 2.2.3 will follow from the next lemma.

Lemma 2.5.5. Let H be a real parameter tending to infinity, and let Q(H) be
as in (2.5.19). We have

T(H)| < (2.5.20)

log H'

Moreover, there is a constant A = A(q), depending on q at most, such that for

all sufficiently large X, there is some H satisfying

(10—;(X)A <H<X (2.5.21)
such that
1S(H)| >, H%. (2.5.22)

The implied constant in (2.5.20) is absolute, and that in (2.5.22) depends on q

at most.

Proof of Proposition 2.2.3. Let S(H) and T(H) be as in (2.2.11). If py # 1

then by (2.2.1) there are at most H/py < H/log H multiples of py in T'(H), so

H
log H

T(H)| <
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by (2.5.20). We also have |S(H)| > |S(H)|. An application of Lemma 2.5.1

reveals that, as H — oo,

. ( log H )1/¢(Q)

_ 1/¢(q)
e 10 .
peP(H) log;I (1o§1§£> if a Z 1 mod q.

if a =1 mod g,

Therefore, in either case, combining (2.5.20) and (2.5.22) gives

S(OH)) - H(QUH)
o Mo

[S(ED| = |T(H)| > [S(H)| — [T(H)| >, H

Proposition 2.2.3 now follows from Lemma 2.5.5. O]

Proof of Lemma 2.5.5. There are < H/log H primes in T(H), so let us count
the composites h € T(H). If h = pm for some prime p > H/(log H)?,
with m > 1, then m < (log H)? is composed only of primes > log H and
= 1 mod ¢, by the construction of &(H). Thus, m must be prime itself,
and p < H/log H. We partition (H/(log H)?, H/log H] into sub-intervals
I, = (e"'H/(log H)? e'H/(log H)?], and (log H, (log H)?] into sub-intervals
Jy = (log H, (log H)?/e!], 1 < | < loglog H, and using the prime number
theorem, we deduce that the contribution from elements with a prime factor

> H/(log H)? is at most

l 2

e'H log H H

Z Z Z L< Z (log H)? el(logb)H SlogH

1<i<loglog H pel; p'ed; 1<I<loglog H & 108 g
pZ1 mod ¢ p’=1 mod ¢

In the case a = 1 mod ¢, then any h in T(H) must be divisible by a prime
p # 1 mod ¢, and such a prime p must satisfy p > H/(log H)? by construction

of Z(H). Therefore we have counted all of the elements of T'(H), and we have



2. Proof of Theorem 1 and Theorem 2 66

(2.5.20).

There are other elements to count in the case a # 1 mod q. If h € T(H) and
h = pm with p = a mod ¢, then p > H/t(H), and m < t(H) must be composed
only of primes = 1 mod ¢, a contradiction as h # a mod g. The only elements
we have not counted must therefore be composed only of primes p = 1 mod ¢

with log H < p < t(H). By (2.5.5), the number of such elements is at most

V(H,t(H)) = H exp (—ulogu — uloglogu + O(u)),

where
log H 2loglog H
u = = :
logt(H) logloglog H
Thus
ulogu + uloglogu + O(u) ~ ulogu ~ 2loglog H,
and so

V(H,t(H)) <

log H'
Combining these estimates, we see that (2.5.20) also holds in the case
a #Z 1 mod gq.

Now suppose H is in the range (2.5.21). To bound the size of S(H) from

below we will first do the same for
S'(X)={he(0,X]:(Q(X),h) =1and h =a mod ¢},
where

QX)=q ] » 2(X)=2(X)\{p<logX :p=1modqg}.

peP'(X)
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In the case a = 1 mod ¢, S’(X) contains any positive integer m < X which
is composed only of primes = 1 mod ¢, that is S'(X) O .(X). Therefore by

Lemma 2.5.2,

1S'(X)| = |7 (X)| >, (log X)), (2.5.23)

log X

In the case @ # 1modgq, pm € S'(X) if X/t(X) < p = amod g and
m € . (X/p). We partition (X/t(X), X] into sub-intervals

I = (' X/t(X), e X/t(X)], 1<I<logt(X),

and deduce, using the prime number theorem for arithmetic progressions and

Lemma 2.5.2, that

s Yy Y

1<i<logt(X)  pel; meS (t(X)/el)
p=a mod q

el
>4 Z 09 l)gg X 1Z<g)i(>X) (log t(X))1/¢>(Q) (2.5.24)

1<I<3 log t(X)

In either case, we may write any h € S’(X) uniquely as h = dm, where d is
composed only of primes p < log X with p = 1 mod ¢, and m € S(X). Thus,
in the case a = 1 mod ¢, by (2.5.23) there is a constant ¢;(¢q) > 0, depending

on g at most, such that for all sufficiently large X,



2. Proof of Theorem 1 and Theorem 2 68

(log X))@ <|S'(X)[ = > Y 1

c1(q)

log X

d<X  m<X/d

p\djipélng meS(X)
P mecd (2.5.25)
< D> 1S(x/d)l.
d<x
pld=p<log X
p=1 mod ¢

The inequality on the right is not immediate: in fact if 7 < X, then
S(X)N(0,Z] € S(Z). To see this, first note that as all of the functions

used to define (X)) are monotonically increasing with X,

P(7) C P(X)U{H(Z) <p <HX) :p=1mod g}.

Suppose m € S(X) N (0,Z], but m & S(Z). Then p € P(Z) for some p | m,
but p € Z(X),sot(Z) < p<t(X)and p=1mod ¢. Since m = a # 1 mod ¢,

there must be some p’ | m with p’ # 1 mod ¢ and

P <mp < ZJH(Z) < X/H(X).

Then p' € Z(X), a contradiction.
Similarly, in the case a Z 1 mod ¢, by (2.5.24) there is a constant ¢;(q) > 0,

depending on ¢ at most, such that for all sufficiently large X, we have

X -
(@) (st XN IS < 3, IS/ (25.26)
p\djpgé)ngX
p=1 mod ¢

Suppose for a contradiction that for some constant cs(q) > 0, depending on
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q at most, we have the following for all H in the range (2.5.21):

‘S(H)‘ . Cl(Q) H 10gX 1/¢(q)
= 3ea(q) log X \loglog X

in the case a = 1 mod ¢, and

S| < @@ H_(logt(x0)
= 3ea(q) log X \loglog X

in the case a Z 1 mod ¢. Then in the case a = 1 mod ¢,

~ alg) X log X @ 1
X/d)| < -
Z |S(X/d)] 3ca(q) log X <log log X Z d

d<(log X)4 d<(log X)4
pld=p<log X pld=p<log X
p=1 mod ¢ p=1 mod q

_al) X < log X )”‘“q) 1 (1 1)‘1

= 3ca(q) log X \loglog X e X P

pET mod ¢
alg X 1/6(q)
< log X 1
3 logX (log X)),

(2.5.27)

provided X is sufficiently large, and for a suitable choice of ¢2(q) (given by

Lemma 2.5.1). Similarly, in the case a # 1 mod g,

S s < A0 tog () V.
dg(logX)A Og (2528)
p|ld=p<log X
p=1 mod ¢

Now, by the fundamental lemma of Brun’s sieve [24, Chapter 2, Section 8|,

we have

15(X/d)| < % 11 (1 - 1) (2.5.29)

pe2(X/d) p
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for any d. If (logX)* < d < VX, then log(X/d) = log X, and applying

Lemma 2.5.1 to the sieve upper bound (2.5.29), we see that for some constant

cs(q) > 0,
5 X log X 1/é(a) 1
S(X/d)| < -
> Bl < el () !
(log X)A<d<vX (log X)A<d<vX
pld=p<log X p|ld=p<log X
p=1 mod q p=1 mod ¢
(2.5.30)
in the case a = 1 mod ¢, and
. X [logt(X)\"* 1
S(X/d)| < -
> Bl <l () !
(log X)A<d<vVX (log X)A<d<vX
pld=p<log X p|ld=p<log X
p=1mod ¢ p=1 mod ¢
(2.5.31)
in the case a Z 1 mod gq.
By lemmas 2.5.4 and 2.5.1 respectively, we have
1 Nt >
>, o< 11 (1 - ];) (1+ 0(1))6_7/4 p(v) dv
(log X)4<d<vX p<log X
pld=p<log X p=lmodg (2.5.32)
p=1 mod q
< cula)loglog X)) [~ p(u) o
A

for some constant c4(q) > 0. Now by (2.5.4),

/ p(v)dv =0 as A — oo,
A

so we may choose A = A(c1(q), c3(q), ca(q)) = A(q) so that
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> Cl(CI)
/A plv)dv < 4ez(q)ealq)

For any such A, combining (2.5.30) (respectively (2.5.31)) with (2.5.32) yields

5 alg) X
> [S(X/d)| <
4 logX
(log X)A<d<vX 08
pld=p<log X
p=1 mod ¢

(log X)1/¢@ (2.5.33)

in the case a = 1 mod ¢, and

> IS < 2D oge(x) e (2.5.34)

(log X)A<d<vX
pld=p<log X
p=1 mod ¢

in the case a # 1 mod gq.

Finally, using Rankin’s trick, we see that

> e 3 3 o L6

VX <d<X VX <d<X
pld=p<log X pld=p<log X
p=1 mod ¢
3
< XS exp ( E —2/3> < XS exp (9(logX)1/3)
p<log X

_ x5/6+0(1)

(2.5.35)

by the prime number theorem.
Combining (2.5.25), (2.5.27) and (2.5.33) (respectively (2.5.26), (2.5.28) and
(2.5.34)) with (2.5.35), we obtain ¢1(q) < 2¢1(q)/3, which is absurd. We con-

clude that for all sufficiently large X, there is some H in the range (2.5.21) for
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which

H < IOgX )1/¢(Q) H ( IOgX )1/¢(‘1)

S(H
[S(H) > log X \ loglog X > log H \ loglog H

in the case a = 1 mod ¢, and

B H log t(X 1/¢(q) H loo t(H 1/¢(q)

g X \loglog X log H \ loglog H

in the case a # 1 mod q. In either case, a final application of Lemma 2.5.1

shows that this is > Ho(Q(H))/Q(H). O

We remark that replacing (log X)4 by VX in the above proof establishes
the same result for some H € [v/X, X] and all sufficiently large X, without
appealing to Lemma 2.5.4. However, a sharper range for H is important when

it comes to obtaining a quantitative result, as we will see in Section 2.7.

2.6 Longer strings of congruent primes

In this section we will show that for any given integers ¢ > 3 and a with
(¢g,a) =1, and v > 1, there exist infinitely many strings of v + 1 consecutive
primes p, = --+- = p, = a mod ¢q. However, we only show that these strings
satisfy ppi, —pn < ¢(q)(v —14¢€) log p,,, for some constant ¢(q) > 0, depending
only on g¢.

We fix integers v > 1, ¢ > 3 and a with (¢,a) = 1, and we let H be a real
parameter tending monotonically to infinity. We let Z(H), Q(H ) S (H) and

T(H) be as defined in Section 2.5. By Lemma 2.5.5, we have

IT(H)| <

2.6.1
log H (26.1)
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for all sufficiently large H. We let ¢/(¢) be the constant implied by >, in
(2.5.22). Thus, for all sufficiently large X, there exist a constant A = A(q)

such that

|S(H) OH ] (1—1—9> (2.6.2)

pEP(H)

for some H satisfying X (log X)™* < H < X. As noted in Section 2.5, Lemma

2.5.1 implies that

_ 1/¢(a)
e 7 log H . _
H 1_1 -~ log H (logﬁ)gH) if a =1 mod e (263)
P p e (logten) \ /9 -
pEP(H) o F <loglogH> if a # 1 mod ¢,

as H — 0o. We conclude from (2.6.1) — (2.6.3) that for all sufficiently large X,

we have

|S(H)| = v|T(H)| = (1 - o)) (9H ][] (1 - -> (2.6.4)

pEP(H) p

for some H € [X (log X)=4, X].
We fix an € > 0 and define

o d(@H
N :=exp <(V_ql+€)> ,
so that

d(QH = (v —1+¢€)logN. (2.6.5)
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If there is an exceptional modulus

' C/ -2 oglo
i w00 < e (2 (o (35)) ) e

let po := po(H) be its greatest prime factor; otherwise let po = 1. Just as
in Section 2.2, one can show that py > log H if pg # 1. Thus, letting S =
S(H) and T = T(H) be as in Section 2.5, we have |T'(H)| < H/log H and
|S(H)| > |S(H)|. Therefore, by (2.6.4), for all sufficiently large X there is
some H € [X(log X)~4, X] such that

|S(H)| = v|T(H)| > |S(H)| = v|T(H)]

peZ(H) P
=(1- 0(1))6/((])}[};[0 <1 - pi0> pi%f) (1 - 219)
- 0“”0/@]{102%5) (-3)

In particular, letting

as in Section 2.5, so that
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we have

Q_|SI—vIT| _
Q) logN ~

(1—o(1)(v—1+¢) (2.6.6)

for some H € [X(log X)~4, X] and all sufficiently large X, by (2.6.5).
Next, we fix an € € (0,1/4) such that ¢ < ¢/10, and we choose integers

k > 2 and ¢ = [V/k] large enough so that

koo 2020+1) (1
4

——€d)>1-5d =21~ . .6.
Y Ry 6)/1 5¢ > 1—¢/2 (2.6.7)

Let H := {Qx + hy,...,Qz + hi} be a k-tuple of distinct linear forms with

h; € [1, H] N'a mod q for each i, let R := N'/4~¢ and consider

- R
i

~ > (Z 9(Qn+h) —v> (Qn+h)— ulog?)QN) Ar(n; H, b+ 0)?,

N<n<2N \heS heT

where Ag(n;H, j) is as defined in (2.2.7).

We are in precisely the same situation as Proposition 2.2.2, except we have
changed the definition of N in an inessential way. In fact, to prove Propo-
sition 2.2.2 for our new N, we only have to replace each occurrence of € by
(v—1+4¢€)/c(q) in (2.4.48) — (2.4.49). Therefore we may apply the estimates
(2.2.9) and (2.2.10) to .%,: we find that

(20 (log R)F*2*
= () Gz e

Q |S|—vIT|  2(2¢+1) &k 1
X{cb(Q) ogN 011 k+2€+1(1_6)_(’/+0(1))}-
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By (2.6.6) and (2.6.7), the expression {---} is > €/2 — o(1), and hence
%L, >, e(log N2+, (2.6.8)

for some H € [X(log X)~4, X] and all sufficiently large X.
Thus .Z, > 0 for a sequence of values H, equivalently N, tending to infinity.
Choose such an N, and for n € (IV,2N], consider

A, ={pe(@nQn+H]:p=amodq}={p:p=Qn—+h,h €S},

B, ={pe(@,Qn+H]:pZamodq}={p:p=Qn+h,heT}.

Since %, > 0, there must be some n € (N,2N] such that

|[A|log(Qn+ H) =Y 9(Qn + h)

hes

> yZﬁ(Qn—l—h) + vlog3QN

heT

> v |B,|log Qn + vlog 3QN.

Now

[Aullog (1+ H/Qn) < |A,| H/Qn < H2/QN < log(3/2)

if N is sufficiently large, and so
log(3/2) 4+ (|An| — v |Byl|) log Qn > vlog 3QN
and hence, as n < 2N, |A,| — v |B,| > v. But as these are integers,

|A,| = v B, +v+1,
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and so, by the pigeonhole principle, A, contains a string of v + 1 consecutive

primes p,, ..., py1,. These primes satisfy
Prv —pr < H < 57 )(1/— 1+¢e)logQN < ¢(q)(v — 1+ ¢€)logpy,

where ¢(q) = 1/ (q).
As we have not made the constant ¢(q) explicit, we do not know whether

these prime strings are contained in short intervals, that is whether

Priv — Pr < ¢<Q>(V -1+ 6) logpr-

However, Proposition 2.2.2 is similar to a special case of Propositions 1 and 2

of [19], which are used to prove that for a given v > 1,

lim inf —/———— Drey — Pr <e (Vv —1)?
r=ce ¢(q)logp),

where p] < py < --- is sequence of all primes in the arithmetic progression
a mod ¢, (q,a) = 1. It may be feasible to prove a similar result for prime strings,

that is to replace ¢(q)(v—1+-¢), above, by something like ¢(q)(e™7(y/v—1)*+€).

2.7 The proof of Theorem 2

Let us continue with the notation and hypotheses of Section 2.5. We will

first show that the estimate

> A(miH k4 0)* < N(log N)'F+4 (2.7.1)

N<n<2N
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holds, with an absolute implied constant. For by (2.4.36) and (2.4.37),
> AmH kA0

N<n<2N
DR YO VS VA S

dy,d2,d3,ds N<n<2N
[d1,d2,d3,d4]|P(n;H)

DRV VSV 3 1

i d2,d3,ds m mod [d1,dz,d3,d4] N<n<2N (2.7.2)
€Q([d1,da,d3,d4]) n=m mod [d1,d2,d3,d4]

N
< D PadndaAa > (m+0(1))

di1,d2,d3,d4 m mod [d1,d2,ds,d4]
squarefree €Q([d1,d2,d3,d4])
Q([dr, da, ds, da])|
< N(loe R (k+2) I 3 ) ) .
( & ) Z [d17d27d37d4]

d1,d2,d3,da <R
squarefree

To see the last inequality, note that [dy, dy,ds, dy] < R* = N'=*' = o(N), and
so N/[dy,dy,ds, ds] + O(1) < N/[dy,ds, d3,dy], and also that Ay < (log R)***
by (2.4.36).

As observed in Section 2.4, |Q(d)| < k“@ for squarefree d, and if D is

squarefree then Z[dl,dg,dg,d4]=D 1=15*P) 50

1Q([dy, do, d3, d4])| (2 (D)k=P)
Z [d17d27d3;d4 Z Z 1

d1,d2,d3,da <R D<R* d1,da,d3,dy

Squarefree [d1 d2 d3,ds)=D
¥ 12 15k » 1 (1+ @)
D<R? p<RA p
< (log Rk,
(2.7.3)

Since R* < N, combining (2.7.2) and (2.7.3) yields (2.7.1).

Now we choose H and N := exp (E) so that (2.3.2) holds. If we restrict the
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outer sum in the definition of .Z to those n for which (Qn, Qn + H] contains a
pair of consecutive primes p, = p,+1 = a mod g, we remove no positive terms.

Thus, if " denotes this restricted sum, then

e ()

N\ @Q
X Z* <Z 9(Qn+h) =Y 9(@n+h) —log 3QN> Ar(n; H, k4 0)2.
N<n<2N hesS heT
(2.7.4)

For each n € (N,2N],

D 0(@Qn+h) = > 9(Qn+h) —log3QN < Hlog3QN, (2.7.5)

= heT
and by the Cauchy-Schwartz inequality,

(NZ* AR(n;H,k+€)2> < > 1)( > AR(n;H,kz+€)4>.

<n<2N <n<2N N<n<2N

(2.7.6)

Combining (2.7.4) — (2.7.6) yields

S 1>N2<Q/¢<@>>W?<Hlog3QN>-2( > AR<n;H,k+e>4) .

N<n<2N N<n<2N

Using H = elog N, log 3QN = (140(1))log N, and Q/¢(Q) > 1, then applying
(2.3.2) and (2.7.1), we see that

. N
> 1y, (log V)72 (2.7.7)
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Now fix a sufficiently large number Y, and let

2ce -1
X = 14+ —— locY
( +<1og10gy>z) o8

with ¢ > 0 fixed. We choose some H in the range
X/(logX)*<H<LX
so that (2.3.2), and hence (2.7.7), holds with N = exp (H/¢). By (2.2.4),

H cH
N<exp (2 +—S2 ) <y,
QN < exp ( ¢ T log H)ﬁ)

because
H cH H ce X 2ce
-t = — (14— <=1+ —F—— | =logY.
e T logHP " ( i <logH>2) ‘ ( i <1oglogy>2> -
Here we have used log H = (14 0o(1))log X = (1 + 0o(1)) loglog Y. Also,
log N = H/e > X/e(log X)* > log Y/2(loglog V)"

Therefore, using (2.7.7) as a lower bound for the number of pairs of consecutive

primes up to Y, we deduce that

3 1> 3 1> Z 1> N

pr41<Y Pr4+1<3QN N<n<2N
pr=pr4+1=a mod q Pr=pr+1=a mod g
Pr+1—pr<elogpy Pr41—pr<elogpr

A
> Yl/S(loglog Y) .

What we are counting here is the number of n such that Qn + h < 3QN <Y
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and the interval (@Qn,Qn + H] contains a pair of consecutive primes. Since
Qn+ H < Q(n+1), these intervals are disjoint and we do not count any prime
pair twice. This completes the proof of Theorem 2.

At best, we may have H = X, in which case

X 2ce !
log N = = — =14+ — logY
8 ‘ ( " log logY>2) 8

Then

Z 1> Z* 1> N > Ylfcl/(loglong,

pr41<Y N<n<2N
pr=pr+1=a mod q
Pr+4+1—DPr <e logpr

for some constant ¢ > 0.

2.8 Some remarks on the proof of Theorem 1

The so-called singular series for a k-tuple H is defined as

M) =] (1 - M) (1 - 1) %. (2.8.1)

» p p

If H = {Qx+h,...,Qr+h;} is admissible, we have G(H) = (Q/¢(Q))* &' (H),
where &'(‘H) was defined in (2.4.14). In the proof of Lemma 2.4.3, we showed
that &'(H) ~ 1, hence
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as H — oo, provided @) satisfies (2.2.2) and (2.2.3). We then had

G(0,0;2) = (1) [ (1 - —m(p)')_l

p
plpo

and

GH(0,0;Q") = <¢(Q)> s ] (1 - %)_1

p—1

If we drop the assumption that @ satisfies (2.2.3), Proposition 2.2.2 still holds
if we replace (Q/¢(Q))* by G(H), (Q/¢(Q))*! by G(HT), and assume H and
H* are admissible. (See Proposition 3.2.2 for instance.)

Let us suppose that @ satisfies (2.2.2), (2.2.4) and (2.2.5), but not nec-
essarily (2.2.3). As we saw in the proof of Lemma 2.5.5, the fact that @
was divisible by all small primes p < log H prevented us from proving that
|S| — T >, H(¢(Q)/Q) for all sufficiently large H, rather than just for some
H € [X/(log X)*, X] and all sufficiently large X. With a view towards im-

proving the lower bound in Theorem 2, we might consider

% > (Z I(Qn+h) =Y H(Qn+h) —log 3QN> Ar(ny M,k + 0)2.

N<n<2N \heS heT

We could show that if H = {Qx+ hy,...,Qx+ hy} is admissible and such that
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hi € [1, H] Na mod ¢ for each i, then

£ = (2€)£3¥iﬁffffaogpv)

¢ ) (k + 20)!

1 + 1 +
loew X ot~y Taoe)
hes h

Qr+hgH

Tk zkﬁ 1 2(56:11) G - 6/) S(H) — {1+ 0(1)6(H)}’
where H™T is short for H U {Qx + h} in the first two sums. This is pre-
cisely what we had in Section 2.3, except there we had &(H) ~ (Q/d(Q))*
and S(H) ~ (Q/p(Q))*. (Here we also have to consider h for which H*
is not admissible, but such h only give rise to error terms, corresponding to
G(0,0) = G*(0,0;Q2") = 0 in Lemma 2.4.4.)

Now let o7, denote the set of all k-tuples of the form {Qz+hy, ..., Qr+hy},

with h; € [1, H] N a mod ¢ for each i. We might consider
(log R)F+2
> 2= ()
(k + 20)!

HE ),
Z Z
{ log N e, lOg N

> ) smh)

hes ‘He ), heT
Qz+hgH
kooo220+1) (1
- . (1
(k+2€+1 (+1 (4 ) +oll )ZG }
HE A,

If the expression {- - - } were positive for all sufficiently large H, we could deduce
that for all sufficiently large N there is some H such that £ is positive. However
we will sketch a proof that {---} is negative for all sufficiently large H, that is

Y new, L is negative for all sufficiently large N.
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Now since S(HT) = G(HU{Qz + h}) = 0if (Q,h) # 1, we have

o> emhH=> > &H

HEe ), hes Hedt, 1<h<H
Qx+hgH h=a mod ¢
Qz+hgH

()" g 5 e

Heot, 1<h<H

h=a mod q
Qz+hgH
Q )k+1 ,
= (-2} (k+1) &' (H).
(5@) ©

Similarly, letting szk(b) denote the set of all k-tuples of the form

{Qz + hq,...,Qx + hy},

with h; € [1, H] N bmod ¢ for precisely one j, and h; € [1, H] N a mod ¢ for

every other 7, we have

> SYemh=3 S Y em

Het), heT HE) bZa mod ¢ 1<h<H
(g,b)=1 h=bmod q
Qx+hgH

:(%YH Yoo > ).

b#a mod ¢ (b)
(gh)=1

We have now lost all information about S and T'. It is possible to show that

> S0~ (afq))

HG.Q%]C+1
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and that for (¢,b) =1, b Z a mod ¢,

= o3 ()

b
Hew"),

Combining all of this yields

(4 2

(20 (log R)**2f o QH B B
-(0) “gN>{¢<q>¢<@>logN“ oo =1)

koo220+1) (1,
Tkrolrl (11 (Z_E)_(Ho(l)}'

This goes to show how atypical our choices for () and H were in the proof of

Theorem 1 (and Theorem 2).



3. PROOF OF THEOREM 3 AND THEOREM 4

3.1 The idea of the proof

The proof of Theorem 3 is much simpler than that of Theorem 1. The
estimates involved are much the same; the key difference is that on the con-
ditional hypothesis of the theorem, we are able to prove the following. There
is an integer k = k(0) such that if H = {Qz + hq,...,Qz + hy} is admissible,
and if () satisfies certain conditions, then there are two or more primes among
Qn + hy,...,Qn + hy, for infinitely many n. We then choose H in such a
way that Qn + h; = a mod ¢ for each i, hy < --- < hg, and every integer in
the interval [@Qn + hy,Qn + hy| is composite, except perhaps for the integers
Qn+hy,....,Qn+ hy.

3.2 Preliminaries

Recall that

x
E*(N,q) :== max max logp — —|.
(N ) := mags oo, 2, logp ¢(q)

p<z
p=a mod q

We say that the primes have level of distribution 6 if

Y E*(N,q) <a N(logN)™ (3.2.1)

quefe
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holds for any A > 0 and any € > 0. The primes have level of distribution at
least 1/2 by the Bombieri-Vinogradov theorem (Lemma 2.4.5), and the Elliott-
Halberstam conjecture (see [16]) asserts that the primes have level of distribu-
tion 1.

In the present discussion, we let N be a real parameter tending monoton-
ically to infinity, and we set R = N%?~¢ with some € € (0,6/2), where 0 is
the level of distribution of the primes. We let H be a real parameter satisfying
H < log N, though we do not necessarily assume H is tending to infinity: thus
H may be bounded.

We let @ be a positive integer such that

() is composed only of primes p < log N, (3.2.2)
Q < (log N)® for some constant B > 0. (3.2.3)

As before, we let
H={Qx+hy,...,Qx+ hy}, hi,....,h €[1,H|NZ, (3.2.4)

denote a set of distinct linear forms, P(n;H) := (Qn + hy)--- (Qn + hy), and

we redefine

. 1 / .
Ar(niH,j) == > pld)(log R/dY,
j'd\P(n;H)
d<R

where >’ denotes summation over indices coprime with ). Accordingly we
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redefine

Q
1\ 1\ 1 F
X 1;[ (1 o p51+1) (1 o p82+1) (1 o p51+52+1)

and

Ot -1 1 1 1
6 (orsn ) = [T (1- R (L £ L))

PIQ prope
1 —k 1 —k 1 k
X H (1 o p81+1) (1 o p82+1> <1 o p81+82+1> ’
p

(Formally, these definitions are the same as (2.2.7), (2.4.4) and (2.4.5) in the

case pg = 1.)

Lemma 3.2.1. Let C be a positive constant. Let H and R be a real parameters
with R tending to infinity and H < C'log R, let ) be a positive integer composed
only of primes p < C'log R, and let H be as in (3.2.4), with k fized. Also let
h € [1, HINZ be such that Qz+h ¢ H. For sy, 5 satisfying Re s1, Re so > —1/4,

we have
G(s1,50;Q), GT (51, 59;Q2T) < exp (c(log R)* " logloglog R) , (3.2.5)
where ¢ is a constant depending only on k, and

d := max(—Res;,0), i=1,2.
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Moreover, we have
G(0,0;Q) =6(H), GT(0,0;Q") = (@) S(HT). (3.2.6)
and for admissible H and H™*, we have
S(H), S(HT) > 1. (3.2.7)

Proof. Recall the discussion leading up to (2.4.7), in which we showed that
|Q(p)| =k if pt QA. The prime factors of A do not exceed H < C'log R, and
the prime factors of ) do not exceed C'log R. Thus, analogously to (2.4.7), we

have
pfQA and [Qp)| =k foral p>ClogR.

The proof of (3.2.5) is now identical to the proof of (2.4.8), except here we
have C'log R in place of H, and we do not have to deal with py.
Now suppose H is admissible. Then |Q(p)| = 0 if p | @, as we saw in the

proof of Lemma 2.4.3, hence

G(0,0;)
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Similarly, supposing H™ is admissible, we have |27 (p)| = 0 when p | @, hence

cone =[N
ST
TS (5 ()

-(%¢) 1l CH L1 (11200 ()

(e

Next, we have

Now

(-5 () (-5 05) =

and since p t QA implies |Q(p)| = &,

1650520

-0 ()

p>k p>k
plQA
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The last product is > 1 because |Q(p)| < k for all p as ‘H is admissible. Now

(o) o)
S-S ) ()

1 /1 14k 14+k+Ek
S (e )

p>k

/{72

1
<<k3§:——<:lgk

p>k

and exponentiating this we obtain

k 1\ *
II(L——)(1+—> > 1
et p p

Combining yields (3.2.7) for &(H) and the case for G(H™) is the same. O

Proposition 3.2.2. Suppose the primes have level of distribution 0. Let H, N
and R be real parameters with H < logN and R = N%>~¢ for some
¢ €(0,0/2). Fizintegersk > 2 and { > 1, let Q) be a positive integer satisfying
(3.2.2) and (3.2.3), and let H = {Qx + hq,...,Qx + hi} be an admissible set
of distinct linear forms with hy, ... hy € [1, H{NZ. Also let h € [1, H|NZ and

suppose HT := HU{Qx + h} is admissible. Then as N — oo, we have
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1 . ) 20\ (log R)*+2
¥ Ar(n; H, k +0) 6(H)<£) R (3.2.8)
N<n<2N
and
1
~ > 9Qn A+ h)Ar(n;H, k+ 0)°
N<n<2N
(
20\ (log R)*+2 ,
+ sty
G(H)(g) E T 20 if Qu+h ¢ H,
~ (3.2.9)
2(£+ 1) (IOg R)k+2€+1 .
kG(H)( 041 )(k+2€+1)! Qe then.

Proof. The proof is mutatis mutandis the same as the proof of Proposition
2.2.2: we have done little more than modify our assumptions on @), and the
effect is as described in Section 2.8. We let H, N, R, @, H and H™ be as in the
statement of the proposition, with R and N sufficiently large, except we only
assume k > 1 for now. Since H < log N < log R and () is composed only of
primes < log N, there is a constant C' such that H < C'log R and the prime
factors of @) do not exceed C'log R. Therefore (3.2.5) and (3.2.7) hold.
We note that by (3.2.6) and (3.2.7),

G(0,0;Q) = &(H) > 1, (3.2.10)
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and

GT(0,0;Q1) = (@) S(H™) >, (loglog Q) > (logloglog R)™*

(3.2.11)

by (3.2.3) and since log R > log N. As in the proof of Proposition 2.2.2; we

have
1
N Z r(nH k+ 02 =NT + 0(E),
<n<2N
where

£ = Z' Aas Aay| - [Q([dy, da])| < R*(log N)*+2 <« N9

dy,d2

because R = N%2=¢ and

C(Sl + S9 + 1) k Rsl+52
G( dsid
27TZ / ) (51, 82:2) (C(Sl F1)C(sa+1)) (sasp)prert 102

=G6(H) ( ’ ) I((ZL)%J; (1+ 0 ((log R)"Y?(loglog R)))

for all sufficiently large R, by Lemma 2.4.4 and (3.2.10). Hence (3.2.8).

Also as in the proof of Proposition 2.2.2, assuming Qx + h € H we have

> 9Qn+ h)Ap(n;H, k+ 0) QT

= = T 0(E),
N N<n<2N $(Q)
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where

“([dy, da])|
Ad; )\d2
dlzdz dl; d2]>

C(‘Sl + s9 + 1) k Rs1ts2
27” /(1)/ o, 87 <C(31 +1)C(s2+ 1)) (s182)"HcH! dsyds;

- o(Q 20\ (log R)H% —-1/2 c
= (7) 6(H+)(£>m (14O ((log R)"*(loglog R)°))

for all sufficiently large R, by Lemma 2.4.4 and (3.2.11), and

£ = 3" Padal - 127 ([dr, da))| E*(3QN, Qldy, ds))
dy,d2
) 1/2 1/2
2 2w(D /
< | Nlog N Z a (D)%k) Z E*(3QN,QD)

D<R? D<R?

1/2

< NV2(log N)2k+0+ER)?/241/2 Z' E*(3QN,QD)
D<R?

Now Q < (log N)Z by (3.2.3), so we may assume N is large enough so that

QR* = QN2 < (3QN)*~

Therefore by (3.2.1),

SEBQN,QD) = Y E'(3QN.QD)

D<R? QD<QR?

< Y E'(3QN,D)

DE(BRN)?—
< Bad QN(log N)f(B+4(k+€)+(3k)2+4)

< N(log N)—(4(k+ﬁ)+(3k)2+4)
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for all sufficiently large N. Thus we may suppose N is large enough so that
E* < N(log N)~'. Combining yields (3.2.9) in the case Qz + h & H, assuming
H* is admissible. For the case Qr + h & H, we assume k > 2 and apply
the above evaluation with the translation H — H \ {Qz + h}, k — k — 1,
l(— 0+ 1. m

To prove the last statement in Theorem 3, we will make use of the following
quantitative formulation of Linnik’s theorem, which gives an upper bound for

the least prime in an arithmetic progression.

Lemma 3.2.3. There is an absolute constant L such that for all sufficiently

large integers q, the estimate

X
1 -
Z > ?(q)q'/?log x

P
p=a mod q

holds for all x > q%, where a is an integer such that (q,a) = 1.

Proof. Let q be a sufficiently large integer and let a be an integer with (¢, a) = 1.

That there exists a constant L such that for all = > ¢,

2, logp> N

p<ZT
p=a mod q

can be read directly out of [28, Corollary 18.8]. Hence

log p x
1> .
2 2 logz ~ 9(g)q/*log

p<z p<z
p=a mod q p=a mod q
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3.3 The proof of Theorem 3 and Theorem 4

Fix integers ¢ > 3 and a such that (¢, a) = 1. Suppose the primes have level
of distribution # = 1/24-0,0 > 0. Fixan €’ € (0,6/4) so that /2—¢ > (140)/4,
then fix integers k = k(0) and ¢ = [v/k] such that

2020+1)  k (9

——€|=1 0. 3.3.1
(+1 kE+20+1\2 6) e e ( )

Now let
H/ = {gj‘—i—ht+1,...,x+ht+k}7

where h; < hy < --- is the sequence of all primes = a mod ¢, h;y7 > k. Then
H' is admissible, for clearly |Q(H';p)| < k < p — 1 for primes p > k, and for
primes p < k we have 0 mod p € Q(H'; p), hence |Q(H';p)] < p—1. We assume
t is large enough so that hyyx < h#,,, which is possible by the prime number

theorem for arithmetic progressions.

Put
Q=q [ »
pght-kk‘
pFEht41, s he gk
and let

H:={Qx + hyy1,. .., QT + hyyr}.

Let h be a integer with Ay < h < hyyy and suppose n + h is prime for

some positive integer n. Then (@Q,h) = 1 and so h is composed only of the
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primes h;yq, ..., But then h = hyy; for some ¢ = 1,... k, for otherwise
h > hi., > hyg. Therefore if, for some integer n, there are any primes
among Qn + hyyq, ..., Qn + hyyg, they must be the only primes in the interval
[Qn + hit1, Qn + hpg). If there are at least two primes among them, there is

a pair of consecutive primes p, 1 = p, = a mod ¢ among them, and

P+t — P < hyqe — hygr := H(q,0) = H.

Now if p 1 @ then

Qp)| = ‘{_ht—&-lQ_l, ooy —hek Q7Y mod p‘
= |{_ht+17 ceey _ht+k} mod p|
<p

because H' is admissible. If p | @ then pt hyyq - -« hyyr, and so

P(”;H)Eht+1"'ht+k7_é0m0dp

for all n mod p, hence |2(p)| = 0. We have just shown that H is admissible.
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Letting R = N%?=¢ and applying Proposition 3.2.2 and (3.3.1), we obtain

k
1 2
L= > (Z I(Qn + hy) — log BQN> Ag(n; H, k+€)
N<n<2N \:i=1
k
1
=% 2 Qnth)Ar(nH ko 0)

1~ N<n<2N

7

log 3QN ) 2
TN, Mk
200+ 1)\ (lo R)k+2e+1
= k(1 + 0(1))6(H)( (+1 )m
o k+2¢
—(I4+0(1))(log N)&(H) (2;> %
20\ (log R)*+2
. G(H)(g)%(logfv)

y {2(§i+11)k+2k€+1 (g _6/) - (1+0(1))}

> e(log N)F+2+1

We deduce that there are at least two primes among Qn + hyyq1,...,Qn + hyg
for infinitely many integers n, and the first part of Theorem 3 follows.
If = § 4+ 20/21 for some 6 > 0, then choosing k = 7,/ =1 and ¢ = §/4

yields

2204+1)  k 0 )\ _42(20 0
21

11 kr20r1\2 " )T m\m” ) T € /
Now by Lemma 3.2.3 we may suppose that ¢ is large enough so that the fol-
lowing holds for some number L. Letting hy < hy < --- be the sequence of all
primes = a mod ¢, and M be the integer satisfying L < M < L + 1, we have

herree < ¢*. We claim that there exist 7 primes hyyq, ..., b7, 1 <t < 6M -5,
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such that hyy7 < hi, ;. For otherwise
4 M
h6M+2 > h%(M_l)_A,_Q = h6(M—2)+2 =z h% ,

and so hy < héﬁfﬂ < ¢?, which, for all sufficiently large ¢, is absurd. It
follows that H(q,0) < heaio < ¢F, provided that ¢ is sufficiently large and
6 > 20/21. This concludes the proof of Theorem 3.

We now turn to Theorem 4. If " denotes summation over n for which

k

> 9(Qn + h;) —log 3QN

i=1

is positive, and hence {Qn + hq,...,Qn + hi} contains at least two primes,

then

k
NZ < Z* (Z HQn + h;) — log3QN> Ap(n; H, k + 0)*

N<n<2N \i=1

<klog3QN Y Ag(niH. k +0)

N<n<2N
1/2 1/2
<klog3QN S 1) ( 3 AR(n;H,k+€)4>
<n<2N N<n<2N

by the Cauchy-Schwartz inequality. Now just as in Section 2.7, we have

Z Ar(n;H, E + €)4 < N(log N)19k+4g

N<n<2N

(see (2.7.1)). Therefore, using this and . > (log N)**2+1 we see that

—1
. (NZ)? : N
51> sy (5, M 0') 2

N<n<2N N<n<2N
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The intervals (@Qn,Qn + H], n € (IN,2N], are disjoint, because ) > H.
Therefore, letting Y := 3QN > 2QN + H, we have

ooz Y s N s > Y
k k7 —
Pri1<Y /N<n<2N (log N)'™ = Q(log Y)'™ 7 (log Y17k
pr=pr+1=1 mod ¢
pr+1_Pr<H

for all sufficiently large N, and hence Y, because () <, 1. Since k depends
on 0, Theorem 4 follows by putting B(0) := 17k.



Part 11

PRODUCTS OF SHIFTED PRIMES
SIMULTANEOUSLY TAKING PERFECT POWER

VALUES



4. PROOF OF THEOREM 5 AND THEOREM 6

4.1 Restatement

Let us restate the theorems here. Given an integer r > 2 and a finite,

nonempty set A of nonzero integers, recall that

B(z; A,r) == {n < x : n is squarefree and

Hp‘n(p + a) is an rth power for all a € A},
and that

B*(x;—1,7) = {n < x : n is squarefree, w(n) = r and ¢(n) is an rth power},

B*(xz;4+1,7) = {n < x : n is squarefree, w(n) = r and o(n) is an rth power}.

We will prove:
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Theorem 5. Fix an integer v > 2, and a finite, nonempty set A of nonzero

integers. As x — oo, we have

|B(x; A, r)| > p1/21Al—o(1)

Moreover, if |A| =1, then as x — 00, we have

|B(:E; A,T)| > $0'7039_0(1).

Here and throughout, o(1) denotes a function tending to 0 as z tends to

infinity. We will then prove:

Theorem 6. Fix an integer r > 2. For all sufficiently large x, we have

rat/r

1B (z; —1,7)[, [B*(z;+1, 1) > (og )+

(4.1.1)

The implied constant is absolute.

The proof of Theorem 5 (Section 4.3) is an extension of the proof by Banks
et. al. [4], who considered B(x;{—1},2), B(z;{+1},2), and B(z;{-1,+1},2).
It employs some of the ideas of Erdds [12, 13] upon which Alford, Granville
and Pomerance [1] based their proof that there are infinitely many Carmichael
numbers. The proof of Theorem 6 (Section 4.4) introduces a new method,
which, as we will explain, is an application of the ideas of Goldston, Pintz and

Yildirim [21].
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4.2 Preliminaries

Theorem 5 is a consequence of the first four results of this section, and we
use the fifth in the proof of Theorem 6.
An integer n is called y-smooth if p < y for every prime p dividing n. Given

a polynomial F'(X) € Z[X] and numbers x > y > 2, let

mr(z,y) = {p <z : F(p) is y-smooth}|.

In the case F' = X — 1, Erd6s [12] proved that there exists a number € € (0,1)
such that 7p(x, x¢) >, w(x) (where 7(z) is the number of primes up to z), for
all large x depending on the choice of €. Several authors have improved upon

this, the next two results being the best so far obtained.

Theorem 4.2.1. Fiz a nonzero integer a and let F(X) = X + a. For some

absolute constant c, we have

A
(logz)e

WF(‘ra y) >

for all sufficiently large x, provided y > x°2%1.

Proof. See [2, Theorem 1]. O
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Theorem 4.2.2. Let F' be a polynomial with integer coefficients. Let g be the
largest of the degrees of F' and let k be the number of distinct irreducible factors
of F' of degree g. Suppose that F'(0) # 0 if g =k =1, and let € be any positive

real number. Then the estimate

T

7TF($ay) = lOg.ﬁL'

holds for all sufficiently large =, provided y > x9+< /2%,

Proof. See [9, Theorem 1.2]. ]

For a finite additive abelian group G, denote by n(G) the length of the
longest sequence of (not necessarily distinct) elements of G, no nonempty
subsequence of which sums to 0, the additive identity of G. For instance,
it G = (Z/2Z)™, then n(G) < m, for any sequence of m + 1 elements of G
contains a nonempty subsequence whose elements sum to (0,...,0) mod 2, as
can be seen by considering that such a sequence contains 2™ — 1 > 2™ = |G|
nonempty subsequences. For any group G of order m, then any sequence of m
elements contains a nonempty subsequence whose sum is 0, hence n(G) < m—1.
The next theorem, due to van Emde Boas and Kruyswijk [11], gives a nontrivial

upper bound for n(G).

Theorem 4.2.3. If G is a finite abelian group and m is the maximal order of

an element in G, then n(G) < m(1+ log(|G| /m)).
Proof. See [11]. A proof is also given in [1, Theorem 1.1]. O

The following proposition shows that there may be many sequences in G

whose elements sum to 0.
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Proposition 4.2.4. Let G be a finite abelian group and let r > k > n = n(Q)
be integers. Then any subsequence of r elements of G contains at least (;)/(;)
distinct subsequences of length at most k and at least k — n, whose sum is the

identity.
Proof. See [1, Proposition 1.2]. ]

We will use the well-known Siegel-Walfisz theorem in the proof of Theorem

Theorem 4.2.5 (Siegel-Walfisz). For any positive number B, there is a con-

stant C'g depending only on B, such that

Z logp = % + O (Nexp (—Cp(log N)'/?))

p=a mod q
whenever (a,q) =1 and q < (log N)5.

Proof. See [10, Chapter 22]. O

4.3 The proof of Theorem 5

The following proof hinges on Theorem 4.2.3 and Proposition 4.2.4, which
are key ingredients in the celebrated proof of Alford, Granville and Pomerance
[1] that there are infinitely many Carmichael numbers. (A Carmichael number
is a composite number n for which ¢™ = a mod n for all integers a.) In fact it
is shown in [1, Theorem 1] that the number of Carmichael numbers C(z) up to

x satisfies C'(z) = 2°7¢ for any € > 0 and all large x depending on the choice

5 1
= (1-=—~]=0.29036....
i 12( NE) 0.29036

of €, where
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Using a variant of the construction in [1], Harman [25] proved that § =
0.3322408 is admissible, and combining the ideas of [1, 4, 25], Banks [3] estab-

lished the following result.

Theorem 4.3.1 ([3, Theorem 1]). For every fized C' < 1, there is a number

zo(C') such that for all x > x¢(C) the inequality

{n < :n is Carmichael and ¢(n) is an rth power}| > z°~¢

holds, with § = 0.3322408 and any positive €, for all positive integers r <

exp ((log log ZE)C)

(Harman [26] has subsequently proved that § = 0.7039 x 0.4736 > 1/3 is
admissible here.) The method of the proof may yield further interesting results.
Theorems 4.2.1 and 4.2.2 are also crucial, and it will be manifest that extend-

ing the admissible range for y in those theorems will lead to better estimates

for |[B(x; A,r)|. Explicitly, if F/(X) = [][,c(X + a) and

T
7TF($7 xe) =Fe @

holds, then the following proof yields |B(z; A,r)| > x'=¢7°()_ It is suspected

that any positive € is admissible, in which case we would have

Ba: A,m)| = ',
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Proof of Theorem 5. Fix an integer r > 2 and aset A = {ay, ..., as} of nonzero

integers. Let x be a large number, and let

log x

= . 4.3.1
4 log log x ( )

Let t = 7(y), and let G = (Z/rZ)*, so that by Theorem 4.2.5,
n(G) <r(l+log|G|/r)=r(1+ (st —1)logr). (4.3.2)

Fix any number € € (0,1/3s), and let

(02961)°1  ifs=1,
(1+e—L2)" ifs>2

Let
F(X):=(X+a)(X+az) (X +ay),

and let

Sr(y",y) == {p < y": F(p) is y-smooth}

={p<y":p+a,...,p+ as are y-smooth}.

We may suppose z, and hence y, is large enough so that, by Theorem 4.2.1 and
Theorem 4.2.2,

U

1Sy, y)| = mr(y", y) > ( Y (4.3.3)

log y*)¢

for some constant c¢. (We may suppose ¢ = 1 in the case s > 2.) Finally, let
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log x
k= 4.3.4
Log y“} ’ (34)

where [a] denotes the integer part of a real number a.

By (4.3.1), (4.3.3) and (4.3.4),

mr(y"y) o (logz)*™!
k (loglog x)u—1+¢’

and by (4.3.1), (4.3.2) and (4.3.4),

k log z/ log y*
s 28 08Y S oglog 435
e > ; > loglog ( )

because t = 7(y) ~ y/logy as y — oo, by the prime number theorem. There-

fore, since u > 1, we may assume z is large enough so that
n(G) <k < 7mr(y",y). (4.3.6)
For primes p € Sp(y*,y) and integers a € A, we may write
p+a=29"3%"
where ﬁl-(a), 1 <@ < t, are nonnegative integers. We define

Vp:( ial)a'-'aﬁt(al)aﬁYLZ)v-”? t(az)a“w ;aS)w"aﬁt(aS))

as the ‘exponent vector’ for p. For a subset R of Sr(y“,y), HpeR(p +a) is an

rth power for every a € A if and only if
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va =0 mod r,

PER
where 0 mod r is the zero element of G. If, moreover, R is of size at most k,

then by (4.3.4),

[[r<y*<a
PER

Thus

|B(z; A, r)| > HR C Sp(y",y) : |R| <k and 3 pv, =0 mod r}

. (4.3.7)

as distinct subsets R C Sg(y",y) give rise to distinct integers n, by uniqueness
of factorization.

Because of (4.3.6), we may deduce from Proposition 4.2.4 that the right-
hand side of (4.3.7) is at least

(WF(iu7y))/<7TFn((y;7)y)> 5 (W)kw@“,y)"(g’ e

where

1 v klogk
fla) = (k= (e <ETE0) TR,

Letting z tend to infinity and using (4.3.1), (4.3.3), (4.3.4), and (4.3.5), we see

that f(z) =1 —1/u — o(1). Therefore, as + — oo, we have

1B(x; A, 7)| > ot~ 1/ume)

and Theorem 5 follows by our choice for u, and letting € tend to 0 in the case

s = 2. ]
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4.4 The proof of Theorem 6

We use a different approach to prove Theorem 6. The proof is ‘inspired’ by
the breakthrough results of Goldston, Pintz and Yildirim [21] on short intervals
containing primes. Basically, as we saw in Part I, their proof begins with the

observation that if W(n) is a nonnegative weight and

> (Z V(n+ h) —log(2N + H)) W (n) (4.4.1)

N<n<2N \h<H

is positive, then for some n € (IV,2N], the interval (n,n + H| contains at least

2 primes. Here and in the sequel,

logn if n is prime,

¥(n) =

0 otherwise,

as in Part I. Goldston, Pintz and Yildirim were able to obtain a nonnegative
weight W (n) (see Part I, (2.2.7)) for which (4.4.1), with H = elog IV, is positive

for all sufficiently large N. In our problem, we will be led to consider

Z <Z d(an+1)—(r—1)log(H"N + 1))

n<N \a<H

(see (4.4.3)). A lower bound for this expression corresponds to a lower bound
for the number of n < N for which {a"n+1 : a < H} contains at least r primes.
As we do not require H to be ‘short’ compared to N, we may take H = rlog N:

then the weight W (n) = 1 works, and the problem is much easier.
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Proof of Theorem 6. Throughout the proof, r > 2 is a fixed integer, and

n,a, ai,as, ... are positive integers. Observe that if, for some n,
bi=an+1, 1=1,...,r

are distinct primes, then

If the primes ¢; are of the form an — 1 then o(¢,---¢,) = (ay---a,n)". We
will prove that (4.1.1) holds for |B(x; —1,r)|, provided z is sufficiently large,
and the same proof applies to |B(x;+1,r)| if we consider primes of the form
ajn — 1 rather than ajn + 1.

Let N be a parameter tending monotonically to infinity and set H = r log N.
Let A(N) be the set of n < N for which

Ch={an+1:a<H}NP
(where P is the set of all primes) contains at least r primes. We will show that

|A(N)] (4.4.2)

> log N’

but first we will describe how this implies a lower bound for |B(z; —1,7)]|.
Every n € A(N) gives rise, via C,, to some ¢, --- ¢, € B(H'"N +1)"; —1,7),

though different n may give rise to the same r-tuple of primes. On the other

hand, given n € A(N) and a prime p = a"n +1 € C,, each m € A(N) for

which C,, = C, corresponds to a solution to a"n = b"m, b < H. Therefore
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there can be at most H different n € A(N) giving rise to the same element of

B((H"N 4+ 1)"; —1,r). Consequently,

. ro_ AWV N
BICH™N + 15 -1,)| 2 5= > s

by (4.4.2), and (4.1.1) follows.
We will now establish (4.4.2). We will show that for all large NN,

SNy =Y (Z D(a"n +1) — (r — 1) log(H"N + 1)) > rNlog N. (4.4.3)

n<N \a<H

Consequently A(N) is nonempty for large N. Indeed, if (4.4.3) holds then

rNlogN < S(N) < ) (Z O(a"n +1) — (r — 1) log(H"N + 1))

neA(N) \a<H

< JA(N)| Hlog(H™N + 1),

and (4.4.2) follows because log(H"N + 1) ~ log N.

For the evaluation of S(N), first note that

Z Zﬁ(a%—i— 1) = Z Z log p.

n<N a<H a<H p<a"N+1
p=1 mod a”

Since a" <, (log N)" for a < H, we may apply Theorem 4.2.5 to the last sum.
We have

CLTN CLTN a
> logp=-—=+0 ~ N
0 T O (Tocwr) ~ &0
p=1 mod a”
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Therefore, by the well-known estimate

C CCH = (1 ! ):1.943596...
Lo~ =+ |

p

we have

Also,
> (r—1)log(H'N +1) ~ N(r — 1)log N,

n<N

so combining all of this yields
S(N) ~ N(cH — (r —1)log N) > rNlog N,

hence (4.4.3). O
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