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en mathématiques
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ABSTRACT

Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of all primes, and let q > 3 and

a be coprime integers. Recently, and very remarkably, Daniel Shiu proved an

old conjecture of Sarvadaman Chowla, which asserts that there are infinitely

many pairs of consecutive primes pn, pn+1 for which pn ≡ pn+1 ≡ a mod q.

Now fix a number ε > 0, arbitrarily small. In their recent groundbreaking

work, Daniel Goldston, Jànos Pintz and Cem Yıldırım proved that there are

arbitrarily large x for which the short interval (x, x + ε log x] contains at least

two primes congruent to a mod q. Given a pair of primes ≡ a mod q in such an

interval, there might be a prime in-between them that is not ≡ a mod q. One

can deduce that either there are arbitrarily large x for which (x, x + ε log x]

contains a prime pair pn ≡ pn+1 ≡ a mod q, or that there are arbitrarily large x

for which the (x, x+ε log x] contains a triple of consecutive primes pn, pn+1, pn+2.

Both statements are believed to be true, but one can only deduce that one of

them is true, and one does not know which one, from the result of Goldston-

Pintz-Yıldırım.

In Part I of this thesis, we prove that the first of these alternatives is true,

thus obtaining a new proof of Chowla’s conjecture. The proof combines some

of Shiu’s ideas with those of Goldston-Pintz-Yıldırım, and so this result may be

regarded as an application of their method. We then establish lower bounds for

the number of prime pairs pn ≡ pn+1 ≡ a mod q with pn+1 − pn < ε log pn and



Abstract v

pn+1 6 Y . Assuming a certain unproven hypothesis concerning what is referred

to as the ‘level of distribution’, θ, of the primes, Goldston-Pintz-Yıldırım were

able to prove that pn+1−pn �θ 1 for infinitely many n. On the same hypothesis,

we prove that there are infinitely many prime pairs pn ≡ pn+1 ≡ a mod q with

pn+1 − pn �q,θ 1. This conditional result is also proved in a quantitative form.

In Part II we apply the techniques of Goldston-Pintz-Yıldırım to prove an-

other result, namely that there are infinitely many pairs of distinct primes p, p′

such that (p − 1)(p′ − 1) is a perfect square. This is, in a sense, an ‘approx-

imation’ to the old conjecture that there are infinitely many primes p such

that p − 1 is a perfect square. In fact we obtain a lower bound for the num-

ber of integers n, up to Y , such that n = `1 · · · `r, the `i distinct primes, and

(`1− 1) · · · (`r − 1) is a perfect rth power, for any given r > 2. We likewise ob-

tain a lower bound for the number of such n 6 Y for which (`1 +1) · · · (`r+1) is

a perfect rth power. Finally, given a finite set A of nonzero integers, we obtain

a lower bound for the number of n 6 Y for which
∏

p|n(p+ a) is a perfect rth

power, simultaneously for every a ∈ A.

Key words: applications of sieve methods; primes in short inter-

vals; primes in progressions.



RÉSUMÉ

Soit p1 = 2, p2 = 3, p3 = 5, . . . la suite des nombres premiers, et soient q > 3

et a des entiers premiers entre eux. Récemment, Daniel Shiu a démontré une

ancienne conjecture de Sarvadaman Chowla. Ce dernier a conjecturé qu’il existe

une infinité de couples pn, pn+1 de premiers consécutifs tels que pn ≡ pn+1 ≡

a mod q. Fixons ε > 0. Une récente percée majeure, de Daniel Goldston, Jànos

Pintz et Cem Yıldırım, a été de démontrer qu’il existe une suite de nombres

réels x tendant vers l’infini, tels que l’intervalle (x, x + ε log x] contienne au

moins deux nombres premiers ≡ a mod q. Étant donné un couple de nombres

premiers≡ a mod q dans un tel intervalle, il pourrait exister un nombre premier

compris entre les deux qui n’est pas ≡ a mod q. On peut déduire que soit il

existe une suite de réels x tendant vers l’infini, telle que (x, x+ε log x] contienne

un triplet pn, pn+1, pn+2 de nombres premiers consécutifs, soit il existe une suite

de réels x, tendant vers l’infini telle que l’intervalle (x, x+ ε log x] contienne un

couple pn, pn+1 de nombres premiers tel que pn ≡ pn+1 ≡ a mod q. On pense

que les deux énoncés sont vrais, toutefois on peut seulement déduire que l’un

d’entre eux est vrai, sans savoir lequel.

Dans la première partie de cette thèse, nous démontrons que le deuxième

énoncé est vrai, ce qui fournit une nouvelle démonstration de la conjecture de

Chowla. La preuve combine des idées de Shiu et de Goldston-Pintz-Yıldırım,

donc on peut considérer que ce résultat est une application de leurs mt́hodes.
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Ensuite, nous fournirons des bornes inférieures pour le nombre de couples

pn, pn+1 tels que pn ≡ pn+1 ≡ a mod q, pn+1 − pn < ε log pn, avec pn+1 6 Y .

Sous l’hypothèse que θ, le � niveau de distribution � des nombres premiers,

est plus grand que 1/2, Goldston-Pintz-Yıldırım ont réussi à démontrer que

pn+1− pn �θ 1 pour une infinité de couples pn, pn+1. Sous la meme hypothèse,

nous démontrerons que pn+1− pn �q,θ 1 et pn ≡ pn+1 ≡ a mod q pour une infi-

nité de couples pn, pn+1, et nous prouverons également un résultat quantitatif.

Dans la deuxième partie, nous allons utiliser les techniques de Goldston-

Pintz-Yıldırım pour démontrer qu’il existe une infinité de couples de nombres

premiers p, p′ tels que (p − 1)(p′ − 1) est une carré parfait. Ce resultat est

une version approximative d’une ancienne conjecture qui stipule qu’il existe

une infinité de nombres premiers p tels que p − 1 est une carré parfait. En

effet, nous démontrerons une borne inférieure sur le nombre d’entiers naturels

n 6 Y tels que n = `1 · · · `r, avec `1, . . . , `r des premiers distincts, et tels que

(`1−1) · · · (`r−1) est une puissance r-ième, avec r > 2 quelconque. Également,

nous démontrerons une borne inférieure sur le nombre d’entiers naturels n =

`1 · · · `r 6 Y tels que (`1 + 1) · · · (`r + 1) est une puissance r-ième. Finalement,

étant donné A un ensemble fini d’entiers non-nuls, nous démontrerons une

borne inférieure sur le nombre d’entiers naturels n 6 Y tels que
∏

p|n(p + a)

est une puissance r-ième, simultanément pour chaque a ∈ A.

Mots clés : applications des méthodes de crible ; nombres premiers

dans les intervalles courts ; nombres premiers dans les progressions

arithmétiques.
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I am grateful for financial support from the Institut des sciences mathémat-

iques in Montréal. For very generously providing further financial assistance, I

am extremely grateful to Mr. Robert Cripps, Professor John Morgan, and the

St. John’s College Foundation, of St. John’s College within the University of

Queensland, Australia.

Finally, for their constant support, my most heartfelt thanks go to Lien Do

and my family: Anna, Giselle, John, and especially my father and mother,

John and Wendy.



1. INTRODUCTION

1.1 Part I: Strings of congruent primes in short intervals

Let p1 = 2, p2 = 3, p3 = 5, . . . be the sequence of all primes. The prime

number theorem states that n ∼ pn/ log pn as n→∞, and hence

1

N

N∑
n=1

pn+1 − pn
log pn

→ 1 as N →∞.

In this sense, the nth prime gap pn+1 − pn is around log pn on average. From

this we also deduce that

lim inf
n→∞

pn+1 − pn
log pn

6 1.

In 2005, after decades of partial progress by various authors, Goldston, Pintz

and Yıldırım [17, 21] made a spectacular breakthrough by proving the long-

standing conjecture that

lim inf
n→∞

pn+1 − pn
log pn

= 0.

In words, the nth prime gap is infinitely often arbitrarily smaller than average.

Before Goldston-Pintz-Yıldırım, the most important development in this

direction had been the work of Bombieri and Davenport [7], in which it is

established that lim infn→∞ (pn+1 − pn)/ log pn 6 (2 +
√

3)/8 = 0.46650 . . ..
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Bombieri’s work on the large sieve [5] is an essential feature of [7], and of all

subsequent improvements of that result, including the work of Goldston-Pintz-

Yıldırım. For a comprehensive historical background and survey of results

related to this problem, see [20, 21, 31].

In [19] Goldston, Pintz and Yıldırım extended their original argument to

primes in arithmetic progressions. Thus if we fix coprime integers q > 3 and a

and let p′1 < p′2 < · · · be the sequence of all primes ≡ a mod q, as a consequence

of [19, Theorem 1] we have

lim inf
n→∞

p′n+1 − p′n
log p′n

= 0.

In other words, for any fixed ε > 0, we have p′n+1 − p′n < ε log p′n for infinitely

many n.

Given such a pair p′n, p
′
n+1, there may or may not be a prime in-between them

that is not ≡ a mod q. Hence one can deduce that either there are infinitely

many pairs of consecutive primes pn ≡ pn+1 ≡ a mod q with pn+1−pn < ε log pn,

or that there are infinitely many triples of consecutive primes pn, pn+1, pn+2

with pn+2 − pn < ε log pn. Presumably both statements are true, however one

can only deduce that one of them is true, and one does not know which one,

from the result in [19].

In [32], Shiu proved an old conjecture of Chowla that there are infinitely

many pairs of consecutive primes pn, pn+1 which are both ≡ a mod q. Indeed

he was even able to extend this to k consecutive primes. This was a spectacular

accomplishment. We will combine the methods of Goldston-Pintz-Yıldırım and

of Shiu to establish the following hybrid of those results:
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Theorem 1. Let q > 3 and a be integers with (q, a) = 1, and fix any ε > 0.

There exist infinitely many pairs of consecutive primes pn, pn+1 such that pn ≡

pn+1 ≡ a mod q and pn+1 − pn < ε log pn.

We will adapt the proof of Theorem 1 to obtain a lower bound for the

number of prime strings up to a given number Y :

Theorem 2. Let q, a and ε be fixed as in Theorem 1. For all sufficiently

large Y , the number of pairs of consecutive primes pn, . . . , pn+1 6 Y , with

pn ≡ pn+1 ≡ a mod q and pn+1 − pn < ε log pn, is at least Y 1/3(log log Y )A, where

A = A(q) is a constant depending only on q.

This is rather weak as a quantitative result, but we will see that a technical

improvement in a certain part of the proof of Theorem 1 would yield something

better.

The notion of the level of distribution of the primes, which we will define

in Section 3.2, plays an important role in the literature on short gaps between

primes. It is known, by the celebrated Bombieri-Vinogradov theorem (see

Lemma 2.4.5), that the primes have level of distribution at least 1/2, and the

well-known Elliott-Halberstam conjecture (see [16]) asserts that they have level

of distribution 1. Goldston-Pintz-Yıldırım [17, 21] proved that if the primes

have level of distribution θ > 1/2, then lim infn→∞(pn+1−pn) 6 H(θ) for some

constant H(θ) depending only on θ, H(0.971) = 16 ([21, Theorem 1]). We will

prove:
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Theorem 3. Let q > 3 and a be integers with (q, a) = 1, and assume the primes

have level of distribution θ > 1/2. Then there exist infinitely many pairs of

consecutive primes pn, pn+1 such that pn ≡ pn+1 ≡ a mod q and pn+1−pn 6 H,

where H := H(q, θ) is a constant depending only on q and θ. Moreover, if

θ > 20/21, then there is a constant L such that H(q, θ)� qL.

This conditional result also has a quantitative form:

Theorem 4. Let q > 3 and a be integers with (q, a) = 1, assume the primes

have level of distribution θ > 1/2, and let H := H(q, θ) be as in Theorem 3.

Then the number of pairs of consecutive primes pn, pn+1 6 Y , with pn ≡ pn+1 ≡

a mod q and pn+1 − pn 6 H, is �q,θ Y/(log Y )B(θ), where B(θ) is a constant

depending only on θ.

The proof of Theorem 4 concludes Part I of this thesis. In Part II we will

prove two more theorems, which are largely unrelated to theorems 1 – 4. There

is, however, a common thread linking the two parts of this thesis. Namely, the

technique used to prove Theorem 5 is based on the technique of Goldston-

Pintz-Yıldırım presented in Part I. Part I is an expansion of a preprint [15] by

the author, and Part II is also available as a preprint [14] by the author. Both

preprints [14] and [15] have been submitted for publication.

1.2 Part II: Products of shifted primes simultaneously taking

perfect power values

If we pick a large integer close to x at random, the probability that it is a

perfect rth power is around x1/r/x. We might expect the shifted primes p+ a

to behave more or less like random integers in terms of their multiplicative

properties. Thus, if we take a large squarefree integer n close to x, we might
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naively expect that σ(n) =
∏

p|n(p + 1) ≈ n is an rth power with probability

close to x1/r/x. However, as we will see, the probability is much higher than

this, indeed more than x0.7038/x, for any given r. We will even show that the

likelihood of φ(n) and σ(n) simultaneously being (different) rth powers is more

than x0.2499/x. (As usual, φ denotes Euler’s totient function and σ denotes the

sum-of-divisors function.) It would seem that rth powers are ‘popular’ values

for products of shifted primes in general.

If we only count those n with exactly r prime factors, we will show that the

number of such n up to x for which φ(n) is a perfect rth power is

� x1/r/(log x)r+2, and likewise for σ(n). Thus there are � x1/2/(log x)4 inte-

gers n 6 x for which n = pq, p and q distinct primes, and (p − 1)(q − 1) is a

square. This may be seen as an ‘approximation’ to the well-known conjecture

that there are infinitely many primes p for which p− 1 is a square. It is easily

seen that there is at most one prime p for which p + 1 is a perfect rth power

(r > 2), namely 3 + 1 = 22, 7 + 1 = 23, and so on.

Given an integer r > 2 and a finite, nonempty set A of nonzero integers, let

B(x;A, r) :=
{
n 6 x : n is squarefree and∏

p|n(p+ a) is an rth power for all a ∈ A
}
.

Banks et. al. [4] proved, among several other results, that |B(x; {−1}, 2)|,

|B(x; {+1}, 2)| > x0.7039−o(1), and that |B(x; {−1,+1}, 2)| > x1/4−o(1), where

o(1) denotes a function tending to 0 as x tends to infinity. Theorem 5 general-

izes both of these results.
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Theorem 5. Fix an integer r > 2, and a finite, nonempty set A of nonzero

integers. As x→∞, we have

|B(x;A, r)| > x1/2|A|−o(1).

Moreover, if |A| = 1, then as x→∞, we have

|B(x;A, r)| > x0.7039−o(1).

In the case A = {−1} (respectively A = {+1}), B(x;A, r) is the set of

squarefree integers n up to x for which φ(n) (respectively σ(n)) is an rth

power. There is no condition on the number of prime factors of n, but Theorem

6 concerns

B∗(x;−1, r) = {n 6 x : n is squarefree, ω(n) = r and φ(n) is an rth power},

B∗(x; +1, r) = {n 6 x : n is squarefree, ω(n) = r and σ(n) is an rth power},

where ω(n) is the number of distinct prime factors of n.

Theorem 6. Fix an integer r > 2. For all sufficiently large x, we have

|B∗(x;−1, r)| , |B∗(x; +1, r)| � rx1/r

(log x)r+2
.

The implied constant is absolute.



Part I

STRINGS OF CONGRUENT PRIMES IN SHORT

INTERVALS



2. PROOF OF THEOREM 1 AND THEOREM 2

2.1 The idea of the proof

In this section, for the sake of exposition, we will proceed on the hypothesis

that Siegel zeros do not exist. (In the proof of Theorem 1 we will have to deal

with the possibility that Siegel zeros exist, and we do so, unconditionally, in

a standard way. The complications that arise are only technical, and of little

interest.) Fix coprime integers q > 3 and a. Let N be a real parameter tending

to infinity, fix an arbitrarily small number ε > 0, and set

H := ε logN, Q := q
∏

p6H/(logH)2

p.

Then the set

S := {h ∈ (0, H] : (Q, h) = 1 and h ≡ a mod q}

is precisely the set of primes p ∈ (H/(logH)2, H] such that p ≡ a mod q.

Consider

L :=
∑

N<n62N

(∑
h∈S

ϑ(Qn+ h)− log 3QN

)
ΛR(n;H, k + `)2,
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where ΛR(n;H, k + `) is a real weight which we will define in Section 2.2 (see

(2.2.7)). If L > 0, then for some n ∈ (N, 2N ], the nth term of the outer sum

is positive, and so the set {p ∈ (Qn,Qn+H] : p ≡ a mod q} must contain two

or more primes. Goldston, Pintz and Yıldırım [19] showed that L > 0 for all

sufficiently large N , and hence there are infinitely many n for which the interval

(Qn,Qn+H] contains two primes. The great achievement of Goldston, Pintz

and Yıldırım was to find a weight ΛR(n;H, k + `) that makes this argument

work, and we refer to [20] for a synopsis of the evolution of ideas culminating

in their groundbreaking work.

In fact, with the right parameters (R = N1/4−ε′ and a suitable H), one can

show that

L = N

(
Q

φ(Q)

)k (
2`

`

)
(logR)k+2`

(k + 2`)!
logN

×
{

Q

φ(Q)

|S|
logN

+
2(2`+ 1)

`+ 1

k

k + 2`+ 1

(
1

4
− ε′

)
− (1 + o(1))

} (2.1.1)

as N → ∞. One can then apply the prime number theorem for arithmetic

progressions, and Mertens’ theorem, to show that

|S| ∼ 1

φ(q)

H

logH
∼ H

eγ

φ(q)

∏
p|Q

(
1− 1

p

)
= H

eγ

φ(q)

φ(Q)

Q

as H → ∞. (Here, γ = 0.57721 . . . is the Euler-Mascheroni constant.) The

point here is that the first term of {· · · } in (2.1.1) does not vanish:

Q

φ(Q)

|S|
logN

�q ε (2.1.2)

for all sufficiently large H, and hence N . It follows that we may choose k, `

and ε′ in such a way that L �k,q ε(logN)k+2`+1.
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As it turns out, if we only assume that

Q is a multiple of q,

Q is composed only of primes p 6 H,

Q is divisible by all primes p 6 logH,

Q 6 exp
(
cH/(logH)2

)
for some constant c > 0,

then the same estimate (2.1.1) still holds for L (with the same parameters R

and H). Now if (2.1.2) also holds, that is if

|S| �q H

(
φ(Q)

Q

)
= H

∏
p|Q

(
1− 1

p

)
, (2.1.3)

as one might expect, then L > 0. Therefore to prove there are infinitely many

n for which (Qn,Qn + H] contains at least two primes ≡ a mod q, we only

need to show that L > 0 for a sequence of N tending to infinity.

Relaxing the conditions on Q will allow us to incorporate the ideas of Shiu

[32]. Thus, suppose a ≡ 1 mod q, and suppose for now that

Q := q
∏
p6H

p6≡1 mod q

p.

If there are any primes in the interval (Qn,Qn+H], they must all be≡ 1 mod q.

Such a Q does not satisfy Q 6 exp (cH/(logH)2), but

Q := q
∏

p∈P(H)

p,
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with

P(H) := {p 6 logH : p ≡ 1 mod q} ∪ {p 6 H/(logH)2 : p 6≡ 1 mod q},

does, and we might expect that, if there are any primes in (Qn,Qn + H],

they are more likely than not to be ≡ 1 mod q. If most of the primes in

this interval are ≡ 1 mod q, then it must contain a pair of consecutive primes

that are ≡ 1 mod q, by the pigeonhole principle. The goal, then, is to make

these notions precise, and prove that (2.1.3) holds with this choice of Q, for a

sequence of H tending to infinity.

To this end we define

T := {h ∈ (0, H] : (Q, h) = 1 and h 6≡ 1 mod q}.

Now if h ∈ T , then h must be divisible by a prime p 6≡ 1 mod q, and since Q

is divisible by all such primes 6 H/(logH)2, we must have p > H/(logH)2.

Exploiting the fact that elements of T are divisible by large primes, we can

show that

|T | � H

logH
. (2.1.4)

One would expect that

|S ∪ T | = |{h ∈ (0, H] : (Q, h) = 1}| �q H
∏

p∈P(H)

(
1− 1

p

)
= H

(
φ(Q)

Q

)
,

(2.1.5)

because we form S ∪ T by sieving out the interval (0, H] with primes from the
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set P(H). If so, then since |T | is much smaller than this by (2.1.4), the set

S must be much larger than the set T . We will show that this expectation

is borne out for a sequence of values H tending to infinity. Specifically, we

will show that for all sufficiently large X, (2.1.3) holds from some H satisfying
√
X 6 H 6 X, and with more work,

X(logX)−A 6 H 6 X,

where A = A(q) is a constant depending only on q. An application of Mertens’

theorem for arithmetic progressions reveals that

H

(
φ(Q)

Q

)
�q

H

logH

(
logH

log logH

)1/φ(q)

� |T |
(

logH

log logH

)1/φ(q)

,

in other words S contributes much more than T to S ∪ T , and so we have

|S| − |T | �q H

(
φ(Q)

Q

)
, that is

Q

φ(Q)
· |S| − |T |

logN
�q ε (2.1.6)

whenever (2.1.5) holds. The case for a 6≡ 1 mod q is similar but slightly more

involved.

Now consider

L :=
∑

N<n62N

(∑
h∈S

ϑ(Qn+ h)−
∑
h∈T

ϑ(Qn+ h)− log 3QN

)
ΛR(n;H, k + `)2.

With our choice of Q, we can use (2.1.6) to show that L > 0 for a sequence of

N tending to infinity. It is not difficult to prove that if L > 0, then for some
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n ∈ (N, 2N ] we have

|{p ∈ (Qn,Qn+H] : p ≡ a mod q}|

> 2 + |{p ∈ (Qn,Qn+H] : p 6≡ a mod q}| ,

From this we deduce that (Qn,Qn+H] contains a pair of consecutive primes

pm ≡ pm+1 ≡ a mod q.

2.2 Preliminaries

In this section we will state two key technical propositions, to be proved in

sections 2.4 and 2.5. The first proposition requires some preparation. We begin

by quoting the Landau-Page theorem, a proof of which can be found in [10,

Chapter 14]. This theorem is used to handle problems arising from possible

irregularities in the distribution of primes, hence in Bombieri-Vinogradov type

theorems (see lemmas 2.4.5 and 2.4.6), caused by potential Siegel zeros.

Lemma 2.2.1 (Landau-Page theorem). There exists a constant c such that the

following holds for any Y > c. There is at most one integer q0 6 Y , and at

most one real primitive character χ0 mod q0, such that

L(1− δ, χ0, q0) = 0 for some δ 6
1

3 log Y
.

If q0 exists, then q0 > (log Y )2. We call χ0 an exceptional character and q0 an

exceptional modulus.

Throughout, we fix a number ε > 0, we let H be a real parameter tending

monotonically to infinity, and we set N := exp(H/ε), that is H = ε logN . If
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there is an exceptional modulus

q0 := q0(H) 6 exp(H/ε(log(H/ε))2) = N1/(log logN)2 ,

let p0 := p0(H) be its greatest prime factor; otherwise let p0 = 1.

For all sufficiently large H, either

p0 = 1 or p0 is a prime with p0 > logH. (2.2.1)

To see this, note that all real primitive characters are products of Legendre

symbols with different odd primes, and possibly either the unique real char-

acter mod 4 or one of the two primitive real characters mod 8. Thus if q0

exists it is of the form 2αp1 · · · pk, where α 6 3 and the pi’s are distinct odd

primes. If this is the case and p0 6 logH, then the prime number theorem

implies q0 � exp((1 + o(1)) logH) � logN , but Lemma 2.2.1 states that

q0 > (logN/(log logN)2)2.

We let Q := Q(H) be a positive integer, upon which we will impose the

following conditions:

Q is composed only of primes p 6 H, (2.2.2)

Q is divisible by all primes p 6 logH, (2.2.3)

Q 6 exp
(
cH/(logH)2

)
for some constant c > 0, (2.2.4)

if p0(H) 6= 1 then p0(H) does not divide Q. (2.2.5)

We let

H := {Qx+ h1, . . . , Qx+ hk}, h1, . . . , hk ∈ [1, H] ∩ Z, (2.2.6)
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denote a set of distinct linear forms, and we define

ΛR(n;H, j) :=
1

j!

∑′

d|P (n;H)
d6R

µ(d)(logR/d)j, (2.2.7)

where
∑′ denotes summation over indices coprime with Qp0, and

P (n;H) := (Qn+ h1) · · · (Qn+ hk). (2.2.8)

Finally, we let

ϑ(n) :=


log n if n is prime,

0 otherwise.

Proposition 2.2.2. Given ε > 0 and sufficiently large H, let N and p0 =

p0(H) be as defined earlier, and let Q = Q(H) be a positive integer satisfying

(2.2.2) – (2.2.5). Fix integers k > 2 and ` > 1, and let

H = {Qx+ h1, . . . , Qx+ hk}

be a set of distinct linear forms with

h1, . . . , hk ∈ [1, H] ∩ Z and (Q, h1, . . . , hk) = 1.

Let h ∈ [1, H] ∩ Z and suppose (Q, h) = 1, and let R = N1/4−ε′ for some

ε′ ∈ (0, 1/4). As H →∞, we have
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1

N

(
φ(Q)

Q

)k ∑
N<n62N

ΛR(n;H, k + `)2 ∼
(

2`

`

)
(logR)k+2`

(k + 2`)!
, (2.2.9)

and

1

N

(
φ(Q)

Q

)k ∑
N<n62N

ϑ(Qn+ h)ΛR(n;H, k + `)2

∼



Q

φ(Q)

(
2`

`

)
(logR)k+2`

(k + 2`)!
if Qx+ h 6∈ H,

(
2(`+ 1)

`+ 1

)
(logR)k+2`+1

(k + 2`+ 1)!
if Qx+ h ∈ H.

(2.2.10)

Proposition 2.2.3. Let q > 3 and a be integers with (q, a) = 1, and for a

given H, let p0 = p0(H) be as defined earlier. There is an infinite sequence

of integers H1 < H2 < . . . such that for any i, taking H = Hi, there exists a

positive integer Q = Q(H), divisible by q and satisfying (2.2.2) – (2.2.5), such

that

|S| − |T | �q H

(
φ(Q)

Q

)
,

where

S = S(H) := {h ∈ (0, H] : (Q, h) = 1 and h ≡ a mod q},

T = T (H) := {h ∈ (0, H] : (Q, h) = 1 and h 6≡ a mod q}.
(2.2.11)

The implied constant depends at most on q.
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2.3 The proof of Theorem 1

Fix integers q > 3 and a with (q, a) = 1. Recall that H = ε logN , with

ε > 0 fixed, and p0 is the greatest prime factor of the exceptional modulus

q0 6 N1/(log logN)2 , if it exists, otherwise p0 = 1. We choose H, Q = Q(H),

S = S(H), and T = T (H) as in Proposition 2.2.3, so that Q is divisible by q

and satisfies (2.2.2) – (2.2.5), and

Q

φ(Q)

|S| − |T |
logN

> c(q)ε (2.3.1)

for some constant c(q) > 0, depending on q at most.

We fix positive integers k, ` (to be specified later), and we let

H = {Qx+ h1, . . . , Qx+ hk}

be a set of distinct linear forms such that, for each i, hi ∈ [1, H]∩ a mod q and

(Q, hi) = 1. We let R = N1/4−ε′ with 0 < ε′ < 1/4 (to be specified later), and

we put

L :=
1

N

(
φ(Q)

Q

)k
×

∑
N<n62N

(∑
h∈S

ϑ(Qn+ h)−
∑
h∈T

ϑ(Qn+ h)− log 3QN

)
ΛR(n;H, k + `)2.

We now show that if L > 0 for a sequence of numbers N , tending to infinity,

then Theorem 1 follows.
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Let

An := {p ∈ (Qn,Qn+H] : p ≡ a mod q} = {p : p = Qn+ h, h ∈ S},

Bn := {p ∈ (Qn,Qn+H] : p 6≡ a mod q} = {p : p = Qn+ h, h ∈ T}.

If L > 0, then there is some n ∈ (N, 2N ] such that

|An| log(Qn+H) >
∑
h∈S

ϑ(Qn+ h)

>
∑
h∈T

ϑ(Qn+ h) + log 3QN

> |Bn| logQn+ log 3QN.

Now

|An| log (1 +H/Qn) 6 |An|H/Qn 6 H2/QN < log(3/2)

if N is sufficiently large, and so

log(3/2) + (|An| − |Bn|) logQn > log 3QN

and hence, as n 6 2N , |An| − |Bn| > 1. But as these are integers,

|An| > |Bn|+ 2,

and so, by the pigeonhole principle, An contains a pair of consecutive primes

pr, pr+1. These primes satisfy pr+1 − pr < H < ε logQN < ε log pr.

Now, by our choice of H, a straightforward application of Proposition 2.2.2
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yields

L =

(
2`

`

)
(logR)k+2`

(k + 2`)!

×

{
Q

φ(Q)

∑
h∈S

Qx+h6∈H

1 +
2(2`+ 1)

`+ 1

logR

k + 2`+ 1

∑
h∈S

Qx+h∈H

1

− Q

φ(Q)

∑
h∈T

1− (1 + o(1)) log 3QN

}
.

We have ∑
h∈S

Qx+h∈H

1 = k,
∑
h∈S

Qx+h6∈H

1 = |S| − k,

logR = (1/4− ε′) logN , and log 3QN ∼ logN by (2.2.4), therefore

L =

(
2`

`

)
(logR)k+2`

(k + 2`)!
(logN)

×
{

Q

φ(Q)

|S| − |T |
logN

+
2(2`+ 1)

`+ 1

k

k + 2`+ 1

(
1

4
− ε′

)
− (1 + o(1))

}
.

We have written o(1) for kQ/(φ(Q) logN), because

Q/φ(Q)� log logQ� log logN.

By choosing ` = [
√
k] and k sufficiently large, the bracketed expression {· · · }

above is, by (2.3.1),

> c(q)ε+ 1− 5ε′ − (1 + o(1)) = c(q)ε− 5ε′ − o(1).

By choosing ε′ = c(q)ε/10 (we may assume that ε is small enough so that
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ε′ < 1/4), we deduce that

L �k c(q)ε(logN)k+2`+1 (2.3.2)

holds if N is sufficiently large. By Proposition 2.2.3, we may choose H, equiv-

alently N , from a sequence of numbers tending to infinity, and Theorem 1

follows.

2.4 Proof of Proposition 2.2.2

2.4.1 Auxiliary lemmas

In the proof of Proposition 2.2.2 we will use the following lemmas. Lemma

2.4.4 is the heart of the proof. We begin by recalling a few facts about the

Riemann zeta-function ζ(s). We define

ζ(s) :=
∞∑
n=1

1

ns
for Re s > 1.

We extend this definition meromorphically to the whole complex plane by an-

alytic continuation. It can be shown that ζ(s) is analytic except for a simple

pole at s = 1, where the residue is 1. In fact

ζ(s) =
1

s− 1
+ γ +O(|s− 1|) as s→ 1 (2.4.1)

(see [34, (2.1.16)]). (Here, γ = 0.57721 . . . is the Euler-Mascheroni constant.)

The zeta-function has Euler product representation

ζ(s) =
∏
p

(
1− 1

ps

)−1

, for Re s > 1. (2.4.2)
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Lemma 2.4.1. Define contours

C ′ :=
{

1− 1
6 log(|t|+3)

+ it : t ∈ R
}
, C :=

{
1− 1

24 log(|t|+3)
+ it : t ∈ R

}
.

For s on and to the right of C ′ we have ζ(s) 6= 0, and for s on and to the right

of C we have

ζ(s)− 1

s− 1
,

1

ζ(s)
� log(|s|+ 3). (2.4.3)

Proof. The explicit zero-free region for ζ(s) is due to Kadiri [29, Théorème

1.1], who in fact showed that ζ(s) 6= 0 if Re s > 1− 1/(5.69693 log(|Im s|)) and

Im s > 2. Given A > 0 for which ζ(s) does not vanish for

Re (s) > 1− A/(log(|Im s|+ 3)),

the estimate 1/ζ(s)� log(Im s+ 3) is shown to hold for

Re (s) > 1− A/4(log(|Im s|+ 3))

in [34, Section 3] (see [34, Theorem 3.11] and [34, (3.11.8)]). For any A′ > 0, we

have ζ(s)−1/(s−1)� log(Im s+3) for Re (s) > 1−A′/(log(|Im s|+3)). This

follows from the inequality |log ζ(s)| 6 log log Im s + O(1), which holds in the

same region (see [33, II.3, Theorem 16, (57)] or [34, Setion 3]). The bounds in

(2.4.3) are also explained in [21, (5.4)] and in [22, (5.2)], along with the bound

ζ′

ζ
(s) + 1/s� log(Im s+ 3), which holds for Re (s) > 1−A/4(log(|Im s|+ 3)).

We will not need to use any such bound for ζ ′/ζ.

In the following lemma and throughout Section 2.4, (α) denotes the vertical
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line in the complex plane passing through the real number α.

Lemma 2.4.2. For any fixed real number α > 0, we have

1

2πi

∫
(α)

as

sj+1
ds =


0 if 0 < a 6 1,

1
j!

(log a)j if a > 1.

Proof. This is a variant of Perron’s formula (see [30, p. 143]).

Let us introduce some notation for the next lemma. Given a k-tuple

H = {Qx+ h1, . . . , Qx+ hk}

of distinct linear forms, as in (2.2.6), we define

Ω(d) := Ω(d;H) = {n mod d : P (n;H) ≡ 0 mod d}

for positive integers d, where P (n;H) := (Qn+ h1) · · · (Qn+ hk), as in (2.2.8).

Given an integer h 6= h1, . . . , hk, we define

H+ := H ∪ {Qx+ h}, Ω+(d) := Ω(H+; d).

Let H be a large real number, let Q = Q(H) be a positive integer satisfying

(2.2.2), (2.2.3) and (2.2.5), let H = {Qx + h1, . . . , Qx + hk} be a k-tuple of

distinct linear forms with hi ∈ [1, H] ∩ Z for each i, and let h ∈ [1, H] ∩ Z be

such that Qx+ h 6∈ H. We are interested in
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G(s1, s2; Ω) :=
∏
p-Qp0

(
1− |Ω(p)|

p

(
1

ps1
+

1

ps2
− 1

ps1+s2

))

×
∏
p

(
1− 1

ps1+1

)−k (
1− 1

ps2+1

)−k (
1− 1

ps1+s2+1

)k (2.4.4)

and

G+(s1, s2; Ω+) :=
∏
p-Qp0

(
1− |Ω

+(p)| − 1

p− 1

(
1

ps1
+

1

ps2
− 1

ps1+s2

))

×
∏
p

(
1− 1

ps1+1

)−k (
1− 1

ps2+1

)−k (
1− 1

ps1+s2+1

)k
,

(2.4.5)

where p0 is as in (2.2.1).

The next lemma also introduces the important notion of admissibility. We

sayH is admissible if |Ω(p)| < p for all primes p, because in that case there could

feasibly be infinitely many prime k-tuples of the form Qn + h1, . . . , Qn + hk.

For future reference we make the following observations. For any prime p not

dividing Q, it is clear that

Ω(p) = {−h1Q
−1, . . . ,−hkQ−1} mod p. (2.4.6)

Hence if p - Q, we have 1 6 |Ω(p)| 6 min(k, p), indeed

1 6 |Ω(p)| 6 min(k, p− 1)

ifH is admissible, with |Ω(p)| = k if and only if the −hiQ−1 are distinct modulo
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p, that is if and only if p - ∆, where

∆ = ∆(H) :=
∏

16i<j6k

|hi − hj| .

Since 1 6 |hi − hj| 6 H for every i, j, p > H implies p - ∆, as well as p - Q by

(2.2.2). Hence

p - Q∆ and |Ω(p)| = k for all p > H. (2.4.7)

We also have ∆ 6 H(k2) 6 Hk2
. For any prime p dividing (Q, h1 · · ·hk) we have

P (n;H) ≡ h1 · · ·hk ≡ 0 mod p, hence |Ω(p)| = p. This cannot happen if H

is admissible, so if H is admissible, (Q, h1 · · ·hk) = 1, and for every prime p

dividing Q we have P (n;H) ≡ h1 · · ·hk 6≡ 0 mod p, hence |Ω(p)| = 0.

Lemma 2.4.3. Let H be a real number, let Q = Q(H) be a positive inte-

ger satisfying (2.2.2), (2.2.3) and (2.2.5), and let H be as in (2.2.6), with k

fixed. Also let h ∈ [1, H] ∩ Z be such that Qx + h 6∈ H. For s1, s2 satisfying

Re s1,Re s2 > −1/4, we have

G(s1, s2; Ω), G+(s1, s2; Ω+)� exp
(
cHδ1+δ2 log logH

)
, (2.4.8)

where c is a constant depending only on k, and

δi := max (−Re si, 0) , i = 1, 2.

Moreover, for k 6 logH, H is admissible if and only if (Q, h1 · · ·hk) = 1, and
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as H →∞, if (Q, h) = (Q, h1 · · ·hk) = 1, we have

G(0, 0; Ω), G+(0, 0; Ω+) ∼
(

Q

φ(Q)

)k
. (2.4.9)

Proof. Several times throughout this proof, we will tacitly use the following

inequalities: the triangle inequality; 1 − |z| 6 |1− z|, that is |1− z|−1 6

(1− |z|)−1, for 0 < |z| < 1; (1− x)−1 6 1 + 3x for 0 6 x 6 2/3; log(1 + x) 6 x

for x > 0; for all primes p,

0 <
1

|psi+1|
,

1

|ps1+s2+1|
6

1

p−(δ1+δ2)+1
< 1 for δi := max(−Re si, 0) < 1/4;

and for all primes p,

1

|psi+1|
6

1

p−δi+1
<

1

23/4
< 2/3 for δi := max(−Re si, 0) < 1/4.

We will also tacitly use the standard estimate

∑
p6x

1

p
= log log x+ c1 +O

(
1

log x

)
, c1 = 0.261497 . . .

(see [33, I.1 Theorem 9]).

Now fix s1 and s2 such that δi := max(−Re si, 0) < 1/4, i = 1, 2. We write

G(s1, s2; Ω) =
∏
p-Qp0
p6H

(· · · )
∏
p6H

(· · · )
∏
p-Qp0
p>H

(· · · )
∏
p>H

(· · · )
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and treat the above products separately. We have

∣∣∣∣∣∏
p6H

(
1− 1

ps1+s2+1

)k∣∣∣∣∣ 6 ∏
p6H

(
1 +

1

p−(δ1+δ2)+1

)k

= exp

(
k
∑
p6H

log

(
1 +

1

p−(δ1+δ2)+1

))

6 exp

(
k
∑
p6H

1

p−(δ1+δ2)+1

)

6 exp

(
kHδ1+δ2

∑
p6H

1

p

)

� exp
(
kHδ1+δ2 log logH

)
,

and

∣∣∣∣∣∏
p6H

(
1− 1

psi+1

)−k∣∣∣∣∣ 6 ∏
p6H

(
1− 1

p−δi+1

)−k
6
∏
p6H

(
1 +

3

p−δi+1

)k

= exp

(
k
∑
p6H

log

(
1 +

3

p−δi+1

))

6 exp

(
k
∑
p6H

3

p−δi+1

)

6 exp

(
3kHδi

∑
p6H

1

p

)

� exp
(
3kHδi log logH

)
,
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i = 1, 2. Thus, since δ1, δ2 6 δ1 + δ2, we have

∣∣∣∣∣∏
p6H

(
1− 1

ps1+1

)−k (
1− 1

ps2+1

)−k (
1− 1

ps1+s2+1

)k∣∣∣∣∣
� exp

(
7kHδ1+δ2 log logH

)
.

(2.4.10)

Also, since |Ω(p)| 6 k for p - Q (by (2.4.6)), we have

∣∣∣∣∣ ∏
p-Qp0
p6H

(
1− |Ω(p)|

p

(
1

ps1
+

1

ps2
− 1

ps1+s2

)) ∣∣∣∣∣
6
∏
p6H

(
1 +

3k

p−(δ1+δ2)+1

)

= exp

(∑
p6H

log

(
1 +

3k

p−(δ1+δ2)+1

))

6 exp

(∑
p6H

3k

p−(δ1+δ2)+1

)

6 exp

(
3kHδ1+δ2

∑
p6H

1

p

)

� exp
(
3kHδ1+δ2 log logH

)
.

(2.4.11)

Now, by (2.4.7) we may write

∏
p-Qp0
p>H

(· · · )
∏
p>H

(· · · ) =
∏
p>H
p6=p0

(· · · ) (· · · )
∏
p>H

(· · · )

= γ(p0)
∏
p>H

(
1− k

p

(
1

ps1
+

1

ps2
− 1

ps1+s2

))

·
(

1− 1

ps1+1

)−k (
1− 1

ps2+1

)−k (
1− 1

ps1+s2+1

)k
,
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where γ(p0) = 1 if p0 6 H, and

γ(p0) =

(
1− k

p0

(
1

ps10

+
1

ps20

− 1

ps1+s2
0

))−1

otherwise. Now clearly

|γ(p0)| 6
(

1− 3k

H−(δ1+δ2)+1

)−1

= 1 + o(1).

We have

log
(∏

p>H (· · · ) (· · · )
)

6
∑
p>H

∣∣∣∣ log

(
1− k

ps1+1
− k

ps2+1
+

k

ps1+s2+1

)
− k log

(
1− 1

ps2+1

)
− k log

(
1− 1

ps1+1

)
+ k log

(
1− 1

ps1+s2+1

) ∣∣∣∣.
In this last sum the Taylor series of the term corresponding to p is

−
∑
m>1

1

m

(
k

ps1+1
+

k

ps2+1
− k

ps1+s2+1

)m
+ k

∑
m>1

1

m

(
1

ps1+1

)m
+ k

∑
m>1

1

m

(
1

ps2+1

)m
− k

∑
m>1

1

m

(
1

ps1+s2+1

)m
= −

∑
m>2

km

m

(
1

ps1+1
+

1

ps2+1
− 1

ps1+s2+1

)m
+ k

∑
m>2

1

m

(
1

ps1+1

)m
+ k

∑
m>2

1

m

(
1

ps2+1

)m
− k

∑
m>2

1

m

(
1

ps1+s2+1

)m
,

which in absolute value is at most

∑
m>2

1

m

(
4k

p−(δ1+δ2)+1

)m
.
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We may assume H is large enough so that 4k/H 6 1/2, and so

∑
p>H

∣∣∣∣ · · · ∣∣∣∣ 6 ∑
p>H

∑
m>2

1

m

(
4k

p−(δ1+δ2)+1

)m
6
∑
p>H

(
4k

p−(δ1+δ2)+1

)2 ∑
m>2

(
4k

p−(δ1+δ2)+1

)m−2

� k2
∑
p>H

1

p−2(δ1+δ2)+2

� k2.

(2.4.12)

Exponentiating yields

∣∣∣∣ ∏
p>H

(
1− k

p

(
1

ps1
+

1

ps2
− 1

ps1+s2

))

·
(

1− 1

ps1+1

)−k (
1− 1

ps2+1

)−k (
1− 1

ps1+s2+1

)k ∣∣∣∣
6 exp

(
O(k2)

)
,

and combining yields

∏
p-Qp0
p>H

(
1− |Ω(p)|

p

(
1

ps1
+

1

ps2
− 1

ps1+s2

))

×
∏
p>H

(
1− 1

ps1+1

)−k (
1− 1

ps2+1

)−k (
1− 1

ps1+s2+1

)k
� exp

(
O(k2)

)
.

(2.4.13)

Finally, combining (2.4.10), (2.4.11) and (2.4.13) yields

G(s1, s2; Ω)� exp
(
10kHδ1+δ2 log logH

)
for δi := max(−Re si, 0) < 1/4, i = 1, 2. We bound G+(s1, s2; Ω+) similarly.
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Since Qx + h 6∈ H, we have |Ω+(p)| − 1 = k < p for all p > H as in the first

case, and 0 6 |Ω+(p)| − 1 6 min(k, p− 1) for all p - Q. Noting that

min(k, p− 1)

p− 1
6

k

p(1− 1/p)
6 2k

and carrying this through the above computations, we obtain the bound (2.4.8)

for G+(s1, s2; Ω+).

Now we will prove the second statement of the lemma. As we noted prior

to stating the lemma, for any prime p dividing (Q, h1 · · ·hk) we have

P (n;H) ≡ h1 · · ·hk ≡ 0 mod p,

hence |Ω(p)| = p, and so H is not admissible if (Q, h1 · · ·hk) 6= 1. Now assume

(Q, h1 · · ·hk) = 1 and k 6 logH. Then for every prime p dividing Q we have

P (n;H) ≡ h1 · · ·hk 6≡ 0 mod p, hence |Ω(p)| = 0. For every other prime p we

have (2.4.6), and hence 1 6 |Ω(p)| 6 k 6 logH < p by (2.2.3). Hence H is

admissible if and only if (Q, h1 · · ·hk) = 1, provided k 6 logH.

We will now establish (2.4.9) in the case of G(0, 0; Ω). We assume H is large

enough so that 2k 6 logH, and that (Q, h1 · · ·hk) = 1. Thus H is admissible

and |Ω(p)| = 0 for p | Q, hence

G(0, 0; Ω) =
∏
p-Qp0

(
1− |Ω(p)|

p

)∏
p

(
1− 1

p

)−k
=

(
Q

φ(Q)

)k∏
p-Q

(
1− |Ω(p)|

p

)(
1− 1

p

)−k∏
p|p0

(
1− |Ω(p)|

p

)−1

,

because if p0 6= 1 then p0 - Q; otherwise Qp0 = Q and the last product is empty.

As H tends to infinity, the last product tends to 1 by (2.2.1), so it suffices to
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show that

S′(H) :=
∏
p-Q

(
1− |Ω(p)|

p

)(
1− 1

p

)−k
∼ 1. (2.4.14)

In fact since H is admissible, we see that 1 6 |Ω(p)| 6 min(k, p−1) if p - Q,

with |Ω(p)| = k if and only if p - Q∆. We break S′(H) into two products

according as p | ∆ or p - ∆:

S′(H) =
∏
p-Q

(
1− k

p

)(
1 +

k − |Ω(p)|
p− k

)(
1− 1

p

)−k
=
∏
p-Q

(
1− k

p

)(
1− 1

p

)−k∏
p-Q
p|∆

(
1 +

k − |Ω(p)|
p− k

)
.

(2.4.15)

In this product p − k 6= 0 because p - Q implies p > logH by (2.2.3), and we

are assuming that logH > k. Then p - Q implies k < p/2, and the logarithm

of the first product of the last line of (2.4.15) is

∑
p-Q

{(
−k
p
− k2

2p2
− · · ·

)
− k

(
−1

p
− 1

2p2
− · · ·

)}

= −k(k − 1)
∑
p-Q

{
1

p2

(
1

2
+

1 + k

3p
+

1 + k + k2

4p2
+ · · ·

)}

� k2
∑

p>logH

1

p2
� k2

logH log logH
.

For the second product, note that since

0 <
k − |Ω(p)|
p− k

6
k

p− k
6

2k

p
< 1,



2. Proof of Theorem 1 and Theorem 2 32

the logarithm of the second product is

6
∑
p|∆

p>logH

log

(
1 +

k − |Ω(p)|
p− k

)
�

∑
p|∆

p>logH

k

p

� k

logH

∑
p|∆

1� k log ∆

logH log log ∆
� k3

log logH

by the prime number theorem and since ∆ 6 H(k2) 6 Hk2
. Exponentiating

and letting H → ∞ yields (2.4.14), and we have shown that (2.4.9) holds for

G(0, 0; Ω).

The case for G+(0, 0; Ω+) is similar. We have |H+| = k + 1 as Qx+ h 6∈ H,

and analogously to (2.4.14) we have S′(H+) ∼ 1 as H →∞, where

S′(H+) :=
∏
p-Q

(
1− |Ω

+(p)|
p

)(
1− 1

p

)−(k+1)

=
∏
p-Q

(
p− |Ω+(p)|

p

)(
p

p− 1

)(
1− 1

p

)−k
=
∏
p-Q

(
1− |Ω

+(p)| − 1

p− 1

)(
1− 1

p

)−k
.

Hence

G+(0, 0; Ω+) =
∏
p-Qp0

(
1− |Ω

+(p)| − 1

p− 1

)∏
p

(
1− 1

p

)−k
=

(
Q

φ(Q)

)k
S′(H+)

∏
p|p0

(
1− |Ω

+(p)| − 1

p− 1

)−1

∼
(

Q

φ(Q)

)k

as H →∞, because the product over p | p0 is ∼ 1 by (2.2.1).
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In the following lemma and throughout the rest of Section 2.4, c denotes

a constant depending on k and ` at most, which may be different at each

occurrence.

Lemma 2.4.4. Let k and ` be arbitrary but bounded positive integers. Suppose

G(s1, s2) is a function which is defined and regular for Re s1,Re s2 > −1/4,

and satisfies

G(s1, s2)� exp
(
c(logR)δ1+δ2 log log logR

)
(2.4.16)

in this domain, where c is a constant depending on k and ` at most, and

δi := max(−Re si, 0), i = 1, 2.

Then the estimate

I :=
1

(2πi)2

∫
(1)

∫
(1)

G(s1, s2)

(
ζ(s1 + s2 + 1)

ζ(s1 + 1)ζ(s2 + 1)

)k
Rs1+s2

(s1s2)k+`+1
ds1ds2

= G(0, 0)

(
2`

`

)
(logR)k+2`

(k + 2`)!
+O

(
(logR)k+2`−1/2(log logR)c

)
(2.4.17)

holds for all sufficiently large R.

Proof. This proof is based on the outline in [18], with most of the details taken

from the proof of Lemma 3 of [21]. To set up for the proof, we put

U := exp
(√

logR
)
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and define the following contours (see Figure 2.1):

L′1 := {(50 logU)−1 + it : t ∈ R} L′2 := {(100 logU)−1 + it : t ∈ R}

L1 := {(50 logU)−1 + it : |t| 6 U} L2 := {(100 logU)−1 + it : |t| 6 U/2}

L1 := {−(50 logU)−1 + it : |t| 6 U} L2 := {−(100 logU)−1 + it : |t| 6 U/2}

B1 := {σ ± iU : |σ| 6 (50 logU)−1} B1 := {σ ± iU : |σ| 6 (100 logU)−1}

C1 := L1 ∪L1 ∪B1 C2 := L2 ∪L2 ∪B2.

Throughout the proof all contours are traversed counter-clockwise. All of these

contours are to the right of the contour C − 1, where C is the contour given in

Lemma 2.4.1. Thus we have good estimates (2.4.3) for ζ(s+ 1) and 1/ζ(s+ 1)

for s in this region. Also, c will denote a constant depending on k and ` at

most, which may be different at each occurrence throughout the proof.

Before proceeding with the integration, let us establish some basic estimates,

which will be used in the course of the proof. First of all, for

δi := max(−Re si, 0) 6
1

24 logU
, i = 1, 2, (2.4.18)

we have

(logR)δ1+δ2 6 exp

(
log logR

12
√

logR

)
� 1.

Therefore, by (2.4.16), we have

G(s1, s2)� (log logR)c for Re s1,Re s2 > − 1

24 logU
. (2.4.19)

(As it turns out, we will only consider the region on or to the right of the one

defined by (2.4.18), and so (2.4.19) will be applicable throughout the proof.)
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Fig. 2.1:

C1

−s

|s∗+s|=η

(50 logU)−1+iU

(100 logU)−1+iU/2

L′1

L′2

C2

B1

B2

C − 1 : −(24 log(|t|+3))−1+it

−(100 logU)−1

−iU/2

−(50 logU)−1−iU

L2

L1

L1

L2

s
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We write the integrand in (2.4.17) as

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
,

where

H(s1, s2) := G(s1, s2)

(
(s1 + s2)ζ(s1 + s2 + 1)

s1ζ(s1 + 1)s2ζ(s2 + 1)

)k

is regular in a neighborhood of (0, 0). We claim that if s1, s2 and s1 + s2 lie on,

or to the right of, C − 1, and if Re s1,Re s2 > −(24 logU)−1, then

H(s1, s2)� (log logR)c(log(|s1 + s2|+ 3))k(|s1 + s2|+ 1)k

× (log(|s1|+ 3))k(log(|s1|+ 3))k

(|s1|+ 1)k(|s2|+ 1)k

(2.4.20)

For applying the translation s 7→ s+1 to (2.4.1), we see that (sζ(s+1))−1 → 1

as s→ 0. We fix an ε > 0 such that (sζ(s+1))−1 6 2 for |s| 6 ε. For such s, we

have (|s|+ 1)−1 log(|s|+ 3)� 1, hence (sζ(s+ 1))−1 � (|s|+ 1)−1 log(|s|+ 3).

For |s| > ε, we have |s| 6 |s|+1 6 |s| (1+1/ε)� |s|. If, furthermore, s lies on,

or to the right of, C − 1, we have 1/ζ(s+ 1)� log(|s+ 1|+ 3)� log(|s|+ 3)

by (2.4.3) (s 7→ s+ 1). Thus, in any case, we have

(sζ(s+ 1))−1 � (|s|+ 1)−1 log(|s|+ 3)

for s on, or to the right of, C − 1. If s1, s2 and s1 + s2 are in the same range,

we use this and both estimates in (2.4.3) to deduce that
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(s1 + s2)ζ(s1 + s2 + 1)

s1ζ(s1 + 1)s2ζ(s2 + 1)
� (|s1 + s2|+ 1) log(|s1 + s2|+ 3)

× log(|s1|+ 3) log(|s2|+ 3)

(|s1|+ 1)(|s2|+ 1)
.

To see how we used the estimate sζ(s + 1) − 1/s � log(|s| + 3) ((2.4.3),

s 7→ s + 1), note that this implies sζ(s + 1) � |s| log(|s| + 3) + O(1). When

|s| � 1, log(|s|+ 3) = O(1), hence sζ(s+ 1)� (|s|+ 1) log(|s|+ 3), and clearly

this also holds when |s| � 1. Now applying (2.4.19), we obtain (2.4.20) for s1

and s2 in the specified range.

From (2.4.20), we deduce that the following estimates hold if s1, s2 and

s1 + s2 lie on, or to the right of, C − 1, and if Re s1,Re s2 > −(24 logU)−1:

H(s1, s2)� (log logR)c(log(|s1|+ 3))2k(log(|s1|+ 3))2k, (2.4.21)

and

H(s1, s2)� (log logR)c if |s1| , |s2| � 1 or if |s1 + s2| � 1. (2.4.22)

Now we will show that

∫
L′2

∫
L′1\L1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2 � exp

(
−1

2

√
logR

)
, (2.4.23)

and that the same bound holds if the domain of integration is replaced by

L′1 × L′2 \ L2. For if (s1, s2) ∈ L′1 × L′2, then

(log logR)c
Rs1+s2

(s1 + s2)k
� (log logR)c(logU)kR

3
100 logU � exp

(
4

100

√
logR

)
,



2. Proof of Theorem 1 and Theorem 2 38

and so by (2.4.21),

∫
L′2

∫
L′1\L1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

� exp
(

1
25

√
logR

) ∫
L′2

∫
L′1\L1

(log(|s1|+ 3))2k

|s1|`+1
· (log(|s2|+ 3))2k

|s1|`+1
ds1ds2.

(2.4.24)

Now, since `+ 1 > 2,

∫
L′1\L1

(log(|s1|+ 3))2k

|s1|`+1
ds1 �

∫ ∞
U

(log(t+ 3))2k

t`+1
dt� (logU)2k

U2
,

and

∫
L′2

(log(|s2|+ 3))2k

|s1|`+1
ds2 �

{∫ 1
100 logU

+i

1
100 logU

+

∫ 1
100 logU

+i∞

1
100 logU

+i

}
(log(|s2|+ 3))2k

|s1|`+1
ds2

� (logU)`+1 +

∫ ∞
1

(log(t+ 3))2k

t`+1
dt

� (logU)`+1.

(2.4.25)

By (a corollary of) Fubini’s theorem, we may write the double integral on the

right-hand side of (2.4.24) as the product of the two integrals we have just

estimated, and (2.4.23) follows. An analogous argument gives the same bound

for the integral over L′1 × L′2 \ L2.

Next we will show that

∫
L2∪B2

∫
L1∪B1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2 � exp

(
− 1

200

√
logR

)
. (2.4.26)

For if s2 ∈ L2 then |Rs2 | = R−(100 logU)−1
= exp

(
− 1

100

√
logR

)
, and so similarly
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to (2.4.25) we have

∫
L2

(log(|s2|+ 3))2k |Rs2|
|s2|`+1

ds2 � exp
(
− 1

100

√
logR

)
(logU)`+1

� exp
(
− 1

200

√
logR

)
.

If s2 ∈ B2 then U � |s2| � U and |Rs2| 6 R(100 logU)−1
= exp

(
1

100

√
logR

)
,

thus, since `+ 1 > 2, we have

∫
B2

(log(|s2|+ 3))2k |Rs2 |
|s2|`+1

ds2 � exp
(

1
100

√
logR

) (logU)2k−1

U `+1

� exp
(
− 1

200

√
logR

)
,

because B2 is of length � (logU)−1. Hence the same bound holds for the

integral over L2 ∪B2 and, by the same argument, L1 ∪B1. Since

s1 + s2 � (logU)−1

in this domain, we have

∫
L2∪B2

∫
L1∪B1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

� (log logR)c(logU)k

×
∫

L2∪B2

∫
L1∪B1

(log(|s1|+ 3))2k |Rs1|
|s1|`+1

· (log(|s2|+ 3))2k |Rs2 |
|s2|`+1

ds1ds2

by (2.4.21). We obtain (2.4.26) by using Fubini’s theorem to write the double

integral as a product of two integrals and using the above estimates.

Finally, we will use the following estimates for the partial derivatives of

H(s1, s2). Recall Cauchy’s estimate for derivatives: if f(z) is analytic in the



2. Proof of Theorem 1 and Theorem 2 40

domain |z − z0| 6 η, and if f(z) 6 M for |z − z0| = η, then

∣∣f (j)(z0)
∣∣ 6 Mj!

ηj
.

We set

η :=
1

502 logU

so that for any s on or inside C1, and any s∗ with |s∗ − s| 6 η, s∗, s and s∗ + s

are to the right of C − 1 (see Figure 2.1). That is

max(−Re s, 0),max(−Re s∗, 0) 6

(
1

50
+

1

502

)
1

logU
6

1

24 logU
,

and so (2.4.19) – (2.4.22) are applicable here. Thus, by (2.4.22), we have

∂m

∂sm2

∂j

∂sj1
H(0, 0) 6

j!m!

ηj+m
sup

|s1|,|s2|=η
|H(s1, s2)| � (log logR)c(logR)(j+m)/2,

(2.4.27)

and for s2 on or inside C1 we have

∂j

∂sj1
H(0, s2) 6

j!

ηj
sup
|s1|=η

|H(s1, s2)| � (log logR)c(logR)j/2 (2.4.28)

and

∂j

∂sj1
H(−s2, s2) 6

j!

ηj
sup

|s1+s2|=η
|H(s1, s2)| � (log logR)c(logR)j/2. (2.4.29)

To begin to evaluate I , we shift the s1- and s2-contours from (1) to the

left to L′1 and L′2 respectively, then we truncate these lines to form L1 and L2,
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giving rise to our first error term. Thus

I =
1

(2πi)2

∫
L′2

∫
L′1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

=
1

(2πi)2

{∫
L2

∫
L1

+

∫
L′2\L2

∫
L1

+

∫
L′2

∫
L′1\L1

}
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

=
1

(2πi)2

∫
L2

∫
L1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2 +O

(
exp

(
−1

2

√
logR

))
by (2.4.23). Shifting the s1-contour from L1 back to L1, we encounter a sin-

gularity at s1 = 0, which lies inside C1, and another singularity at s1 = −s2,

which also lies inside C1 since s2 is on L2. Thus, by the residue theorem,

∫
L2

∫
L1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

=

∫
L2

{∫
C1

−
∫

L1∪B1

}
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

= 2πi

∫
L2

{
Res
s1=0

+ Res
s1=−s2

}
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2

−
∫
L2

∫
L1∪B1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2.

Now we shift the s2-contour from L2 back to L2. We will presently see that

the only singularity we encounter is at s2 = 0, which lies inside the rectangle

C2. Using the residue theorem to write

∫
L2

=

∫
C2

−
∫

L2∪B2

= 2πiRes
s2=0
−
∫

L2∪B2

and combining the last three equations, we see that
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I = Res
s2=0

Res
s1=0

(
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1

)
ds1ds2

− 1

2πi

∫
L2∪B2

Res
s1=0

(
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1

)
ds1ds2

− 1

2πi

∫
L1∪B1

Res
s2=0

(
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1

)
ds1ds2

+
1

2πi

∫
L2

Res
s1=−s2

(
H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1

)
ds1ds2

− 1

(2πi)2

∫
L2∪B2

∫
L1∪B1

H(s1, s2)Rs1+s2

(s1 + s2)k(s1s2)`+1
ds1ds2 +O

(
exp

(
−1

2

√
logR

))
:= I0 − I1 − I2 + I3 +O

(
exp

(
− 1

200

√
logR

))
(2.4.30)

by (2.4.26).

Since sζ(s + 1) → 1 as s → 0 by (2.4.1), the residue of the integrand at

s1 = 0 is a pole of order at most `+ 1. Therefore 1, by Leibniz’s formula,

Res
s1=0

H(s1, s2)Rs1

(s1 + s2)ks`+1
1

=
1

`!

∑̀
i=0

(
`

i

)
(logR)`−i

∂i

∂si1

(
H(0, s2)

(s1 + s2)k

)

and

∂i

∂si1

(
H(0, s2)

(s1 + s2)k

)
=

i∑
j=0

(
i

j

)
∂j

∂sj1
H(0, s2)

(−1)i−jk(k + 1) · · · (k + i− j − 1)

sk+i−j
2

.

Hence

Res
s1=0

H(s1, s2)Rs1

(s1 + s2)ks`+1
1

=
∑̀
i=0

i∑
j=0

a(i, j)(logR)`−i

sk+i−j
2

∂j

∂sj1
H(0, s2), (2.4.31)

1. As noted in the proof of Lemma 3 of [21], if H(0, 0) = G(0, 0) = 0, the order of the
pole is at most `. Nevertheless, the formula we use to compute is still valid: one or more of
the initial terms will be 0. However, this situation does not arise in the proof of Proposition
2.2.2, nor does it in the proof of Proposition 3.2.2 below.
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where

a(i, j) = (−1)i−j
1

`!

(
`

i

)(
i

j

)
k(k + 1) · · · (k + i− j − 1).

The (i, j)th term in (2.4.31) contributes to I0 a pole at s2 = 0 of order at

most `+ 1 + k + i− j. Applying Leibniz’s formula again, we see that

Res
s2=0

Rs2

s`+1+k+i−j
2

∂j

∂sj1
H(s1, 0) =

1

(`+ k + i− j)!

`+k+i−j∑
m=0

(
`+ k + i− j

m

)
(logR)`+k+i−j−m ∂m

∂sm2

∂j

∂sj1
H(0, 0).

(2.4.32)

Combining (2.4.31) – (2.4.32) yields

I0 =
∑̀
i=0

i∑
j=0

`+k+i−j∑
m=0

b(i, j,m)(logR)`+k+i−j−m ∂m

∂sm2

∂j

∂sj1
H(0, 0), (2.4.33)

where

b(i, j,m) =
a(i, j)

(`+ k + i− j)!

(
`+ k + i− j

m

)
= (−1)i−j

(
`

i

)(
i

j

)
k(k + 1) · · · (k + i− j − 1)

`!(`+ k + i− j)!

(
`+ k + i− j

m

)
.

By the combinatorial identity

∑̀
i=0

b(i, 0, 0) =
∑̀
i=0

(
`

i

)
(−1)ik(k + 1) · · · (k + i− 1)

`!(`+ k + i)!
=

(
2`

`

)
1

(k + 2`)!
,
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and since H(0, 0) = G(0, 0), we see from (2.4.27) and (2.4.33) that

I0 = G(0, 0)

(
2`

`

)
(logR)k+2`

(k + 2`)!
+O

(
(logR)k+2`−1/2(log logR)c

)
.

For I1, we put (2.4.28) into (2.4.31) and estimate the resulting integral,

which is similar to the one in (2.4.26). Thus

I1 � (log logR)c(logR)`
∑̀
i=0

i∑
j=0

(logR)−i+j/2
∫

L2∪B2

ds2

|s2|k+i−j

� (log logR)c(logR)`
∑̀
i=0

i∑
j=0

(logR)−i+j/2(logU)k+i−j.

We estimate I2 by an analogous argument. Hence

I1, I2 � (log logR)c(logR)`+k/2.

Finally, for I3 we have

Res
s1=−s2

(
H(s1, s2)Rs1+s2

(s1 + s2)ks`+1
1 s`+1

2

)
= lim

s1→−s2

1

(k − 1)!

∂k−1

∂sk−1
1

(
H(s1, s2)Rs1+s2

s`+1
1 s`+1

2

)
=

1

(k − 1)!

k−1∑
i=0

Ji(s2)(logR)k−1−i,

where

Ji(s2) :=

(
k − 1

i

) i∑
j=0

(
i

j

)
∂i−j

∂si−j1

H(−s2, s2)
(−1)j(`+ 1) · · · (`+ j)

(−1)`+j+1s
2(`+1)+j
2

.
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Now by (2.4.29), we have

∫
L2

Ji(s2)ds2 � (log logR)c
i∑

j=0

(logR)(i−j)/2
∫
L2

ds2

|s2|2(`+1)+j

� (log logR)c
i∑

j=0

(logR)(i−j)/2(logU)2(`+1)+j

� (log logR)c(logR)`+1+i/2,

hence

I3 � (log logR)c
k−1∑
i=0

(logR)k+`−i/2 � (log logR)c(logR)k+`.

We obtain (2.4.17) by combining the estimates for I0, . . . , I3 with (2.4.30).

We will need to estimate an error term involving

E∗(N, q) := max
x6N

max
(a,q)=1

∣∣∣∣∣ ∑
p6x

p≡a mod q

log p− x

φ(q)

∣∣∣∣∣.
Lemma 2.4.5 (Bombieri-Vinogradov theorem). For any fixed positive number

A there exists a positive number B = B(A), depending only on A, such that

∑
q6N1/2(logN)−B

E∗(N, q)�A N(logN)−A.

Proof. See [6, Théorème 17].

This, the usual Bombieri-Vinogradov theorem, will not suffice here, but the

next lemma, which is Lemma 2 of [19], will.
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Lemma 2.4.6. Let Q be an integer, and let Y and M be numbers, such that

Q2 6 Y 6 M, exp
(

2
√

logM
)

6 Y. (2.4.34)

If there is an exceptional modulus q0 6 Y , suppose p0 - Q for some p0 | q0;

otherwise, let p0 = 1. If

R∗ = M1/2Q−3 exp
(
−
√

logM
)
,

then we have, with explicitly calculable positive constants c1 and c2,

∑
D6R∗

(D,Qp0)=1

E∗(M,QD) 6 c1
M

Q
exp

(
−c2 logM

log Y

)
. (2.4.35)

Proof. See [22, Theorem 6].

2.4.2 The proof of Proposition 2.2.2

We now assume all but one of the hypotheses of Proposition 2.2.2. The

hypothesis we do not assume is that k > 2: until stated otherwise at the

very end of the proof, we assume only that k > 1. Thus H,N and R are

real parameters such that H = ε logN , ε > 0 arbitrarily small but fixed, and

R = N1/4−ε′ . We assume H,N and R are sufficiently large, where the meaning

of ‘sufficiently large’ will be made clear in the context of the proof. Integers

k, ` > 1 are fixed, Q = Q(H) is a number satisfying (2.2.2) – (2.2.5), and

H = {Qx+ h1, . . . , Qx+ hk} as in (2.2.6).

Recall that

Ω(d) = Ω(d;H) := {n mod d : P (n;H) ≡ 0 mod d},
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where P (n;H) = (Qn + h1) · · · (Qn + hk), as in (2.2.8). A Chinese remainder

theorem argument shows that n mod d ∈ Ω(d) if and only if pr || P (n;H) for

every pr || d, and so |Ω(d)| defines a multiplicative function of d. Thus, if we

define

λR(d; j) :=


1
j!
µ(d)(logR/d)j if d 6 R,

0 if d > R,

(2.4.36)

we see from (2.2.7) that

ΛR(n;H, j) :=
1

j!

∑′

d|P (n;H)
d6R

µ(d)(logR/d)j =
∑′

n mod d
∈Ω(d)

λR(d; j). (2.4.37)

With this we are ready to begin the evaluation of the left-hand side of (2.2.9).

Let us abbreviate λR(d; k+ `) to λd. Expanding the square and noting that

the condition

d1 | P (n;H), d2 | P (n;H)

is equivalent to [d1, d2] | P (n;H), which is equivalent to n mod [d1, d2] ∈

Ω([d1, d2]), we obtain

∑
N<n62N

ΛR(n;H, k + `)2 =
∑

N<n62N

 ∑′

[d1,d2]|P (n;H)

λd1λd2


=
∑′

d1,d2

λd1λd2
∑

m mod [d1,d2]
∈Ω([d1,d2])

∑
N<n62N

n≡m mod [d1,d2]

1

=
∑′

d1,d2

λd1λd2 |Ω([d1, d2])|
(

N

[d1, d2]
+O(1)

)
= NT +O(E),

(2.4.38)
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where

T :=
∑′

d1,d2

λd1λd2
|Ω([d1, d2])|

[d1, d2]
, E :=

∑′

d1,d2

|λd1λd2| · |Ω([d1, d2])| .

We consider the error term E first. From the definition (2.4.36) it is clear

that |λd| 6 (logR)k+`. Also, since (Q, h1 · · ·hk) = 1 we have |Ω(p)| 6 k for

all p by (2.4.6) and since |Ω(p)| = 0 if p - Q. As we noted earlier, |Ω(d)|

is multiplicative in d, so for squarefree d we have |Ω(d)| 6 kω(d), where ω(d)

denotes the number of distinct prime factors of d. Therefore

E 6 (logR)2(k+`)
∑

d1,d26R

µ2(d1)µ2(d2)kω([d1,d2])

= (logR)2(k+`)
∑
D6R2

µ2(D)kω(D)
∑

[d1,d2]=D

1

= (logR)2(k+`)
∑
D6R2

µ2(D)(3k)ω(D).

(2.4.39)

Here we have used the elementary fact that if D is squarefree and D = [d1, d2],

then D = ge1e2, where (d1, d2) = g, d1 = ge1, d2 = ge2, and (g, e1) = (g, e2) =

(e1, e2) = 1. Thus
∑

[d1,d2]=D 1 is precisely the number of ways of writing D as

a product of three pairwise coprime positive integers, namely 3ω(D).

For positive integers κ, we have

∑
D6R2

µ2(D)κω(D)

D
=

∑
d1···dκ6R2

µ2(d1) · · ·µ2(dκ)

d1 · · · dκ
� (logR2)κ � (logN)κ,

(2.4.40)
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and hence

∑
D6R2

µ2(D)κω(D) 6 R2
∑
D6R2

µ2(D)κω(D)

D
� R2(logN)κ.

Putting this last inequality, with κ = 3k, into (2.4.39) we obtain

E � R2(logN)5k+2` � N1/2, (2.4.41)

because R = N1/4−ε′ .

Now we consider T . First of all, by (2.4.36) and Lemma 2.4.2, we have

λR(d; j) =
µ(d)

2πi

∫
(1)

(
R

s

)s
ds

sj+1
,

hence

λd1λd2 =
µ(d1)µ(d2)

(2πi)2

∫
(1)

∫
(1)

Rs1+s2 ds1ds2

ds11 d
s2
2 (s1s2)k+`+1

. (2.4.42)

Putting this into our expression for T , we find that

T =
1

(2πi)2

∫
(1)

∫
(1)

F (s1, s2; Ω)
Rs1+s2

(s1s2)k+`+1
ds1ds2, (2.4.43)

where

F (s1, s2; Ω) :=
∑′

d1,d2

µ(d1)µ(d2) |Ω([d1, d2])|
[d1, d2]ds11 d

s2
2

=
∏
p-Qp0

(
1− |Ω(p)|

p

(
1

ps1
+

1

ps2
− 1

ps1+s2

))

= G(s1, s2; Ω)

(
ζ(s1 + s2 + 1)

ζ(s1 + 1)ζ(s2 + 1)

)k
(2.4.44)
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when Re s1,Re s2 > 0, by (2.4.2) and (2.4.4). (Recall that
∑′ means that the

sum is taken over indices coprime with Qp0.) Putting (2.4.44) into (2.4.43), we

see that T is the same as I of Lemma 2.4.4, with G(s1, s2; Ω) in the role of

G(s1, s2).

Since H � logR, we have

G(s1, s2; Ω)� exp
(
c(logR)δ1+δ2 log log logR

)
when δi := max(−Re si, 0) < 1/4, i = 1, 2, by (2.4.8). (Recall that c denotes

a constant depending at most on k and `, which may be different at each

occurrence.) Also, G(0, 0; Ω) ∼ (Q/φ(Q))k as H →∞ by (2.4.9). In particular

we may assume H is large enough so that G(0, 0; Ω)� 1. Thus the hypotheses

of Lemma 2.4.4 are satisfied with G(s1, s2) = G(s1, s2; Ω), therefore by (2.4.17)

and since G(0, 0; Ω)� 1, we have

T = G(0, 0; Ω)

(
2`

`

)
(logR)k+2`

(k + 2`)!

(
1 +O

(
(logR)−1/2(log logR)c

))
(2.4.45)

for all sufficiently large R. Since logR � logN , putting (2.4.41) and (2.4.45)

into (2.4.38), then using (2.4.9), we obtain

1

N

∑
N<n62N

ΛR(n;H, k + `)2 = (1 + o(1))G(0, 0; Ω)

(
2`

`

)
(logR)k+2`

(k + 2`)!

= (1 + o(1))

(
Q

φ(Q)

)k (
2`

`

)
(logR)k+2`

(k + 2`)!

as H,N,R→∞. We have established (2.2.9) of Proposition 2.2.2.
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We now turn to (2.2.10). Similarly to (2.4.38), we have

∑
N<n62N

ϑ(Qn+ h)ΛR(n;H, k + `)2

=
∑′

d1,d2

λd1λd2
∑

N<n62N
[d1,d2]|P (n;H)

ϑ(Qn+ h)

=
∑′

d1,d2

λd1λd2
∑

m mod [d1,d2]
∈Ω([d1,d2])

∑
QN+h<p62QN+h

p≡h mod Q
p≡Qm+h mod [d1,d2]

log p.

(2.4.46)

We may assume (Qm + h, [d1, d2]) = (Q, [d1, d2]) = 1 in the last sum, so we

define

Ω∗(d) = Ω(d) \ {m mod d : (Qm+ h, d) 6= 1}.

For d1, d2 with (Q, [d1, d2]) = 1 and m mod [d1, d2] ∈ Ω∗([d1, d2]), we let

hm mod Q[d1, d2]

be the unique congruence class mod Q[d1, d2] satisfying hm ≡ h mod Q and

hm ≡ Qm+ h mod [d1, d2]. Thus, the last sum in (2.4.46) is equal to

∑
QN+h<p62QN+h
p≡hm mod Q[d1,d2]

log p =
2QN + h

φ(Q[d1, d2])
− QN + h

φ(Q[d1, d2])
+O (E∗(3QN,Q[d1, d2])) ,

where we recall that

E∗(3QN,Q[d1, d2]) := max
x63QN

max
(a,Q[d1,d2])=1

∣∣∣∣∣ ∑
p6x

p≡a mod Q[d1,d2]

log p− x

φ(Q[d1, d2])

∣∣∣∣∣.
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We now have

∑
N<n62N

ϑ(Qn+ h)ΛR(n;H, k + `)2 =
QN

φ(Q)
T ∗ +O(E∗), (2.4.47)

where

T ∗ :=
∑′

d1,d2

λd1λd2 |Ω∗([d1, d2])|
φ([d1, d2])

,

E∗ :=
∑′

d1,d2

|λd1λd2 | · |Ω∗([d1, d2])|E∗(3QN,Q[d1, d2]).

We consider the error term E∗ first. Similarly to (2.4.39) we have

E∗ 6 (logR)2(k+`)
∑′

D6R2

µ2(D)kω(D)E∗(3QN,QD)
∑

[d,e]=D

1

= (logR)2(k+`)
∑′

D6R2

µ2(D)(3k)ω(D)E∗(3QN,QD),

for clearly |Ω∗(d)| 6 |Ω(d)|, and |Ω(d)| 6 kω(d) for squarefree d as noted prior

to (2.4.39). By the trivial inequality

E∗(3QN,QD)� QN logQN

QD
� N logN

D
,

and the Cauchy-Schwarz inequality, we have

∑′

D6R2

µ2(D)(3k)ω(D)E∗(3QN,QD)

�

N logN
∑
D6R2

µ2(D)(3k)2ω(D)

D

1/2∑′

D6R2

E∗(3QN,QD)

1/2

.

(2.4.48)
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Now we apply Lemma 2.4.6. By (2.2.2) – (2.2.5), we see that (2.4.34) is

satisfied with

Y = exp
(
2cH/(logH)2

)
= N2cε(1+o(1))/(log logN)2

and M = 3QN , where in this instance c is the constant in (2.2.4). We also

have

R2 = N1/2−2ε′ 6 R∗ = (3QN)1/2Q−3 exp
(
−
√

log 3QN
)

for all sufficiently large N , and

c2 logM/ log Y = c2(1 + o(1)) logN/ log Y = c2(1 + o(1))(log logN)2/2cε.

Letting c3 = c2/12cε and putting this into (2.4.35), we deduce from Lemma

2.4.6 that

∑′

D6R2

E∗(3QN,QD)� N(logN)−5c3 log logN

for all sufficiently large N . Putting this, as well as (2.4.40) with κ = (3k)2,

into (2.4.48) yields

E � N
(logN)2(k+`)+(3k)2/2+1/2

(logN)2c3 log logN
� N(logN)−c3 log logN . (2.4.49)

We will now evaluate T ∗, assuming first that Qx+ h 6∈ H. Thus

|H+| := |H ∪ {Qx+ h}| = k + 1,
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and for p - Q we have

|Ω∗(p)| := |Ω(p) \ {m mod p : (Qm+ h, p) 6= 1}|

=
∣∣{−Q−1h1, . . . ,−Q−1hk} mod p \ {−Q−1h mod p}

∣∣
=
∣∣{−Q−1h1, . . . ,−Q−1hk,−Q−1h} mod p \ {−Q−1h mod p}

∣∣
= |Ω+(p)| − 1.

(Recall that Ω+(p) = Ω(p;H+).) As with |Ω(d)|, a Chinese remainder theorem

argument shows that |Ω∗(d)| defines a multiplicative function of d. Thus

|Ω∗([d1, d2])| =
∏

p|[d1,d2]

(
|Ω+(p)| − 1

)
,

provided [d1, d2] is squarefree and (Q, [d1, d2]) = 1, as is the case for d1, d2

appearing in the sum defining T ∗.

Therefore, putting (2.4.42) into our expression for T ∗, we find that

T ∗ =
1

(2πi)2

∫
(1)

∫
(1)

F+(s1, s2; Ω+)
Rs1+s2

(s1s2)k+`+1
ds1ds2, (2.4.50)

where

F+(s1, s2; Ω+) :=
∑′

d1,d2

µ(d1)µ(d2) |Ω∗([d1, d2])|
φ([d1, d2])ds11 d

s2
2

=
∏
p-Qp0

(
1− |Ω

+(p)| − 1

p− 1

(
1

ps1
+

1

ps2
− 1

ps1+s2

))

= G+(s1, s2; Ω+)

(
ζ(s1 + s2 + 1)

ζ(s1 + 1)ζ(s2 + 1)

)k
(2.4.51)

when Re s1,Re s2 > 0, by (2.4.2) and (2.4.5). Putting (2.4.51) into (2.4.50), we

see that T ∗ is the same as I of Lemma 2.4.4, with G+(s1, s2; Ω+) in the role
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of G(s1, s2).

Since H � logR, we have

G+(s1, s2; Ω+)� exp
(
c(logR)δ1+δ2 log log logR

)
when δ: = max(−Re si, 0) < 1/4, i = 1, 2, by (2.4.8). Also,

G+(0, 0; Ω+) ∼ (Q/φ(Q))k

as H → ∞ by (2.4.9). In particular we may assume H is large enough so

that G+(0, 0; Ω+)� 1. Thus the hypotheses of Lemma 2.4.4 are satisfied with

G(s1, s2) = G+(s1, s2; Ω+), therefore by (2.4.17) and since G+(0, 0; Ω+) � 1,

we have

T ∗ = G+(0, 0; Ω+)

(
2`

`

)
(logR)k+2`

(k + 2`)!

(
1 +O

(
(logR)−1/2(log logR)c

))
(2.4.52)

for all sufficiently large R. Since logR � logN , putting (2.4.49) and (2.4.52)

into (2.4.47), then using (2.4.9), we obtain

1

N

∑
N<n62N

ϑ(Qn+ h)ΛR(n;H, k + `)2

= (1 + o(1)) (Q/φ(Q))G+(0, 0; Ω+)

(
2`

`

)
(logR)k+2`

(k + 2`)!

= (1 + o(1))

(
Q

φ(Q)

)k+1(
2`

`

)
(logR)k+2`

(k + 2`)!

(2.4.53)

as H,R,N →∞, provided Qx + h 6∈ H. We have established the first case of

(2.2.10).

We can reduce the case Qx + h ∈ H to the first case as follows. Here we

assume |H| = k > 2. Observe that if n ∈ (N, 2N ] and Qn + h = p, a prime,



2. Proof of Theorem 1 and Theorem 2 56

then Qn+h ≡ 0 mod [d1, d2] only if [d1, d2] = 1 or p. If di = 1 then λd1λd2 = 0,

and if di = p then di > QN + 1 > R. That is, P (n;H) ≡ 0 mod [d1, d2] is

equivalent to P (n;H \ {Qx+ h}) ≡ 0 mod [d1, d2] when λd1λd2 , ϑ(Qn+ h) 6= 0

and d1, d2 6 R. Therefore

∑
N<n62N

ϑ(Qn+ h)ΛR(n;H, k + `)2

=
∑

N<n62N

ϑ(Qn+ h)

 ∑′

[d1,d2]|P (n;H)

λd1λd2


=

∑
N<n62N

ϑ(Qn+ h)

 ∑′

[d1,d2]|P (n;H\{Qx+h})

λd1λd2


=

∑
N<n62N

ϑ(Qn+ h)ΛR(n;H \ {Qx+ h}, k − 1 + `+ 1)2.

Applying the above evaluation with the translation

H 7→ H \ {Qx+ h}, k 7→ k − 1, ` 7→ `+ 1,

(2.4.53) becomes

1

N

∑
N<n62N

ϑ(Qn+ h)ΛR(n;H \ {Qx+ h}, k − 1 + `+ 1)2

= (1 + o(1))

(
Q

φ(Q)

)k−1+1(
2(`+ 1)

`+ 1

)
(logR)k−1+2(`+1)

(k − 1 + 2(`+ 1))!

(2.4.54)

as H,R,N → ∞. The second case of (2.2.10) being established, the proof of

Proposition (2.2.2) is complete.
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2.5 Proof of Proposition 2.2.3

2.5.1 Auxiliary lemmas

To prove Proposition 2.2.3, we will use the following lemmas.

Lemma 2.5.1. Fix integers q and a with (q, a) = 1. There is a constant

c(q, a) > 0, depending only on q and a, such that

∏
p6x

p≡a mod q

(
1− 1

p

)
∼ c(q, a)

(log x)1/φ(q)

as x→∞.

Proof. This follows from the prime number theorem for arithmetic progressions.

For a more precise estimate, with the constant c(q, a) given explicitly, see [35,

Theorem 1].

Lemma 2.5.2. Let S (x) denote the set of positive integers which are 6 x and

composed only of primes p ≡ 1 mod q. There is a constant c(q) > 0, depending

only on q, such that

|S (x)| =
(
c(q) +O

(
1

log x

))
x

log x
(log x)1/φ(q).

Proof. See [32, Lemma 3], in which the constant c(q) is given explicitly.

The next lemma concerns Ψ(x, y), the number of positive integers which are

6 x and free of prime factors > y (y-smooth numbers). The ratio Ψ(x, y)/x

depends essentially on u = log x/ log y, and for u in a certain range is approxi-

mated by ρ(u), where ρ(u) is the Dickman-de Bruijn ρ-function, defined as the
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continuous solution to

ρ(u) =


1 0 6 u 6 1,

1
u

∫ u
u−1

ρ(t) dt u > 1.

(2.5.1)

Lemma 2.5.3. The estimate

Ψ(yu, y)

yu
= ρ(u)

(
1 +O

(
log(u+ 2)

log y

))
(2.5.2)

holds uniformly in the range

y > 3, 1 6 u 6 exp
(
(log y)3/5−δ) , (2.5.3)

where δ is any fixed positive number. The estimate

ρ(u) = exp (−u log u− u log log u+O(u)) (2.5.4)

holds for u > 3, and

Ψ(yu, y)

yu
= exp (−u log u− u log log u+O(u)) (2.5.5)

holds uniformly in the range

3 < u 6 y1−δ. (2.5.6)

Finally, as y →∞,

Ψ(y, (log y)A)

y
=

1

y1/A+o(1)
(2.5.7)
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holds for any fixed number A > 1.

Proof. We refer to the survey article of Granville [23]. The asymptotic (2.5.2)

was shown to hold for the range (2.5.3) by Hildebrand [27]: see [23, (1.8),

(1.10)]. Hildebrand [27] also established that the less precise estimate

Ψ(yu, y)

yu
= ρ(u) exp

(
Oδ

(
u exp

(
−(log u)3/5−δ)))

holds, for any fixed number δ > 0, in the wider range (2.5.6) (see [23, (1.11),

(1.13)]). That (2.5.5) holds in the same range can be deduced from (2.5.4).

(The estimate (2.5.5) is less precise, but sufficient for our purposes.) For the

estimate (2.5.7), see [23, (1.14)].

The value of the Dickman-de Bruijn ρ-function is discussed in [23, 3.7 – 3.9],

and (2.5.4) was proved by de Bruijn in [8].

Lemma 2.5.4. Let P be a subset of the primes. As y →∞, the estimate

∏
p6y
p∈P

(
1− 1

p

) ∑
n>yu

p|n⇒p6y
p∈P

1

n
6 (1 + o(1))e−γ

∫ ∞
u

ρ(v) dv. (2.5.8)

holds uniformly for u satisfying

u > 1, u = exp
(
(log y)3/5−δ) , (2.5.9)

where δ is any fixed positive number.

Proof. Define

%(x, y; P) =
∏
p6y
p∈P

(
1− 1

p

) ∑
n6x

p|n⇒p6y
p∈P

1

n
.
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If ` 6 y is prime, then

%(x, y; P) =
∏
p6y

p∈P∪{`}

(
1− 1

p

)
·
(

1− 1

`

)−1 ∑
n6x

p|n⇒p6y
p∈P

1

n
.

Now

(
1− 1

`

)−1 ∑
n6x

p|n⇒p6y
p∈P

1

n
=

(
1 +

1

`
+

1

`2
+ · · ·

) ∑
n6x

p|n⇒p6y
p∈P

1

n
>

∑
m6x

p|m⇒p6y
p∈P∪{`}

1

m
,

because every m appearing in the last sum may be written as n`α for some

α > 0 and some n appearing in the second last sum. Hence,

%(x, y; P) > %(x, y; P ∪ {`}),

and applying this inequality repeatedly, we obtain

%(x, y; P) >
∏
p6y

(
1− 1

p

) ∑
n6x

p|n⇒p6y

1

n
.

Subtracting both sides from %(∞, y; P) = 1 = %(∞, y; {p 6 y}), we deduce

that

∏
p6y
p∈P

(
1− 1

p

) ∑
n>x

p|n⇒p6y
p∈P

1

n
6
∏
p6y

(
1− 1

p

) ∑
n>x

p|n⇒p6y

1

n
. (2.5.10)
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By partial summation,

∑
n>x

p|n⇒p6y

1

n
=

∫ ∞
x

dΨ(t, y)

t
= −Ψ(x, y)

x
+

∫ ∞
x

Ψ(t, y)

t2
dt

6
∫ ∞
x

Ψ(t, y)

t2
dt.

(2.5.11)

Now we assume x = yu, with u satisfying (2.5.9) and y tending to infinity.

We will divide the range of the last integral in (2.5.11) into three parts. First

of all, fix any ε ∈ (0, 1) and suppose t > exp(yε), that is y 6 (log t)1/ε. By

(2.5.7) we have

Ψ(t, y)

t2
6

Ψ(t, (log t)1/ε)

t2
=

1

t1+ε+o(1)

as t, and hence as y, tends to infinity. Thus, we may suppose y is large enough

so that Ψ(t, y)/t2 6 1/t1+ε/2, say, and

∫ ∞
exp(yε)

Ψ(t, y)

t2
dt 6

∫ ∞
exp(yε)

dt

t1+ε/2
=

2

ε exp (εyε/2)
. (2.5.12)

For the range x 6 t 6 exp(yε), the substitution t = yv yields

∫ exp(yε)

x

Ψ(t, y)

t2
dt = log y

∫ yε/ log y

u

Ψ(yv, y)

yv
dv. (2.5.13)

Next, we let u1 = 2 exp
(
(log y)3/5−δ), and for u1 6 v 6 yε, we use the estimate

(2.5.5):

Ψ(yv, y)

yv
= exp (−v log v − v log log v +O(v)) 6

1

vv
,

where the last inequality holds for all sufficiently large v, hence for all suffi-
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ciently large y. Thus

∫ yε/ log y

u1

Ψ(yv, y)

yv
dv 6

∫ ∞
u1

dv

vv
� 1

uu1
1

(2.5.14)

for all sufficiently large y.

For u 6 v 6 u1, we use the estimate (2.5.2):

∫ u1

u

Ψ(yv, y)

yv
dv =

∫ u1

u

ρ(v)

(
1 +O

(
log(v + 2)

log y

))
dv

= (1 + o(1))

∫ ∞
u

ρ(v) dv − (1 + o(1))

∫ ∞
u1

ρ(v) dv.

(2.5.15)

By (2.5.4) we have, similarly to (2.5.12), the estimate

∫ ∞
u1

ρ(v) dv 6
∫ ∞
u1

dv

vv
� 1

uu1
1

(2.5.16)

for all sufficiently large y.

Combining (2.5.11) – (2.5.16), we see that

∫ ∞
x

Ψ(t, y)

t2
dt = (1 + o(1)) log y

∫ ∞
u

ρ(v) dv +O
(
u−u1

1 log y
)

(2.5.17)

for all sufficiently large y. Now by definition (2.5.1),

∫ ∞
u

ρ(v) dv >
∫ u+1

u

ρ(v) dv = (u+ 1)ρ(u+ 1),

and by (2.5.4), u−u1
1 = o((u + 1)ρ(u + 1)) as u1 > 2u, and u1 tends to infinity

with y. Therefore, combining (2.5.17) with (2.5.11) in fact gives

∑
n>yu

p|n⇒p6y

1

n
6 (1 + o(1)) log y

∫ ∞
u

ρ(v) dv (2.5.18)
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as y →∞, for u in the range (2.5.9). Finally, combining (2.5.18) with (2.5.10)

and applying Mertens’ theorem, we obtain (2.5.8).

2.5.2 The proof of Proposition 2.2.3

We are now ready to define Q explicitly. The construction is modelled on

that of Shiu’s [32]. For the rest of this section we let q > 3 and a be integers

with (q, a) = 1. If a ≡ 1 mod q, let

P(H) := {p 6 logH : p ≡ 1 mod q} ∪ {p 6 H/(logH)2 : p 6≡ 1 mod q},

otherwise let

P(H) := {p 6 logH : p ≡ 1 mod q}

∪ {p 6 H/(logH)2 : p 6≡ 1, a mod q}

∪ {t(H) 6 p 6 H/(logH)2 : p ≡ 1 mod q}

∪ {p 6 H/t(H) : p ≡ a mod q},

with

t(H) := exp

(
logH log log logH

2 log logH

)
,

and put

Q̃(H) := q
∏

p∈P(H)

p, Q = Q(H) := q
∏

p∈P(H)
p 6=p0

p. (2.5.19)

We check that (2.2.2) – (2.2.5) are indeed satisfied by Q: only (2.2.4) is not

immediate, but it follows from the prime number theorem.
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Analogously to (2.2.11), we define

S̃(H) := {h ∈ (0, H] : (Q̃(H), h) = 1 and h ≡ a mod q},

T̃ (H) := {h ∈ (0, H] : (Q̃(H), h) = 1 and h 6≡ a mod q}.

Proposition 2.2.3 will follow from the next lemma.

Lemma 2.5.5. Let H be a real parameter tending to infinity, and let Q̃(H) be

as in (2.5.19). We have

|T̃ (H)| � H

logH
. (2.5.20)

Moreover, there is a constant A = A(q), depending on q at most, such that for

all sufficiently large X, there is some H satisfying

X

(logX)A
6 H 6 X, (2.5.21)

such that

|S̃(H)| �q H
φ(Q̃(H))

Q̃(H)
. (2.5.22)

The implied constant in (2.5.20) is absolute, and that in (2.5.22) depends on q

at most.

Proof of Proposition 2.2.3. Let S(H) and T (H) be as in (2.2.11). If p0 6= 1

then by (2.2.1) there are at most H/p0 < H/ logH multiples of p0 in T (H), so

|T (H)| � H

logH
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by (2.5.20). We also have |S(H)| > |S̃(H)|. An application of Lemma 2.5.1

reveals that, as H →∞,

φ(Q̃(H))

Q̃(H)
=

∏
p∈P(H)

(
1− 1

p

)
∼


e−γ

logH

(
logH

log logH

)1/φ(q)

if a ≡ 1 mod q,

e−γ

logH

(
log t(H)
log logH

)1/φ(q)

if a 6≡ 1 mod q.

Therefore, in either case, combining (2.5.20) and (2.5.22) gives

|S(H)| − |T (H)| � |S̃(H)| − |T̃ (H)| �q H
φ(Q̃(H))

Q̃(H)
� H

φ(Q(H))

Q(H)
.

Proposition 2.2.3 now follows from Lemma 2.5.5.

Proof of Lemma 2.5.5. There are � H/ logH primes in T̃ (H), so let us count

the composites h ∈ T̃ (H). If h = pm for some prime p > H/(logH)2,

with m > 1, then m < (logH)2 is composed only of primes > logH and

≡ 1 mod q, by the construction of P(H). Thus, m must be prime itself,

and p 6 H/ logH. We partition (H/(logH)2, H/ logH] into sub-intervals

Il = (el−1H/(logH)2, elH/(logH)2], and (logH, (logH)2] into sub-intervals

Jl = (logH, (logH)2/el], 1 6 l 6 log logH, and using the prime number

theorem, we deduce that the contribution from elements with a prime factor

> H/(logH)2 is at most

∑
16l6log logH

∑
p∈Il

p6≡1 mod q

∑
p′∈Jl

p′≡1 mod q

1�
∑

16l6log logH

elH

(logH)3

(logH)2

el log logH
� H

logH
.

In the case a ≡ 1 mod q, then any h in T̃ (H) must be divisible by a prime

p 6≡ 1 mod q, and such a prime p must satisfy p > H/(logH)2 by construction

of P(H). Therefore we have counted all of the elements of T̃ (H), and we have
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(2.5.20).

There are other elements to count in the case a 6≡ 1 mod q. If h ∈ T̃ (H) and

h = pm with p ≡ a mod q, then p > H/t(H), and m < t(H) must be composed

only of primes ≡ 1 mod q, a contradiction as h 6≡ a mod q. The only elements

we have not counted must therefore be composed only of primes p ≡ 1 mod q

with logH < p < t(H). By (2.5.5), the number of such elements is at most

Ψ(H, t(H)) = H exp (−u log u− u log log u+O(u)) ,

where

u =
logH

log t(H)
=

2 log logH

log log logH
.

Thus

u log u+ u log log u+O(u) ∼ u log u ∼ 2 log logH,

and so

Ψ(H, t(H))� H

logH
.

Combining these estimates, we see that (2.5.20) also holds in the case

a 6≡ 1 mod q.

Now suppose H is in the range (2.5.21). To bound the size of S̃(H) from

below we will first do the same for

S ′(X) = {h ∈ (0, X] : (Q′(X), h) = 1 and h ≡ a mod q},

where

Q′(X) = q
∏

p∈P′(X)

p, P ′(X) = P(X) \ {p 6 logX : p ≡ 1 mod q}.
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In the case a ≡ 1 mod q, S ′(X) contains any positive integer m 6 X which

is composed only of primes ≡ 1 mod q, that is S ′(X) ⊇ S (X). Therefore by

Lemma 2.5.2,

|S ′(X)| > |S (X)| �q
X

logX
(logX)1/φ(q). (2.5.23)

In the case a 6≡ 1 mod q, pm ∈ S ′(X) if X/t(X) < p ≡ a mod q and

m ∈ S (X/p). We partition (X/t(X), X] into sub-intervals

Il = (el−1X/t(X), elX/t(X)], 1 6 l 6 log t(X),

and deduce, using the prime number theorem for arithmetic progressions and

Lemma 2.5.2, that

|S ′(X)| >
∑

16l6log t(X)

∑
p∈Il

p≡a mod q

∑
m∈S (t(X)/el)

1

�q

∑
16l6 1

2
log t(X)

elX

t(X) logX
· t(X)

el log t(X)
(log t(X))1/φ(q)

� X

logX
(log t(X))1/φ(q).

(2.5.24)

In either case, we may write any h ∈ S ′(X) uniquely as h = dm, where d is

composed only of primes p 6 logX with p ≡ 1 mod q, and m ∈ S̃(X). Thus,

in the case a ≡ 1 mod q, by (2.5.23) there is a constant c1(q) > 0, depending

on q at most, such that for all sufficiently large X,
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c1(q)
X

logX
(logX)1/φ(q) 6 |S ′(X)| =

∑
d6X

p|d⇒p6logX
p≡1 mod q

∑
m6X/d
m∈S̃(X)

1

6
∑
d6X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)|.
(2.5.25)

The inequality on the right is not immediate: in fact if Z 6 X, then

S̃(X) ∩ (0, Z] ⊆ S̃(Z). To see this, first note that as all of the functions

used to define P(X) are monotonically increasing with X,

P(Z) ⊆P(X) ∪ {t(Z) 6 p 6 t(X) : p ≡ 1 mod q}.

Suppose m ∈ S̃(X) ∩ (0, Z], but m 6∈ S̃(Z). Then p ∈ P(Z) for some p | m,

but p 6∈P(X), so t(Z) 6 p 6 t(X) and p ≡ 1 mod q. Since m ≡ a 6≡ 1 mod q,

there must be some p′ | m with p′ 6≡ 1 mod q and

p′ 6 m/p 6 Z/t(Z) 6 X/t(X).

Then p′ ∈P(X), a contradiction.

Similarly, in the case a 6≡ 1 mod q, by (2.5.24) there is a constant c1(q) > 0,

depending on q at most, such that for all sufficiently large X, we have

c1(q)
X

logX
(log t(X))1/φ(q) 6 |S ′(X)| 6

∑
d6X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)|. (2.5.26)

Suppose for a contradiction that for some constant c2(q) > 0, depending on
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q at most, we have the following for all H in the range (2.5.21):

|S̃(H)| 6 c1(q)

3c2(q)

H

logX

(
logX

log logX

)1/φ(q)

in the case a ≡ 1 mod q, and

|S̃(H)| 6 c1(q)

3c2(q)

H

logX

(
log t(X)

log logX

)1/φ(q)

in the case a 6≡ 1 mod q. Then in the case a ≡ 1 mod q,

∑
d6(logX)A

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6 c1(q)

3c2(q)

X

logX

(
logX

log logX

)1/φ(q) ∑
d6(logX)A

p|d⇒p6logX
p≡1 mod q

1

d

6
c1(q)

3c2(q)

X

logX

(
logX

log logX

)1/φ(q) ∏
p6logX
p≡1 mod q

(
1− 1

p

)−1

6
c1(q)

3

X

logX
(logX)1/φ(q) ,

(2.5.27)

provided X is sufficiently large, and for a suitable choice of c2(q) (given by

Lemma 2.5.1). Similarly, in the case a 6≡ 1 mod q,

∑
d6(logX)A

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6 c1(q)

3

X

logX
(log t(X))1/φ(q) .

(2.5.28)

Now, by the fundamental lemma of Brun’s sieve [24, Chapter 2, Section 8],

we have

|S̃(X/d)| � X

d

∏
p∈P(X/d)

(
1− 1

p

)
(2.5.29)
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for any d. If (logX)A < d 6
√
X, then log(X/d) � logX, and applying

Lemma 2.5.1 to the sieve upper bound (2.5.29), we see that for some constant

c3(q) > 0,

∑
(logX)A<d6

√
X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6 c3(q)
X

logX

(
logX

log logX

)1/φ(q) ∑
(logX)A<d6

√
X

p|d⇒p6logX
p≡1 mod q

1

d

(2.5.30)

in the case a ≡ 1 mod q, and

∑
(logX)A<d6

√
X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6 c3(q)
X

logX

(
log t(X)

log logX

)1/φ(q) ∑
(logX)A<d6

√
X

p|d⇒p6logX
p≡1 mod q

1

d

(2.5.31)

in the case a 6≡ 1 mod q.

By lemmas 2.5.4 and 2.5.1 respectively, we have

∑
(logX)A<d6

√
X

p|d⇒p6logX
p≡1 mod q

1

d
6

∏
p6logX
p≡1 mod q

(
1− 1

p

)−1

(1 + o(1))e−γ
∫ ∞
A

ρ(v) dv

6 c4(q)(log logX)1/φ(q)

∫ ∞
A

ρ(v) dv

(2.5.32)

for some constant c4(q) > 0. Now by (2.5.4),

∫ ∞
A

ρ(v) dv → 0 as A→∞,

so we may choose A = A(c1(q), c3(q), c4(q)) = A(q) so that
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∫ ∞
A

ρ(v) dv 6
c1(q)

4c3(q)c4(q)
.

For any such A, combining (2.5.30) (respectively (2.5.31)) with (2.5.32) yields

∑
(logX)A<d6

√
X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6 c1(q)

4

X

logX
(logX)1/φ(q) (2.5.33)

in the case a ≡ 1 mod q, and

∑
(logX)A<d6

√
X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6 c1(q)

4

X

logX
(log t(X))1/φ(q) (2.5.34)

in the case a 6≡ 1 mod q.

Finally, using Rankin’s trick, we see that

∑
√
X<d6X

p|d⇒p6logX
p≡1 mod q

|S̃(X/d)| 6
∑

√
X<d6X

p|d⇒p6logX

X

d

(
d√
X

)1/3

6 X5/6
∏

p6logX

(
1− 1

p2/3

)−1

6 X5/6 exp

( ∑
p6logX

3

p2/3

)
6 X5/6 exp

(
9(logX)1/3

)
= X5/6+o(1)

(2.5.35)

by the prime number theorem.

Combining (2.5.25), (2.5.27) and (2.5.33) (respectively (2.5.26), (2.5.28) and

(2.5.34)) with (2.5.35), we obtain c1(q) 6 2c1(q)/3, which is absurd. We con-

clude that for all sufficiently large X, there is some H in the range (2.5.21) for
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which

|S̃(H)| �q
H

logX

(
logX

log logX

)1/φ(q)

� H

logH

(
logX

log logH

)1/φ(q)

.

in the case a ≡ 1 mod q, and

|S̃(H)| �q
H

logX

(
log t(X)

log logX

)1/φ(q)

� H

logH

(
log t(H)

log logH

)1/φ(q)

in the case a 6≡ 1 mod q. In either case, a final application of Lemma 2.5.1

shows that this is � Hφ(Q̃(H))/Q̃(H).

We remark that replacing (logX)A by
√
X in the above proof establishes

the same result for some H ∈ [
√
X,X] and all sufficiently large X, without

appealing to Lemma 2.5.4. However, a sharper range for H is important when

it comes to obtaining a quantitative result, as we will see in Section 2.7.

2.6 Longer strings of congruent primes

In this section we will show that for any given integers q > 3 and a with

(q, a) = 1, and ν > 1, there exist infinitely many strings of ν + 1 consecutive

primes pn ≡ · · · ≡ pν ≡ a mod q. However, we only show that these strings

satisfy pn+ν−pn < c(q)(ν−1+ ε) log pn, for some constant c(q) > 0, depending

only on q.

We fix integers ν > 1, q > 3 and a with (q, a) = 1, and we let H be a real

parameter tending monotonically to infinity. We let P(H), Q̃(H), S̃(H) and

T̃ (H) be as defined in Section 2.5. By Lemma 2.5.5, we have

|T̃ (H)| � H

logH
(2.6.1)
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for all sufficiently large H. We let c′(q) be the constant implied by �q in

(2.5.22). Thus, for all sufficiently large X, there exist a constant A = A(q)

such that

|S̃(H)| > c′(q)H
∏

p∈P(H)

(
1− 1

p

)
(2.6.2)

for some H satisfying X(logX)−A 6 H 6 X. As noted in Section 2.5, Lemma

2.5.1 implies that

∏
p∈P(H)

(
1− 1

p

)
∼


e−γ

logH

(
logH

log logH

)1/φ(q)

if a ≡ 1 mod q,

e−γ

logH

(
log t(H)
log logH

)1/φ(q)

if a 6≡ 1 mod q,

(2.6.3)

as H →∞. We conclude from (2.6.1) – (2.6.3) that for all sufficiently large X,

we have

|S̃(H)| − ν|T̃ (H)| > (1− o(1))c′(q)H
∏

p∈P(H)

(
1− 1

p

)
(2.6.4)

for some H ∈ [X(logX)−A, X].

We fix an ε > 0 and define

N := exp
(

c′(q)H
(ν−1+ε)

)
,

so that

c′(q)H = (ν − 1 + ε) logN. (2.6.5)
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If there is an exceptional modulus

q0 := q0(H) 6 exp

(
c′(q)H

(ν−1+ε)

(
log
(

c′(q)H
(ν−1+ε)

))−2
)

= N1/(log logN)2 ,

let p0 := p0(H) be its greatest prime factor; otherwise let p0 = 1. Just as

in Section 2.2, one can show that p0 > logH if p0 6= 1. Thus, letting S =

S(H) and T = T (H) be as in Section 2.5, we have |T (H)| � H/ logH and

|S(H)| > |S̃(H)|. Therefore, by (2.6.4), for all sufficiently large X there is

some H ∈ [X(logX)−A, X] such that

|S(H)| − ν|T (H)| > |S̃(H)| − ν|T (H)|

> (1− o(1))c′(q)H
∏

p∈P(H)

(
1− 1

p

)

= (1− o(1))c′(q)H
∏
p|p0

(
1− 1

p0

) ∏
p∈P(H)
p 6=p0

(
1− 1

p

)

= (1− o(1))c′(q)H
∏

p∈P(H)
p 6=p0

(
1− 1

p

)
.

In particular, letting

Q = Q(H) = q
∏

p∈P(H)
p 6=p0

p

as in Section 2.5, so that

φ(Q)

Q
=

∏
p∈P(H)
p 6=p0

(
1− 1

p

)
,
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we have

Q

φ(Q)

|S| − ν |T |
logN

> (1− o(1))(ν − 1 + ε) (2.6.6)

for some H ∈ [X(logX)−A, X] and all sufficiently large X, by (2.6.5).

Next, we fix an ε′ ∈ (0, 1/4) such that ε′ 6 ε/10, and we choose integers

k > 2 and ` = [
√
k] large enough so that

k

k + 2`+ 1

2(2`+ 1)

`+ 1

(
1

4
− ε′

)
> 1− 5ε′ > 1− ε/2. (2.6.7)

Let H := {Qx + h1, . . . , Qx + hk} be a k-tuple of distinct linear forms with

hi ∈ [1, H] ∩ a mod q for each i, let R := N1/4−ε′ , and consider

Lν :=

1

N

∑
N<n62N

(∑
h∈S

ϑ(Qn+ h)− ν
∑
h∈T

ϑ(Qn+ h)− ν log 3QN

)
ΛR(n;H, k + `)2,

where ΛR(n;H, j) is as defined in (2.2.7).

We are in precisely the same situation as Proposition 2.2.2, except we have

changed the definition of N in an inessential way. In fact, to prove Propo-

sition 2.2.2 for our new N , we only have to replace each occurrence of ε by

(ν − 1 + ε)/c′(q) in (2.4.48) – (2.4.49). Therefore we may apply the estimates

(2.2.9) and (2.2.10) to Lν : we find that

Lν =

(
2`

`

)
(logR)k+2`

(k + 2`)!
(logN)

×
{

Q

φ(Q)

|S| − ν |T |
logN

+
2(2`+ 1)

`+ 1

k

k + 2`+ 1

(
1

4
− ε′

)
− (ν + o(1))

}
.
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By (2.6.6) and (2.6.7), the expression {· · · } is > ε/2− o(1), and hence

Lν �k ε(logN)k+2`+1, (2.6.8)

for some H ∈ [X(logX)−A, X] and all sufficiently large X.

Thus Lν > 0 for a sequence of values H, equivalently N , tending to infinity.

Choose such an N , and for n ∈ (N, 2N ], consider

An := {p ∈ (Qn,Qn+H] : p ≡ a mod q} = {p : p = Qn+ h, h ∈ S},

Bn := {p ∈ (Qn,Qn+H] : p 6≡ a mod q} = {p : p = Qn+ h, h ∈ T}.

Since Lν > 0, there must be some n ∈ (N, 2N ] such that

|An| log(Qn+H) >
∑
h∈S

ϑ(Qn+ h)

> ν
∑
h∈T

ϑ(Qn+ h) + ν log 3QN

> ν |Bn| logQn+ ν log 3QN.

Now

|An| log (1 +H/Qn) 6 |An|H/Qn 6 H2/QN < log(3/2)

if N is sufficiently large, and so

log(3/2) + (|An| − ν |Bn|) logQn > ν log 3QN

and hence, as n 6 2N , |An| − ν |Bn| > ν. But as these are integers,

|An| > ν |Bn|+ ν + 1,
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and so, by the pigeonhole principle, An contains a string of ν + 1 consecutive

primes pr, . . . , pr+ν . These primes satisfy

pr+ν − pr < H < 1
c′(q)

(ν − 1 + ε) logQN < c(q)(ν − 1 + ε) log pr,

where c(q) = 1/c′(q).

As we have not made the constant c(q) explicit, we do not know whether

these prime strings are contained in short intervals, that is whether

pr+ν − pr < φ(q)(ν − 1 + ε) log pr.

However, Proposition 2.2.2 is similar to a special case of Propositions 1 and 2

of [19], which are used to prove that for a given ν > 1,

lim inf
r→∞

p′r+ν − p′r
φ(q) log p′r

6 e−γ(
√
ν − 1)2,

where p′1 < p′2 < · · · is sequence of all primes in the arithmetic progression

a mod q, (q, a) = 1. It may be feasible to prove a similar result for prime strings,

that is to replace c(q)(ν−1+ε), above, by something like φ(q)(e−γ(
√
ν−1)2+ε).

2.7 The proof of Theorem 2

Let us continue with the notation and hypotheses of Section 2.5. We will

first show that the estimate

∑
N<n62N

Λ(n;H, k + `)4 � N(logN)19k+4` (2.7.1)
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holds, with an absolute implied constant. For by (2.4.36) and (2.4.37),

∑
N<n62N

Λ(n;H, k + `)4

=
∑′

d1,d2,d3,d4

λd1λd2λd3λd4
∑

N<n62N
[d1,d2,d3,d4]|P (n;H)

1

=
∑′

d1,d2,d3,d4

λd1λd2λd3λd4
∑

m mod [d1,d2,d3,d4]
∈Ω([d1,d2,d3,d4])

∑
N<n62N

n≡m mod [d1,d2,d3,d4]

1

6
∑

d1,d2,d3,d4
squarefree

|λd1λd2λd3λd4|
∑

m mod [d1,d2,d3,d4]
∈Ω([d1,d2,d3,d4])

(
N

[d1, d2, d3, d4]
+O(1)

)

� N(logR)4(k+`)
∑

d1,d2,d3,d46R
squarefree

|Ω([d1, d2, d3, d4])|
[d1, d2, d3, d4]

.

(2.7.2)

To see the last inequality, note that [d1, d2, d3, d4] 6 R4 = N1−4ε′ = o(N), and

so N/[d1, d2, d3, d4] + O(1) � N/[d1, d2, d3, d4], and also that λd � (logR)k+`

by (2.4.36).

As observed in Section 2.4, |Ω(d)| 6 kω(d) for squarefree d, and if D is

squarefree then
∑

[d1,d2,d3,d4]=D 1 = 15ω(D), so

∑
d1,d2,d3,d46R

squarefree

|Ω([d1, d2, d3, d4])|
[d1, d2, d3, d4]

6
∑
D6R4

µ2(D)kω(D)

D

∑
d1,d2,d3,d4

[d1,d2,d3,d4]=D

1

=
∑
D6R4

µ2(D)(15k)ω(D)

D
6
∏
p6R4

(
1 +

15k

p

)
�k (logR4)15k.

(2.7.3)

Since R4 < N , combining (2.7.2) and (2.7.3) yields (2.7.1).

Now we choose H and N := exp
(
H
ε

)
so that (2.3.2) holds. If we restrict the
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outer sum in the definition of L to those n for which (Qn,Qn+H] contains a

pair of consecutive primes pr ≡ pr+1 ≡ a mod q, we remove no positive terms.

Thus, if
∑∗ denotes this restricted sum, then

L 6
1

N

(
φ(Q)

Q

)k
×

∑∗

N<n62N

(∑
h∈S

ϑ(Qn+ h)−
∑
h∈T

ϑ(Qn+ h)− log 3QN

)
ΛR(n;H, k + `)2.

(2.7.4)

For each n ∈ (N, 2N ],

∑
h∈S

ϑ(Qn+ h)−
∑
h∈T

ϑ(Qn+ h)− log 3QN 6 H log 3QN, (2.7.5)

and by the Cauchy-Schwartz inequality,

( ∑∗

N<n62N

ΛR(n;H, k + `)2

)2

6

( ∑∗

N<n62N

1

)( ∑
N<n62N

ΛR(n;H, k + `)4

)
.

(2.7.6)

Combining (2.7.4) – (2.7.6) yields

∑∗

N<n62N

1 > N2(Q/φ(Q))2kL 2(H log 3QN)−2

( ∑
N<n62N

ΛR(n;H, k + `)4

)−1

.

Using H = ε logN , log 3QN = (1+o(1)) logN , and Q/φ(Q) > 1, then applying

(2.3.2) and (2.7.1), we see that

∑∗

N<n62N

1�k,q
N

(logN)17k+2
. (2.7.7)
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Now fix a sufficiently large number Y , and let

X = ε

(
1 +

2cε

(log log Y )2

)−1

log Y

with c > 0 fixed. We choose some H in the range

X/(logX)A 6 H 6 X

so that (2.3.2), and hence (2.7.7), holds with N = exp (H/ε). By (2.2.4),

3QN 6 exp

(
H

ε
+

cH

(logH)2

)
6 Y,

because

H

ε
+

cH

(logH)2
=
H

ε

(
1 +

cε

(logH)2

)
6
X

ε

(
1 +

2cε

(log log Y )2

)
= log Y.

Here we have used logH = (1 + o(1)) logX = (1 + o(1)) log log Y . Also,

logN = H/ε > X/ε(logX)A > log Y/2(log log Y )A.

Therefore, using (2.7.7) as a lower bound for the number of pairs of consecutive

primes up to Y , we deduce that

∑
pr+16Y

pr≡pr+1≡a mod q
pr+1−pr<ε log pr

1 >
∑

pr+163QN
pr≡pr+1≡a mod q
pr+1−pr<ε log pr

1 >
∑∗

N<n62N

1 > N1−o(1)

> Y 1/3(log log Y )A .

What we are counting here is the number of n such that Qn+ h 6 3QN 6 Y
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and the interval (Qn,Qn + H] contains a pair of consecutive primes. Since

Qn+H < Q(n+ 1), these intervals are disjoint and we do not count any prime

pair twice. This completes the proof of Theorem 2.

At best, we may have H = X, in which case

logN =
H

ε
=
X

ε
=

(
1 +

2cε

(log log Y )2

)−1

log Y

>

(
1− 2cε

(log log Y )2

)
log Y.

Then

∑
pr+16Y

pr≡pr+1≡a mod q
pr+1−pr<ε log pr

1 >
∑∗

N<n62N

1 > N1−o(1) > Y 1−c′/(log log Y )2 ,

for some constant c′ > 0.

2.8 Some remarks on the proof of Theorem 1

The so-called singular series for a k-tuple H is defined as

S(H) :=
∏
p

(
1− |Ω(p)|

p

)(
1− 1

p

)−k
. (2.8.1)

IfH = {Qx+h1, . . . , Qx+hk} is admissible, we have S(H) = (Q/φ(Q))kS′(H),

where S′(H) was defined in (2.4.14). In the proof of Lemma 2.4.3, we showed

that S′(H) ∼ 1, hence

S(H) ∼
(

Q

φ(Q)

)k
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as H →∞, provided Q satisfies (2.2.2) and (2.2.3). We then had

G(0, 0; Ω) = S(H)
∏
p|p0

(
1− |Ω(p)|

p

)−1

∼ S(H)

and

G+(0, 0; Ω+) =

(
φ(Q)

Q

)
S(H+)

∏
p|p0

(
1− |Ω

+(p)| − 1

p− 1

)−1

∼
(
φ(Q)

Q

)
S(H+).

If we drop the assumption that Q satisfies (2.2.3), Proposition 2.2.2 still holds

if we replace (Q/φ(Q))k by S(H), (Q/φ(Q))k+1 by S(H+), and assume H and

H+ are admissible. (See Proposition 3.2.2 for instance.)

Let us suppose that Q satisfies (2.2.2), (2.2.4) and (2.2.5), but not nec-

essarily (2.2.3). As we saw in the proof of Lemma 2.5.5, the fact that Q

was divisible by all small primes p 6 logH prevented us from proving that

|S| − |T | �q H(φ(Q)/Q) for all sufficiently large H, rather than just for some

H ∈ [X/(logX)A, X] and all sufficiently large X. With a view towards im-

proving the lower bound in Theorem 2, we might consider

L :=

1

N

∑
N<n62N

(∑
h∈S

ϑ(Qn+ h)−
∑
h∈T

ϑ(Qn+ h)− log 3QN

)
ΛR(n;H, k + `)2.

We could show that if H = {Qx+h1, . . . , Qx+hk} is admissible and such that



2. Proof of Theorem 1 and Theorem 2 83

hi ∈ [1, H] ∩ a mod q for each i, then

L =

(
2`

`

)
(logR)k+2`

(k + 2`)!
(logN)

×

{
1

logN

∑
h∈S

Qx+h6∈H

S(H+)− 1

logN

∑
h∈T

S(H+)

− k

k + 2`+ 1

2(2`+ 1)

`+ 1

(
1

4
− ε′

)
S(H)− (1 + o(1)S(H)

}
,

where H+ is short for H ∪ {Qx + h} in the first two sums. This is pre-

cisely what we had in Section 2.3, except there we had S(H) ∼ (Q/φ(Q))k

and S(H+) ∼ (Q/φ(Q))k+1. (Here we also have to consider h for which H+

is not admissible, but such h only give rise to error terms, corresponding to

G(0, 0) = G+(0, 0; Ω+) = 0 in Lemma 2.4.4.)

Now let Ak denote the set of all k-tuples of the form {Qx+h1, . . . , Qx+hk},

with hi ∈ [1, H] ∩ a mod q for each i. We might consider

∑
H∈Ak

L =

(
2`

`

)
(logR)k+2`

(k + 2`)!

×

{
1

logN

∑
H∈Ak

∑
h∈S

Qx+h6∈H

S(H+)− 1

logN

∑
H∈Ak

∑
h∈T

S(H+)

−
(

k

k + 2`+ 1

2(2`+ 1)

`+ 1

(
1

4
− ε′

)
− (1 + o(1)

) ∑
H∈Ak

S(H)

}
.

If the expression {· · · } were positive for all sufficiently large H, we could deduce

that for all sufficiently largeN there is someH such that L is positive. However

we will sketch a proof that {· · · } is negative for all sufficiently large H, that is∑
H∈Ak

L is negative for all sufficiently large N .
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Now since S(H+) = S(H ∪ {Qx+ h}) = 0 if (Q, h) 6= 1, we have

∑
H∈Ak

∑
h∈S

Qx+h6∈H

S(H+) =
∑
H∈Ak

∑
16h6H

h≡a mod q
Qx+h6∈H

S(H+)

=

(
Q

φ(Q)

)k+1 ∑
H∈Ak

∑
16h6H

h≡a mod q
Qx+h6∈H

S′(H+)

=

(
Q

φ(Q)

)k+1

(k + 1)
∑
H∈Ak+1

S′(H).

Similarly, letting A (b)
k denote the set of all k-tuples of the form

{Qx+ h1, . . . , Qx+ hk},

with hj ∈ [1, H] ∩ b mod q for precisely one j, and hi ∈ [1, H] ∩ a mod q for

every other i, we have

∑
H∈Ak

∑
h∈T

S(H+) =
∑
H∈Ak

∑
b 6≡a mod q

(q,b)=1

∑
16h6H
h≡b mod q
Qx+h6∈H

S(H+)

=

(
Q

φ(Q)

)k+1 ∑
b 6≡a mod q

(q,b)=1

∑
H∈A

(b)
k+1

S′(H).

We have now lost all information about S and T . It is possible to show that

∑
H∈Ak+1

S′(H) ∼ 1

(k + 1)!

(
H

φ(q)

)k+1

,
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and that for (q, b) = 1, b 6≡ a mod q,

∑
H∈A

(b)
k+1

S′(H) ∼ 1

k!

(
H

φ(q)

)k+1

.

Combining all of this yields

k!

(
φ(q)φ(Q)

HQ

)k ∑
H∈Ak

L

=

(
2`

`

)
(logR)k+2`

(k + 2`)!
(logN)

{
QH

φ(q)φ(Q) logN
(1− (φ(q)− 1))

− k

k + 2`+ 1

2(2`+ 1)

`+ 1

(
1

4
− ε′

)
− (1 + o(1)

}
.

This goes to show how atypical our choices for Q and H were in the proof of

Theorem 1 (and Theorem 2).



3. PROOF OF THEOREM 3 AND THEOREM 4

3.1 The idea of the proof

The proof of Theorem 3 is much simpler than that of Theorem 1. The

estimates involved are much the same; the key difference is that on the con-

ditional hypothesis of the theorem, we are able to prove the following. There

is an integer k = k(θ) such that if H = {Qx + h1, . . . , Qx + hk} is admissible,

and if Q satisfies certain conditions, then there are two or more primes among

Qn + h1, . . . , Qn + hk, for infinitely many n. We then choose H in such a

way that Qn + hi ≡ a mod q for each i, h1 < · · · < hk, and every integer in

the interval [Qn + h1, Qn + hk] is composite, except perhaps for the integers

Qn+ h1, . . . , Qn+ hk.

3.2 Preliminaries

Recall that

E∗(N, q) := max
x6N

max
(a,q)=1

∣∣∣∣∣ ∑
p6x

p≡a mod q

log p− x

φ(q)

∣∣∣∣∣.
We say that the primes have level of distribution θ if

∑
q6Nθ−ε

E∗(N, q)�A N(logN)−A (3.2.1)
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holds for any A > 0 and any ε > 0. The primes have level of distribution at

least 1/2 by the Bombieri-Vinogradov theorem (Lemma 2.4.5), and the Elliott-

Halberstam conjecture (see [16]) asserts that the primes have level of distribu-

tion 1.

In the present discussion, we let N be a real parameter tending monoton-

ically to infinity, and we set R = N θ/2−ε′ with some ε′ ∈ (0, θ/2), where θ is

the level of distribution of the primes. We let H be a real parameter satisfying

H � logN , though we do not necessarily assume H is tending to infinity: thus

H may be bounded.

We let Q be a positive integer such that

Q is composed only of primes p� logN , (3.2.2)

Q� (logN)B for some constant B > 0. (3.2.3)

As before, we let

H = {Qx+ h1, . . . , Qx+ hk}, h1, . . . , hk ∈ [1, H] ∩ Z, (3.2.4)

denote a set of distinct linear forms, P (n;H) := (Qn + h1) · · · (Qn + hk), and

we redefine

ΛR(n;H, j) :=
1

j!

∑′

d|P (n;H)
d6R

µ(d)(logR/d)j,

where
∑′ denotes summation over indices coprime with Q. Accordingly we
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redefine

G(s1, s2; Ω) :=
∏
p-Q

(
1− |Ω(p)|

p

(
1

ps1
+

1

ps2
− 1

ps1+s2

))

×
∏
p

(
1− 1

ps1+1

)−k (
1− 1

ps2+1

)−k (
1− 1

ps1+s2+1

)k

and

G+(s1, s2; Ω+) :=
∏
p-Q

(
1− |Ω

+(p)| − 1

p− 1

(
1

ps1
+

1

ps2
− 1

ps1+s2

))

×
∏
p

(
1− 1

ps1+1

)−k (
1− 1

ps2+1

)−k (
1− 1

ps1+s2+1

)k
.

(Formally, these definitions are the same as (2.2.7), (2.4.4) and (2.4.5) in the

case p0 = 1.)

Lemma 3.2.1. Let C be a positive constant. Let H and R be a real parameters

with R tending to infinity and H 6 C logR, let Q be a positive integer composed

only of primes p 6 C logR, and let H be as in (3.2.4), with k fixed. Also let

h ∈ [1, H]∩Z be such that Qx+h 6∈ H. For s1, s2 satisfying Re s1,Re s2 > −1/4,

we have

G(s1, s2; Ω), G+(s1, s2; Ω+)� exp
(
c(logR)δ1+δ2 log log logR

)
, (3.2.5)

where c is a constant depending only on k, and

δ := max(−Re si, 0), i = 1, 2.
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Moreover, we have

G(0, 0; Ω) = S(H), G+(0, 0; Ω+) =

(
φ(Q)

Q

)
S(H+). (3.2.6)

and for admissible H and H+, we have

S(H), S(H+)�k 1. (3.2.7)

Proof. Recall the discussion leading up to (2.4.7), in which we showed that

|Ω(p)| = k if p - Q∆. The prime factors of ∆ do not exceed H 6 C logR, and

the prime factors of Q do not exceed C logR. Thus, analogously to (2.4.7), we

have

p - Q∆ and |Ω(p)| = k for all p > C logR.

The proof of (3.2.5) is now identical to the proof of (2.4.8), except here we

have C logR in place of H, and we do not have to deal with p0.

Now suppose H is admissible. Then |Ω(p)| = 0 if p | Q, as we saw in the

proof of Lemma 2.4.3, hence

G(0, 0; Ω) =
∏
p-Q

(
1− |Ω(p)|

p

)∏
p

(
1− 1

p

)−k
=
∏
p

(
1− |Ω(p)|

p

)(
1− 1

p

)−k
= S(H).
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Similarly, supposing H+ is admissible, we have |Ω+(p)| = 0 when p | Q, hence

G+(0, 0; Ω+) =
∏
p-Q

(
1− |Ω

+(p)| − 1

p− 1

)∏
p

(
1− 1

p

)−k

=
∏
p|Q

(
p− 1

p

)(
1− 1

p

)−(k+1)

×
∏
p-Q

(
p− |Ω+(p)|

p− 1

)(
p− 1

p

)(
1− 1

p

)−(k+1)

=

(
φ(Q)

Q

)∏
p|Q

(
1− 1

p

)−(k+1)∏
p-Q

(
1− |Ω

+(p)|
p

)(
1− 1

p

)−(k+1)

=

(
φ(Q)

Q

)
S(H+).

Next, we have

S(H) =
∏
p6k

(
1− |Ω(p)|

p

)(
1− 1

p

)−k
×
∏
p>k

(
1− k

p

)(
1 +

k − |Ω(p)|
p− k

)(
1− 1

p

)−k
.

Now

∏
p6k

(
1− |Ω(p)|

p

)(
1− 1

p

)−k
>
∏
p6k

(
1− p− 1

p

)(
1− 1

p

)−k
�k 1,

and since p - Q∆ implies |Ω(p)| = k,

∏
p>k

(
1− k

p

)(
1− k − |Ω(p)|

p− k

)(
1− 1

p

)−k
=
∏
p>k

(
1− k

p

)(
1− 1

p

)−k ∏
p>k
p|Q∆

(
1 +

k − |Ω(p)|
p− k

)
.
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The last product is > 1 because |Ω(p)| 6 k for all p as H is admissible. Now

∑
p>k

{
log

(
1− k

p

)
− k log

(
1− 1

p

)}
=
∑
p>k

{(
−k
p
− k2

2p2
− · · ·

)
− k

(
−1

p
− 1

2p2
− · · ·

)}
= −k(k − 1)

∑
p>k

{
1

p2

(
1

2
+

1 + k

3p
+

1 + k + k2

4p2
+ · · ·

)}
� k3

∑
p>k

1

p2
� k2

log k
,

and exponentiating this we obtain

∏
p>k

(
1− k

p

)(
1 +

1

p

)−k
�k 1.

Combining yields (3.2.7) for S(H) and the case for S(H+) is the same.

Proposition 3.2.2. Suppose the primes have level of distribution θ. Let H,N

and R be real parameters with H � logN and R = N θ/2−ε′ for some

ε′ ∈ (0, θ/2). Fix integers k > 2 and ` > 1, let Q be a positive integer satisfying

(3.2.2) and (3.2.3), and let H = {Qx + h1, . . . , Qx + hk} be an admissible set

of distinct linear forms with h1, . . . , hk ∈ [1, H]∩Z. Also let h ∈ [1, H]∩Z and

suppose H+ := H ∪ {Qx+ h} is admissible. Then as N →∞, we have
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1

N

∑
N<n62N

ΛR(n;H, k + `)2 ∼ S(H)

(
2`

`

)
(logR)k+2`

(k + 2`)!
, (3.2.8)

and

1

N

∑
N<n62N

ϑ(Qn+ h)ΛR(n;H, k + `)2

∼



S(H+)

(
2`

`

)
(logR)k+2`

(k + 2`)!
if Qx+ h 6∈ H,

S(H)

(
2(`+ 1)

`+ 1

)
(logR)k+2`+1

(k + 2`+ 1)!
if Qx+ h ∈ H.

(3.2.9)

Proof. The proof is mutatis mutandis the same as the proof of Proposition

2.2.2: we have done little more than modify our assumptions on Q, and the

effect is as described in Section 2.8. We let H,N,R,Q,H and H+ be as in the

statement of the proposition, with R and N sufficiently large, except we only

assume k > 1 for now. Since H � logN � logR and Q is composed only of

primes � logN , there is a constant C such that H 6 C logR and the prime

factors of Q do not exceed C logR. Therefore (3.2.5) and (3.2.7) hold.

We note that by (3.2.6) and (3.2.7),

G(0, 0; Ω) = S(H)�k 1, (3.2.10)
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and

G+(0, 0; Ω+) =

(
φ(Q)

Q

)
S(H+)�k (log logQ)−1 � (log log logR)−1

(3.2.11)

by (3.2.3) and since logR � logN . As in the proof of Proposition 2.2.2, we

have

1

N

∑
N<n62N

ΛR(n;H, k + `)2 = NT +O(E),

where

E :=
∑′

d1,d2

|λd1λd2| · |Ω([d1, d2])| � R2(logN)5k+2` � N θ−ε′ ,

because R = N θ/2−ε′ , and

T :=
∑′

d1,d2

λd1λd2
|Ω([d1, d2])|

[d1, d2]

=
1

(2πi)2

∫
(1)

∫
(1)

G(s1, s2; Ω)

(
ζ(s1 + s2 + 1)

ζ(s1 + 1)ζ(s2 + 1)

)k
Rs1+s2

(s1s2)k+`+1
ds1ds2

= S(H)

(
2`

`

)
(logR)k+2`

(k + 2`)!

(
1 +O

(
(logR)−1/2(log logR)c

))
for all sufficiently large R, by Lemma 2.4.4 and (3.2.10). Hence (3.2.8).

Also as in the proof of Proposition 2.2.2, assuming Qx+ h 6∈ H we have

1

N

∑
N<n62N

ϑ(Qn+ h)ΛR(n;H, k + `)2 =
QT ∗

φ(Q)
+O(E∗),



3. Proof of Theorem 3 and Theorem 4 94

where

T ∗ :=
∑′

d1,d2

λd1λd2
|Ω∗([d1, d2])|
φ([d1, d2])

=
1

(2πi)2

∫
(1)

∫
(1)

G+(s1, s2; Ω+)

(
ζ(s1 + s2 + 1)

ζ(s1 + 1)ζ(s2 + 1)

)k
Rs1+s2

(s1s2)k+`+1
ds1ds2

=

(
φ(Q)

Q

)
S(H+)

(
2`

`

)
(logR)k+2`

(k + 2`)!

(
1 +O

(
(logR)−1/2(log logR)c

))
for all sufficiently large R, by Lemma 2.4.4 and (3.2.11), and

E∗ :=
∑′

d1,d2

|λd1λd2 | · |Ω∗([d1, d2])|E∗(3QN,Q[d1, d2])

�

N logN
∑
D6R2

µ2(D)(3k)2ω(D)

D

1/2∑′

D6R2

E∗(3QN,QD)

1/2

� N1/2(logN)2(k+`)+(3k)2/2+1/2

∑′

D6R2

E∗(3QN,QD)

1/2

.

Now Q 6 (logN)B by (3.2.3), so we may assume N is large enough so that

QR2 = QN θ−2ε′ 6 (3QN)θ−ε
′
.

Therefore by (3.2.1),

∑′

D6R2

E∗(3QN,QD) =
∑′

QD6QR2

E∗(3QN,QD)

6
∑

D6(3QN)θ−ε′

E∗(3QN,D)

�B,k,` QN(logN)−(B+4(k+`)+(3k)2+4)

� N(logN)−(4(k+`)+(3k)2+4)
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for all sufficiently large N . Thus we may suppose N is large enough so that

E∗ � N(logN)−1. Combining yields (3.2.9) in the case Qx+ h 6∈ H, assuming

H+ is admissible. For the case Qx + h 6∈ H, we assume k > 2 and apply

the above evaluation with the translation H 7→ H \ {Qx + h}, k 7→ k − 1,

` 7→ `+ 1.

To prove the last statement in Theorem 3, we will make use of the following

quantitative formulation of Linnik’s theorem, which gives an upper bound for

the least prime in an arithmetic progression.

Lemma 3.2.3. There is an absolute constant L such that for all sufficiently

large integers q, the estimate

∑
p6x

p≡a mod q

1� x

φ(q)q1/2 log x

holds for all x > qL, where a is an integer such that (q, a) = 1.

Proof. Let q be a sufficiently large integer and let a be an integer with (q, a) = 1.

That there exists a constant L such that for all x > qL,

∑
p6x

p≡a mod q

log p� x

φ(q)
√
q
,

can be read directly out of [28, Corollary 18.8]. Hence

∑
p6x

p≡a mod q

1 >
∑
p6x

p≡a mod q

log p

log x
� x

φ(q)q1/2 log x
.
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3.3 The proof of Theorem 3 and Theorem 4

Fix integers q > 3 and a such that (q, a) = 1. Suppose the primes have level

of distribution θ = 1/2+δ, δ > 0. Fix an ε′ ∈ (0, δ/4) so that θ/2−ε′ > (1+δ)/4,

then fix integers k = k(θ) and ` = [
√
k] such that

2(2`+ 1)

`+ 1

k

k + 2`+ 1

(
θ

2
− ε′

)
= 1 + ε, ε > 0. (3.3.1)

Now let

H′ := {x+ ht+1, . . . , x+ ht+k},

where h1 < h2 < · · · is the sequence of all primes ≡ a mod q, ht+1 > k. Then

H′ is admissible, for clearly |Ω(H′; p)| 6 k 6 p − 1 for primes p > k, and for

primes p 6 k we have 0 mod p 6∈ Ω(H′; p), hence |Ω(H′; p)| 6 p−1. We assume

t is large enough so that ht+k < h2
t+1, which is possible by the prime number

theorem for arithmetic progressions.

Put

Q := q
∏

p6ht+k
p6=ht+1,...,ht+k

p

and let

H := {Qx+ ht+1, . . . , Qx+ ht+k}.

Let h be a integer with ht+1 6 h 6 ht+k and suppose Qn + h is prime for

some positive integer n. Then (Q, h) = 1 and so h is composed only of the
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primes ht+1, . . . , ht+k. But then h = ht+i for some i = 1, . . . , k, for otherwise

h > h2
t+1 > ht+k. Therefore if, for some integer n, there are any primes

among Qn+ ht+1, . . . , Qn+ ht+k, they must be the only primes in the interval

[Qn + ht+1, Qn + ht+k]. If there are at least two primes among them, there is

a pair of consecutive primes pn+1 ≡ pn ≡ a mod q among them, and

pn+1 − pn 6 ht+k − ht+1 := H(q, θ) = H.

Now if p - Q then

|Ω(p)| =
∣∣{−ht+1Q

−1, . . . ,−ht+kQ−1} mod p
∣∣

= |{−ht+1, . . . ,−ht+k} mod p|

< p

because H′ is admissible. If p | Q then p - ht+1 · · ·ht+k, and so

P (n;H) ≡ ht+1 · · ·ht+k 6≡ 0 mod p

for all n mod p, hence |Ω(p)| = 0. We have just shown that H is admissible.
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Letting R = N θ/2−ε′ and applying Proposition 3.2.2 and (3.3.1), we obtain

L :=
1

N

∑
N<n62N

(
k∑
i=1

ϑ(Qn+ hi)− log 3QN

)
ΛR(n;H, k + `)2

=
k∑
i=1

1

N

∑
N<n62N

ϑ(Qn+ hi)ΛR(n;H, k + `)2

− log 3QN

N

∑
N<n62N

ΛR(n;H, k + `)2

= k(1 + o(1))S(H)

(
2(`+ 1)

`+ 1

)
(logR)k+2`+1

(k + 2`+ 1)!

− (1 + o(1))(logN)S(H)

(
2`

`

)
(logR)k+2`

(k + 2`)!

= S(H)

(
2`

`

)
(logR)k+2`

(k + 2`)!
(logN)

×
{

2(2`+ 1)

`+ 1

k

k + 2`+ 1

(
θ

2
− ε′

)
− (1 + o(1))

}
�k ε(logN)k+2`+1.

We deduce that there are at least two primes among Qn+ ht+1, . . . , Qn+ ht+k

for infinitely many integers n, and the first part of Theorem 3 follows.

If θ = δ + 20/21 for some δ > 0, then choosing k = 7, ` = 1 and ε′ = δ/4

yields

2(2`+ 1)

`+ 1

k

k + 2`+ 1

(
θ

2
− ε′

)
=

42

20

(
20

42
+
δ

4

)
= 1 + ε, ε = 21δ/40.

Now by Lemma 3.2.3 we may suppose that q is large enough so that the fol-

lowing holds for some number L. Letting h1 < h2 < · · · be the sequence of all

primes ≡ a mod q, and M be the integer satisfying L 6 M < L + 1, we have

h6M+2 � qL. We claim that there exist 7 primes ht+1, . . . , ht+7, 1 6 t 6 6M−5,
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such that ht+7 < h2
t+1. For otherwise

h6M+2 > h2
6(M−1)+2 > h4

6(M−2)+2 > · · · > h2M
2 ,

and so h2 6 h
1/2L
6M+2 � q1/2, which, for all sufficiently large q, is absurd. It

follows that H(q, θ) 6 h6M+2 � qL, provided that q is sufficiently large and

θ > 20/21. This concludes the proof of Theorem 3.

We now turn to Theorem 4. If
∑∗ denotes summation over n for which

k∑
i=1

ϑ(Qn+ hi)− log 3QN

is positive, and hence {Qn + h1, . . . , Qn + hk} contains at least two primes,

then

NL 6
∑∗

N<n62N

(
k∑
i=1

ϑ(Qn+ hi)− log 3QN

)
ΛR(n;H, k + `)2

6 k log 3QN
∑∗

N<n62N

ΛR(n;H, k + `)2

6 k log 3QN

( ∑∗

N<n62N

1

)1/2( ∑
N<n62N

ΛR(n;H, k + `)4

)1/2

by the Cauchy-Schwartz inequality. Now just as in Section 2.7, we have

∑
N<n62N

ΛR(n;H, k + `)4 � N(logN)19k+4`

(see (2.7.1)). Therefore, using this and L �k (logN)k+2`+1, we see that

∑∗

N<n62N

1 >
(NL )2

(k log 3QN)2

( ∑
N<n62N

ΛR(n;H, k + `)4

)−1

�k
N

(logN)17k
.



3. Proof of Theorem 3 and Theorem 4 100

The intervals (Qn,Qn + H], n ∈ (N, 2N ], are disjoint, because Q > H.

Therefore, letting Y := 3QN > 2QN +H, we have

∑
pr+16Y

pr≡pr+1≡1 mod q
pr+1−pr6H

1 >
∑∗

N<n62N

1�k
N

(logN)17k
� Y

Q(log Y )17k
�k,q

Y

(log Y )17k

for all sufficiently large N , and hence Y , because Q �q,k 1. Since k depends

on θ, Theorem 4 follows by putting B(θ) := 17k.



Part II

PRODUCTS OF SHIFTED PRIMES

SIMULTANEOUSLY TAKING PERFECT POWER

VALUES



4. PROOF OF THEOREM 5 AND THEOREM 6

4.1 Restatement

Let us restate the theorems here. Given an integer r > 2 and a finite,

nonempty set A of nonzero integers, recall that

B(x;A, r) :=
{
n 6 x : n is squarefree and∏

p|n(p+ a) is an rth power for all a ∈ A
}
,

and that

B∗(x;−1, r) = {n 6 x : n is squarefree, ω(n) = r and φ(n) is an rth power},

B∗(x; +1, r) = {n 6 x : n is squarefree, ω(n) = r and σ(n) is an rth power}.

We will prove:
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Theorem 5. Fix an integer r > 2, and a finite, nonempty set A of nonzero

integers. As x→∞, we have

|B(x;A, r)| > x1/2|A|−o(1).

Moreover, if |A| = 1, then as x→∞, we have

|B(x;A, r)| > x0.7039−o(1).

Here and throughout, o(1) denotes a function tending to 0 as x tends to

infinity. We will then prove:

Theorem 6. Fix an integer r > 2. For all sufficiently large x, we have

|B∗(x;−1, r)| , |B∗(x; +1, r)| � rx1/r

(log x)r+2
. (4.1.1)

The implied constant is absolute.

The proof of Theorem 5 (Section 4.3) is an extension of the proof by Banks

et. al. [4], who considered B(x; {−1}, 2), B(x; {+1}, 2), and B(x; {−1,+1}, 2).

It employs some of the ideas of Erdős [12, 13] upon which Alford, Granville

and Pomerance [1] based their proof that there are infinitely many Carmichael

numbers. The proof of Theorem 6 (Section 4.4) introduces a new method,

which, as we will explain, is an application of the ideas of Goldston, Pintz and

Yıldırım [21].
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4.2 Preliminaries

Theorem 5 is a consequence of the first four results of this section, and we

use the fifth in the proof of Theorem 6.

An integer n is called y-smooth if p 6 y for every prime p dividing n. Given

a polynomial F (X) ∈ Z[X] and numbers x > y > 2, let

πF (x, y) = |{p 6 x : F (p) is y-smooth}| .

In the case F = X − 1, Erdős [12] proved that there exists a number ε ∈ (0, 1)

such that πF (x, xε)�ε π(x) (where π(x) is the number of primes up to x), for

all large x depending on the choice of ε. Several authors have improved upon

this, the next two results being the best so far obtained.

Theorem 4.2.1. Fix a nonzero integer a and let F (X) = X + a. For some

absolute constant c, we have

πF (x, y) >
x

(log x)c

for all sufficiently large x, provided y > x0.2961.

Proof. See [2, Theorem 1].



4. Proof of Theorem 5 and Theorem 6 105

Theorem 4.2.2. Let F be a polynomial with integer coefficients. Let g be the

largest of the degrees of F and let k be the number of distinct irreducible factors

of F of degree g. Suppose that F (0) 6= 0 if g = k = 1, and let ε be any positive

real number. Then the estimate

πF (x, y) � x

log x

holds for all sufficiently large x, provided y > xg+ε−1/2k.

Proof. See [9, Theorem 1.2].

For a finite additive abelian group G, denote by n(G) the length of the

longest sequence of (not necessarily distinct) elements of G, no nonempty

subsequence of which sums to 0, the additive identity of G. For instance,

if G = (Z/2Z)m, then n(G) 6 m, for any sequence of m + 1 elements of G

contains a nonempty subsequence whose elements sum to (0, . . . , 0) mod 2, as

can be seen by considering that such a sequence contains 2m+1− 1 > 2m = |G|

nonempty subsequences. For any group G of order m, then any sequence of m

elements contains a nonempty subsequence whose sum is 0, hence n(G) 6 m−1.

The next theorem, due to van Emde Boas and Kruyswijk [11], gives a nontrivial

upper bound for n(G).

Theorem 4.2.3. If G is a finite abelian group and m is the maximal order of

an element in G, then n(G) < m(1 + log(|G| /m)).

Proof. See [11]. A proof is also given in [1, Theorem 1.1].

The following proposition shows that there may be many sequences in G

whose elements sum to 0.
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Proposition 4.2.4. Let G be a finite abelian group and let r > k > n = n(G)

be integers. Then any subsequence of r elements of G contains at least
(
r
k

)/(
r
n

)
distinct subsequences of length at most k and at least k − n, whose sum is the

identity.

Proof. See [1, Proposition 1.2].

We will use the well-known Siegel-Walfisz theorem in the proof of Theorem

6.

Theorem 4.2.5 (Siegel-Walfisz). For any positive number B, there is a con-

stant CB depending only on B, such that

∑
p6N

p≡a mod q

log p =
N

φ(q)
+O

(
N exp

(
−CB(logN)1/2

))

whenever (a, q) = 1 and q 6 (logN)B.

Proof. See [10, Chapter 22].

4.3 The proof of Theorem 5

The following proof hinges on Theorem 4.2.3 and Proposition 4.2.4, which

are key ingredients in the celebrated proof of Alford, Granville and Pomerance

[1] that there are infinitely many Carmichael numbers. (A Carmichael number

is a composite number n for which an ≡ a mod n for all integers a.) In fact it

is shown in [1, Theorem 1] that the number of Carmichael numbers C(x) up to

x satisfies C(x) > xβ−ε for any ε > 0 and all large x depending on the choice

of ε, where

β =
5

12

(
1− 1

2
√
e

)
= 0.29036 . . . .
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Using a variant of the construction in [1], Harman [25] proved that β =

0.3322408 is admissible, and combining the ideas of [1, 4, 25], Banks [3] estab-

lished the following result.

Theorem 4.3.1 ([3, Theorem 1]). For every fixed C < 1, there is a number

x0(C) such that for all x > x0(C) the inequality

|{n 6 x : n is Carmichael and φ(n) is an rth power}| > xβ−ε

holds, with β = 0.3322408 and any positive ε, for all positive integers r 6

exp
(
(log log x)C

)
.

(Harman [26] has subsequently proved that β = 0.7039 × 0.4736 > 1/3 is

admissible here.) The method of the proof may yield further interesting results.

Theorems 4.2.1 and 4.2.2 are also crucial, and it will be manifest that extend-

ing the admissible range for y in those theorems will lead to better estimates

for |B(x;A, r)|. Explicitly, if F (X) =
∏

a∈A(X + a) and

πF (x, xε) �F,ε
x

log x

holds, then the following proof yields |B(x;A, r)| > x1−ε−o(1). It is suspected

that any positive ε is admissible, in which case we would have

|B(x;A, r)| = x1−o(1).
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Proof of Theorem 5. Fix an integer r > 2 and a set A = {a1, . . . , as} of nonzero

integers. Let x be a large number, and let

y =
log x

log log x
. (4.3.1)

Let t = π(y), and let G = (Z/rZ)st, so that by Theorem 4.2.5,

n(G) < r(1 + log |G| /r) = r(1 + (st− 1) log r). (4.3.2)

Fix any number ε ∈ (0, 1/3s), and let

u =


(0.2961)−1 if s = 1,(
1 + ε− 1

2s

)−1
if s > 2.

Let

F (X) := (X + a1)(X + a2) · · · (X + as),

and let

SF (yu, y) := {p 6 yu : F (p) is y-smooth}

= {p 6 yu : p+ a1, . . . , p+ as are y-smooth}.

We may suppose x, and hence y, is large enough so that, by Theorem 4.2.1 and

Theorem 4.2.2,

|SF (yu, y)| = πF (yu, y)� yu

(log yu)c
(4.3.3)

for some constant c. (We may suppose c = 1 in the case s > 2.) Finally, let
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k =

[
log x

log yu

]
, (4.3.4)

where [α] denotes the integer part of a real number α.

By (4.3.1), (4.3.3) and (4.3.4),

πF (yu, y)

k
� (log x)u−1

(log log x)u−1+c
,

and by (4.3.1), (4.3.2) and (4.3.4),

k

n(G)
�r,s

log x/ log yu

t
� log log x, (4.3.5)

because t = π(y) ∼ y/ log y as y →∞, by the prime number theorem. There-

fore, since u > 1, we may assume x is large enough so that

n(G) < k < πF (yu, y). (4.3.6)

For primes p ∈ SF (yu, y) and integers a ∈ A, we may write

p+ a = 2β
(a)
1 3β

(a)
2 · · · pβ

(a)
t
t ,

where β
(a)
i , 1 6 i 6 t, are nonnegative integers. We define

vp = (β
(a1)
1 , . . . , β

(a1)
t , β

(a2)
1 , . . . , β

(a2)
t , . . . , β

(as)
1 , . . . , β

(as)
t )

as the ‘exponent vector’ for p. For a subset R of SF (yu, y),
∏

p∈R(p + a) is an

rth power for every a ∈ A if and only if
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∑
p∈R

vp ≡ 0 mod r,

where 0 mod r is the zero element of G. If, moreover, R is of size at most k,

then by (4.3.4), ∏
p∈R

p 6 yuk 6 x.

Thus

|B(x;A, r)| >
∣∣∣{R ⊆ SF (yu, y) : |R| 6 k and

∑
p∈Rvp ≡ 0 mod r

}∣∣∣ , (4.3.7)

as distinct subsets R ⊆ SF (yu, y) give rise to distinct integers n, by uniqueness

of factorization.

Because of (4.3.6), we may deduce from Proposition 4.2.4 that the right-

hand side of (4.3.7) is at least

(
πF (yu, y)

k

)/(πF (yu, y)

n(G)

)
>

(
πF (yu, y)

k

)k
πF (yu, y)−n(G) := xf(x),

where

f(x) = (k − n(G))
log πF (yu, y)

log x
− k log k

log x
.

Letting x tend to infinity and using (4.3.1), (4.3.3), (4.3.4), and (4.3.5), we see

that f(x) = 1− 1/u− o(1). Therefore, as x→∞, we have

|B(x;A, r)| > x1−1/u−o(1),

and Theorem 5 follows by our choice for u, and letting ε tend to 0 in the case

s > 2.
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4.4 The proof of Theorem 6

We use a different approach to prove Theorem 6. The proof is ‘inspired’ by

the breakthrough results of Goldston, Pintz and Yıldırım [21] on short intervals

containing primes. Basically, as we saw in Part I, their proof begins with the

observation that if W (n) is a nonnegative weight and

∑
N<n62N

(∑
h6H

ϑ(n+ h)− log(2N +H)

)
W (n) (4.4.1)

is positive, then for some n ∈ (N, 2N ], the interval (n, n+H] contains at least

2 primes. Here and in the sequel,

ϑ(n) :=


log n if n is prime,

0 otherwise,

as in Part I. Goldston, Pintz and Yıldırım were able to obtain a nonnegative

weight W (n) (see Part I, (2.2.7)) for which (4.4.1), with H = ε logN , is positive

for all sufficiently large N . In our problem, we will be led to consider

∑
n6N

(∑
a6H

ϑ(arn+ 1)− (r − 1) log(HrN + 1)

)

(see (4.4.3)). A lower bound for this expression corresponds to a lower bound

for the number of n 6 N for which {arn+1 : a 6 H} contains at least r primes.

As we do not require H to be ‘short’ compared to N , we may take H = r logN :

then the weight W (n) = 1 works, and the problem is much easier.
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Proof of Theorem 6. Throughout the proof, r > 2 is a fixed integer, and

n, a, a1, a2, . . . are positive integers. Observe that if, for some n,

`i = arin+ 1, i = 1, . . . , r

are distinct primes, then

φ(`1 · · · `r) = (a1 · · · arn)r.

If the primes `i are of the form arin − 1 then σ(`1 · · · `r) = (a1 · · · arn)r. We

will prove that (4.1.1) holds for |B(x;−1, r)|, provided x is sufficiently large,

and the same proof applies to |B(x; +1, r)| if we consider primes of the form

arin− 1 rather than arin+ 1.

Let N be a parameter tending monotonically to infinity and set H = r logN .

Let A(N) be the set of n 6 N for which

Cn = {arn+ 1 : a 6 H} ∩ P

(where P is the set of all primes) contains at least r primes. We will show that

|A(N)| � N

logN
, (4.4.2)

but first we will describe how this implies a lower bound for |B(x;−1, r)|.

Every n ∈ A(N) gives rise, via Cn, to some `1 · · · `r ∈ B((HrN + 1)r;−1, r),

though different n may give rise to the same r-tuple of primes. On the other

hand, given n ∈ A(N) and a prime p = arn + 1 ∈ Cn, each m ∈ A(N) for

which Cm = Cn corresponds to a solution to arn = brm, b 6 H. Therefore
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there can be at most H different n ∈ A(N) giving rise to the same element of

B((HrN + 1)r;−1, r). Consequently,

|B((HrN + 1)r;−1, r)| > |A(N)|
H

� N

r(logN)2

by (4.4.2), and (4.1.1) follows.

We will now establish (4.4.2). We will show that for all large N ,

S(N) =
∑
n6N

(∑
a6H

ϑ(arn+ 1)− (r − 1) log(HrN + 1)

)
� rN logN. (4.4.3)

Consequently A(N) is nonempty for large N . Indeed, if (4.4.3) holds then

rN logN � S(N) 6
∑

n∈A(N)

(∑
a6H

ϑ(arn+ 1)− (r − 1) log(HrN + 1)

)

6 |A(N)|H log(HrN + 1),

and (4.4.2) follows because log(HrN + 1) ∼ logN .

For the evaluation of S(N), first note that

∑
n6N

∑
a6H

ϑ(arn+ 1) =
∑
a6H

∑
p6arN+1
p≡1 mod ar

log p.

Since ar �r (logN)r for a 6 H, we may apply Theorem 4.2.5 to the last sum.

We have

∑
p6arN+1
p≡1 mod ar

log p =
arN

φ(ar)
+O

(
arN

φ(ar)(logN)2

)
∼ a

φ(a)
N.
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Therefore, by the well-known estimate

∑
a6H

a

φ(a)
∼ cH, c =

∏
p

(
1 +

1

p(p− 1)

)
= 1.943596 . . . ,

we have ∑
n6N

∑
a6H

ϑ(arn+ 1) ∼ N
∑
a6H

a

φ(a)
∼ cNH.

Also, ∑
n6N

(r − 1) log(HrN + 1) ∼ N(r − 1) logN,

so combining all of this yields

S(N) ∼ N(cH − (r − 1) logN)� rN logN,

hence (4.4.3).
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