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Résumé de la thèse

Nous abordons deux sujets distincts dans cette thèse : l�estimation de la volatilité

des prix d�actifs �nanciers à partir des données à haute fréquence, et l�estimation des

paramétres d�un processus aléatoire à partir de sa fonction caractéristique.

Le chapitre 1 s�intéresse à l�estimation de la volatilité des prix d�actifs. Nous suppo-

sons que les données à haute fréquence disponibles sont entachées de bruit de microstruc-

ture. Les propriétés que l�on prête au bruit sont déterminantes dans le choix de l�estimateur

de la volatilité. Dans ce chapitre, nous spéci�ons un nouveau modèle dynamique pour le

bruit de microstructure qui intègre trois propriétés importantes : (i) le bruit peut être

autocorrélé, (ii) le retard maximal au delà duquel l�autocorrélation est nulle peut être une

fonction croissante de la fréquence journalière d�observations ; (iii) le bruit peut avoir une

composante correlée avec le rendement e¢ cient. Cette dernière composante est alors dite

endogène. Ce modèle se di¤érencie de ceux existant en ceci qu�il implique que l�autocor-

rélation d�ordre 1 du bruit converge vers 1 lorsque la fréquence journalière d�observation

tend vers l�in�ni.

Nous utilisons le cadre semi-paramétrique ainsi dé�ni pour dériver un nouvel estima-

teur de la volatilité intégrée baptisée "estimateur shrinkage". Cet estimateur se présente

sous la forme d�une combinaison linéaire optimale de deux estimateurs aux propriétés

di¤érentes, l�optimalité étant dé�ni en termes de minimisation de la variance. Les simula-

tions indiquent que l�estimateur shrinkage a une variance plus petite que le meilleur des

deux estimateurs initiaux. Des estimateurs sont également proposés pour les paramètres

du modèle de microstructure. Nous clôturons ce chapitre par une application empirique

basée sur des actifs du Dow Jones Industrials. Les résultats indiquent qu�il est pertinent

de tenir compte de la dépendance temporelle du bruit de microstructure dans le processus

d�estimation de la volatilité.

Les chapitres 2, 3 et 4 s�inscrivent dans la littérature économétrique qui traite de la

méthode des moments généralisés. En e¤et, on rencontre en �nance des modèles dont la

fonction de vraisemblance n�est pas connue. On peut citer en guise d�exemple la loi stable

ainsi que les modèles de di¤usion observés en temps discrets. Les méthodes d�inférence
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basées sur la fonction caractéristique peuvent être envisagées dans ces cas. Typiquement,

on spéci�e une condition de moment ht (� ; �0) basée sur la di¤érence entre la fonction

caractéristique (conditionnelle) théorique et sa contrepartie empirique. Dans l�expression

de cette condition de moment, �0 est la vraie valeur du paramètre d�intérêt et � est la

variable de transformation de Fourier. Le dé�t ici est d�exploiter au mieux le continuum

de conditions de moment
�
ht (� ; �0) ; � 2 Rd

	
pour atteindre la même e¢ cacité que le

maximum de vraisemblance.

Ce dé�t a été relevé par Carrasco et Florens (2000) qui ont proposé la procédure

CGMM (continuumGMM). La fonction objectif que ces auteurs proposent est de la forme :

bQT (�; �) = Z
Rd
K�1
�ThT (� ; �)hT (� ; �)� (�) d�

où � (�) est une mesure �nie absolument continue sur Rd, hT (� ; �0) est le complexe conju-

gué de hT (� ; �) = 1
T

PT
t=1 ht (� ; �) et K

�1
�T est l�inverse régularisé de l�operateur de cova-

riance empirique associé à la fonction de moment ht (� ; �). Le paramètre de régularisation

� assure à la fois l�existence et la continuité de bQT (�; �). Carrasco et Florens (2000) ont
montré que l�estimateur de �0 obtenu en minimisant bQT (�; �) est asymptotiquement aussi
e¢ cace que l�estimateur du maximum de vraisemblance si � tend vers zéro lorsque la

taille de l�échatillon T tend vers l�in�ni. La nature de la fonction objectif du CGMM sou-

lève deux questions importantes. La première est celle de la calibration de � en pratique,

et la seconde est liée à la présence d�intégrales multiples dans l�expression de bQT (�; �).
C�est à ces deux problématiques qu�essayent de répondent les trois derniers chapitres de

la présente thèse.

Dans le chapitre 2, nous proposons une méthode de calibration de � basée sur la

minimisation de l�erreur quadratique moyenne (EQM) de l�estimateur. Nous suivons une

approche similaire à celle de Newey et Smith (2004) pour calculer un développement

d�ordre supérieur de l�EQM de l�estimateur CGMM de sorte à pouvoir examiner sa dé-

pendance en � en échantillon �ni. Nous proposons ensuite deux méthodes pour choisir �

en pratique. La première se base sur le développement de l�EQM, et la seconde se base

sur des simulations Monte Carlo. Nous montrons que la méthode Monte Carlo délivre
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un estimateur convergent de � optimal. Nos simulations con�rment la pertinence de la

calibration de � en pratique.

Le chapitre 3 essaye de vulgariser la théorie du chapitre 2 pour les modèles avec

d � 2. Nous commençons par passer en revue les propriétés de convergence et de norma-

lité asymptotique de l�estimateur CGMM. Nous proposons ensuite des recettes numériques

pour l�implémentation. En�n, nous conduisons des simulations Monte Carlo basée sur la

loi stable. Ces simulations démontrent que le CGMM est une méthode �able d�inférence.

En guise d�application empirique, nous estimons par CGMM un modèle de variance auto-

régressif Gamma. Les résultats d�estimation con�rment un résultat bien connu en �nance :

le rendement est positivement corrélé au risque espéré et négativement corrélé au choc sur

la volatilité.

Lorsqu�on implémente le CGMM, une di¢ culté majeure réside dans l�évaluation

numérique itérative des intégrales multiples présentes dans la fonction objectif. Les mé-

thodes de quadrature sont en principe parmi les plus précises que l�on puisse utiliser dans

le présent contexte. Malheureusement, le nombre de points de quadrature augmente expo-

nentiellement en fonction de d. L�utilisation du CGMM devient pratiquement impossible

dans les modèles multivariés et non markoviens où d � 3. Dans le chapitre 4, nous propo-

sons une procédure alternative baptisée "reéchantillonnage dans le domaine fréquentielle"

qui consiste à fabriquer des échantillons univariés en prenant une combinaison linéaire des

éléments du vecteur initial, les poids de la combinaison linéaire étant tirés aléatoirement

dans un sous-espace normalisé de Rd. Chaque échantillon ainsi généré est utilisé pour

produire un estimateur du paramètre d�intérêt. L�estimateur �nal que nous proposons est

une combinaison linéaire optimale de tous les estimateurs ainsi obtenus. Finalement, nous

proposons une étude par simulation et une application empirique basées sur des modèles

autorégressifs Gamma.

Dans l�ensemble, nous faisons une utilisation intensive du bootstrap, une technique

selon laquelle les propriétés statistiques d�une distribution inconnue peuvent être estimées à

partir d�un estimé de cette distribution. Nos résultats empiriques peuvent donc en principe

être améliorés en faisant appel aux connaissances les plus récentes dans le domaine du

bootstrap.
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Summary of the Thesis

In estimating the integrated volatility of �nancial assets using noisy high frequency

data, the time series properties assumed for the microstructure noise determines the proper

choice of the volatility estimator. In the �rst chapter of the current thesis, we propose a

new model for the microstructure noise with three important features. First of all, our

model assumes that the noise is L-dependent. Secondly, the memory lag L is allowed to

increase with the sampling frequency. And thirdly, the noise may include an endogenous

part, that is, a piece that is correlated with the latent returns. The main di¤erence between

this microstructure model and existing ones is that it implies a �rst order autocorrelation

that converges to 1 as the sampling frequency goes to in�nity.

We use this semi-parametric model to derive a new shrinkage estimator for the

integrated volatility. The proposed estimator makes an optimal signal-to-noise trade-o¤

by combining a consistent estimators with an inconsistent one. Simulation results show

that the shrinkage estimator behaves better than the best of the two combined ones. We

also propose some estimators for the parameters of the noise model. An empirical study

based on stocks listed in the Dow Jones Industrials shows the relevance of accounting for

possible time dependence in the noise process.

Chapters 2, 3 and 4 pertain to the generalized method of moments based on the

characteristic function. In fact, the likelihood functions of many �nancial econometrics

models are not known in close form. For example, this is the case for the stable distribution

and a discretely observed continuous time model. In these cases, one may estimate the

parameter of interest �0 by specifying a moment condition ht (� ; �0) based on the di¤erence

between the theoretical (conditional) characteristic function and its empirical counterpart,

where � 2 Rd is the Fourier transformation variable. The challenge is then to exploit

the whole continuum of moment conditions fht (� ; �0) ; � 2 Rpg to achieve the maximum

likelihood e¢ ciency.
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This problem has been solved in Carrasco and Florens (2000) who propose the

CGMM procedure. The objective function of the CGMM is given by :

bQT (�; �) = Z
Rd
K�1
�ThT (� ; �)hT (� ; �)� (�) d�

where � (�) is an absolutely continuous �nite measure, hT (� ; �) is the complex conjugate of

hT (� ; �) =
1
T

PT
t=1 ht (� ; �) and K

�1
�T is the regularized inverse of the empirical covariance

operator associated with the moment function. The parameter � ensures the existence

as well as the continuity of bQT (�; �). Carrasco and Florens (2000) have shown that the
estimator obtained by minimizing bQT (�; �) is asymptotically as e¢ cient as the maximum
likelihood estimator provided that � converges to zero as the sample size T goes to in�nity.

However, the nature of the objective function bQT (�; �) raises two important questions.
First of all, how do we select � in practice ? And secondly, how do we implement the

CGMM when the multiplicity of the integrals embedded in the objective-function d is

large. These questions are tackled in the last three chapters of the thesis.

In Chapter 2, we propose to choose � by minimizing the approximate mean square

error (MSE) of the estimator. Following an approach similar to Newey and Smith (2004),

we derive a higher-order expansion of the estimator from which we characterize the �nite

sample dependence of the MSE on �. We provide two data-driven methods for selecting

the regularization parameter in practice. The �rst one relies on the higher-order expansion

of the MSE whereas the second one uses only simulations. We show that our simulation

technique delivers a consistent estimator of �. Our Monte Carlo simulations con�rm the

importance of the optimal selection of �.

The goal of Chapter 3 is to illustrate how to e¢ ciently implement the CGMM for

d � 2. To start with, we review the consistency and asymptotic normality properties of

the CGMM estimator. Next we suggest some numerical recipes for its implementation.

Finally, we carry out a simulation study with the stable distribution that con�rms the

accuracy of the CGMM as an inference method. An empirical application based on the

autoregressive variance Gamma model led to a well-known conclusion : investors require
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a positive premium for bearing the expected risk while a negative premium is attached to

the unexpected risk.

In implementing the characteristic function based CGMM, a major di¢ culty lies

in the evaluation of the multiple integrals embedded in the objective function. Numerical

quadratures are among the most accurate methods that can be used in the present context.

Unfortunately, the number of quadrature points grows exponentially with d. When the data

generating process is Markov or dependent, the accurate implementation of the CGMM

becomes roughly unfeasible when d � 3. In Chapter 4, we propose a strategy that consists

in creating univariate samples by taking a linear combination of the elements of the original

vector process. The weights of the linear combinations are drawn from a normalized set of

Rd. Each univariate index generated in this way is called a frequency domain bootstrap

sample that can be used to compute an estimator of the parameter of interest. Finally,

all the possible estimators obtained in this fashion can be aggregated to obtain the �nal

estimator. The optimal aggregation rule is discussed in the paper. The overall method

is illustrated by a simulation study and an empirical application based on autoregressive

Gamma models.

This thesis makes an extensive use of the bootstrap, a technique according to which

the statistical properties of an unknown distribution can be estimated from an estimate

of that distribution. It is thus possible to improve our simulations and empirical results

by using the state-of-the-art re�nements of the bootstrap methodology.
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Chapter 1

Shrinkage Realized Kernels

Note: Cet article rédigé en collaboration avec Marine Carrasco est actuellement sous évaluation pour publi-

cation dans "Journal of Financial Econometrics"

Mots-Clés: Integrated Volatility, Method of Moment, Microstructure Noise, Realized Kernel, Shrinkage.

1.1 Introduction

Since the theoretical works by Jacod (1994), Jacod and Protter (1998) and Barndor¤-Nielsen

and Shephard (2002), it is well established that the realized volatility (RV) is a consistent

estimator of the integrated volatility (IV) when prices are observed without error (see for

example Ait-Sahalia, Mykland and Zhang, 2005). However, it is commonly admitted that

recorded stock prices are contaminated with pricing errors known in the literature as the

"market microstructure noise" (henceforth "noise"). The causes of this noise are discussed

for example in Stoll (1989, 2000) or Hasbrouck (1993,1996). In the words of Hasbrouck (1993),

the pricing errors are mainly due to "... discreteness, inventory control, the non-information

based component of the bid-ask spread, the transient component of the price response to a

block trade, etc.". Its presence in measured prices causes the RV computed with very high

frequency data to be a severely biased estimator of the IV.

Many approaches have been proposed in the literature to deal with this curse. One of

them consists in choosing in an ad-hoc manner a moderate sampling frequency at which the

11
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impact of the noise is su¢ ciently mitigated1. Zhou (1996) and Hansen and Lunde (2006)

proposed a bias correction approach while Bollen and Inder (2002) and Andreou and Ghy-

sels (2002) advocated �ltering techniques. Under the assumption that the volatility of the

high frequency returns are constant within the day, Ait-Sahalia, Mykland and Zhang (2005)

derived a highly e¢ cient maximum likelihood estimator of the IV that is robust to both IID

noise and distributional mispeci�cation. Zhang, Mykland, and Ait-Sahalia (2005) proposed

another consistent estimator in the presence of IID noise which they called the two scale re-

alized volatility. This estimator has been adapted in Ait-Sahalia, Mykland and Zhang (2006)

to deal with dependent noise. Since then, other consistent estimators have become avail-

able among which the realized kernels of Barndor¤-Nielsen, Hansen, Lunde and Shephard

(2008a) and the pre-averaging estimator of Podolskij and Vetter (2006)2. An alternative line

of research pursued by Corradi, Distaso and Swanson (2008) advocates the nonparametric

estimation of the predictive density and con�dence intervals for the IV rather than focusing

on point estimates.

In a simulation study, Gatheral and Oomen (2007) showed that consistent estimators

often perform poorly at the sampling frequencies commonly encountered in practice. One

can explain this result by saying that an inconsistent estimator necessarily delivers its best

performance at moderate frequency3 while a consistent estimator may require quite high

frequency data in order to perform well. It turns out from our simulations study of Section 8

that the conclusion of Gatheral and Oomen (2007) strongly depends on the size of the variance

of the microstructure noise relative to the discretization error. In fact, the inconsistent

estimator tends to perform better than the consistent one only when the variance of the

microstructure noise is small. The main idea of the current paper is that even when the

variance of the inconsistent estimator is higher, it can still be optimally combined with the

consistent estimator to obtain a new one that performs better than both. The weight of the

linear combination is selected in order to minimize the variance and the resulting estimator

is called "shrinkage realized kernels".

However, a good estimator of the IV must be designed in accordance with the dependence

1See Andersen, Bollerslev, Diebold and Labys (2000); Andersen, Bollerslev, Diebold and Ebens (2001).
2See also Jacod, Li, Mykland, Podolskij and Vetter (2009).
3See Ait-Sahalia, Mykland and Zhang (2005 and Bandi and Russell (2008).
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properties of the noise. Awartani, Corradi and Distaso (2007) proposed an hypothesis test

to assess the impact of certain features of the noise on realized measures. Hansen and Lunde

(2006) construct a Haussman-type test to detect time dependence in the noise process. After

applying their test to real data, they concluded that the noise process is time dependent,

correlated with latent return, and possibly heteroscedastic4. More recently, Ubukata and Oya

(2009) proposed some procedures to test for dependence in the noise process in a bivariate

framework with irregularly spaced and asynchronous data.

In this paper, we restrict our attention to regularly spaced univariate data and advocate

a semi-parametric model for the noise. More precisely, we specify at the highest frequency

a parsimonious relation between the microstructure noise on the one side, and the e¢ cient

return and the latent volatility process on the other side. We assume a general and �exible

type of noise that includes an independent endogenous part "�s and an L-dependent exogenous

part "s. Contrary to an AR(1) model with constant autoregressive root, the new model has

the implication that the correlation between two consecutive realizations of "t converges to

one as the frequency at which the prices are recorded goes to in�nity. This model captures

the fact that two consecutive observations of "t become arbitrarily close in calendar time and

eventually coincide at the limit as the sampling frequency increases.

We derive the properties of common realized measures under the model and propose new

unbiased estimators for the IV. One unbiased estimator uses the samples available at all days

to estimate the IV of each day, while the second only uses within day data. The shrinkage

realized kernels are �nally designed as the optimal linear combination of the standard realized

kernels of Barndor¤-Nielsen and al. (2008a) with the unbiased within day estimator. We

also propose a framework to estimate the exogenous noise parameters. Unfortunately, the

endogeneity parameters are not identi�able.

We illustrate by simulation the good performance of the shrinkage realized kernels pro-

posed estimator. An empirical application based on �fteen stocks listed in the Dow Jones

Industrials shows strong evidences of correlation in the noise process and between the noise

and the latent returns. Indeed, the empirical results suggest that the memory parameter L

grows slower than
p
m in general. It should be mentioned that this result is derived under

4Kalnina and Linton (2008) propose a consistent estimator in the presence of a noise that exhibits diurnal
heteroskedasticity.
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the assumption that our model for the microstructure noise is true.

The rest of the paper is organized as follows. The next section motivates the use of

shrinkage estimators for the IV when the noise is IID. In Section 3, we present our theoretical

model in light of which we study the properties of three standard IV estimators in section

4. Inference procedures about the noise parameters are presented in section 5. In Section

6, we design the shrinkage realized kernels for the dependent noise case. Sections 7 and 8

present respectively a simulation study and an empirical application based on twelve stocks

listed in the Dow Jones Industrials. Section 9 concludes. The mathematical proofs and the

summaries of the results of Sections 7 and 8 are gathered in appendix.

1.2 Motivating Shrinkage Estimators for the IV

Basically, a shrinkage estimator is an optimal linear combination of several estimators. Here,

optimal means that shrinkage estimator minimizes the mean square error (MSE). To motivate

shrinkage estimators for the IV, we examine the contribution of the discretization error

and the microstructure noise to the MSEs of three estimators. More precisely, we try to

understand the trade-o¤s at play as one moves from a biased estimator to an unbiased

estimator on the one hand, and from an unbiased estimator to a consistent estimator on the

other hand.

To start with, we introduce some basic notation and concepts.

1.2.1 The E¢ cient Price and the Microstructure Noise

Let p�s denote a latent (or e¢ cient) log-price of an asset and ps its observable counterpart.

Assume that the latent log-price obeys the following stochastic di¤erential equation:

dp�s = �sdWs; p�0 = 0 (1.1)

where Ws is a standard Brownian motion independent of �s.

Keeping in mind that we are working with high frequency data, the omitted drift is

proportional to ds which is negligible in front of the Op
�p

ds
�
volatility term. We assume

that the volatility process f�sgTs=0 is c�adl�ag, implying that all powers of the volatility process
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are locally integrable with respect to the Lebesgue Measure5. Without loss of generality, we

condition all our analysis on the whole volatility path but the conditioning is removed from the

notations for simplicity. Therefore, all deterministic transformations of the volatility process

are treated as constant objects. In particular, the integrated volatilities IVt =
R t
t�1 �

2
sds;

t = 1; 2; 3; :::T are �xed parameters we aim to estimate. We will consider a sampling scheme

where the unit period is normalized to one in calendar time.

It is maintained throughout the paper that there is neither jump nor leverage e¤ect in

our model for the e¢ cient price. If jumps that are uncorrelated with all other randomness

are added in the model, the estimators considered for the IV in the sequel are now designed

for the quadratic variation6. If leverage e¤ect is assumed in (1.1), some of our results can

be derived with a few more technical complications. We will check the robustness of our

conclusions to the presence of leverage e¤ect in simulation.

By de�nition, the noise equals us = ps � p�s; that is, the di¤erence between the observed

log-price and the e¢ cient log-price. Let r�t denote the latent log-return at period t, and rt

its observable counterpart. Under the above conditions, the process fr�t g is a semimartingale

and we have:

rt � pt � pt�1 = r�t + ut � ut�1 (1.2)

r�t =

Z t

t�1
�sdWsj f�sgTs=0 � N (0; IVt) (1.3)

Suppose that we have access to a large number m of intra-period returns rt;1; rt;2; :::; rt;m,

where t = 1; :::; T are the period labels, m is the number of recorded prices in each period

and rt;j is the jth observed return during the period [t� 1; t]. In the sequel, we sometimes

use the expression "record frequency" to refer to the frequency m at which the data has been

recorded. The noise-contaminated (observed) and true realized volatility (latent) computed

at frequency m are:

RV
(m)
t =

mX
j=1

r2t;j and RV
�(m)
t =

mX
j=1

r�2t;j (1.4)

5See e.g Barndor¤-Nielsen, Graversen, Jacod and Shephard (2006).
6Separating the IV from the contribution of the jumps in the quadratic variation would then be the new

issue.
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For simplicity, we assume that these observations are equidistant in calendar time. We have:

r�t;j � p�t�1+j=m � p�t�1+(j�1)=m =

Z t�1+j=m

t�1+(j�1)=m
�sdWs

rt;j = r�t;j + ut;j � ut;j�1

ut;j � ut�1+j=m

Barndor¤-Nielsen and Shephard (2002) show that RV �(m)
t converges to IVt and derived

the asymptotic distribution:
RV

�(m)
t � IVtq
2
3

Pm
j=1 r

�4
t;j

! N(0; 1)

as m goes to in�nity. Meddahi (2002) studied the �nite frequency behavior of the discretiza-

tion error RV �(m)
t � IVt with a focus on the speci�c case where the true model belongs to the

Eigenfunction Stochastic Volatility family. Gonçalves and Meddahi (2009) proposed some

bootstrap procedures as alternative inference tools to analyze the asymptotic behavior of

realized measures. In both papers, no microstructure noise is assumed.

In the presence of microstructure noise, RV �(m)
t is no longer feasible. We review three

feasible estimators below.

1.2.2 Three Standard Estimators of the IV

In this subsection, we consider estimators cIV t of IVt such that:

cIV t = fr�
��
r�t;j
	m
j=1

�
+ fr�;u

��
r�t;j; ut;j

	m
j=1

�
+ fu

�
fut;jgmj=1

�
(1.5)

with

E
h
fr�
��
r�t;j
	m
j=1

�i
= IVt (1.6)

E
h
fr�;u

��
r�t;j; ut;j

	m
j=1

�i
= 0 (1.7)

and

fr�;u

��
r�t;j; 0

	m
j=1

�
= fu

�
f0gmj=1

�
= 0 (1.8)

It is further required that the three terms in (1.5) be uncorrelated.
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Below are three examples of estimators that can be decomposed as above.

Example 1 The realized volatility RV (m)
t de�ned in (1.4) satis�es (1.5) with:

fr�
��
r�t;j
	m
j=1

�
=

mX
j=1

r�2t;j

fr�;u

��
r�t;j; ut;j

	m
j=1

�
= 2

mX
j=1

(ut;j � ut;j�1) r
�
t;j

fu

�
fut;jgmj=1

�
=

mX
j=1

(ut;j � ut;j�1)
2

Under IID noise, RV (m)
t is biased and inconsistent and its bias and variance are linearly

increasing in m. See for example Zhang, Mykland and Ait-Sahalia (2005) and Hansen and

Lunde (2006).

Example 2 The �rst order autocorrelation bias corrected estimator of Zhou (1996) given by

RV
(AC;m;1)
t =

mX
j=1

r2t;j +
mX
j=1

rt;j (rt;j+1 + rt;j�1) (1.9)

satis�es (1.5) with:

fr�
��
r�t;j
	m
j=1

�
=

mX
j=1

r�2t;j +
mX
j=1

r�t;j
�
r�t;j+1 + r�t;j�1

�
fr�;u

��
r�t;j; ut;j

	m
j=1

�
= 2

mX
j=1

�ut;jr
�
t;j +

mX
j=1

�ut;j
�
r�t;j+1 + r�t;j�1

�
+

mX
j=1

r�t;j (�ut;j+1 +�ut;j�1)

fu

�
fut;jgmj=1

�
=

mX
j=1

�u2t;j +

mX
j=1

�ut;j (�ut;j+1 +�ut;j�1)

and �ut;j = ut;j � ut;j�1.

Under IID noise, it is shown in Hansen and Lunde (2006) that RV (AC;m;1)
t is unbiased

for IV while its variance is linearly increasing in m. Bandi and Russell (2006) and Hansen

and Lunde (2006) derived optimal sampling frequencies for RV (m)
t and RV (AC;m;1)

t based on

a signal-to-noise ratio maximization.
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Example 3 The realized Kernel of Barndor¤-Nielsen, Hansen, Lunde and Shephard (2008a)

is given by:

KBNHLS
t = 
t;0 (r) +

HX
h=1

k

�
h� 1
H

��

t;h (r) + 
t;�h (r)

�
(1.10)

for a kernel function k
�
h�1
H

�
such that k (0) = 1 and k (1) = 0. where:


t;h (x) =
mX
j=1

xt;jxt;j�h (1.11)

for all variable x and h. If we further de�ne:


t;h (x; y) =
mX
j=1

xt;jyt;j�h

Kt (x) = 
t;0 (x) +
HX
h=1

k

�
h� 1
H

��

t;h (x) + 
t;�h (x)

�
Kt (x; y) = 
t;0 (x; y) +

HX
h=1

k

�
h� 1
H

��

t;h (x; y) + 
t;�h (x; y)

�
then KBNHLS

t satis�es (1.5) with:

fr�
��
r�t;j
	m
j=1

�
= Kt (r

�)

fr�;u

��
r�t;j; ut;j

	m
j=1

�
= Kt (r

�;�u) +Kt (�u; r
�)

fu

�
fut;jgmj=1

�
= Kt (�u)

and �ut;j = ut;j � ut;j�1.

Barndor¤-Nielsen and al. (2008a) show that KBNHLS
t is consistent for IVt in the presence

of microstructure noise under various choice of kernel function. For example, setting k (x) =

1 � x (the Bartlett kernel) and H _ m2=3 leads to KBNHLS
t � IVt = Op

�
m�1=6� under

IID noise. Furthermore, this estimator is robust to special forms of endogeneity and serial

correlation in the microstructure noise process7. As we can see, the expression of KBNHLS
t is

reminiscent of the long run variance estimators of Newey and West (1987) and Andrews and

Monahan (1992).

7In the current context, an endogenous noise is a noise that is correlated with the e¢ cient price or return.
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1.2.3 Discretization Error versus Microstructure Noise

In this subsection, we examine the relative contribution of the discretization error and the

microstructure noise to the MSE of cIV t. We �rst consider the bias term:

E
hcIV t

i
� IVt = E

h
fu

�
fut;jgmj=1

�i
(1.12)

Because the additive terms in (1.5) are uncorrelated, the variance of cIV t is given by:

V ar
hcIV t

i
= V ar

h
fr�
��
r�t;j
	m
j=1

�i
+ V ar

h
fr�;u

��
r�t;j; ut;j

	m
j=1

�i
+V ar

h
fu

�
fut;jgmj=1

�i
Hence the overall MSE is:

MSE
hcIV t

i
= V ar

h
fr�
��
r�t;j
	m
j=1

�i
+ V ar

h
fr�;u

��
r�t;j; ut;j

	m
j=1

�i
(1.13)

+V ar
h
fu

�
fut;jgmj=1

�i
+ E

h
fu

�
fut;jgmj=1

�i2
Because fr�;u

��
r�t;j; 0

	m
j=1

�
= fu

�
f0gmj=1

�
= 0, the above MSE reduces to the variance of

fr�
��
r�t;j
	m
j=1

�
when there is no noise in the data. Based on this argument, we adopt the

following de�nition.

De�nition 4 The contribution of the microstructure noise to the MSE of cIV t is:

MSEu

hcIV t

i
= V ar

h
fr�;u

��
r�t;j; ut;j

	m
j=1

�i
+ V ar

h
fu

�
fut;jgmj=1

�i
(1.14)

+E
h
fu

�
fut;jgmj=1

�i2
Accordingly, we de�ne the MSE due to discretization as:

MSEr�
hcIV t

i
= V ar

h
fr�
��
r�t;j
	m
j=1

�i
: (1.15)

This de�nition imputes to the microstructure noise the part of the MSE of cIV t that

vanishes when there is actually no microstructure noise in the data. In the following table,

we examine the expression of fr�
��
r�t;j
	m
j=1

�
for the three estimators listed in the examples.
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It is seen that this expression includes more and more terms as one moves from the top to the

bottom of the table. In fact, RV (AC;m;1)
t kills of the bias of its ancestor RV (m)

t at the expense

of a higher discretization error. Likewise, KBNHLS
t brings consistency upon conceding a

higher discretization error with respect to the unbiased estimator RV (AC;m;1)
t .

fr�
��
r�t;j
	m
j=1

�
V ar

h
fr�
��
r�t;j
	m
j=1

�i
RV

(m)
t

Pm
j=1 r

�2
t;j 2

Pm
j=1 �

�4
t;j

RV
(AC;m;1)
t

Pm
j=1 r

�2
t;j +

Pm
j=1 r

�
t;j

�
r�t;j+1 + r�t;j�1

�
2
Pm

j=1 �
�4
t;j

+4
Pm

j=1 �
�2
t;j�

�2
t;j�1 +O(m�2)

KBNHLS
t

Pm
j=1 r

�2
t;j +

Pm
j=1 r

�
t;j

�
r�t;j+1 + r�t;j�1

�
2
Pm

j=1 �
�4
t;j + 4

Pm
j=1 �

�2
t;j�

�2
t;j�1

+
PH

h=2 k
�
h�1
H

�Pm
j=1 r

�
t;j

�
r�t;j+h + r�t;j�h

�
+4
PH

h=2 k
�
h�1
H

�Pm
j=1 �

�2
t;j�

�2
t;j�h

+O(Hm�2)

Table 1: Part of the MSE due to discretization

We now turn to discuss the MSE due to IID microstructure noise. Unlike RV (m)
t whose

bias equals 2mE
�
u2t;j
�
, the estimators RV (AC;m;1)

t and KBNHLS
t are unbiased. As a conse-

quence, the MSE of RV (m)
t increases at rate m2 while those of RV (AC;m;1)

t and KBNHLS
t are

only linear in m. On the other hand, the consistency of KBNHLS
t ensures that its variance

eventually becomes smaller than that of RV (AC;m;1)
t asm goes to in�nity. But there is at least

two situations where RV (AC;m;1)
t can have lower variance than KBNHLS

t . The �rst situation

is the one in which the sampling frequency m is not large enough to make the asymptotic

results for KBNHLS
t reliable. In fact, the variance of KBNHLS

t can be arbitrarily high in �xed

frequency although it vanishes as m goes to in�nity. The second situation is the case where

the variance of the microstructure noise is so small that it contributes very little to the MSE.

In this case, the MSE of the estimators basically reduces to the variance of fr�
��
r�t;j
	m
j=1

�
which happens to be larger for KBNHLS

t .

Our intuitions are supported by a simulation study by Gatheral and Oomen (2007).

These authors implemented twenty realized measures that aim to estimate the IV. Their

main �nding is that even though inconsistent, kernel-type estimators like RV (AC;m;1)
t often

deliver good performances in term of MSE at sampling frequencies commonly encountered

in practice. Unfortunately, there is no clear rule indicating the minimum sampling frequency

required for the asymptotic theory of KBNHLS
t to be usable. Moreover, the microstructure
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noise is not observed so that it is di¢ cult to tell whether or not its size is small compared to

the e¢ cient returns.

It turns out that one can construct a linear combination of RV (AC;m;1)
t and KBNHLS

t that

outperforms either of the individual estimators. Let us de�ne:

K$
t = $KBNHLS

t + (1�$)RV
(AC;m;1)
t (1.16)

Because both estimators are unbiased, the weight $ that minimizes the variance of K$
t

conditional on the volatility path is given:

$�
t =

Cov
h
RV

(AC;m;1)
t ; RV

(AC;m;1)
t �KBNHLS

t

i
V ar

h
RV

(AC;m;1)
t �KBNHLS

t

i : (1.17)

The resulting K$�
t is called shrinkage estimator of IVt. By construction, it satis�es:

V ar
�
K$�

t

�
� min

�
V ar

�
KBNHLS
t

�
; V ar

�
RV

(AC;m;1)
t

��
Hence the shrinkage estimator inherits the consistency of KBNHLS

t while performing better

than RV (AC;m;1)
t in the problematic situations listed above. Although we are using a quadratic

loss function, other types of loss functions could have been considered. See Hansen (2007)

and references therein.

The estimator K$�
t is related to the estimator proposed in Ghysels, Mykland and Renault

(2008). In fact, Ghysels, Mykland and Renault (2008) observe that the volatility is quite

persistent in practice. Based on this, they propose a new estimator of IVt which is a linear

combination of a current period estimator and an optimal forecast of IVt from the previous

period. This can be thought of as shrinking the current period estimator toward the forecast.

We analyze below the asymptotic behavior of the optimal weight.
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1.2.4 Asymptotic Theory

It is maintained in this section that the microstructure noise is IID. This assumption is

relaxed later in Section 6. Let us assume that KBNHLS
t satis�es:

KBNHLS
t � IVt = Op

�
m��� ; � � 0:

To ease the readability, let us de�ne:

�1;t =

mX
j=1

r2t;j +

mX
j=1

rt;j (rt;j+1 + rt;j�1) ;

�2;t =
HX
h=2

k

�
h� 1
H

��

t;h (r) + 
t;�h (r)

�
:

With these notations, we have:

RV
(AC;m;1)
t = �1;t;

KBNHLS
t = �1;t + �2;t;

K$
t = �1;t +$�2;t:

It turns out that K$
t is also a realized kernels with kernel function given by:

g$ (0) = k (0) = 1;

g$ (x) = $k (x) ; 8 x 2 (0; 1] :

It is seen that lim
x!0+

g$ (x) = $ while g$ (0) = 1 so that g$ (x) is discontinuous at x =

0 whenever $ 6= 1. We may thus refer to the minimum variance estimator K$�
t as the

"shrinkage realized kernels". The optimal shrinkage weight is given by:

$�
t = �

Cov (�1;t; �2;t)

V ar (�2;t)
= ��1;2

s
V ar (�1;t)

V ar (�2;t)

where �1;2 is the conditional correlation between �1;t and �2;t. Note that $
�
t is equal to minus

the regression slope of �1;t onto �2;t.
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This optimal weight results in the following variance for K$�

t :

V ar
�
K$�

t

�
= V ar (�1;t)

�
1� �21;2

�
(1.18)

It is seen that in comparison with RV (AC;m;1)
t , the variance of K$�

t is smaller by a factor�
1� �21;2

�
. The variance reduction with respect to KBNHLS

t is given by:

V ar
�
KBNHLS
t

�
� V ar

�
K$�

t

�
= �21;2V ar (�1;t) + 2Cov (�1;t; �2;t) + V ar (�2;t)

=

�
�1;2

q
V ar (�1;t) +

q
V ar (�2;t)

�2
� 0 (1.19)

To derive a rate for �1;2, we use Equations (1.18) and (1.19):

V ar
�
K$�

t

�
� V ar

�
KBNHLS
t

�
= O

�
m�2��,

1� �21;2 �
V ar

�
KBNHLS
t

�
V ar (�1;t)

= O
�
m�2��1�

We obtain the rate for �1;2 by applying the following rule:

�1;2 = �
�
1�O

�
m�2��1��1=2 � �1 + 1

2
O
�
m�2��1� ; (1.20)

that is, �1;2 converges to minus one from above at rate O (m�2��1). The sign follows from

the prior knowledge that Cov (�1;t; �2;t) is negative.

Note that the consistency of K$�
t implies that for large enough m, we have:

�1;t � �$�
t �2;t + IVt;

This has two implications. Firstly, because V ar (�1;t) = O(m), we have:

1

m
V ar (�2;t)! O(1)

And secondly, we have:

V ar
�
KBNHLS
t

�
' (1�$�

t )
2 V ar (�2;t) = O

�
m�2�� :
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These two implications allow us to conclude that:

1�$�
t = O

�
m��� 1

2

�
: (1.21)

In summary, (1.19) shows that the shrinkage estimator outperforms the estimator of

Barndor¤-Nielsen and al. (2008a) in �nite frequency while (1.21) shows that the two esti-

mators are asymptotically equivalent. The optimality of the weight $�
t relies on the unbi-

asedness of RV (AC;m;1)
t and KBNHLS

t . However, the estimator RV (AC;m;1)
t is biased when the

microstructure is time dependent. In the following section, we specify a dependent semipara-

metric model for the microstructure noise within which the suitable shrinkage estimator will

be derived.

1.3 A Semiparametric Model for the Microstructure

Noise

Our modeling approach is based on the assumption that the time series properties of the

microstructure noise are tied to the frequency at which the prices have been recorded. With

this in mind, we specify a link between the noise ut;j and the latent return r�t;j at the highest

frequency and then deduce the properties of the realized volatility computed at lower fre-

quencies. In a second step, we will study the properties of the kernel based estimators of

Hansen and Lunde (2006) and Barndor¤-Nielsen and al (2008a) when the record frequency

m goes to in�nity.

We assume that the noise process evolves in calendar time according to:

ut;j = at;jr
�
t;j + "t;j; j = 1; 2; :::;m, for all t (1.22)

where at;j is a time varying coe¢ cient and "t;j is independent of the e¢ cient high frequency

return r�t;j. In the words of Hasbrouck (1993), "t;j is the information uncorrelated or exogenous

pricing error and at;jr�t;j is the information correlated or endogenous pricing error. For sake

of parsimony, our model assumes that time dependence in the noise process can only be due

to its information uncorrelated part. We discuss more speci�cally the assumptions below.
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1.3.1 Assumptions

The following assumptions are maintained throughout the paper.

E0. at;j = �0 +
�1p
m��2t;j

, where �0 and �1 are constants and

��2t;j = V ar
�
r�t;j
�
�
Z t�1+j=m

t�1+(j�1)=m
�2sds:

E1. For �xed m, "t;j is a discrete time stationary process with zero mean and �nite fourth

moments, and independent of f�sg and r�t;j.

E2. E("t;j"t;j�h) = !
�
h
m

�
� !m;h, 0 � h

m
� L

m
< 1 and !m;h = 0 for all h > L.

E3. ! (0) � !m;0 = !0 for all m, !m;h � !m;h+1 = !0O(m
��) for some � < 2=3,

h = 0; :::; L� 1.

E4. L _ m� for some � � �.

The aim of Assumption E0 is to introduce endogeneity in the microstructure noise process

in such a way that both homoscedasticity (�0 = 0) and heteroscedaticity (�1 = 0) are allowed.

This assumption implies that the variance of the endogenous part of the noise goes to zero

at rate m since:

V ar
�
at;jr

�
t;j

�
= �0�

�2
t;j + 2�0�1

s
��2t;j
m
+
�21
m
:

Assumption E1 is quite standard in the literature. The semi-parametric nature of the

model comes from Assumption E2 which only stipulates that "t;j is L-dependent. In fact, this

assumption does not specify a parametric family for the distribution of "t;j. Furthermore, L

may grow with the record frequency m according to E4. Assumption E3 implies that:

Cov ("t;0; "t;j) = !0 �
j�1X
h=0

(!m;h � !m;h+1) = !0 � j!0O(m
��): (1.23)

Hence for any �xed j, Cov ("t;0; "t;j) converges to the constant variance !0 as m goes to

in�nity. Intuitively, the time length between "t;0 and "t;j goes to zero as m increases to

in�nity and these two realizations should coincide at the limit.

We now highlight an important link between assumptions E3 and E4. To this end, let us

assume that j = bLcc for some constant c 2 (0; 1), where bxc denote the largest integer that
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is smaller than x. According to E3 and E4, we have:

Cov ("t;0; "t;j) = !0 � j!0O(m
��)

= !0 � !0cO(m
���)

It is seen that the condition ��� � 0 is necessary in order for Cov ("t;0; "t;j) to be bounded.

The requirement that � < 2=3 in Assumption E3 is only technical and is imposed to

ensure that � < 2=3. That condition turns out to be crucial for the convergence of the

realized kernels with Bartlett kernel. Indeed, the parameters � and � play important roles in

the asymptotics. Note that the memory of noise as measure by L is longer for larger �, but

the time length L
m
after which the correlation dies out converges to zero as m goes to in�nity.

In summary, the proposed model for the microstructure noise has the implication that

the covariance between two consecutive realizations of "t converges to its variance as the

frequency at which the prices are recorded m goes to in�nity. This model aims to capture

the fact that two consecutive observations of "t become arbitrarily close in calendar time

and must thus coincide at the limit. Consequently, the �rst order autocorrelation of "t must

converge to one contrary to what is implied for instance by an AR(1) model with constant

autoregressive root. The introduction of this feature comes at the cost that the memory

parameter L must not grow too fast as a function of m for the realized kernels to continue

to deliver their best performance at the largest available frequency.

Below, we compare our models with other speci�cations.

1.3.2 Nested and Related Models

Imposing �0 = �1 = � = 0 in our model leads to ut;j = "t;j where "t;j is a moving average of

�x order L. This case has been considered in Hansen and Lunde (2006). Further imposing

L = 0 leads to the IID noise considered by Ait-Sahalia, Mykland and Zhang (2005) among

others. One gets a version of Roll�s model (1984) from our speci�cation by setting �0 =

�1 = 0 and "t;j = �Qt;j=2; where Qt;j is the bid-ask spread. The model of Roll can thus be

regarded as nested within our speci�cation with the di¤erence that "t;j is now observable.

Hasbrouck (1993) used the restriction �1 = 0 with "t;j IID to model the microstructure noise

contaminating daily returns. This particular case results in an MA(1) representation for
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ut;j which, as a function of the original parameters, is identi�able if one further imposes the

restriction "t;j = 0 used in Beveridge and Nelson (1981) or the restriction �0 = 0 used by

Watson (1986).

Ait-Sahalia, Mykland and Zhang (2006) considered an exogenous noise with general mix-

ing properties. Kalnina and Linton (2008) advocated a microstructure noise model that fea-

tures endogeneity and diurnal heteroscedaticity. These two models cannot be nested within

our speci�cation.

We now examine the continuous time limit of our model. As m goes to in�nity, we have:

Z t

t�1=m
�sdWs � �tdWt;

m

Z t

t�1=m
�2sds � �2t

for all t. From this, we see that the limit of (1.22) as m becomes very large may be de�ned

as:

us = �0�sdWs + �1dWs + "s; (1.24)

where Ws is the same Brownian motion as in (1.1). Equation (1.24) specialized to the case

�0 = �1 = 0 is reminiscent of a case covered in Section 4.1 of Hansen and Lunde (2006).

Note that we have:

var (�0�sdWs) = �20�
2
sds = O (ds) ;

var (�1dWs) =
�21
m
= O (ds) ;

so that the noise basically reduces to its information uncorrelated part "s at the limit. Also,

we do not suggest that (1.22) can be deduced from (1.24) by aggregation.

The vanishing information correlated noise may happen to be a theoretical weakness in

some situations. In this regard, perhaps a more interesting speci�cation is:

ut;j = �0r
�
t;j + �1

NX
k=0

�k
r�t;j�kp
m��t;j�k

+ "t;j; j = 1; 2; :::;m, for all t: (1.25)

The above speci�cation is suitable if there is a reason to think that the pricing errors are
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correlated with past information even at the limit. In this case, the limit as m becomes very

large may be cast as:

us = �0�sdWs + �1

Z s

�1
� (s; t) dWt + "s (1.26)

where � (s; t) is a continuous function scaled in such a way that the variance of
R s
�1 � (s; t) dWt

is constant for all s. In studying model (1.25), the most challenging task will be to identify

the coe¢ cients �k from the autocovariances of "t;j. Equation (1.26) specialized to the case

�0 = 0 and "s = 0 is reminiscent of a case discussed in a comment of Hansen and Lunde

(2006) by Garcia and Meddahi (2006).

In the next subsection, we discuss some implications of model (1.22).

1.3.3 Some Implications of the Model

We �rst consider the unobservable implications of our postulated model. When �0 = 0, the

microstructure noise ut;j is identically distributed conditional on the volatility path:

ut;jj f�sg � "t;j +N

�
0;
�21
m

�
for all (t; j)

Also, the variance of ut;j and the correlation between ut;j and r�t;j are given by:

V ar (ut;j) =
�21
m
+ !0

Corr
�
ut;j; r

�
t;j

�
=

�1p
�21 +m!0

:

It is seen that Corr
�
ut;j; r

�
t;j

�
goes to zero as m goes to in�nity.

When �1 = 0 and �0 6= 0, the noise process is no longer identically distributed. We have:

ut;jj
�
�2s
	
� "t;j +N

�
0; �20�

�2
t;j

�
Corr

�
ut;j; r

�
t;j

�
=

�0�
�
t;jq

�20�
�2
t;j + !0

It is seen that Corr
�
ut;j; r

�
t;j

�
is no longer constant.

We now turn to examine the observable implications. The expression of the observed
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log-returns at the highest frequency m takes on the form:

rt;j =

�
1 + �0 +

�1p
m��t;j

�
r�t;j �

�
�0 +

�1p
m��t;j�1

�
r�t;j�1 + ("t;j � "t;j�1) : (1.27)

The covariance between two consecutive returns is given by:

E(rt;jrt;j�1) = �
�
�0 +

�1p
m��t;j�1

��
1 + �0 +

�1p
m��t;j�1

�
��2t;j�1�!0+2!m;1�!m;2 (1.28)

where we recall that E("t;j"t;j�h) = !m;h: This covariance is time varying and may be positive

or negative depending on the local variance ��2t;j�1 and the values of the parameters. The

covariance between two non consecutive returns is:

E(rt;jrt;j�h) = �!m;h�1 + 2!m;h � !m;h+1; h � 2: (1.29)

Hence E(rt;jrt;j�L�1) = 0 from the L-dependence of "t;j: Note that if "t;j is IID, these formulas

reduce to:

E(rt;jrt;j�1) = �
�
�0 +

�1p
m��t;j�1

��
1 + �0 +

�1p
m��t;j�1

�
��2t;j�1 � !0 (1.30)

E(rt;jrt;j�h) = 0; h � 2: (1.31)

In what follows, we examine the implications of the postulated microstructure noise model

for the traditional realized variance.

1.4 Properties of Three IV Estimators

We study successively the traditional realized variance, the kernel estimator of Hansen and

Lunde (2006) and the realized kernels of Barndor¤-Nielsen, Hansen, Lunde and Shephard

(2008a). The bias of the realized provides one of the moment conditions that will be used

in Section 5 to estimate the correlogram of the microstructure noise. The properties of the

kernel estimators are mainly used in Section 6 to design the shrinkage estimator of the IV.
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1.4.1 The Realized Volatility

The estimator of interest here is the sparsely sampled realized variance given by:

RV
(mq)
t =

mqX
k=1

er2t;k (1.32)

where ert;k is the sum of q consecutive returns, that is:

ert;k = qkX
j=qk�q+1

rt;j; k = 1; :::;mq =
m

q
; q � 1 (1.33)

Hence if r�t;j is a series of one minute returns for instance, then ert;k would be a sequence of
q minutes return. The following picture illustrates the corresponding subsampling scheme

which is quite standard in this literature.

Figure 1: The subsampling scheme

If the noise process is correctly described at the highest frequency by equation (1.22),

then the expression of ert;k is given by:
ert;k =

 
1 + �0 +

�1
��t;qk

!
r�t;qk +

qk�1X
j=qk�q+1

r�t;j �
 
�0 +

�1
��t;qk�q

!
r�t;qk�q (1.34)

+("t;qk � "t;qk�q) ;



31
for k = 1; :::;mq and for all t, with the convention that

Pqk�1
j=qk�q+1 r

�
t;j = 0 when q = 1. The

covariance between ert;k and ert;k�1 is given by:
cov(ert;k; ert;k�1) = �

 
�0 +

�1
��t;qk�q

! 
1 + �0 +

�1
��t;qk�q

!
��2t;qk�q (1.35)

�!0 + 2!m;q � !m;2q

The next theorem gives the bias and variance of RV (mq)
t . The expression of the bias will

be useful for the estimation of the correlogram of the microstructure noise in Section 6.

Theorem 5 Assume that the noise process evolves according to equation (1.22), and let

RV
(mq)
t =

Pmq

k=1 er2t;k with mq =
m
q
; q � 1 and m the record frequency. Then we have:

E
h
RV

(mq)
t

i
= IVt + 2mq (!0 � !m;q)| {z }

bias due to exogenous noise

+
2�21
q
+
2�1 (2�0 + 1)p

m

mqX
k=1

��t;qk + 2�0 (�0 + 1)

mqX
k=1

��2t;qk| {z }
bias due to endogenous noise

+�20
�
��2t;0 � ��2t;m

�
+
2�0�1p
m

�
��t;0 � ��t;m

�
| {z }

end e¤ ects

:

V ar
h
RV

(mq)
t

i
= mq�+

16�21
q
(!0 � !m;q) +

12�41
qm

+8
h
(3+5�0)�

3
1

m
p
m

+ 2(1+�0)�1p
m

+ 2�0�1p
m
(!0 � !m;q) +

�0�
3
1

m
p
m

iPmq

k=1 �
�
t;qk

+4
�
1 + 2�0 + 2�

2
0

� �7(1+2�0+2�20)�21
m

+ 2 (!0 � !m;q)

�Pmq

k=1 �
�2
t;qk

+8
(1+4�0+6�20+4�30)�1p

m

Pmq

k=1 �
3
t;qk + 2

Pmq

k=1

�Pqk
j=qk�q+1 �

�2
t;j

�2
+16�0(1+�0)�

2
1

m

Pmq

k=1 �
�
t;qk�q�

�
t;qk +

8(1+�0)�1p
m

Pmq

k=1

Pqk�1
j=qk�q+1 �

�2
t;j�

�
t;qk

+8�20(1+�0)�1p
m

Pmq

k=1 �
�2
t;qk�q�

�
t;qk +

8�0(1+�0)
2�1p

m

Pmq

k=1 �
�
t;qk�q�

�2
t;qk

+8�0�1p
m

Pmq

k=1

Pqk�1
j=qk�q+1 �

�2
t;j�

�
t;qk�q + 2

�
4�0 + 8�

2
0 + 8�

3
0 + 4�

4
0

�Pmq

k=1 �
4
t;qk

+4
�
2�0 + �20

�Pmq

k=1

Pqk�1
j=qk�q+1 �

�2
t;j�

�2
t;qk + 4�

2
0

Pmq

k=1

Pqk�1
j=qk�q+1 �

�2
t;j�

�2
t;qk�q

+4�20 (1 + �0)
2Pmq

k=1 �
�2
t;qk�q�

�2
t;qk + 8 (!0 � !m;q)

�
�20 +

2�0�1p
m

�
+O(m�1);

where � = 1
mq
V ar

�Pmq

k=1 ("t;kq � "t;kq�q)
2� :

Computing explicitly the exact expression of � is not of direct interest in our analysis.

Note that the dominant terms of the bias and of the variance of RV (mq) are O(mq). In the
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case where "t;j is IID, replacing �0 = �1 = 0 in the above expressions yields the result of

Lemma 4 of Hansen and Lunde (2006) up to some changes in notations:

E
h
RV

(mq)
t

i
= IVt + 2mq!0 (1.36)

V ar
h
RV

(mq)
t

i
= mq�+ 8!0IVt + 2

mqX
k=1

 
qkX

j=qk�q+1

��2t;j

!2

where mq� = 4mqE
�
"4t;j
�
+ 2

�
!20 � E

�
"4t;j
��
when "t;j is IID.

We see that the volatility signature plot may not be able to reveal the presence of the

noise in the data if "t;j = 0, since in this case the bias is equal to:

2�21
q
+ 2�1 (2�0 + 1)

1p
m

mqX
k=1

��t;qk + 2q�0 (�0 + 1)

mqX
k=1

��2t;qk = O(1) for all mq

Moreover, this bias can be negative at some sampling frequencies provided that �1 < 0 or

�0 < 0. Finally, note that the total bias of the RV sampled at the highest frequency may

diverge at a lower rate than m, since:

2m (!0 � !m;1) = O(!0m
1��):

In the next section, we pursue with the examination of the implication of the microstruc-

ture noise model for two kernel-based estimators.

We examine successively the estimators of Hansen and Lunde (2006) and Barndor¤-

Nielsen and al (2008) under our microstructure noise model. This exercise if a useful step in

the process of designing a good shrinkage estimator for the IV.

1.4.2 Hansen and Lunde (2006)

Hansen and Lunde (2006) proposed the following �at kernel estimator:

RV
(AC;m;L+1)
t = 
t;0 (r) +

L+1X
h=1

�

t;h (r) + 
t;�h (r)

�
; (1.37)
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where L is the memory of the noise as de�ned in E2 and 
t;h (r) is de�ned in (1.11). Note

that when L = 0 so that "t;j is IID, RV
(AC;m;L+1)
t coincides with the estimator of French and

al. (1987) and Zhou (1996):

RV
(AC;m;1)
t = 
t;0 (r) + 2

mX
j=1


t;1 (r) + (rt;m+1rt;m � rt;1rt;0)| {z }
end e¤ects

: (1.38)

The variance of RV (AC;m;L+1)
t is hard to derive in the general case. However, assuming that

"t;j is IID and neglecting the end e¤ects in (1.38) leads to the following result for RV
(AC;m;1)
t .

Theorem 6 Assume that the noise process evolves according to Equation (1.22). If "t;j is

IID, we have:

E
h
RV

(AC;m;1)
t

i
= IVt +

�
�20 + 2�0

� �
��2t;m � ��2t;0

�
� 2�1(1+�0)p

m

�
��t;m � ��t;0

�
V ar

h
RV

(AC;m;1)
t

i
= 8m!20 + 2

Pm
j=1 �

�4
t;j + 2

�
E
�
"4t;j
�
� !20

�
+�41+6�

2
1!0

m
+ 8�41

m2 +
8�1p
m

h
(�0+1)

2�21
m

+ �1p
m
+ 2!0 (1 + 2�0)

iPm
j=1 �

�
t;j

+8
h
�20�

2
1

m
+
�
�21
m
+ !0

�
(1 + �0)

2 + 2!0�
2
0

iPm
j=1 �

�2
t;j

+8�21
m

�
1 + 2�0 + 2�

2
0

�Pm
j=1 �

�
t;j�

�
t;j�1 +

16�0�
2
1

m
(1 + �0)

Pm
j=1 �

�
t;j�

�
t;j�2

+8�0�1p
m

�
1 + �0 + �30

�Pm
j=1 �

�2
t;j�

�
t;j�1 +

8�1p
m

�
1 + 2�0 + 2�

2
0 + �30

�Pm
j=1 �

�2
t;j�1�

�
t;j

+8�1(1+�0)�
2
0p

m

Pm
j=1 �

�2
t;j�2�

�
t;j +

8�1�0(1+�0)
2

p
m

Pm
j=1 �

�2
t;j�

�
t;j�2

+4
�
1 + 2�0 + 3�

2
0 + 2�

3
0 + �40

�Pm
j=1 �

�2
t;j�1�

�2
t;j

+4�20 (1 + �0)
2Pm

j=1 �
�2
t;j�

�2
t;j�2 + �0O

�
m�1=2��

Replacing �0 = �1 = 0 in this theorem yields a known result (Lemma 5 of Hansen and

Lunde, 2006):

E
h
RV

(AC;m;1)
t

i
= IVt;

V ar
h
RV

(AC;m;1)
t

i
' 8m!20 + 8!0IVt � 6!2m;0 + 2

mX
j=1

��4t;j + 4
mX
j=1

��2t;j�
�2
t;j�1:

When the exogenous noise is absent ("t;j = 0) and �0 6= 0 or �1 6= 0, the estimator RV
(AC;m;1)
t

is slightly biased and the bias vanishes at rate O (m�1).

E
h
RV

(AC;m;1)
t

i
� IVt =

�
�20 + 2�0

� �
��2t;m � ��2t;0

�
� 2�1 (1 + �0)p

m

�
��t;m � ��t;0

�
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By examining each of the individual terms in the expression of the variance of RV (AC;m;1)

t , it

is seen that RV (AC;m;1)
t converges to IVt at rate

p
m when "t;j = 0.

1.4.3 Barndor¤-Nielsen, Hansen, Lunde and Shephard (2008a)

The expression of this estimator denoted KBNHLS
t;Lead has already been introduced in Equation

(1.10). For practical purpose, we shall rewrite it as:

KBNHLS
t =

1

2

�
KBNHLS
t;Lead +KBNHLS

t;Lag

�
= KBNHLS

t;Lead +
1

2

�
KBNHLS
t;Lag �KBNHLS

t;Lead

�
;

where

KBNHLS
t;Lead = 
t;0 (r) + 2

HX
h=1

k

�
h� 1
H

�

s;h (r)

KBNHLS
t;Lag = 
t;0 (r) + 2

HX
h=1

k

�
h� 1
H

�

s;�h (r)

In studying the asymptotic properties ofKBNHLS
t , the end e¤ects 1

2

�
KBNHLS
t;Lag �KBNHLS

t;Lead

�
are di¢ cult to handle. However,KBNHLS

t;Lead andKBNHLS
t;Lag have the same expectation and similar

asymptotic variances while being imperfectly uncorrelated. This translates into the following

equations:

E
�
KBNHLS
t;Lag �KBNHLS

t;Lead

�
= 0

V ar

�
1

2
KBNHLS
t;Lead +

1

2
KBNHLS
t;Lag

�
� V ar

�
KBNHLS
t;Lead

�
For simplicity, we shall thus ignore these end e¤ects. In the worse case, this restriction will

give an upper bound for the true variance of KBNHLS
t . Accordingly, we introduce the "Lead"

versions of Kt (x) and Kt (x; y) de�ned under Equation (1.10) in order to be able to write:

KBNHLS
t = Kt (r

�) +Kt (r
�;�u) +Kt (�u; r

�) +Kt (�u)
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where

rt;j = r�t;j +�ut;j

�ut;j =

�
�0 +

�1p
m��t;j

�
r�t;j �

�
�0 +

�1p
m��t;j�1

�
r�t;j�1 + ("t;j � "t;j�1) :

Barndor¤-Nielsen and al (2008a) show that their estimator is robust to an endogenous

noise with �1 = 0. Also, we have seen in the previous subsection that RV
(AC;m;1)
t is consistent

for IVt when there is no exogenous noise in the data. Interestingly, KBNHLS
t has the following

representation:

KBNHLS
t = RV

(AC;m;1)
t +

HX
h=2

k

�
h� 1
H

��

t;h (r) + 
t;�h (r)

�
;

where
PH

h=2 k
�
h�1
H

� �

t;h (r) + 
t;�h (r)

�
is unbiased and consistent for zero when "t;j = 0.

In fact, the observed log-return rt;j is not autocorrelated beyond lag one in this case while

V ar (rt;j) = O(m�1). As a result, KBNHLS
t is robust to the type of endogenous noise assumed

here. For simplicity, we shall thus focus below on the asymptotic behavior of KBNHLS
t under

�0 = �1 = 0. We have the following theorem.

Theorem 7 Assume �0 = �1 = 0 and that E1 to E4 are satis�ed with � 6= 0. Further let

k (x) = 1� x (the Bartlett kernel). Then for su¢ ciently large H and m, we have:

Kt (r
�)� IVt = Op(H

1=2m�1=2);

V ar [Kt (r
�;�u)] � 2!0

H
+ 4

LX
h=1

(!m;h � !m;h+1)

"
1� (h+ 1)

2

H2

#
;

Kt (�u) = �"2t;0 + "2t;m �
4

H

mX
j=1

"t;j"t;j�H �
2

H

mX
j=1

"t;j"t;j�H�1

� 2
H

H�1X
h=2

("t;0"t;�h � "t;m"t;m�h) +
2

H
("t;0"t;�H � "t;m"t;m�H) :

where we recall that !m;L+1 = 0 in the expression of V ar [Kt (r
�;�u)].

In the IID noise case, we have !m;h = 0 for all h � 1. Hence setting H / m2=3 yields
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immediately the same result as in Barndor¤-Nielsen and al (2008a) up to the end e¤ects:

KBNHLS
t � IVt = �"2t;0 + "2t;m +Op(m

�1=6):

The estimator KBNHLS
t is thus consistent for IVt if we are willing to neglect the end e¤ects

�"2t;0 + "2t;m
8.

In the dependent case, we have:

V ar [Kt (r
�;�u)] ' 4!m;L

"
1� (L+ 1)

2

H2

#
(1.39)

+!0O

 
m��

LX
h=1

"
1� (h+ 1)

2

H2

#!
= 4!m;L + !0O

�
m�(���)�

where
PL

h=1

h
1� (h+1)2

H2

i
= O(L) = O(m�) and we recall that � � � by construction. Here

we have two sub-cases:

Case � < �: The term !0O
�
m�(���)� vanishes so that:

lim
m!1

V ar [Kt (r
�;�u)] = 4 lim

m!1
!m;L

On the other hand, Equation (1.23), indicates that !m;L = !0 � L!0O(m
��). Finally,

lim
m!1

V ar [Kt (r
�;�u)] = 4 lim

m!1

�
!0 � !0O(m

��+�)
�
= 4!0

Case � = �: Here the term !0O
�
m�(���)� _ !0 no longer vanish and:

lim
m!1

!m;L = lim
m!1

(!0 � !0O(1)) _ !0

This leads to:

lim
m!1

V ar [Kt (r
�;�u)] _ !0

Strictly speaking, KBNHLS
t is not consistent in the dependent case. But overall, the estimator

8See BNHLS (2007) for the treatment of these end e¤ects in practice.
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KBNHLS
t delivers its best performance for large m, no matter whether the noise is IID or not.

In the next section, we study the properties of the microstructure noise.

1.5 Inference on the Microstructure Noise Parameters

From now one, the notation 
t;h is used for 
t;h (r) where the latter is de�ned in (1.11). We

note from (1.28) that:

E
�

t;1
�
= �

mX
j=1

�
�0 +

�1p
m��t;j�1

��
1 + �0 +

�1p
m��t;j�1

�
��2t;j�1

+m (�!0 + 2!m;1 � !m;2)

where we recall that !m;h is the hth autocovariance of "t;j when observed at frequency m.

Let b(m)t = E
h
RV

(m)
t � IVt

i
denote the bias of the realized volatility computed at the

record frequency. It follows from Lemma 8 in appendix that when q = 1, we have:

b
(m)
t = 2

mX
j=1

�
�0 +

�1p
m��t;j�1

��
1 + �0 +

�1p
m��t;j�1

�
��2t;j�1

+2m (!0 � !m;1) + �20
�
��2t;0 � ��2t;m

�
+
2�0�1p
m

�
��t;0 � ��t;m

�
The endogenous parameters �0 and �1 hidden in the expression of the bias b

(m)
t are

unfortunately unidenti�ed. We shall thus focus on the estimation of the bias as a whole

rather that tackling �0 and �1 individually. In subsection 5.1, we discuss the estimation of

b
(m)
t and f!m;hgLh=0 while in subsection 5.2 we deal with the memory parameters (L; �; �).

1.5.1 Estimation of the Correlogram

By neglecting the O(m�1) end terms in the expression of the bias b(m)t , we obtain the following

moment conditions:

E
h
RV

(m)
t � b

(m)
t � IVt

i
= 0 (1.40)

E
h
b
(m)
t +

�

t;1 + 
t;�1

�
� 2m (!m;1 � !m;2)

i
= 0 (1.41)
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In addition, we also have:

E
��

t;h+1 + 
t;�h�1

�
� 2m (�!m;h + 2!m;h+1 � !m;h+2)

�
= 0; 1 � h � L (1.42)

Given that !m;h = 0 for h > L, we have L + 2T moment conditions to estimate L + 2T

parameters. Estimating these parameters by the method of moments is straightforward.

Solving �rst for !m;L and then proceeding by backward substitution yields:

b!m;h = � 1

2Tm

TX
s=1

L�h+1X
l=1

l
�

s;h+l + 
s;�h�l

�
; h = 1; :::L (1.43)

bb(m)t = �
t;1 � 
t;�1 �
1

T

TX
s=1

L+1X
l=2

�

s;l + 
s;�l

�
; (1.44)

RV
(AC;m;L+1)

t = 
t;0 + 
t;1 + 
t;�1 +
1

T

TX
s=1

L+1X
l=2

�

s;l + 
s;�l

�
(1.45)

where b!m;h, bb(m)t and RV
(AC;m;L+1)

t are unbiased estimators of !m;h, b
(m)
t and IVt respectively9.

It is seen that RV
(AC;m;L+1)

t is a bias corrected version of the standard realized variance which

uses the data available at all periods to estimate the IV of each period. To estimate the

variance !0, we use the expression of the bias of the RV sampled at the highest frequency.

We have:

b!0 =
1

2mT

TX
t=1

bb(m)t + b!m;1 (1.46)

= � 1

2mT

TX
t=1

L+1X
l=1

�

t;l + 
t;�l

�
+ b!m;1:

To estimate the covariance matrix of b!m = (b!m;0; b!m;1; :::; b!m;L)0, let us de�ne:
b!m;(1�L) = (b!m;1; :::; b!m;L)0

t;(2�L) =

�

t;2; :::; 
t;L+1

�0
where 
t;h =

1
2m

Pm
j=1 rt;j (rt;j�h + rt;j+h) for all t and h. Then we have the following relation

9When the data are non equally spaced, the expressions of the autocorrelation estimators are more tedious.
See for example Ubukata and Oya (2009).
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between the autocovariances of the noise and those of the observed returns:

b!m;(1�L) = 1

T

TX
t=1

P�1
t;(2�L)

where P is the L� L matrix with elements: Pi;i = �1, Pi;i+1 = 2, Pi;i+2 = �1; and Pi;j = 0

otherwise 1 � i; j � L.

If we further de�ne:

b!t;m = "� 1

2m

L+1X
l=1

�

t;l + 
t;�l

�
+
�
P�1
t;(2�L)

�
1
;
�
P�1
t;(2�L)

�0#0
;

with
�
P�1
t;(2�L)

�
1
being the �rst element of P�1
t;(2�L), then we are able to write:

b!m = 1

T

TX
t=1

b!t;m (1.47)

It is seen that b!t;m depends on only time t observations. Because rt;j is stationary with �nite
fourth moments under our assumptions on the e¢ cient returns and the microstructure noise,

the vector process b!t;m admits a �nite covariance matrix and we have:
p
T (b!m � !m)! N (0; Avar (b!t;m))

as T goes to in�nity and m is �xed. The long run covariance matrix Avar (b!t;m) may be
estimated as in Newey and West (1987). For example:

[Avar (b!t;m) =
1

T

TX
t=1

b!t;mb!0t;m (1.48)

+
1

T

TX
t=1

qX
k=1

�
1� k � 1

q

� b!t;m �b!0t+k;m + b!0t�k;m�
where q is the bandwidth.
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1.5.2 Assessing the true values of L, � and �

The knowledge of the memory parameter L is required to estimate the correlogram of the

microstructure noise. We suggest the following information criterion for its estimation:

bL = argmin
0�l�H�1

(
�(l) =

1

T

TX
t=1

�
KH;T
t �RV

(AC;m;l+1)

t

�2)
; H / m2=3 (1.49)

where RV
(AC;m;l+1)

t is de�ned as in (1.45) and:

KH;T
t = RV

(Ac;m;1)
t +

1

T

TX
s=1

HX
h=2

�
1� h� 1

H

��

s;h + 
s;�h

�
To see the intuition underlying this information criterion, note that �(l) satis�es:

E [�(l)] = V ar
�
KH;T
t �RV

(AC;m;l+1)

t

�
+
h
E
�
KH;T
t �RV

(AC;m;l+1)

t

�i2
where the moments are taken unconditionally. On the one hand, RV

(AC;m;l+1)

t is obtained by

truncating the expression of cIV t to l autocovariance terms and is thus unbiased for IVt when

l � L. On the other hand, KH;T
t is a smoothed version of RV

(AC;m;H)

t which is also unbiased

for IVt due to L < H / m2=3. Hence E
�
KH;T
t �RV

(AC;m;l+1)

t

�
is decreasing in l in the area

l < L and equals zero in the area l � L. Because the term V ar
�
KH;T
t �RV

(AC;m;l+1)

t

�
is

increasing in l, there is a trade-o¤ between bias and variance that results in a L-shaped curve

�(l). The power of this information criterion comes from the fact each of the statistics KH;T
t

and cIV (L)

t fully exploits the stationarity of the exogenous noise across days. An illustration

is provided in the simulation study of Section 8.

We now discuss the estimation of � and �. Assumption E3 stipulates that !0 is constant

for all m while !m;h�!m;h+1 = !0O(m
��) for some � < 2=3, h = 0; :::; L�1. More precisely,

we write:
!m;h � !m;h+1

!0
' Chm

��, with Ch 2
�
C;C

�
Taking the logs of both side of the equality and averaging over h yields:

� ' �1
L logm

L�1X
h=0

log

�
!m;h � !m;h+1

!0

�
+

1

L logm

L�1X
h=0

logCh;
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where 1
L logm

PL�1
h=1 logCh 2

h
logC
logm

; logC
logm

i
so that this term shrinks to zero asm goes to in�nity.

A consistent estimator of � is thus given by:

b� = 1

logm

"
log b!0 � 1

L

L�1X
h=0

log (b!m;h � b!m;h+1)# (1.50)

Note that b� is a Hill (1975) type estimator for the tail index of a distribution. It is
di¢ cult to analyze the asymptotic behavior of this estimator as m goes to in�nity. However,

we can exploit the functional relationship between b� and fb!m;hgmh=1 to obtain an asymptotic
distribution as T goes to in�nity and m is �xed. Using the Delta method, we obtain the

following Central Limit result:

p
T (b�� �)! N

�
0;
(r�)0Avar (b!t;m) (r�)

(logm)2

�

as T goes to in�nity, where the elements of the vector r� are given by:

(r�)1 =
1

!0
� 1

L (!0 � !1)
;

(r�)h =
1

L (!m;h�2 � !m;h�1)
� 1

L (!m;h�1 � !m;h)
; 2 � h � L

(r�)L+1 =
1

L (!L�1 � !L)
:

To estimate the parameter �, we note that L _ m� according to Assumption E4. Assuming

again L � Cm� leads to: b� = log bL
logm

(1.51)

where we neglect the bias logC
logm

.

Our next step is to propose a good estimator of the IV.

1.6 Shrinkage Realized Kernels

In subsections 2.3 and 2.4, we have designed and studied the asymptotic properties of a

shrinkage estimator of IV that is suitable for the IID noise case. In this section, we extend

the analysis to the case where the noise is dependent.
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On the one hand, we have the unbiased method of moment estimators RV
(AC;m;L+1)

t

introduced in (1.45) which makes an e¢ cient use of the data under the assumption that the

properties of the noise do not change over time. On the other hand, we have the realized

kernels KBNHLS
t of Barndor¤-Nielsen and al (2008a) which delivers its best performance at

the highest possible frequency. We have:

KBNHLS
t � IVt = Op

�
m��� ; for some � � 0

It is thus tempting to design the shrinkage estimator as an optimal linear combination of

KBNHLS
t and RV

(AC;m;L+1)

t . However, we prefer not to use RV
(AC;m;L+1)

t for two reasons.

Firstly, the properties of the noise may be changing over time contrary to what we assumed.

And secondly, an estimator that combines KBNHLS
t and RV

(AC;m;L+1)

t cannot be written as

a proper realized kernel that uses only within day observations. So instead, of combining

KBNHLS
t and RV

(AC;m;L+1)

t , we combine KBNHLS
t and a smoother version of RV

(AC;m;L+1)

t

denoted �(L)1;t :

�
(L)
1;t = 
t;0 (r) +

L+1X
h=1

k

�
h� 1
H

��

t;h (r) + 
t;�h (r)

�
(1.52)

�
(L)
2;t =

HX
h=L+2

k

�
h� 1
H

��

t;h (r) + 
t;�h (r)

�
(1.53)

so that

KBNHLS
t = �

(L)
1;t + �

(L)
2;t

Also, �(L)1;t is a smoothed version of RV
(AC;m;L+1)
t and is unbiased for the IV when k (x) = 1�x.

We can thus take linear combinations of the form:

K$
t = $KBNHLS

t + (1�$)�
(L)
1;t ; $ 2 R: (1.54)

= �
(L)
1;t +$�

(L)
2;t
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Indeed, K$

t is a realized kernels with kernel function given by:

g (x) = k (x) ; 0 � x � L

H

g (x) = $k (x) ,
L

H
< x � 1

The function g (x) is discontinuous at x = L
H
unless $ = 1.

As in the IID case, the weight $ is selected to minimize the quadratic loss function:

$�
t = argmin

$
E
�
(K$

t � IVt)
2 j f�g

�
(1.55)

The optimal shrinkage weight is:

$�
t = �

Cov
h
�
(L)
1;t ; �

(L)
2;t j f�g

i
V ar

h
�
(L)
2;t j f�g

i : (1.56)

However, these conditional second moments are not easy to compute. A simple strategy

is to look for a constant shrinkage weight $� that minimizes the marginal variance of K$
t .

By the law of total variance, we have:

V arTotal (K
$
t ) = V ar [E (K$

t j f�g)] + E [V ar (K$
t j f�g)]

= V ar [IVt] + E [V ar (K$
t j f�g)] :

Therefore, choosing $ to minimize the marginal variance of K$
t is equivalent to choosing

$ to minimize the expected conditional variance of K$
t . While $

� achieves on average the

same goal as the ideal weight $�
t , it is easier to estimate:

b$� = �
1
T

PT
t=1

�
�
(L)
1;t � �

(L)
1;T

�
�
(L)
2;t

1
T

PT
t=1

�
�
(L)
2;t

�2 : (1.57)

where �(L)1;T =
PT

t=1 �
(L)
1;t .
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The marginal variance of the shrinkage estimator with constant weight $� is:

V arTotal
�
K$�

t

�
= V arTotal

�
�
(L)
1;t

� �
1� �21;2

�
where �1;2 now denotes the marginal correlation between �

(L)
1;t and �

(L)
2;t . This implies that the

rate at which 1� �21;2 goes to zero is slower compared to the IID case:

1� �21;2 =
V arTotal

�
K$�
t

�
V arTotal

�
�
(L)
1;t

� = O(m�1): (1.58)

In fact, this follows from:

V arTotal
�
K$�

t

�
� V ar [IVt]| {z }

O(1)

+ E
�
V ar

�
KBNHLS
t j f�g

��| {z }
O(m�2�)

= O(1)

V arTotal

�
�
(L)
1;t

�
= V ar [IVt] + E

h
V ar

�
�
(L)
1;t j f�g

�i
| {z }

O(m)

= O(m)

The e¢ ciency gain of the shrinkage estimator with respect to KBNHLS
t is:

V arTotal
�
KBNHLS
t

�
� V arTotal

�
K$�

t

�
=�

�1;2

q
V arTotal (�1;t) +

q
V arTotal (�2;t)

�2
� 0

The consistency ofK$�
t implies at large frequency the approximation �(L)1;t = �$��

(L)
2;t +IVt.

On the one hand, we have:

V arTotal
�
KBNHLS
t

�
= V arTotal

�
�
(L)
1;t + �

(L)
2;t

�
= (1�$�)2 V ar (�2;t)

On the other hand,

V arTotal
�
KBNHLS
t

�
= V ar [IVt]| {z }

O(1)

+ E
�
V ar

�
KBNHLS
t j f�g

��| {z }
O(m�2�)

= O(1)
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Putting the two together yields (1�$�)2 V ar (�2;t) = O(1) so that �nally:

1�$� = O(m�1=2) (1.59)

Hence the rate of the unconditionally optimal shrinkage weight does not depend of �.

This shrinkage method can be used independently of the postulated microstructure noise

model. In particular, it can be adapted to the two scale realized volatility of Ait-Sahalia,

Mykland and Zhang (2006).

1.7 Monte Carlo Evidence

The aim in this subsection is to assess the performance of the shrinkage estimator of IV and

the quality of the estimators of f!m;lg
bL
l=0 by simulations.

1.7.1 Simulation Design

We assumed that the e¢ cient log-price process evolves according to the model of Heston

(1993):

dp�t = �tdW1;t (1.60)

d�2t = �
�
�� �2t

�
dt+ 
�t

h
�dW1;t +

p
1� �2dW2;t

i
(1.61)

where W1;t and W2;t are independent Brownian motions and the parameter � captures the

so-called leverage e¤ect. Following Zhang and al. (2005), we set the parameters values as

follows:

� = 5;� = 0:04; 
 = 0:5; � 2 f0;�0:5g

where � = 0 corresponds to the no leverage assumption made in deriving our analytical

results. The case � = �0:5 is used to check the robustness of our conclusions. The unit

period in this speci�cation is one year.

We simulated data for T = 1000 days using Euler discretization scheme at one second.

Assuming that the market opens from 9:30 am to 4:00 pm, this yields 23400 discretization

points within each day. We then consider four frequencies at which the price can be observed:
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30 seconds, one minute, two minutes and �ve minutes. This yields four data sets with

respectively m = 780, 390, 195 and 78 observations per day. Each data set is contaminated

with a microstructure noise process simulated according to the following model:

ut;j =

�
�0 +

�1p
m��t;j

�
r�t;j + "t;j, j = 1; :::;m

where the exogenous noise "t;j is an MA(3).

"t;j = vt;j + �1vt;j�1 + �2vt;j�2 + �3vt;j�3

vt;j
IID� N(0; �0)

We set the following values for the noise parameter:

�0 = 0:5; �1 = 0:5;

�1 = 0:5; �2 = 0:2; �3 = 0:05:

In order to make this simulation design less arbitrary, we will vary �0 in order to increase or

decrease the autocovariances of "t;j. In fact, we have:

!0 � E
�
"2t;j
�
= �0

�
1 + �21 + �22 + �23

�
= 1:2925�0;

!m;1 � E ("t;j"t;j�1) = �0 (�1 + �1�2 + �2�3) = 0:61�0;

!m;2 � E ("t;j"t;j�2) = �0 (�2 + �1�3) = 0:225�0;

!m;3 � E ("t;j"t;j�2) = �0�3 = 0:05�0;

!m;h � E ("t;j"t;j�h) = 0 for all h � 4:

Because the link between !0 and �0 is one-to-one, we will directly vary !0 within the range:

!0 2
�
2:25� 10�8; 2:5� 10�7; 2:25� 10�6; 2:5� 10�5

	
:

The value !0 = 2:5 � 10�7 has been used in Zhang and al. (2005) at �ve minute sampling

frequency while !0 = 2:25�10�6 has served in Ait-Sahalia and al. (2005) at frequencies that

range from one minute to thirty minutes.
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We consider three IV estimators: the unbiased estimator �(L)1;t (Equation (1.52)), the

consistent estimator KBNHLS
t (Equation (1.10) with Bartlett kernel) and the shrinkage esti-

mator K$�
t (Equation (1.54) with $� given by (1.56)). After several trials, the bandwidth

H =
�
0:4m2=3

�
seems to work well for KBNHLS

t .

First, we consider the volatility signature plots, that is, the curve of 1
T

PT
t=1RV

(mq)
t

plotted against q = m
mq
. In Figure 2 of Appendix C, the left hand side graphs describe one

simulated sample without noise while the right hand side graphs describe a noisy version of

the same data. It is seen that the volatility signature plots (at the top) are quite informative

about the presence of the noise. Secondly, we estimate L from the �rst sample using the

plot of �(l) against l as suggested in Equation (1.49). The curve of �(l) at the bottom of

Figure 2 is L-shaped with the bend located around L = 3. Because a slight overestimation

of L still results in an unbiased estimator �(L)1;t , we will thus set once and for all bL = 4 in the
subsequent computations for robustness check. Also, this is an economic choice that speeds

up the simulations.

1.7.2 Simulation Results

For any arbitrary estimator cIV t of IVt, the empirical MSE of cIV t is given by:

MSE(cIV t) =
1

T

TX
t=1

�cIV t � IVt

�2
, (1.62)

Note that this MSE converges to the marginal variance of cIV t for the three unbiased esti-

mators considered here. In Appendix B, table 2 displays the MSE of �(L)1;t , K
BNHLS
t and K$�

t

for the e¢ cient price model with no leverage while Table 3 shows the results when leverage

is included. It is interesting to note that the introduction of leverage slightly reduces the

variance in all the scenarios. Otherwise, the two tables display qualitatively similar results.

Before analyzing the results, we recall that the e¢ cient return data has been contaminated

with a Gaussian MA(3) microstructure noise driven by the same parameters regardless of

the sampling frequency. Hence for a given !0, the signal-to-noise ratio deteriorates as the

sampling frequency increases. Likewise for a �xed sampling frequency, the signal-to-noise

ratio deteriorates as !0 increases.
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It turns out that the shrinkage weight allocated to the consistent estimator $� heavily

depends on the variance of the microstructure noise. In general, $� is increasing in !0.

In large !0 scenarios, the weight is close to one and tends to decrease very slowly as m

increases. By contrast, the weight is smaller in small !0 scenarios and increases quite fast

as m decreases. Overall, the relative e¢ ciency gain of the shrinkage estimator over the

consistent estimator is actually large when m is large and !0 is small. Note that compared

to the consistent estimator KBNHLS
t , the MSE of K$�

t is smaller by more than one half in

the scenario (!0 = 2:25 � 10�7, m = 780) and by about one third for (!0 = 2:25 � 10�7,

m = 390).

Not surprisingly, the unbiased estimator �(L)1;t performs better than the consistent estimator

in small !0 scenarios (!0 = 2:25� 10�7). In the large !0 scenarios (!0 > 2:25� 10�7), �(L)1;t is

worse than KBNHLS
t at all the sampling frequencies considered while the best performance

of �(L)1;t is achieved at lower frequencies. This is consistent with the fact that the optimal

signal-to-noise ratio of �(L)1;t is attained at lower frequencies for larger !0. For a discussion

on optimal sampling frequencies in the IID noise context, see for example Bandi and Russell

(2006).

Tables 3 and 4 show the estimation results for the correlogram of the noise in the scenarios

(!0 = 2:25 � 10�7; m = 780) and (!0 = 2:25 � 10�7; m = 390) respectively. In the two

tables, the column labeled "True" contains the true values of the parameters. The estimates

are computed using the Equation (1.47) while the standard deviations are computed from

Equation (1.48) with ten lags. Firstly, we note that the estimator of !0 is biased upward

and the bias decreases as the record frequency increases. In fact, the bias of b!0 is due
to the presence of endogenous noise. Under the assumption that ��t;qk is stationary, the

unconditional bias of b!0 is given by:
E [b!0]� !0 =

�21
m
+
�1 (2�0 + 1)p

m
E
�
��t;qk

�
+ �0 (�0 + 1)E

�
��2t;qk

�
Hence while b!0 is biased for the variance of the exogenous noise, it does re�ect the actual
size of the overall noise contaminating the asset prices.

The results suggest that the higher order autocovariances estimators fb!lg4l=1 are unbiased.
The Student-t statistics displayed in the last column indicate that the null hypothesis !4 = 0
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cannot be rejected at level 5%.

We present an empirical application in the next section.

1.8 Empirical Application

We have shown in the simulation study that the shrinkage estimator K$�
t performs well

relatively to the benchmarks KBNHLS
t and �

(L)
1;t . We have also seen that the endogenous

parameters of the noise model are not identi�ed although this raises no problem for estimating

the IV. Our focus in this empirical investigation will essentially be to test the assumptions

E1-E4 made on the exogenous noise. We describe the data in the �rst subsection below while

the empirical results are presented in the second subsection.

1.8.1 Data and Preprocessing

For this application, we used the data on twelve stocks listed in the Dow Jones Industrial10.

The prices are observed every one minute from January 1st, 2002 to December 31th, 2007

(1510 trading days). In a typical trading day, the market is open from 9:30 am to 4:00 pm,

and this results in m = 390 observations per day. There are a few missing observations (less

than 5 missing data per day) which we �lled in using the previous tick method11.

While Equation (1.1) assumes no jumps in the e¢ cient price process, the conclusions of

many studies strongly suggest the presence of a jump component in real world prices (see e.g

Eraker (2004)). Thus following the same intuitions as in Barndor¤-Nielsen and al (2008b)

for quote data12, we applied the following cleaning rule to the initial data which we denoted

rOLDt;j :

rNEWt;j =

�
rOLDt;j if

��rOLDt;j

�� � Q� rOLD

sign
�
rOLDt;j

�
�Q� rOLD otherwise

where rOLD is the empirical median of
��rOLDt;j

�� across t and j and. We use Q = 50, and the
resulting rNEWt;j is treated as our initial observed return rt;j = rNEWt;j . Our cleaning rule treat

10The data we use in this paper have been purchased from a private provider who has ensured its accuracy by
comparision with three other independent �nancial data providers. Please see Section 9 for the preprocessing
details.
11This amounts to replace a missing data point by the most recent observation available.
12For quote data, BNHLS (2008b) suggest to delete entries for which the spread is more that 50 times the

median spread on that day.
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the jumps and outliers due to recording errors as the same. We advocate this approach for

three reasons. Firstly, we want to preserve the structure of dependence of the noise which

is of interest in our analysis. Secondly, the process
��rOLDt;j

�� obviously contains substantial
information about the range of the data. And �nally, the median is robust to the extreme

values that arises in the series rOLDt;j due to the presence of outliers. Figure 3 in Appendix C

show examples of the impact of this preprocessing on the data.

1.8.2 Empirical Results

We follow four basic steps in conducting this empirical study. The �rst step consists in

assessing the memory parameter L by mean of the criterion �(l) given in (1.49). In the

second step, the estimator bL of L is used to compute the estimators of f!m;lgLl=1, � and �
given by Equations (1.43), (1.50) and (1.51). In the third step, we estimate the variance

of fb!m;lgLl=1 using Equation (1.48) and compute the Student-t statistics. Finally in the last
step, we compute the shrinkage estimator K$�

t for the IV. The empirical results are shown

in Appendix C.

For all the stocks considered, we found that the noise is L-dependent with the value of L

between 5 minutes (American Express) and 14 minutes (AIG and General Electric). The top

graphs of Figure 4 in Appendix C show the curves of �(l) for 3M Co, Alcoa and AIG. The

�nding that the noise is autocorrelated is not new in the literature (see for example Hansen

and Lunde, 2006). What is new here is that we will use the estimates of L and f!m;lgLl=1 to

assess Assumptions E3 and E4 in the second step.

Table 5 of Appendix C shows the estimates b� and b�. It is seen that b� < b� < 2=3 for

all the assets. The fact that b� < b� is not surprising because this equality should hold by
construction. However, b� < 2=3 is an interesting result because it indicates that the estimator
of Barndor¤-Nielsen and al. (2008a) delivers its best performance at the highest available

frequency.

The graphs in the second row Figure 4 in Appendix C show the estimated correlogram

for 3M Co, Alcoa and AIG along with the estimated Student-t statistics. The t-stats are

essentially consistent with the choice of L based on the information criterion �(l). But

the Student-t test could have not been used to select L at the beginning because the prior
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knowledge of L is required in order to implement the whole procedure.

To compute the realized kernels in the last step, we set H = 30 for the bandwidth except

for the American Express index (AXP) which has necessitate H = 10. These bandwidth

values appear to produce better results than
j
(390)2=3

k
= 53. We have also estimated the

bias of the RV by the alternative formula ebt = RV (m) � K$�
t which tends to have less

variance than the natural method of moment estimator bb(m)t given in (1.44). The time series

plots of K$�
t and ebt are displayed respectively in the third and fourth row of Figure 4. Our

results suggest that the sign of ebt is not constant through time. It turns out that when the
correlogram is positive as we found for 3M Co, Alcoa and AIG, a negative bias can only be

due to a negative correlation between the noise and the latent return. In light of this, these

empirical results suggest that either �0 or �1 is negative.

1.9 Conclusion

This paper proposes a �exible semi-parametric model for the market microstructure noise.

We specify the microstructure noise as the sum of an information correlated process and

an information uncorrelated process. The information uncorrelated noise is modeled as an

L-dependent process, where L is allowed to increase with the frequency at which the prices

are recorded. In light of this model, we study the properties of common realized measures

that aim to estimate the integrated volatility.

We propose a new shrinkage realized kernels which is an optimal linear combination of

the consistent realized kernels of Barndor¤-Nielsen and al (2008a) and an unbiased estimator

constructed for this purpose. It is shown theoretically that the shrinkage estimator has

lower variance than the consistent estimator in small samples while both estimators are

asymptotically equivalent in large samples. The Monte Carlo simulations show that the

relative e¢ ciency gain of the shrinkage realized kernels over the standard realized kernel is

substantial in situations where the variance of the microstructure noise is small. When the

variance of the noise is large, the inconsistent estimator is markedly dominated.

Finally, we propose a framework to assess the true values of the noise parameters via

the observed returns. Unfortunately, the endogenous parameters are not identi�ed. Our

empirical �ndings about the noise con�rm the conclusions of Hansen and Lunde (2006): there
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is strong evidence that the noise is autocorrelated and correlated with the latent returns. Our

contribution here is to show how to estimate the rate at which L increases with the sampling

frequency. We found that in general, L increases slower than
p
m.
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Appendix A: Proofs

The following Lemma will be used in the proof of Theorem 5.

Lemma 8 Assume that rt;j = (1 + at;j) r
�
t;j�at;j�1r�t;j�1+("t;j � "t;j�1) for some determinis-

tic sequence fat;jg ; j = 1; :::;m. Let ert;k be the serie of non-overlapping sums of q consecutive
observations of rt;j:

ert;k = (1 + at;qk) r
�
t;qk +

qk�1X
j=qk�q+1

r�t;j � at;qk�qr
�
t;qk�q + ("t;qk � "t;qk�q)

for k = 1; :::;mq and some positive integer q � 1 such that mq = m=q, with the convention

that
Pqk�1

j=qk�q+1 r
�
t;j = 0 if q = 1. Then we have:

E
�
RV (mq)

�
= IVt + 2

Pmq

k=1

�
at;qk + a2t;qk

�
��2t;qk + a

2
t;0�

�2
t;0 � a2t;qmq

��2t;qmq
+ 2mq (!0 � !m;q) ;

V ar
�
RV (m)

�
= 2

Pmq

k=1

�
(1 + at;qk)

2 + a2t;qk
�2
��4t;qk+2

Pmq

k=1

�Pqk�1
l=qk�q+1

Pqk�1
j=qk�q+1 �

�2
t;j�

�2
t;l

�
+V ar

�Pmq

k=1 ("t;qk � "t;qk�q)
2�+ 4Pmq

k=1

Pqk�1
j=qk�q+1 (1 + at;qk)

2 ��2t;j�
�2
t;qk

+4
Pmq

k=1 (1 + at;qk)
2 a2t;qk�q�

�2
t;qk�q�

�2
t;qk + 4

Pmq

k=1

Pqk�1
j=qk�q+1 a

2
t;qk�q�

�2
t;j�

�2
t;qk�q

+8 (!0 � !m;q)
Pmq

k=1 (1 + at;qk)
2 ��2t;qk + 8 (!0 � !m;q)

Pmq

k=1

Pqk�1
j=qk�q+1 �

�2
t;j

+8 (!0 � !m;q)
Pmq

k=1 a
2
t;qk�q�

�2
t;qk�q + 2a

4
t;0�

�4
t;0 � 2a4t;qmq
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:

Proof of Lemma 8:

RV (mq) =
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k=1

er2t;k = (1) + (2) + (3) + (4) + (5) + (6) + (7) + (8) + (9)
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:
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:
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(8) = 2

Pmq

k=1

Pqk�1
j=qk�q+1 ("t;qk � "t;qk�q) r

�
t;j:

(9) = �2
Pmq

k=1 at;qk�q ("t;qk � "t;qk�q) r
�
t;qk�q:

Only squared terms have nonzero expectation:
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:

where !m;q = E ["t;j"t;j�q] is independent of t and j. Also, all the terms involved in the

expression of RV (mq) are uncorrelated and thus:
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:
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Hence:
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The following Lemma will be used in the proof of Theorem 6.

Lemma 9 Under the assumptions of Theorem 6, we have:

E
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:

Proof of Lemma 9: We �rst note that:
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(AC;m;1)
t =
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j=1

r2t;j + 2
mX
j=1

rt;jrt;j�1

= (I) + (II) + (III) + (IV ) + (V ) + (V I) + (V II) + (V III) + (IX);

where
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Because only squared terms will have nonzero expectation, we have:

E
h
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�
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�
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�
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The calculation of that variance is simpli�ed by noting that only the terms (IV ) to (IX) are

possibly correlated. Thus we have:
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�2
t;m

�
+ 16!0at;m�

�2
t;m

2Cov ((IV ); (V )) = 8
Pm
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E[("t;j � "t;j�1)
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3] = �E["4t;j]� 3!20 (for k = j � 1)

E[("t;j � "t;j�1) ("t;j�1 � "t;j�2) ("t;j�k�1 � "t;j�k�2)
2] = �2!20 8 k � 1

) E
h�Pm

j=1 ("t;j � "t;j�1) ("t;j�1 � "t;j�2)
��Pm

j=1 ("t;j � "t;j�1)
2
�i

= (�2m+ 1)E["4t;j] + (�2m2 � 2m+ 1)!20
Also: E

�Pm
j=1 ("t;j � "t;j�1) ("t;j�1 � "t;j�2)

�
= �m!0

and E
�Pm

j=1 ("t;j � "t;j�1)
2
�
= 2m!0

Thus Cov ((V III); (IX)) = (�2m+ 1)E["4t;j] + (�2m2 � 2m+ 1)!20 + 2m2!20

= �(2m� 1)
�
E["4t;j] + !20

�
V ar((IX)) = 4mE

�
"4t;j
�
+ 2

�
!20 � E

�
"4t;j
��

The sum of all these terms gives:

V ar
h
RV

(AC;m;1)
t

i
= 2

Pm
j=1 �

�4
t;j + 4

Pm
j=1 (1 + at;j + at;jat;j�1)

2 ��2t;j�
�2
t;j�1

+4
Pm

j=1 (1 + at;j)
2 a2t;j�2�

�2
t;j�

�2
t;j�2 + 8!0

Pm
j=1 (1 + at;j)

2 ��2t;j

+8!0
Pm

j=1 a
2
t;j�

�2
t;j + 8m!

2
0 + 2

�
E
�
"4t;j
�
� !20

�
+ 2

�
2at;0 + a2t;0

�2
��4t;0

+2
�
2at;m + a2t;m

�2
��4t;m + 2

�
2at;m + a2t;m

�
��4t;m + 4a

2
t;�1a

2
t;0�

�2
t;�1�

�2
t;0

�8at;m�1at;m (1 + at;m + at;mat;m�1)�
�2
t;m�1�

�2
t;m

+4a2t;m�1a
2
t;m�

�2
t;m�1�

�2
t;m + 8!0

�
��2t;m�1 � ��2t;0

�
+8!0

�
a2t;�1�

�2
t;�1 + 2a

2
t;0�

�2
t;0 + at;m�

�2
t;m

�
�8!0

�
at;m�1�

�2
t;m�1 + a2t;m�1�

�2
t;m�1

�
:�

Proof of Theorem 5: Substituting for at;j = �0 +
�1p
m��t;j

in Lemma 8, we get for the

expectation:
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For the variance, we have:
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In details, we have:
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The sum of all these terms yields:
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Proof of Theorem 6: Substituting for at;j = �0 +
�1p
m�t;j

in Lemma 9, yield:
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For the variance, we have:
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Proof of Theorem 7:

We examine the term KBNHLS
t (r�;�"):
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Note that:
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where �"H = ("t;j � "t;j�1; 2 ("t;j�1 � "t;j�2) ; :::; 2 ("t;j�H � "t;j�H�1)).
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To ease the calculations, a simpli�ed representation of V ar
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Also let Sh be the symmetric matrix of size H + 1 with elements Shj;k = 1 if j = k + h or
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j = k � h , Shj;k = �1 if j = k + h + 1 or j = k � h� 1, and Shj;k = 0 otherwise. In fact, Sh

is the sparse matrix with ones on the hth diagonals and minus ones on the h+1th diagonals.
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Focusing on the dominant terms, we have:
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This yields the second result. The remaining term to examine is thus KBNHLS
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Appendix B: Simulation Results
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Left: data with no noise. Right: data with MA(3) noise.
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Variance of "t;j Frequency MSE (�10�6) Shrinkage weight

!0 m KBNHLS
t �

(L)
1;t K$�

t b$�

2:25� 10�8 780 0:0016 0:0009 0:0009 0:2525

390 0:0022 0:0018 0:0015 0:3988

195 0:0029 0:0028 0:0025 0:4721

78 0:0050 0:0052 0:0047 0:6036

2:5� 10�7 780 0:0017 0:0017 0:0012 0:4962

390 0:0022 0:0022 0:0017 0:5125

195 0:0030 0:0033 0:0026 0:5719

78 0:0051 0:0055 0:0049 0:6438

2:25� 10�6 780 0:0049 0:0165 0:0048 0:9263

390 0:0045 0:0113 0:0044 0:8955

195 0:0050 0:0095 0:0049 0:8387

78 0:0071 0:0092 0:0070 0:8546

2:5� 10�5 780 0:3572 1:6563 0:3571 1:0040

390 0:2314 0:7405 0:2314 1:0014

195 0:1597 0:3862 0:1596 0:9845

78 0:1126 0:1674 0:1126 0:9714

Table 2: Evaluating the performance of the shrinkage estimators of IVt by Monte Carlo:

Case with no Leverage E¤ect.
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Variance of "t;j Frequency MSE (�10�6) Shrinkage weight

!0 m KBNHLS
t �

(L)
1;t K$�

t b$�

2:25� 10�8 780 0:0016 0:0008 0:0007 0:2223

390 0:0021 0:0016 0:0014 0:3172

195 0:0029 0:0028 0:0025 0:4583

78 0:0048 0:0055 0:0047 0:7701

2:5� 10�7 780 0:0016 0:0014 0:0010 0:4359

390 0:0022 0:0022 0:0017 0:4867

195 0:0030 0:0031 0:0026 0:5216

78 0:0050 0:0057 0:0049 0:7724

2:25� 10�6 780 0:0047 0:0173 0:0046 0:9108

390 0:0044 0:0113 0:0042 0:8696

195 0:0048 0:0088 0:0047 0:8685

78 0:0065 0:0084 0:0064 0:8679

2:5� 10�5 780 0:3461 1:5821 0:3461 0:9997

390 0:2217 0:8107 0:2217 1:0065

195 0:1554 0:3740 0:1554 0:9976

78 0:1083 0:1529 0:1077 0:9249

Table 3: Evaluating the performance of the shrinkage estimators of IVt by Monte Carlo:

Case with Leverage E¤ect.
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True (x10�7) Estimate (x10�7) Std. Dev. (x10�7) Student-t

b!0 2:2500 3:8423 0:4218 9:1095

b!1 1:0619 1:0722 0:1224 8:7595

b!2 0:3917 0:3946 0:0512 7:7072

b!3 0:0870 0:0932 0:0210 4:4365

b!4 0:0000 0:0082 0:0098 0:8432

m=780

True (x10�7) Estimate (x10�7) Std. Dev. (x10�7) Student-t

b!0 2:2500 5:4195 0:5989 9:0489

b!1 1:0619 1:0885 0:1386 7:8517

b!2 0:3917 0:4109 0:0689 5:9660

b!3 0:0870 0:1006 0:0375 2:6806

b!4 0:0000 0:0021 0:0212 0:0995

m=390

Table 4: Estimated correlogram of the noise (Simulated Data).
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Appendix C: Empricial Results

bL b� (b�b�) b�
3M Co (MMM) 12 0:5301 (0:0367) 0:4165

Alcoa Inc (AA) 12 0:4797 (0:0116) 0:4165

American International Group (AIG) 14 0:4715 (0:0123) 0:4423

Americal Express (AXP) 4 0:3151 (0:0087) 0:2324

Dupont and Dupont (DD) 12 0:4805 (0:0104) 0:4165

Walt Disney (DIS) 9 0:4773 (0:0146) 0:3683

General Electric (GE) 14 0:5303 (0:0233) 0:4423

General Motors (GM) 13 0:5117 (0:0658) 0:4299

IBM 12 0:4802 (0:0149) 0:4165

Intel Corp. (INTC) 11 0:5048 (0:0238) 0:4019

Hewlett-Packard (HPQ) 12 0:4942 (0:0115) 0:4165

Microsoft (MSFT) 11 0:4960 (0:0228) 0:4019

Table 5: Estimates of L, � and � for twelve stocks listed in the DJI.b�b� is the estimated standard deviation of b�
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Figure 3: Preprocessing the data.

Left: Realized volatility of rOLDt;j . Right: Realized volatility of rNEWt;j .
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Figure 4: Estimation Results for 3M Co, Alcoa and AIG.



Chapter 2

E¢ cient Estimation Using the

Characteristic Function

Note: Cet article rédigé en collaboration avec Marine Carrasco est actuellement sous évaluation pour publi-

cation dans "Econometric Theory"

Mots-Clés: GMM, Continuum of moment conditions, MSE, Stochastic Expansion, Tikhonov regulariza-

tion.

2.1 Introduction

The empirical characteristic function (henceforth ECF) has played an increasing role in econo-

metrics and �nance. Paulson et al. (1975) used a weighted modulus of the di¤erence between

the ECF and the theoretical characteristic function (henceforth CF) to estimate the parame-

ters of the stable law. Feuerverger and Mureika (1977) initiated its use for inference. Since

then, many interesting applications have been done including Feuerverger and McDunnough

(1981b,c), Koutrouvelis (1980), Carrasco and Florens (2000), Chacko and Viceira (2003), and

Carrasco, Chernov, Florens, and Ghysels (2007)1. The CF has the appealing property that,

as the Fourier transform of the probability distribution function, it fully characterizes the

distribution of the underlying random variable. An estimation procedure based on the CF

1See Jun Yu (2004) for a comprehensive review of empirical characteristic function based estimation
methods.
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is thus expected to have the same level of e¢ ciency as maximum likelihood. Moreover, the

likelihood function is often either unavailable in closed form (stable law, discretely sampled

continuous time process) or di¢ cult to handle (mixtures of distributions). In the �eld of

�nance, it is usually assumed that asset prices follow continuous-time di¤usion processes.

But, as mentioned by Singleton (2001), the conditional density of discretely sampled returns

are not known in closed form except for the very special cases of Gaussian or square-root

di¤usion. Fortunately, the conditional CF is available in closed form for a wide range of

commonly assumed dynamics in �nance. In the context of stochastic volatility models, Ait-

Sahalia and Kimmel (2006) proposed closed form expansions of the log-likelihood function of

various continuous-time processes. But their method cannot be applied to other situations

without solving a complicated Kolmogorov forward and backward equation.

For the simplicity of the presentation, let�s assume an IID sample (x1; : : : ; xT ) of a mul-

tivariate process xt 2 Rp and let 'T (�) denote its ECF, that is:

'T (�) =
1

T

TX
t=1

ei�
0xt ; � 2 Rp. (2.1)

The ECF is related to its theoretical counterpart ' through the following:

'(� ; �0) = E�0 ('T (�)) = E�0
�
ei�

0xt
�
; � 2 Rp (2.2)

where �0 2 � � Rq is the true value of the �nite dimensional parameter that fully charac-

terizes the true data generating process, and E�0 is the expectation operator with respect to

that data generating process.

Feuerverger and McDunnough (1981b) proposed an estimator that is obtained by mini-

mizing the distance between the ECF and its theoretical counterpart. The objective function

they propose involves an optimal weighting function which depends on the true likelihood

function that may be unknown. Feuerverger and McDunnough (1981c) proposed to apply

the Generalized Method of Moments (GMM) to the discrete set of moment conditions:

ht(� k; �) = ei�
0
kxt � '(� k; �); � k 2 (� 1; � 2; :::� q) � Rp
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where ht(� k; �) depends on �0 through the data. They show that the asymptotic variance of

the resulting estimator can be made arbitrarily close to the Cramer-Rao bound by selecting

the grid su¢ ciently �ne and extended. But one should note that q � T is a necessary (but

not su¢ cient) condition for the covariance matrix of the moment conditions to be invertible.

Indeed, singularity will arise whenever the number of points in the grid (� 1; � 2; :::� q) exceeds

the sample size T . Moreover, operator theory is necessary to handle the estimation procedure

at the limit because as one re�nes and extends the grid, the discrete set of moment conditions

converges to the moment function:

ht(� ; �) = ei�
0xt � '(� ; �); � 2 Rp (2.3)

and the covariance matrix of the moment condition converges to the covariance operator

associated with that moment function. Other discretization approaches can be found in

Singleton (2001) and Chacko and Viceira (2003).

To deal with these problems, Carrasco and Florens (2000) (referred to as CaFl subse-

quently) propose a method that can e¢ ciently use the whole continuum of moment conditions

given by

E�0 [ht(� ; �0)] = 0; 8 � 2 Rp. (2.4)

The resulting method has been termed CGMM (ContinuumGMM or GMMwith a continuum

of moment conditions). Their approach is original in that the moment functions are treated

as elements of some Hilbert space endowed with a properly de�ned scalar product denoted

h:; :i. The objective function of the CGMM thus takes the following form:

b� = argmin
�

D
BTbhT (:; �);bhT (:; �)E : (2.5)

where BT is a sequence of linear operators converging to a limiting operator B as the sample

size T goes to in�nity, and bhT (� ; �) = 1

T

TX
t=1

ht(� ; �) (2.6)

In theory, the CGMM estimator is optimal when BT is the inverse of the empirical co-

variance operator KT associated with the moment conditions. But the operator KT is not
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necessarily invertible. CaFl thus suggest to use a regularized inverse of the following form:

B�T =
�
K2
T + �T I

��1
KT � K�T ; (2.7)

where I denotes the identity operator, KT is the sample counterpart of K; and �T is a

regularization (or smoothing) parameter that needs to be selected in practice. It is shown

in CaFl (2000) that the CGMM estimator b� is root T consistent, asymptotically normal and
asymptotically as e¢ cient as the MLE if �T converges to zero at a certain rate.

However, the small-sample properties of the estimator will be a¤ected by �T in a complex

way. To gain more insight on the role of �T , we derive a higher order expansion of the

CGMM estimator. Then we address the issue of the optimal selection of �T . Ideally, we

want to select �T so that it minimizes the MSE of b� at any given sample size. However, that
MSE is not known in closed form. We propose two ways to approximate the MSE. The �rst

method relies on the �rst terms of the higher-order expansion of the MSE. The second one

uses an average over simulated data. We show that our second selection procedure delivers

a root T consistent estimator of the optimal �T . It is an adaptive method in the sense that

it does not require the knowledge of the regularity of the moment functions.

The rest of the paper is organized as follow. In Section 2, we brie�y review the estimation

procedure both in the IID and Markovian cases, and establish the asymptotic properties

of the CGMM estimator. In Section 3, we derive the higher-order expansion of the mean

square error of the CGMM estimator b�T similar to that in Newey and Smith (2004). From
that expansion, we gain more insight on the asymptotic behavior of the higher order terms.

In Section 4, we study two methods to select the optimal value of the tuning parameter

�. Section 5 presents Monte Carlo experiments for a stochastic frontier models involving a

convolution of an IID normal with an exponential distribution. Section 6 concludes. The

proofs are collected in appendix.

2.2 Overview of the CF-based CGMM

CaFl (2000) focus on the case where the p-dimensional process fxtg is IID and proposed

to estimate �0 by considering moment restrictions of type (2.3). More recently, Carrasco,
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Chernov, Florens and Ghysels (2007) (referred to as CCFG) extend the set up to more

general situations where the data can be Markovian or weakly dependent. In this paper, we

will consider IID and Markov cases only.

The following moment condition has been proposed by CCFG (2007) for the Markov case:

ht(� ; �) =
h
eis

0xt+1 � '(s; �; xt)
i
eir

0xt : (2.8)

where '(s; �; xt) = E�(eis
0xt+1jxt) is the conditional CF and � = (s; r) 2 R2p. In equation

(2.8), the set of basis functions feir0xtg is used as instruments. These instruments are optimal

given the Markovian structure of the model (see CCFG (2007) for a discussion). Moment

conditions de�ned by (2.3) are IID whereas equation (2.8) describe a martingale di¤erence

sequence. From now on, the generic notation ht(� ; �); � 2 Rd will denote a moment function

de�ned by (2.3) or (2.8) where d = p for (2.3) and d = 2p for (2.8).

Let � be a probability density function on Rd and L2(�) denote the Hilbert space of

complex valued functions that are square integrable with respect to �:

L2(�) = ff : Rd ! Cj
Z
f(�)f(�)�(�)d� <1g: (2.9)

If the moment functions are based on the (conditional) CF as it is the case here, ht(:; �)

belongs to L2(�) for all � 2 � and for any probability density function � because jht(:; �)j2 � 2

for all � 2 �: We can thus de�ne the scalar product h:; :i on L2(�) � L2(�) in the following

way:

hf; gi =
Z
f(�)g(�)�(�)d� : (2.10)

As shown by CaFl (2000) and CCFG (2007), the optimal CGMM estimator should be

de�ned as: b� = argmin
�

D
K�1bhT (:; �);bhT (:; �)E : (2.11)

whereK�1 is the inverse of the asymptotic covariance operatorK associated with the moment

conditions and bhT (:; �) is de�ned in (2.6). In fact, K is the integral operator de�ned by:

Kf (� 1) =

Z 1

�1
k(� 1; �)f (�)� (�) d� (2.12)
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for any function f 2 L2 (�), where the kernel k(� 1; �) is given by:

k(� 1; � 2) = E
h
ht(� 1; �)ht(� 2; �)

i
; (2.13)

Unfortunately,K�1g does not exist for all g. Moreover,K�1g when it exists is highly unstable

to small perturbations in g. To circumvent this di¢ culty, one may replace K�1 by

K�1
� = (K2 + �I)�1K

in the objective function. The asymptotic optimality is achieved for the resulting estimator

by letting � go to zero as T goes to in�nity, provided that there exists g(� ; �) such that

Kg(� ; �) = E
hbhT (� ; �)i.

With a sample of size T and a consistent �rst step estimator b�1 in hand, we can estimate
the kernel of K by

kT (� 1; � 2;b�1) = 1

T

TX
t=1

ht(� 1;b�1)ht(� 2;b�1): (2.14)

In the speci�c case of IID data, an estimator of the kernel that does not use a �rst step

estimator is available and is de�ned as

kT (� 1; � 2) =
1

T

TX
t=1

�
ei�

0
1xt � b'T (� 1)� �ei� 02xt � b'T (� 2)�: (2.15)

where b'T (� 1) = 1
T

PT
t=1 e

i� 01xt. Let KT be the empirical operator with kernel kT (� 1; � 2;b�1) or
kT (� 1; � 2). Then K�1 can be estimated by K�1

�T = (K
2
T + �I)

�1
KT and the feasible CGMM

estimator is given by: b�T (�; �0) = argmin
�

bQT (�; �) : (2.16)

where bQT (�; �) = DK�1
�T
bhT (:; �);bhT (:; �)E.

Note that K�1
�T is a regularized inverse of KT . It has the property that for any function

f in the range of K and any
p
T -consistent estimator bfT of f , the function K�1

�T
bfT converges

to K�1f as T goes to in�nity and the regularization parameter � goes to zero. Our expres-

sion of K�1
�T uses Tikhonov regularization, also called ridge regularization. Other forms of

regularization could have been used (see Carrasco, Florens, and Renault (2007), Carrasco
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(2008)). The advantage of Tikhonov regularization is its simplicity. A simple expression

of the objective function bQT (�; �) in matrix form is given in CCFG (Section 3.3.). In the

sequel, the following regularity conditions are assumed.

Assumption 1: The probability density function � involved in the scalar product de�ned

by equation (2.10) is strictly positive on Rd and admits all its moments.

Assumption 2: The equation

E�0 [ht(� ; �)] = 0 for all � 2 Rd; � � almost everywhere,

where E�0 denotes the expectation with respect to the data generating process for � = �0,

has a unique solution �0 which is an interior point of a compact set �.

Assumption 3: ht(� ; �) is three time continuously di¤erentiable with respect to �.

Assumption 4: E�0 [hT (:; �)] 2 �� (for some � � 1) for all � 2 �, and the �rst

two derivatives of E�0 [hT (:; �)] with respect to � belong to �� (for the same � � 1) in a

neighborhood of �0, where

�� =
�
f 2 L2 (�) such that



K��f


 <1	 (2.17)

Assumption 5: The random variable xt is stationaryMarkov and satis�es xt = r (xt�1; �0; "t)

where r (xt�1; �0; "t) is three times continuously di¤erentiable with respect to �0 and "t is a

IID white noise whose distribution is known and does not depend on �0.

Assumption 1 and 2 are standard and have been used in CaFl (2000). Assumption 3

ensures some smoothness properties for b�T (�; �0). The largest real � such that f 2 �� in
Assumption 4 is the level of regularity of f with respect to K. The larger � is, the better

f is approximated by the eigenfunctions of K. Because Kf(:) involve dim (�) integrations,

� may be a¤ected by both the dimensionality of the index � and the smoothness of f . But

CCFG show that in the context of CF-based CGMM, we always have � � 1.

Assumption 5 implies that the data can be simulated upon knowing how to draw from

the distribution of "t. It is satis�ed for all random variables that can be written as a location

parameter plus a scale parameter time a standardized representative of the family of distrib-

ution. Examples include the exponential family and the stable distribution. The IID case is
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a special case of Assumption 5 where r (xt�1; �0; "t) takes the simpler form r (�0; "t). Further

discussions on this type of model can be found in Gourieroux, Monfort, and Renault (1993) in

the indirect inference context. Note that the function r (xt�1; �0; "t) may not be available in

analytical form. In particular, the relation xt = r (xt�1; �0; "t) can be the numerical solution

of a general equilibrium asset pricing model as in Du¢ e and Singleton (1993). However, the

di¤erentiability of r (xt�1; �0; "t) is crucial for the proof of the optimality of our regularization

parameter selection procedure.

Propositions 3.2 and 4.1 of CCFG show that under Assumptions 1 to 5, the CGMM esti-

mator de�ned by (2.16) is consistent and asymptotically normal and its asymptotic variance

reaches the Cramer-Rao bound. Interestingly, the asymptotic distribution of the CGMM

estimator does not depend on the weighting function � (:) as stated in the following theorem.

Theorem 1 Under Assumptions 1 to 5, the CGMM estimator de�ned by (2.11) is consistent

and satis�es:

T 1=2
�b�T (�; �0)� �0

�
L! N(0; I�1�0 ):

as T and �T 1=2 go to in�nity and � goes to zero, where I�1�0 denotes the inverse of the Fisher

Information Matrix.

Because K is self-adjoint, the ideal objective function of the CGMM can be equivalently

de�ned as D
K�1=2bhT (:; �); K�1=2bhT (:; �)E :

In this case, the feasible objective function of the CGMM would be

eQT (�; �) = DK�1=2
�T

bhT (:; �); K�1=2
�T

bhT (:; �)E
where K�1=2

�T = (K2
T + �I)

�1=2
K
1=2
T . We have chosen to use (2.11) in this paper because it

simpli�es some proofs. One advantage of eQT (�; �) is that it is well de�ned at the limit for
� � 1=2 in Assumption 4, a less restrictive condition than � � 1 (see Appendix A for some

basic properties of the operator K). But eQT (�; �) coincides with bQT (�; �) when � � 1.
In what follows, we investigate how the higher order properties of b�T (�; �0) de�ned in

(2.16) are a¤ected by �.
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2.3 Stochastic expansion of the CGMM estimator

Many studies have investigated the higher order properties of various types of estimators.

For the GMM type estimators, example of such studies include Rothenberg (1983, 1984),

Koenker et al. (1994), Rilstone et al. (1996) and Newey and Smith (2004). Other examples

in the linear simultaneous equation framework can be found in Nagar (1959), or more recently

in Buse (1992) and Donald and Newey (2001). The approach we follow is similar to Nagar

(1959) and Newey and Smith (2004) in that the expression we derive for the MSE is based

on the leading terms in an expansion of the estimator.

The terms of the expansion depend on a combination of � and T . Two di¢ culties arise

when analyzing the terms of the expansion. First, when the rate of decrease of � as a function

of T is unknown, it is not always possible to order the terms of the expansion in monotonically

decreasing order. A second di¢ culty lies in a result that dramatically di¤ers from the case

with a �nite number of moment conditions. Indeed, when the number of moment conditions

is �nite, the quadratic form

TbhT (�0)0K�1bhT (�0) ;
follows asymptotically a chi-square distribution with degrees of freedom given by the number

of moment conditions, hence it is Op (1). However, the quadratic form



K�1=2

p
TbhT (�0)


2 is

not well de�ned in presence of a continuum of moment conditions. Also,



K�1=2

�

p
TbhT (�0)


2

is well de�ned but diverges as T goes to in�nity and � goes to zero. We are able to state the

following rate for the norm of K�1=2
�

p
TbhT (�0):




K�1=2
�

p
TbhT (�0)


 = Op

�
��1=4

�
:

Indeed, we have




K�1=2
�

p
TbhT (�0)




�



�K2 + �I

��1=4


| {z }
���1=4




�K2 + �I
��1=4

K1=2



| {z }

�1




pTbhT (�0)


| {z }
=Op(1)

(2.18)

= Op
�
��1=4

�
.
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The expansion we derived for b�T (�; �0) � �0 is of the same form for both the IID and

Markov case. Namely, we have:

b�T (�; �0)� �0 = �1 +�2 +�3 + op
�
��1T�1

�
+ op

�
�min(1;

2��1
2
)T�1=2

�
(2.19)

where

�1 = Op
�
T�1=2

�
;

�2 = Op

�
�min(1;

2��1
2
)T�1=2

�
;

�3 = Op
�
��1T�1

�
:

Appendix B provides details about the above expansion whose validity is ensured by the

consistency result stated by Theorem 1. The following result gives an insight on the behavior

of the higher order MSE of the CGMM estimator.

Theorem 2 Assume that Assumptions 1 to 5 hold. Then we have the followings:

(i) The MSE matrix of b�T (�; �0) is decomposed as the sum of the squared bias and vari-

ance:

TE

��b�T (�; �0)� �0

��b�T (�; �0)� �0

�0�
= TBias �Bias0 + TV ar

where

TBias �Bias0 = O
�
��2T�1

�
;

TV ar = I�1�0 +O
�
�min(2;

2��1
2 )
�
+O

�
��1T�1=2

�
:

(ii) The � that minimizes the MSE of b�T (�; �0), noted �T (�0) ; satis�es �2T (�0)T ! 1

and

�T (�0) = O
�
T�max(

1
6
; 1
2�+1

)
�
:

Remarks.

1. We have the usual trade-o¤ between a term that is decreasing in � and another that is

increasing in �. Interestingly here, the bias term is dominated by two variance terms whose

rates are equated to obtain the optimal regularization parameter. The same happens for the
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Limited Information Maximum Likelihood estimator for which the bias is also dominated by

variance terms (see Donald and Newey, 2001).

2. The rate for the O
�
�min(2;

2��1
2 )
�
variance term does not improve for � > 3. This

is due to a property of Tikhonov regularization which is well documented in the statistics

literature on inverse problems, see Carrasco, Florens and Renault (2007). The use of another

regularization such as spectral cut-o¤ or Landweber Fridman would permit to improve the

rate of convergence for large values of �, however it would come at the cost of a greater

complexity in the proofs (in the spectral cut-o¤, we would lose the di¤erentiability of the

estimator with respect to �).

3. Our expansion is consistent with the condition of Theorem 1, since the optimal regu-

larization parameter �T satis�es �2T (�0)T !1.

4. The rate for �T does not coincide exactly with T
�max( 1

6
; 1
2�+1

), unless the derived big O

rates in the expression of the MSE are based on equivalent expressions rather than on upper

bounds.

5. It follows from Theorem 2 that the optimal regularization parameter �T , that is, the

�T that minimizes the MSE of the CGMM estimator is of the form

�T (�0) = c (�0)T
�g(�); (2.20)

for some positive function c (�0) that does not depend on T and a positive function g (�) that

satis�es max
�
1
6
; 1
2�+1

�
� g (�) < 1=2.

An expression of the form (2.20) is often used as starting point for optimal bandwidth

selection in nonparametric density estimation. Examples in the semiparametric context in-

clude Linton (2002) or Jacho-Chavez (2007). In what follows, we approximate the MSE ofb�T (�T ; �0) in order to provide a data-driven method for selecting �T (�0).
2.4 Optimal selection of the regularization parameter

In Section 3, we showed that the optimal rate regularization parameter satis�es �T (�0)

= c (�0)T
�g(�); where c > 0 and g (�) is some positive and bounded function of �. But the

constants c (�0) and � and the function g (�) are unknown in general so that �T needs to
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be estimated in practice. The question of the selection of the regularization parameter �T

in our CGMM context is analogous to that of selecting the optimal bandwidth in the kernel

density estimation. Ideally, it should be selected so as to minimize the mean square error ofb�T (�; �0) as a function of � for a given sample of size T :
�T (�0) = arg min

�2[0;1]
�T (�; �0): (2.21)

where �T (�; �0) is de�ned as the trace of the MSE matrix, that is:

�T (�; �0) = TE

��b�T (�; �0)� �0

�0 �b�T (�; �0)� �0

��
: (2.22)

From now on, we shall use the term MSE to refer to �T (�; �0).

Note that �T (�0) is a function of �0 according to (2.22). Finding �T (�0) gives rise to at

least two problems: (i) �0 is unknown, and (ii) even if �0 were given, the exact �nite sample

distribution of b�T (�; �0) � �0 is not known so that �T (�; �0) can only be approximated.

It should be stressed that in this paper, we adopted a fully parametric approach from the

beginning where the model is completely speci�ed. Indeed, it would not be possible to obtain

MLE e¢ ciency otherwise. Hence, the model can be simulated. We are going to exploit this

feature to approximate the unknown MSE by simulations. The estimation of �T (�; �0) will

rely on a �rst step consistent estimator b�1T of �0 and a large number of independently simulated
samples, say X(j)

T (
b�1) for j = 1; 2; :::;M .

The �rst step estimator b�1T can be either a classical GMM estimator that uses a �nite

number of moment conditions built from a discretization scheme, or a CGMM estimator ob-

tained by replacing the covariance operator with the identity operator. The samples X(j)
T (
b�1T )

can be generated by path simulation (see Gouriéroux and Monfort (1996)). From assumption

5, we have xt = r (xt�1; �; "t). One generates MT IID random realizations drawn from the

known distribution of the errors, denoted "(j)t : For arbitrary starting values x
(j)
0 , one can gen-

erates M time-series x(j)t = r
�
x
(j)
t�1;

b�1T ; "(j)t � of size T for j = 1; 2; :::;M . To avoid transient
e¤ects, it is usual to simulate more data than needed and discard the �rst observations, or

alternatively, to condition the simulation on the �rst observations of the actual sample.

We consider two di¤erent ways to compute the approximate MSE, leading to two di¤erent
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ways to estimate �T (�0). The �rst method uses the analytical approximation of b�� �0 given
in the preceding section, and the second method uses a large number of IID copies of a

consistent approximation of b�T (�; �0)� �0. We discuss each of these approaches below.

2.4.1 Estimating the MSE using its higher order expansion

This �rst approach consists in approximating the unknown �T (�; �0) by b�ATM(�;b�1), a Monte
Carlo estimation of the MSE based on the higher order expansion of b�T (�; �0)� �0 given in

(2.19):

�T = �1 +�2 +�3

The expressions of �j; j = 1; 2; 3 depend on both deterministic and random quantities. The

deterministic quantities are the true parameter �0, the covariance operatorK, the probability

limit of the gradient of the moment functionG (� ; �0) and the regularization parameter �. The

random quantities are the moment function bhT (� ; �0) and the empirical covariance operator
KT . We can write

�T = �(K (�0) ; G (:; �0) ; XT (�0))

where � depends on the sample XT (�0) through bhT (� ; �0) and KT .

To implement the current approach, the �rst step consists in replacing �0 by a �rst step

consistent estimator b�1 computed from the actual data. Secondly, one uses b�1 to simulate a
single very large sample (e.g. 100 times larger than T whenever possible). That large sample

is used to compute highly accurate estimations of K and G (� ; �0) denoted eK(b�1) and eG(:;b�1)
respectively2. If closed form expressions were available for all the terms involved in E (�0�),

it would be possible to estimate � in one shot using eK(b�1), eG(:;b�1) and the actual data
XT (�0). Unfortunately, Cov (�1;�3) cannot be computed explicitly even though �1 and �3

are given in closed form. We shall thus resort to simulations.

Let X(j)
T (�0) ; j = 1; :::;M be M samples of size T simulated using b�1 and de�ne

�
(j)
T = �

� eK(b�1); eG(:;b�1); X(j)
T (�0)

�
:

2We choose the size of the simulated sample large enough to ensure that eK�1(b�1) can be computed without
regularizing the numerical approximation of eK(b�1). See Appendix D for the numerical algorithm.
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Finally, b�ATM(�;b�1) is given by
b�ATM(�;b�1) = T

M

MX
j=1

�
(j)0
T �

(j)
T ; (2.23)

where the superscript A stands for �analytical approximation�, the subscripts T and M

indicates respectively the sample size and the number of Monte Carlo replications. Our

estimation of the optimal � is thus:

b�TM �b�1� = argmin
�2[0;1]

b�ATM(�;b�1): (2.24)

The Law of Large Numbers ensures that for su¢ ciently large M , b�ATM(�;b�1) � �T (�;b�1)
so that if b�1 is close enough to �0, we also obtain �T (�;b�1) � �T (�; �0). This gives an

intuition of why b�TM �b�1� can be a good estimator of �T (�0). This procedure can be fast
as it does not require a parameter estimation at each Monte Carlo replication. On the other

hand, it may need very large sample sizes to obtain accurate estimates of b�1, K, and G:
2.4.2 Estimating the MSE by standard Monte Carlo

From a large number of independently simulated samples of size T , Xj
T (�0); j = 1; 2; :::;M ,

we can compute M IID copies of the CGMM estimator b�jT (�; �0) for any �xed �. A natural
estimator of the MSE is then:

b�MC
TM (�; �0) =

T

M

MX
j=1

�b�jT (�; �0)� �0

�0 �b�jT (�; �0)� �0

�
: (2.25)

The above estimator of the MSE would thus naturally yield an estimator of the optimal � of

the form: b�TM (�0) = argmin
�2[0;1]

b�MC
TM (�; �0) ; (2.26)

where the superscript MC stands for �Monte Carlo approximation� and the subscript M

indicates the number of Monte Carlo replications.

For a su¢ ciently large value of M , the Law of Large Numbers ensures that b�MC
TM (�; �0)

converges to its expectation �T (�; �0). But as �0 is not known, a feasible Monte Carlo
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approach simply consists in replacing �0 with a consistent �rst step estimator b�1 in the
simulation scheme, that is, choosing the optimal regularization parameter according to

b�TM �b�1� = argmin
�2[0;1]

b�MC
TM

�
�;b�1� : (2.27)

It is important to note that b�MC
TM

�
�;b�1� is simulated conditional on b�1. As a consequence,

lim
M!1

b�MC
TM

�
�;b�1� = �T ��;b�1�. Minimizing this limiting MSE would yield the true value of

the optimal � if the true value of the parameter of interest was the point estimate b�1:
�T

�b�1� = argmin
�2[0;1]

�T

�
�;b�1� : (2.28)

As such, �T
�b�1� is a deterministic and continuous function of a stochastic argument, whileb�TM �b�1� is doubly random, being a stochastic function of a stochastic argument.

Given this construction and �T
�b�1� = c

�b�1�T�g(�), it is easy to show that c (:) is a
continuous function using the Maximum Theorem (see Lemma 17 in Appendix). Although

�T

�b�1� is not feasible, its properties will be a key ingredient in establishing the consistency
of its feasible counterpart b�TM �b�1�.
This second approach is computationally demanding because it requires computing a

CGMM estimation at each of the M Monte Carlo iterations. But it has the main advantage

of avoiding the cumbersome calculations involved in the higher order expansion of the MSE.

In the next subsection, we prove the optimality of b�TM �b�1T�.
2.4.3 Optimality of the data-driven selection of the regularization

parameter

We focus below on the optimality of the second approach. We are able to prove the following

result.

Theorem 3 Let b�1 be pT�consistent estimator of �0. Then under Assumptions 1 to 5, we
have

�T (b�1)
�T (�0)

� 1 converges in probability to zero as T goes to in�nity.
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In Theorem 3, the function �T (:) is deterministic and continuous but the argument b�1
is stochastic. Note that as T goes to in�nity, b�1 gets closer and closer to �0; but at the
same time �T (�0) converges to zero at some rate that depends on T . This prevents us from

claiming without caution that �T (
b�1)

�T (�0)
� 1 = op(1) since the denominator is not bounded away

from zero. To be able to write this, one needs to ensure that the residual �T (�0) � �T (b�1)
converges to zero faster than �T (�0) itself.

The next theorem gives the rate of convergence of b�TM (�0)
�T (�0)

.

Theorem 4 Under assumptions 1 to 5, the term b�TM (�0)
�T (�0)

� 1 converges in probability to zero

at rate M�1=2 as M goes to in�nity and T is �xed.

In Theorem 4, b�TM(�0) is the minimum of the empirical MSE simulated with the true �0.
In the proof, we �rst show that the conditions of the uniform convergence in probability of the

empirical MSE are satis�ed. Next, we use the Theorem 2:1 of Newey and McFadden (1994)

and the fact that �T (�0) is bounded away from zero for �nite T to establish the consistency

of b�TM (�0)
�T (�0)

. In the next theorem, we revisit the results of Theorem 4 when �0 is replaced by

a
p
T�consistent estimator b�1.

Theorem 5 Let b�1 be a pT�consistent estimator of �0. Then under assumptions 1 to 5, we
have: b�TM (b�1)

�T (�0)
� 1 = Op(T

�1=2) +Op(M
�1=2) as M goes to in�nity �rst and T goes to in�nity

second.

The result of Theorem 5 is obtained using a sequential limit inM and T . Such sequential

approach has been used in other �elds of econometrics, such as panel data. It is also used

implicitly in the theoretical analysis of bootstrap. Theorem 5 implies that b�TM(b�1) bene�ts
from an increase in both M and T . In practice, one clearly has more freedom in setting M

than in setting T . For a given sample size T , settingM � T permits to achieve the best rate

for b�TM (b�1)
�T (�0)

at the lowest computing time. In fact, increasing M signi�cantly increases the

precision of the estimator b�TM(b�1) only in the region M � T . When M becomes larger than

T , the Op(M�1=2) term in the expression of b�TM (b�1)
�T (�0)

becomes a higher order term so that the

rate b�TM (b�1)
�T (�0)

� 1 = Op(T
�1=2) does not improve.

Overall, our selection procedure of �T is optimal and adaptive as the a priori knowledge

of the regularity of the moment function and its derivatives (the value of �) is not needed.
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Using these results, we obtain a fully feasible CGMM estimator of the form b�T (b�; �0). In
what follows, we provide some Monte Carlo simulations that illustrate the relevance of tuning

the regularization parameter in the CGMM estimation.

2.5 Monte Carlo Simulations

Our focus in this Monte Carlo experiment is to illustrate the properties of the estimatorb�TM(b�1) proposed in the previous section. For this purpose, we select a model that is at the
same time simple and widely used in the empirical literature. We present below the model

and the design of the experiment.

2.5.1 The simulation design

For this study, we consider a model of convolution of a normal distribution with an expo-

nential distribution. This type of mixture is commonly encountered in the stochastic cost

frontier literature. A cost frontier typically describes the minimum level of cost involved in

the production of a given level of output at a given level of prices. The following speci�cation

has been used in Meeusen and van den Broeck (1977):

yt = Xt�0 + ut + vt; t = 1; 2; :::; T: (2.29)

where yt is the log cost for plant t, Xt is a vector of independent variables, ut and vt are

independent, ut
IID� N(0; �20) is a term accounting for measurement error, vt

IID� Exp(�0)

is a non negative error term measuring the plant ine¢ ciency, and Exp(�0) denotes the ex-

ponential random variable with mean 1=�0: Many authors including van den Broeck, Koop,

Osiewalski and Steel (1994) provide a Bayesian treatment to this model. We illustrate below

an alternative CGMM approach.

In our simulations, we shall focus on the following simpli�ed version of the model:

yt = ut + vt, t = 1; 2; :::; T: (2.30)
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The moment function for this model is:

ht
�
� ; �2; �

�
= exp(i�yt)�

� exp (�� 2�2=2)
�� i�

: (2.31)

In the sequel, we simulateM independent samples of size T and estimate �T (�0) by standard

Monte Carlo by varying � on the �nite grid:

[5� 10�8; 10�7; 5� 10�7; 10�6; 5� 10�6; 10�5; 5� 10�5; 7� 10�5; 10�4; (2.32)

3� 10�4; 5� 10�4; 7� 10�4; 10�3; 3� 10�3; 5� 10�3; 7� 10�3; 10�2]:

The bounds of the grid must be adapted to the particular application under consideration.

We choose a Gaussian form for the weighting function �() embedded in the objective function

of the CGMM, which allows us to use Gauss-Hermite quadrature points to compute the

integrals (see Appendix D). We use a common random numbers simulation scheme in order

to facilitate the comparision of the MSE accross the values of �. Finally, we consider di¤erent

sample sizes T and numbers of replications M (T;M = 100, 250, 500 and 1000).

2.5.2 The simulation results

Table 1 shows the values of b�TM obtained by using the procedure described in the previous

subsection. It is seen that for each sample size T , the estimated values di¤er as M varies.

Because the empirical criterion b�MC
TM (�; �0) gets closer and closer to the targeted criterion

�T (�; �0) as M increases, we can claim that our best approximation of �T (�0) in this table

is given by b�T;1000 for each T . Hence using b�T;1000 as a benchmark, we see that the precision
of b�T;M increases as M increases.

M T=100 T=250 T=500 T=1000

100 0:0070 (9.59) 0:0070 (7.35) 0:0003 (7.72) 0:0005 (8.03)

250 0:0070 (9.67) 0:0050 (8.15) 0:0003 (8.05) 0:0003 (8.18)

500 0:0070 (10.55) 0:0030 (9.08) 0:0003 (8.38) 0:0007 (8.90)

1000 0:0050 (10.62) 0:0030 (8.94) 0:0005 (8.58) 0:0007 (9.02)
Table 2.1: Estimation of the optimal regularisation parameter for di¤erent T and M .
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The numbers in brackets are T times the MSE of b�T (b�TM).

Also, it is seen that b�T;M decreases as T increases from 100 to 250 and from 250 to 500

while the di¤erence between b�500;M and b�1000;M is negligible for all M. The fact that b�500;1000
is a bit lower than b�1000;1000 should not be controversial because the MSE of b�T (�; �0) is very
�at around the optimal �, and as we are approximating �T (�0) from a �nite grid, it is easy

to slightly overestimate or underestimate the target. This is well illustrated by the following

plots of T�MSE
�b�T (b�; �0)� of the CGMM estimator in the scenarios (T = 500,M = 1000)

and (T = 1000, M = 1000).
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T=500,M=1000
T=1000,M=1000

Figure 2.1: MSE of the CGMM estimator

Y-axis: T times the MSE of b�T (b�; �0) for T=500 and T=1000.
X-axis: Rank of � in the grid given by (2.32).

2.6 Conclusion

The goal of this paper is the provide a way to optimally choose the regularization parameter

in the CGMM estimation proposed by Carrasco and Florens (2000). To this end, we derive

a higher order expansion of the CGMM estimator that sheds light on how the �nite sample

MSE depends on the regularization parameter �. We propose two selection procedures based

on two methods for approximating the MSE. In the �rst procedure, the approximation relies
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on its higher-order expansion while in the second procedure, the approximation is based

on simulations. The second method is shown to be optimal. The optimal selection of the

regularization parameter in the CGMM estimation procedure permits to devise a fully feasible

estimator and to establish CGMM as a real competitor to maximum likelihood estimation.

Our simulation-based selection procedure has the advantage to be easily applicable to

other estimators, for instance it could be used to select the number of polynomial terms in

the e¢ cient method of moments procedure of Gallant and Tauchen (1996).
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Some basic properties of the covariance operator

For more formal proofs of the results mentioned in this appendix, see Carrasco, Florens

and Renault (2007). Let K be the covariance operator de�ned in (2.12) and (2.13), andbht (� ; �) the moment function de�ned in (2.3) and (2.8). Finally, let �� be the subset of
L2 (�) de�ned in Assumption 4.

De�nition 6 The range of K denoted R(K) is the set of functions g such that Kf = g for

some f in L2 (�).

Proposition 7 R(K) is a subspace of L2 (�).

Note that the kernel functions k(s; :) and k(:; r) are elements of L2 (�) because

jk(s; r)j2 =
���E hht(�; s)ht(�; r)i���2 � 4; 8 (s; r) 2 R2p

Thus for any f 2 L2 (�), we have

jKf (s)j2 =

����Z k(s; r)f (r)� (r) dr

����2 � Z jk(s; r)f (r)j2 � (r) dr

� 4

Z
jf (r)j2 � (r) dr <1;

implying

kKfk2 =
Z
jKf (s)j2 � (s) ds <1) Kf 2 L2 (�) :

De�nition 8 The null space of K denoted N(K) is the set of functions f in L2 (�) such

that Kf = 0.

The covariance operator K associated with a moment function based on the CF is such

that N(K) = f0g (See CCFG, 2007, for a proof).

De�nition 9 � is an eigenfunction ofK associated with eigenvalue � if and only ifK� = ��.

Proposition 10 Suppose �1 � �2 � :::: � �j � ::: are the eigenvalues of K. Then the

sequence
�
�j
	
satis�es: (i) �j > 0 for all j, (ii) �1 <1 and lim

j!1
�j = 0.
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Remark. The covariance operator associated with the CF-based moment function is

necessarily compact.

Proposition 11 Every f 2 L2 (�) can be decomposed as: f =
P1

j=1



f; �j

�
�j.

As a consequence, Kf =
P1

j=1



f; �j

�
K�j =

P1
j=1



f; �j

�
�j�j.

Proposition 12 If 0 < �1 � �2; then ��2 � ��1.

We recall that �� is the set of functions such that


K��f



 <1. In fact, f 2 R(K�2))

K��2f exist and


K��2f



2 =P1
j=1 �

�2�2
j

��
f; �j���2 <1: Thus if f 2 R(K�2), we have:



K��1f


2 =

1X
j=1

�
2(�2��1)
j �

�2�2
j

��
f; �j���2
� �

2(�2��1)
1

1X
j=1

�
�2�2
j

��
f; �j���2 <1
) K��1f exist) f 2 R(K�1). This means R(K) � R(K1=2) so that the function K�1=2f is

de�ned on a wider subset of L2(�) compared to K�1f . When f 2 �1,


K�1=2f;K�1=2f

�
=

hK�1f; fi. But when f 2 �� for 1=2 � � < 1, the quadratic form


K�1=2f;K�1=2f

�
is well

de�ned while hK�1f; fi is not.

Expansion of the MSE and proof of Theorems 1 and 2

Preliminary results and proof of Theorem 1

Lemma 13 Let K�1
� = (K2 + �I)�1K and assume that f 2 �� for some � > 1. Then as

� goes to zero and n goes to in�nity, we have:



K�1
�T �K�1

�



 = Op
�
��3=2T�1=2

�
; (2.33)

�K�1

�T �K�1
�

�
f


 = Op

�
��1T�1=2

�
; (2.34)

�K�1

� �K�1� f

 = O
�
�min(1;

��1
2
)
�
; (2.35)
�

K�1 �K�1
�

�
f; f
�
= O

�
�min(1;

2��1
2 )
�
: (2.36)

Proof of Lemma 13. In the sequel, �j; j = 1; 2:::;1 denote the eigenfunctions of the

covariance operator K associated respectively with the eigenvalues �j; j = 1; 2:::;1. We �rst
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consider (2.33):



(K2
T + �I)�1KT � (K2 + �I)�1K



 �

(K2
T + �I)�1(KT �K)



+ 

(K2
T + �I)�1K � (K2 + �I)�1K



 �

(K2
T + �I)�1



| {z }
���1

kKT �K)k| {z }
=Op(T�1=2)

+


�(K2

T + �I)�1 � (K2 + �I)�1
�
K


 �

We have:



�(K2
T + �I)�1 � (K2 + �I)�1

�
K




=


(K2

T + �I)�1
�
K2 �K2

T

�
(K2 + �I)�1K




�



(K2
T + �I)�1



| {z }
���1



�K2 �K2
T

�

| {z }
=Op(T�1=2)



(K2 + �I)�1=2


| {z }

���1=2



(K2 + �I)�1=2K


| {z }

!1

This proves (2.33).

The di¤erence between (2.33) and (2.34) is that in (2.34) we exploit the fact that f 2 ��
with � > 1, hence kK�1fk <1. We can rewrite (2.34) as



�K�1
�T �K�1

�

�
f


 =



�K�1
�T �K�1

�

�
KK�1f




�



�K�1
�T �K�1

�

�
K




K�1f



 :
We have

�
K�1
�T �K�1

�

�
K

= (K2
T + �I)�1KTK � (K2 + �I)�1K2

= (K2
T + �I)�1 (KT �K)K (2.37)

+
�
(K2

T + �I)�1 � (K2 + �I)�1
�
K2: (2.38)

The term (2.37) can be bounded in the following manner



(K2
T + �I)�1 (KT �K)K



 �


(K2

T + �I)�1


 kKT �Kk kKk

= Op
�
��1T�1=2

�
:
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For the term (2.38), we use the fact that A�1=2 � B�1=2 = A�1=2

�
B1=2 � A1=2

�
B�1=2: It

follows that



�(K2
T + �I)�1 � (K2 + �I)�1

�
K2




=


(K2

T + �I)�1
�
K2 �K2

T

�
(K2 + �I)�1K2




�



(K2
T + �I)�1



| {z }
���1



K2 �K2
T



| {z }
=Op(T�1=2)



(K2 + �I)�1K2


| {z }

!1

= Op
�
��1T�1=2

�
:

This proves (2.34).

Now we turn our attention toward equation (2.35). We can write

(K2 + �I)�1Kf �K�1f =
1X
j=1

�
�j

�+ �2j
� 1

�j

� 

f; �j

�
�j

=
1X
j=1

�
�2j

�+ �2j
� 1
� 


f; �j
�

�j
�j:

We now take the norm:

(2.35) =


(K2 + �I)�1Kf �K�1f




=

 1X
j=1

�
�2j

�+ �2j
� 1
�2 ��
f; �j���2

�2j

!1=2

=

 1X
j=1

�2��2j

�
�2j

�+ �2j
� 1
�2 ��
f; �j���2

�2�j

!1=2

�
 1X
j=1

��
f; �j���2
�2�j

!1=2
sup

1�j�1
���1j

�

�+ �2j
:

Recall that as K is a compact operator, its largest eigenvalue �1 is bounded. We need to

�nd an equivalent to

sup
0����1

���1
�

�+ �2j
= sup

0����21
�
��1
2

�
1� 1

�=�+ 1

�
(2.39)
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Case where 1 � � � 3: We apply another change of variables x = �=�:

sup
x�0

��=2�1=2

x�=2�1=2

�
x

1 + x

�
:

We see that an equivalent to (2.39) is ��=2�1=2 provided that 1
x�=2�1=2

�
x
1+x

�
is bounded on R+.

Note that g (x) � x(3��)=2

1+x
is continuous and therefore bounded on any interval of (0;+1). It

goes to 0 at +1 and its limit at 0 also equals 0 for 1 � � < 3. For � = 3, we have:

g (x) � 1

1 + x
:

Then g (x) goes to 1 at x = 0 and to 0 at +1.

Case where � > 3: We rewrite the left hand side of (2.39) as

���1j

�

�+ �2j
= ����3j

�2j
�+ �2j| {z }
2(0;1)

� ����31 = O (�) :

To summarize, we have for f 2 ��:

(2.35) = O
�
�min(1;

��1
2
)
�
:

Finally, we consider (2.36). We have:

(2.36) =
X
j

�
1

�j
�

�j
�2j + �

�

f; �j

�2
=

X
j

�
1�

�2j
�2j + �

� 

f; �j

�2
�j

=
X
j

�2��1j

�
1�

�2j
�2j + �

� 

f; �j

�2
�2�j

�
X
j



f; �j

�2
�2�j

sup
���1

�2��1
�

�2 + �
:

For � � 3=2, we have:

sup
���1

�2��1
�

�2 + �
� ��2��31 = O (�) :
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For � < 3=2, we apply the change of variables x = �=�2 and obtain

sup
x�0

x

1 + x

��
x

� 2��1
2
= O

�
�
2��1
2

�
:

due to the fact that f (x) = x
1+x

x�
2��1
2 is bounded on R+. Finally,

(2.36) = O
�
�min(1;

2��1
2
)
�
:

�

Lemma 14 Suppose we have a particular function f(�) 2 �� for some � > 1, and a sequence

of functions fT (�) 2 �� such that sup
�2�

kfT (�)� f(�)k = Op(T
�1=2): Then as � goes to zero,

we have

sup
�2�




K�1=2
�T fT (�)�K�1=2f(�)




 = Op(�
�1T�1=2) +O

�
�min(1;

��1
2
)
�
.

Proof of Lemma 14.

sup
�2�



K�1
�T fT (�)�K�1f(�)



 � B1 +B2;

with

B1 = sup
�2�



K�1
�T fT (�)�K�1

�T f(�)


 ;

B2 = sup
�2�



�K�1
�T �K�1� f(�)

 :

We have

B1 �


K�1

�T



 sup
�2�

kfT (�)� f(�)k

�



��T +K2

T

��1=2


| {z }
���1=2T




��T +K2
T

��1=2
KT




| {z }
!1

sup
�2�

kfT (�)� f(�)k| {z }
=Op(T�1=2)

= Op(�
�1=2
T T�1=2):
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On the other hand, Lemma 13 implies that:

B2 =


�K�1

�T �K�1� f(�)


�



�K�1
�T �K�1

�

�
f(�)



+ 

�K�1
� �K�1� f(�)



= Op
�
��1T�1=2

�
+O

�
�min(1;

��1
2
)
�
:

Hence, B1 is negligible with respect to B2 and the result follows.�

Lemma 15 For all nonrandom functions (u; v) ; we have:

E

�D
u;bhT (:; �)EDv;bhT (:; �)E� = 1

T
hu;Kvi

Proof of Lemma 15. We have:

E

�D
u;bhT (:; �)EDv;bhT (:; �)E�

= E

��Z
u (�)bhT (� ; �)� (�) d���Z v (�)bhT (� ; �)� (�) d���

= E

�Z Z bhT (� 1; �)bhT (� 2; �)u (� 1) v (� 2)� (� 1)� (� 2) d� 1d� 2�
=

Z Z
E
hbhT (� 1; �)bhT (� 2; �)iu (� 1) v (� 2)� (� 1)� (� 2) d� 1d� 2:

By noting that

E
hbhT (� 1; �)bhT (� 2; �)i = 1

T
E
h
ht(� 1; �)ht(� 2; �)

i
=
1

T
k (� 1; � 2) ;

we have

E

�D
u;bhT (:; �)EDv;bhT (:; �)E�

=
1

T

Z �Z
k (� 1; � 2)v (� 2)� (� 2) d� 2

�
| {z }

Kv(�1)

u (� 1)� (� 1) d� 1

� 1

T
hu;Kvi :

�
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Lemma 16 For all nonrandom points e� in a neighborhood of �0 and for su¢ ciently large T ,
we have:

Im
D
K�1
�T
bGT (:;e�);bhT (:;e�)E = Op

��e� � �0

�0 �e� � �0

��
where bGT (:; �) = @bhT (:;�)

@�
.

Proof of Lemma 16 We have:

bhT (:;e�) � bhT (:; �0) + bGT (:; �0)�e� � �0

�
bGT (:;e�) � bGT (:; �0) + qX

j=1

bHj;T (:; �0)
�e�j � �j;0

�

Hence

D
K�1
�T
bGT (:;e�);bhT (:;e�)E �

D
K�1
�T
bGT (:; �0);bhT (:; �0)E

+
D
K�1
�T
bGT (:; �0); bGT (:; �0)E�e� � �0

�
+

qX
j=1

D
K�1
�T
bHj;T (:; �0); bGT (:; �0)E�e�j � �j;0

��e� � �0

�

where bHj;T (:; �) =
@ bGT (:;�)
@�j

and a higher order term is omitted. Note that e� is deterministic
and does not depend of T . For su¢ ciently large T , we have:

D
K�1
�TG(:;

e�); E hbht(:;e�)iE �


K�1
�TG(:; �0); G(:; �0)

� �e� � �0

�
+

qX
j=1



K�1
�THj;T (:; �0); G(:; �0)

� �e�j � �j;0

��e� � �0

�

where G(:; �) = P lim bGT (:; �) and Hj;T (:; �0) = P lim bHj;T (:; �). It is seen that the �rst term

of the right hand side is real. Consequently, the imaginary part of
D
K�1
�T
bGT (:;e�);bhT (:;e�)E

can only come from the second term which is proportional to
�e�j � �j;0

��e� � �0

�
�

Proof of Theorem 1. The proof follows the same step as that of Proposition 3.2 in

CCFG. However, we now exploit the fact Er�ht (�) 2 �� with � � 1. The consistency

follows from Lemma 14 provided �T 1=2 ! 1 and � ! 0. For the asymptotic normality to
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hold, we need to �nd a bound for the term B.10 of CCFG. We have:

jB:10j =
���DK�1

�Tr�ĥT

�
�̂T

�
�K�1E

�
r�ĥT (�0)

�
;
p
T ĥT (�0)

E���
�




K�1=2
�T r�ĥT

�
�̂T

�
�K�1=2E

�
r�ĥT (�0)

�





pT ĥT (�0)


| {z }
=Op(1)

= Op
�
��1=2T�1=2

�
+O

�
�min(1;

��1
2
)
�

Hence the asymptotic normality requires the same conditions as the consistency, that is,

�T 1=2 !1 and �! 0:�

Stochastic expansion of the CGMM estimator: IID case

The objective function is

b� = argmin
�

n
Q�T (�) =

D
K�1
�T
bhT (:; �);bhT (:; �)Eo :

where bhT (� ; �) = 1
T

PT
t=1

�
ei�

0xt � '(� ; �)
�
. The optimal b� solves:

@Q�T

�b��
@�

= 2Re
D
K�1
�TG(:;

b�);bhT (:;b�)E = 0 (2.40)

where G(:; �) = �@'(�;�)
@�

.

A third order expansion gives

0 =
@Q�T (�0)

@�
+
@2Q�T (�0)

@�@�0

�b� � �0

�
+

qX
j=1

�b�j � �j;0

� @3Q�T ����
@�j@�@�

0

�b� � �0

�
;

where �� lies between b� and �0. The dependence of b� on (�T ; �0) is hidden for convenience.
Let us de�ne

Gj(:; �) = �@'(� ; �)
@�j

; H(:; �) = �@
2'(� ; �)

@�@�0
;

Hj(:; �) = �@
2'(� ; �)

@�@�j
; Lj = �

@3'(� ; �)

@�j@�@�
0 :
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and

	T (�0) = Re
D
K�1
�TG(:; �0);

bhT (:; �0)E ;
WT (�0) =



K�1
�TG(:; �0); G(:; �0)

�
+Re

D
K�1
�TH(:; �0);

bhT (:; �0)E ;
Bj;T (��) = 2Re



K�1
�TG(:;

��); Hj(:; ��)
�
+Re

D
K�1
�TLj(:;

��);bhT (:; ��)E
+Re



K�1
�TH(:;

��); Gj(:; ��)
�
:

Then we can write:

0 = 	T (�0) +WT (�0)
�b� � �0

�
+

qX
j=1

�b�j � �j;0

�
Bj;T (��)

�b� � �0

�
:

Note that the derivatives of the moment functions are deterministic in the IID case. We

decompose 	T (�0), WT (�0) and Bj;T (��) as follows:

	T (�0) = 	T;0(�0) + 	T;�(�0) + e	T;�(�0);
where

	T;0(�0) = Re
D
K�1G;bhTE = Op

�
T�1=2

�
	T;�(�0) = Re

D�
K�1
� �K�1�G;bhTE = Op

�
�min(1;

��1
2
)T�1=2

�
e	T;�(�0) = Re

D�
K�1
�T �K�1

�

�
G;bhTE = Op

�
��1T�1

�
where the rates of convergences are obtained using the fact that jhf; gij � kfk kgk and the

results of Lemma 13. Similarly, we decompose WT (�0) into various terms with distinct rates

of convergence:

WT (�0) =W0(�0) +W�(�0) +fW�(�0) +WT;0(�0) +fWT;�(�0);
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where

W0(�0) =


K�1G;G

�
= O(1);

W�(�0) =

�
K�1
� �K�1�G;G� = O

�
�min(1;

2��1
2
)
�
;fW�(�0) =


�
K�1
�T �K�1

�

�
G;G

�
= Op

�
��1T�1=2

�
;

WT;0(�0) = Re
D
K�1H(:; �0);bhT (:; �0)E = Op

�
T�1=2

�
;fWT;�(�0) = Re

D�
K�1
�T �K�1�H(:; �0);bhT (:; �0)E = Op

�
��1T�1

�
:

We consider a simpler decomposition for Bj;T (��):

Bj;T (��) = Bj(��) +
�
Bj;T (��)�Bj(��)

�
where

Bj(��) = 2Re


K�1G(:; ��); Hj(:; ��)

�
+Re



K�1H(:; ��); Gj(:; ��)

�
= O(1);

Bj;T (��) = Bj(��) +O
�
�min(1;

��1
2
)
�
+Op

�
��1T�1=2

�
:

By replacing these decompositions into the expansion of the FOC, we can solve for b�� �0
to obtain:

b� � �0 = �W�1
0 (�0)	T;0(�0)

�W�1
0 (�0)

h
	T;�(�0) +W�(�0)

�b� � �0

�i
�W�1

0 (�0)
he	T;�(�0) +fW�(�0)

�b� � �0

�i
�W�1

0 (�0)WT;0(�0)
�b� � �0

�
�

qX
j=1

�b�j � �j;0

�
W�1
0 (�0)Bj(��)

�b� � �0

�
�

qX
j=1

�b�j � �j;0

�
W�1
0 (�0)(Bj;T (��)�Bj(��))

�b� � �0

�
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To complete the expansion, we replace b���0 by �W�1

0 (�0)	T;0(�0) in the higher order terms:

b� � �0 = �1 +�2 +�3 +�4 +�5 + bR
where bR is a remainder that goes to zero faster than the following terms:

�1 = �W�1
0 (�0)	T;0(�0);

�2 = �W�1
0 (�0)

�
	T;�(�0)�W�(�0)W

�1
0 (�0)	T;0(�0)

�
;

�3 = �W�1
0 (�0)

he	T;�(�0)�fW�(�0)W
�1
0 (�0)	T;0(�0)

i
;

�4 = W�1
0 (�0)WT;0(�0)W

�1
0 (�0)	T;0(�0)

�
qX
j=1

�
W�1
0 (�0)	T;0(�0)

�
j
W�1
0 (�0)Bj(��)W

�1
0 (�0)	T;0(�0);

�5 = �
qX
j=1

�
W�1
0 (�0)	T;0(�0)

�
j
W�1
0 (�0)(Bj;T (��)�Bj(��))W

�1
0 (�0)	T;0(�0):

To obtain the rates of these terms, we use the fact that jAf j � kAk jf j. This yields immedi-

ately:

�1 = Op
�
T�1=2

�
; �2 = Op

�
�min(1;

2��1
2
)T�1=2

�
,

�3 = Op
�
��1T�1

�
; �4 = Op

�
T�1

�
,

�5 = O
�
�min(1;

��1
2
)T�1

�
+Op

�
��1T�3=2

�
:

To summarize, we have:

b� � �0 = �1 +�2 +�3 + op
�
��1T�1

�
+ op

�
�min(1;

��1
2
)T�1=2

�
(2.41)

Stochastic expansion of the CGMM estimator: Markov case

The objective function here is given by:

b� = argmin
�

n
Q�T (�) =

D
K�1
�T
bhT (:; �);bhT (:; �)Eo :

where bhT (� ; �) = 1
T

PT
t=1

�
eis

0xt+1 � '(s; �; xt)
�
eir

0xtand � = (s; r) 2 R2p. The optimal b�
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solves

@Q�T

�b��
@�

= 2Re
D
K�1
�T
bGT (:;b�);bhT (:;b�)E = 0 (2.42)

where bGT (� ; �) = � 1
T

PT
t=1

@'(s;�;xt)
@�

eir
0xt.

The third order Taylor expansion of (2.42) around �0 yields:

0 =
@Q�T (�0)

@�
+
@2Q�T (�0)

@�@�0

�b� � �0

�
+

qX
j=1

�b�j � �j;0

� @3Q�T ����
@�j@�@�

0

�b� � �0

�
;

where �� lies between b� and �0.
Let us de�ne:

bHT (� ; �) = � 1
T

TX
t=1

@2'(s; �; xt)

@�@�0
eir

0xt ;

bGj;T (� ; �) = � 1
T

TX
t=1

@'(s; �; xt)

@�j
eir

0xt ; bHj;T (� ; �) = �
1

T

TX
t=1

@2'(s; �; xt)

@�j@�
eir

0xt ;

bLj;T (� ; �) = � 1
T

TX
t=1

@3'(s; �; xt)

@�j@�@�
0 eir

0xt ;

and

b	T (�0) = Re
D
K�1
�T
bGT (:; �0);bhT (:; �0)E ;cWT (�0) =

D
K�1
�T
bGT (:; �0); bGT (:;0 )E+ReDK�1

�T
bHT (:; �0);bhT (:; �0)E ;bBj;T (��) = 2Re

D
K�1
�T
bGT (:; ��); bHj;T (:; ��)

E
+Re

D
K�1
�T
bHT (:; ��); bGj;T (:; ��)E

+Re
D
K�1
�T
bLj;T (:; ��);bhT (:; ��)E :

Then the expansion of the FOC becomes:

0 = b	T (�0) +cWT (�0)
�b� � �0

�
+

qX
j=1

�b�j � �j;0

� bBj;T (��)�b� � �0

�
;

Unlike in the IID case, the derivatives of the moment function are not deterministic. We
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thus de�ne:

G(� ; �) = P lim
T!1

bGT (� ; �) � E

�
@'(s; �; xt)

@�
eir

0xt

�
;

H(� ; �) = P lim
T!1

bHT (� ; �) � E

�
@2'(s; �; xt)

@�@�0
eir

0xt

�
;

Gj(� ; �) = P lim
T!1

bGj;T (� ; �) � E

�
@'(s; �; xt)

@�j
eir

0xt

�
;

Hj(� ; �) = P lim
T!1

bHj;T (� ; �) � E

�
@2'(s; �; xt)

@�@�j
eir

0xt

�
:

Because xt is Markov, we have:

G(� ; �)� bGT (� ; �) = Op
�
T�1=2

�
;

H(� ; �)� bHT (� ; �) = Op
�
T�1=2

�
;

Gj(� ; �)� bGj;T (� ; �) = Op
�
T�1=2

�
;

Hj(� ; �)� bHj;T (� ; �) = Op
�
T�1=2

�
:

We have the following decomposition for b	T (�0):
b	T (�0) = 	T;0(�0) + 	T;�(�0) + e	T;�(�0) + b	T;�(�0) + be	T;�(�0):

Using the fact that jAf j � kAk jf j, the rates of convergence are:

	T;0(�0) = Re
D
K�1G;bhTE = Op

�
T�1=2

�
;

	T;�(�0) = Re
D�
K�1
� �K�1�G;bhTE = Op

�
�min(1;

��1
2
)T�1=2

�
;e	T;�(�0) = Re

D�
K�1
�T �K�1

�

�
G;bhTE = Op

�
��1T�1

�
;b	T;�(�0) = Re

D
K�1
�

� bGT �G
�
;bhTE = Op

�
��1=2T�1

�
;be	T;�(�0) = Re

D�
K�1
�T �K�1

�

� � bGT �G
�
;bhTE = Op

�
��3=2T�3=2

�
:

The di¤erence between the above decomposition of b	T (�0) and the one in the IID case only
comes from the additional higher order terms b	T;�(�0) and be	T;�(�0). Hence we can write



115b	T (�0) as: b	T (�0) = 	T;0(�0) + 	T;�(�0) + e	T;�(�0) +R	

where R	 = op (�
�1T�1) + op

�
�min(1;

��1
2
)T�1=2

�
.

We have a similar decomposition for cWT (�0):

cWT (�0) = W0(�0) +W�(�0) +fW�(�0) +cW�(�0) +
cfW�(�0)

+W1(�0) +W1;�(�0) +fW1;�(�0) +cW1;�(�0) +
cfW 1;�(�0)

where

W0(�0) =


K�1G;G

�
= O(1);

W�(�0) =

�
K�1
� �K�1�G;G� = O

�
�min(1;

2��1
2
)
�
;fW�(�0) =


�
K�1
�T �K�1

�

�
G;G

�
= Op

�
��1T�1=2

�
;cW�(�0) =

D
K�1
�

� bGT �G
�
; G
E
= Op

�
��1=2T�1=2

�
;

W1(�0) = Re
D
K�1H;bhTE+ DK�1G; bGT �G

E
= Op

�
T�1=2

�
;

W1;�(�0) =
D�
K�1
�T �K�1

�

� � bGT �G
�
; G
E
= Op

�
��3=2T�1

�
:

cfW 1;�(�0) = Re
D�
K�1
� �K�1�H;bhTE+ D�K�1

� �K�1�G; bGT �G
E

= O
�
�min(1;

��1
2
)T�1=2

�
;fW1;�(�0) = Re

D�
K�1
�T �K�1

�

�
H;bhTE+ D�K�1

�T �K�1
�

�
G; bGT �G

E
= Op

�
��1T�1

�
;cW1;�(�0) = Re

D
K�1
�

� bHT �H
�
;bhTE+ DK�1

�

� bGT �G
�
; bGT �G

E
= Op

�
��1=2T�1

�
;

RW;1 = Re
D�
K�1
�T �K�1

�

� � bHT �H
�
;bhTE

+
D�
K�1
�T �K�1

�

� � bGT �G
�
; bGT �G

E
= Op

�
��3=2T�3=2

�
:

For the purpose of �nding the optimal �, it is enough to consider the shorter decomposi-
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tion:

cWT (�0) =W0(�0) +W�(�0) +fW�(�0) +cW�(�0) +W1(�0) +W1;�(�0) +RW

with

RW � cfW 1;�(�0) +fW1;�(�0) +cW1;�(�0) +RW;1 = Op
�
��1T�1

�
+O

�
�min(1;

��1
2
)T�1=2

�
:

Finally, we consider again a simpler decomposition for Bj;T (��):

Bj;T (��) = Bj(��) +
�
Bj;T (��)�Bj(��)

�
where

Bj(��) = 2Re


K�1G(:; ��); Hj(:; ��)

�
+Re



K�1H(:; ��); Gj(:; ��)

�
= O(1)

Bj;T (��) = Bj(��) +O
�
�min(1;

��1
2
)
�
+Op

�
��1T�1=2

�
:

We replace these decompositions into the expansion of the FOC and solve for b� � �0 to

obtain:

b� � �0 = �W�1
0 (�0)	T;0(�0)

�W�1
0 (�0)

h
	T;�(�0) +W�(�0)

�b� � �0

�i
�W�1

0 (�0)
he	T;�(�0) +fW�(�0)

�b� � �0

�i
�W�1

0 (�0)cW�(�0)
�b� � �0

�
�W�1

0 (�0)W1(�0)
�b� � �0

�
�

qX
j=1

�b�j � �j;0

�
W�1
0 (�0)Bj(��)

�b� � �0

�
�W�1

0 (�0)W1;�(�0)
�b� � �0

�
�

qX
j=1

�b�j � �j;0

�
W�1
0 (�0)(Bj;T (��)�Bj(��))

�b� � �0

�
�W�1

0 (�0)RW

�b� � �0

�
�W�1

0 (�0)R	

Next, we replace b� � �0 by �W�1
0 (�0)	T;0(�0) = Op

�
T�1=2

�
in the higher order terms. This
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yields: b� � �0 = �1 +�2 +�3 + bR1 + bR2 + bR3 + bR4
where:

�1 = �W�1
0 (�0)	T;0(�0) = Op

�
T�1=2

�
;

�2 = �W�1
0 (�0)

�
	T;�(�0)�W�(�0)W

�1
0 (�0)	T;0(�0)

�
= Op

�
�min(1;

2��1
2
)T�1=2

�
;

�3 = �W�1
0 (�0)

he	T;�(�0)�fW�(�0)W
�1
0 (�0)	T;0(�0)

i
= Op

�
��1T�1

�
;bR1 = W�1

0 (�0)cW�(�0)W
�1
0 (�0)	T;0(�0) = Op

�
��1=2T�1

�
;bR2 = W�1

0 (�0)W1(�0)W
�1
0 (�0)	T;0(�0)

�
qX
j=1

�
W�1
0 (�0)	T;0(�0)

�
j
W�1
0 (�0)Bj(��)W

�1
0 (�0)	T;0(�0) = Op

�
T�1

�
;

bR3 = W�1
0 (�0)W1;�(�0)W

�1
0 (�0)	T;0(�0) = Op

�
��3=2T�3=2

�
;

and

bR4 = �W�1
0 (�0)R	 +W�1

0 (�0)RWW
�1
0 (�0)	T;0(�0)

�
qX
j=1

�
W�1
0 (�0)	T;0(�0)

�
j
W�1
0 (�0)(Bj;T (��)�Bj(��))W

�1
0 (�0)	T;0(�0)

= op
�
��1T�1

�
+ op

�
�min(1;

��1
2
)T�1=2

�
:

In summary, we have:

b� � �0 = �1 +�2 +�3 + op
�
��1T�1

�
+ op

�
�min(1;

��1
2
)T�1=2

�
(2.43)

which is of the same form as in the IID case.

Proof of Theorem 2.

Using the expansions given in (2.41) and (2.43), we obtain:

b� � �0 = �1 +�2 +�3 +Op
�
T�1

�
As T increases, the consistent estimator b� eventually falls (with probability approching one)
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in a neighborhood of �0 on which Lemma 16 holds. This ensures that all the terms that are

slower than Op (T�1) in the expansion of the FOC are real so that the Re symbol may be

removed from the expression of �1, �2 and �3.

Asymptotic Variance

The asymptotic variance of b� is given by
TV ar (�1) = TW�1

0 E [	T;0(�0)	T;0(�0)
0]W�1

0

= TW�1
0 E

�D
K�1G;bhTEDK�1G;bhTE0�W�1

0

= W�1
0



K�1G;G

�
W�1
0

where the last equality follows from Lemma 15. Hence,

TV ar (�1) =W�1
0



K�1G;G

�
W�1
0 = W�1

0 :

Higher Order Bias

The terms �1 and �2 have zero expectations. Hence, the bias can only come from �3:

Bias = E
hb� � �0

i
= E [�3]

= �W�1
0 E

he	T;�i+W�1
0 E

hfW�W
�1
0 	T;0

i
= O

�
��1T�1

�
where we used the rule E [Op (��1T�1)] = O (��1T�1). This rule gives the worst case rate

because the true bias may converge to zero faster. The squared bias satis�es:

TBias �Bias0 = O
�
��2T�1

�
:

Higher Order Variance

The dominant terms in the higher order variance are

Cov (�1;�2) + V ar (�2) + Cov (�1;�3) :
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We �rst consider Cov (�1;�2):

Cov (�1;�2) =W�1
0 E [	T;0	T;�(�0)

0]W�1
0 �W�1

0 E
�
	T;0	

0
T;0

�
W�1
0 W�W

�1
0 :

From Lemma 15, we have:

E
�
	T;0	

0
T;�

�
=
1

T


�
K�1
� �K�1�G;G� = W�:

and E
�
	T;0	

0
T;0

�
= W0. Hence,

Cov (�1;�2) =
1

T
W�1
0 W�W

�1
0 � 1

T
W�1
0 W0W

�1
0 W�W

�1
0

= 0:

Now we consider the term Cov (�1;�3):

Cov (�1;�3) =W�1
0 E

h
	T;0e	0T;�iW�1

0 �W�1
0 E

h
	T;0	

0
T;0W

�1
0
fW�

i
W�1
0 :

We �rst consider:

E
h
	T;0e	0T;�i = E

hD
K�1G;bhTED�K�1

�T �K�1
�

�
G;bhTEi :

Using Equation (2.34) in Lemma 13, we have

D
K�1G;bhTED�K�1

�T �K�1
�

�
G;bhTE = Op

�
T�1=2

�
�Op

�
��1T�1=2

�
�Op

�
T�1=2

�
= Op

�
��1T�3=2

�
:

Hence we conclude for the �rst term of Cov (�1;�3) that

W�1
0 E

h
	T;0e	0T;�iW�1

0 = O
�
��1T�3=2

�
:
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We now turn to examine the second term of Cov (�1;�3).

E
h
	T;0	

0
T;0W

�1
0
fW�

i
= E

�D
K�1G;bhTEDK�1G;bhTE0W�1

0


�
K�1
�T �K�1

�

�
G;G

��
:

Using again Lemma 13, we have

D
K�1G;bhTEDK�1G;bhTE0W�1

0


�
K�1
�T �K�1

�

�
G;G

�
= Op

�
T�1=2

�
�Op

�
T�1=2

�
�O (1)�Op

�
��1T�1=2

�
= Op

�
��1T�3=2

�
:

so that we can conclude:

E

�D
K�1G;bhTEDK�1G;bhTE0W�1

0


�
K�1
�T �K�1

�

�
G;G

��
= O

�
��1T�3=2

�
:

Overall, the rate of Cov (�1;�3) is thus given by

T � Cov (�1;�3) = O
�
��1T�1=2

�
:

We are left with the rate of V ar (�2). We recall that

�2 = �W�1
0 	T;� +W�1

0 W�W
�1
0 	T;0:

We have

V ar (�2) =W�1
0 E

�
	T;�	

0
T;�

�
W�1
0 �W�1

0 E
�
	T;�	

0
T;0

�
W�1
0 W�W

�1
0

�W�1
0 W�W

�1
0 E

�
	T;0	

0
T;�

�
W�1
0 +W�1

0 W�W
�1
0 E

�
	T;0	

0
T;0

�
W�1
0 W�W

�1
0 :

Replacing E
�
	T;0	

0
T;�

�
= 1

T
W� and E

�
	T;0	

0
T;0

�
= 1

T
W0, we see immediately that the last

two terms cancel out so that

V ar (�2) =W�1
0 E

�
	T;�	

0
T;�

�
W�1
0 �W�1

0 W�W
�1
0 W�W

�1
0 :
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For the �rst term of V ar (�2), we use Lemma 15 to obtain:

E
�
	T;�	

0
T;�

�
= E

hD�
K�1
� �K�1�G;bhTED�K�1

� �K�1�G;bhTEi
=

1

T


�
K�1
� �K�1�G; �K�1

� �K�1�KG�
=

X
j

�
�j

�2j + �
� 1

�j

�2
�j


G; �j

�2
=

X
j

�
�j

�2j + �
� 1

�j

�2
�2�+1j



G; �j

�2
�2�j

�
X
j



G; �j

�2
�2�j

sup
���1

�
�

�2 + �
� 1

�

�2
�2�+1:

We focus on the square-root of
�

�
�2+�

� 1
�

�2
�2�+1, namely:

sup
���1

�
1

�
� �

�2 + �

�
�(2�+1)=2 = sup

���1

�
1� �2

�2 + �

�
���1=2:

Case where � � 5=2

sup
���1

�
1� �2

�2 + �

�
���1=2 = � sup

���1

���1=2

�2 + �

� � sup
���1

���5=2 � ��
��5=2
1 :

Case where � < 5=2

We apply the change of variable x = �=�2 and obtain

sup
���1

�
1� �2

�2 + �

�
���1=2 = sup

x�0

�
1� 1

1 + x

���
x

���1=2
2

= �
2��1
4 sup

x�0

x

1 + x
x�

2��1
4 :

The function f (x) = x
1+x

x�
2��1
4 is continuous and hence bounded for x away from 0 and

in�nity. When x goes to in�nity, f (x) goes to zero because 2��1 > 0:When x goes to zero,

f (x) =
x
5�2�
4

1 + x
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goes to zero because 5� 2� > 0. Hence, f (x) is bounded on R+. In conclusion, the rate of

convergence of E
�
	T;�	

0
T;�

�
is given by:

�min(2;
2��1
2 )T�1:

Note that this rate is an equivalent, not a O.

For the second term of V ar (�2), we use the fact that W� = O
�
�min(1;

2��1
2
)
�
according

to Equation (2.36) in Lemma 13:

1

T
W�1
0 W�W

�1
0 W�W

�1
0

=
1

T
�O (1)�O

�
�min(1;

2��1
2
)
�
�O (1)�O

�
�min(1;

2��1
2
)
�
�O (1)

= O
�
�min(2;2��1)T�1

�
:

Optimal Rate for �

Note that the bias term TBias �Bias0 = O (��2T�1) goes to zero faster than the covari-

ance term TCov (�1;�3) = O
�
��1T�1=2

�
. Hence the optimal � is the one that achieves the

best trade-o¤ between TV ar (�2) � �min(2;��
1
2
) which is increasing in � and TCov (�1;�3)

which is decreasing in �. We have

�min(2;��
1
2
) = ��1T�1=2 ) � = T�max(

1
6
; 1
2�+1

):

Consistency of b�TM �b�1�
First we recall the notations. Let b�T (�; �) be a CGMM estimator of � built from XT (�) ;

a sample of size T and the value � for the regularization parameter. The sample XT (�)

is supposed to be drawn from the DGP indexed by �. One can construct M IID copies of

the random variable b�T (�; �) by drawing M independent samples from the DGP to obtainb�jT (�; �), j = 1; 2; :::;M as described in Section 4.

Let �T (�; �) denote the MSE of b�T (�; �), that is:
�T (�; �) = TE

��b�T (�; �)� �
�0 �b�T (�; �)� �

��
:
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We estimate �T (�; �0) in a natural way as:

b�MC
TM (�; �) =

T

M

MX
j=1

�b�jT (�; �)� �
�0 �b�jT (�; �)� �

�
:

Note that �T (�; �) = E
hb�MC

TM (�; �)
i
. We further de�ne:

�T (�) = arg min
�2[0;1]

�T (�; �)

b�TM (�) = arg min
�2[0;1]

b�MC
TM (�; �)

The estimator of �T (�0) we are considering is b�TM �b�1� where b�1 is a pT -consistent �rst
step estimator of �0: The following lemma is useful for the subsequent derivations.

Lemma 17 Under Assumptions 1 to 5, b�T (�; �0) is once continuously di¤erentiable with
respect to � and twice continuously di¤erentiable with respect to �0 and �T (�0) is a continuous

function of �0.

Proof of Lemma 17 Note that bQT (�; �) involves
K�1
�T
bhT (:; �) = TX

j=1

b�j
�+ b�2j

DbhT (:; �); b�jE b�j
where b�j is the eigenfunction of KT associated with the eigenvalue b�j. By assumption 3,
the moment function bhT (:; �) is three times continuously di¤erentiable with respect to �;
the argument with respect to which we minimize the objective function of the CGMM. By

assumption 5, xt = x (xt�1; �0; "t) where r is three times continuously di¤erentiable with

respect to �0 (the true unknown parameter) and "t is an IID white noise whose distribution

does not depend on �0. Thus as an exponential function of xt; the moment function is also

three times continuously di¤erentiable with respect to �0: Thus Assumptions 3 and 5 imply

that the objective function of the CGMM is three times continuously di¤erentiable with

respect to � and �0. Now we turn our attention toward the di¤erentiability with respect to

�. It is easy to check that
@3K�1

�T
bhT (:; �)

@�3
= eK�T

bhT (:; �)
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where eK�T � � (K2

T + �T I)
�2
KT which is well de�ned on L2 (�) for �T �xed. When �T

goes to zero, we have to be more careful. We check that

���D eK�T
bhT (:; �);bhT (:; �)E���

is bounded. We have

���D eK�T
bhT (:; �);bhT (:; �)E���

�



 eK�T

bhT (:; �)





bhT (:; �)



�




�K2
T + �T I

��2
KT







bhT (:; �)


2
=




�K2
T + �T I

��3=2


| {z }
���3=2T




�K2
T + �T I

��1=2
KT




| {z }
�1




bhT (:; �)


2| {z }
=Op(T�1)

= Op

�
�
�3=2
T T�1

�
= op (1) ;

where the last equality follows from Theorem 2(ii). This shows that bQT (�; �) is once con-
tinuously di¤erentiable with respect to � and three times continuously di¤erentiable with

respect to (�; �0). By the implicit function theorem,

b�T (�; �0) = argmin
�

bQT (�; �)
is once continuously di¤erentiable with respect to � and twice continuously di¤erentiable

w.r.t. �0. The MSE b�T (�; �0) is an expectation of a quadratic function in b�T (�; �0):
�T (�) = TE

��b�T (�; �0)� �0

�0 �b�T (�; �0)� �0

��
;

hence �T (�; �0) is also once continuously di¤erentiable w.r.t. � and twice continuously

di¤erentiable w.r.t. �0: Now, the Maximum theorem implies that

�T (�0) = argmin
�2[0;1]

�T (�; �0)
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is continuous w.r.t. �0:�
Proof of Theorem 3

Using (??), we see that
�T (b�1)
�T (�0)

=
c(b�1)
c(�0)

:

Moreover by Lemma 17, �T (�) and hence c are continuous functions of �. Since b�1 is a
consistent estimator of �0; the continuous mapping theorem implies that

c(b�1)
c(�0)

P! 1:

�
Proof of Theorem 4

We can write b�MC
TM (�; �0) =

1
M

PM
j=1mj (�) where

mj (�) =
�b�jT (�; �0)� �0

�0 �b�jT (�; �0)� �0

�
are IID (across j) and continuous in �. We have

b�MC
TM (�; �0)� �T (�; �0) =

1

M

MX
j=1

(mj (�)� E (mj (�))) :

If we can show that there exists a function bT > 0 independent of � such that



@mj (�)

@�





 < bT ; (2.44)

and E (bT ) <1; then, by Lemma 2.4 of Newey and McFadden (1994), we would have

sup
�2[0;1]

���b�MC
TM (�; �0)� �T (�; �0)

��� = Op
�
M�1=2� :

Hence, it would follow from Theorem 2.1 of Newey and McFadden (1994) that

b�TM (�0)� �T (�0) = Op
�
M�1=2� :



126
As T is �xed, �T (�0) is bounded away from zero and we would obtain

b�TM(�0)
�T (�0)

� 1 = Op
�
M�1=2� :

To prove inequality (2.44), we �rst compute:

@m (�)

@�
= 2

@b�T (�; �0)
@�

0 �b�T (�; �0)� �0

�
where by the implicit function theorem:

@b�T (�; �0)
@�

= �
"
@2 bQT (�; �)
@�@�0

#�1
@2 bQT (�; �)
@�@�

:

The expressions involved are:

@2 bQT (�; �)
@�@�0

=
D
K�1
�T
bGT (:; �0); bGT (:; �0)E+ DK�1

�T
bHT (:; �0);bhT (:; �0)E ;

@2 bQT (�; �)
@�@�

=
D
K�
�T
bGT (:; �0);bhT (:; �0)E+ DK�

�T
bhT (:; �0); bGT (:; �0)E

and K�
�T � � (K2

T + �I)
�2
KT .

Next recall that for �xed T , �T (�0) is bounded away from zero because the objective

function of the CGMM as well as the MSE of the CGMM estimator diverge as � approach

zero and T is �xed. Thus there exists at least one sequence �T such that �T (�0) ��T for all

T so that the problem of choosing � may be written as:

� (�0) = argmin
�2[�T ;1]

�T (�; �0)

For one such sequence,

kbT (�T )k =




@m (�T )@�





 <1
where �T = arg sup

�2[�T ;1]




@m(�)@�




 because @2 bQT (�;�)
@�@�0 and @2 bQT (�;�)

@�@�
are continuous with respect to �.

Hence the result.�
Proof of Theorem 5



127
We �rst make the following decomposition

b�TM(b�1)
�T (�0)

� 1 =
 
�T (b�1)
�T (�0)

� 1
!
+

 
�T (b�1)
�T (�0)

� 1
! b�TM(b�1)

�T (b�1) � 1
!
+

 b�TM(b�1)
�T (b�1) � 1

!
:

By Theorem 3, �T (
b�1)

�T (�0)
� 1 = Op(T

�1=2): According to Theorem 4, b�TM (�0)
�T (�0)

�1 = Op(M
�1=2)

for T �xed. We can keep this rate of convergence if one takes a sequential limit, �rst in M

and second in T: Noting that the product of
�
�T (b�1)
�T (�0)

� 1
�
and

� b�TM (b�1)
�T (b�1) � 1

�
is negligible

with respect to either of the other two terms, the result follows, that is:

b�TM(b�1)
�T (�0)

� 1 = Op(T
�1=2) +Op(M

�1=2):

�

Numerical algorithms: Computing the objective function of the CGMM

Let L2 (�) be de�ned by (2.9). It turns out that ht (�; �) 2 L2 (�) for any �nite measure

�. Thus without loss of generality, we can take � (�) to be the standard normal density up

to a multiplicative constant: � (�) = exp f�� 0�g : Recall that:

KT ĥT (�; �) =

Z
Rd

bkT (s; �)bhT (�; s) exp f�s0sg ds:
This kind of integral can easily be well approximated numerically using the Gauss-Hermite

quadrature. This amounts to �nd m points s1; s2; :::sm and weighs !1; !2; :::!m such that:

Z
Rd
p(s) expf�s0sgdx =

mX
k=1

!kp(sk)

for any polynomial function p(:) of order smaller than or equal to 2m � 1. See for example

Liu and Pierce (1994).

If f is di¤erentiable at any order (for example an analytic function), it can be shown that

for any positive " arbitrarily small, there exist m such that:�����
Z
Rd
f(s) expf�s0sgdx�

mX
k=1

!kf(sk)

����� < ":
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More importantly, the choice of the quadrature point does not depend on the function f .

The quadrature points and weights are determined by solving:

Z
sl expf�s2gds =

nX
k=1

!ks
l
k for all l = 1; :::; 2n� 1

Applying that method to evaluate the above integral, we get

KT
bhT (�; �) � mX

k=1

!kbkT (sk; �)bhT (�; sk) :
Let bhT (�) denote the vector �bhT (�; sk) ;bhT (�; sk) ; :::;bhT (�; sk)�0 and cWT denote the matrix

with elements: Wjk = !kbkT (sk; sj). Thus we can simply write:
KT
bhT (�) � cWT

bhT (�) :
For any given level of precision, the matrixcWT can be looked at as the best �nite dimensional

reduction of the operator KT . From the spectral decomposition of K�1
�T ; it is easy to deduce

the approximation:

K�1
�T
bhT (�) � �cW 2

T + �I
��1cWT

bhT (�) � ehT (�) :
Finally, the objective function of the CGMM is computed as:

D
K�1
�T
bhT (�; :);bhT (�; :)E =

Z ���K�1=2
�T

bhT (�; �)���2 exp f�� 0�g d�
�

mX
k=1

!k

���ehT (�; sk)���2

where ehT (�; sk) is the kth component of ehT (�) :



Chapter 3

Applications of the Characteristic

Function Based Continuum GMM in

Finance

Note: Cet article dont je suis l�unique auteur est actuellement sous évaluation pour publication dans "Com-

putational Statistics & Data Analysis". Nous remercions Marine Carrasco pour ses commentaires utiles.

Mots-Clés: Continuum of Moments Conditions, Simulation, Stable Distribution, Autoregressive variance

Gamma model

3.1 Introduction

For many interesting �nancial econometric models, the characteristic functions (CF) is avail-

able in closed form while the likelihood functions is not. This is for example the case of the

stable distribution, or a discretely sampled continuous time process. Exceptionally, a discrete

sample from the square root di¤usion model has a closed form conditional likelihood, but its

expression is an in�nite sum that must be truncated in practice. In the discrete time liter-

ature also, many models (e.g the variance gamma model) has known closed form likelihood

functions that are not convenient for numerical optimization. In these situations, the use of

the CF for inference is attractive. In fact, two random variables have the same distribution if

and only if their CF coincide on the whole real line. This suggests that an inference method

129
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that adequately exploits the information content of the CF have the potential to achieve the

same level of e¢ ciency as a likelihood-based approach. One such inference method proposed

by Carrasco and Florens (2000) for IID models exploits the whole continuum of moment con-

ditions based on the di¤erence between the empirical and theoretical characteristic functions

to estimate a model. The method has been extended by Carrasco, Chernov, Florens and

Ghysels (2007) to deal with Markov and dependent models. Other leading works in this area

include Singleton (2001), Knight and Yu (2002), Knight, Satchell and Yu (2002) and Chacko

and Viceira (2003). A good review of this literature is provided by Yu (2004).

The goal of this paper is to make the CF based GMM with a continuum of moment condi-

tions (henceforth CGMM) accessible to applied researchers. Our focus will be on the approach

proposed by Carrasco and Florens (2000) and its extension by Carrasco and al (2007). First

of all, we review the theory underlying the CGMM. We recall the main assumptions that are

useful for the consistency and asymptotic normality of the CGMM estimator. Next, we dis-

cuss in details the important steps of the implementation of the CGMM in practice. Finally,

we provide a simulation study with the stable distribution and an empirical application with

the autoregressive variance gamma model.

The Stable Distribution have been introduced in �nance to �t the asymmetry and fat tails

observed empirically in the distributions of assets returns (Mandelbrot (1963) or McCulloch

(1986)). Di¤erent parametrizations coexist in the literature for this distribution, and this has

sometimes been a source of confusion. In the common parametrization adopted in this paper,

the stable distribution has a stability parameter � 2]0; 2], a skewness parameter � 2 [�1; 1],

a scale parameter � > 0 and a location parameter � 2 R. The moments of order larger than

� do not exist for the stable distribution when � < 2. When � = 2, all the moments exist

but the asymmetry parameter � is no longer identi�able. We present an overview of the

Stable Distribution and discuss its di¤erent parametrizations and simulation strategies. Our

results show that the CGMM produces reliable estimators for the parameters of the model.

However, the variance of the estimators cannot be computed analytically when the vector of

parameters is close to the non identi�cation region (that is, when � is close to 2). One then

has to rely on Monte Carlo simulations to build con�dence intervals.

The fact that the asymmetry and fat -tailedness of the stable distribution vanish when

its variance exist is a limit to its use for the purpose of modeling assets returns. A simple
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solution to this limitation consists in modeling the variance of the returns as a Gamma

variable. This yields the variance gamma model. The symmetric variance gamma model

has been propose by Madan and Senata (1990). Madan, Carr and Chang (1998) extend the

basic model to include asymmetry. These two models unfortunately assume that the variance

is IID. We relax this assumption by assuming that the variance follows the autoregressive

gamma process studied in Gourieroux and Jasiak (2005). The resulting model for assets

returns is termed the "autoregressive variance gamma model". We propose an estimation

strategy in two steps. In the �rst step, we �t the autoregressive gamma model to a consistent

estimator of the integrated variance (used as a proxy for the true variance). And secondly,

we estimate a relation between the returns and the volatility that allows to disentangle the

risk premium from the leverage e¤ect. An empirical application with the Alcoa index (listed

in the Dow Jones Industrial Average) shows that investors require a positive premium for

bearing the expected risk while a possibly time varying negative premium is attached to the

unexpected risk.

We organize the rest of the paper as follows. The next section reviews the main theoretical

results on the CGMM. In section 3, we discuss the numerical aspects of its implementation.

In section 4, we present a simulation study of the performance of the CGMM to estimate the

stable distribution. In section 5, we present and estimate the autoregressive variance gamma

model with real data. Section 6 concludes. A few graphs and mathematical formulas are left

in appendix.

3.2 The CGMM: a Brief Theoretical Review

In this section, we present the theoretical framework underlying the CGMM estimation.

The �rst subsection reviews the IID framework while the second subsection deals with the

dependent case. In the third subsection, we discuss the assumptions needed in order for the

CGMM estimator to have good asymptotic properties .

3.2.1 The CGMM in the IID Case

Let (x1; : : : ; xT ) be an IID sample of an m�dimensional vector process whose CF is given by

E�0 (ei�xt) = '(� ; �0), where �0 is a �nite dimensional parameter that fully characterizes the
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distribution of fxtg. By the de�nition of '(� ; �0), the following set of moment functions can

be considered for the purpose of estimating the parameter �0:

ht (� ; �0) = ei�xt � '(� ; �0); for all � 2 Rm. (3.1)

Note that these moment functions are indexed by � 2 Rm, and hence we have a continuum

of moment conditions. Because the CF contains the same information as the likelihood

function, an e¢ cient use of the whole continuum of moment conditions can permit to achieve

the maximum likelihood e¢ ciency.

As in Feuerverger and McDunnough (1981b), Singleton (2001) or Chacko and Viceira

(2003), one may choose to use the GMM based on a discrete subset of the continuum (3.1).

The implementation of such a GMM is done in the standard way, as proposed by Hansen

(1982). More precisely, let fht (� k; �0)gqk=1 be a discrete subset of fht (� ; �0) ; � 2 Rmg, and

de�ne the vector gt (�0) by:

gt (�0) = (Reht (� 1; �0) ; :::;Reht (� q; �0) ; Imht (� 1; �0) ; :::; Imht (� q; �0))
0

The objective function of the GMM may be de�ned as:

min bg (�0)0cW�1bg (�0)
where bg (�0) = 1

T

PT
t=1 gt (�0) and cW = 1

T

PT
t=1 gt (�0) gt (�0)

0.

Feuerverger and McDunnough (1981b) claim that the asymptotic variance of the result-

ing estimator can be made arbitrarily close to the Cramer-Rao bound by selecting the grid

(� 1; :::; � q) su¢ ciently re�ned and extended. This con�rms in fact that the maximum like-

lihood e¢ ciency can be achieved only by using the whole continuum of moment function

fht (� ; �0) ; � 2 Rmg. However, as one re�nes and extends the grid the discrete set of moment

conditions converge to the continuous moment function ht(� ; �) = ei�xt � '(� ; �), � 2 Rm,

while the covariance matrix cW converges to the covariance operator associated with that

moment function. Moreover, one should note that 2q � T is a necessary condition for the

covariance matrix cW to be invertible.

Di¤erent methods that match continuously the empirical CF to its theoretical counterpart
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has been proposed as far back as in Press (1972) and Paulson and al. (1975), but the ideal

objective function has been introduced more recently by Carrasco and Florens (2000). That

objective function is given by:

Q =
D
K�1=2bhT (:; �); K�1=2bhT (:; �)E ; (3.2)

where h : ; : i is a scalar product on the Hilbert space of square integrable functions, and K

is a linear operator.

To be more precise, let � be a probability density function on Rm and L2(�) denote the

Hilbert space of complex valued functions that are square integrable with respect to �, that

is:

L2(�) = ff : Rm ! C such that
Z
f(�)f(�)�(�)d� <1g:

Interestingly, ht(� ; �) is bounded in modulus and consequently belongs to L2(�) for all � 2 �

and any choice of �. The scalar product h:; :i on L2(�)� L2(�) is de�ned by:

hf; gi =
Z
f(�)g(�)�(�)d� :

Carrasco and Florens (2000) show that the maximum likelihood e¢ ciency is achieved when

K is the asymptotic covariance operator associated with the moment function ht (� ; �0). The

kernel of K is given by:

k(s; �) = E
h
ht(s; �)ht(� ; �)

i
(3.3)

and for any function f 2 L2(�), Kf =
R
k(s; �)f (s)� (s) ds. It can be shown that Kf 2

L2(�) for all f 2 L2(�) so that K�1f exists for all f 2 L2(�).

In practice, one has to use the empirical counterpart KT of K. The operator KT is the

one got by replacing the kernel k(s; �) by a consistent estimator. A natural estimator of

k(s; �) is given by:

kT (s; � ;b�1) = 1

T

TX
t=1

ht(s;b�1)ht(� ;b�1); (3.4)

where b�1 is a consistent �rst step estimator of �0. In the speci�c case of IID data, an estimator
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of the kernel that does not use a �rst step estimator is given by:

kT (s; �) =
1

T

TX
t=1

�
eisxt � b'T (s)� (eisxt � b'T (s)): (3.5)

where b'T (s) = 1
T

PT
t=1 e

isxt.

It turns out that KT is not invertible on the whole L2(�) space. Carrasco and Florens

(2000) then proposed to work with a generalized inverse of type1 K�1
T;� = (K

2
T + �T IT )

�1
KT ,

where IT is the identity operator and �T is a regularization parameter that is function of the

sample size T . The feasible CGMM estimator is thus given by:

b�T;� = argmin bQT;�, where (3.6)bQT;� =
D
K
�1=2
T;�

bhT (:; �); K�1=2
T;�

bhT (:; �)E
and K�1=2

T;� = (K2
T + �T IT )

�1=2
K
1=2
T . It is shown in Carrasco and Florens (2000) that the ML

e¢ ciency is achieved when �T converges to zero at a certain rate as the sample size diverges

to in�nity. We discuss the assumption underlying these results in Section 2.3.

3.2.2 The CGMM with Dependent Data

When fxtg is Markov instead of being IID, it may not be possible to identify �0 from the

marginal CF. In this case, Carrasco, Chernov, Florens and Ghysels (2007) proposed to use

moment functions based on the conditional CF:

ht(� ; �) =
�
eisxt+1 � '(�; s; xt)

�
eirxt ; (3.7)

where '(s; �; xt) = E�(eisxt+1jxt), � = (s; r) 2 R2m. In the above expression, the manifold

feirxt ; r 2 Rmg is used as instruments. Carrasco, Chernov, Florens and Ghysels (2007) show

that these instruments are optimal given the Markov assumption.

There also exist many interesting situations where the process fxtg is mixing instead of

being Markov or IID. In a typical stochastic volatility models for instance, the joint process

1This is the Tikhonov regularization. Other types of regularized inverse can also be used (e.g spectral
cutt-o¤).
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of the observed return and the latent volatility is Markov but the return process alone is not.

In that case, the idea is to use the moment conditions built from the joint CF:

ht(� ; �) = ei�Yt � E�(ei�Yt); � 2 Rmp (3.8)

where Yt = (xt; xt�1; :::; xt�p+1). In theory, the larger p the more e¢ cient the estimator. But

in practice, the quest for e¢ ciency must be balanced with the computing cost. For more

discussions on this point, see Feuerverger (1990), Carrasco and Florens (2002), Jiang and

Knight (2002), Yu (2004) and Carrasco, Chernov, Florens and Ghysels (2007).

The objective function of the CGMM for Markov and dependent models has the same

expression as in (3.2), except that the kernel of the asymptotic covariance operator K as-

sociated with the moments conditions is now given by (see Carrasco, Chernov, Florens and

Ghysels (2007)):

k(s; �) = E
h
ht(s; �)ht(� ; �)

i
(3.9)

+
1X
j=1

E
h
ht(s; �)

�
ht�j(� ; �) + ht+j(� ; �)

�i

Note that moments conditions of type (3.1) are IID while those of type (3.7) are martin-

gale di¤erence sequence. Hence in the Markov case, k(s; �) reduces to (3.3) and can thus

be estimated by (3.4). On the other hand, the moment conditions described by (3.8) are

autocorrelated even if the process fxtg is Markov. In the latter case, k(s; �) can be estimated

as in Newey and West (1987) or Andrews and Monahan (1992) using the Bartlett kernel:

kT (s; � ;b�1) =
1

T

TX
t=1

ht(s;b�1)ht(� ;b�1) (3.10)

+

JTX
j=1

�
1� j � 1

JT

� TX
t=1

ht(s;b�1)�ht�j(� ;b�1) + ht+j(� ;b�1)� ;
where b�1 is a consistent �rst step estimator of �0 and JT is a bandwidth that is increasing in
T . Again, the operator KT with kernel kT (s; � ;b�1) is not invertible on the whole reference
space, and the feasible CGMM estimator is de�ned in the same fashion as in (3.6).

In the sequel, we shall focus on the IID and Markov case and use the generic notation
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ht(� ; �); � 2 Rd, where d = m for moments conditions of type (3.1) and d = 2m for moments

conditions of type (3.7).

3.2.3 Basic Assumptions of the CGMM

To derive the theoretical properties of the CGMM estimator, the following regularity condi-

tions are assumed.

Assumption 1: The p.d.f � involved in the de�nition of scalar product h : ; : i is strictly

positive on Rd and admits all its moments.

Assumption 2: The equation

E�0 [ht(� ; �)] = 0 for all � 2 Rd; � � almost everywhere,

where E�0 denotes the expectation with respect to the distribution of xt for � = �0, has a

unique solution �0 which is an interior point of a compact set �.

Assumption 3: ht(� ; �) is three time continuously di¤erentiable with respect to �.

Assumption 4: For all �, E�0 [hT (:; �)] and its �rst three derivatives with respect to �

belong to the range of K� for some � � 1=2.

Assumption 5: The random variable xt is stationary and satis�es xt = x (�0; "t; Zt�1)

where x (:; "t; Zt�1) is three times continuously di¤erentiable with respect to �0, "t is a IID

white noise whose distribution is known and does not depend on �0, and Zt�1 can only contain

lagged values of xt.

Assumption 1 ensures that the norm associated with the scalar product h:; :i is well de-

�ned while Assumption 2 is a global identi�cation requirement. The CGMM estimator is

still well de�ned if Assumption 3 is weaker, for example if ht(� ; �) is only once continu-

ously di¤erentiable, but the derivation of some of the asymptotic properties of the estimator

become di¢ cult. Assumption 4 ensures that the limit of the objective function as T goes

to in�nity is well de�ned. The real number � in this assumption is the level of regularity

of E�0 [hT (:; �)] with respect to the operator K; that is, the largest real number such that

K��E�0 [hT (:; �)]


 <1.

Under assumptions 1 and 2, the estimator of the covariance operator satis�es in the IID
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and Markov case:

kKT �Kk = Op
�
T�1=2

�
The regularized inverse K�1=2

T;� has the property that for any function f in the range of K1=2,

K
�1=2
T;� f converges to K�1=2f as T goes to in�nity and �T goes to zero at some rate.

In the IID andMarkov case, assumptions 1 to 4 ensure that the CGMM estimator satis�es:

T 1=2
�b�T (�T )� �0

�
L! N(0; I�1�0 ): (3.11)

as T and �2TT go to in�nity and �T goes to zero, where I
�1
�0
denote the inverse of the Fisher

Information Matrix. Carrasco and Kotchoni (2008) show that this result still holds even

when �3=2T T diverges as T goes to in�nity.

Assumption 5 is not crucial for the good properties of the CGMM. It has been used in

Carrasco and Kotchoni (2008) to derive the properties of the optimal sequence of regulariza-

tion parameters �T . A similar assumption is also used in Gourieroux, Monfort and Renault

(1993) to derive the properties of indirect inference estimators.

3.3 The CGMM in Practice

In this section, we discuss two numerical methods to evaluate the objective function of the

CGMM. The �rst method is based on Gauss-Hermite quadratures while the second uses

Monte Carlo integration. We show how to compute the variance of the CGMM estimator

and review the simulation based selection of the regularization parameter �T .

3.3.1 Computing the Objective Function by Quadrature Method

The challenge in implementing the CGMM is the accurate computation of the multiple

integrals embedded in its objective function:

bQT = Z
Rd

���K�1=2
T;�

bhT (� ; �)���2 �(�)d�
To start with, let us consider the univariate case d = 1, and assume that a function f (� ; �)

is continuously di¤erentiable up to order 2n. Then f (� ; �) can be well approximated by a



138
polynomial function of � , that is:

f (� ; �) =
2n�1X
k=0

ak (�) �
k + " (� ; �) (3.12)

where the residual of the polynomial approximation " (� ; �) is negligible for large n. In that

case, the weighting function � (s) = exp (�s2) is quite convenient to work with. We have:

KT ĥT (� ; �) =

Z
kT (� ; s) ĥT (s; �) exp

�
�s2

�
ds: (3.13)

Interestingly, KT ĥT (� ; �) can be well approximated by the Gauss-Hermite quadrature. This

amounts to �nd n points (s1; :::; sn) and weighs (!1; :::; !n) such that:

Z
p(s) expf�s2gds =

nX
k=1

!kp(sk) (3.14)

for any polynomial function p(:) of order smaller or equal to 2n� 1. We thus have:�����
Z
f(s) expf�s2gds�

nX
k=1

!kf(sk)

����� =
����Z " (� ; �) exp

�
�s2

�
ds

����
If KT ĥT (� ; �) is analytic as a function of � , the residual

��R " (� ; �) exp (�s2) ds�� can be made
arbitrarily small by increasing n. Note that the choice of the quadrature points and weights

does not depend on the particular function f (� ; �). The quadrature points and weights are

determined by solving:

Z
sl expf�s2gds =

nX
k=1

!ks
l
k for all l = 1; :::; 2n� 1

Applying this quadrature method to (3.13) yields:

KT
bhT (�) � cWT

bhT (�) ; (3.15)

where cWT is the matrix with (j; k) elements Wjk = !kkT (sj; sk), and:

bhT (�) = �bhT (s1; �) ; :::;bhT (sn; �)�0 :
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For any given level of precision, the matrixcWT can be looked at as the best �nite dimensional

reduction of the operator KT . The resulting approximation of K
�1=2
T;� is:

K
�1=2
T;� =

�cW 2
T + �I

��1=2cW 1=2
T ;

that is:

K
�1=2
T;�

bhT (�) � �cW 2
T + �I

��1=2cW 1=2
T
bhT (�) : (3.16)

Substituting for K�1=2
T;�

bhT (�) in the objective function of the CGMM yields:

D
K
�1=2
T;�

bhT (:; �); K�1=2
T;�

bhT (:; �)E =

Z ���K�1=2
T;�

bhT (� ; �)���2 exp��� 2	 d�
�

nX
k=1

!k

���K�1=2
T;�

bhT (sk; �)���2 (3.17)

where K�1=2
T;�

bhT (sk; �) is the kth element of the vector K�1=2
T;�

bhT (�) given in (3.16).
In theory, the extension of the above quadrature method to the multivariate case is

straightforward. When � 2 Rd, the d�dimensional set of multivariate quadrature points is

given by the Cartesian product:

D =
�
� = (� (1); :::; � (d)) : � (i) 2 fs1; :::; sng for all i = 1 to d

	
; (3.18)

where fs1; :::; sng is the set of n univariate quadrature points with weights f!1; :::; !ng, and

� (i) is the ith coordinate of � . Associated with each � 2 D is the weight:

! (�) = ! (� 1)! (� 2) :::! (� d) (3.19)

where ! (� i) = !k if � (i) = sk, i = 1; :::; d.

The multivariate Gauss-Hermite quadrature has the undesirable feature that Card(D) =

nd. This raises a "curse of dimensionality" because the size of the matrix cWT is precisely nd

while we need to take n quite large (n � 10) to accurately evaluate the objective function of

the CGMM. Because cWT must be inverted at each iteration of the optimization algorithm,

the CGMM becomes virtually unfeasible by quadrature method when d � 3. We shall thus

limit ourselves to the case d � 2 in the sequel, leaving the discussion on the large d case for
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further research.

3.3.2 Computing the Objective Function by Monte Carlo Integra-

tion

This approach does not require the di¤erentiability of f (� ; �) = kT (� ; s)bhT (� ; �) and relies
on the alternative formula of the objective function of the CGMM provided in Carrasco,

Chernov, Florens and Ghysels (2007):

QT = v(�)0
h
�IT + bC2Ti�1 v(�); (3.20)

where bCT � bCT �b�1� is the square matrix of size T with (t; l) element ct;l=(T � q), IT is the

identity matrix of size T , and v(�) = (v1; :::; vT )
0 with:

vt =

Z
ht(� ;b�1)hT (� ; �)� (�) d� ; (3.21)

ct;l =

Z
ht(� ;b�1)hl(� ;b�1)� (�) d� ; (3.22)

The main drawback of the above expressions lies in that it involves the inverse of the

matrix bCT which has size T . But this should be balanced with at least one computational
advantage: the integrals embedded in vt and ct;l can be approximated by Monte Carlo. If we

set � (�) to be the multivariate standard normal density and
�
� (1); :::; � (M)

�
be M values of

� simulated according to � (�), the Monte Carlo approximations of vt and ct;l are:

vt � 1

M

MX
k=1

Uht(�
(k);b�1)hT (� (k); �); (3.23)

ct;l � 1

M

MX
k=1

Uht(�
(k);b�1)hl(� (k);b�1): (3.24)

For the optimization algorithm to converge, it is crucial to simulate the set
�
� (1); :::; � (M)

�
only once at the beginning of the estimation process and supply this as a �xed array to the

code that evaluates the objective function of the CGMM.
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3.3.3 Computing the Variance of the CGMM Estimator

The asymptotic variance of the optimal CGMM estimator is derived in Carrasco and Florens

(2000):

AV ar
�b�� = V ar

hp
T
�b� � �0

�i
=

D
K�1=2E

� bGt(:; �)� ; K�1=2E
� bGt(:; �)�E�1 (3.25)

where bGt(� ; �) = @bht(�;�)
@�

is a column vector of length q whose ith element is bGt;i(� ; �) = @bht(�;�)
@�i

,

and for every two vectors functions f and g, we have: hf; gii;j = hfi; gji. This asymptotic

variance can be consistently estimated by:

\AV ar
�b�� = DK�1=2

T;�
bGT (� ;b�); K�1=2

T;�
bGT (� ;b�)E�1 (3.26)

where bGT (� ;b�) = 1
T

PT
t=1
bGt(� ;b�). The above formula is convenient to work with when the

scalar products are evaluated by quadrature methods. De�ne:

bGT;i(�) =
� bGT;i (� 1; �) ; :::; bGT;i (�N ; �)�0

K
�1=2
�T

bGT;i(�) =
�
K
�1=2
T;�

bGT;i (� 1; �) ; :::; K�1=2
T;�

bGT;i (�N ; �)�0
where N = nd and bGT;i(� ;b�) = 1

T

PT
t=1
bGt;i(� ;b�). Then we have:

K
�1=2
T;�

bGT;i(�) = �cW 2
T + �T I

��1=2cW 1=2
T
bGT;i(�);

where cW is de�ned in (3.15). The (i; j) element of \AV ar
�b���1 can then be computed as:

�
\AV ar

�b���1�
i;j

=

NX
k=1

!k

�
K
�1=2
T;�

bGT;i(�)�
k

�
K
�1=2
T;�

bGT;j(�)�
k

(3.27)

where
�
K
�1=2
T;�

bGT;i(�)�
k
is the kth coordinate of K�1=2

T;�
bGT;i(�).

Carrasco, Chernov, Florens and Ghysels (2007) established the following alternative ex-
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pression for \AV ar
�b��:
\AV ar

�b�� = � 1

T � q
V (b�)0 h�T IT + bC2Ti�1 V (b�)��1 (3.28)

where bC is the same square matrix as in (3.20), V (b�) is the (T; q) matrices with (t; i) element:
Vt;i =

Z
ht(� ;b�) bGT;i(� ;b�)� (�) d� ;

The formula (3.28) best suites when the Monte Carlo integration is used to evaluate the

scalar products. In this case, Vt;i is approximated by:

Vt;i �
1

M

MX
k=1

ht(� (k);b�) bGT;i(� (k);b�);
where

�
� (1); :::; � (M)

�
areM values of � simulated according to the multivariate normal density

� (�).

3.3.4 Data-driven Selection of the Regularization Parameter

The CGMM estimator is consistent for any reasonable choice of the regularization parameter

�T . In most applications, an arbitrary choice of �T between 10�6 and 10�2 works quite well.

However, if the spectrum of the empirical covariance operator is severely discontinuous, such

an arbitrary choice is not advised. To get close to the optimal CGMM in the mean square

error (MSE) sense, Carrasco and Kotchoni (2008) proposed two simulation based methods to

select the �T . The �rst method uses the higher-order closed form approximation of the MSE

whereas the second method relies on the Monte Carlo simulations of the MSE. We brie�y

review the second method here.

Let �T (�0) be the optimal value of the regularization parameter when �0 is the true

parameter of interest and T is the sample size:

�T (�0) = argmin
�2[0;1]

�T (�; �0) : (3.29)
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where �T (�T ; �0) = E

��b�T (�T ; �0)� �0

�0 �b�T (�T ; �0)� �0

��
is the trace of the MSE matrix

and b�T (�T ; �0) is the CGMM estimator computed from an arbitrary sample of size T generated
from the true distribution, and using � as the regularization parameter. To approximate the

MSE �T (�T ; �0), assume that we can draw samples of size T from the true data generating

process of fxtg, and let b�jT (�T ; �0) denote the CGMM estimator of �0 computed using the jth

independently simulated sample. A natural estimator of �T (�T ; �0) is given by:

b�TM(�T ; �0) = 1

M

MX
j=1

�b�jT (�T ; �0)� �0

�0 �b�jT (�T ; �0)� �0

�
: (3.30)

where the subscript TM indicate that T is the sample size and M is the number of Monte

Carlo replications. If feasible, the above estimator of the MSE would naturally yield an

estimator of the optimal � of the form:

b�TM (�0) = argmin
�2[0;1]

b�TM (�; �0) ; (3.31)

For a su¢ ciently large value of M , the Law of Large Numbers ensures that b�TM(�; �0)
converges to its expectation �T (�; �0). But as �0 is not known, a feasible Monte Carlo

approach simply consists in replacing �0 with a consistent �rst step estimator b�1 in the
simulation scheme, that is, choosing the optimal regularization parameter according to:

b�TM �b�1� = argmin
�2[0;1]

b�MC
TM

�
�;b�1� : (3.32)

It is important to note that b�MC
TM

�
�;b�1� is simulated conditional on the �rst step estimatorb�1, and that b�MC

TM

�
�;b�1� converges to �T ��;b�1� as M goes to in�nity. The minimizer of

this limiting MSE is �T
�b�1�, the theoretically optimal � if the true �0 was the point estimateb�1 and the sample size is T :

�T

�b�1� = argmin
�2[0;1]

�T

�
�;b�1� : (3.33)

Under Assumption 1 to 5, Carrasco and Kotchoni (2008) established that as M and T go to
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in�nity, we have: b�TM(b�1)

�T (�0)
� 1 = Op(T

�1=2) +Op(M
�1=2) (3.34)

Finally, the optimal feasible CGMM estimator is b�(2)T = b�T (b��TM ; �0), that is, the second step
estimator of �0 computed with the actual data by using the point estimate of the optimal

regularization parameter b��TM = b�TM �b�1�. In practice, b�TM(�T ; �0) should be simulated
using common random numbers accross the di¤erent values of �T .

In the sequel, we propose two illustrative applications of the CGMM.

3.4 Estimating the Stable Distribution by CGMM: a

Simulation Study

In modeling time series, the stable distributions is a way to depart from the usual normality

assumption in case the latter seems too restrictive. This family is rich enough to capture

heavy tails as well as asymmetry, as pointed out by Mandelbrot (1963), Fama (1965) or

McCulloch (1986). However, the stable distribution does not admit a closed form likelihood

function. This has led researcher to investigate alternative inference methods. CF based

inference has been used in Paulson, Holcomb and Leitch (1975) and Feuerverger and Mc-

Dunnough (1981a), while a regression-based approach is presented in Koutrouvelis (1980).

Garcia, Renault and Veredas (2006) have resorted to indirect inference. Cornea and David-

son (2009) proposed a re�ned bootstrap method for testing an hypothesis about the mean of

the stable distribution.

The stable distribution has been represented under di¤erent parametrizations in the liter-

ature. Some of these parametrizations are more or less tied to particular simulation strategies.

Because our inferences are based on Monte Carlo simulation, we will carefully review below

the most used parametrizations and simulation methods.

3.4.1 Parametrizations of the Stable Distribution

The standard Stable Distribution has two parameters: the stability parameter � 2]0; 2], and

the skewness parameter � 2 [�1; 1]. A random variable Z is said to follow the standard
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stable distribution if and only if its CF is given by:

E [exp (i�Z)] = exp f� j� j� [1 + i�0sign (�) g (� ; �)]g (3.35)

where g(� ; �) = � tan ��
2
if � 6= 1 and g (� ; �) = 2

�
ln j� j if � = 1. A random variable X

follows a �-Stable Distribution if and only if it is linked to the standard variable Z by:

X =

�
�Z + �0; � 6= 1
�Z + �0 +

2
�
�0� ln�; � = 1

The CF of X is given by:

E [exp (i�X)] = exp fi�0� � ��0 j� j
� [1 + i�0sign (�) g (� ; �)]g (3.36)

where �0 is a location parameter and �0 is the scale parameter. The notationX � S� (�0; �0; �0)

is often used to mean that the random variableX has a ��Stable Distribution with CF (3.36).

Unfortunately, this CF is discontinuous around � = 1 whenever �0 6= 0. To circumvent

this, Zorotalev (1986) proposed to parametrize:

�1 =

�
�0 + �0�

�
0 tan

��
2
; � 6= 1

�0; � = 1

This results in the following expression for the CF which is continuous with respect to all

the parameters:

E [exp (i�X)] =

�
exp

�
i�1� � ��0

�
j� j� � i��0

�
j� j��1 � 1

�
tan ��

2

�	
; � 6= 1

exp
�
i�1� � �0 j� j

�
1 + i 2

�
�0sign (�) ln j� j

�	
; � = 1

(3.37)

We will refer to the parametrization (3.36) as S0� (�0; �0; �0) and to (3.37) as S
1
� (�0; �0; �1).

Using (3.36) as starting point, Nolan (1997) proposed:

�2 =

�
�0 + �0�0 tan

��
2
; � 6= 1

�0 +
2
�
�0�0 ln�0; � = 1
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This yields another continuous representation of the CF:

E [exp (i�X)] (3.38)

=

�
exp

�
i�2� � ��0 j� j

� �1 + i�0sign (�) �j�0� j1�� � 1� tan ��2 �	 ; � 6= 1
exp

�
i�2� � �0 j� j

�
1 + i 2

�
�0sign (�) ln j�0� j

�	
; � = 1

The parametrization (3.38) will be referred to as S2� (�0; �0; �2). An important feature of this

parametrization is that X��2
�0

� S2� (�0; 1; 0), no matter the value of �. This is true for the

two other parametrizations only when � 6= 1.

An alternative parametrization S3� (�0; �0; �3) tied to the data simulation method of

Chambers, Mallows and Stuck (1976) is got by setting:

�3 =

�
�0 + �0�0 tan

��
2
; � 6= 1

�0; � = 1

This is identical to S2� (�0; �0; �2) for the case � 6= 1. As pointed out by Nolan (2008),

these small changes in parameterization have caused many confusions in the literature. For

instance, some papers build their theoretical framework on the parametrization S0� (�0; �0; �0)

but simulate the data under the parametrization S3� (�0; �0; �3).

Another important parametrization proposed in Zorotalev (1986) allows to derive an

integral representation of the probability distribution function of �-stable random variables2.

In a few cases, the density of the stable distribution is available in a tractable closed form.

The case � = 2 for example reduces to a normal distribution N (�; 2�20). When � = 1

and �0 = 0, we get the Cauchy distribution. The case � = 1=2 and �0 = 1 results in to

the so called Levy distribution. Finally, an identity established by Zorotalev (1986) and

commented in Weron (1996) allows to get the density for the case � = 1=2 and �0 = �1

from the previous one. For all other values of the parameter, numerical approximations of

the likelihood function must be used. Important progress have been made in that direction

by Nolan (1997, 1999) and McCulloch (1998).

The parametrization S0� (�0; �0; �0) will used in the sequel.

2See Zolotarev (1986) Remark 1, page 78 or Weron (1995).
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3.4.2 Simulating from the Stable Distribution

A method to simulate from the parameterization S0� (�0; �0; �0) is presented in Weron (1996).

To start with, one draws two independent uniforms v and w in [0,1] and calculate: V =

� (u� 1=2) and W = � lnw. Then Z � S0� (�0; 1; 0) and X � S0� (�0; �0; �0) are obtained as

follows:

- If � 6= 1; one computes:

Z = S�;�0
sin
�
�V + �B�;�0

�
(cosV )1=�

 
cos
�
(1� �)V � �B�;�0

�
W

!�1+1=�
(3.39)

where B�;�0 =
arctan(�0 tan ��

2 )
�

and S�;�0 =
�
1 + �20 tan

2 ��
2

� 1
2� . Then we have

X = �0Z + �0 � S0� (�0; �0; �0)

X = �0Z + �1 � �0�
�
0 tan

��

2
� S1� (�0; �0; �1)

X = �0

�
Z � �0 tan

��

2

�
+ �2 � S2� (�0; �0; �2)

- If � = 1, one computes instead:

Z =
2

�

���
2
+ �0V

�
tanV � � log

�
W cosV
�
2
+ �0V

��
(3.40)

We then have:

X = �0Z + �0 +
2

�
�0�0 ln�0 � S01 (�0; �0; �0)

X = �0Z + �1 +
2

�
�0�0 ln�0 � S11 (�0; �0; �1)

X = �0Z + �2 � S21 (�0; �0; �2)

The simulation strategy of Z for the case � = 1 is quite standard in the literature.

However, other methods (than the one above) have been used in the literature for the case
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� 6= 1. We show the link between (3.39) and two of them below. To start with, note that:

sin
�
�V + �B�;�0

�
= sin�V sin�B�;�0 + cos�V cos�B�;�0

cos
�
(1� �)V � �B�;�0

�
= cos (1� �)V cos�B�;�0 + sin (1� �)V sin�B�;�0

Also, due to sin a = cos a tan a for all a, we have: sin�B�;�0 = �0 tan
��
2
cos�B�;�0 so that:

cos2 �B�;�0 = 1� sin
2 �B�;�0 = 1� �20 tan

2 ��

2
cos2 �B�;�0 ;

The last equation implies:

cos2 �B�;�0 =
1

1 + �20 tan
2 ��
2

Replacing this in the expressions of sin
�
�V + �B�;�0

�
and cos

�
(1� �)V � �B�;�0

�
yields:

S�;�0 =
�
cos�B�;�0

��1=�
sin
�
�V + �B�;�0

�
=

�0 tan
��
2
sin�V + cos�Vq

1 + �20 tan
2 ��
2

cos
�
(1� �)V � �B�;�0

�
=

0@cos (1� �)V + �0 tan
��
2
sin (1� �)Vq

1 + �20 tan
2 ��
2

1A�1+1=�

Putting these expression together in Equation (3.39) yields:

Z =
�0 tan

��
2
sin�V + cos�V

(cosV )1=�

�
cos (1� �)V + �0 tan

��
2
sin (1� �)V

W

��1+1=�
(3.41)

Adding �� tan ��
2
to the above expression yields the formula of Chambers, Mallows and

Stuck (1976). To get the alternative expression of Nolan (2008), Theorem 1.19, it su¢ ces to

substitute for S�;�0 =
�
cos�B�;�0

��1=�
in Equation (3.39). This yields:

Z =
sin
�
�V + �B�;�0

��
cos�B�;�0 cosV

�1=�
 
cos
�
(1� �)V � �B�;�0

�
W

!�1+1=�
(3.42)

As pointed out by Nolan (2008), the evaluation of (3.42) for values very close to � = 1

raises some numerical problems. By avoiding the division by cos�B�;�0, the expressions
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(3.39) and (3.41) are more numerically stable and accurate.

3.4.3 Monte Carlo Experiments

With in hand a method to simulate data from the stable distribution, we can now evaluate

by Monte Carlo the ability of the CGMM to identify the true parameters from �nite sample.

To this end, we consider a stable AR(1) model speci�ed as:

yt = �0 + �1yt�1 + "t (3.43)

where "t � S0� (�0; �0; 0) is IID. Note that this amount to say that yt � S0� (�0; �0; �t) with

�t = �0 + �1yt�1. The parameter of the model are gathered in � = (�0; �1; �; �0; �0)
0.

To estimate �, the following continuum of moment conditions is considered:

ht (� ; �) =
�
ei�1yt � 't (� 1; �)

�
ei�2yt�1 (3.44)

where � = (� 1; � 2) 2 R2 and:

't (� 1; �) = exp
n
i(�0 + �1yt�1)� 1 � �� j� 1j�

h
1� i�sign (� 1) tan

��

2

io
(3.45)

The following gradients are useful for the analytical computation of the variance of the

CGMM estimator:

@ht (� ; �)

@�0
= �i� 1't (� 1; �) ei�2rt�1

@ht (� ; �)

@�1
= �i� 1yt�1't (� 1; �) ei�2rt�1

@ht (� ; �)

@�
=

�
log (� j� 1j)

h
1� i�sign (� 1) tan

��

2

i
� i��sign (� 1)

2 cos2 ��
2

�
��� j� 1j� 't (� 1; �) ei�2rt�1

@ht (� ; �)

@�
= ��� j� 1j� isign (� 1) tan

��

2
't (� 1; �) e

i�2rt�1

@ht (� ; �)

@�
= ����1 j� 1j�

h
1� i�sign (� 1) tan

��

2

i
't (� 1; �) e

i�2rt�1

We consider the following two vectors of true parameters in our simulations: �01 =
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(0; 0:1; 1:5; 0; 0:5) and �02 = (0; 0:1; 1:95; 0; 0:5), the speci�city of �02 being that it is quite

close to the non-identi�cation region of �0. To ease the numerical optimizations, the following

transformations are imposed on the parameter space:

�0 = 1 +
exp (e�0)

1 + exp (e�0) 2]1; 2] for all e�0 2 R
�0 =

2 exp
�e�0�

1 + exp
�e�0� � 1 2 [�1; 1] for all e�0 2 R

�0 = exp(e�0) > 0 for all e�0 2 R
After these transformations, the new objective function of the CGMM is written in terms of

the unconstrained parameters e�, e�, e�0 and �0.
The Monte Carlo experiments are conducted in two steps. First, we run a small scale

simulation (100 replications) for the purpose of selecting an approximately optimal �. In this

small scale simulation, we compute the objective function with N = 64 Hermitian quadrature

points in R2. The �rst simulated sample is used to compute the following �rst step estimator:

b�1T = argmin
�




bhT (:; �)


2 (3.46)

For each �k and each simulated sample, we compute the second step estimator as:

b�(j)T (�k) = argmin
�




K�1=2
T;�k

bhT (:; �)


2
where:

K
�1=2
T;�k

�b�1T� = �K2
T

�b�1T�+ �kI
��1=2

K
1=2
T

�b�1T�
for �k 2 f10�7; 5� 10�7; :::; 5� 10�4g. The selection of �k is based on the criterion:

�� = argmin
�k

b�TM (�k)
where b�TM (�k) = 1

M

P�b�(j)T (�k)� b�1T�0 �b�(j)T (�k)� b�1T�. The following �gure shows the
plot of b�TM (�k) as a function of �k. On the considered grid, b�TM (�k) is minimized at
�� = 5� 10�7.
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Figure 3.1: Choosing the optimal regularization parameter.

y-axis: MSE b�T (�k)of as function of �k.
x-axis: values of �k

In a second step, the selected �� is used in a large scale simulation to assess the perfor-

mance of the CGMM estimator. We draw M = 1001 samples of size T = 501 and estimate

�0i; i = 1; 2. To speed up the simulation, we reduce the number of quadrature points to

N = 36. The following table shows some statistical properties of b�T (��) when the true
parameter is �01 = (0; 0:1; 1:5; 0; 0:5).

�0 �1 � �0 �0

True Values 0 0:1 1:5 0 0:5

Mean Bias 0:0044 �0:0032 0:0072 0:0075 �0:0033

Median Bias 0:0007 �0:0026 0:0066 0:0078 �0:0038

Emp. Std. Dev. 0:0869 0:0482 0:1033 0:2133 0:0305

Ana. Std. Dev. 0:1137 0:0496 0:1027 0:2597 0:0243

IC1(95%) �0:0032 0:0925 1:4982 �0:0112 0:4940

IC2(95%) 0:0120 0:1010 1:5163 0:0262 0:4993

Table 3.1: Simulation Results for the Stable Distribution with � = 1:5 (far from 2)

(1000 Monte Carlo replications)

In this table, �Emp. Std. Dev� is the standard deviation of the simulated empirical

distribution of b�T (��), while �Ana. Std. Dev.� is the average standard deviation computed
according to the analytical formula (3.28); Interestingly, the standard deviations computed in
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these two ways are quite close for all the parameters. IC1(95%) and IC2(95%) are respectively

the lower and upper bound of the 95% con�dence interval for the true mean of the empirical

distribution, assuming normality for the empirical mean of the estimates:

IC1(95%) = b�i � 1:96 � bsb�i=pM
IC2(95%) = b�i + 1:96 � bsb�i=pM

where b�i is the ith component of b�, b�i and bsb�i are respectively the empirical mean and standard
deviation of b�i and M is the number of independently simulated copies of b�i. The con�dence
intervals reveal that the estimator of �0 is slightly biased downward. This problem can

be �xed by increasing the number of quadrature points used to approximate the objective

function of the CGMM. All the other estimators display quite good statistical properties.

The following table displays the same Monte Carlo statistics when the true parameter is

�02 = (0; 0:1; 1:95; 0; 0:5).

�0 �1 � �0 �0

True Values 0 0:1 1:95 0 0:5

Mean Bias 0:0020 �0:0043 0:0081 �0:0516 �0:0011

Median Bias 0:0023 �0:0020 0:0366 �0:0146 �0:0019

Emp. Std. Dev. 0:0383 0:0583 0:0536 0:5752 0:0211

IC1(95%) �0:0014 0:0906 1:9534 �0:1019 0:4971

IC2(95%) 0:0054 0:1008 1:9628 �0:0012 0:5008

Table 3.2: Simulation Results for the Stable Distribution with � = 1:95 (close to 2)

(1000 Monte Carlo replications)

In this case, the estimator of �0 is highly volatile due the fact that the objective function

is unable to identify �0 when � is close to 2. The empirical gradient turns out to be badly

conditioned so that it is not possible to compute the variance analytically. Also, the distrib-

utions of the b� and b�0 are far from normality in the region around �02 (see �gures at the end
of this section). The Monte Carlo statistics of the estimators other than b�0 are quite good.
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3.5 Fitting the Autoregressive Variance GammaModel

to Assets Returns

The basic Variance Gamma model has been proposed by Madan and Seneta (1990). A

random variable rt is said to follow a symmetric Variance Gamma distribution if:

rtjVt � N(�; �2Vt); with Vt
IID� Gamma (1=
; 1=
) (3.47)

The density of Vt is given by:

fV (v) =
v1=
�1


1=
� (1=
)
exp (�v=
)

where � (1=
) =
R1
0
u1=
�1e�udu. It can be easily checked that E (Vt) = 1.

Unlike the stable distribution, all the conditional and unconditional moments of rt exist.

It can be checked that E [rt] = � and E
�
(rt � �)2

�
= �2. The kurtosis of rt is given by:

E
�
(rt � �)4

�
E
�
(rt � �)2

�2 = 3 (1 + 
)

which shows that the distribution of rt is more fat tailed than the normal whenever 
 > 0.

To introduce skewness into this basic set up, Madan, Carr and Chang (1998) expressed the

mean of rt as a linear function of Vt:

rtjVt � N(�0 + �1Vt; �
2Vt); with V � Gamma (1=
; 1=
) (3.48)

where 
 > 0. If rt is a series of returns, the parameter �1 captures the so-called leverage e¤ect

while �0 measures the risk premium. Note that when �1 = ��0, the leverage e¤ect o¤sets the

risk premium so that the conditional mean of rt is zero, but the skewness is nonzero unless

�1 = 0.

Many studies have diagnosed patterns like persistence and clustering in the time series

properties of the volatility assets returns. Unfortunately, the basic Variance Gamma models

assumes that Vt follows an IID process. In an e¤ort to correctly measure the volatility, Engle

(1982) and Bollerslev (1986) introduced respectively the ARCH and GARCH models that
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usually have good �ltering properties. In the stochastic volatility literature, the volatility is

often speci�ed as a latent state variable that determines the distribution of the returns. For

example, Jacquier, Polson and Rossi (1994) postulated:

rt =
p
Vt"t

log Vt = a+ b log Vt�1 + ut

where "t and ut are uncorrelated and rtjVt � N(0; Vt). This model may be viewed as a

discrete time version of Hull and White (1987). It has been extended in Jacquier, Polson and

Rossi (2004) to allow for correlation between "t and ut. Other famous examples in continuous

time include Stein and Stein (1991) and Heston (1993).

In the next subsection, we extend of the basic variance Gamma model.

3.5.1 The Autoregressive Variance Gamma Model

The Autoregressive Variance Gamma Model (henceforth ARVG) is a stochastic volatility

model in which the return process rt is a function of the expected variance E [VtjVt�1] and

the innovation Vt � E [VtjVt�1]:

rt = �0 + �1
p
E [VtjVt�1] + � (Vt � E [VtjVt�1]) +

p
Vt"t (3.49)

where "t
IID� N(0; 1) is uncorrelated with past, current and future realizations of Vt, � � 0

and � � 0. In turn, Vt follows an Autoregressive Gamma process with conditional density:

f (Vtj fVt�kg1k=1) = f (VtjVt�1) (3.50)

=

1X
j=0

V j+q�1
t cj+q

� (j + q)
exp (�cVt) pj (Vt�1)

with (�; �; �) > 0, c = 2�
�2(1�e��) , q =

2��
�2
and pj (Vt�1) is a Poisson weight given by:

pj (Vt�1) =
(ce��Vt�1)

j

j!
exp

�
�ce��Vt�1

�
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The term �1

p
E [Vt�1jVt�1] in the expression of the return aims to capture the premium

investors require for bearing the expected risk while � (Vt � E [VtjVt�1]) is a penalty attached

to the unexpected risk.

The postulated distribution for Vt is also known as the non-centered Chi-square3. It has

been proposed in Gourieroux and Jasiak (2005) as a model for intertrade durations. The

conditional CF of Vt is given by:

E
�
ei�VtjVt�1

�
=

�
1� i�

c

��q
exp

�
i�e��Vt�1

1� i�
c

�
(3.51)

By looking at the expression above, we see that the autoregressive Gamma family nests the

univariate Wishart autoregressive process of Gourieroux, Jasiak and Sufana (2005). The

expressions of the conditional expectation and variance of Vt are the following:

E [VtjVt�1] = �
�
1� e��

�
+ e��Vt�1 (3.52)

V ar [VtjVt�1] =
1

c

�
�
�
1� e��

�
+ 2e��Vt�1

�
(3.53)

To assess the potential of the ARVG model to capture asymmetry and fat tails in the

distribution of stock returns, we examine below the third and fourth conditional moments of

rt. We have:

E
�
(rt � E [rtjVt�1])3 jVt�1

�
= �3E

�
(Vt � E [VtjVt�1])3 jVt�1

�
(3.54)

Because Vt is positively skewed like any Gamma distribution, rt has a time varying negative

skewness whenever � < 0. It is di¢ cult to say wether rt is fat-tailed in general. However, it

can be shown that when � = 0 the conditional kurtosis of rt is:

E
�
(rt � E [rtjVt�1])4 jVt�1

�
V ar [rtjVt�1]2

= 3 +
3V ar [VtjVt�1]
V ar [rtjVt�1]2

(3.55)

We present a method to simulate the ARVG model below.

3When 2�� > �2, the process Vt can be viewed as discrete observations of the following Square-Root
di¤usion (see Feller, 1951): dVs = � (� � Vs) ds+ �

p
VsdWs.
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3.5.2 Simulating the ARVG model

A method to simulate Vt can be inferred from the Poisson-Mixing-Gamma representation of

its density given in (3.50) (Devroye (1986)). The simulation algorithm may be initialized to

the unconditional mean V0 = � or by drawing V0 from the stationary distribution4 of Vt. At

t = 1, one draws an integer j0 from the Poisson distribution with parameter ce��V0. The

current realization V1 of the autoregressive Gamma process is then drawn from the Gamma

distribution with density fj0 (v) given by:

fj0 (v) =
vj+q�1cj+q

� (j0 + q)
exp (�cv)

A t = 2, one draws again an integer j1 from the Poisson distribution with parameter

ce��V1. The new realization V2 of the autoregressive Gamma process is now drawn from the

Gamma distribution with density fj1 (v), and so forth. At an arbitrary step t, the realization

Vt is drawn from the Gamma distribution with density fjt�1 (v), where jt�1 is a draw from

the Poisson distribution with parameter ce��Vt�1. To minimize transient e¤ects, a good idea

is to simulate T + T0 + 1 observations and keep only the last T + 1 ones.

Let (V0; V1; :::; VT ) be the simulated path for the volatility process. Because rt depends

on two consecutive realizations of Vt, its simulation starts at t = 1. We generate a sample of

size T of the return process using the equation:

rt = �0 + �1
p
� (1� e��) + e��Vt�1 + �

�
Vt � �

�
1� e��

�
� e��Vt�1

�
+
p
Vt"t

for t = 1; :::; T , where "t is an IID draw from the standard normal distribution.

In what follows, we present an estimation strategy for the ARVG model.

3.5.3 Estimating the ARVG Model from High Frequency Data

This section explains why and how one can construct a proxy for Vt using high frequency

data. Let us consider an arbitrary asset whose instantaneous log-price ps follows a Brownian

4The stationary distribution of Vt is a Gamma with density: f (Vt) =
V q�1
t

�(q)

�
2�
�2

�q
exp

��2�
�2 Vt

�
.
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di¤usion with drift:

dps = m (s; �s) ds+ �sdWs (3.56)

where Ws is a standard Brownian motion uncorrelated with �s. It is further assumed that

�s itself follows a positive di¤usion. If we normalize a trading day to be one period, then the

daily returns satis�es:

rt � pt � pt�1 =

Z t

t�1
m (s; �s) ds+

Z t

t�1
�sdWs (3.57)

and rtj f�sgTs=0 � N
�R t

t�1m (s; �s) ds; IVt

�
, where IVt =

R t
t�1 �

2
sds is the integrated volatility.

A strategy to estimate the ARVG model from high frequency data consists in assuming

the following intuitive matching:

Vt � IVt (3.58)Z t

t�1
m (s; �s) ds � �0 + �1

p
E [VtjVt�1] + � (Vt � E [VtjVt�1]) (3.59)

Equation (3.58) suggests that the integrated volatility can be used as proxy for Vt, while

the second equation can be interpreted as the linear projection of the integrated drift ontop
E [VtjVt�1].

If IVt is observed, the ARVG model can be estimated in two steps. In the �rst step, we

estimate an Autoregressive Gamma model for Vt by CGMM, using the moment function:

ht (� ; �1) = (exp (i� 1Vt)� E [exp (i� 1Vt) jVt�1]) exp (i� 2Vt�1) ; (3.60)

where E [exp (i� 1Vt) jVt�1] is given by (3.51), � = (� 1; � 2) and �1 = (�; �; �2). In the second

step estimation, �2 = (�0; �1; �) is estimated by Gaussian maximum likelihood based on the

distribution of "t conditional on Vt�1, as postulated in (3.49). We have:

b"t = rt � �0 � �1

qbVt � �
�
Vt � bVt�

p
Vt

� N(0; 1) (3.61)

where bVt = b� �1� e�b��+ e�b�Vt�1.
In reality, IVt is not observed. To construct a proxy, let us assume that in each day
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trading we observe m+1 equidistant prices. These prices can be used to compute exactly m

high frequency returns rt;1; rt;2; :::; rt;m, that is:

rt;j = pt�1+j=m � pt�1+(j�1)=m

Jacod (1994), Jacod and Protter (1998) and Barndor¤-Nielsen and Shephard (2002) show

that for large m, the realized volatility RV (m)
t =

Pm
j=1 r

2
t;j is a fairly good proxy for IVt.

In practice however, the observed prices are contaminated with the market microstructure

noise which causes the naive realized volatility to be a biased estimator of IVt. The following

estimator proposed by Barndo¤-Nielsen, Hansen, Lunde and Shephard (2008) is known to

be consistent for IVt even in the presence of microstructure noise:

KBNHLS
H;t = 
t;0 +

HX
h=1

�
1� h� 1

H

��

t;h + 
t;�h

�
(3.62)

where 
t;h =
Pm

j=1 rt;jrt;j�h. To further reduce the variance of K
BNHLS
H;t , we will use the

following shrinkage estimator proposed in Carrasco and Kotchoni (2009):

K$
H;t = $KBNHLS

H;t + (1�$)cIV t (3.63)

where cIV t = 
t;0 + 
t;1 + 
t;�1 +
1

T

TX
s=1

L+1X
l=2

�

s;l + 
s;�l

�
(3.64)

The shrinkage weight $ is chosen so as to minimize the marginal variance of K$
H;t:

$�
t = argmin

$
E
h�
K$
H;t � IVt

�2i

It is easy to show that $�
t =

Cov[cIV t;cIV t�KBNHLS
H;t ]

V ar[cIV t�KBNHLS
H;t ]

, which we estimate in the simplest way from

the data by:

b$� =

PT
t=1

�cIV t �KBNHLS
H;t

� cIV tPT
t=1

�cIV t �KBNHLS
H;t

�2 :

An empirical application is presented in the next section.
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3.5.4 Empirical Application

The data used in this section are the transaction prices of Alcoa, an index listed in the

Dow Jones Industrials. The prices are observed every one minute from January 1st, 2002 to

December 31th, 2007 (T = 1510 trading days). In a typical trading day, the market is open

from 9:30 am to 4:00 pm, and this results in m = 390 observations per day. There are a few

missing observations (less than 5 missing data per day) which we �lled in using the previous

tick method.

The estimation takes place in several steps. First of all, we compute the �rst step CGMM

estimator of �1 = (�; �; �2) based on the moment function (3.60):

b�11 = argmin
�1




bhT (:; �1)


2
Secondly, we use b�11 to estimate the covariance operator KT

�b�11� associated with the
moment function. We shall use the ad-hoc value � = 10�6 for the regularization of the

inverse of KT

�b�11;T�, that is:
K
�1=2
T;10�6

�b�11� = �K2
T

�b�11�+ 10�6 � I
��1=2

K
1=2
T

�b�11�
The second step estimator of �1 is thus:

b�21 = argmin
�1




K�1=2
T;10�6

bhT (:; �1)


2
where K�1=2

T;10�6 � K
�1=2
T;10�6

�b�11�.
Thirdly, we estimate the variance of b�21. Unfortunately, the analytical expression (3.26)

is unusable because the gradient of bhT (� ; �1) is extremely badly scaled5. This is due to the
fact that the likelihood function of Gamma distributions (like some Student distributions)

are very �at around the true value of the degree of freedom parameter. As a result, the

derivative of the objective function with respect to the degree of freedom parameter is very

small relatively to the derivatives with respect to the remaining parameters. In other words,

the matrix of gradient is so badly scaled that it is numerically singular. The problem is even

5The gradients of the moments conditions (3.60) are given in appendix.
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more severe in the Autoregressive Gamma model because the degree of freedom is q = 2��

�2
,

that is, a function of all three parameters of interest. However, this numerical singularity

does not imply that the model is not identi�ed6. We can thus resort to bootstrap to evaluate

the variance of b�21. The experiment is conducted as follows.
We use the initial sample of size T = 1510 to compute 1509moment functions: fht (� ; �1)gTt=2.

Note that ht (� ; �1) is a function of two consecutive observations (Vt; Vt�1). Next, we draw

500 moment functions with equal probability and replacement from the above set to getneh(b)j (� ; �1)o500
j=1
, for b = 1; 2; :::; B = 1000. Each sample

neh(b)j (� ; �1)o500
j=1

is then used to com-

pute an estimator b�1;b for �1 = (�; �; �2). Finally, b�1;b is used together with the realizations of
Vt on which

neh(b)j (� ; �1)o500
j=1

depend to compute an estimator b�2;b for �2 = (�0; �1; �). In com-
puting b�2;b, the constraints � � 0 and � � 0 are explicitly imposed. Likewise, (�; �; �2) > 0 is
imposed in the estimation of �1. The following table summarizes the empirical distributions

of b�1;b and b�2;b. b�1;b b�2;bb�b b�b b�2b b�0;b b�1;b b�b
Mean 0:8825 0:0004 0:0006 �0:0032 0:1665 �3:2039

Median 0:8859 0:0004 0:0006 �0:0010 0:0023 �0:0320

Std. Dev. 0:0281 2:3� 10�5 7:8� 10�5 0:0046 0:2422 5:3613

IC1(95) 0:8135 0:0003 0:0005 �0:0154 0:0000 �19:807

IC2(95) 0:8917 0:0004 0:0008 0:0008 0:8009 0:0000

Table 3.3: Bootstrap statistics (B = 1000 samples of size 500).

The estimator b�1;b is less volatile than b�2;b. This shows up as relatively large con�dence
regions for the components of b�2;b. Part of the variability of the latter can be explained
by the fact it has been computed conditional on the point estimated b�1;b. However, it may
be the case that the true parameter �2 is not constant across time. If �2 happens to be

constant across time, the large standard deviations of b�2;b primarily mean that the true �2
is not signi�cantly di¤erent from zero. However, if �2 is time varying, the large standard

deviations of b�2;b take a quite di¤erent meaning. Namely, they may be interpreted as the
level of heterogeneity of the possible realizations of the true parameter �2.

6Even in the discrete GMM, it is possible to construct an overidenti�ed set of restrictions that is �rst
order underidenti�ed. See Dovonon and Renault (2009).
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In this application, the large standard deviations of b�2;b are most likely due to time

variation in �2. In fact, the empirical distributions of b�1;b and b�b are very skewed: there are
large di¤erences between the means and the medians. Also, 50% of the realization of b�1;b
are above 0:0023 while 50% of the realizations of b�b fall below �0:0320. Hence a signi�cant
proportion of samples lead to the conclusion that the returns are positively correlated with

the expected risk and negatively correlated with the unpredictable risk.

3.6 Conclusions

The goal of this paper was to illustrate how to implement the CGMM. To start with, we

brie�y reviewed the useful theoretical properties of the CGMM estimator. Next, we exposed

in details some helpful numerical recipes for the implementation of the CGMM. Finally, we

applied the estimation method to the stable distribution and the autoregressive variance

Gamma model.

When the parameter � of the stable distribution is close to 2, the asymmetry parameter

� becomes hard to identify. As a result, the gradient of the moment function is numerically

singular and one has to rely on Monte Carlo simulations for inference on the identi�able

parameters. When � is far from 2, the gradient of the moment function is of full rank and

the standard errors of the estimators can be computed using the standard analytical formulas.

Overall, the parameters of the stable distribution can be reliably estimated by CGMM.

In the autoregressive Gamma model, the variances of the estimators cannot be computed

analytically because the gradient of the moment is numerically singular. This problem is

due to the fact that the objective function is extremely �at around the true values of the

parameters, and can be linked to the di¢ culties inherent to the estimation of the degree of

freedom parameter in Gamma distributions or Student distributions. We elude this problem

by generating the empirical distributions of the estimates by resampling from the original

sample. The empirical application with the Alcoa index suggest that the returns are positively

correlated with the expected risk and negatively correlated with the unpredictable risk.
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A. Estimation of Stable Distribution. Empirical distributions of the estimators

for 1000 Monte Carlo replications.

Left: �01=(0; 0:1; 1:5; 0; 0:5) Right: �02=(0; 0:1; 1:95; 0; 0:5)
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Left: �01=(0; 0:1; 1:5; 0; 0:5) Right: �02=(0; 0:1; 1:95; 0; 0:5)
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B. Derivatives of the Conditional CF of Vt in the ARVG model

The CF of Vt conditional on Vt�1 is:
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Chapter 4

A Solution to the Curse of

Dimensionality in the Continuum

GMM

Note: Cet article dont je suis l�unique auteur sera bientôt soumis pour publication dans un journal d�économétrie

appliquée. Nous remercions Marine Carrasco et Pierre Evariste Nguimkeu pour leurs commentaires utiles.

Mots-Clés: Autoregressive Gamma, Bootstrap, Continuum of Moments Conditions, Realized Volatility

4.1 Introduction

The generalized method of moment (henceforth GMM) has been extended to handle a con-

tinuum of moments conditions by Carrasco and Florens (2000), and the resulting estimation

procedure has been termed continuum-GMM (henceforth CGMM). A continuum of moment

conditions arises for instance when one tries to estimate a parameter using moment condi-

tions based on the characteristic function (henceforth CF). More precisely, let xt 2 Rd be a

series of IID random variable, and assume that the distribution of xt is fully characterized

by a �nite dimensional parameter �0 2 R
q
. Let us consider the function ht (� ; �0) given by:

ht (� ; �0) = exp (i�
0xt)� ' (� ; �0) ; � 2 Rd; (4.1)
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where ' (� ; �0) = E�0 [exp (i� 0xt)] and E�0 is the expectation operator with respect to the

true data generating process. Because E�0 [ht (� ; �0)] = 0 for all � 2 Rd, we have a continuum

of valid moments conditions that can be used to estimate �0 from observed sample. Moments

conditions based on the CF are useful when the likelihood is either unavailable in closed form

or non convenient to work with. For instance, the stable distribution and certain discretely

sampled di¤usion processes have known CFs but unknown likelihood functions.

Basically, the CGMM builds on the same philosophy as the GMM of Hansen (1982). In

particular, both are based on the minimization of a quadratic form associated with some

scalar product. But while the scalar product of the GMM is de�ned on a �nite dimensional

vector space, that of the CGMM is de�ned on an in�nite dimensional Hilbert space. To �x

ideas, let � (�) be a probability density function on Rd and L2(�) denote the Hilbert space

of complex valued functions that are square integrable with respect to �, that is:

L2(�) = ff : Rd ! C such that
Z
f(�)f(�)�(�)d� <1g: (4.2)

A scalar product h:; :i on L2(�)� L2(�) is given by:

hf; gi =
Z
f(�)g(�)�(�)d� = E

�(�)

h
f(�)g(�)

i
; (4.3)

where z is the complex conjugate of z and E
�(�)

[ ] is the expectation with respect to the

density �(�). It is easily checked that the moment function ht (� ; �0) is bounded in modulus

and hence, belongs to L2(�) for any �. Taking advantage of this, Carrasco and Florens (2000)

de�ned the objective function of the CGMM by mean of the quadratic form associated with

the above scalar product:

QT (�) =
D
K�1=2bhT (:; �); K�1=2bhT (:; �)E (4.4)

� E
�(�)

h
K�1=2bhT (� ; �)K�1=2bhT (� ; �)i ;

where bhT (� ; �) = 1
T

PT
t=1 ht(� ; �) and K is the covariance operator K associated with the

moment function. Finally, the CGMM estimator is de�ned as the particular value of � that

minimizes QT (�).
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In implementing the CGMM when xt is multivariate (d > 1), a major di¢ culty lies in the

evaluation of the multiple integrals embedded in the objective function QT (�). Typically,

one would choose the weighting function �(�) = exp (�� 0�) in order to be able to use Gauss-

Hermite quadrature methods. Quadrature methods are fast and accurate when d � 2.

However, the complexity of the numerical integration grows exponentially as the dimension

of � increases. More precisely, if 10 quadrature points are needed to achieve a certain level

of precision for a one-dimensional integration, about 10d quadrature points are required to

obtain the same level of precision in evaluating QT (�). This is a well known "curse of

dimensionality" in computational �elds.

The situation gets even worse when xt is not IID but Markov of order one. In this case,

the moment function would be de�ned as:

ht+1 (� ; �0) = [exp (i�
0
1xt+1)� ' (� 1; �0; xt)] exp (i�

0
2xt) ; (4.5)

where � = (� 1; � 2) 2 R2d and ' (� 1; �0; xt) = E�0 [exp (i� 01xt+1) jxt] is the CF of xt+1 given

xt. Accordingly, we would de�ne the scalar product h:; :i on L2(�)� L2(�) in the same way

as above but now using a probability measure � (� 1; � 2) on R2d. If 10 quadrature points

are required to get a desired level of precision for a one dimensional integration, about

102d quadrature points are required to obtain the same precision in evaluating QT (�). This

implies 10000 quadrature points when xt is bivariate and 1000000 quadrature points when xt

is trivariate. Hence for values of d as low as 3, the implementation of the CGMM procedure

becomes quickly an unfeasible task1. To circumvent this problem, a solution may consists

in (i) discarding quadrature points that have very low weights, or (ii) reducing the number

of quadrature points. Unfortunately, none of these solutions provide a substantial numerical

e¢ ciency gain without jeopardizing the accuracy of the overall estimation procedure.

The goal of this paper is to propose a solution to the type of curse of dimensionality just

described. Our approach consists in turning an unfeasible optimization problem involving

d-dimensional integrals into several feasible small scale optimizations problem involving only

one-dimensional integrals. More precisely, instead of using the CF of xt 2 Rd in the CGMM

1This is particularly true when a large number of iterative evaluations of the objective function is required
for the convergence of the minimization algorithm
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procedure, we use the CF of y�;t = � 0xt 2 R, for some �xed � in the normalized set Sd given

by:

Sd =
�
� 2 Rd : k�kE = 1

	
; (4.6)

and kkE is the Euclidian norm. In the IID case for example, we would use the moments

conditions:

h�;t(u; �) = exp (iuy�;t)� E [exp (iuy�;t)] ; u 2 R; (4.7)

where � is �xed and u is the Fourier transformation variable. A suboptimal CGMM estimator

is given by: b�(1) (�) = argmin
�

Q�;T (�) ; (4.8)

where

Q�;T (�) = E
!(u)

hbh�;T (u; �)bh�;T (u; �)i ;
! (u) is a univariate density on R and bh�;T (u; �) = 1

T

PT
t=1 h�;t(u; �). To make the overall

estimation procedure independent of � , we de�ne the �nal estimator as the average:

b�� = E
�(�)

hb�(1) (�)i ; (4.9)

where � (�) is a density on Sd.

Because each draw from the distribution � (�) gives rise to a new sample y�;t = � 0xt, the

proposed solution is basically a resampling technique. The sample y�;t contains the signature

of the original multivariate distribution of xt at the particular frequency � . We shall thus

refer to b�� as the frequency domain resampling CGMM estimator (henceforth FCGMM). Two

major theoretical issues are discussed in the sequel: the design of the optimal aggregating

weight �� (�) and the e¢ ciency of b��� relatively to the maximum likelihood estimator. We

found that the optimal weighting scheme is closely related to the inverse of the covariance

operator associated with b�(1) (�) viewed as a function of � . We review the conditions under
which b��� is as optimal as the unfeasible maximum likelihood estimator.

A similar approach has been advocated by Chen, Jacho-Chavez and Linton (2009).

These authors face a set of conditional moment restriction of type E [� (Zt; �0) jXt] = 0,

for some scalar function � (Zt; �0). The standard approach in this literature consists in turn-
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ing these conditional moment restrictions into unconditional moment restrictions by using

E [� (Zt; �0)A (Xt)] = 0, for any vector function A (Xt). One then estimates the optimal in-

strument function Aoiv (Xt), and the GMM estimator b�oiv based on the unconditional moment
restrictions E [� (Zt; �0)Aoiv (Xt)] = 0 is called the optimal instrumental variable estimator.

Chen, Jacho-Chavez and Linton (2009) proposed the alternative estimator b�w =PN
j=1wj

b�j,
where N is allowed to increase with the sample size, b�j is the GMM estimator based on the

moment restrictions E [� (Zt; �0)Aj (Xt)] = 0, and fAj (Xt)g1j=1 are basis functions chosen

by the econometrician. It is shown in the paper that b�w is as e¢ cient as b�oiv for optimally
designed N and w = fwjgNj=1.

The rest of the paper is organized as follows. In the next section, we present the gen-

eral framework. In Section 3 we discuss the properties of the CGMM estimators b�(1) (�).
In Section 4 we derive the theoretically optimal aggregating weight �� (�) for the FCGMM

estimator b��. In particular, we compare the best FCGMM estimator b��� to the maximum
likelihood estimator. In Section 5 we present the feasible FCGMM estimator and show its

asymptotic equivalence with b���. Section 6 presents a Monte Carlo study based on the Au-
toregressive Factor GammaModel. In Section 7 we used the FCGMM to �t an Autoregressive

Variance Gamma of order p to the joint dynamic of the daily return on Alcoa and its realized

variance. Finally, Section 8 concludes the paper. The proofs are gathered in appendix.

4.2 The General Framework

4.2.1 The Objective functions

Depending on the model under consideration, three types of moment functions can be used

to implement the CF based CGMM. When xt is IID, the moment function to use is given by

(4.1). In the Markov case, the appropriate moment function is given by (4.5). When xt is

dependent so that its distribution depends on its entire past, a suggestion is to use a moment

function based on the joint CF:

ht(� ; �) = ei�
0Yt � E�(ei�

0Yt); � 2 Rdp; (4.10)
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where Yt = (xt; xt�1; :::; xt�p+1). In theory, the larger p the more e¢ cient the CGMM esti-

mator. But in practice, the quest for e¢ ciency must be balanced with the computing cost.

In particular, the curse of dimensionality described in the introduction will show up quickly

as p increases. For more discussions on the use of the moment function (4.10), see Jiang and

Knight (2002), Yu (2004) and Carrasco, Chernov, Florens and Ghysels (2007).

From now on, let us use the generic notation ht(� ; �); � 2 Sd for any of the moments

functions described above (that is, d denotes the dimension of � in either model), and de�ne:

bh�;t(u; �) = ht(u�; �), u 2 R;

where we recall that Sd =
�
� 2 Rd : k�kE = 1

	
. Note that in the IID case, the moment

function bh�;t(u; �) reduces to (4.7) while in the Markov case, bh�;t(u; �) can be written as:
bh�;t(u; �) = [exp (iuy�1;t)� E (exp (iuy�1;t))] exp (iuy�2;t�1) , (4.11)

where y�1;t = � 01xt and � = (� 1; � 2) 2 Sd. Note that y�2;t�1 = � 02xt is being used as instrument

in (4.11). Here if � 1 was not kept �xed, the FCGMM estimator would be the continuum

version of the alternative optimal instrumental variable of Chen, Jacho-Chavez and Linton

(2009). Finally in the dependent case, the moment function may be designed as follows:

bh�;t(u; �) = eiuY�;t � E�(eiuY�;t);

where � = (� 1; :::; � p) 2 Sd, Y�;t =
Pp

k=1 y�k;t and y�k;t = � 0kxt�k+1.

Having de�ned the appropriate moment function for the model under consideration, the

suboptimal CGMM estimator b�(1) (�) indexed by � is de�ned as in (4.8). In practice, b�(1) (�)
may be use to estimate the covariance operator associated with the moments function K�

that enters in the de�nition of the optimal second step CGMM estimator indexed by � :

b�(2) (�) = argmin
�

Q
(2)
�;T (�) ; (4.12)

where

Q
(2)
�;T (�) = E

!(u)

h
K�1=2
�

bh�;T (u; �)K�1=2
�

bh�;T (u; �)i ;
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In IID and Markov models, K� is the linear operator with kernel

k� (u1; u2) = E�0
h
h�;t(u1; �)h�;t(u2; �)

i
, (4.13)

and K�f (u1) =
R
k� (u1; u2) f (u2) du2 for all f : R! R. In dependent models, we have:

k� (u1; u2) = E�0
h
h�;t(u1; �)h�;t(u2; �)

i
(4.14)

+

1X
j=1

E�0
h
h�;t(u1; �)

�
h�;t�j(u2; �) + h�;t+j(u2; �)

�i
:

We now discuss the useful assumptions in this framework.

4.2.2 The Assumptions

The following assumptions will be used to study the properties of the estimators.

Assumption 1: The pdf ! ( ) is strictly positive on R and has �nite moments at any

order.

Assumption 2: For all � 2 Sdn@, the equation

E�0 [h�;t(u; �)] = 0 for all u 2 R; ! � almost everywhere,

has a unique solution �0 which is an interior point of a compact set �, where @ is a null set

with respect to �, E�0 denotes the expectation with respect to the distribution of the data

at � = �0.

Assumption 3: For all � 2 Sdn@, h�;t(u; �) is three time continuously di¤erentiable with

respect to �.

Assumption 4: For all � and � 2 Sdn@, E�0 [h�;T (:; �)] and its �rst three derivatives

with respect to � belong to the range of K�
� for � � 1=2, but not to the range of K�+"

� for all

" > 0, where K� is the asymptotic covariance operator associated with the moment function

h�;t(:; �).

Assumption 5: h�;t(u; �) is at least twice continuously di¤erentiable with respect to �

in Sdn@.

Assumption 6: (i) @
2Q�;T
@�@�0 is positive de�nite and (ii)

@2Q�;T
@�@�

is of full rank in Sdn@.
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Assumption 7: The measure � (�) on Sd satis�es:

R
� (�) d� = 1.

Assumption 8: The random variable xt is stationary and satis�es xt = x (�0; "t; Zt�1)

where x (:; "t; Zt�1) is three times continuously di¤erentiable with respect to �, "t is a IID

white noise whose distribution does not depend on �0, and Zt�1 can only contain lagged

values of xt.

The �rst assumption ensures that 0 < E
!(u)

h
f(u)f(u)

i
< 1 for all f 6= 0. Assumption

2 is an identi�cation assumption that may not hold in all situations. This assumption will

hold in a model of a univariate process xt conditional on past realizations (xt�1; :::; xt�d+1),

where the curse of dimensionality comes from conditioning on long lagged. This assumption

may not hold in the joint model of (x1;t; x2;t; :::; xd;t) if each xi;t is draw from a given stable

distribution, since in this case y�;t =
Pd

i=1 � ixi;t also belongs to a stable distribution with

same stability index. In this case, the mean parameters of the individual xi;ts may not be

identi�able from the marginal distribution of y�;t. This problem can be circumvented by

adopting a copula-type approach, where the speci�cation of the margins of the xi;ts are made

independent from the form of the co-dependence between the xi;ts.

The CGMM estimator can be derived under weaker conditions than in Assumption 3,

but the derivation of some of the asymptotic properties may become di¢ cult. Assumption 4

ensures that the limit of the objective function as T goes to in�nity is well de�ned. Assump-

tions 5 and 6 ensures that b�(1) (�) is unique and is a smooth function of � . Assumption 2
already ensures the positive de�niteness of @

2Q�;T
@�@�0 as T goes to in�nity, but we request this in

�nite sample for simplicity. The measure � (�) in Assumption 7 need not be positive for all

� . Finally, Assumption 8 is used in Carrasco and Kotchoni (2009) to select a regularization

parameter that enters in the expression of the feasible optimal second step CGMM estimatorb�(2) (�).
In the next section, we recall the properties of the CGMM estimators b�(1) (�) and b�(2) (�).

4.3 Properties of the CGMM Estimators

Under assumptions 1 to 4, b�(1) (�) is consistent for �0 (for almost all �) and is asymptotically
normal. The proof of this statement can be found in Carrasco and Florens (2000) and

Carrasco, Chernov, Florens and Ghysels (2007). The following property also holds for b�(1) (�).
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Proposition 1 Under Assumptions 1 to 6, b�(1) (�) is unique for each � in Sdn@. Moreover,b�(1) (�) is continuously di¤erentiable with respect to � .
This result is useful for the derivation of the minimum variance FCGMM estimator and

for the comparison of the latter with the maximum likelihood estimator. A key ingredient

for the derivation of this result is the positive de�niteness of the matrix @2Q�;T
@�@�0 which is

guaranteed to hold according to Assumption 6.

The estimator b�(1) (�) is not optimal in the sense that its variance does not reach the
Cramer-Rao bound associated with the likelihood of y�;t. However, it can be used to consis-

tently estimate the covariance operator K� . In IID and Markov models, a natural estimator

of K� is given by the linear empirical operator K�;T with kernel:

bk� (u1; u2) = 1

T

TX
t=1

h�;t(u1;b�(1))h�;t(u2;b�(1)); (4.15)

where b�(1) � b�(1) (�) is de�ned in (4.8). In IID models speci�cally, the �rst step estimatorb�(1) (�) may be bypassed by using:
bk� (u1; u2) = 1

T

TX
t=1

�
eiu1y�;t � b'�;T � �eiu1y�;t � b'�;T �; (4.16)

where b'�;T = 1
T

PT
t=1 e

iu1y�;t . Finally, in the dependent model, k� (u1; u2) is estimated by:

bk� (u1; u2) =
1

T

TX
t=1

h�;t(u1;b�(1))h�;t(u2;b�(1)) (4.17)

+

JTX
j=1

�
1� j � 1

JT

� TX
t=1

h�;t(u1;b�(1))�h�;t�j(u2;b�(1)) + h�;t+j(u2;b�(1))� ;
and JT is a bandwidth that is increasing in T .

The operator K� has an in�nite and discrete spectrum . By letting l�;i be its eigenvalue

associated with the eigenfunction  �;i and assuming that l�;i is decreasing in i, we have:

(i) l�;1 < 1, (ii) l�;i > l�;i+1 > 0 for all i, and (iii) lim
i!1

l�;i = 0. By contrast, K�;T has a

degenerate spectrum. More precisely, if we let bl�;i be an eigenvalue of K�;T associated with

the eigenfunction b �;i, then we can label bl�;i and b �;i so that: (i) bl�;1 <1, (ii) bl�;i > bl�;i+1 � 0
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for all i, and (iii) bl�;i = 0 for all i > T , where T is the sample size2. As a result, K�;T is not

invertible on L2 (!). To estimate K�1
� , the following generalized inverse is used:

K�1
�;T;�T

=
�
K2
�;T + �I

��1
K�;T :

With the same notations as above, it can be checked that b �;i is an eigenfunction of K�1
�;T;�T

associated with the eigenvalue
bl�;ibl2�;i+�T .

In IID and Markov models, Under Assumptions 1 and 2 K�;T satis�es:

kK�;T �Kk = Op
�
T�1=2

�
:

where K is the covariance operator de�ned in equation (4.4). The regularized inverse K�1
�;T;�T

has the property that for any function f in the range of K1=2
�;T , the functionK

�1=2
�;T;�T

f converges

to K�1=2f as T goes to in�nity and �T goes to zero. Assumptions 1 to 4 then ensure that

replacing K�1=2
� by K�1=2

�;T;�T
in (4.12) yields3:

T 1=2
�b�(2) (�)� �0

�
L! N(0; I�1�;�0); (4.18)

as T and �3=2T T go to in�nity and �T goes to zero, where I�1�;�0 denote the inverse of the Fisher

Information Matrix associated with the likelihood of y�;t.

In dependent models however, only the CGMM e¢ ciency can be attained under some

additional technical assumptions discussed in Carrasco, Chernov, Florens and Ghysels (2007).

By CGMM e¢ ciency, it is meant that b�(2) (�) is optimal among the following class indexed
by a linear operator B:

argmin
�

E
!(u)

h
Bbh�;T (u; �)Bbh�;T (u; �)i :

2See Carrasco and Florens (2000) and Carrasco, Florens and Renault (2007) for more details on covariance
operators.

3The consistency and optimality is guaranted for � � 1=2. However, the asymptotic normality has been
proved in Carrasco, Chernov, Florens and Ghysels (2007) only under � � 1 in Assumption 4, which is satis�ed
in the characteristic function based CGMM.
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In order for b�(2) (�) to be truly optimal in the sense of (4.18), the regularization parameter
�T needs to be calibrated in practice. Let �T (�0) be the value of �T that optimal in the

mean square error sense, that is:

�T (�0) = argmin
�

E

��b�(2) (�)� �0

�0 �b�(2) (�)� �0

��
:

Under Assumptions 1 to 4 and Assumptions 8, Carrasco and Kotchoni (2008) showed the

consistency of b�T for �T (�0), where:
b�T = argmin

�

1

M

MX
k=1

�b�(2;k) (�)� b�(1) (�)�0 �b�(2;k) (�)� b�(1) (�)� ;
and b�(2;k)T (�) is the second step CGMM estimator of �0 computed using a sample simulated

from the data generating process indexed by the point estimate b�(1) (�), and M is the total

number of simulated samples.

In the next section, we discuss the properties of the FCGMM estimator.

4.4 The Ideal FCGMM Estimator

In Equation (4.9), we have de�ned the FCGMM estimator as the weighted sum of an in�nite

number of
p
T -consistent estimators indexed by � , that is:

b�� = Z b�(1) (�)� (�) d�
where � (�) is a pdf on Sd. The continuity of b�(1) (�) as a function of � allows to consider
the use of continuous pdfs � (�) for the weighting function. Below we discuss the consistency

of b�� and derive the weighting function �� that minimizes the variance. The ideal FCGMM
estimator b��� is then compared to the maximum likelihood estimator.
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4.4.1 Consistency and Optimal Aggregating Measure

For any � 2 Rq, the variance of �0b�� is given by:
V ar

�p
T�0b��� = Z Z gT;� (� 1; � 2)� (� 1)� (� 2) d� 1d� 2; (4.19)

where

gT;� (� 1; � 2) = �0Cov
�p

Tb�(1) (� 1) ;pTb�(1) (� 2)��: (4.20)

A �rst order Taylor expansion of b�(1) (�) deduced from the �rst order condition it solves can

be used to show that:

g� (� 1; � 2) � P lim gT;� (� 1; � 2) (4.21)

= �0W�1
�1
hG�1(:; �0); K�1;�2G�2(:; �0)iW�1

�2
�;

where K�1;�2 is the operator with kernel:

k�1;�2 (u; v) = Cov
�p

Tbh�1;T (u; �0);pTbh�2;T (v; �0)� ;
and

W� = hG� (:; �0); G� (:; �0)i ; G� (u; �0) = P lim
@bh�;T (u;b�(1) (�))

@�

We have the following consistency result for b��.
Proposition 2 Under Assumptions 1 to 4 and Assumptions 7, the FCGMM estimator sat-

is�es: b�� � �0 = Op
�
T�1=2

�
.

Clearly, the optimal aggregating measure depends on the choice of �. In practice, � may

be set according to some particular hypothesis one which to test on b��. The ideal measure
��� (�) solves:

��� = argmin
�

Z Z
g� (� 1; � 2)� (� 1)� (� 2) d� 1d� 2, (4.22)

subject to
R
� (� 1) d� 1 = 1.

Let V� be the linear operator with kernel g� (� 1; � 2), that is, the asymptotic covariance
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operator associated with �0b�(1) (�). The operator V� is compact if we have:Z
Sd

Z
Sd
[g� (� 1; � 2)]

2 d� 1d� 2 <1

This condition is satis�ed because Sd is a bounded set while g� (� 1; � 2) is �nite and continuous

at all (� 1; � 2). These properties of g� (� 1; � 2) follow from the consistency of b�(1) (�) and its
continuity as a function of � . The compactness of the covariance operator V� ensures that

it has a discrete spectrum. If we let ��;j (� 1) denote the eigenfunction of V� associated with

the eigenvalue ��;j, then we have ��;j � 0 and ��;i (� 1) and ��;j (� 1) are orthogonal for all

i 6= j. The following proposition characterizes the optimal weighting function.

Proposition 3 The solution of (4.22) ��� (�) with minimal norm is given by:

��� (�) =

" 1X
j=1

1

��;j

�Z
��;j (� 1) d� 1

�2#�1 1X
j=1

1

��;j

�Z
��;j (� 1) d� 1

�
��;j (�) ; (4.23)

At the optimum, the variance of �0b�� is:
V ar

�
�0b����� =

" 1X
j=1

1

��;j

�Z
��;j (�) d�

�2#�1
: (4.24)

Note that ��� (�)+ ef (�) is also a solution of (4.22) for any function ef (� 1) in the null set of
V�, and ��� (�) is the unique solution if the null set of V� reduces to the null function. Below,

we compare the e¢ ciency of b���� to that of the maximum likelihood estimator.

4.4.2 Comparison with the Maximum Likelihood

The CGMM estimator may be used when the computation of the maximum likelihood is more

costly. In a situation where even the CGMM estimator itself is unfeasible due to the curse

of dimensionality, the FCGMM becomes an excellent alternative that delivers at least a
p
T -

consistent estimator of the parameter of interest. In this section, we discuss the conditions

under which b���� is as e¢ cient as the unfeasible maximum likelihood estimator.

Let b�MLE be the unknown maximum likelihood estimator of �0, and de�ne the linear
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manifold bDT (�0) by:

bDT (�0) =

�
� 2 Rq s.t � =

Z
� (�)b�(1) (�) d� and Z � (�) d� = 1

�
: (4.25)

For a given sample, b�MLE and bDT (�0) are deterministic functions of the data. Let us thus

assume that for each given sample, there exist �� (�) such that:

Z
�� (�)b�(1) (�) d� = b�MLE; (4.26)

In this case, b�MLE 2 bDT (�0) for each sample and we have:

V ar
�
�0b����� = argminb��2 bDT (�0)V ar

�
�0b��� � V ar

�
�0b�MLE

�
:

When d = 1, the normalized set Sd reduces to the singleton f� = 1g and bDT (�0) =nb�(1) (1)o. In this case, it is clear that �0b���� is never as e¢ cient as the �0b�MLE. But when

d � 2, Sd contains a continuum of normalized vectors � and
nb�(1) (�) ; � 2 Sdo is a continuum

of estimators. The following proposition then gives a condition under which Equation (1.31)

is satis�ed.

Proposition 4 Under Assumptions 1 to 7 and d � max fq; 2g, the optimal FCGMM esti-

mator �0b���� is as e¢ cient as the unfeasible maximum likelihood estimator �0b�MLE.

The intuition behind this result is the following. Around a particular � , we have:

b�(1) (� + � 0) = b�(1) (�) + @b�(1) (�)
@�

� 0: (4.27)

When the rank of @b�T (�)
@�

is equal to the dimensionality of �0, the linear manifold bDT (�0)

replicates the entire parameter space �. In this case, �0b���� is as e¢ cient as �0b�MLE because

(4.26) then holds. Note that a necessary condition for this rank condition to be satis�es is

q � d, that is, we must have less coordinates in �0 than there are dimensions in � .

If bDT (�0) has less than q dimensions, it can still encompass b�MLE but there is no simple

way to verify this. Intuitively, bDT (�0) is more likely to encompass b�MLE is there is enough

variability in the set b�(1) (�) across � . In this regard, using the suboptimal CGMM estimator



184b�(1) (�) in the de�nition of b�� has two advantages. First of all, b�(1) (�) is less e¢ cient thanb�(2) (�) and thus has more variability than the latter, thus allowing the manifold bDT (�0) to

have more probability to encompass the maximum likelihood estimator. And secondly, the

use of b�(1) (�) makes the computation of the FCGMM estimator easier because this allows to

bypass the estimation of K�1=2
� .

In the next section, we discuss the feasible FCGMM.

4.5 The Feasible Optimal FCGMM

If we knew how to draw from the optimal aggregating measure ��� (), a natural way to

implement the CGMM would be to draw � 1; :::; �S from this distribution, compute b� (� s) for
each � s and take the average. We would have:

b���� ' 1

S

SX
s=1

b� (� s) :
where � s is a draw from ��� (). This would be a Monte Carlo approximation of the integralb���� = R b� (�)��� (�) d� . Unfortunately, ��� (�) has an intractable form and we do not know how
to draw directly from this distribution. Interestingly, another Monte Carlo approximation of

this integral is given by: b���� ' SX
s=1

��� (� s)
b� (� s) ; (4.28)

where � s is a draw from the multivariate uniform distribution on Sd. When implementing

(4.28), the main challenge is to estimate the optimal aggregating weight ��� (). This requires

the estimation of the asymptotic covariance operator V� whose kernel g� (� 1; � 2) is given by

(4.21). The expression of g� (� 1; � 2) involves the gradient G� (:; �0) which is not always easy to

compute by hand. To avoid this di¢ culty, we suggest to use a simulation approach presented

below.

To start with, we note that the kernel function g� (� 1; � 2) can be simulated using the

formula: bg� (� 1; � 2) = 1

L

LX
l=1

�0
�b� (� 1; l)� b� (� 1; l)��b� (� 2; l)� b� (� 2; l)�0 �: (4.29)
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where b� (� 1; l) = 1
L

PL
l=1
b� (� 1; l) and nb� (� i; l)oL

l=1
are l independent copies of b� (� i; l) ; i =

1; 2.

Let � 1; :::; �S be S draws from the multivariate uniform distribution on Sd, and assume

that we can simulate from the true data generating process. Further let
n
x
(l)
t

oT
t=1

; l = 1; :::; L

be L independent samples of size T simulated from the distribution of xt. For each sample

indexed by l and each � s, we compute the univariate samples:

n
y
(l)
�s;t

o
=
n
� 0sx

(l)
t

o
, s = 1; :::; S and l = 1; :::; L: (4.30)

Finally, let b� (� s; l) be the �rst step CGMM estimator based on the sample
n
y
(l)
�s;t

o
, and b��

be the L � S matrix with (l; s) element given by �0b� (� s; l). Note that b� (� s; l) ; l = 1; :::; L

are IID copies of the CGMM estimator b�(1) (� s). Rigorously, it is not possible to draw from
the true data generating process because �0 is unknown. However, one can proxy �0 by the

consistent estimator b�S = 1
S

PS
s=1
b�(1) (� s) computed from the actual data.

A degenerate estimator of the covariance operator associated with b�(1) (�) is given by the
(S � S) empirical covariance matrix of b��:

bV� = 1

L

�b�� � b���0 �b�� � b��� ; (4.31)

where b�� is the matrix with (l; s) element given by �0b� (� s; l). The following proposition
shows that bV� is consistent for V� in the following sense:
Proposition 5 Let us de�ne f = (f (� 1) ; :::; f (�S))

0 where � 1; :::; �S are S draws from the

multivariate uniform distribution on Sd. Then as L and S go to in�nity, we have:

�bV�f�
i
� V�f (� i) = Op

�
L�1=2

�
+Op

�
S�1=2

�
for all � i�

We may thus use bV� to estimate the optimal aggregating weight ��� by:
b���;� = �b���;� (� 1) ; :::; b���;� (�S)�0 = ��0bV �1

�;��
��1

�0bV �1
�;� ; (4.32)
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where � is a vector of ones and bV �1

�;� is the regularized inverse of bV� de�ned as:
bV �1
�;� =

�bV 2
� + �I

��1 bV�, � 2 (0; 1): (4.33)

This regularization is necessary because bV� is nearly singular or singular for su¢ ciently large
S due to the fact that any two elements of the set � 1; :::; �S can eventually be arbitrarily

close. The following result are the main ingredient for the proof of the consistency of the

feasible optimal FCGMM estimator given by:

b�b���;� = SX
s=1

b���;� (� s)b�(1) (� s) : (4.34)

where b�(1) (� s) is computed from the actual data.

Proposition 6 Let f be a function such that � is the largest real number for which


V ��

� f


 <

1, and � � 1. Then under Assumptions 1 to 7, we have:




bV �1
�;� � V �1

�;�




 = Op
�
��3=2L�1=2

�
+Op

�
��3=2S�1=2

�
; (4.35)


�bV �1

�;� � V �1
�;�

�
f



 = Op

�
��1L�1=2

�
+Op

�
��1S�1=2

�
; (4.36)

�V �1

�;� � V �1
�

�
f


 = O

�
�min(1;

��1
2
)
�
: (4.37)

The next step is to show that the estimated optimal weighting function converges to the

theoretical one. We have the following proposition:

Proposition 7 Under Assumptions 1 to 7, b���;� (�) converges to ��� (�) and we have:
b���;� � ��� = O

�
�min(1;

��1
2
)
�
+Op

�
��1L�1=2

�
+Op

�
��1S�1=2

�
as L and S go to in�nity and �, ��1L�1=2 and ��1S�1=2 goes to zero. Moreover, the asymp-

totic variances of b�b���;� and b���� are the same.
We can also de�ne the simulated estimators:

b�(l)b���;� = SX
s=1

b���;� (� s)b� (� s; l) , l = 1; :::; L: (4.38)
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By noting that b�(l)b���;� ; l = 1; :::; L are IID copies of b�b���;�, the covariance matrix of b�b���;� can be
estimated by: dV ar �b�b���;�� = 1

L

LX
l=1

�b�(l)b���;� � b�(l)b���;���b�(l)b���;� � b�(l)b���;��0 (4.39)

where b�(l)b���;� = 1
L

PL
l=1
b�(l)b���;� .

Clearly, the higher order asymptotic of b�b���;� will depend on the regularization parameter
�. The optimal � can be estimated by minimizing the following approximate mean square

error: b�� = argmin
�2(0;1)

1

L

LX
k=1

�b�(l)b���;� � b�S�0 �b�(l)b���;� � b�S� ; (4.40)

where b�S = 1
S

PS
s=1
b�(1) (� s) is the proxy used for �0.

Instead of using Monte Carlo simulations to obtain the samples, one can also resort

to bootstrap. To this end, we let
nbh�s;t(u; �); u 2 RoT

t=1
be the set of moments functions

based on the observations fy�s;tg
T
t=1, and

�
t
(l)
1 ; :::; t

(l)
B

�
be B independent uniform draws with

replacement from the discrete set f1; 2; :::; Tg, for l = 1; :::; L. De�ne the sets of moment

functions: nbh
�s;t

(l)
b
(u; �)

oB
b=1

; l = 1; :::; L and s = 1; :::; S: (4.41)

The remaining steps of the estimation are the same as in the Monte Carlo simulation case once

we de�ne b� (� s; l) as the �rst step CGMM estimator based on the set of moment functionsnbh
�s;t

(l)
b
(u; �)

oB
b=1
.

Two illustrations of the use of the FCGMM procedure are presented in the sequel.

4.6 A Simulation Study

In a universe where agents are rational and risk averse, the expected return should be posi-

tively correlated with the expected risk. French, Schwertz and Stambaugh (1987) documented

this fact more than two decades ago by performing the regression of the excess return onto

estimates of the expected and unexpected volatility. They also found that the excess return

is negatively correlated with the unexpected risk. The increase in the expected excess return

following an increase in the expected risk is driven by the risk premium while the negative
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correlation between the excess return and the volatility shocks is often called the leverage

e¤ect.

However, it is not clear whether the risk on a �nancial asset should be solely measured

by its volatility. For this simulation study, we consider a latent risk factor model for assets

returns. This model assumes that the returns are positively correlated with some latent risk

factor while being negatively correlated with the innovations of that factor. Because the

considered latent risk factor is not exactly the variance of the return, this model o¤ers an

alternative framework to assess the risk premium and the leverage e¤ect on �nancial markets.

4.6.1 The Autoregressive Factor Gamma Model

The Autoregressive Factor Gamma Model (henceforth ARFG) is a stochastic volatility model

for asset returns. The return rt is expressed as linear function of lagged realization of some

latent risk factor Vt�1 and its contemporaneous innovation Vt � E [VtjVt�1], that is:

rt = �0 + �1Vt�1 + � (Vt � E [VtjVt�1]) + �""t; (4.42)

where "t
IID� N(0; 1) is uncorrelated with Vt�1 and Vt � E [VtjVt�1]. The risk premium is

modeled as a positive relationship between the return and the expected risk (�1 � 0) while

the leverage e¤ect is modeled as a negative relation between the return and the unexpected

risk (� � 0). The latent variable Vt is assumed to follow an Autoregressive Gamma process

of order one:

f (VtjVt�1) =
1X
j=0

V j+q�1
t cj+q

� (j + q)
exp (�cVt) pj (Vt�1) ; (4.43)

with c = 2�
�2(1�e��) , q =

2��
�2
, (�; �; �) > 0 and pj (Vt�1) are Poisson weights given by:

pj (Vt�1) =
(ce��Vt�1)

j

j!
exp

�
�ce��Vt�1

�
: (4.44)

The marginal distribution of Vt is a Gamma with density given by:

f (Vt) =
V q�1
t

� (q)

�
2�

�2

�q
exp

�
�2�
�2

Vt

�
: (4.45)
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Its conditional and unconditional CF are:

E
�
ei�VtjVt�1

�
=

�
1� i�

c

��q
exp

�
i�e��Vt�1

1� i�
c

�
(4.46)

E
�
ei�Vt

�
=

�
1� i�2�

2�

��q
:

By looking at the above conditional CF, we see that the distribution of Vt is nested by the

Wishart Autoregressive process of Gourieroux, Jasiak and Sufana (2005). In particular, the

series Vt can be thought of as a discrete sample from the CIR di¤usion.

The conditional expectation and variance of Vt are given by4:

E [VtjVt�1] = �
�
1� e��

�
+ e��Vt�1; (4.47)

V ar [VtjVt�1] =
��2

2�

�
1� e��

�2
+
�2

�
e��

�
1� e��

�
Vt�1: (4.48)

This implies that the conditional mean and variance of rt are linear in the lagged realization

of the risk factor:

E [rtjVt�1] = �0 + �1Vt�1; (4.49)

V ar [rtjVt�1] = �2V ar [VtjVt�1] + �2"

=
�2��2

2�

�
1� e��

�2
+ �2" +

�2�2

�
e��

�
1� e��

�
Vt�1: (4.50)

In particular, E [rtjVt�1] is a linear function of V ar [rtjVt�1].

We derive similarly the third and fourth conditional moments of Vt:

E
�
(Vt � E [VtjVt�1])3 jVt�1

�
=

��4

2�2
�
1� e��

�
3 +

3�4e��

2�2
�
1� e��

�
2Vt�1; (4.51)

E
�
(Vt � E [VtjVt�1])4 jVt�1

�
= 3V ar [VtjVt�1]2 (4.52)

+
3�6

4�3

�
�
�
1� e��

�4
+ 4e��

�
1� e��

�3
Vt�1

�
:

Equation (4.52) shows that Vt has a positive excess kurtosis. The third and fourth conditional

4The noncentered conditional moments of are given by E [(Vt)
n jVt�1] = 1

in
@nE[ei�Vt jVt�1]

@�n j�=0. These
derivatives may be computed using a mathematical software.
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moments of rt are linked to those of Vt by:

E
�
(rt � E [rtjVt�1])3 jVt�1

�
= �3E

�
(Vt � E [VtjVt�1])3 jVt�1

�
; (4.53)

E
�
(rt � E [rtjVt�1])4 jVt�1

�
= �4E

�
(Vt � E [VtjVt�1])4 jVt�1

�
+ 3�4": (4.54)

Hence rt has a time varying negative skewness whenever � < 0. To see the implications of

the model in term of kurtosis, we note that the last equality implies:

E
�
(rt � E [rtjVt�1])4 jVt�1

�
= 3V ar [rtjVt�1]2 +

3�4�6e��

2�3
�
1� e��

�3
Vt�1; (4.55)

+
3�2�2

�

�
�2�4

4�2
�
1� e��

�2 � �2"

�
�
�
1� e��

�2
+
6�2�2

�

�
�2�4

4�2
�
1� e��

�2 � �2"

�
e��

�
1� e��

�
Vt�1:

It is seen that this model can reproduce fat tailed distributions. In particular, the distribution

of rt given Vt is fat tailed when �2�4

4�2
(1� e��)

2 � �2" is positive
5.

In what follows, we present an estimation strategy for the ARFG model.

4.6.2 Estimating the ARFG Model from Observed Returns

While the joint process of observed return and latent risk factor (rt; Vt) is Markov, the process

rt alone is not. Since only the returns are observed, the estimation strategy will necessarily

be based on the joint CF of the returns. Writing rt as a linear function of (Vt; Vt�1) allows

to easily integrate out the latent factor.

Proposition 8 The joint CF of (rt; :::; rt+1�d) is given by:

E

"
exp

 
dX
k=1

i� krt+1�k

!#
(4.56)

= exp

 �
�0 � ��

�
1� e��

�� dX
k=1

i� k �
�2"
2

dX
k=1

� 2k

!

�
�
1� iuL+1�

2

2�

��q dY
k=1

�
1� iuk

c

��q
:

5This is only a su¢ cient condition, not necessary.
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where:

u1 = � 1�;

uk =
uk�1e

��

1� iuk�1
c

+ � k�1
�
�1 � �e��

�
+ � k�, k = 2; :::; d;

ud+1 =
ude

��

1� iud
c

+ � d
�
�1 � �e��

�
:

The details of the derivation of this CF are left in Appendix. The moment function we

will use in the FCGMM procedure is:

h�;t (u; �) = exp

 
iu

dX
k=1

� krt+1�k

!
� E

"
exp

 
iu

dX
k=1

� krt+1�k

!#
; (4.57)

where � = (� 1; :::; � d) 2 Sd, u 2 R, � = (�0; �1; �; �; �; �; �2")
0. Note that Equation (4.57) is a

moment function of type (4.10).

In the next section, we evaluate by Monte Carlo the performance of the FCGMM in

estimating this model.

4.6.3 Monte Carlo Experiments

To generate a return process rt from the ARFG model, we need to �rst generate the latent

factor Vt. This is done using the Poisson Mixing Gamma representation (4.43) as suggested

by Devroye (1986). At time t = 0, one draws an initial value V0 from the stationary Gamma

distribution (4.45). At t = 1, one draws an integer j0 from the Poisson distribution with

parameter ce��V0. The current realization V1 of the state variable is then drawn from the

Gamma distribution with density fj0 (v), where:

fj0 (v) =
vj+q�1cj+q

� (j0 + q)
exp (�cv) :

At t = 2, one draws again an integer j1 from the Poisson distribution with parameter ce��V1.

The new realization V2 of the state variable is now drawn from the Gamma distribution

with density fj1 (v), and so forth. At an arbitrary step t, the realization Vt is drawn from the

Gamma distribution with density fjt�1 (v), where jt�1 is a draw from the Poisson distribution
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with parameter ce��Vt�1. Having simulated a path (V0; V1; :::; VT ) as described above, a

sample of returns (r1; :::; rT ) can be generated using Equation (4.42).

In this Monte Carlo experiment, we set d = 10 so that the estimation of �0 is based on

the joint CF of the vector (rt; :::; rt�9). We used T = 500 for the sample size and M = 100

for the number of replications. The optimal weight b���;� and regularization parameter �� are
estimated by generating S = 100 draws of � for each Monte Carlo replication. We arbitrarily

�xed � = (1; :::; 1)0 and compute b���;� for � on the grid:
� 2 [7�10�4; 5�10�4; 3�10�4; 1�10�4; 7�10�5;

5�10�5; 1�10�5; 5�10�6; 1�10�6; 1�10�7]

For each b���;�; we compute the mean square error of the FCGMM estimator using the formula:

MSE (�) =
1

L

LX
k=1

�b�(l)b���;� � �0

�0 �b�(l)b���;� � �0

�
(4.58)

where b�(l)b���;� is de�ned in (4.38) and:
�0 =

�
�0; �1; �; �; �; �; �

2
"

�0�
0; 10�2;�5� 10�2; 10�4; 2� 10�2; 5� 10�2; 2� 10�4

�0
The following �gure shows the plot ofMSE (�) against �. For this application, the mean

square error is minimized for �� = 10�4. We see that the graph of MSE (�) is L-shaped.

The MSE increase faster when � moves from �� to zero than when � moves in the opposite

direction. This suggests that an overestimation of � is preferable to its underestimation.
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Figure 4.1: The mean square error of the FCGMM estimator as a function of the regularization

parameter �.

The following table shows the simulation results. The column labeled "Mean", "Median"

and "Std. Dev" contain respectively the empirical mean, median and standard deviations

of b�(l)b���;� . IC1 and IC2 are respectively the lower and upper bound of the 90% con�dence

interval.

Parameters Mean Median Std. Dev. IC1 IC2

�0 �4:0� 10�5 �3:5� 10�5 3:9� 10�4 �6:9� 10�4 5:8� 10�4

�1 1:0� 10�2 1:0� 10�2 1:6� 10�4 9:8� 10�3 1:0� 10�2

� �4:8� 10�2 �4:8� 10�2 2:6� 10�3 �5:4� 10�2 �4:5� 10�2

� 1:0� 10�4 1:0� 10�4 5:9� 10�6 9:0� 10�5 1:0� 10�4

� 1:9� 10�2 1:9� 10�2 8:9� 10�4 1:7� 10�2 2:0� 10�2

� 5:0� 10�2 4:8� 10�2 7:7� 10�3 4:1� 10�2 6:3� 10�2

�2" 1:9� 10�4 2:0� 10�4 4:5� 10�5 9:3� 10�5 2:3� 10�4
Table 4.1: Monte Carlo simulations results for the ARFG Model estimated by FCGMM.

We draw L = 100 independent samples, l = 1; ::; L = 100. For each sample l, the FCGMM b�(l)b���;�
is computed using S = 100 draws of � . The true vector of parameters is

�0=
�
0; 10�2;�5� 10�2; 10�4; 2� 10�2; 5� 10�2; 2� 10�4

�0
The standard deviations of the estimators are small compared to their means, and the

90% con�dence intervals contain the true values for all the parameters. Although the number

of monte Carlo replications L and the number of draws S of � are quite moderate, the results

of this experiment suggest that the suggested FCGMM is a reliable inference method.

In what follows, we present an empirical applications.

4.7 An Empirical Application

The present empirical application is based the Autoregressive Variance Gammamodel (ARVG)

of order p presented below. Unlike the in ARFG model, it is assumed here that the risk factor

is observed. Moreover, this risk factor is assumed to be the integrated volatility.
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4.7.1 The Autoregressive Variance Gamma Model or Order p

The Autoregressive Variance Gamma model of order p (henceforth ARVG(p)) speci�es the

return process rt as a function of the expected variance E [Vtj fVt�kgpk=1] and the innovation

Vt � E [Vtj fVt�kgpk=1]:

rt = �0 + �1

q
E [Vtj fVt�kgpk=1] + � (Vt � E [Vtj fVt�kgpk=1]) +

p
Vt"t (4.59)

where "t
IID� N(0; 1) is uncorrelated with past, current and future realizations of Vt, �1 � 0

and � � 0. Like in the ARFG model considered in the previous section, the parameter �1

captures the premium for bearing the expected risk while � is the leverage e¤ect. The variance

Vt is assumed to follow an Autoregressive Gamma process of order p whose conditional density

is given by:

f (Vtj fVt�kg1k=1) = f (Vtj fVt�kgpk=1)

=

1X
j=0

V j+q�1
t cj+q

� (j + q)
exp (�cVt) pj (fVt�kgpk=1)

where pj (fVt�kgpk=1) are Poisson weights given by:

pj (fVt�kgpk=1) =
(c
Pp

k=1 �kVt�k)
j

j!
exp

 
�c

pX
k=1

�kVt�k

!

The parameters of the model are (�; �; �; f�1g
p
k=0 ; �0; �1; �). In addition to �1 � 0 and � � 0,

we further have the constraints:

(�; �; �) > 0, f�1g
p
k=0 � 0,

pX
k=0

�k = 1

c =
2�

�2�0
and q =

2��

�2
:

The speci�ed dynamic for Vt extends the model of Gourieroux and Jasiak (2005) which

is an autoregressive Gamma or order one. Likewise, the model studied in Kotchoni (2009)

is the Autoregressive Variance Gamma model of order one. The conditional CF of Vt is an



195
exponential a¢ ne form given by:

E
�
ei�Vtj fVt�kgpk=1

�
=

�
1� i�

c

��q
exp

 
i�

1� i�
c

pX
k=1

�kVt�k

!
(4.60)

This CF shows that the Autoregressive Gamma model of order p is identical (up to a repara-

metrization) to a univariate Wishart autoregressive process of order p discussed in Gourier-

oux, Jasiak and Sufana (2005)6. The following moments can be computed by using the two

�rst derivatives of the above conditional CF evaluated at zero7:

E [Vtj fVt�kgpk=1] = �

 
1�

pX
k=1

�k

!
+

pX
k=1

�kVt�k (4.61)

V ar [Vtj fVt�kgpk=1] =
1

c

"
�

 
1�

pX
k=1

�k

!
+ 2

pX
k=1

�kVt�k

#
(4.62)

It is seen that the conditional mean and variance of Vt are linear in its lagged realizations.

Moreover, the ARVG model has the potential to generate asymmetry and fat tails. In fact

we have:

E
h
(rt � E [rtj fVt�kgpk=1])

3 jVt�1
i
= �3E

�
(Vt � E [VtjVt�1])3 jVt�1

�
so that the return process has a negative and time varying skewness whenever � < 0. In the

speci�c case where p = 1, � = � log �1 and � = 0 the conditional excess kurtosis of rt is given

by:
E
�
(rt � E [rtjVt�1])4 jVt�1

�
V ar [rtjVt�1]2

� 3 = 3V ar [VtjVt�1]
V ar [rtjVt�1]2

Equation (4.61) provides a good forecasting formula for the volatility. If the lagged

variables (Vt�1; :::Vt�p) are such that E [Vt�k] = � for all k = 1; :::; p, then we also have

E [Vt] = �. This indicates that the stationary autoregressive Gamma process of order p has

to satisfy E [Vt] = � for all t. In the next subsection, we present an estimation strategy for

the ARVG(p).

6See Gourieroux, Jasiak and Sufana (2005), Section 2.3, De�nition 2.
7The noncentrered conditional moments of Vt are given by: E [(Vt)

n j fVt�kgpk=1] =

1
in
@nE[ei�Vt jfVt�kgpk=1]

@�n j�=0
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4.7.2 Estimation of the ARVG(p) Using High Frequency Data

Unlike the ARFG model previously discussed, the ARVG(p) satis�es:

V ar [rtj fVt�kgpk=1] = Vt (4.63)

Hence if we let Vt �
R t
t�1 �

2
sds where f�sg is a spot volatility process, this equation becomes:

V ar
�
rtj f�sg1s=�1

�
=

Z t

t�1
�2sds: (4.64)

The above equation is a standard implication of continuous time models of assets (log) prices.

We will use this argument to proxy Vt by a good estimator of the integrated volatility, as in

Kotchoni (2009).

The estimation may be done in two steps. In the �rst step, we estimate by CGMM an

Autoregressive Gamma model for Vt, using the moment function:

ht (� ; �1) = (exp (i� 1Vt)� E [exp (i� 1Vt) j fVt�kg
p
k=1]) exp

 
pX
k=1

i� k+1Vt�k

!
;

whereE [exp (i� 1Vt) j fVt�kg
p
k=1] is given by (4.60), � =

�
� 1; :::; � p+1

�
and �1 =

�
�0; :::; �p; �; �; �

2
�
.

In the estimation process, Vt is replaced by any good estimator of the integrated volatility,

e.g the realized kernels of Barndor¤-Nielsen, Hansen, Lunde and Shephard (2008) or the

shrinkage realized kernels of Carrasco and Kotchoni (2009).

Having computed b�1, the expected variance bVt is estimated by:
bVt = b� 1� pX

k=1

b�k
!
+

pX
k=1

b�kVt�k
The remaining set of parameters �2 = (�0; �1; �) can then be estimated in the second step by

Gaussian maximum likelihood based on the distribution of "t, where the following proxy is

used for "t: b"t = V
�1=2
t

h
rt � �0 � �1bV 1=2

t � �
�
Vt � bVt�i � N(0; 1)

We implement the ARVG(p) with real data in the next subsection.
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4.7.3 An Application with the Alcoa Index

The data used in this section are the transaction prices of Alcoa, an index listed in the

Dow Jones Industrials. The prices are observed every one minute from January 1st, 2002 to

December 31th, 2007 (T = 1510 trading days). In a typical trading day, the market is open

from 9:30 am to 4:00 pm, and this results in m = 390 observations per day. There are a few

missing observations (less than 5 missing data per day) which we �lled in using the previous

tick method. As in Kotchoni (2009), we construct the proxy of Vt using the shrinkage realized

kernels of Carrasco and Kotchoni (2009).

The implementation of the FCGMM is conducted exactly as in the previous section,

except that the Monte Carlo step is replaced by a resampling with replacement from the set

of moment functions computed with the actual data, as illustrated by Equation (4.41). We

resample L = 100 times in the time domain and use S = 50 draws of � . Finally, we set

p = 30 (six weeks) in order to assess the level of persistence of the volatility process.

To select the regularization parameter �, we choose to minimize the tracking error:

MSE (�) =
1

T

TX
t=1

"
Vt � b� 1� pX

k=1

b�k
!
�

30X
k=1

b�kVt�k
#2

The following graph suggests that the optimal regularization parameter is around �� = 10�4

for these data.
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Figure 4.2: Selecting the regularization parameter

We compute the optimal weighting function using that value of ��. The following Table

shows the summary of the results for the parameters (�; �; �2) and (�0; �1; �). One important

di¤erence between the current results and those of the case p = 1 presented in Kotchoni
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(2009) is that the estimates of � are considerably lower here. The variances of the estimators

are relatively high due the the fact that they are estimated using only L = 100 samples.

Accordingly, the con�dence intervals are also large.

b�21 b�2b� b� b�2 b�0 b�1 b�
Mean 0:0528 0:0017 0:0082 �0:0007 0:0262 �0:1886

Median 0:1358 0:0003 0:0077 �0:0005 0:0000 0:0000

Std. Dev. 0:3656 0:0023 0:0045 0:0014 0:0689 0:9688

IC1(95) �0:8730 �0:0000 0:0007 �0:0043 0:0000 �0:7724

IC2(95) 0:4516 0:0060 0:0145 0:0009 0:1618 �0:0000
Table 4.2: Summary of the Estimation Results

Below, we plot the estimators of the autoregressive coe¢ cients (�0; :::; �30).
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Figure 4.3: Estimated Autoregressive Roots for the Volatility

It is seen that the volatility strongly responds to its own lags lying within one week. This

�nding is consistent with the volatility clustering. There also seems to be some responses of

smaller magnitude to lags lying between 20 and 25 days.

Finally, the following graph shows the volatility and its estimated expectation conditional

on past realizations.
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Figure 4.4: Fitted Values for the Volatility

It is seen that the conditional expectation of the volatility is very smooth compared to

actual series. In fact, the Autoregressive Gamma model ignores the erratic �uctuations and

jumps of the volatility and focus on the trend. This suggest that the current model may

be used to decompose the volatility into its continuous component and its noise plus jump

component. More precisely, one can test the presence of jumps in the volatility by using the

residuals of the Autoregressive Gamma model.

4.8 Conclusion

The Generalized method of moments with a continuum of moment conditions (CGMM) in-

troduced by Carrasco and Florens (2000) aims to deliver estimators that are as e¢ cient as

the maximum likelihood. The objective function of the CGMM is a quadratic form associ-

ated with a scalar products on Hilbert spaces. When the characteristic function is used to

build the moment conditions, that objective function involves as many integrals as there are

dimensions in the data. Unfortunately, the complexity of the numerical integration grows

as an exponential function of the dimensionality of the vector of observation. This makes

the use of the CGMM unattractive in multivariate Markov model and non-Markov models.

To circumvent this "curse of dimensionality", we propose to work with univariate samples

obtained by taking linear combinations of the initial vector of observations. Each sample

obtained in this way is called a frequency domain sample and can be used to estimate the

parameter of interest by CGMM. Finally, all the possible estimators obtained in this fashion
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are aggregated to obtain what we called a frequency domain resampling estimator.

We derived the optimal aggregation rule for the CGMM frequency domain resampling

estimator and propose two illustrations. The �rst one is a Monte Carlo study based on the

autoregressive factor gamma model. In this model, the return of a �nancial asset depends

linearly in the realizations of a latent autoregressive gamma risk factor. The latent factor

is not observed and must be integrated out, and this results in a non Markov model for

the observed returns. The second illustration is an empirical application based on the Au-

toregressive Variance Gamma model of order p. Although the estimated variances of the

estimators are relatively high due to the small number of resampling replications, this appli-

cation tends to con�rm that a positive risk premium is required by investors for bearing the

expected risk while the returns are negatively correlated with the shocks on its variance. In

future investigations, we will try to improve our simulations and empirical results by making

use of the re�nements of the bootstrap technique developed for example by Davidson and

Mckinnon (2000).
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Proof of Proposition 1: Under Assumptions 1 to 4, b�(1) (�) is a well-de�ned consistent
estimator of �0. Furthermore, Assumption 6(i) ensures b�(1) (�) is the unique minimizer ofQ�;T .
According to Assumptions 3 and 5, Q�;T (�) is twice continuously di¤erentiable with respect

to � and �. Hence by the implicit function theorem, b�(1) (�) is continuously di¤erentiable
with respect to � and we have:

@b�(1)(�)
@�

= �
�
@2Q�;T
@�@�0

��1
@2Q�;T
@�@�

.

where the inversibility of @
2Q�;T
@�@�0 follows from Assumption 6(i)�

Proof of Proposition 2: According to Assumptions 1 to 4, each CGMM estimatorb�(1) (�) is consistent for �0 (See for example Carrasco and Kotchoni, 2009). Hence for any
choice of measure � satisfying Assumption 7, we have:

V ar
�
�0b��� =

Z Z
�0Cov

�b�(1) (� 1) ;b�(1) (� 2)��� (� 1)� (� 2) d� 1d� 2
� max

�

h
�0V ar

�b�(1) (�)��i Z Z � (� 1)� (� 2) d� 1d� 2

= max
�

h
�0V ar

�b�(1) (�)��i :
The result follows from max

�

h
�0V ar

�b�(1) (�)��i = Op (T
�1) for � 2 Sdn@�

Proof of Proposition 3: The ideal measure ��� (�) solves:

��� = argmin
�

Z Z
g� (� 1; � 2)� (� 1)� (� 2) d� 1d� 2,

subject to: Z
� (� 1) d� 1 = 1

where g� (� 1; � 2) = �0Cov
�b�(1) (� 1) ;b�(1) (� 2)��. The Lagrangian for this problem is given

by:

L (�) =
Z Z

g� (� 1; � 2)� (� 1)� (� 2) d� 1d� 2 + ��

�
1�

Z
� (� 1) d� 1

�
;

where �� is a Lagrange multiplier. The �rst order necessary condition for this problem is
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obtained by di¤erentiating L (�) with respect to � (� 1):Z

g� (� 1; � 2)� (� 2) d� 2 = ��I (� 1) ;

where I (� 1) = 1 for all � 1 in Sdn@.

Let V� be the linear operator with kernel v� (� 1; � 2). The �rst order condition becomes:

V�� (� 1) = ��I (� 1) (4.65)

Because V� is compact a covariance operator, it has a discrete nonnegative spectrum with or-

thogonal eigenfunctions. Let ��;j (�) be the eigenfunction of V� associated with the eigenvalue

��;j. For any function f (�) ; � 1 2 Sd, we have:

f (� 1) =
1X
j=1

�Z
��;j (�) f (�) d�

�
��;j (� 1)| {z }

f0(�1)

+ ef (� 1) ;

where ef is in the null set of V� so that V� ef (� 1) = 0. Hence if f0 (� 1) solves (4.65) for � (� 1),
then f (� 1) = f0 (� 1)+ ef (� 1) also solves (4.65) for � (� 1). The solution of (4.65) with minimal
norm is the one in which ef (� 1) = 0. This is given by:

��� (� 1) = ��V
�1
� I (� 1) = ��

1X
j=1

1

��;j

�Z
��;j (�) d�

�
��;j (� 1) :

The Lagrange multiplier is identi�ed using the constraint
R
� (� 1) d� 1 = 1. This yields:

�� =

" 1X
j=1

1

��;j

�Z
��;j (�) d�

�2#�1
.

We substitute this for �� in �
�
� (� 1) to obtain:

��� (� 1) =

" 1X
j=1

1

��;j

�Z
��;j (�) d�

�2#�1 1X
j=1

1

��;j

�Z
��;j (�) d�

�
��;j (� 1) :
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At the solution ��� (� 1) = ��V

�1
� I (� 1), we have:

V ar
�
�0b����� =

Z �Z
g� (� 1; � 2)�

�
� (� 1) d� 1

�
��� (� 2) d� 2

= ��

Z �
V�V

�1
� I (� 1) d� 1

�
��� (� 2) d� 2

= ��

Z
��� (� 2) d� 2 = ��

�
Proof of Proposition 4: By Proposition 1 (which holds under Assumptions 1 to 6),b�(1) (�) is continuously di¤erentiable with respect to � and we have:

@b�(1)(�)
@�

= �
�
@2Q�;T
@�@�0

��1
@2Q�;T
@�@�

.

Around a particular � in Sdn@, we have:

b� (� + � 0) = b� (�) + @b�(1) (�)
@�

� 0:

By assumption 6(ii), @
2Q�;T
@�@�

is of full rank so that @
b�(1)(�)
@�

is also of full rank. This implies that

for d � max fq; 2g, q linearly independent vectors of type b�T (� + � 0) can be constructed by

varying � 0. As a consequence, the manifold bDT (�0) de�ned by:

bDT (�0) =

�
� 2 Rq s.t � =

Z
� (� 1)b�(1) (� 1) d� 1 and Z � (� 1) d� 1 = 1

�

has exactly q dimensions. In particular, there exist a basis b�(j); j = 1; :::; q such that b�MLE =P
wjb�(j) 2 bDT (�0). Hence V ar

�
�0b����� � V ar

�
�0b�MLE

�
�

Proof of Proposition 5: We have de�ned:

bV� = 1

L

�b�� � b���0 �b�� � b���
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The (i; j) element of bV� is given by

bg� (� i; � j) = 1

L

LX
l=1

�0
�b� (� i; l)� b� (� i; l)��b� (� j; l)� b� (� j; l)�0 �:

Let f= (f (� 1) ; :::; f (�S))
0. Then as L goes to in�nity, we have:

�bV�f�
i
�

SX
j=1

�0Cov
�b� (� i; l) ;b� (� j; l)��f (� j) = Op

�
L�1=2

�
On the other hand, we assumed that � j is drawn using the uniform distribution on Sd. Hence

as L and S go to in�nity, we have:

�bV�f�
i
�
Z
�0Cov

�b� (� i; l) ;b� (� ; l)��f (�) = Op
�
L�1=2

�
+Op

�
S�1=2

�
This shows that �bV�f�

i
� V�f (� i) = Op

�
L�1=2

�
+Op

�
S�1=2

�
�
Proof of Proposition 6: We �rst consider (4.35):




(bV 2
� + �I)�1bV� � (V 2

� + �I)�1V�




 �


(bV 2
� + �I)�1(bV� � V�)




+ 


(bV 2
� + �I)�1V� � (V 2

� + �I)�1V�




 �


(bV 2
� + �I)�1




| {z }
���1




bV� � V�




| {z }
=Op(L�1=2)+Op(S�1=2)

+



h(bV 2

� + �I)�1 � (V 2
� + �I)�1

i
V�




 �

The result follows from:




h(bV 2
� + �I)�1 � (V 2

� + �I)�1
i
V�





=




(bV 2
� + �I)�1

�
V 2
� � bV 2

�

�
(V 2
� + �I)�1V�





�




(bV 2
� + �I)�1




| {z }
���1




�V 2
� � bV 2

�

�


| {z }
=Op(L�1=2)+Op(S�1=2)



(V 2
� + �I)�1=2



| {z }
���1=2



(V 2
� + �I)�1=2V�



| {z }
!1

The di¤erence between (4.35) and (4.36) is that in (4.36) uses the fact that


V ��

� f


 <1
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with � � 1. We can rewrite (4.36) as




�bV �1
�;� � V �1

�;�

�
f



 =




�bV �1
�;� � V �1

�;�

�
V�V

�1
� f





�




�bV �1
�;� � V �1

�;�

�
V�






V �1
� f



 :
We have

�bV �1
�;� � V �1

�;�

�
V�

= (bV 2
� + �I)�1bV�V� � (V 2

� + �I)�1V 2
�

= (bV 2
� + �I)�1

�bV� � V�

�
V� (4.66)

+
h
(bV 2
� + �I)�1 � (V 2

� + �I)�1
i
V 2
� : (4.67)

The term (4.66) can be bounded in the following manner




(bV 2
� + �I)�1

�bV� � V�

�
V�




 �



(bV 2

� + �I)�1






bV� � V�




 kV�k
= Op

�
��1L�1=2

�
+Op

�
��1S�1=2

�
:

For the term (4.67), we use the fact that A�1=2 � B�1=2 = A�1=2
�
B1=2 � A1=2

�
B�1=2: It

follows that




h(bV 2
� + �I)�1 � (V 2

� + �I)�1
i
V 2
�





=




(bV 2
� + �I)�1

�
V 2
� � bV 2

�

�
(V 2
� + �I)�1V 2

�





�




(bV 2
� + �I)�1




| {z }
���1




V 2
� � bV 2

�




| {z }
=Op(L�1=2)+Op(S�1=2)



(V 2
� + �I)�1V 2

�



| {z }
!1

= Op
�
��1L�1=2

�
+Op

�
��1S�1=2

�
:

Now we turn our attention to the equation (4.37). We can write

(V 2
� + �I)�1V�f � V �1

� f =

1X
j=1

�
�j

�+ �2j
� 1

�j

� 

f; �j

�
�j

=
1X
j=1

�
�2j

�+ �2j
� 1
� 


f; �j
�

�j
�j:
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We now take the norm:

(4.37) =


(V 2

� + �I)�1V�f � V �1
� f




=

 1X
j=1

�
�2j

�+ �2j
� 1
�2 ��
f; �j���2

�2j

!1=2

=

 1X
j=1

�2��2j

�
�2j

�+ �2j
� 1
�2 ��
f; �j���2

�2�j

!1=2

�
 1X
j=1

��
f; �j���2
�2�j

!1=2
sup

1�j�1
���1j

���� �2j
�+ �2j

� 1
���� :

Recall that as K is a compact operator, its largest eigenvalue �1 is bounded. We need to

�nd an equivalent to

sup
0����1

���1
�
1� �2

�+ �2

�
= sup

0����21
�
��1
2

�
1� 1

�=�+ 1

�
(4.68)

Case where � � 3=2

We apply another change of variables to the objective function (4.68), x = �=� and obtain

sup
x�0

��=2�1=2

x�=2�1=2

�
1� 1

x+ 1

�
:

We see that an equivalent to (4.68) is ��=2�1=2 provided that

sup
x�0

1

x�=2�1=2

�
1� 1

x+ 1

�
;

is bounded. We study the properties of

g (x) � 1

x�=2�1=2

�
1� 1

x+ 1

�
:

Note that g (x) is continuous and therefore bounded on any interval of (0;+1). It remains

to study its behavior at 0 and +1. It goes to 0 at +1 (for any � > 1). For the limit at 0,
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we apply l�Hopital�s rule and obtain

g (x) �
0

1�
��1
2

�
x
��3
2

= 0;

provided � < 3=2. For � = 3=2, we have

g (x) �
0

1�
��1
2

� :
Hence g (x) is bounded on R+ for all � � 3=2.

Case where � > 3=2

We rewrite (4.68) as

sup
0����21

��
��3
2

24
�
1� 1

�=�+1

�
�=�

35 :
The term

�
��3
2

24
�
1� 1

�=�+1

�
�=�

35 :
is the product of an increasing function of �, namely �

��3
2 (which is bounded because � is

bounded) and a function of the form
�
1� 1

x+1

�
=x. It is easy to show using the l�Hopital�s

rule that
�
1� 1

x+1

�
=x is bounded on R+.

�
1� 1

x+ 1

�
=x �

+1
0�

1� 1

x+ 1

�
=x �

0
1

Hence the rate of (4.68) is given by �.

Finally, f 2 ��:

(4.37) = O
�
�min(1;

��1
2
)
�
:

�
Proof of Proposition 7: According to Equation (4.36) of proposition 6, �0bV �1

�;�� is
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consistent for �0V �1

�;�� since we have:

�0bV �1
�;� = �0V �1

�;� +Op
�
��1L�1=2

�
+Op

�
��1S�1=2

�
On the other hand, we can use the Delta method to obtain:

�
�0bV �1

�;��
��1

�
�
�0V �1

�;��
��1 � ��0V �1

�;��
��2

�0
�bV �1

�;� � V �1
�;�

�
�

=
�
�0V �1

�;��
��1

+Op
�
��1L�1=2

�
+Op

�
��1S�1=2

�
This yields immediately:

b���;� =
�
�0bV �1

�;��
��1

�0bV �1
�;�

=
�
�0V �1

�;��
��1

�0V �1
�;� +Op

�
��1L�1=2

�
+Op

�
��1S�1=2

�
Furthermore, using Equation (4.37) of proposition 6 yields:

b���;� � ��� = O
�
�min(1;

��1
2
)
�
+Op

�
��1L�1=2

�
+Op

�
��1S�1=2

�
Hence b���;� is consistent for ��� provided that �, ��1L�1=2 and ��1S�1=2 go to zero as L and
S increase to in�nity.

Next, b�(1) = �b�(1) (� 1) ; :::;b�(1) (� 1)�0. We have:
b�b���;� =

SX
s=1

b���;� (� s)b�(1) (� s)
=

SX
s=1

��� (� s)
b�(1) (� s) + SX

s=1

�b���;� (� s)� ��� (� s)
�b�(1) (� s)

= b���� + SX
s=1

�b���;� (� s)� ��� (� s)
�b�(1) (� s)
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We �rst consider the second expression:

SX
s=1

�b���;� (� s)� ��� (� s)
�b�(1) (� s)

= �0

SX
s=1

�b���;� (� s)� ��� (� s)
�

| {z }
=0

+
SX
s=1

�b���;� (� s)� ��� (� s)
� �b�(1) (� s)� �0

�

=
SX
s=1

�b���;� (� s)� ��� (� s)
� �b�(1) (� s)� �0

�

which shows that the last expression goes to zero faster than T�1=2 and only contributes to

the higher order variance.

Proof of Proposition 8: The joint CF of (rt; rt�1; :::; rt+1�d) is derived as follows:

E

"
exp

 
dX
k=1

i� krt+1�k

!
j fVt�kgdk=1

#

= E

"
exp

 
dX
k=1

i� k
�
�0 + �1Vt�k + �

�
Vt+1�k � �

�
1� e��

�
� e��Vt�k

�
+ �""t

�!
j fVt�kgdk=1

#

= E

"
exp

 
dX
k=1

i� k
�
�0 � ��

�
1� e��

�
+
�
�1 � �e��

�
Vt�k + �Vt+1�k

�
� �2"
2

dX
k=1

� 2k

!
j fVt�kgdk=1

#

= exp

"
dX
k=1

�
i� k
�
�0 � ��

�
1� e��

��
� �2"
2
� 2k

�#

�E
"
exp

 
i� d
�
�1 � �e��

�
Vt�d +

d�1X
k=1

�
i� k
�
�1 � �e��

�
+ i� k+1�

�
Vt�k + i� 1�Vt

!
j fVt�kgdk=1

#

Hence:

= exp

"
dX
k=1

�
i� k
�
�0 � ��

�
1� e��

��
� �2"
2
� 2k

�#

� exp
"
i� d
�
�1 � �e��

�
Vt�d +

d�1X
k=2

�
i� k
�
�1 � �e��

�
+ i� k+1�

�
Vt�k

#

�
�
1� i� 1�

c

��q
exp

" 
i� 1�e

��

1� i�1�
c

+ i� 1
�
�1 � �e��

�
+ i� 2�

!
Vt�1

#

Let u1 = � 1� and u2 = �1�e��

1� i�1�
c

+ � 1 (�1 � �e��) + � 2�. Taking the expectation with respect to
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Vt�1 yields:

E

"
exp

 
dX
k=1

i� krt+1�k

!
j fVt�kgdk=2

#

= exp

"
dX
k=1

�
i� k
�
�0 � ��

�
1� e��

��
� �2"
2
� 2k

�#

� exp
"
i� d
�
�1 � �e��

�
Vt�d +

d�1X
k=2

�
i� k
�
�1 � �e��

�
+ i� k+1�

�
Vt�k

#

�
�
1� iu1

c

��q
E [exp (iu2Vt�1)]

= exp

"
dX
k=1

�
i� k
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Finally, integrating out Vt�d yields the joint CF of (rt; :::; rt+1�d):
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Conclusion Générale

La présente thèse s�inscrit dans deux littératures voisines: l�économétrie �nancière et

l�économétrie théorique. Le volet économétrie �nancière est abordé dans le chapitre 1 tandis

que le volet économétrie théorique est abordé dans les chapitres 2, 3 et 4. Le chapitre 3 est

une application de la théorie du chapitre 2 tandis que le chapitre 4 en est une extension. Les

quatre chapitres sont passés en revue ci-après.

L�objectif du chapitre 1 est de proposer un modèle de bruit de microstructure réaliste

qui servira de cadre pour étudier la qualité des estimateurs de volatilité intégré construits à

partir de données à haute fréquence. Le modèle que nous proposons pour le bruit prévoit non

seulement qu�il peut être autocorrélé jusqu�à l�ordre L, mais aussi qu�il peut être corrélé aux

rendements e¢ cients. En outre, nous formulons une hypothèse explicite sur la façon dont le

corrélogramme du bruit varie en fonction de la fréquence des observationsm. Cette hypothèse

implique, entre autre, que l�autocorrélation d�ordre un du bruit tends vers un lorsque m

tends vers l�in�ni. En formulant cette hypothèse, notre but est de traduire le fait que les

observations sont de plus en plus rapprochées dans le temps lorsquem augmente. Ceci est une

innovation majeure comparée aux modèles qui considèrent une structure d�autocorrélation

invariante à la fréquence des observations.

Nous utilisons ce cadre pour dériver les propriétés de trois estimateurs couramment ren-

contrés dans cette littérature. Cet exercice préliminaire nous a permit de construire un

nouvel estimateur qui combine linéairement deux estimateurs aux propriétés di¤érentes en

présence du bruit de microstructure: l�un est sans biais et se détériore à haute fréquence,

l�autre est convergent dans le sens que sa variance décroît lorsque la fréquence des observa-

tions croît. Par ailleurs, l�estimateur sans biais a tendance à être le meilleur des deux lorsque

la magnitude du bruit de microstructure est faible. Les poids a¤ectés aux estimateurs dans la

combinaison linéaire sont choisis de façon à minimiser la variance de l�estimateur obtenu que

nous baptisons "estimateur shrinkage". Les simulations ont montré que l�estimateur shrink-

age a une variance plus faible que le meilleur des deux éléments de la combinaison linéaire.

Dans la partie empirique, nous testons si la mémoire maximale L de l�autocorrélation du

bruit augmente avec la fréquence des observations. Les données suggèrent que si ceci est le

cas, L n�augmente pas plus vite que
p
m.
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Le chapitre 2 examine les propriétés théoriques de l�estimateur CGMM dans les modèles

IID ou Markoviens, l�objectif étant de proposer un critère du choix du paramètre de régu-

larisation � dont dépend la fonction objectif. En e¤et, ce paramètre de régularisation a un

impact important sur l�erreur quadratique moyenne (EQM) de l�estimateur CGMM. Nous

suivons une approche similaire à Newey et Smith (2004) pour dériver une expansion stochas-

tique de l�estimateur CGMM. De ce résultat, nous déduisons une expansion de l�EQM qui

permet de caractériser la façon dont celle-ci dépend de � à distance �nie. Nous montrons que

l�estimateur CGMM est optimal lorsque � converge vers zéro à une certaine vitesse en fonc-

tion de la taille de l�échantillon T . Nous proposons deux méthodes pour estimer le � optimal

en pratique, ce dernier étant dé�ni comme celui qui minimise l�EQM. La première exploite

l�approximation analytique de l�EQM tandis que la seconde est basée sur une simulation de

Monte Carlo. Nous montrons que la seconde méthode délivre un estimateur
p
T -convergent

de l�estimateur de �. Des simulations de Monte Carlo basées sur un modèle de frontière

stochastique con�rment qu�il faut accorder de l�importance à la sélection optimale de �.

L�objectif du chapitre 3 est de rendre l�utilisation du CGMM accessible aux praticiens.

Nous avons donc choisi d�illustrer la théorie du chapitre 2 dans le cadre de modèles Markoviens

pour lesquels la dimensionnalité des intégrales de la fonction-objectif est au plus égale à 2.

Dans ce cas, les quadratures de Gauss-Hermite peuvent être utilisées avec e¢ cacité. Nous

commençons par réviser la théorie du CGMM. Ensuite, nous exposons des recettes numériques

utiles. En�n, nous proposons un exercice de simulation basé sur la loi stable et une étude

empirique basée sur un modèle de variance autorégressif Gamma. Certains paramètres de la

loi stable ne sont pas identi�és lorsque le paramètre de stabilité est proche de 2. Lorsque le

paramètre de stabilité est proche de la zone de non identi�cation, les distributions exactes

des estimateurs CGMM ne sont pas gaussiennes mais peuvent être obtenue par simulation de

Monte Carlo. Dans la partie empirique, nous testons l�existence d�une liaison positive entre

rendement et risque espéré ainsi que d�une liaison négative entre rendement espéré et risque

non espéré. Un modèle autorégressif Gamma d�ordre 1 est utilisé pour séparer un proxy

de la volatilité intégré entre son espérance conditionnelle et une innovation. Le proxy de la

volatilité intégrée est obtenu à partir de données à hautes fréquence selon les méthodes du

chapitre 1. Nos résultats indiquent que ces liaisons existent, mais la largeur des intervalles

de con�ance limitent la portée des résultats.
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Le chapitre 4 vient combler un vide laissé par le chapitre 3. En e¤et, le temps de calcul de

l�évaluation de la fonction objectif du CGMM par les quadratures augmente exponentielle-

ment en fonction de la multiplicité des intégrales présentes dans l�expression de la fonction

objectif. Dans les modèles non markoviens où l�on souhaite conditionner sur plusieurs retards,

cette multiplicité augmente linéairement avec le nombre de retards et avec la dimensionnal-

ité du modèle. Étant donné que la fonction-objectif doit être évaluée itérativement lors de

l�optimisation numérique, la mise en oeuvre du CGMM devient vite laborieuse, voire impos-

sible dans les modèles de dimensions d � 3. La solution proposée consiste à fabriquer des

échantillons univariés à partir de combinaisons linéaires du vecteur initial d�observations, les

poids de la combinaison linéaire étant tirés aléatoirement dans un sous-espace normalisé de

Rd. Chaque échantillon ainsi généré peut servir à estimer le paramètre d�intérêt �0 à moindre

coût. En�n, l�ensemble des estimateurs qui en découlent peuvent être combinés linéairement

pour obtenir un estimateur �nal. Cette nouvelle méthode d�estimation est baptisée "re-

échantillonnage dans le domaine fréquentiel". Dans la suite de l�article, nous discutons de la

règle d�agrégation optimale et nous proposons une marche à suivre pour son implémentation.

Nous conduisons une simulation de Monte Carlo basé sur un modèle à facteur autorégressif

Gamma. Dans ce modèle, le rendement d�un actif est exprimé comme une fonction linéaire

d�un facteur de risque latent, ce dernier étant à son tour modélisé comme un processus autoré-

gressif Gamma d�ordre 1. Il est à noter que le facteur de risque ne se confond pas exactement

avec la volatilité des rendements. Lorsqu�on marginalise le modèle, la dynamique des rende-

ments n�est plus markovien. Pour être e¢ cace, le CGMM doit donc se baser ici sur la fonction

caractéristique d�un vecteur de L observations consécutives, pour L assez grand. Les résul-

tats de la simulation indiquent que le re-échantillonnage dans le domaine fréquentielle est une

méthode d�inférence �able qui élargit un peu plus le champ d�utilisation du CGMM. Nous

proposons une étude empirique pour clôturer ce chapitre. Dans cette étude, nous reprenons

la problématique de la partie empirique du chapitre 3 et utilisons un modèle autorégressif

Gamma d�ordre p à la place du modèle autorégressif d�ordre 1. Nous observons une réduction

importante des intervalles de con�ances des estimateurs des paramètres décrivant la liaison

entre le rendement et la volatilité. En outre, nous constatons que le �ltre autorégressif de

la volatilité qui découle de cette modélisation pourrait être utilisé pour séparer la volatilité

entre la partie continue et les sauts.
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Deux avenues de recherches peuvent être explorées dans le futur. La première consisterait

à explorer l�extension des idées du chapitre 1 au cas multivarié, c�est à dire à l�estimation

des matrices de covariances intégrées en présence de bruit de microstructure multivariés. Ce

travail exigera surtout un travail d�adaptation des hypothèses formulées ici aux cas multidi-

mensionels. La seconde avenue de recherche est en relation avec les trois derniers chapitres de

la thèse et consiste à établir une analogie théorique entre l�estimation de densité par noyaux

et le CGMM. Parallèlement, un travail de promotion de l�utilisation des CGMM dans des

domaines variés mérite d�être fait.


