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Abstract

Most panel unit root tests are designed to test the joint null hy-

pothesis of a unit root for each individual series in a panel. After

a rejection, it will often be of interest to identify which series can

be deemed to be stationary and which series can be deemed nonsta-

tionary. Researchers will sometimes carry out this classi�cation on

the basis of n individual (univariate) unit root tests based on some

ad hoc signi�cance level. In this paper, we demonstrate how to use

the false discovery rate (FDR) in evaluating I(1)=I(0) classi�cations

based on individual unit root tests when the size of the cross section

(n) and time series (T ) dimensions are large. We report results from

a simulation experiment and illustrate the methods on two data sets.
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1 Introduction

Most panel unit root tests are designed to test the joint null hypothesis of a

unit root for each individual series in a panel (see, for example, Breitung and

Pesaran (2008) for a recent survey). This raises the issue of how to interpret

a rejection of this null hypothesis. It it obviously unwarranted to treat all

series in the panel as stationary in this case since this rejection only implies

that a signi�cant proportion of the series can be described as stationary. This

paper examines how a researcher should proceed in identifying the individual

series that can be deemed to be nonstationary and those that can be deemed

stationary.

Often, researchers will carry out this classi�cation in empirical work on

the basis of n individual (univariate) unit root tests based on some ad hoc

signi�cance level. No statistical evaluation of the aggregated decision based

on these n individual decisions is provided. To evaluate the aggregation

of individual tests, this paper suggests the use of some concepts from the

statistical literature on multiple testing. In particular, we will argue that the

use of the false discovery rate (FDR) proposed by Benjamini and Hochberg

(1995) provides a useful diagnostic on the aggregate decision. The FDR is

the expected ratio of the number of falsely rejected null hypotheses over the
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total number of rejections. The FDR is interpreted as a posterior of the true

null given a rejection of the null hypothesis, (see Storey (2003)).

The main contribution of this paper is to demonstrate how to use the false

discovery rate in evaluating I(1)=I(0) classi�cations based on individual unit

root tests when he size of the cross section (n) and time series (T ) dimensions

are large. We suggest two approaches: the �rst one adjusts the critical value

of the individual unit root tests to achieve a targeted FDR level, while the

second approach estimates the FDR based on a �xed choice of level for the

individual tests (for example, 5%).

Application of FDR as a controlling mechanism for our classi�cation

is faced with two di¢ culties. The �rst one is that FDR depends on the

(obviously unknown) number of true null hypotheses. Thus FDR is not by

itself an identi�ed concept. We solve this problem in our context by the use

of the Ng (2008) estimator of the fraction of nonstationary series. The second

problem is the presence of cross-sectional dependence among the units in the

panel. We solve this problem by applying a bootstrap procedure to estimate

the distribution of p-values in the panel and thus control the FDR:

Alternative approaches to classifying the series among I (0) and I (1)

components have been proposed. Kapetanios (2003) proposed to carry out a
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sequence of panel unit root tests on panels of decreasing size. One removes

from the panel the series with the most evidence in favor of stationarity.

One continues until the joint test of a unit root for the remaining series in

the panel is no longer rejected. On the other hand, Ng (2008) estimates the

fraction of nonstationary series. She conjectures that one can then identify

the I (1) and I (0) series by ordering them according to the magnitude of

their autoregressive parameter.

In independent work, Hanck (2009) uses multiple testing in the context

of a mixed panel, but he focuses on the family-wise error rate (FWE), a

concept that is less desirable when the number of tests performed (equal to

the cross-sectional dimension in this case) is large.

The reminder of this paper is organized as follows: the next section de-

scribes the standard panel unit root testing problem, while section 3 presents

the multiple testing methodology. Section 4 describes how one can control

or estimate the false discovery rate. Section 5 presents simulation evidence

that our proposal gives useful information. Section 6 reports results from

two empirical applications. Finally, section 7 concludes.
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2 Panel unit root testing problem

This section introduces brie�y the panel unit root testing problem. A more

exhaustive review can be found in Breitung and Pesaran (2008).

We suppose that we have panel data zit of individual i that is observed at

time t for i = 1; :::,n and t = 1; :::; T: Hence, n and T denote the size of the

cross section and time series dimensions, respectively. We model our panel

using a decomposition among deterministic and stochastic components as:

zit = dit + z
0
it; (1)

z0it = �iz
0
it�1 + yit;

where dit is the deterministic component, and z0it the stochastic component.

Three basic models of the deterministic components are typically of inter-

est: dit = 0 8i; t; dit = �i (individual intercepts only), and dit = �i + �it

(individual trends).

The null hypothesis of interest is that all stochastic components are non-

stationary:

H0 : �i = 1 for all i = 1; : : : ; n;
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whereas the alternative hypothesis takes the form:

HA : �i < 1 for some i;

where �i is the largest autoregressive root in the time series of individual i:

Since a panel unit root test is a joint test, one cannot readily interpret a

rejection. In particular, it does not provide any information on the properties

of individual time series in the panel. Our goal is to identify the stationary

series in the panel and provide a certain statistical evaluation of the identi-

�cation based on the individual unit root tests in the panel.

3 Introduction to multiple testing: False dis-

covery rate approach

In this section, we present brie�y the multiple testing methodology; one can

see Lehmann and Romano (2005) for further details.

Suppose that there are n separate testing problems that are either true

null or true alternative hypotheses. The number of true null hypotheses will

be denoted by n0 and the number of false null hypotheses will be denoted
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by n1. The outcome of each test is either to reject or not to reject the null

hypotheses. The testing result can be summarized by the 2� 2 table:

# of nulls not rejected # of rejected nulls total

the null is true M0j0 M1j0 n0

the null is false M0j1 M1j1 n1

total n�R R n

Thus, R nulls out of n are rejected, and among these R rejections, there are

M1j0 false rejections and M1j1 correct rejections.

The familywise error rate is the probability that we incorrectly reject at

least one true null hypothesis:

FWE = Pr
�
M1j0 � 1

�
:

When looking at a large number of tests, controlling the FWE becomes

di¢ cult and requires a decreasing level of individual tests as we increase the

number of tests. In such cases, one is often willing to tolerate a few incorrect
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rejections. This leads to the k�FWE which is the probability that we reject

at most k true null hypotheses:

k � FWE = Pr
�
M1j0 � k

�

(e:g:; see Lehmann and Romano (2005)).

In panel unit roots, we often look at a panel of increasing size, n !

1: Thus, for any �xed k; control of the k � FWE will encounter similar

di¢ culties as control of the simple FWE. It seems natural in this context to

let the number of false rejections we are willing to tolerate tend to in�nity and

use as our control measure the false discovery proportion, i.e. the proportion

of rejections that are false or, using the above notation,

FDP =
M1j0

R
if R > 0

= 0 if R = 0:

Unfortunately, it is impossible to control this quantity. Instead, Ben-

jamini and Hochberg (1995)�s proposal is to control the expectation of the

FDP , which they call the false discovery rate (FDR), and which is de�ned
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as

FDRP = EP

�
M1j0

R
1 fR > 0g

�
:

Although we will not consider this possibility here, one could also try to

control the false non-discovery rate (FNR):

FNR = EP

�
M0j1

n�R1 fn�R > 0g
�

which is the proportion of non-rejections that are coming from false null

hypotheses or even a weighted average of these two quantities as in Storey

(2003).

Storey (2003) provides an interesting Bayesian interpretation of the FDR

in the context of a mixture model. Suppose that Hi = 0 (=1) if the ith null

hypothesis is true (or false) and let Hm = (H1; :::; Hm)
0 : We denote by p̂i

the p-value associated with ith individual unit root test. We know that if

the ith null hypothesis is true, then p̂i has a uniform distribution on the [0; 1]

interval.

We suppose the random mixture model (p̂i; Hi) � iid such that

Hi � B (1� �0)
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Pr fp̂i � tg = �0U (t) + (1� �0)F (t) = G (t) ;

where U (t) = t is the c.d.f. of a uniform distribution and F (t) is the c.d.f.

of p-values under the alternative. The variable �0 can be interpreted as the

probability that the null hypothesis is true, in which case the p-values are

i:i:d:U [0; 1] :

This result is exact if one uses the exact distribution of the test statistics

under both the null and alternative hypotheses. In the case where asymptotic

(T !1) approximations are used, this result is asymptotic and F (t) ! 1

for any consistent test. In this case,

G (t) = �0t+ (1� �0) :

For a common size t for all n tests, the number of rejected null hypotheses

is:

R =
nX
i=1

1 fp̂i � tg

M1j0 =

nX
i=1

1 fp̂i � tg (1�Hi)
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and one can express the false discovery proportion as

FDP (t) =

Pn
i=1 1 fp̂i � tg (1�Hi)Pn

i=1 1 fp̂i � tg+ 1 fp̂i > t for all ig
:

where the second term in the denominator avoids division by 0.

When the number of tests n is large,

FDP (t)
p! �0t

G (t)
= E (FDP (t)) (2)

This limit can be re-expressed as:

�0t

G (t)
=

�0U (t)

�0U (t) + (1� �0)F (t)

=
Pr fReject the null jHi = 0gP fHi = 0g

Pr fReject the nullg

= Pr fHi = 0j Reject the nullg :

So, the FDR is the posterior probability of the null being true given that we

have rejected a particular null hypothesis as the number of tests n!1:
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4 Control and estimation of the FDR

There are two approaches to using FDR in practice. The �rst one is to

adjust the level of individual tests so as to control the resulting FDR: The

second approach �xes a level for individual tests and estimates the resulting

FDR of this procedure.

4.1 Approaches to control FDR

Benjamini and Hochberg (1995) have suggested to adjust the level of individ-

ual tests in the multiple testing procedure to keep the FDR below a level pre-

speci�ed by the researcher, . Suppose that the p-values of the n tests have

been ordered in ascending order without loss of generality: p̂1 < p̂2 < ::: < p̂n:

They recommend the sequential Hohm method which compares p-values to

an increasing critical value. Hypothesis i is rejected if its p-value is su¢ -

ciently small, p̂i �  in : They prove that with this method controls the FDR

in the sense that FDR <  with probability 1 when this method is used.

The BHmethod of controlling FDR is conservative. It uses the total num-

ber of tests in the denominator of the critical values. One can show (Storey et

al., 2004) that replacing n by n0, the number of true null hypotheses, would

also control FDR. Since n0 < n; the critical value will be higher for any i; and
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more hypotheses will be rejected. We will call the FDR-controlling method

which rejects null hypotheses when p̂i � i
n0
 the modi�ed BH procedure and

denote it BH�:

A di¢ culty with the application of FDR in a panel context is the fact

that cross-sectional units display cross-sectional dependence. The above rules

have been shown to be valid under independence,although some form of de-

pendence can be allowed, see for example. Benjamini and Yuketeli (2001).

As shown by Romano, Shaikh and Wolf (2008) ; the bootstrap or sub-

sampling can be used to control for general dependence structures. Their

insight is that, for a given set of critical values fc1; :::; cng ; we can decom-

pose FDR as:

FDRP = EEP

�
F

max fR; 1gjR
�

=
sX
r=1

1

r
EP [F jR = r] Pr fR = rg

=
nX

r=(n�n0)+1

r � (n� n0)
r

Pr fT1 � c1; :::; Tr � cr; Tr+1 > cr+1g :(3)

We determine critical values to ensure that the above quantity is bounded

by the desired FDR level  for any probability distribution P: This requires

n computations (from least signi�cant to most signi�cant) using up to n-
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dimensional integrals and is subject to curse of dimensionality.

The bootstrap is used to approximate the joint distribution of the test

statistics and calculate the appropriate set of critical values. We need a

bootstrap method that allows for serial dependence, cross-sectional depen-

dence and non-stationarity. We bootstrap vectors of �rst di¤erences of the

data using the moving block bootstrap. Similar methods have been used by

Palm, Smeekes, and Urbain (2008) for panel unit root tests and Gonçalves

(2009) for a panel regression model. However, Palm et al. (2008) bootstrap

residuals from a sequence of individual autoregressions. Hanck (2009) uses a

sieve bootstrap on the residuals. One could also use the double resampling

of Hounkannounon (2009) which is robust to general forms of cross-sectional

and serial correlation.

Our algorithm is as follows:

1. Calculate the �rst di¤erence �zit = zit � zi;t�1 and collect these as

n-vectors for each time period �Zt = (�z1;t; :::;�zn;t)
0 :

2. For a given block size b;draw [T=b] blocks of b consecutive observations

of �Zt with replacement. Then draw a last block of length T � [T=b] b:

Call this bootstrap sample �Z�:
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3. Generate the bootstrap sample of level variables by cumulating:

Z�t =
tX
j=1

�Z�j :

4. Compute an ADF test for each of the n series in the bootstrap sample.

5. Repeat steps 2-4 B times.

6. Compute the n critical values recursively by solving (3) for n0 = 1; :::; n:

7. Having determined the set of critical values, fĉ1; :::; ĉng ; test null hy-

potheses sequentially. Reject the most signi�cant null hypothesis (the

one with the smallest statistic) if the ADF statistic for that series is less

than c1: If it is, reject the second null hypothesis if T2 < ĉ2 and so on

until a null hypothesis is no longer rejected, call it j�. The resulting set

of I(1) series are those from j� to n; and the I (0) series are 1; :::; j��1:

There are three practical di¢ culties with this approach: �rstly, it requires

the choice of block size b: As in Gonçalves (2009) ; we set it equal to choice

of bandwidth for long-variance estimation in Andrews (1991) : Secondly, as

opposed to the other methods described here which are based on individual

p-values, the bootstrap method can only be applied to balanced panels. If the
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number of cross-sectional units varies over time, the above algorithm would

create "holes" in our bootstrap sample. Finally, the method requires the

computation of the joint distribution of the n ADF statistics. It is therefore

subject to the curse of dimensionality in two ways. Firstly, the accuracy

of any estimate of a high-dimensional distribution is likely dubious, even

with a large number of bootstrap replications. Second, because we have to

compute n critical values, the di¢ culty of computations increases with n:

In the simulation experiments below, we do not consider choices of n larger

than 30 for that reason.

4.2 Approaches to estimate FDR

Suppose that we �x the level of the individual tests to some quantity �:

Remember FDR in the limit (as the number of tests gets large) is given by

(2) :

FDR =
��0

Pr (reject H0i)
:

The natural estimator of this quantity involves replacing �0 and the de-

nominator by some estimators. The denominator is easy to estimate by
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looking at the fraction of rejections:

\Pr (reject H0i) =
1

n

nX
i=1

1 (p̂i;T � �) =
R

n
:

We now derive its limit under sequential asymptotics as T !1 followed

by n!1:

1

n

nX
i=1

1 (p̂i;T � �) =
1

n

nX
i=1

1 (p̂i;T � �)Hi +
1

n

nX
i=1

1 (p̂i;T � �) (1�Hi)

T!1! 1

n

nX
i=1

Hi +
1

n

nX
i=1

1 (Ui � �) (1�Hi)

n!1! (1� �0) + ��0: (4)

This sequential limit is also joint if the individual unit root tests�s weak

limit is uniform in i under both the null and the alternative hypotheses.

Finding an estimator of �0 is more problematic. The fraction of true null

hypotheses is partly the problem we are trying to solve.

In the existing literature, Storey et al. (2004) have proposed the following

general estimator:
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�̂0 (�) =
1� 1

n

Pn
i=1 1 (p̂i � �)
(1� �)

for some � 2 (0; 1) : This comes from the fact that large p-values are likely to

come from true null hypotheses. Thus, we should expect �0 (1� �) p-values

above �. Asymptotically, this estimator is consistent. To see this, the above

estimator is:

�̂0 (�) =
1� 1

n

Pn
i=1 1 (p̂i � �)
(1� �)

! 1� ((1� �0) + ��0)
(1� �) = �0:

where the second line follows from (4) : However, Storey et al. proved

that this estimator is conservative in �nite samples.

The above estimator depends on a tuning parameter �: Storey et al.

(2004) provide a data-dependent choice of � that minimize mean square

error (MSE).

Instead of relying on the above generic estimator, one can, in the context

of panel unit root tests, estimate the proportion of true null hypotheses by

using the results in Ng (2008). She estimates the fraction of units in a

panel that have a unit root by looking at the behavior of the cross-sectional
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variance as a function of time: Her key insight is that the cross-sectional

variance grows linearly over time with a slope equal to the fraction of the

units that are non-stationary.

Ng showed that the cross-sectional variance Vt = 1
n

Pn
i=1 (zit � �zt)

2 is

approximately linear in t with coe¢ cient �0 :

Vt t c+ �0t

for some constant c, which suggests the estimator:

�̂0 =
TX
t=1

�Vt:

Ng shows that this estimator converges at rate
p
n and is asymptotically

normal. The estimator is robust to some forms of cross-sectional dependence

and one can control for serial correlation by �rst correcting the scale by

estimating an AR process.

With estimates of �0 and R; we can get an estimate of FDR as:

\FDR =
�̂0�

R̂=n
=

�̂0�
1
n

Pn
i=1 1 (p̂i � �)

;
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which, following the above discussion, is consistent if �̂0
p! �0 and the de-

nominator converges to (1� �0) + ��0.

5 Simulation

In this section, we report results from a small simulation experiment. We

want to analyze the e¤ects on the FDR of the fraction of series with a unit

root, the size of n and T; and the extent of cross-sectional dependence.

We �rst ignore the issue of cross�sectional dependence and consider the

basic dynamic panel data model (1) with heterogenous intercepts:

zit = �i + z
0
it;

z0it = �iz
0
it�1 + uit;

where uit is ARMA(1,1):

(1� �L)uit = (1 + �L) "it

and "it s i:i:d:N (0; 1) : The autoregressive parameter �i is 1 for the �rst �0

fraction of the series and for the remaining (1� �0) fraction, �i is U [0; :9] :
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We consider 3 values for �0 : .1, .5 and .9. The individual e¤ects �i are

N (0; 1) : Finally, we consider three values for each of � and �; -.5, 0, and .5

but do not consider cases where the roots cancel each other out. This means

that we have a total of 7 pairs of � and �:

We consider the n null hypotheses that each series has a unit root. We

use an ADF test for this purpose. We choose the degree of augmentation in

the regression with the MAIC or Ng and Perron (2001) with a maximum of

4 lags. We consider two choices of n and T; n = 10; 30 and T = 100; 500:

We do not consider larger choices of n because of the heavy computational

burden imposed by the bootstrap procedure of Romano et al. (2008) : We

run each experiment 1000 times.

To begin with, we report 2 estimates of �0: Because FDR depends on this

(unknown) parameter, many properties of the FDR estimators and FDR

control methods are directly related to these. The �rst estimator is the Ng

(2008) estimator A, while the other is Storey�s estimator with data-dependent

choice of �: The means and standard deviations over the replications are

reported in table 1.

*** Insert table 1 here ***
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Two main conclusions arise from these results. The �rst one is that Ng�s

estimator is much less biased than Storey�s which can be quite conservative.

However, it has much higher variance which increases with �0: Second, the

Ng estimator is severely biased downward with a negative MA component.

This is expected as the I (1) series approach stationary behavior. Unit root

tests have been widely documented to su¤er from severe size distortions in

this case for the same reason (see Schwert, 1989). There is also a downward

bias for the positive MA case for the smaller choice of T (100) ; but this

disappears when T = 500: A larger T also makes the Storey estimator less

conservative. The size of n does not make any di¤erence on the centering of

the Ng estimator, but it reduces its variances (since its rate of convergence is

p
n). Increasing n is detrimental to the Storey estimator for �0 = 10%; but

bene�cial for the other values.

In Table 2, we report the average FDP over the replications (which ap-

proaches FDR as the number of replication increases) for a �xed test size

of 5% and three (conservative) estimates that di¤er according to the choice

of �̂0: The �rst one uses the true �0 (and is therefore infeasible), the second

uses Ng�s estimator, and the last one uses Storey�s estimator:We report both

the mean and standard deviation of the last two estimators.
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*** Insert table 2 here ***

From this table, we notice that FDR increases with �0:That is, if most

series are nonstationary, then �ndings of stationarity are more likely to be

false. It also increases with both n and T: Second, the FDR estimators

can be quite conservative, particularly for the larger choice of �0: There is

also not much e¤ect of either n or T on the estimators. Finally, the relative

performance of these estimators follows that of the estimators of �0: Because

Ng�s estimator of �0 is less biased but more volatile, the estimator of FDR

based on it is less biased but more variable in general. However, it behaves

quite poorly in the large MA cases.

In table 3, we change our approach and report results when we try to con-

trol the FDR at 5%. We consider three methods described above. The �rst

one is the original Benjamini and Hochberg (BH) method that compares the

p-values to an increasing sequence of critical values. This method implicitly

assumes that all null hypotheses are correct (�0 = 1). The second method

is the modi�ed BH method (denoted BH�) which uses the Ng estimator of

�0 when calculating the increasing critical values. Finally, we report the

bootstrap-based method of Romano et al. (2008) implemented as described

above. If the methods controlled the FDR perfectly, we would expect 5%
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in all cells in the table. Numbers below 5% indicate that the method con-

trols the FDR since the proportion of false rejections is less than the desired

level of 5%. However, it lacks power since we could have rejected other null

hypotheses without violating the FDR constraint.

*** Insert table 3 here ***

The �rst thing to note from the table is that the original BH method

is very conservative. Despite a desired level of 5%, we reject much less

often than that. One thing to note however is that this conservativeness is

especially present for the small values of �0: For �0 = :9; the procedure is

not that much conservative. This is due to the fact that BH assumes that

�0 = 1 when constructing the critical values. On the other hand, using the

Ng estimator of �0 alleviates these problems as expected. However, in the

cases with large MA components, the FDR is not controlled at all and the

method performs quite poorly. Finally, the bootstrap method of Romano et

al. performs really well in obtaining an FDR of approximately 5% even in

the large MA cases were the modi�ed BH procedure performs poorly.
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5.1 Cross-sectional dependence

Our second set of experiments adds cross-sectional dependence through a

factor model. The common factor ft is introduced in the residuals as in

Moon and Perron (2004) and Pesaran (2007) :

zit = �i + z
0
it;

z0it = �iz
0
it�1 + yit;

yit = �ift + uit

where the factor loadings are U [0; 1] and the factor is an AR(1):

ft = :5ft�1 + vt

where vt s i:i:d:N (0; 1) . The rest of the design is as above (in particular,

uit is an ARMA(1,1) process with parameters � and �).

Table 4 reports the results of the estimation of �0 as in table 1 above.

*** Insert table 4 here ***

The results are similar to those of table 1 except that the Ng estimator
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now overestimates �0 with a large negative AR process. The negative MA

case again leads to a severe downward bias.

Table 5 presents the average proportion of rejections that are false and

the same three estimators of the FDR as in table 2 above. First, note that

the false discovery rate is lower in this case than in the independent case.

This is the usual �nding when there is dependence among the tests under

consideration. On the other hand, the estimators of FDR are roughly the

same as before, thus leading to a larger bias than before.

*** Insert table 5 here ***

In table 6, we look at the performance of the BH, BH� and RSW pro-

cedures in controlling the FDR: As expected, the presence of dependence

increases the degree of conservativeness of the BH procedure. The BH� pro-

cedure works quite well except in the large MA cases where the Ng estimator

of �0 is severely biased. The bootstrap-based procedure of RSW on the other

hand provides very good FDR control for all parameter con�gurations.

*** Insert table 6 here ***
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6 Empirical examples

In this section, we employ our proposed approach to classify series in two

panels into I (0) and ((1) series.

Our �rst example uses real income data for households from the PSID.

We follow Meghir and Pistaferi (2004) and remove households with female

heads, with missing education data, and with outliers. We are left with

n = 154 households for T = 26 years (1968-1993). As in Ng (2008) ; data is

�rst regressed on individual e¤ect, age, age2 and education.

Our second empirical illustration uses exchange rate data. We use the

long annual data on real exchange rates relative to the US dollar from Taylor

(2002) : 1 Because we require a balanced panel in the application of the

bootstrap to control the false discovery rate, we restrict the sample to the 19

countries for which data is available over the period 1892-1996. Our panel

dimensions are thus n = 19 and T = 105: We only allow for a constant

term in the deterministics, but our results are similar with the inclusion

of a linear trend. Hanck (2009) uses similar data. He mentions that the

di¤erences between his results and those of Taylor (2002) are due to di¤erent

sample periods, di¤erent intrapolation methods for missing wartime data,

1We thank Alan M. Taylor for sharing his data.
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and di¤erent lag length selection. Overall, our individual results are closer

to those of Taylor because we only di¤er by small changes in sample period

in order to balance the panel and lag selection rules. As reported by Lopez

et al. (2005), the results using this data set are very sensitive to the choice

of lag length. Using the same lag lengths as those reported in Taylor gives

very close results.

The results of the application of our suggested procedures are presented

in table 7. In order to increase the power of the unit root tests, we also report

results with the application of the DF-GLS test of Elliott el al. (1996) ; and

these results are presented in the second column of the table next to those

based on ADF tests.

6.1 PSID data

Our estimate of the fraction of households with nonstationary income is about

20% and does not depend on which test is used.

On the other hand, since Storey�s estimator of the fraction of true null

hypotheses depends on the p-values of the test, it depends on the choice of

test. For the ADF test the estimate is very high, 87%. With the use of the

DF-GLS test, the estimate is 27% which is close to the one obtained using
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Ng�s estimator.

Turning now to the results of individual ADF tests, with a �xed level

of � = 5%; we reject the unit root for 24 out of 154 households (or about

16%). The two estimates of FDR re�ect the large di¤erence in the estimate

of �0: The estimator using the Ng estimator is 6.5%, and the one using the

Storey estimator is about 28%. These can be interpreted as the posterior

probability that each of these 24 rejections is for a null hypothesis that is

false.

Control of FDR at the level of 5% leaves only 9 rejections with the Hohm

criterion (the BH method). Use of the bootstrap to allow for dependence

leaves a very small number of rejections (2). This result is robust to the

choice of block size. It is probably due to the time dimension of the data not

being su¢ cient for the application of the block bootstrap.

Results based on the more powerful DF-GLS test are very similar. With

a �xed 5% level, we reject the unit root for 25 out of 154 series (instead

of 24). The Storey estimator is however much lower than before and close

to the Ng estimate. Thus, the FDR estimates are close to one another and

quite small, and we can be fairly con�dent that those series that have been

classi�ed as I (0) are indeed stationary.
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*** Insert table 7 here ***

6.2 Real exchange rates

For the real exchange rate panel, Ng�s (2008) estimate of �0 is negative. This

is the same result that she reports in her paper. Storey�s estimator is 21%

with the ADF test and 10.5% with the DF-GLS test. Both estimates suggest

a large proportion of stationary series which is rather unusual in tests of PPP.

Table 8 provides detailed results for this application.

If we �x the level of tests at 5%, we reject the unit root for 6 countries

using the ADF test and 11 for the DF-GLS test. The identity of these

countries can be found by looking at table 8. Countries for which we reject the

unit root are identi�ed with an asterisk in that table under the heading "5%".

The estimate of FDR using Ng�s estimator is negative given the negative

estimate of �0, but Storey�s estimator is small. Again, we can have reasonable

con�dence that the rejections are from false null hypotheses.

Controlling for multiplicity using either the Hohm criterion or the boot-

strap (the results are identical) leaves a single signi�cant country (Finland)

using the ADF test and 10 out 11 using the DF-GLS test (only Denmark

drops out).
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7 Conclusion

In this paper, we demonstrate how to use the FDR in evaluating I(1)=I(0)

classi�cations based on individual unit root tests. In the literature, most

of the analysis of the FDR have been done under independence. Yet, in

many interesting applications, cross-sectional data are not independent, and

sometimes this dependence is quite strong. We illustrate the methods on two

panel data sets and use FDR to measure the probability our con�dence in

the �ndings of stationarity.

As developed here, the methods used to control or dependence require

the use of the joint distribution of the test statistics. To obtain an estimate

of this distribution, we rely on the bootstrap, and this method is subject

to the curse of dimensionality. Application to panels with a large number

of cross-sections would probably require the use of a parametric model of

dependence such as a factor or spatial model.
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Table 1. Estimators of �0(%) - Independent case

�0 = 10% 50% 90%
n T � � Ng Storey Ng Storey Ng Storey

10 100 -.5 -.5 10:0
(15:2)

31:2
(31:9)

51:6
(38:0)

56:2
(19:2)

96:6
(54:9)

85:3
(21:2)

-.5 0 11:3
(20:2)

29:7
(30:7)

57:2
(45:7)

56:2
(19:3)

103:5
(63:4)

85:2
(20:9)

0 -.5 3:5
(7:9)

34:3
(31:9)

16:5
(18:7)

58:3
(20:2)

30:2
(23:4)

87:1
(19:9)

0 0 10:4
(15:6)

30:9
(31:7)

52:9
(40:9)

57:4
(20:0)

96:0
(55:8)

85:5
(20:1)

0 .5 6:4
(13:9)

33:1
(35:0)

35:3
(33:9)

52:3
(21:1)

61:6
(47:3)

77:4
(23:1)

.5 0 10:8
(20:0)

36:3
(31:0)

45:7
(42:8)

59:3
(21:3)

85:7
(56:2)

86:7
(20:4)

.5 .5 9:8
(14:0)

33:2
(33:2)

51:0
(38:5)

59:5
(19:5)

95:5
(55:0)

84:9
(21:0)

10 500 -.5 -.5 10:2
(14:4)

28:7
(34:1)

51:3
(33:1)

53:2
(20:0)

91:9
(45:4)

82:1
(21:7)

-.5 0 10:4
(15:0)

29:2
(34:6)

55:0
(37:1)

53:4
(20:0)

99:8
(52:7)

82:6
(21:3)

0 -.5 1:8
(3:4)

27:6
(33:2)

8:9
(7:5)

53:5
(20:3)

15:9
(10:1)

82:1
(21:6)

0 0 11:1
(17:3)

30:0
(35:1)

49:7
(32:2)

53:0
(20:5)

90:7
(45:1)

82:7
(21:7)

0 .5 10:3
(18:2)

32:2
(36:7)

48:9
(36:8)

50:3
(21:0)

92:0
(51:4)

77:9
(22:7)

.5 0 9:1
(14:0)

29:7
(35:0)

43:4
(31:6)

53:4
(20:0)

79:9
(45:7)

82:7
(21:5)

.5 .5 9:9
(14:5)

29:4
(34:7)

51:4
(35:0)

52:4
(19:6)

91:8
(45:6)

82:6
(22:0)

30 100 -.5 -.5 10:9
(10:3)

16:5
(11:1)

53:5
(23:1)

62:2
(19:4)

93:6
(28:7)

95:0
(10:6)

-.5 0 12:2
(12:3)

17:0
(14:3)

57:8
(26:4)

62:4
(18:6)

102:8
(34:9)

94:7
(10:8)

0 -.5 3:4
(4:2)

18:7
(10:8)

16:2
(10:3)

65:6
(18:4)

30:0
(14:4)

96:1
(10:1)

0 0 10:4
(9:1)

16:9
(13:0)

52:0
(22:5)

62:5
(19:3)

95:3
(29:7)

95:6
(10:0)

0 .5 7:6
(9:8)

14:4
(12:6)

35:5
(20:6)

52:5
(18:1)

62:6
(26:1)

87:4
(16:2)

.5 0 9:8
(10:6)

22:0
(14:4)

47:8
(25:2)

65:8
(18:8)

86:1
(32:9)

95:7
(10:7)

.5 .5 10:7
(9:6)

17:0
(13:0)

52:9
(22:2)

62:4
(19:4)

93:3
(29:3)

95:2
(10:3)

30 500 -.5 -.5 10:3
(8:6)

13:4
(12:9)

49:8
(18:7)

57:1
(18:8)

91:4
(25:9)

91:1
(14:0)

-.5 0 11:2
(9:5)

13:8
(14:4)

56:2
(22:1)

57:9
(18:7)

99:9
(29:6)

91:8
(13:7)

0 -.5 1:7
(1:8)

13:8
(14:1)

8:7
(4:3)

56:8
(19:6)

15:3
(5:6)

92:0
(13:3)

0 0 10:1
(8:5)

13:8
(13:9)

50:7
(19:1)

56:2
(18:6)

91:4
(25:2)

92:0
(13:2)

0 .5 10:2
(9:7)

13:6
(15:2)

50:2
(21:0)

52:3
(18:6)

92:1
(28:7)

85:8
(16:0)

.5 0 9:1
(8:6)

13:5
(13:5)

44:5
(18:3)

56:9
(18:2)

78:2
(26:0)

91:3
(13:4)

.5 .5 10:5
(8:8)

13:3
(11:2)

51:1
(19:9)

56:5
(18:2)

90:8
(25:8)

91:6
(13:3)

Note: The table reports the estimates of the fraction of series with a unit root (averaged over the replications) and

standard deviation undeneath. The number in the �rst column is Ng0s (2008) estimator A, while the second column is
Storey et al.�s (2004) estimator with data-based choice of �:



Table 2. FDR and estimates of FDR (%) - Independent case

�0 = 10% 50% 90%
n T � � FDR dFDR FDR dFDR FDR dFDR

�0 �̂Ng0 �̂Storey0 �0 �̂Ng0 �̂Storey0 �0 �̂Ng0 �̂Storey0

10 100 -.5 -.5 .3 .7 :7
(1:0)

2:0
(2:1)

2.6 5.7 6:0
(4:6)

6:6
(3:0)

12.9 40.4 43:1
(28:0)

38:1
(14:0)

-.5 0 .5 .6 :7
(1:3)

1:9
(1:9)

3.2 5.7 6:5
(5:6)

6:4
(2:7)

14.8 39.6 46:1
(31:5)

38:1
(13:9)

0 -.5 .2 .7 :3
(:6)

2:5
(2:4)

1.7 6.7 2:2
(3:0)

8:0
(4:8)

9.3 42.1 14:3
(11:8)

41:1
(12:3)

0 0 .4 .6 :7
(1:1)

2:0
(2:0)

2.4 5.8 6:1
(5:9)

6:7
(3:3)

13.7 40.5 43:3
(28:3)

38:5
(13:5)

0 .5 .7 .6 :4
(:8)

2:0
(2:1)

4.8 5.3 3:7
(3:7)

5:6
(3:0)

22.4 35.8 24:8
(21:9)

31:4
(15:0)

.5 0 .3 .9 :9
(1:8)

3:1
(2:8)

2.5 8.3 7:7
(8:9)

10:0
(6:9)

11.1 42.2 40:4
(27:7)

41:1
(12:4)

.5 .5 .3 .6 :6
(:9)

2:1
(2:1)

3.0 5.8 6:0
(4:9)

6:7
(3:1)

13.9 40.1 42:3
(26:7)

38:1
(14:2)

10 500 -.5 -.5 .3 .6 :6
(:8)

1:6
(1:9)

2.6 4.9 5:0
(3:3)

5:2
(2:0)

15.4 38.0 39:1
(23:1)

35:3
(14:6)

-.5 0 .4 .6 :6
(:8)

1:6
(1:9)

3.6 4.8 5:4
(3:7)

5:2
(2:0)

15.6 38.0 42:6
(26:5)

35:6
(14:5)

0 -.5 .3 .6 :1
(:2)

1:5
(1:8)

2.7 4.9 :9
(:7)

5:2
(2:1)

16.3 37.7 6:9
(4:9)

35:7
(14:5)

0 0 .5 .6 :6
(1:0)

1:7
(1:9)

2.8 4.9 4:8
(3:2)

5:2
(2:1)

13.9 38.8 38:9
(23:5)

35:6
(14:4)

0 .5 .5 .6 :6
(1:0)

1:8
(2:0)

4.7 4.8 4:7
(3:6)

4:8
(2:1)

24.6 33.9 36:0
(25:5)

30:3
(15:1)

.5 0 .4 .6 :5
(:8)

1:6
(1:9)

2.9 4.9 4:2
(3:1)

5:2
(2:0)

15.1 38.2 34:2
(22:9)

35:5
(14:6)

.5 .5 .3 .6 :6
(:8)

1:6
(1:9)

3.1 4.8 5:0
(3:5)

5:1
(2:0)

15.3 38.1 39:8
(23:6)

35:9
(14:5)

30 100 -.5 -.5 .3 .6 :7
(:7)

1:1
(:7)

2.8 5.6 6:0
(2:7)

7:0
(2:4)

20.3 44.0 46:5
(25:5)

47:0
(10:9)

-.5 0 .4 .6 :8
(:8)

1:1
(:9)

3.3 5.5 6:3
(3:0)

6:9
(2:2)

20.3 42.6 48:9
(25:3)

45:3
(19:0)

0 -.5 .2 .7 :2
(:3)

1:3
(:8)

2.0 6.2 2:0
(1:3)

8:2
(2:6)

13.2 53.2 18:3
(12:8)

58:7
(28:0)

0 0 .4 .6 :7
(:6)

1:1
(:8)

3.2 5.6 5:9
(2:7)

7:1
(2:4)

19.6 44.4 47:5
(25:0)

47:8
(21:2)

0 .5 .6 .6 :5
(:6)

:9
(:8)

5.6 5.1 3:6
(2:2)

5:4
(2:0)

30.5 34.7 23:9
(13:4)

33:4
(14:1)

.5 0 .3 .8 :8
(:9)

1:8
(1:3)

2.6 7.3 7:0
(4:0)

9:6
(3:4)

17.4 60.8 60:4
(40:7)

67:0
(35:9)

.5 .5 .3 .6 :7
(:6)

1:1
(:9)

3.0 5.6 5:9
(2:6)

7:0
(2:5)

19.2 43.8 45:4
(23:6)

46:4
(19:3)

30 500 -.5 -.5 .4 .6 :6
(:5)

:7
(:7)

3.4 4.8 4:8
(1:8)

5:5
(1:9)

21.5 35.3 36:4
(13:5)

36:3
(10:3)

-.5 0 .5 .6 :6
(:5)

:8
(:8)

3.6 4.8 5:4
(2:2)

5:6
(1:9)

22.3 34.9 39:1
(15:1)

36:0
(10:2)

0 -.5 .4 .6 :1
(:1)

:8
(:8)

3.3 4.8 :8
(:4)

5:5
(2:0)

20.2 35.9 6:2
(2:7)

37:1
(10:3)

0 0 .4 .6 :6
(:5)

:8
(:8)

3.0 4.9 4:9
(1:9)

5:5
(1:8)

20.1 36.0 36:4
(13:5)

36:6
(10:1)

0 .5 .7 .6 :6
(:5)

:8
(:8)

5.4 4.7 4:8
(2:0)

5:0
(1:8)

30.1 31.4 32:6
(14:1)

30:3
(10:4)

.5 0 .5 .6 :5
(:5)

:8
(:8)

3.5 4.8 4:3
(1:8)

5:5
(1:8)

21.8 35.2 30:8
(12:8)

36:0
(10:3)

.5 .5 .4 .6 :6
(:5)

:7
(:6)

3.2 4.8 5:0
(2:0)

5:5
(1:8)

21.2 35.5 36:0
(13:2)

36:4
(10:2)

Note: The �rst column reports the proportion of false rejections. The remaining columns report estimates of the false

discovery rate using �0; Ng�s estimator of �0, and Storey�s estimator of �0 with data-dependent choice of �:



Table 3. FDR control (%) - Independent case

�0 = 10% 50% 90%
n T � � BH BH� RSW BH BH� RSW BH BH� RSW

10 100 -.5 -.5 .2 4.1 4.8 1.4 7.1 5.2 1.8 4.1 4,6
-.5 0 .4 4.4 4.5 1.5 8.0 5.0 2.7 6.5 4.8
0 -.5 .2 4.3 4.6 .6 14.4 4.0 1.0 11.2 3.1
0 0 .3 4.2 4.9 1.2 6.5 5.6 2.8 4.7 5.1
0 .5 .6 4.9 5.4 2.8 16.3 8.2 5.9 16.0 9.7
.5 0 .1 4.2 4.1 .9 8.3 4.1 .9 3.9 3.6
.5 .5 .3 4.0 5.1 1.4 8.2 4.8 2.0 3.6 4.6

10 500 -.5 -.5 .3 4.5 5.5 1.5 9.1 5.6 3.1 5.9 6.2
-.5 0 .4 4.2 5.6 2.1 9.3 5.5 2.6 4.6 5.7
0 -.5 .3 4.7 5.8 1.5 21.9 6.4 3.1 28.4 6.2
0 0 .5 4.6 5.5 1.5 8.3 5.5 3.4 4.9 6.7
0 .5 .5 5.0 5.8 2.9 12.0 8.3 5.8 9.7 7.4
.5 0 .4 4.8 5.9 1.7 11.4 7.2 2.9 7.1 6.1
.5 .5 .3 4.6 5.4 1.9 8.8 6.0 2.9 5.2 5.8

30 100 -.5 -.5 .3 6.4 5.4 1.2 3.7 5.2 2.7 2.6 5.8
-.5 0 .4 6.1 4.8 1.6 3.9 5.1 2.6 3.0 3.7
0 -.5 .2 9.2 5.2 .9 18.7 3.5 .8 7.0 4.5
0 0 .4 6.4 5.4 1.5 3.9 5.5 2.2 3.4 5.1
0 .5 .5 8.0 5.9 3.3 12.2 9.1 7.1 12.7 8.5
.5 0 .2 6.8 4.6 .7 4.2 4.1 1.0 2.4 3.9
.5 .5 .3 6.3 5.3 1.3 3.6 5.1 2.7 3.1 5.8

30 500 -.5 -.5 .4 6.7 5.8 1.8 5.0 6.0 2.6 3.3 6.3
-.5 0 .4 6.5 5.8 1.8 4.5 6.0 2.7 3.8 6.3
0 -.5 .3 9.9 5.9 1.6 35.2 6.1 2.6 28.2 6.5
0 0 .4 6.8 5.7 1.7 4.7 6.1 2.3 3.4 5.4
0 .5 .6 7.1 5.9 3.1 7.6 7.2 5.5 6.3 8.5
.5 0 .4 7.1 5.9 1.9 6.2 5.9 3.0 1.2 6.5
.5 .5 .4 6.8 5.9 1.6 4.7 6.0 2.6 5.2 6.1

Note: The table reports the proportion of false rejections using the Benjamini-Hochberg method and the bootstrap

method of Romano et al. (2008) with a desired FDR level of 5%.



Table 4. Estimators of �0(%) - Factor model

�0 = 10% 50% 90%
n T � � Ng Storey Ng Storey Ng Storey

10 100 -.5 -.5 12:0
(18:6)

32:1
(30:8)

51:5
(45:0)

61:3
(20:6)

77:5
(50:9)

86:2
(22:4)

-.5 0 18:7
(33:4)

32:3
(30:8)

64:9
(64:1)

61:7
(22:3)

83:8
(59:5)

85:0
(23:8)

0 -.5 4:6
(9:8)

31:8
(29:5)

20:5
(21:7)

60:1
(20:7)

33:8
(29:2)

85:4
(22:0)

0 0 13:7
(22:1)

32:0
(30:8)

51:1
(42:5)

59:6
(19:5)

75:8
(48:8)

84:8
(22:7)

0 .5 11:8
(19:0)

33:0
(32:6)

45:6
(48:0)

62:9
(23:4)

47:5
(41:1)

82:6
(26:0)

.5 0 10:3
(21:1)

36:0
(30:8)

43:8
(44:5)

59:7
(21:8)

72:7
(49:0)

85:5
(20:9)

.5 .5 12:5
(19:7)

31:6
(30:6)

50:9
(45:5)

60:6
(20:3)

76:4
(52:2)

86:6
(21:3)

10 500 -.5 -.5 11:7
(18:2)

30:5
(35:6)

48:3
(41:7)

56:1
(21:4)

68:4
(39:8)

83:3
(24:0)

-.5 0 19:6
(32:9)

29:4
(34:8)

70:2
(67:3)

58:7
(24:3)

85:8
(55:3)

81:4
(25:6)

0 -.5 2:1
(4:0)

29:6
(34:9)

10:3
(10:5)

54:1
(21:2)

16:9
(12:9)

81:2
(22:9)

0 0 11:5
(16:9)

27:5
(33:2)

51:7
(40:8)

55:5
(21:3)

67:2
(39:5)

81:7
(24:0)

0 .5 12:5
(19:1)

27:1
(32:9)

45:5
(46:7)

60:6
(23:6)

51:3
(39:4)

82:5
(25:5)

.5 0 9:2
(14:2)

27:5
(33:1)

41:7
(31:8)

53:9
(20:9)

69:6
(40:5)

81:2
(22:0)

.5 .5 11:5
(18:2)

28:5
(33:9)

44:7
(37:6)

56:0
(22:3)

69:1
(40:8)

81:5
(24:6)

30 100 -.5 -.5 12:2
(13:3)

19:3
(13:7)

50:8
(31:5)

66:3
(23:4)

74:5
(34:7)

93:3
(15:9)

-.5 0 18:2
(22:4)

20:0
(25:5)

67:1
(63:2)

66:3
(25:4)

83:3
(48:2)

89:7
(21:3)

0 -.5 4:5
(5:8)

20:7
(15:6)

21:1
(16:6)

65:1
(22:1)

33:4
(18:3)

93:7
(13:4)

0 0 12:0
(12:9)

19:8
(15:3)

51:2
(32:2)

67:4
(23:3)

74:4
(31:2)

94:0
(14:4)

0 .5 11:5
(15:8)

19:6
(16:8)

42:9
(43:7)

64:6
(28:4)

50:7
(39:1)

84:1
(27:4)

.5 0 9:7
(10:9)

21:9
(13:8)

43:6
(23:4)

65:2
(20:0)

75:5
(32:3)

94:9
(11:4)

.5 .5 12:4
(13:7)

19:2
(13:2)

50:9
(35:9)

67:8
(22:5)

74:9
(34:2)

93:4
(15:4)

30 500 -.5 -.5 11:7
(12:1)

14:7
(15:2)

48:6
(30:0)

58:9
(25:0)

69:5
(27:9)

89:1
(18:5)

-.5 0 16:1
(18:5)

15:8
(17:0)

66:0
(52:4)

57:1
(27:0)

82:9
(42:5)

82:8
(25:7)

0 -.5 2:3
(3:5)

14:3
(14:9)

10:4
(7:0)

58:1
(22:0)

16:7
(8:9)

89:7
(17:4)

0 0 11:5
(11:3)

15:1
(15:4)

47:5
(29:2)

59:8
(24:7)

67:8
(27:0)

88:1
(19:4)

0 .5 11:6
(13:7)

17:0
(18:9)

43:6
(41:4)

58:3
(29:2)

49:3
(30:7)

77:9
(30:5)

.5 0 9:0
(8:7)

14:2
(15:0)

41:2
(19:4)

56:4
(20:6)

69:0
(24:6)

90:0
(15:1)

.5 .5 11:3
(10:9)

14:6
(14:8)

48:6
(29:2)

59:3
(24:5)

68:9
(27:6)

88:2
(19:5)

Note: The table reports the estimates of the fraction of series with a unit root (averaged over the replications). The

number in the �rst column is Ng0s (2008) estimator A, while the second column is Storey et al.�s (2004) estimator with
data-based choice of �:



Table 5. FDR and estimates of FDR (%) - Factor model

�0 = 10% 50% 90%
n T � � FDR dFDR FDR dFDR FDR dFDR

�0 �̂Ng0 �̂Storey0 �0 �̂Ng0 �̂Storey0 �0 �̂Ng0 �̂Storey0

10 100 -.5 -.5 .3 .7 :8
(1:3)

2:3
(2:3)

1.6 6.4 6:5
(6:6)

8:0
(4:8)

9.1 41.7 36:3
(25:3)

40:6
(13:5)

-.5 0 .2 .7 1:3
(2:2)

2:3
(2:3)

2.1 6.5 8:7
(10:5)

8:3
(5:7)

9.1 41.9 39:2
(29:4)

40:1
(14:0)

0 -.5 .2 .7 :4
(:8)

2:4
(2:3)

1.9 6.9 2:8
(3:4)

8:3
(4:7)

8.6 42.6 15:9
(14:2)

40:6
(12:9)

0 0 .2 .7 :9
(1:5)

2:3
(2:3)

2.0 6.5 6:4
(6:1)

7:6
(3:8)

8.6 41.8 34:9
(23:5)

39:6
(13:9)

0 .5 .4 .7 :8
(1:3)

2:3
(2:4)

2.4 6.4 5:5
(6:0)

7:9
(5:1)

12.5 40.5 21:9
(20:1)

38:2
(15:2)

.5 0 .3 .9 :9
(1:7)

3:1
(2:8)

2.5 8.0 6:8
(7:1)

9:9
(6:9)

11.1 41.9 34:4
(24:5)

40:5
(12:5)

.5 .5 .3 .7 :9
(1:4)

2:2
(2:2)

2.2 6.3 6:4
(6:0)

7:8
(4:4)

10.3 41.8 35:3
(25:7)

40:5
(13:3)

10 500 -.5 -.5 .2 .6 :7
(1:0)

1:7
(2:0)

2.0 4.9 4:7
(4:1)

5:5
(2:1)

9.5 40.7 30:4
(19:4)

37:6
(14:7)

-.5 0 .3 .6 1:1
(1:8)

1:6
(1:9)

2.5 4.9 6:9
(6:7)

5:7
(2:4)

9.8 40.5 38:7
(27:8)

36:8
(15:4)

0 -.5 .4 .6 :1
(:2)

1:6
(1:9)

3.1 4.9 1:0
(1:0)

5:3
(2:1)

14.9 38.2 7:4
(6:4)

35:3
(14:8)

0 0 .3 .6 :6
(:9)

1:5
(1:8)

2.6 4.9 5:0
(4:0)

5:4
(2:1)

10.9 40.1 30:2
(20:0)

36:9
(14:7)

0 .5 .3 .6 :7
(1:1)

1:5
(1:8)

2.3 4.9 4:5
(4:6)

5:9
(2:3)

11.9 39.7 22:9
(19:7)

36:8
(15:6)

.5 0 .4 .6 :5
(:8)

1:5
(1:8)

3.7 4.8 4:1
(3:2)

5:2
(2:1)

16.6 37.5 29:6
(20:5)

34:7
(14:8)

.5 .5 .3 .6 :6
(1:0)

1:6
(1:9)

2.2 4.9 4:4
(3:7)

5:5
(2:2)

11.7 39.8 31:1
(20:4)

37:0
(15:0)

30 100 -.5 -.5 .3 .7 :8
(:9)

1:4
(1:0)

2.2 6.1 6:2
(4:0)

8:1
(3:5)

13.2 51.4 43:4
(31:7)

54:4
(28:6)

-.5 0 .3 .7 1:3
(1:6)

1:4
(1:2)

2.4 6.1 8:3
(7:8)

8:3
(3:9)

12.5 53.2 49:9
(39:5)

54:8
(31:6)

0 -.5 .3 .7 :3
(:4)

1:5
(1:2)

1.7 6.5 2:8
(2:3)

8:5
(3:6)

13.4 55.9 21:0
(16:7)

59:3
(31:7)

0 0 .2 .7 :8
(:9)

1:4
(1:1)

2.1 6.1 6:1
(3:9)

8:1
(3:3)

12.6 53.4 42:8
(28:0)

54:3
(26:8)

0 .5 .3 .7 :8
(1:1)

1:3
(1:2)

2.6 5.9 5:1
(5:6)

7:8
(4:2)

15.6 49.3 28:0
(28:6)

46:8
(29:0)

.5 0 .2 .8 :8
(:9)

1:8
(1:3)

2.5 7.3 6:4
(3:8)

9:6
(3:8)

16.5 62.7 52:6
(37:9)

65:7
(35:6)

.5 .5 .3 .7 :8
(:9)

1:4
(1:0)

2.2 6.1 6:2
(4:4)

8:3
(3:3)

14.2 52.8 41:5
(25:6)

53:3
(26:6)

30 500 -.5 -.5 .2 .6 :7
(:7)

:8
(:8)

2.2 4.9 4:7
(3:0)

5:8
(2:5)

15.5 38.0 29:5
(13:9)

38:1
(12:2)

-.5 0 .3 .6 :9
(1:0)

:9
(:9)

2.6 4.9 6:4
(5:1)

5:6
(2:7)

15.8 37.9 35:8
(21:2)

36:4
(14:9)

0 -.5 .4 .6 :1
(:2)

:8
(:8)

3.4 4.8 1:0
(:7)

5:7
(2:2)

18.8 36.6 6:9
(4:1)

36:9
(11:8)

0 0 .3 .6 :6
(:6)

:8
(:9)

2.3 4.9 4:6
(2:8)

5:9
(2:5)

15.1 38.2 28:9
(13:8)

38:0
(12:4)

0 .5 .4 .6 :6
(:8)

:9
(1:0)

2.7 4.9 4:3
(4:0)

5:7
(2:9)

15.3 38.1 21:0
(14:9)

33:9
(16:3)

.5 0 .4 .6 :5
(:5)

:8
(:8)

3.4 4.8 4:0
(1:9)

5:5
(2:1)

21.0 35.5 27:3
(12:5)

35:7
(11:0)

.5 .5 .3 .6 :6
(:6)

:8
(:8)

2.7 4.9 4:7
(2:9)

5:8
(2:5)

14.5 38.5 29:3
(13:8)

38:0
(12:4)

Note: The �rst column reports the proportion of false rejections. The remaining columns report estimates of the false

discovery rate using �0; Ng�s estimator of �0, and Storey�s estimator of �0 with data-dependent choice of �:



Table 6. FDR control (%) - Factor model

�0 = 10% 50% 90%
n T � � BH BH� RSW BH BH� RSW BH BH� RSW

10 100 -.5 -.5 .2 3.6 4.4 .7 6.3 3.5 1.5 4.1 3.8
-.5 0 .2 3.4 3.9 1.1 6.5 3.2 1.3 3.5 2.9
0 -.5 .2 4.1 4.5 1.0 14.3 4.0 1.4 8.8 3.8
0 0 .2 3.7 4.4 .9 6.5 3.2 1.9 4.3 3.3
0 .5 .3 4.1 4.3 1.1 10.0 5.1 2.4 11.0 4.5
.5 0 .2 3.9 4.0 .6 8.5 4.8 1.0 4.0 4.8
.5 .5 .2 3.6 4.4 1.2 6.5 3.4 1.7 4.5 3.6

10 500 -.5 -.5 .2 4.3 5.5 1.2 9.1 5.4 1.2 4.5 4.7
-.5 0 .3 4.0 5.3 1.6 7.9 5.3 1.4 4.3 4.2
0 -.5 .4 4.7 5.7 1.8 21.4 6.8 2.6 27.4 5.4
0 0 .3 4.3 5.4 1.5 9.5 5.6 1.1 5.7 5.3
0 .5 .3 4.1 5.5 1.5 11.3 5.5 2.1 10.7 4.2
.5 0 .4 4.8 5.9 2.1 12.1 6.2 3.1 8.5 6.1
.5 .5 .3 4.2 5.4 1.4 9.6 5.0 1.8 6.6 4.9

30 100 -.5 -.5 .3 6.1 4.7 .9 3.7 3.8 1.3 2.0 3.9
-.5 0 .2 5.3 3.7 1.0 3.9 3.8 1.3 2.4 2.5
0 -.5 .2 8.7 5.1 .6 16.2 3.8 1.1 6.0 4.4
0 0 .1 5.9 4.6 .9 3.5 3.5 1.7 2.3 4.1
0 .5 .3 6.6 4.5 1.2 9.3 5.5 2.8 8.3 4.1
.5 0 .2 6.9 4.4 .8 4.4 4.0 1.1 1.9 5.2
.5 .5 .2 6.0 4.5 .9 3.6 4.1 2.4 3.5 3.7

30 500 -.5 -.5 .2 6.3 5.4 1.1 4.9 5.1 1.7 3.5 4.9
-.5 0 .3 5.7 5.4 1.3 4.7 5.1 2.0 3.4 3.9
0 -.5 .4 9.6 5.9 1.8 34.0 7.0 2.3 28.6 5.0
0 0 .3 6.4 5.7 1.1 5.0 5.2 1.9 3.7 5.5
0 .5 .4 6.7 5.0 1.4 9.8 5.6 2.1 7.6 4.7
.5 0 .4 7.1 6.1 1.9 7.4 8.4 2.6 5.2 5.8
.5 .5 .3 6.3 5.8 1.4 5.5 5.4 1.7 3.2 4.5

ote: The table reports the proportion of false rejections using the Benjamini-Hochberg method and the bootstrap

method of Romano et al. (2008) with a desired FDR level of 5%.



Table 7. Empirical results

PSID data Real exchange rates
ADF DF-GLS ADF DF-GLS

# rejections (%) 24 (15.8) 25 (16.2) 6 (31.6) 11 (57.9)

�̂Ng0 20.3 20.3 -30.3 -30.3
�̂Storey0 86.6 27.3 21.1 10.5

dFDRNg 6.5 6.2 -4.8 -2.6dFDRStorey 27.8 8.4 3.3 .9

BH 9 (5.8) 8 (5.2) 1 (5.3) 10 (52.6)
RSW 2 (1.3) 2 (1.3) 1 (5.3) 1 (5.3)

Table 8. Detailed empirical results
Real exchange rates

ADF DF-GLS
� i 5% BH RSW � i 5% BH RSW

Argentina -2.67 -2.68 * * *
Australia -2.61 -1.83
Belgium -3.12 * -2.80 * * *
Brazil -2.13 -2.44 * * *
Canada -1.79 -1.69
Denmark -2.07 -2.01 *
Finland -4.45 * * * -4.46 * * *
France -2.93 * -1.92
Germany -1.72 -2.27 * * *
Italy -3.11 * -3.08 * * *
Japan -0.51 -0.11
Mexico -2.16 -1.74

Netherlands -1.77 -1.60
Norway -2.15 -3.00 * * *
Portugal -1.82 -1.55
Spain -2.18 -2.31 * * *
Sweden -2.90 * -2.31 * * *

Switzerland -0.95 -0.66
United Kingdom -2.90 * -2.86 * * *

Total 6 1 1 11 10 10

Note: The table reports the rejections using a �xed 5% critical value, the the Benjamini-Hochberg method and the

boostrap method of Romano et al. (2008) with a desired FDR level of 5%.




