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ABSTRACT

Although insurers face adverse selection and moral hazard when
they set insurance contracts, these two types of asymmetrical information
have been given separate treatments sofar in the economic literature. This
paper is a first attempt to integrate both problems into a single model.

We show how it is possible to use time in order to achieve a first-best

allocation of risks when both problems are present simultaneously.

RESUME

Méme si les assureurs doivent tenir compte du risque moral et de
la s€lection adverse lorsqu'ils préparent leurs contrats d'assurance, ces
deux formes d'asymétrie d'information ont toujours &té traitées séparément
dans' la littérature &économique. Cet article constitue une premi&re tentative
d'intégration de ces deux problémes dans un seul mod&le. Nous montrons comment
il est possible d'utiliser le temps pour obtenir une allocation optimale des

risques lorsque les deux problémes sont présents simultanément.



Introduction

Although insurers face adverse selection and moral hazard problems
simultaneously when they set insurance contracts, these two types of asymme-
trical information have been given separate treatments sofar in the economic
literature®. In the case of moral hazard, the principal knows the characte-
ristics of the agent but cannot observe whether the latter indeed carries
out the actions which would have been taken under perfect information. In
the case of adverse selection, while the agent cannot affect the states of
nature, a problem arises from the fact that the principal does not know the
probability which characterizes the agent.

This paper is a first attempt to integrate both information pro-
blems into a single model'. While such an extension has a theoretical inte-
rest in itself, it is also warranted on empirical grounds. Applied studies
are still few in this area, but they will not be able to dispense from consi-
dering both kinds of information asymmetries in the future. In the insurance
literature, the sole significant contribution is that by Dalhby (1983) who
studied the relationship between statistical discrimination and adversé
selection. He concluded to the presence of adverse selection in the market
studied, on the basis of differences in accident frequencies befween groups
or insurance types. However it is not clear in this study that adverse
selection is the only source of resource misallocation and moral hazard might

also explain part of the frequency differences. It would clearly be

See among those who have contributed on single-period contracts in both
literatures Pauly (1974), Rothschild and Stiglitz (1976), Stiglitz (1977),
Riley (1979), Shavell (1979), Dionne (1982), Arnott and Stiglitz (1983).

'After this paper was written, it was pointed out to us that Laffont and
Tirole (1984) deal with both problems in a context of public firm regu-
lation. However, their model does not cover insurance because of their
assumption of risk neutrality for all agents.

I,m



desirable to identify the role of each information problem in future empi-

- Tical studies, as the solutions proposed usually differ in the case of adverse

selection from the case of moral hazard.

Individuals' past experience is a source of statistical information
permitting to estimate probabilities of accidents. Recently, many authors
have analysed the nature of long-term contracts and have presented conditions
permitting long-term contracts to be Pareto superior to a series of short-
term (one-period) contracts. Indeed, Radner (1981) and Rubinstein and Yaari
(1983) have shown that it is possible to achieve a first-best allocation of
risk under moral hazard if there is no discounting and if the number of pe-
riods is large?. Dionne (1983) and Dionne and Lasserre (1985) have obtained
a similar result for the adverse selection problem.

The model presented in this paper is a combination and an extension
of the contributions by Rubinstein and Yaari (1983) and Dionne and Lasserre
(1985). 1Indeed we show how it is possible to achieve a first-best allocation
of risks when moral hazard and adverse selection problems are present simulta-
neously. While we draw heavily on the contributions of Rubinstein and Yaari
and Dionne and Lasserre, the integration of the two types of information
problems turns out to be more than a straightforward exercice.

The characteristics of the model are discussed in Section 1 and
the formal model is presented in Section 2. Section 3 gives the main results.

In the conclusion we suggest extensions for future research.

On repeated insurance contracts see also Allen (1985), Hosios and Peters
(1985), Rogerson (1985), Radner (1985), Dionne and Lasserre (1984) and
Henriet and Rochet (1984).



1. Characteristics of the model

Some important features of the model are underlined here. Let us
consider a simple economy with two states of the world (i =1, 2) and two
types of individuals (i = a, b). In an adverse selection model without moral
hazard, since the agents cannot affect their probabilities of accident, each
agent is fully described by a single number, his probability of accident
pi. With moral hazard, however, the probability of accident is a function
of the level of care pi(ci); ci is not observed by the insurer; neither are
the values taken by the function pi. The set of possible functions,

{pa('), pb(-)} in our two agent types example, may or may not be known to

the insurer., In Rubinstein and Yaari (1983) the insurer knows his customer's
probability function, although he does not observe c nor, as a result, the
values p(c). In this paper, all that the insurer has to know about pi(~)

is that it is decreasing and convex.

Another issue has to do with the convenient and widely used dis-
tinction between low-risk, and high-risk, individuals. It is no longer
straightforward here. In fact the best endowed individual b (pb(O) < pa(O))
may be less effective than a in the production of care so that we may have

pb(cb) > pa(ca) for some range(s) of ¢ as we observe in Figure 1

INSERT FIGURE 1 HERE

For example, a skilful driver who does not spend in care activities
(repair of defective brakes or lights, use of seatbelts ...) may be a worse
risk than a poor driver who does. Furthermore, although identical individuals
will behave identically in our model, it is clear that different individuals
will not produce the same level of care in general. For reasons which will
become clear as the paper proceeds, we choose to characterize individuals

according to their full information equilibrium.

|%



Section 3 presents a strategy which achieves a first-best alloca-

tion of risk under both information problems. It uses time to provide an
incentive for the potential customer (1) to reveal his risk type in the first
period and (2) to produce the efficient level of care in all periods. It is

shown that this strategy is enforceable and optimal.

2. The model

% faces customers who, for simplicity, are

A monopolistic insurer
assumed to fall into two risk types only (i € {a, b}). Each risk type is
characterized by a probability of accident pi(ci) (0 < pi(ci) < 1) which
depends on the individual's level of prevention activity ci, with dpi/dc <0,
and de%acZ > 0. This formulation admits as special cases the moral hazard
model of Rubinstein and Yaari (1983) for a = b, as well as the adverse selec-
tion model of Dionne and Lasserre (1985) for ci given and pa > pb. Suppose
for simplicity that the insurer offers insurance at the actuarial premium”,

Pl(cl) = pl(cl)ql, where q1 is insurance coverage. Then, under perfect
information q1 and ¢ must be selected so as to
i i i i i, 1, i i, i i 1,4, i
Max p"(c”) U(S-D+q -c -p(c)q ) + (1-p (c)) UBS-c -p (chq’)
where U is a strictly increasing and strictly concave function of wealth,
D is the loss in case of accident, S is initial wealth and c! has been
expressed in monetary units,
Under the above assumptions, it is well known that the optimum for
i, 1%_ . . i* . .
q 1is full coverage, q* = D. Using this result, ¢~ is the solution of
b*

. 3 *
-(dpl/dc)D = 1, which determines the optimum levels of cl, c® and ¢ In

* *
general, ¢? # cb .

3For the case of competition, see Kunreuther and Pauly (1985).

“This assumption implies zero profits for the monopoly. All our results
remain valid under the assumption of profit maximization.



Under private information i and ci are not observable. Therefore
agents of each type have no incentive to produce any care (ci = 0) under the
above contract and the less endowed individual has no incentive to reveal
this characteristic. In the next section we propose a contract which deals
with those problems.

Since we will be concerned with the first-best allocation of risks,
we shall use the solution of the perfect information case as a reference to
define high and low risks individuals. Therefore the high risk individuals
will be those having the highest probability of accident at ci*. We shall
assume that type a individuals are the high-risk individuals, so that

*b

p2(c*? > pb(c*b), which may involve c*® 2 ¢*°, and

U(S-—pa(ca*)-ca*) % U(S-Pb(cb*) -cb*).

AV

3. A contract with announcement and statistical inference

As in Rubinstein and Yaari for the case of moral hazard and in
Dionne and Lasserre for the case of adverse selection,time can be used to
eliminate inefficiencies associated with private information, even when
moral hazard and adverse selection coexist. Both the insurer's offer and
the insured's response now take the form of long term strategies. The
agents follow a Stackelberg game with the insurer announcing his strategy
and the insureds giving a best response. The insurer is committed not to
alter the contract in the future; however the contract provides for adjust-
ments in insurance premiums over time as new information becomes available.
Let ; ang ;i respectively be the strategies, to be specified below, which

yield the full information optimum in each period if they are adopted by

~ ~

the insurer (f) and the insureds (gl). Any strategy which deviates from f

(or gl) will be referred to as f (or gl). Those strategies are row vectors




which specify, for each period, the action(s) to be taken, according to

current information :

(f1, £2, £3, ...)

H
]

i i1 Ti2 Tigs
g =@, g% g7, ...)

~ -~

where Et (;it)definesthe action(s) taken at date t under strategy f (g%.

For the insureds, strategies ;i (i = a, b) are defined as follows.
In period 1 (the first period) the insured (1) announces his true probability
of accident in full information equilibrium; (2) buys insurance; (3) produces
the full information level of prevention ci*. In all subsequent periods,
the insured (1) buys insurance; and (2) produces ci*.

For the insurer, strategy E is defined as follows. In period 1,
he offers any customer to select, within the set of all possible premiums,
the actuarial premium corresponding to that customer in the full information
equilibrium. We shall assume that the insurer knows only, about any customer,
the signs of the first and second derivatives of pi(ci). As a result, any
choice within the intewval [0, D] is acceptable® : El = [0, D].

By choosing a particular premium, the insured is informed that he
.announces his fisk type and that this will have consequences in future periods.

In fact, in subsequent periods if the insured has declared to be a risk P

(chosen a premium of Pd),

t
pd if g 05/N(t) < 5 + odN(®)

s=]

fl

}t+1

= PK , otherwise,

SAs it appears, the announcement allows us to dispense from the assumption
that the insurer knows the individual's full information level of care
(and risk) equilibrium (as in Rubinstein and Yaari) or that he knows both
the full information level of risk and the function p(c) (as in Shavell,
1979).
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where 63 is the claimfiled inperiod s (9; e {0, D}), N(t) € t is the number
of times the customer has taken insurance from period 1 to t, EIpd) is the
expected value of the claim, in any period, by an individual whose probabi-

lity of accident is pd, ad:N(t)

is a statistical margin of error which depends
on the announcement pd and on N(t), and PK is a penalty premium; According

to this rule, a customer who claims to be a low risk (pd = pb(c*b)) will pay
the actuarial premium corresponding to the optimal (full information) preven-
tion level of a true low risk, unless his average loss exceeds by more than

a '"reasonable" amount (more than ab’N(t)) the expected loss ﬁIpb(cb*)].
Otherwise he is offered the penalty premium PK,which involves a lower utility
level than under self insurance (U(S —PK)'<ﬁd, where Gi is the maximum expected

utility which can be achieved by choice of ¢! under self-insurance).

ad’n is the statistics which underlies the Law of the Iterated

Logarithm (see Rubinstein and Yaari for details on its use in this context)

1
o (2 A0Z fog fog m)/m)? , A > 1,

where 05 is the variance of the random variable 6: (63 = 0, no accident over
period t; 63 = D, accident over period t) for an individual whose probabi-
lity of accident is pd. In particular, for a low risk individual who produ-
ces the full information optimal level of care cb*, and tells the truth,

*
pd = pb(cb ) and qf is computed accordingly. As used in the contracts

offered by the insurer under strategy f, this statistical instrument has the
property of enabling the insurer to detect non optimal levels of care

i i* . . . . . d_ i, i*
(¢ < ¢c” ) and (or) lies, i.e. wrong risk announcement in period 1 (p #p (¢ )),
quickly enough to make such underproduction or lying unattractive, while not
being too hard on customers who, although they announced their true risk and
produced adequate prevention, have been unlucky. This will be shown in the
process of proving the theorem below, which states that it is in the interest

~ ~

. . . ‘i .
of the insurer and his customers to use strategies f and g~ respectively.



Theorem :

i, i*
Let P (¢” ) and U be such that

PLect™y = Blpt(c*™)] and ucs-piel’y Loify s g

where U- = (1-p (c5)) U(S <) + p'(cd) U(S -D -T4), < being the optimal

prevention level under self-insurance. Then, if T + =, (f, gl) is such that :

]
o
-
=
]
[V
o

(1) Hy (£, g)

U i, i* i*, i
(8§-P"(c” ) - ¢ ), where H; and H; are the average welfare

]

i i
H (£, g7)
levels achieved by the insurer and the insured respectively.

-~ ~

(2) (£, gl) is enforceable, i.e. f and g1 are absolutely best responses to

each other.

Proof® :

A. Proof of (L):

The proof of (1), in each case (i = a, b), is identical to that
provided by Rubinstein and Yaari (p. 90) for the same property under moral

hazard. It hinges on an implication of the Law of the Iterated Logarithm

T . :

X GS/N(t) < 51(c1 ) + al’N(t) for all but finitely many values of T.
s=1

As a result, for all but finitely many values of T, the customer is offered

that

. . . N ot
insurance at the actuarial premium (see the definition of £t 1); hence he
. . i, i* i* Cq

buys insurance and achieves U(S-P (¢” ) - ¢~ ). When the average utility
is taken over an infinite number of periods this occurence dominates the

L. . . i i, i* i
finitely many exceptions so that the customer achieves H; = U(S-P"(¢c” ) -c” ).
Clearly, since the premium is actuarial except for finitely many exceptions,

the insurer achieves zero profits (H; = 0) on both types of customers.

®We present here the main developments of the proof without repeating the
parts that are already in the literature. Details are available on request.



B. Proof of (2)

B.1. £ is a best response to gi

In order to focus on the behavior of the customers, we have not pro-

~

vided for any profit margin for the insurer in f, except in'periods when the

insured pays P For a profit maximizing monopoly working under the cons-

K"
traint of a non positive profit margin, the maximum average profit that can

-~

be achieved is clearly zero. Since H, (f, gl) = 0 by (1) no other strategy

~

dominates f under that constraint. More generally, for an unconstrained

-~

monopoly, the premiums in f must be redefined to include a profit margin'f
which exactly exhausts the customers' rent at the full information level of care.
For that modified contract it is easily shown that H; = Z. Again no alterna-
tive strategy f can do better because, if it did (if H,(f, g) > Z) the custo-
mer would rather be self insured in all periods so that the average profit

of the insurer would be 0, contradicting the original proposition.

~

B.2. gl is a best response to f

In order to prove this result, we divide the possible alternative

strategies to g1 into two categories, truth telling in the first period, or

lying in the first period.

B.2.1. Truth telling strategies

N

Consider truth telling first (Pd = Pl(c1 ))- Then the only remaining
problem is moral hazard. In that case the proof of Rubinstein and Yaari can
be used (p. 92) to show that the best customer strategy is to apply the

3 %
prevention level ¢*”. Hence there is no strategy in the truth telling cate-

~

gory that dominates gl.
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B.2.2. Strategies involving a false announcement

Now consider customer strategies which involve lying in the first
period. In order to show that it is not in any customer's interest to lie,
we first find a maximum to the average expected utility which can be reached

by a customer who makes a false announcement, and then we show that this

~

maximum is smaller than the expected utility under gl.

The optimal strategy of a customer of type i who has made a false

~

announcement in response to f consists in choosing a level of prevention

id .. . . . i, id d .

c”" which makes him statistically look like he announced : P (¢ ) = P (if
such a level of c* exists, which we shall assume’). The proof of this result

is provided in the appendix. The average expected utility that can be so

achieved is U1d where Uld = U(S-Pd-c1d) is the utility level® of a customer

of type i who has announced a probability of accident pd, who has not been

detected (i.e. who pays a premium Pd),and who produces the prevention level
id
c .

. -
To complete the proof, we have to show that U1d < U' where

i* i, i* i* . . .
U" =U(S~-P (¢” )~-c” ). We do it here for the case of a high risk a who

. ad a* ,
pretends to be a lower risk and produces a level of care ¢°° > ¢ in order

Uad, i.e.

to be credible (P?(c®d) = PP(c®")). Suppose that u?* <
Ues - PAc®™y - ¢y < us - PReedyy - @y, 1t follows that

) Pa(ca*) + ca* > Pa(cad) + cad and, taking a Taylor-Lagrange expansion of the

*
right hand side around c? s

’1f there does not exist any cid such that Pi(cid) = pd, it is trivial to
show that, by the Law of the Iterated logarithm, the customer will pay the
penalty premium Py infinitely many times with probability one so that lying
is not optimal in that case.

®We assume Uid > Ul. Otherwise self insurance is optimal after a false
announcement.
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>

* * * 8%y a*r ad 1 d2pi(c?) . ax -
PPy + ¢ > PPty - & dcc P ) +5 2c (- M2+ M
dc

* ~
where ¢ < ¢? < cad and, by the first order condition for the full.informa-

tion optimization problem, dPa(ca*)/dc = (dpa(ca*)/dc)D = -1. After simpli-
fication, one gets dZPa(Ea)/dc2 < 0 which contradicts the convexity of Pa(c).

The same argument applies in the (odd) case of customer pretending
to be a higher risk in order to reduce his care level.

~ ~

This completes the proof that g1 is a best response to f.

3. Conclusions

We have presented an integration of moral hazard and adverse selec-
tion in a single model, and we have shown how to achieve a first-best alio—
cation of risks under both informational problems. Let us note that the
result applies whatever the number of individual types and whether the mono-
polistic insurer is regulated (zero profits) or not. Many extensions of the

above analysis can be considered,

Two of them consist in introducing contracts with either discoun-
ting or a finite horizon, or with both characteristics at the same time.
While such extensions are discussed in the respective literature on moral
hazard and adverse selection (see footnote 2 above for references), it is
not clear that straightforward combinaisons of existing models are feasible
or optimal. In this paper we have shown that the analysis of both problems
simultaneously involves some synergetic effects. Indeed, in the model,
presented above, the insurer needs less information on the individuals’
probability function than in a model obtained from a juxtaposition of the
contributions by Rubinstein and Yaari, and Dionne and Lasserre.

Another investigation concerns the efficient use of past informa-

tion, and the allocation of instruments, toward the solution of each parti-

cular information problem. For a long time self-selection mechanisms have
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been proposed in response to adverse selection while nonlinear pricing was
advocated against moral hazard. In one-period contracts both procedures
involve inefficiency (partial insurance) which can be reduced by the intro-
duction of time in the contracts. Our paper shows that self selection may
help solve moral hazard problems, as well as adverse selection problems.
Thus there may not exist any one to one correspondance between instruments
and targets. There is also no denial that it might be desirable to use time
more sparingly than is done in our paper (infinite horizon with no discoun-
ting). In comparing alternative ways to alleviate asymmetric information
problems,procedures should not only be judged on the basis of the welfare
improvement achieved but also according to their effectiveness in using

scarce information.
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APPENDIX

Optimal strategy under false announcement in response to f

1. Assertions
We shall need the following assertions (Rubinstein and Yaari,

1983).

Assertion A. Let X be a random variable, bounded by some real

number B. Let A be an event with Pr(A) = 1-¢. Then

< 2Be
B - Ex [A)] D725

Assertion B. (Consequence of Egoroff's Theorem). Let {Xt} be a
sequence of random vectors with values in 'Rn. Let A CZ,Rn be a closed set
with the property that p(Xt, A) > 0 a.s., where p denotes Euclidean distance.
Then, for every 6 > 0, there exists an event E with Pr(E) ; 1 - § such that

o (xF, A) >~ 0 uniformly on E.

Assertion C. Let A C Rn be a convex compact set, and let {Xt}

be a sequence of random vectors, with values in Rn, such that
T

E(Xt !Xl, ey Xt-l) € A for all t. Let %' z Xt be denoted XT. Then
t=1

p(it, A) > 0, a.s., where p is Euclidean distance.

Assertion D. Let K be a real number. Let {Xt} be a scquence of

T

random variables. Let xt denote a value of X° and for every x!, ..., x°,
T

let (1/T) I xt be denoted ET. If xT > K and E(xT+1lx1, i xT) < K,
t=1

then almost surely, limsup X< k.
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2. Definitions
id
Let d" (v} be such that

atdvy = 5i-pd - )]

did(v) gives the expected loss corresponding to the level of ci selected by
a customer of type i who pays a premium of Pd and wants to achieve a utility
level of v. Since, with full insurance, v = U(S - Pd - ci), this customer
can increase his utility only by reducing ci, which raises the chance of
accident. Consequently, did(v) is rising. From the curvatures of U and
pi(ci), it can also be shown that did(v) is convex.

Similarly, let d;(v) be such that
i _Tir_p _ 7l
dd(v) =D7[ PK u*mv)] .

d;(v) has the same interpretation and properties as dld(v) except that it
applies to a customer who pays a premium of PK rather than Pd. Since no one

will make any announcement which entails paying more than the penalty premium

pd

P < PK from which it follows that d;(v) is everywhere on the left of

K’
dld(v) , as in Figure 1-A. Indeed for any given levels of both ¢! and expected loss,

v is higher when Pd is paid rather than PK. Also, d1d and d; have the same

range, contained in [0, D] and are defined on closed intervals.

INSERT FIGURE A-1 HERE
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3. Implications

From Assertion A for any €; > 0, we can select an event E whose

probability € < gy is so small that for every ¢ and for every t

|[E{U(s - ¢t -si)} - E{U(S -l -Gi) | E) fs 2BE/(1-8) < €9/4

where B is an upper bound to U(S -t —GE) and Gi is a random variable

i . . i . .
(6t = 0, no accident over period t; Si =D, accident over period t). It

follows that

E(ues-ct-6)) | E} s T + €p/4 (A1)
Let A be the convex hull of graphs d;(v) and dld(v). From Asser-
tion C,
oL@, 0, Al> 0, s, (A2)
. T ~ .
. . =T _ 1 t i, . .
where p denotes Euclidean distance; U~ = T ) hi(f, g ) is the average uti-
t=1
lity derived over T periods by an agent i who plays gl, a strategy involving
Pd < Pl(cl*), in response to f; EiT = %- I GB(f, gl) is the average loss
t=1
experienced by that individual; and, since the expected value of 6; is either
dj or d* the condition E[(e;, h’i‘(f, g | (eg'l, hz-l(f, £, ...,

(61, h;(f, gl))} £A is met.
Given (A2), Assertion B implies that for any € > 0, there exists
- . - - —T =T .
an event E, with prob(E) > 1 -€, such that p[ (U™, D”'), A] + 0 uniformly on
E. As a result, in particular, there exists T such that, for every t > T,

the average utility in E does not exceed by more than €y/2 the image of the

average loss by (dld)_1 :
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Git _ (dlt)-l(ﬁit) < /2 (A3)
since a%’t » 0, there exists Ty such that for t > T,,
Dpd) + bt < aldld 4 ¢ )5 | (A4)

The expected loss associated with a probability of accident of pd, plus ad’t,

is smaller than the expected loss corresponding to a level of care yielding

d

a utility of vt + €0/2 when the premium is Pd (i.e. undetected low level of

i
c).

4. The optimal strategy after a false announcement

We are now ready to show that the optimal strategy of a customer
who chose a premium of Pd in period 1 is to select ci = cid and to buy insu-
rance in all subsequent periods, thus achieving an average expected utility
of Uid.

d

That U'® can be obtained under that strategy is a direct implica-

tion of the Law of the Iterated Logarithm. What needs to be shown is that
there is no better alternative. We define a better alternative as a stra-
tegy g1 having at least the property that the event {Hé(f, gl) > U1d + €

for infinitely many values of T} has positive probability. This implies

gimsup T > UM% + & with positive probability (A5)
p

which in turn implies that, for high values of t, ﬁit > Uld + £ with posi-

tive probability.

Thus we assume U>° > pid 4 €9, with t > max{T%, T}, and we show

this to imply that (AS) is violated. By (A3), U'° < (ald)"1(Blt) 4 ¢ 2.

Since U > y'd + €9, one has U9 + eo < (@HIEY + €9/2, so that
a4+ eg/2) < B, But from (A4), 4w v gp/2) > Dpd) + a0t which

by transitivity implies pit > 5Ipd) + ad’t. Thus a high premium PK is being

|
é
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~ charged under the provisions of £. The customer may choose to pay the high
premium; if he does his utility will be smaller than U' in t+1. Else, the
customer may choose to be self-insured in t+l and to select ¢! so as to

maximise E{U(S - et - 5t+1) IE}, which is smaller than oo+ gg by (Al).

By Assertion D, it follows in both cases that fLimsup Tt < T+ €9/4, which

is smaller than Uld + €7/4 since Ut < U1d by assumption. Since Limsup gt

cannot exceed U1d + €p/4 unless ot > il s €o9/4 for some t > max[T, Tgl,

this proves that

L£imsup ﬁQt < Uld + €4/4 a.s. on E, contradicting (A5), for €=gg.

But since €; can be chosen to be arbitrarily small, there does not exist any

€ > 0such that (A5) is not violated.
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